
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Henri Binsztok, Adam Koprowski, and Ida
Swarczewskaja

Opa: Up and Running

www.it-ebooks.info

http://www.it-ebooks.info/

Opa: Up and Running
by Henri Binsztok, Adam Koprowski, and Ida Swarczewskaja

Copyright © 2013 MLstate. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette
Production Editor: Rachel Steely
Copyeditor: Audrey Doyle
Proofreader: Rachel Steely

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

February 2013: First Edition

Revision History for the First Edition:

2013-02-20: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449328856 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Opa: Up and Running, the image of an opah fish, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-32885-6

[LSI]

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449328856
http://www.it-ebooks.info/

Table of Contents

Preface. vii

Part I. Coding a Mini Wikipedia

1. First Steps: Getting to Know Opa. 3
Installing Opa 3

Installing Node.js 3
Auto-Installing MongoDB 4

Our First Program 4
Writing and Running the Code 4
What localhost:8080 Means 5
What the Code Means 6
What Happens When We Run Your Application 7
Details About the Opa Runtime 8

Toward Real Programs 9
Battle Plan 10
Summary 11

2. Opa Fundamentals. 13
Primitive Values 13
Dynamic Content 15
Records 17
Introduction to Types, and More About Records 18
A Brief Introduction to Variants 20
Functions: Building Blocks 21
Functional Programming 22
Functional + Typed 25

iii

www.it-ebooks.info

http://www.it-ebooks.info/

Summary 26

3. Servers, Resources, and URLs. 27
Web Resources 27
Embedding (Static) Resources 27
Serving Resources 29
Constructing (Dynamic) Resources 31
URL Dispatching 31
Summary 34

4. Data Storage. 35
CRUD (Create, Read, Update, and Delete) 35
Maps (Dictionaries) 38
Summary 39

5. Building the UI in HTML and CSS. 41
HTML Markup 41

Tags and Attributes 41
Inserts 42
Event Handlers 43
DOM Manipulation 45
Example: A Guessing Game 46

The Wiki Interface (HTML) 48
HTML Plumbing 49
Markdown 50
Dynamically Updating the Page 50

Adding Style (CSS) 51
Explicit Style Attributes 51
Opa-Powered Style 52
External CSS 53
Wiki with Style 53

Bootstrap: Nice, Out-of-the-Box Styling 54
Working with Designers 57

How Should I Use the DOM Structure? 57
Can You Describe Your Development Environment? 57
How Should I Write CSS with Opa? 57
Which Tools Should I Use to Write CSS? 57
How Do I Improve the CSS Workflow in Opa? 58
How Often Should Developers and Designers Interact? 58
What Should Developers Know About CSS? 58
What Should Designers Know About Opa? 58

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Can You Provide Some Tips for Quickly Customizing Your App’s
Bootstrap-Based UI? 58

Summary 59

Part II. Coding a Mini-Twitter

6. The Web Chat App. 63
Starting a New Project 64
View: Building User Interface 64
Model: Application Logic 65
Connecting the Model and the View 67

Showing New Messages 68
Broadcasting the Current User’s Messages 68
Connecting Everything 68

Understanding Networks 69
Exercises 72

Customizing the Display 72
Saying “Hello” 72
Distinguishing Messages Between Users 72
User Customization 72
And Beyond 72

7. More Advanced Features of Opa. 73
Learning More About Types 73

Variant Types 73
Pattern Matching 74
Polymorphic Types 75
Recursive Types 77

Recursive Functions 78
What About Loops? 80
Bigger Projects 80
Packages 83
Summary 83

8. User Management. 85
Setting Up the View 85
Bootstrap Widgets: Modal Windows 88
Form Handling in Opa: Registration Form 91

Alerts 95
Modeling and Adding Users 96
Account Creation Notification: Sending Emails 98

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

Activating a User Account Without an Activation Email 101
Account Activation: URL Data Handling 102
Keeping Track of Logged-In User: Handling User Associated Data 104
The User’s Top-Bar Menu 108
Exercise 110
Summary 111

9. Building Reactive UIs: New Messages with a Real-Time Preview. 113
Parsing 113

Parsing Expressions 115
Modeling Messages 117
Rendering Messages 118
Reactive UI: Live Preview 120
Summary 127

10. Data Storage and Querying: Storing and Fetching Relevant Messages. 129
Collections in Opa: Lists, Sets, and Maps 129
Declaring Data 130
Inserting/Updating Data 132
Reading (and Querying) Data 133

Projections 136
Data Manipulations in Birdy 136

Database Declaration 137
Storing New Messages 138
Fetching Relevant Messages 138
User and Topic Pages 142
Following Users and Topics 146
Following Users 146
Following Topics 147
Follow Button 148

Exercise 151
Summary 151

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Modern web applications represent the new way to write software. Facebook, Twitter,
and Wikipedia are some well-known examples of such applications. They run on
servers, and users can access them with a browser via either desktop or mobile devices.
We refer to these as “modern” applications because they combine a rich user interface
with real-time interaction and the capability to connect with online services, among
other capabilities.

Opa is a programming framework for JavaScript that enables you to easily write modern
web applications that have all the aforementioned cool features. This book is a gentle
introduction to Opa.

What Is Opa?
Traditionally, many different technologies and languages are involved when writing web
applications. Not so with Opa! Opa is the only technology you need to know to write
the code that runs on the client (in the browser) and the code that runs on the server,
including database queries.

Opa natively supports the web platform, which is a set of technologies that includes
HTML5 and CSS, and it automates many aspects of modern web application program‐
ming: Ajax/Comet client/server communication, event-driven and nonblocking code
transformations, etc.

One of the main distinctive features of Opa is strong static typing, with type inference.
This means that every application you write is checked by a program called a typechecker
that automatically tracks inconsistencies in the application. Typing enables Opa pro‐
grammers to debug applications quickly, and increases application safety and security.

As a final step, Opa generates standard code: JavaScript for the client side, Node.js, and
MongoDB for the server side.

vii

www.it-ebooks.info

http://www.it-ebooks.info/

The philosophy of Opa is to support multiple platforms. It is possible to extend Opa to
support different backends.

How Do I Work with Opa?
Working with Opa is as easy as 1, 2, 3:

1. Write your application code in a text editor.
2. Generate your application by invoking Opa.
3. Run and/or deploy your application online.

In “Installing Opa” (page 3), you will learn how to install Opa and create your first
application. Then you will develop two real applications with Opa: a mini-Wikipedia
and a mini-Twitter.

The applications you develop with Opa are standard JavaScript projects that run both
in the browser (where JavaScript is by far the most prevalent) and on the server. On the
server side (also called the backend), the applications rely on two popular technologies
for the runtime:

• Node.js, which allows you to execute JavaScript code on the server
• MongoDB, which is a NoSQL database server

Both technologies were chosen for their ability to scale, that is, easily add servers to
handle more clients when your application becomes hugely popular.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords

Constant width bold

Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context

viii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Opa: Up and Running by Henri Binsztok,
Adam Koprowski, and Ida Swarczewskaja (O’Reilly). Copyright 2013 MLstate,
978-1-449-32885-6.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers ex‐
pert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT

Preface | ix

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.it-ebooks.info/

Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Opa_1E.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The authors would like to thank Alok Menghrajani, who did a thorough review of the
original draft of the book. Opa would never exist without the work of its contributors,
including the core developers of Opa: Cédric Soulas, Frédéric Ye, Norman Scaife, and
Quentin Bourgerie. Thank you for your impressive work.

x | Preface

www.it-ebooks.info

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/Opa_1E
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

PART I

Coding a Mini Wikipedia

This book is organized into two parts. In this first part, we start from the beginning and
progress to coding a wiki application that could later grow to match the features and
scalability of Wikipedia.

The goal is ambitious, but Opa lowers the requirement. So let’s jump in right now.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

First Steps: Getting to Know Opa

In this chapter, you will get your first glimpse of Opa. You will learn how to install it,
write an Opa program, and become familiar with the crucial steps in the development
cycle.

Installing Opa
To install Opa, get the package for your architecture from Opa’s website. At the time of
this writing, installers are available for all major platforms: Mac OS X, Windows, Linux
(generic, Ubuntu, and Fedora), and FreeBSD. These installers work with 64-bit
architectures and, on some platforms, with 32-bit architectures.

On Mac OS X, you need to have Apple’s Xcode command-line tools installed as well.

As an option, you can compile Opa from source, but we strongly recommend using
packages to begin with.

Once you have downloaded Opa, you can that check it’s correctly installed by opening
a terminal and running the following:

Tokyo:~ henri$ opa --version
Opa compiler (c) MLstate -- version 1.0.7 -- build 4040

This gives you the Opa version and build number. Opa then checks that its runtime
dependencies are also installed in your system and should guide you to install them if
necessary. You are all set!

Installing Node.js
Opa uses Node.js to execute JavaScript code on the server. To install Node.js, get the
package for your platform from the Node.js website. Then type the following command
in your terminal:

3

www.it-ebooks.info

http://opalang.org
http://nodejs.org
http://www.it-ebooks.info/

Tokyo:~ henri$ npm install -g ursa formidable

The -g stands for global and means that the node modules will be installed wherever
the Node.js program could easily find them.

Auto-Installing MongoDB
MongoDB is automatically installed and launched while you are running the Opa
application on the server.

You can find up-to-date installation instructions online at https://
github.com/MLstate/opalang/wiki/Getting-started.

Our First Program
In this section, you will write and then run your first program. You’ll then learn what
the code actually means, how to build the application, and what happens behind the
scenes.

Writing and Running the Code
You will write your Opa application code in a text editor. Any basic editor works, but
we recommend using one of the editors for which Opa-specific plug-ins exist, including:

• Sublime Text2
• Emacs
• Vim
• Eclipse

Please check the online Opa documentation for up-to-date information on how to set
up your preferred text editor.

Now open your editor and create a file that is named hello.opa and that contains the
following content:

Server.start(Server.http,
 { title: "Hello, world",
 page: function() { <h1>Hello, world</h1> }
 }
)

This is a very simple application that just displays a static Hello, world message. You
can run the application by typing the following command in a terminal:

4 | Chapter 1: First Steps: Getting to Know Opa

www.it-ebooks.info

https://github.com/MLstate/opalang/wiki/Getting-started
https://github.com/MLstate/opalang/wiki/Getting-started
http://www.sublimetext.com/2
http://www.gnu.org/software/emacs/
http://www.vim.org/
http://www.eclipse.org/
https://github.com/MLstate/opalang/wiki/Getting-started#wiki-ide
http://www.it-ebooks.info/

Tokyo:~ henri$ opa hello.opa --
Http serving on http://localhost:8080

We will come back to this code later to discuss what actually happens here. For now,
just point your browser to http://localhost:8080 and you should see something similar
to Figure 1-1.

Figure 1-1. Our first Opa program in action

What localhost:8080 Means
Usually, you open addresses in your browser that look like this: facebook.com. This so-
called URL (Uniform Resource Locator) allows to locate Internet resources, similar to
how you use street addresses you to locate buildings.

Referring to the URL used in the preceding code, localhost is the standard way to address
the local machine, that is, this computer. The corresponding IP address, usually 127.0.0.1
or the name of your computer, will work as well.

The 8080 after the colon in the address is the port number. Domain names are used to
locate sites; ports are used to distinguish different services within sites. If we were to
compare URLs to street addresses, domain names would correspond to the country,
city, and street, whereas the port would correspond to the house/apartment number.

The default port for web services is 80. However, running applications on port numbers
smaller than 1024 often requires administrator rights; therefore, Opa chooses 8080 as

Our First Program | 5

www.it-ebooks.info

http://localhost:8080
http://www.it-ebooks.info/

the default port for its applications. You can change this with the --port X switch of
the executable; for example:

Tokyo:~ henri$./hello.js --port 2012

Lastly, a URL may also contain a path, as in http://example.com/this/andthat.html, in
which the path is /this/andthat.html. The domain name and the path are handled sep‐
arately. The domain name is used to locate the box running the service. To do this,
browsers make requests on DNS servers that translate the name into the IP address of
the service. When scaling, the DNS is the first technology to distribute the requests of
many clients to different boxes. The path is used to locate a resource on the service.
Originally, the path was used to locate a file on the service—perhaps a static resource
such as an image or a script. But with modern frameworks such as Opa, most resources
are virtual.

What the Code Means
Let’s decipher the meaning of the four lines of code we wrote:

Server.start(Server.http,
 { title: "Hello, world",
 page: function() { <h1>Hello, world</h1> }
 }
)

Server.start is an entry point for Opa programs, much like main in Java or C, which
launches the application web service. It takes two arguments: the server configuration
and the definition of how the server should handle incoming requests. This second
parameter can exist in many different forms, and you will learn more about them in
Chapter 3.

Here we are using a variant that creates a simple application with a single page (which
will be shown regardless of the URL). This variant is defined by a record with two fields:
title and page, denoting the page title and content, respectively. If you are familiar
with JavaScript, you will notice that Opa borrows the same { field1: val1, ...
fieldN: valN } syntax to denote records. You will learn more about records in “Re‐
cords” (page 17).

The title field is a string, whereas page is a function that takes no arguments and
returns the (X)HTML content of the page.

HTML stands for HyperText Markup Language and is the standard
markup language for web pages. If you are not familiar with it, we sug‐
gest that you grab a good book or some of the multitude of online re‐
sources on HTML.

6 | Chapter 1: First Steps: Getting to Know Opa

www.it-ebooks.info

http://example.com/this/andthat.html
http://www.it-ebooks.info/

HTML is a first-class citizen in Opa: it is a predefined data type with special support
that allows it to be entered using its usual syntax. Opa supports the shiny and new
HTML5 version of HTML. You will learn more about HTML5 features in Chapter 5.

What Happens When We Run Your Application
When you run your application by invoking opa hello.opa --, you actually perform
two different operations:

1. You transform (or compile) the source code you have written into a runnable
application.

2. You launch the runtime environment and execute your application.

Let’s take a closer look at step 1. Opa is a JavaScript framework consisting of two pieces:
a library and a compiler. The library is an approximate version of the prebuilt code you
use in your applications, while the compiler is a strange and complex beast that performs
several operations:

1. The compiler reads the Opa code you have written (that step is called parsing) and
checks that the code is syntactically correct. For instance, if you forget a closing
parenthesis in your code, you will get a parsing error.

2. If parsing succeeds, the compiler verifies more deeply that your application does
not do silly things, by checking the consistency of the whole application. This major
step is called typechecking and you will learn about it in detail in Chapter 2.

3. If typing succeeds, the compiler identifies which parts of the application run on the
server, on the database, and on the client. This step is called slicing and it is one of
the unique features that Opa provides.

4. The compiler computes the data schema and generates all database queries.
5. It then translates all client-side code from Opa to JavaScript.
6. Finally, it generates the Opa server-side code to JavaScript code (with the Node.js

backend) and embeds the client resources (including the generated client code) so
that the server can send them to any client that connects.

Of course, you don’t need to know exactly how the Opa compiler works to develop
applications. Several development environments (or IDEs) have integrated project build
capability, so the compilation process is just a keystroke away.

Throughout this book, we will show you how to work with Opa using the command
line, since it works repeatably on all platforms. IDEs are just graphical interfaces for
running the same commands for you.

Our First Program | 7

www.it-ebooks.info

http://www.it-ebooks.info/

If there are any problems, the compiler will inform you of them with appropriate error
or warning messages. Otherwise, an executable JavaScript file will be generated. In this
case, it will be called hello.js.

Details About the Opa Runtime
The Opa compiler outputs a standard JavaScript application that uses two main
technologies:

1. The Node.js framework for the runtime
2. The MongoDB database

Opa-generated apps check that their own runtime environment is correct—that is, that
your system is properly installed—so both should be set up by now. If not, check “In‐
stalling Opa” (page 3).

You can compile a program without running it by invoking:

Tokyo:~ henri$ opa file.opa

without the double minus sign.

If you look at what happened in your directory, you will see that Opa creates one file
and one directory:

Tokyo:~ henri$ ls
_build program.js program.opa

The program.js file is the one you can run by invoking:

Tokyo:~ henri$./program.js
Http serving on http://localhost:8080

The _build directory contains the resources of the generated application. The applica‐
tion that results is a standard Node.js/MongoDB application that you can deploy in the
cloud.

If some Node.js packages are missing, Opa will guide you through installing them when
running your application:

Tokyo:~ henri$ opa file.opa
--> some node modules are missing, please run: npm install mongodb formidable
nodemailer imap

8 | Chapter 1: First Steps: Getting to Know Opa

www.it-ebooks.info

http://www.it-ebooks.info/

The cloud platform that most startups use, Amazon EC2, plays nicely
with Opa. Go to https://github.com/MLstate/opalang/wiki/Amazon-
Image-for-Opa for more information. Another interesting option is to
use an online platform (a concept also called Platform-as-a-Service, or
PaaS) on which you can deploy your application code directly. Plat‐
forms such as dotCloud and Heroku support Opa. Please consult
https://github.com/MLstate/opalang/wiki/Opa-in-the-Cloud for up-to-
date instructions for each platform.

Toward Real Programs
In our short “Hello, World” application, all the code went into a single hello.opa file. For
real programs, you’ll want to split the code among different files.

For instance, the popular MVC (Model-View-Controller) approach is to separate three
things in an application: the model, which represents the data and its treatment; the
view, which is the user interface of the data; and the controller, which synchronizes the
model and the view.

It’s very easy to start a new application with Opa thanks to a scaffolding mechanism that
automatically creates an empty MVC application for you. Just type:

Tokyo:~ henri$ opa create myapp
OpaCreate: Generating myapp/Makefile...
OpaCreate: Generating myapp/Makefile.common...
OpaCreate: Generating myapp/opa.conf...
OpaCreate: Generating myapp/resources/css/style.css...
OpaCreate: Generating myapp/src/controller/main.opa...
OpaCreate: Generating myapp/src/model/data.opa...
OpaCreate: Generating myapp/src/view/page.opa...

Now you can type:

$ cd myapp
$ make run

to create a myapp application.

You can compile it and run it using the following command:

Tokyo:~ henri$ cd myapp; make run

To see the source of the application, take a look at the generated files and open main.opa,
data.opa, and page.opa with your favorite editor:

Tokyo:~ henri$ ls -R src
controller model view

src/controller:
main.opa

Toward Real Programs | 9

www.it-ebooks.info

https://github.com/MLstate/opalang/wiki/Amazon-Image-for-Opa
https://github.com/MLstate/opalang/wiki/Amazon-Image-for-Opa
https://github.com/MLstate/opalang/wiki/Opa-in-the-Cloud
http://www.it-ebooks.info/

src/model:
data.opa

src/view:
page.opa

We will discuss the code in Chapter 2, but for now it’s important to know the following:

• The controller main.opa is the main file of the application, much like hello.opa was.
• The model data.opa is almost empty and contains a sample database declaration.
• The view page.opa is mostly static HTML content.

Battle Plan
Now that you have written your first Opa application, you are ready to proceed with
the main goal of this first part of the book: creating a simple wiki app. Our high-level
specification for the app is as follows:

• The app should support the popular Markdown markup format.
• Different topics should correspond to different URLs.
• Editing should be inline, with an easy way to switch between viewing and editing

modes.
• It will be rather simple: no preview (in editing mode), no index, and no user and

history management (i.e., everyone can edit pages, and the app will not store pre‐
vious versions of pages, nor information about who made the modifications).

The application is not overly complicated, but it still has a number of interesting features
that will give you a great opportunity to learn how to tackle different issues in Opa. In
the following chapters, you will learn how to:

• Declare web servers, handle requests to different URLs, and work with resources
(Chapter 3)

• Store and manipulate data in a database (Chapter 4)
• Create user interfaces (UIs) based on the HTML and CSS web standards (Chapter 5)

But before you do that, you need to learn a bit more about Opa, which you will do in
Chapter 2.

10 | Chapter 1: First Steps: Getting to Know Opa

www.it-ebooks.info

http://en.wikipedia.org/wiki/Markdown
http://www.it-ebooks.info/

Summary
In this chapter, you got a feel for what Opa is. You learned how to:

• Install Opa
• Write and run a simple app
• Set up your next goal

Summary | 11

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Opa Fundamentals

In Chapter 1, you wrote your first Opa program. That will always return the same value,
Hello, world, as a main title. The value itself is:

<h1>Hello, world</h1>

This value is an HTML fragment, one of the primitive values of Opa. The second myapp
application you saw in Chapter 1 also contains HTML values in src/view/page.opa:

content =
 <div class="hero-unit">
 Page content goes here...
 </div>

Here, the HTML value is named content, so it can be reused later.

Opa also offers a universal closing tag, </>, that you can use to close
any tag. In the previous case, you could have written:

content =
 <div class="hero-unit">
 Page content goes here...
 </>

Let’s discover the Opa values right now.

Primitive Values
As with most programming languages, Opa supports strings, integers, and floats, but
Opa also supports native web values such as HTML and CSS elements. As you can see,
comments in Opa consist of text preceded by double slashes, //:

13

www.it-ebooks.info

http://www.it-ebooks.info/

"hi" // a string
12 // an integer
3.14159 // a float
<p>Paragraph</p> // an HTML fragment
#id // a DOM identifier
css {color: black} // a CSS property

HTML values are fragments of HTML5. Each fragment has an opening tag such as <p>
and a closing tag such as </p>. The <p> tag is the tag that defines a paragraph. We will
provide a more complete list of tags shortly, but for now here are the main ones (see
Table 2-1):

Table 2-1. Most common tags in HTML5
Tag Definition

p Paragraph

h1 Level 1 title (header)

h2..6 Level 2 to 6 title (header)

div Generic container

span Inline generic container

ul List of unnumbered items

li List item

a Link

video Video item

You can embed HTML fragments, as shown here:

<div>
 Content button

 First item
 Second item

</div>

Be careful to properly close tags when embedding them: the first one
opened should be the last one closed. This is true for all except a handful
of tags that don’t necessarily need to be closed, such as <meta>, ,
<input>, and some others.

Tags can have attributes. For instance, the a tag has the href attribute, which specifies
the HTML reference it points to. So to insert a link to http://google.com, you can write:

Google

14 | Chapter 2: Opa Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

HTML fragments, when grouped together, create a document. We will discuss all the
relevant properties of a document in Chapter 5. For now, it’s sufficient to know that tags
can have a unique ID using the id attribute.

For instance, <div id="iamunique">...</div> creates an iamunique ID that can be
accessed by the DOM identifier #iamunique.

All Opa values can be named, to be reused later in your program. Here is an example:

customer = "John Doe"
price = 12.99
tax = price * 0.16
total = price + tax

Note that you can play with these basic values by inserting them into the former Hello,
World application. For instance, try:

Server.start(Server.http,
 { title: "Hello, world",
 page: function() {
 customer = "John Doe";
 price = 12.99;
 tax = price * 0.16;
 total = price + tax;
 <p>Customer {customer} has to pay {total}</p>
 }
 }
)

Here are a few things to note regarding the preceding code:

• Traditionally, each line of computation ends with a semicolon. There is ongoing
debate over whether this is a good thing or not. In Opa, you can omit the semicolons
if you want to.

• The end of the computation generates an HTML fragment and uses a mechanism
known as string expansion to insert values (known as customer and total) inside
the text. As you can see, you use braces for string expansion in Opa.

Dynamic Content
Thus far, you have learned how to build static content. Each time you run your appli‐
cation by pointing your browser to http://localhost:8080, you get the same content.

The Web was born this way, although originally the mechanism was different, as de‐
velopers used to write static HTML content within files and used a static server program,
such as Apache, to serve the files to users’ browsers. The pages would use the HTML
<a> tag to create links between pages or between different sites.

Dynamic Content | 15

www.it-ebooks.info

http://www.it-ebooks.info/

But we are here to build applications. An application consists primarily of web values
that can do the following:

• React to the users’ actions.
• Store data (e.g., user accounts) permanently in a database.

The most basic user action is the mouse click. Modern applications do not use the link
tag to react to users’ mouse clicks. So we will use an HTML attribute, onclick, which
is present in many tags.

Let’s create a small application that displays “Thank you” once the user clicks on “Click
me”:

Server.start(Server.http,
 { title: "Hello, world",
 page: function() {
 <div onclick={function(_) { #thankyou = "Thank you" }}>Click me</div>
 <div id="thankyou"/>
 }
 }
)

Run the application now! You should see something similar to Figure 2-1. You can restart
your application by refreshing the page in your browser.

Figure 2-1. The same dynamic application as in Figure 1-1 with a bit of design

16 | Chapter 2: Opa Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

The most important new line in this program is:

<div onclick={function(_) { #thankyou = "Thank you" }}>Click me</div>

which combines two things:

• The HTML value <div onclick={...}>Click me</div>
• The resultant action, function(_) { #thankyou = "Thank you"}

We won’t explain every bit of code in that line right now (you will know everything by
the end of this chapter), but it is important to note the following:

• You bind Opa code to the onclick event with the opening braces.
• You recognize that #thankyou is a DOM identifier value, and you can assign content

to the DOM identifier like you do for other values.

To continue our quest, you need to understand two powerful programming
mechanisms:

• Records, which allow you to structure data
• Functions, which help you to organize your application code

It turns out that you are already using both! The record lies behind the following:

{ title: ..., page: ... }

The function was already used twice:

• For the page that displays by default
• Again, when you click on “Click me”

Records
One of the main features in terms of Opa structuring values is records. As you will see
throughout this book, Opa records are extremely powerful and you will use them a lot.
Their nickname is “Power Rows.”

Records are a set of values, each defined by its field name. Values for each field can be
of any type, including records or even more complex types:

// this is a record with 3 fields
{ first_name: "John", last_name: "Doe", age: 18 }

// this is a record with 2 fields, one of them being a record itself
{ product: "book", price: { base: 29.99, tax: 4.80 } }

Records | 17

www.it-ebooks.info

http://www.it-ebooks.info/

Naturally, it’s useful to name values so that you can construct more complex ones step
by step:

level1_pricing = { base: 29.99, tax: 4.80 }
book = { product: "book", price: level1_pricing }

As we said earlier, all programs, including the very first one you wrote, use records:

 { title: "Hello, world",
 page: function() { <h1>Hello, world</h1> }
 }

The code includes a record that has two fields: title, which is a string, and page, which
is another value that we will discuss next.

Records in Opa can be extended, that is, you can add new fields later in your program:

level1_pricing = { level1_pricing with total: 29.99 + 4.80}

Introduction to Types, and More About Records
Now that you know about basic values and records, it’s time to learn more about types.
You should be familiar with types. You have seen strings and integers, and as a developer,
you know they represent different types of values. So does Opa!

"Hey" // this has type string
10 // this has type int

You can enforce types by writing them if you want, but in most cases, Opa infers them
for you and you can safely omit them:

string text = "Hey"

Opa uses the type information to help you. For instance, Opa won’t let you mix different
types as doing so is either a bug or a bad coding practice. Try writing:

1 + "Hello"

and see how Opa reacts.

Often, the mistake is not straightforward and involves two different parts of the code.
Opa handles this particularly well. If you write:

a = 1;
b = "Hello";
a + b

Opa will tell you what the error is and why it occurred. Try it!

You will get the following error message:

Error: File "typeerror.opa", line 3, characters 1-5, (3:1-3:5 | 21-25)
Type Conflict
 (1:5-1:5) int

18 | Chapter 2: Opa Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

 (2:5-2:11) string

 The types of the first argument and the second argument
 of function + of stdlib.core should be the same

The preceding error message says that:

• 1 is of type int (this was inferred).
• “Hello” is of type string (this was inferred as well).
• The type error exists in expression a + b.
• Both arguments of function + should have the same type.

To make it easier to read type error messages, you can name types:

type mytype = string
mytype text = "Hey"

This becomes useful with records. Each record (as with all other values in Opa) has its
corresponding type, even though you will not have to spell it out. For instance:

{ title: "The Firm",
 author: { first_name: "John", last_name: "Grisham" } }

has type:

type book = { string title,
 {string first_name, string last_name} author }

which you should read as: “Type book is a record with two fields: title and author.
Field title has type string, whereas author is a field whose type is a record with two
string fields: first_name and last_name.”

After such type declaration, you could as well write:

book some_book = { title: "The Firm",
 author: {first_name: "John", last_name: "Grisham"} }

In the preceding code, you gave a name (some_book) and an explicit type (book) to the
value shown previously.

Sometimes the expressions describing record fields can get long and complex:

author = { first_name: long_expression_to_compute_first_name,
 last_name: long_expression_to_compute_last_name}

In this case, to improve readability we will often compute and bind them first:

author =
 first_name = long_expression_to_compute_first_name
 last_name = long_expression_to_compute_last_name
 {first_name: first_name, last_name: last_name}

Introduction to Types, and More About Records | 19

www.it-ebooks.info

http://www.it-ebooks.info/

For this frequent case where fields are initialized from variables with the same name,
Opa provides an abbreviation and allows you to replace the last line in the preceding
code with:

 {~first_name, ~last_name}

Here {~field, ...} stands for {field: field, ...}. If all fields are constructed in
this way, you can even put the tilde in front of the record and write:

 ~{first_name, last_name}

You will often construct one record from another, as in:

grisham = {first_name: "John", last_name: "Grisham"}
steinbeck = {first_name: grisham.first_name, last_name: "Steinbeck"}

Opa facilitates this frequent-use case with the following construction:

{record with field1: value1, ... fieldN: valueN}

The value of this expression is the same as that of record except for fields field1 to
fieldN, which are given values value1 to valueN. For instance, the steinbeck value in
the previous code can be replaced with:

steinbeck = {grisham with last_name: "Steinbeck"}

Records are ever-present in Opa. Their power comes from the fact that all record
manipulations are typechecked:

• You cannot try to access a field that does not exist.
• You cannot misspell a field’s name (or rather, you can, but the compiler will point

out your mistake).
• You cannot try to access a field in a type-incompatible way (i.e., as a string when

it is an int).

This power does not cost you anything, as you can just use records as you would in a
dynamic language without ever explicitly declaring their types.

A Brief Introduction to Variants
One last aspect of the mighty record is variants.

Variants are the way to properly represent multiple-choice lists. Imagine that you want
to define a currency type for an online store that handles payments in US dollars (USD),
Canadian dollars (CAN), and British pounds (GBP). You could use the string type to
define that value. But what if you write the following at some point?:

price1 = { amount: 4.99, currency: "USF" }

20 | Chapter 2: Opa Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

The typo will remain unnoticed, the compiler won’t complain, and the related bugs will
have to be hunted down during the app testing. As a result, depending on the code
structure, the item might not be billed.

Instead, you can write:

type currency = { USD } or { CAN } or { GBP }
// here price is a previously defined book value
price = { amount: 29.99, currency: { USD }}

The or keyword states that the type currency will be one of the three options: USD,
CAN, or GBP. Opa provides very useful typechecking for variants. For instance, it checks
that values are only allowed variants or that you always take all variants into account.
You should use them instead of strings as much as possible.

We will discuss variants in more detail in Chapter 7.

Functions: Building Blocks
Before we move on to the main example of this part of the book, let’s take a look at some
building blocks of the language that you will need to understand.

Structuring programs is very important. You never want to write your program as a
single piece of code; rather, you want to break it down into blocks. The two main block
levels are:

• The modules (for bigger applications, which we will take a look at later)
• The functions (inside modules and for any application)

Using functions, you make your program more readable and your code reusable.

Functions are written and called very easily:

// the following function computes the tax of a given price
function compute_tax(price) {
 price * 0.16;
}

// we now can call (or invoke) the compute_tax function as much as we want
tax1 = compute_tax(4.99);
tax2 = compute_tax(29.99);

Here we have the function keyword, then the name of the function, compute_tax, and
a list of its arguments in between parentheses. In this case, there’s only one argument:
price, followed by the function body inside curly braces. Opa does not have an explicit
return keyword and instead adopts the convention that the last expression in the func‐
tion is its return value. Here, it means the function returns the value of price times 0.16.

Functions: Building Blocks | 21

www.it-ebooks.info

http://www.it-ebooks.info/

The open parenthesis in function invocation must immediately follow
the function’s name, with no spaces in between.

The use of functions in this example means that when the tax level changes, you only
have to modify one line of your program, instead of chasing down all the places where
the tax is computed in your application. For this reason, you should always use functions
whenever you can, and never copy and paste code. Each time you are tempted to copy
and paste your code, you should use a function instead.

You may have noticed that we introduced a semicolon at the end of line.
This is because we are getting into real programs, which involve several
computations. Therefore, we use a semicolon to indicate that a given
computation is finished, and that we can proceed to the next one. In
many cases, semicolons can be omitted and there is still no consensus
on whether it’s a good or a bad design decision. You have to find your
own coding style!

Functional Programming
The coding style that Opa promotes is called the functional programming style. Among
other things, this means that functions play a central role and are very powerful. The
functional programming style is often described as elegant, and we will show you why.
But for now, it helps to know that the main difference between functional programming
and classic programming is that in the former, values are not mutable by default.

For instance, in Opa, the main definition of values such as the following is the binding
of a value:

name = expression

However, this does not create a variable in the classic programming style. The previous
expression just means we give name to the expression and can subsequently use name
to refer to the value denoted by expression.

The main reason for this is that immutable code is easier to reason about. In the absence
of variables, the result of a function depends only on its arguments. Contrast this with
a function whose behavior depends on a bunch of global variables. This is one of the
main reasons why in the excellent book Effective Java (Addison-Wesley), where muta‐
bility is the norm, the author advises that you use immutability whenever possible,
explaining:

There are many good reasons for this: immutable classes are easier to design, implement,
and use than mutable classes. They are less prone to error and are more secure.

22 | Chapter 2: Opa Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

Our argument for immutability also concerns scaling web applications and services.
The architecture prevalent today for scaling up is to use stateless servers that can be
multiplied without limits. Should a server fail, a new one pops in, and traffic is directed
to random servers. But this implies that no application has unsaved data or state. The
problem here is that mutable variables often contain such information, and this infor‐
mation will not be synchronized with these other servers unless the synchronization
has been done manually (which is a painful process). Therefore, not using state (and
variables) is a good programming practice, today more than ever.

Bindings Versus Variables
It is important to understand that value binding is different from variable creation.
Variables, as you know them from other programming languages, are mutable. This
means you can reassign different values to them, such as in this JavaScript snippet:

x = 10
f = function() { return x + 1 }
x = 20
f()

Here, the value returned is 21, since in JavaScript the function f points to the modified
value of the variable x. However, the following Opa snippet returns 11!

x = 10
f = function() { x + 1 }
x = 20
f()

This is because Opa values are immutable and they cannot change subsequently. There‐
fore, in the preceding Opa snippet, x is being redefined as a new value, but the function
f still points to the previous value.

But there’s more to it.

Bindings and functions are deeply linked. Let’s play with them a bit by writing a function
that computes the Euclidean distance between two points:

function distance(x1, y1, x2, y2) {
 dx = x1 - x2
 dy = y1 - y2
 Math.sqrt_f(dx*dx + dy*dy)
}

In the preceding code, the function distance first binds the value x1-x2 to dx, and
similarly binds y1-y2 for dy, and then uses dx and dy in the final expression.
Math.sqrt_f is a function from the Math module (more about modules later) of the
standard library for computing the square root of a given floating-point number.

Functional Programming | 23

www.it-ebooks.info

http://www.it-ebooks.info/

In fact, the bindings inside functions can include local functions, so the previous could
be rewritten as follows, introducing the intermediate sqr function:

function distance(x1, y1, x2, y2) {
 dx = x1 - x2
 dy = y1 - y2
 function sqr(x) { x*x }
 Math.sqrt_f(sqr(dx) + sqr(dy))
}

Finally, functions can be anonymous, in which case they do not have a name but they
can be used inside any expression. The anonymous variant of the incr function in the
preceding code would be:

function(x) { x + 1 }

This variant can be stored in a named value:

incr = function(x) { x + 1 }

Anonymous functions are particularly useful for passing arguments to other functions;
for instance, to specify how the app should react to a user’s actions.

As you can see, functional programming allows much better control of programming
scope. In pure JavaScript, you would write:

var foo;
if (x==10) { foo = 20; } else { foo = 30; }

This would introduce a variable, and then set its value, even if foo is unmodified in the
rest of the program. In Opa, you simply write:

foo = if (x==10) { 20; } else { 30; }

The preceding code will have the guarantee that foo is not further modified.

Purity, or Not
Languages that prohibit destructive modifications (updates) of their data structures are
called purely functional. One example of such a language is Haskell.

Opa takes a somewhat more liberal approach, where immutability is the default. Defaults
are very important, though, as the article Why the Defaults Matter convincingly explains
for the major part of the language.

But although purely functional languages can be beautiful, they also can be unpractical.
In Opa, all database operations, which is the subject of Chapter 4, are mutable. Yes,
mutable variables also exist in Opa. We just made it a bit harder for you to use those
dangerous features!

24 | Chapter 2: Opa Fundamentals

www.it-ebooks.info

http://onorioc.wordpress.com/2012/03/27/why-the-defaults-matter
http://www.it-ebooks.info/

Functional + Typed
At the beginning of this chapter, we played with types. Opa is indeed a statically typed
language. This means that every value has a type assigned to it, and this assignment
takes place at compilation time. Being typed is orthogonal to being a functional lan‐
guage. This is important, as the compiler uses this information to detect and report all
kinds of flaws in the program.

So why were there no types in the code snippets shown in the preceding section? In
Opa, explicitly writing types is often not required as the types are inferred in the absence
of explicit type annotations. This means you could write the distance function with
explicit types as follows (the additions are in bold):

function float distance(float x1, float y1, float x2, float y2) {
 float dx = x1 - x2
 float dy = y1 - y2
 Math.sqrt_f(dx*dx + dy*dy)
}

Arithmetic operators work both for int and for float types, so the only reason all values
are given the float type is because of the Math.sqrt_f function (its int counter-part
is called Math.sqrt_i).

The type inference that the compiler performs may not seem too impressive on this
trivial example, but in later chapters, when we deal with more complex types, its benefits
will become more pronounced. The type checker algorithm that performs type inference
and verification is a very complex and sophisticated algorithm—especially the one in
Opa, which required tremendous effort on the part of Opa developers to specify and
implement.

Why Static Typing Matters
Many web application development frameworks today rely on dynamically typed
programming languages.

One of the key benefits of Opa is that it provides static typing before generating standard
JavaScript code. Since the Opa compiler is able to detect a huge class of programming
errors, it reports them to the developer even before it runs and tests the application. Due
to the very lax nature of JavaScript, such verifications are impossible to perform on pure
JavaScript.

Time spent debugging is greatly diminished, and you can be very productive with Opa.

Opa programs are immune to many problems such as null pointer exceptions, buffer
overflows, and code injections. This means the language, out of the box, offers high
security guarantees thanks to its static typing discipline.

Functional + Typed | 25

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In this chapter, we learned the fundamental concepts of Opa, in particular:

• How to use records to structure data
• How to write Opa functions
• Why Opa is functional and why this is important
• What types str and why they are important

In the next chapter we will talk about servers: how to handle resources and different
URLs of an application.

26 | Chapter 2: Opa Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Servers, Resources, and URLs

Applications contain resources (images, scripts, styles, etc.), and they need to navigate
between different pages with different URLs. In this chapter, we will explore how to
create a more generic application.

Web Resources
A resource is anything that can be sent from the server to the client. Figure 3-1 presents
different types of web resources, including:

• HTML content
• JavaScript code
• Cascading Style Sheets (CSS)
• Images (in PNG, JPG, or GIF formats)
• XML files

Embedding (Static) Resources
Opa contains directives to embed resources. The simplest one is @static_resource:

resource logo = @static_resource("img/logo.png")

The string given as the argument to this directive is a path to the resource, which can
be relative to the directory from which the project will be compiled.

This directive acts as a function; that is, you can bind its result to a variable (here,
logo) and use it in your program. The type of this variable is resource, which is an
object that can be sent from the server in response to the client’s request.

27

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-1. Different types of web resources

Sometimes you may have several resources you want to use: for example, a directory
full of images. Instead of including each image one by one, you can use @static_
resource_directory:

resources = @static_resource_directory("resources")

This line of code will include all resources based on all files from a given directory (here,
resources) and its subdirectories.

What is the type of this variable? Such an embedded directory is represented as a map‐
ping from filenames (string) to resources (resource), and hence has the type
map(string, resource). We will talk more about maps in “Maps (Dictionaries)” (page
38).

The counterparts of those two directives are @static_content and
@static_content_directory, and they expose the content of the
external files without wrapping them up as resources.

28 | Chapter 3: Servers, Resources, and URLs

www.it-ebooks.info

http://www.it-ebooks.info/

Serving Resources
Embedding resources is the first step. The next step is to instruct the web server to serve
them for certain requests. Remember the Server.start function and how you used it
in your first Opa app in “Writing and Running the Code” (page 4)? The second argument
defines how different requests should be handled. To serve resources from the resour‐
ces directory you first need to embed them:

resources = @static_resource_directory("resources")

Now you need to create a server for them:

Server.start(Server.http, {resources: resources})

Note that before you used a {title: ..., page: ...} variant for this second argument
to create a single-page app, that is, to direct all client requests to page. This new variant,
{resources: ...}, creates a server that just responds to requests for resources.

Imagine that the local resources directory has the following structure:

+- resources
 +- imgs
 | +- opa-logo.png
 +- css
 | +- style.css

In this case, running the preceding application and directing the browser to http://
localhost:8080/resources/css/style.css would give you the stylesheet. What if you tried
some other URL? This would result in the infamous "Error 404: Not Found" error.

OK, so what if you wanted to extend your “Hello web” application slightly and use some
resources in it? You could use two servers:

 // serve resources
Server.start(Server.http, {resources: @static_resource_directory("resources")})

 // serve the main page
function page() {

 <hr/>
 <h1>This is a demo of a very simple Opa app.</h1>
}
Server.start(Server.http, { title: "Hello web", page: page })

Note how this code combined the directive to embed the resources and the server dec‐
laration in one; this is entirely permissible.

Serving Resources | 29

www.it-ebooks.info

http://www.it-ebooks.info/

What happens if you declare more than one server? For every request, the servers will
be tried one by one. If a request can be handled by the resources server, it handles it.
Otherwise, the request will be handed over to the second server, which in this case can
handle each and every request.

Be aware that the order of the servers does matter. If you swapped the
declarations, all URLs would be handled by your “one page server” and
hence no resources would ever be served.

Another way to achieve the same effect is to simply use a list of servers in the second
argument of Server.start. In this case, the preceding program could be written more
concisely as:

function page() {

 <hr/>
 <h1>This is a demo of a very simple Opa app.</h1>
}
Server.start(Server.http,
 [{ resources: @static_resource_directory("resources") },
 { register: {css:["/resources/css/style.css"]} },
 { title: "Database Demo", page: page }
]
)

In the preceding code, we used square brackets to introduce the list.
Therefore, each list item is inside the curly braces, separated from the
others by a comma.

Now compile your application:

Demo:~ ida$ opa simple_demo.opa

And run it:

Demo:~ ida$./simple_demo.js
Http serving on http://Demo.local:8080

When you open it in the browser, you will see input similar to that shown in
Figure 3-2, which has a little CSS file included.

You will learn how to use embedded CSS stylesheets in “Adding Style
(CSS)” (page 51), where we will talk about creating user interfaces.

30 | Chapter 3: Servers, Resources, and URLs

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-2. Our first program with resources

Constructing (Dynamic) Resources
In addition to embedding static, ready-to-use resources, it is also possible to create them
on the fly. You will rarely do this for such things as images and stylesheets, but you will
often do this to create HTML pages dynamically; for example, pages based on the state
of the database or on user input.

Opa offers many functions for this; the ones we will typically use are:

xhtml Resource.page(string title, xhtml body)
xhtml Resource.styled_page(string title, list(string) stylesheets, xhtml body)

Resource.page takes two parameters, title and content, and constructs a page
resource with this data. Resource.styled_page is similar, but it takes one extra argu‐
ment: a list of URLs of CSS stylesheets to be used to style the application. You will see
an example of how to use it in the following section.

URL Dispatching
All the applications you have developed so far have consisted of just a single page, but
in practice most bigger sites will have multiple pages. The standard way to handle this
is with Uniform Resource Locators, more commonly known as URLs.

Constructing (Dynamic) Resources | 31

www.it-ebooks.info

http://www.it-ebooks.info/

URLs and Their Syntax
URLs are used as addresses to locate Internet resources. The general syntax of a URL is
as follows:

scheme://domain:port/path?query_string#fragment_id

For web pages, which in this book is the type of resource we are mainly interested in,
the scheme will read http (for unsecured access) or https (for secure, encrypted access).
The port will usually be omitted, in which case the default will be used (80 for http and
443 for https).

Typically, domain is used to identify the site, path to locate the page within that site,
query_string to communicate additional parameters (e.g., user identification or pref‐
erences chosen during interaction with the site), and fragment_id for precise location
within the page.

An example of an address utilizing all those elements is:

http://example.com/over/there/index.html?type=animal;name=ferret#nose

In this example, the scheme is http, the domain is example.com, the path is /over/there/
index.html, the query contains two key-value associations, type=animal and name=fer
ret, and the fragment points to nose.

Please note that there also exists a notion of Uniform Resource Identifiers (URIs), which
is more general than that of URLs, but for the purposes of this book both can be treated
as synonymous.

With what you’ve learned so far, it is very easy to build sites consisting of multiple pages.
You can do this via yet another variant of the argument accepted in the Server.start
function: {dispatch: dispatch_fun}, where dispatch_fun is a function that takes a
structured URL as an argument and produces a resource to deliver to the user. This
process is often referred to as URL dispatching.

You learned about resources in “Web Resources” (page 27) and about how to create
them dynamically in “Constructing (Dynamic) Resources” (page 31). But what is a
structured URL? It is a structural representation of a URL with all its components sep‐
arated. Since your application will work within a single domain, you are working with
relative URLs here, or URLs relative to the domain of the application, without the
scheme and domain parts.

Here is the definition of the type representing such URLs in Opa:

type Uri.relative =
 { list(string) path,

32 | Chapter 3: Servers, Resources, and URLs

www.it-ebooks.info

http://www.it-ebooks.info/

 list((string, string)) query,
 option(string) fragment,
 bool is_directory,
 bool is_from_root }

The preceding code consists of the following:

• A path split into a list of directories separated by a slash (/)
• A query consisting of a list of pairs of key-value associations
• An optional fragment (we will discuss options in more detail later)
• is_from_root and is_directory, which denote, respectively, whether the string

representation of the path starts or ends with a slash (/)

For example, consider the following address within a website:

/over/there/index.html?type=animal;name=ferret#nose

The structured representation of this address in Opa will be:

{ path: ["over", "there", "index.html"],
 query: [("type", "animal"), ("name", "ferret")],
 fragment: some("nose"),
 is_from_root: true,
 is_directory: false }

Due to HTTP, the fragment identifier is not transmitted from the client to the server
via a normal web request.

To practice URL dispatching in Opa, let’s write a simple program that will construct a
page consisting of the relative address requested by the user. If that address refers to a
path starting with bold, the remaining part of the address will be printed in bold. If it
starts with italic, it will be shown in italic.

Hopefully, the following short program should not be too difficult to understand now:

function start(url) {
 match (url) {
 case {path: ["bold" | text] ... }:
 Resource.page("Bold", {text})
 case {path: ["italic" | text] ...}:
 Resource.page("Italic", <i>{text}</i>)
 case {~path ...}:
 Resource.page("Regular", <>{path}</>)
 }
}

Server.start(Server.http, {dispatch: start})

URL Dispatching | 33

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In this chapter you learned how to deal with URLs and resources in Opa. Specifically,
you learned:

• What web resources are
• How to embed them in an Opa server
• How to serve resources to application users
• How to create dynamic HTML resources
• How to dispatch URLs, that is, serve different content for different URLs

In the next chapter you will learn about data storage, or how to permanently store some
application data in a database.

34 | Chapter 3: Servers, Resources, and URLs

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Data Storage

Opa manages all aspects of applications and services within a single language semantic.
Storing and querying data is, not surprisingly, one of the core features of Opa.

In most frameworks, we use APIs and connectors to communicate between the language
and a database. Both of these “speak different languages,” with some form of mapping
in between them.

The Opa approach is slightly different, with the database operations being very tightly
integrated into the language and the mapping being performed fully transparently by
the compiler. The layer that performs transparent mapping of data is known as DbGen.

In this chapter you will learn about Opa’s approach to storing basic types. Then we will
discuss how to handle a slightly more complex data type: maps.

CRUD (Create, Read, Update, and Delete)
To get started, let’s look at a very simple database declaration, containing only a single
int, a counter of sorts:

database db {
 int /counter = 0;
}

As you can see, Opa features a database block with a given name and a list of declara‐
tions of database values enclosed in curly braces.

Opa programs can handle multiple database connections, even through
different database engines. At the time of this writing, support of
MongoDB is much more advanced, but CouchDB is also supported and
PostgreSQL support is in progress.

35

www.it-ebooks.info

http://www.it-ebooks.info/

Every declaration consists of a type (here, int), a path (here, /counter), and optionally,
a default value (here, 0).

The default value is used when you attempt to read a path’s value that does not exist. In
cases where the path was never written or was removed, the default value is returned.

Omitting initialization values will cause Opa to use a default value,
which is 0 for int, 0.0 for float, and "" for string values.

Locations in Opa’s database are called paths, as they bear a strong similarity to filesystem
paths. Every value is available at a path consisting of the database name, followed by the
path of the value, in our case /db/counter. You can read a given value by simply writing
its path, as in:

counter_value = /db/counter

There is an alternative read operation, prefixed with a question
mark: ?/db/counter. The difference occurs in read operations on paths
that were never written into. The regular variant in this case will just
supply the default, whereas an operator prefixed with a question mark
returns optional value, with the value present only if it was explicitly
written into the path. You will learn more about optional values in Opa
in “Polymorphic Types” (page 75).

Similarly, you can write the value using path <- value notation:

/db/counter <- 42;

A few extra operators are also available for manipulating int paths:

/db/counter++;
/db/counter += 10;
/db/counter -= 3;

The last element in CRUD is Delete, which is also very easy with Opa. To delete the
counter, you write:

Db.remove(@/db/counter)

Of course, this is just the beginning of the “database story” in Opa. You will learn more
as we go along.

To illustrate the usage of the database, let’s extend our simple Opa program from “Writ‐
ing and Running the Code” (page 4) and add a database to it. We’ll also use a function
that involves the onclick attribute from “Dynamic Content” (page 15) to count clicks.

36 | Chapter 4: Data Storage

www.it-ebooks.info

http://www.it-ebooks.info/

database int /counter = 0;
function action(_) {
 /counter++;
 #msg = <div>Thank you, user number {/counter}!</div>
}
function page() {
 <h1 id="msg">Hello</h1>
 Click me
}
Server.start(Server.http,
 [{ resources: @static_resource_directory("resources") },
 { register: {css:["/resources/css/style.css"]} },
 { title: "Database Demo", page: page }
]
)

Compile and run this application in your terminal:

Demo:~ ida$ opa opa_database_demo.opa --

You will get a result similar to the screenshot shown in Figure 4-1.

Figure 4-1. Opa database demo app

You will learn more about databases in the following chapters. But first, let’s take a look
at maps.

CRUD (Create, Read, Update, and Delete) | 37

www.it-ebooks.info

http://www.it-ebooks.info/

Maps (Dictionaries)
The data model for the wiki app you will build is quite simple: you want a collection of
topics. A topic is represented by a string and it should be associated with content. You
will use the Markdown markup format for the content. We will explain how to handle
this format in “Markdown” (page 50), but for now, all you need to know is that Markdown
is internally represented as a string.

For your data model you need a mapping from strings (topics) to strings (Markdown
content). This is what maps are for.

Map is an abstract data type that associates keys with values. It is often called a dictio‐
nary or an associative array, and is, in many programming languages, implemented
using hash tables.

All you need to know for now is that in Opa, the type of the dictionary is map(key,
val), where key is the type of keys and val is the type of values. For instance, map(int,
string) is a type of dictionary mapping int keys to string values.

In memory, it is simple to play with maps. The only thing to remember is that they are
used in a functional way [for a refresher, refer to “Functional Programming” (page 22)].

You can, for example, store values in successive versions of maps and retrieve them
like so:

m0 = Map.empty
m1 = Map.add(1, "Paris", m0)
m2 = Map.add(2, "London", m1)

// result is an option
result = Map.get(2, m2)
value = Option.default("Not found", result)

Note that although m0, m1, and m2 are separate values, they point to one another and the
final data structure is stored efficiently in memory.

Storing maps in databases is even easier than manipulating them in memory, thanks to
the DbGen automation layer that Opa provides. For the wiki, you will want a database
mapping from strings to strings, which you can obtain with the following declaration:

database wiki {
 map(string, string) /page
}

The read/write notation that we discussed earlier has a variation that allows you to easily
index a given map element by providing its key in square brackets. So read and write
operations on maps become:

Paris_content = /wiki/page["Paris"] // read
/wiki/page["Paris"] <- Paris_content // write

38 | Chapter 4: Data Storage

www.it-ebooks.info

http://www.it-ebooks.info/

At this point, you know enough to write two useful functions for data manipulation in
the wiki; save_data(topic, source) saves source as new content for topic:

function save_data(topic, source) {
 /wiki/page[topic] <- source;
}

And load_data(topic) retrieves content for topic:

function load_data(topic) {
 /wiki/page[topic];
}

What will happen when you try to load data for a nonexisting page? Remember our
discussion about default values in “CRUD (Create, Read, Update, and Delete)” (page
35)? This notion extends to maps as well: if you ask for nonexisting data, you will get
the default value, which is an empty string.

It is possible to change this default value, although the syntax will be slightly different,
as you would be providing a default for an individual element in a map, not the map
itself. You will need to add a new line in your database definition:

/page[_] = "This page is empty. Double-click to edit."

The underscore (_) here means “any value.” We will demonstrate more
uses of the underscore later in the book.

The final database declaration for the wiki app looks like this:

database wiki {
 map(string, string) /page
 /page[_] = "This page is empty. Double-click to edit."
}

Summary
In this chapter you learned the basics of handling data storage in Opa. You should now
know how to:

• Store and manipulate basic values in the database
• Store maps, or associations from keys to values

In the following chapter we will look in more detail at the topic of utilizing HTML and
CSS to build user interfaces (UIs) in Opa.

Summary | 39

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Building the UI in HTML and CSS

In this chapter we will focus on building the user interface. The first step is to create the
presentation layer in Opa.

HTML Markup
For presentation, Opa uses the modern web standards HTML5 and CSS3 [we will dis‐
cuss these in more detail in “Adding Style (CSS)” (page 51)]. You already saw a glimpse
of how Opa deals with HTML in “Writing and Running the Code” (page 4) and we will
expand on that here.

Tags and Attributes
Recall from our earlier discussion that HTML can be included verbatim in Opa pro‐
grams, and that it can be returned from functions as shown here:

function sample_page() {
 <header>
 <h3>HTML in Opa</h3>
 </header>
 <article>
 <div class="container">
 <p>Learning by examples.</p>
 </div>
 </article>
}

Now, there are few things to keep in mind when writing HTML snippets in Opa code:

41

www.it-ebooks.info

http://www.it-ebooks.info/

• The name of the closing tag is optional, so <tag>...</tag> can be shortened to
<tag>...</>.

• If the attribute consists of a single string with no special characters (i.e., it consists
of only letters, digits, and an underscore) the quotes around it can be omitted.

• Double quotes (as in attr="...") are required; single quotes (as in attr='...')
are not.

When you apply the first two rules in this list, you can rewrite the preceding snippet as
follows:

function sample_page() {
 <header>
 <h3>HTML in Opa</>
 </>
 <article>
 <div class=container>
 <p>Learning by examples.</>
 </>
 </>
}

Opa also features web templates, known as markdown templates, in its standard library.

Inserts
We’ve discussed the basics of static HTML, but things get much more interesting when
you have to generate the HTML programmatically. In Opa, this is mainly achieved using
inserts, which we will explain now.

If you happen to know JavaScript (do not worry if you don’t) you are used to writing
code like this:

x + " + " + y + " = " + (x+y);

Opa’s equivalent is the following:

"{x} + {y} = {x+y}";

This is both shorter and more readable. The parts of the string between the curly braces
{...} are the expressions that are evaluated, converted to strings (more on the rules for
converting to strings later), and inserted at those points in the string literal. This mech‐
anism is easy, readable, and quite importantly, safe, as before “injecting” the computed
value it automatically gets properly escaped depending on the object you are inserting
to.

This is because inserts work not only on strings, but also, for instance, in HTML frag‐
ments. Therefore, you could rewrite the sample_page function by first writing a generic
function to generate page markup:

42 | Chapter 5: Building the UI in HTML and CSS

www.it-ebooks.info

http://www.it-ebooks.info/

function gen_page(header, class, content) {
 <header>
 <h3>{header}</h3>
 </header>
 <article>
 <div class={class}>
 <p>{content}</p>
 </div>
 </article>
}

The inferred type of this function is as follows:

function xhtml gen_page(xhtml header, string class, xhtml content) { ... }

xhtml is the HTML type in Opa. Both header and content are HTML fragments that
will be inserted in appropriate places, whereas class is a string identifier.

Now you can rewrite your original sample_page function with a simple call:

function sample_page() {
 gen_page(<>HTML in Opa</>, "container", <>Learning by examples.</>)
}

The empty tags, <>...</>, in the second and third arguments of this
call are used in Opa as HTML text delimiters. This means "string" is
a string literal, whereas <>string</> is an HTML literal consisting
solely of the string text (with no tags).

The advantage of this approach is that now you have a general-purpose gen_page func‐
tion that you can reuse throughout your program. Indeed, the ability to easily manip‐
ulate HTML and write such general-purpose presentation functions is an important
aspect of building user interfaces in Opa. As you will learn in the next section, HTML
manipulation encompasses not only content generation, but also interactive aspects of
the UI. This means you can use similar techniques to write complete, interactive, reus‐
able UI components. But let’s not get ahead of ourselves.

Event Handlers
Now that you know how to write static HTML and how to generate it dynamically, you
can change the generated page under certain conditions, such as the state of the database.
In this section you will learn how to generate dynamic pages, or pages that are changing
as a result of such things as user interaction or the passage of time (giving animations).

In HMTL, you can achieve this by means of event handlers. You can think of event
handlers as a way to execute certain code in response to some event.

HTML Markup | 43

www.it-ebooks.info

http://www.it-ebooks.info/

An event handler is a function whose call is triggered by some activity
in the user interface. Typical event handlers react to a user clicking on
some element within a page (a click event), pressing the Enter key (a
newline event), moving the mouse (a mousemove event), or loading the
page (a ready event).
In Opa, an event handler always has the type Dom.event -> void.
You can find more information about event handlers in the online Opa
API documentation by searching for the word “Dom.event”.

Let’s take a closer look at the following function:

function page() {
 <p onclick={clicked}>Click me!</p>
}

The onclick attribute defines a handler for the click event. This event is fired when
the user clicks with the left mouse button on the given element of the page. The value
of this attribute is the {clicked} insert. But the interesting part here is that this insert
is a function that is called when the event occurs. Such functions are of the following
type:

function void clicked(Dom.event event) {
 ...
}

This function takes a single argument of type Dom.event, which carries information
about the particular event that triggered the handler. It does not return a value.

void is a nonvalue in that it indicates the absence of a value. It is mainly
used as a return type for functions that actually do not return anything.

void ensures that the handler has the correct type. This information is not necessary,
but every event handler needs to have this particular type; that is, a single argument of
type Dom.event and no return value.

If the handler does not need any information from the event argument and hence does
not use it (this happens very often with event handlers), the compiler generates a warn‐
ing. This is beneficial, as not using one of the function arguments is often an indication
that something is wrong.

In order to avoid this warning, you can use an argument name that starts with an
underscore (_). So you could write the header of this function without including the
type information, like so:

44 | Chapter 5: Building the UI in HTML and CSS

www.it-ebooks.info

http://doc.opalang.org/api
http://doc.opalang.org/api
http://www.it-ebooks.info/

1. The Dom module of Opa contains more than 100 different functions.

function clicked(_event) { ... }

Or more simply:

function clicked(_) { ... }

Variables/arguments with an underscore as their name are throw‐
away values; you do not need them. You will often see them in event
handlers and in pattern matching, which we discuss in “Pattern Match‐
ing” (page 74).

Note that it is perfectly fine to use anonymous functions for event handlers. If you decide
to ignore the event argument, you can rewrite the page function as:

function page() {
 <p onclick={function(_) { ... }}>Click me!</>
}

Providing function bodies for event handlers usually involves some DOM manipula‐
tion, a topic we will tackle in the next section.

DOM Manipulation
The Document Object Model (DOM) is a tree-structure representation of an HTML
document. Modifying the DOM is the standard way to manipulate page content.

Opa offers a comprehensive set of operations on the DOM. By far the most common
operation is replacing the content of a given DOM element:

#id = content

In the preceding code, id is an identifier (with no quotes around it) and content is an
XHTML expression. The result of this command is to replace the DOM element with
the given ID, content.

There are two other variants:

#id += content
#id =+ content

The first one prepends content to the id element (i.e., puts it before the existing content)
and the second one appends it (i.e., puts it after the existing content).

A multitude of additional DOM manipulation functions are also available.1 The fol‐
lowing list describes the ones that are used most often.

HTML Markup | 45

www.it-ebooks.info

http://www.it-ebooks.info/

• Dom.fresh_id() produces a fresh DOM ID, unique in the (local) page; this is very
useful when you dynamically generate some HTML, such as a table based on
database content, and you need unique identifiers for generated elements. Note that
the fresh_id function is not cryptographically secure.

• string Dom.get_content(dom) retrieves the content of a given DOM element,
usually an input field.

• Similarly, void Dom.set_content(string content, dom dom) sets the content of
the dom element to content.

• void Dom.give_focus(dom dom) gives focus to the dom element.
• void Dom.show(dom dom) and void Dom.hide(dom dom) respectively show and

hide a dom element from the page.

Example: A Guessing Game
To illustrate the use of event handlers and DOM manipulations, let’s modify the program
from “Writing and Running the Code” (page 4) to play the following simple game:

1. The computer selects a number x between 1 and 10.
2. The user tries to guess what that number is.
3. The user clicks on the page to reveal the number.

The main function of this program could look as follows:

function page() {
 <h1>Guess what is the number between 1 and 10 I'm thinking of?</h1>
 <div id=#response onclick={show_number}>Click to find out!</div>
}

The last line of this function constructs a paragraph that reacts to clicks by invoking the
following show_number function:

function show_number(_) {
 #response = <>I was thinking of {1 + Random.int(10)}</>
}

Random.int(x) is a standard library function that generates a random number between
0 (inclusive) and x (exclusive). Hence, 1 + Random.int(10) produces the desired ran‐
dom number between 1 and 10.

So when the user clicks on the text paragraph containing the instructions, he will see a
random number that the computer has “selected.” Note that the computer chooses the
number after the user comes up with his number, that is, the first and second steps of

46 | Chapter 5: Building the UI in HTML and CSS

www.it-ebooks.info

http://www.it-ebooks.info/

the game are reversed in this scenario. But since computers are not yet capable of reading
people’s minds, this is an unlikely cause for cheating.

Now all you have to do is to start a server, using Server.start, and you’ll end up with
the following complete app. Compare it with your first program from “Writing and
Running the Code” (page 4) and note how the page function is used instead of an
anonymous function; now change the layout to put that declaration on one line. Note
that the syntax ~page is just a shortcut for page: page, a concept known as syntactic
sugar.

function show_number(_) {
 #response = <>I was thinking of {1 + Random.int(10)}</>
}

function page() {
 <h1>Guess what is the number between 1 and 10 I'm thinking of?</h1>
 <div id=#response onclick={show_number}>Click to find out!</div>
}

Server.start(Server.http, { title: "Guess", ~page })

Before we move on to discussing the wiki interface, let’s make this game a bit more fun
to play. Let’s make it a multiple-choice game, and provide hints if we can’t find the right
number. To do this, start by modifying the UI:

<h1>Guess what is the number I'm thinking of</>
<input id=#guess/>
Check</>
<div id=#message/>

Rename #response to #message since several messages might be displayed, and add an
input to allow the user to enter data. In the previous example, a number was drawn just
before it was displayed. You can’t do that here, as a number needs to be drawn each time
the page is rendered. Hence, at the beginning of the function page, you need to create
a new secret value:

secret = 1 + Random.int(10);

Then you have to modify the show function to compute the right message:

message =
 if (guess==secret) { Congrats! < /span> }
 else if (guess<secret) { <>More than this</> }
 else { <>Less than this</> };

Note that instead of using the empty HTML tags, you can insert a special span element
around the text that is displayed when the user wins, but you should keep the interface
as simple as you can in other scenarios.

To pass the secret value to the show function you add it as the first argument:

HTML Markup | 47

www.it-ebooks.info

http://www.it-ebooks.info/

function show(secret, _) {
 ...
}
function page() {
 ...
 Check</>
 ...
}

Finally, you need to read the value from the input in the show function and display the
result in the #message element. Let’s try to do that with the following code:

function show(secret, _) {
 guess = Dom.get_value(#guess);
 message = ...
 #message = message;
}

This should result in a type error message. This occurs because the guess value read
from input is a string whereas secret is an integer. You can resolve this problem by
casting the value using:

guess = String.to_int(Dom.get_value(#guess));

Here’s the complete code example:

function show_number(_) {
 #response = <>I was thinking of {1 + Random.int(10)}</>
}

function page() {
 <h1>Guess what is the number between 1 and 10 I'm thinking of?</h1>
 <div id=#response onclick={show_number}>Click to find out!</div>
}

Server.start(Server.http, { title: "Guess", ~page })

The Wiki Interface (HTML)
Now we are ready to write the user interface part of the wiki app. In this section you
will write a display function that takes a single argument, topic, and constructs a page
for it. We will assume that you have at your disposal the following functions for data
storage, which we discussed in Chapter 4:

48 | Chapter 5: Building the UI in HTML and CSS

www.it-ebooks.info

http://www.it-ebooks.info/

• load(topic), which gives the Markdown source associated with topic
• save(topic, source), which associates source with topic

The main idea is that the page can have two modes:

• Editing, where the user can edit the content of the page (using Markdown)
• Display mode, where the content is just displayed (with appropriate Markdown

rendering)

In this example you will have elements for both modes always present on the page, but
only one mode will be visible at a time and the other one will be hidden. Dynamically
changing the content would also work, but since you did that already in “Example: A
Guessing Game” (page 46), let’s try this approach now.

HTML Plumbing
This is how the display function, parameterized by wiki page title, topic, will look:

function display(topic) {
 content = render(load_data(topic));
 xhtml =
 <header>
 <h3>OpaWiki</h3>
 </header>
 <article>
 <h1>About {topic}</h1>
 <div id=show_container>
 <small>Tip: Double-click on the content to start
editing it.</small>
 <section id=content_show ondblclick={function(_) { edit(topic) }}>
{content}</section>
 </div>
 <div id=edit_container hidden>
 <small>Tip: Click outside of the content box to save
changes.</small>
 <textarea id=content_edit rows=30 onblur={function(_) { save(topic) }}/>
 </div>
 </article>;
 Resource.page("About {topic}", xhtml);
}

First, we retrieve the content page by loading its data, load_data(topic), and passing
it to the render function, which turns a Markdown string into its HTML representation.

Then the page’s main HTML is stored in the xhtml value. Here we have a <header> with
the name of the application, Opa-wiki. Following that is the wiki article, <article>,
consisting of an <h1> heading with a topic name and two <div>s for two application
modes, both containing a paragraph (p) with a short explanation. The first <div>

The Wiki Interface (HTML) | 49

www.it-ebooks.info

http://www.it-ebooks.info/

contains a section, <section>, for display mode, and the second one contains an editable
text box, <textarea>, for editing mode. We assign identifiers, ids, to both elements and
to the <div>s, as we will need to refer to them later. Both elements have event handlers
attached. The static text on the double mouse click (ondblclick) will switch us to editing
mode, and the editable text when losing focus (onblur)—which may occur, for example,
as a result of the user clicking outside the box—will switch us back to display mode.

Finally, the last line of this function turns this HTML into a resource, as we discussed
in “Web Resources” (page 27).

Markdown
We need to write the render function that transforms the Markdown source into a
ready-to-display HTML fragment.

Markdown is a lightweight markup language, which is perfect for ob‐
taining richly formatted user input. You can learn more about its syntax
on the original project page or by taking a look at a very nicely done
online Markdown editor, http://dillinger.io.

As with many other useful projects, Opa has a readily available library for dealing with
Markdown. All you have to do is to import it:

import stdlib.tools.markdown

You will learn more about imports and packaging in Opa in “Packages” (page 83). For
now, all you need to know is that this makes the Markdown module available to you and
that with it you can create the following function:

function xhtml xhtml_of_string(Markdown.options options, string source)

This takes Markdown source and rendering options and produces an XHTML repre‐
sentation of the source. There is also a Markdown.default_options value of type Mark
down.options, so the render function simply becomes:

function render(markdown) {
 Markdown.xhtml_of_string(Markdown.default_options, markdown);
}

Dynamically Updating the Page
Now let’s take a look at the edit and save functions.

Calling the edit function results in a change from display mode to editing mode:

function edit(topic) {
 Dom.set_value(#content_edit, load_data(topic));

50 | Chapter 5: Building the UI in HTML and CSS

www.it-ebooks.info

http://daringfireball.net/projects/markdown/
http://dillinger.io
http://www.it-ebooks.info/

 Dom.hide(#show_container);
 Dom.show(#edit_container);
 Dom.give_focus(#content_edit);
}

In the first line of the preceding code, we set the content of the text editing box to the
Markdown source for the current topic, which we fetch with load_data. Then we hide
the presentation field, display the editing box, and finally, give it a focus.

Similarly, the save function switches from edition mode to display mode, saving all the
changes the user has made:

function save(topic) {
 content = Dom.get_value(#content_edit);
 save_data(topic, content);
 #content_show = render(content);
 Dom.hide(#edit_container);
 Dom.show(#show_container);
}

In the preceding code, first we bind content to the text the user has entered, and then
we save it and use its rendered version for display. Finally, we switch the visibility of the
display/editing elements.

Adding Style (CSS)
A close companion of HTML is CSS, which stands for Cascading Style Sheets. Whereas
HTML is used to describe the content and structure of web pages, CSS takes care of
presentation semantics (i.e., appearance and formatting). Knowledge of CSS will help
you create more beautiful pages, although you will learn how to style pages without
writing CSS yourself in “Bootstrap: Nice, Out-of-the-Box Styling” (page 54). Still, a basic
working knowledge of CSS comes in handy in the web world, so we suggest that you
learn the basics of CSS.

In Opa, you can work with CSS in three ways:

• Via the usual style attribute
• Using Opa’s data type and special syntax for CSS
• Using external stylesheets

In addition to discussing these three methods of working with CSS, in this section we
will explain how to add some style to the wiki.

Explicit Style Attributes
The first way to use CSS in Opa is with the usual style attribute, as follows:

Adding Style (CSS) | 51

www.it-ebooks.info

http://www.it-ebooks.info/

function page() {
 <p style="color: white; background: blue; padding: 10px;">Click me</>
}

Although this method is supported, its use is discouraged. First, the purpose of CSS is
to separate the presentation from the content, and indeed, it is best to do this by writing
CSS in an external file, separate from the HTML document. You will learn how to do
that in “External CSS” (page 53).

Sometimes, however, the CSS needs to be manipulated dynamically depending on some
application logic. Let’s take a look at a method that is appropriate in those circumstances.

Opa-Powered Style
Just as Opa offers a data type and special syntax for HTML, it also does so for CSS. The
syntax consists of the css keyword and the usual CSS syntax within curly braces. For
instance, the page function you just wrote can be rewritten as:

function page() {
 style = css { color: white; background: blue; padding: 10px;}
 <p style={style}>Click me</>
}

Here it is without the intermediate binding:

function page() {
 <p style={css { color: yellow; background: blue; padding: 10px;}}>Click me</>
}

One of the advantages of this over using a string literal for style is that the Opa compiler
will check such definitions, ruling out syntactic and some semantic mistakes; for in‐
stance, style={css {color: 10px}} will not be accepted.

As of this writing, Opa only supports a subset of the CSS3 standard. If
your declaration is rejected and you believe it to be correct, chances are
it is not yet supported, in which case, you will need to use one of the
other two methods for working with CSS in Opa.

There are other advantages of using the Opa compiler. One is that CSS is a data type,
and it is possible to parameterize functions by styling information:

function paragraph(style, content) {
 <p style={style}>{content}</>
}

What is the type of this function?

function xhtml paragraph(css_properties style, xhtml content)

The type of a single CSS declaration is called css_properties.

52 | Chapter 5: Building the UI in HTML and CSS

www.it-ebooks.info

http://www.it-ebooks.info/

Another interesting option is to alter the CSS depending on some application logic as,
for instance, in the following function:

function xhtml block(Css.size width, Css.size height, xhtml content) {
 style = css { width: {width}; height: {height} }
 <div style={style}>{content}</>
}

In this declaration you can see the Css.size type that denotes the CSS size declaration.
There are several other types for CSS notations, including fonts, colors, and background
properties.

External CSS
In Chapter 3 you learned how to embed resources in the Opa server. Those resources
can include regular external CSS files, and you can instruct Opa to use such CSS as
follows:

Server.start(Server.http,
 [{resources: @static_resource_directory("resources")},
 {register: {css:["/resources/css/style.css"]} },
 ...
]
)

The css field of the register record contains a list of URLs of CSS files to be used.
These files will be used for all the pages in the application. It is also possible to use
stylesheets on a per-page basis if needed--for instance, with theResource.
styled_page function that we discussed in “Constructing (Dynamic) Resources” (page
31):

function page_with_style(body) {
 Resource.styled_page("This is a page with style",
 ["resources/custom_style.css"], body)
}

Wiki with Style
For the wiki application, you just need to add a simple CSS file, resources/style.css, to
add a bit of presentation information and, more importantly, hide the editing mode
container initially:

include:code/wiki/resources/style.css[]

Now all you are missing is the following server declaration:

Server.start(Server.http,
 [{resources: @static_include_directory("resources")},
 {register: [{doctype: {html5}}, {css: ["/resources/style.css"]}]},
 {dispatch: start}

Adding Style (CSS) | 53

www.it-ebooks.info

http://www.it-ebooks.info/

]
);

At this point, you should have a complete and ready-to-run wiki. You compile it with:

opa wiki.opa

And you run it with:

thistle $./wiki.js
Http serving on http://thistle:8080

Now the server is running. Pointing your browser to http://localhost:8080 should give
a result similar to the screenshots shown in Figure 5-1, which show the app in both
display mode and editing mode.

Figure 5-1. Our wiki application in display (left) and editing (right) modes

Bootstrap: Nice, Out-of-the-Box Styling
Typically, web applications are designed by professional web designers. However, in
very basic projects, or at the early stages of major projects, a professional web designer
may not be readily available. In such cases, you can use a frontend framework such as
Bootstrap for the design task.

54 | Chapter 5: Building the UI in HTML and CSS

www.it-ebooks.info

http://twitter.github.com/bootstrap
http://www.it-ebooks.info/

2. At the time of this writing it is version 2.2.1.

Bootstrap is an open source project, developed at Twitter, that provides
high-quality, responsive CSS, along with HTML conventions and Java‐
Script plug-ins for all the typical elements of websites. Using predefined
classes and appropriate tagging combinations, developers can obtain a
consistent and professional look for their sites for free. Describing
Bootstrap itself is beyond the scope of this book, but the project web‐
site is well organized and self-explanatory.

The Opa authors have high regard for this project, and therefore made sure that using
Bootstrap in Opa is as easy as it gets. To use Bootstrap in your Opa project, just type a
single line:

import stdlib.themes.bootstrap

This variant imports the latest Bootstrap version supported by Opa.2 To
request a specific version, you can write:

import stdlib.themes.bootstrap.v2.1.0

Now you can start using Bootstrap-compatible HTML markup and enjoy good-looking
pages without any hassle!

In the following code, we will illustrate the power of Bootstrap on the wiki application.
All you need to do is replace the xhtml in the display function with the following one,
which is using Bootstrap conventions:

 <div class="navbar navbar-fixed-top">
 <div class=navbar-inner>
 <div class=container>

 Opa Wiki

 </div>
 </div>
 </div>
 <div class=container>
 <h1>About {topic}</>
 <div id=show_container>
 Tip
 <small>
 Double-click on the content to start editing it.
 </small>
 <div class="well well-small" id=content_show ondblclick={function(_) { ed
it(topic) }}>

Bootstrap: Nice, Out-of-the-Box Styling | 55

www.it-ebooks.info

http://bit.ly/Yn6LYe
http://bit.ly/Yn6LYe
http://www.it-ebooks.info/

 {content}
 </div>
 </div>
 <div id=edit_container hidden>
 Tip
 <small>
 Click outside of the content box to confirm the changes.
 </small>
 <textarea id=content_edit rows=30 onblur={function(_) { save(topic) }} />
 </div>
 </div>

Once you do that, you no longer need the full CSS we introduced before, and you can
replace it with the following:

include:code/wiki/resources/style_additional.css[]

This code only hides the editing container, adds a little extra space between elements,
and makes the editing text area the full width of your screen. This uses much simpler
CSS yet produces a much more pleasant result, as you can see in Figure 5-2.

Bootstrap offers even more than this screenshot can capture, including responsive
design; that is, web pages that display nicely on most devices and screen sizes. As mobile
browsers become increasingly important, you will want to build responsive
applications!

Figure 5-2. Our wiki application with Bootstrap styling in editing (left) and display
(right) modes

56 | Chapter 5: Building the UI in HTML and CSS

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Designers
We have been lucky to have a UX and UI designer in-house at MLstate. This section is
a Q&A with Ida Swarczewskaja, who gives us her best tips on how to work with design
and designers when coding with Opa.

How Should I Use the DOM Structure?
The DOM structure should remain light. Try to avoid using too many levels.

Can You Describe Your Development Environment?
Many great tools are available today. My favorite code editor is Sublime Text 2. For even
more efficiency in building DOM structures I recommend using Emmet, previously
known as ZenCoding, with Sublime Text 2.

How Should I Write CSS with Opa?
You can use CSS with Opa in three different ways, as described in “Adding Style
(CSS)” (page 51). The method you choose depends on your project. For prototyping or
for a small project, you can use explicit style attributes or Opa-powered style. For bigger
projects, the best way to start is to create a separate CSS file that is stored in the resour‐
ces or assets directory, as described in “External CSS” (page 53). If you are not familiar
with CSS and would like to get good UI results with your app, you should use Twitter
Bootstrap, which you can easily import into your Opa file.

Which Tools Should I Use to Write CSS?
You can write CSS manually. However, like most designers currently do, I use CSS pre‐
processors that generate well-formatted CSS and allow better stylesheet file organiza‐
tion. I recommend the following:

• less, available at the less website.
• sass or scss, available at the sass website. These are dynamic stylesheet languages

(extensions of CSS3) that enable you to use nested rules, variables, mixins, func‐
tions, and operations.

Mixins allow you to reuse variables, properties, and selectors; they are
great time-savers while declaring CSS3 properties.

Working with Designers | 57

www.it-ebooks.info

http://www.sublimetext.com/2
https://github.com/sergeche/emmet-sublime
http://twitter.github.com/bootstrap
http://twitter.github.com/bootstrap
http://lesscss.org/
http://sass-lang.com/
http://www.it-ebooks.info/

How Do I Improve the CSS Workflow in Opa?
When launching the Opa application on a server, debug mode allows for real-time
editing of CSS files. It is very convenient when working with designers as it allows a
fully integrated workflow.

How Often Should Developers and Designers Interact?
Building a great UI and UX for your app requires interaction among developers and
designers. Depending on the project, developers should discuss the DOM structure of
the app, nesting rules, the elements’ class names, and other details with designers before
they start coding, and they should check how everything interacts at each stage of the
build process.

What Should Developers Know About CSS?
CSS3 replaces most of the images we were used to creating for UIs. CSS3 is commonly
used to generate background gradients and tiles, drop shadow and embossing effects,
text shadow effects, rounded corners, and transitions. Use @media queries for the web
apps where responsive cross-platform design is required. Once again, Twitter Bootstrap
provides an easy-to-use UI kit for styling responsive grids, navbars, forms, buttons, and
other elements. All you have to do is stick to the default as much as possible if you do
not want to dig into design.

What Should Designers Know About Opa?
Designers should know how to compile Opa apps, which is pretty easy to learn; edit
HTML structures; and write CSS code or use CSS preprocessors to generate CSS code.
Designers who write CSS are already syntax experts, so although they cannot usually
write code, they are detail-oriented when it comes to syntax and should not break things.

Can You Provide Some Tips for Quickly Customizing Your App’s
Bootstrap-Based UI?
Due to the popularity of Bootstrap, more and more applications are using it, and hence
these applications look the same. I believe every product needs a custom design, though.
So here are my tips for developers willing to customize their Bootstrap-based UI:

• The first thing to change is the font. Bootstrap uses Helvetica, which is a very basic
font. I suggest changing the font to one that is fancier. For example, the Google Web
Fonts Library has hundreds of free, open source fonts, optimized for use on the
Web. If you like Helvetica, you might want to change the font only on the headings
and branding elements.

58 | Chapter 5: Building the UI in HTML and CSS

www.it-ebooks.info

http://www.google.com/webfonts
http://www.google.com/webfonts
http://www.it-ebooks.info/

• Another thing that helps to customize your Bootstrap-based UI is changing the
default color scheme. You can find great color inspiration on websites like Colour‐
lovers. Pick up some fresh colors and add them to your stylesheet! You can do this
directly on the Bootstrap website. Alternatively, you can create an additional CSS
file and overwrite the CSS properties of the Bootstrap components you are using.
This stylesheet should be called after the Boostrap CSS.

• A third way you can quickly customize your app is by adding some texture. Boot‐
strap has a solid white background. A discrete texture might add some personality
to your app, though. Why not choose a free background texture from, for example,
the Subtle Patterns website. Retina-resolution images are also provided.

We will demonstrate these tips in action in our bigger application.

Summary
In this chapter you learned how to build user interfaces; in particular, how to:

• Build page content with HTML
• Add style to pages with CSS
• Use Bootstrap to generate nice-looking pages out-of-the-box

At this point, you have completed your simple wiki application and learned a lot along
the way.

In Part II of this book you will develop a micro-blogging application, similar to Twitter,
though without all the bells and whistles. This will be a great opportunity to learn more
advanced topics. Ready? Let’s get started!

Summary | 59

www.it-ebooks.info

http://www.colourlovers.com/colors
http://www.colourlovers.com/colors
http://twitter.github.com/bootstrap/customize.html#variables
http://subtlepatterns.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PART II

Coding a Mini-Twitter

Congratulations on building your first real application in Opa. You now are ready for
something bigger! Part II focuses on an application that is a mini micro-blogging plat‐
form we call “Birdy.” Any resemblance to a well-known micro-blogging platform is
purely coincidental!

In this part of the book you will learn how to enable users to post messages that are
limited to 140 characters; create sign-up and sign-in forms; create a rich UI for editing
messages; parse messages for mentions and hash tags; ensure real-time apparition of
messages; and more!

But before we start, let’s discuss one of the core features of Opa: real-time messaging. In
doing so, we will take you through the process of building what might be considered
the core of a micro-blogging app: a web chat.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

The Web Chat App

The simplest example of a real-time web app is a web chat, similar to Facebook chat. As
real-time is a feature of our micro-blogging app, we detail here what has become the de
facto example of Opa programming.

Our goal here is to build the application shown in Figure 6-1: a single chat room. Users
connect to chat using regular web browsers, join the room immediately, and can start
discussing in real time. For the sake of simplicity, we will choose names of users ran‐
domly. We will discuss in Chapter 8 how to add proper user management.

In the web world, real time refers to the ability of a web page to update
itself automatically when some data changes. Often in Web 2.0 apps,
this is linked to displaying user interactions in real time; that is, updating
the user interface of one user when another user does something.

Figure 6-1. Our chat goal

63

www.it-ebooks.info

http://www.it-ebooks.info/

Starting a New Project
To start the new chat application, simply write:

Tokyo:~ henri$ opa create chat

This will create a chat directory and generate a scaffolding for a new Opa app, with the
following content:

+- chat
| +- Makefile
| +- Makefile.common
| +- opa.conf
| +- resources
| | +- css
| | | +- style.css
| +- src
| | +- model.opa
| | +- view.opa
| | +- controller.opa

The project includes:

• A Makefile file for the project (which can be customized)
• A generic Makefile.common file (which usually won’t be modified)
• A configuration file, opa.conf (which lists all the source files of the project and their

dependencies; we’ll look at this file in more detail in Chapter 7)
• An example style file, style.css
• The source files, following the classic MVC pattern, divided into three sub-

directories: model, view, and controller, for the standard three application layers

To compile and run the project, type:

Tokyo:~ henri$ cd chat; make run

View: Building User Interface
Let’s start with the user interface; here we see the view part of the application, with which
you should already be familiar:

module View {

 // View code goes here

 function page_template(content) {
 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class=navbar-inner>
 <div class=container>

64 | Chapter 6: The Web Chat App

www.it-ebooks.info

http://www.it-ebooks.info/

 Opa Chat

 </div>
 </div>
 </div>
 <div id=#main>
 {content}
 </div>
 }

 function default_page() {
 content =
 <div class="hero-unit">
 Page content goes here...
 </div>
 page_template("Default page", content)
 }

}

The View module has two functions: page_template, which contains a generic template
for any page, and default_page, which uses page_template to build a page.

For the chat app, you need to modify the page_template and default_page functions
of the View module to obtain the desired look and feel for the app. The template also
automatically places a CSS stylesheet in resources/css/style.css, which you may want to
modify as well.

Model: Application Logic
Now that you have the skeleton of the user interface in place, it’s time to bring it to life
by adding application logic. This is the model part of the application, in which you define
the application data, as well as its manipulation and storage, that you wrote in src/
model.opa.

A chat app is about communicating messages between users. This means you need to
decide what type of messages you wish to transmit.

In its minimal form, a message is a record that contains two fields: author (which is a
string, i.e., some text) and text (also a string):

type message = {string author, string text}

Now that you know what a message is, you need to figure out how to pass it around to
different clients. Opa provides three methods of communication between clients and
the server:

Model: Application Logic | 65

www.it-ebooks.info

https://github.com/MLstate/hello_chat/blob/master/src/view.opa
https://github.com/MLstate/hello_chat/blob/master/resources/css/style.css
http://www.it-ebooks.info/

• Session (for one-way, asynchronous communication)
• Cell (for two-way, synchronous communication)
• Network (for broadcasting messages to a number of observers)

For the chat application, you have a number of clients connected to the chat room, and
they all need to be informed of every message posted; therefore, you will use a network:

private Network.network(message) room = Network.cloud("room")

This extract creates a cloud network (ensuring that it will be shared among all running
instances of the application) called “room.” The cloud name comes from the world of
cloud computing and stresses that the networks can be easily distributed among several
servers, although scaling Opa is not yet part of this book.

As is the case with everything in Opa, networks have a type. The type of this network
is Network.network(message), which means this is a network used to transmit data of
type message.

By declaring this value as private, you ensure that it is not accessible from outside the
Model and that other functions need to be used to manipulate it. This concept, known
as encapsulation or information hiding, is crucial for writing modular, well-designed
programs. We will discuss this further in “Packages” (page 83).

You will need two such functions: one to broadcast a message to all clients and another
one to register a callback, which will be invoked whenever a new message has been
posted:

function broadcast(message) {
 Network.broadcast(message, room);
}

function register_message_callback(callback) {
 Network.add_callback(callback, room);
}

Both functions simply invoke relevant features from the Network module.

Finally, you need a function to assign usernames to newly connected users. As men‐
tioned earlier, you will simplify the app by choosing those names at random:

function new_author() {
 Random.string(8);
}

The complete source of the model follows:

type message = { string author
 , string text
 }

66 | Chapter 6: The Web Chat App

www.it-ebooks.info

http://www.it-ebooks.info/

module Model {

 private Network.network(message) room = Network.cloud("room")

 exposed function broadcast(message) {
 Network.broadcast(message, room);
 }

 function register_message_callback(callback) {
 Network.add_callback(callback, room);
 }

 function new_author() {
 Random.string(8);
 }

}

Notice that the broadcast function is exposed. exposed is an Opa key‐
word that precedes the function keyword. Exposing a function means
that we specifically open an endpoint in the server so that clients can
call the server-side function register.
If you omit exposed, Opa will have to perform more client/server calls.

Connecting the Model and the View
Now it is time to connect the model and the view.

Connecting the model and the view requires simply calling functions from Model in
View. Let’s start with a very simple call: author name generation.

In the View module, update the default_page function as follows:

function default_page() {
 author = Model.new_author();
 page_template("Opa chat", (chat_html(author)))
}

Next, you will learn how to do the following:

• Show new messages as they arrive
• Broadcast the current user’s message when it is entered

Connecting the Model and the View | 67

www.it-ebooks.info

http://www.it-ebooks.info/

Showing New Messages
To show new messages, you write a user_update function that takes a message as an
argument and updates the user interface:

function user_update(message msg) {
 line = <div class="row-fluid line">
 <div class="span1 userpic">

 </div>
 <div class="span2 user">{msg.author}:</>
 <div class="span9 message">{msg.text}</>
 </div>;
 #conversation =+ line;
 Dom.scroll_to_bottom(#conversation);
}

This code first constructs an HTML representation of the message (line) and then
prepends this HTML to the DOM element with the conversation identifier, using the
special syntax #conversation =+ line that we discussed in Chapter 5.

Finally, the last command of this function scrolls to the bottom of the conversation
element to ensure that the most recent messages are visible.

Broadcasting the Current User’s Messages
When a user enters a new message, you need to send the message to other users. You
can do this with the following function:

function broadcast(author) {
 text = Dom.get_value(#entry);
 Model.broadcast(~{author, text});
 Dom.clear_value(#entry);
}

Here, the code assigns the content of the user message to text by reading the value of
the DOM element with the entry ID using the Dom.get_value function. The second
line of this function calls the previously written Model.broadcast function of the model
to broadcast the message to all chat users. The last line clears the content of the input
field, allowing the user to start composing a new chat message.

Connecting Everything
Now that you have all the pieces in place, it is time to connect them. You need to do two
things: make sure broadcast is invoked whenever a user sends a new message; and make
sure user_udpate is invoked whenever a new message is sent to the chat room. You will
use the event handlers/listeners of the DOM to create connections. Manipulating event

68 | Chapter 6: The Web Chat App

www.it-ebooks.info

http://www.it-ebooks.info/

handlers should not be difficult at this stage, as you already learned about them in “Event
Handlers” (page 43).

You will add all the wiring in the chat_html function. First you need to add an argument
to the function author, which is the name of the current user. Then you need to add
three event handlers:

• Add the onready event to the conversation element, which is invoked when the
page loads and calls the model’s register_message_callback function, passing
user_update as a callback that should be invoked for every new message received.

• Add the onnewline event to the input box for the user’s message, which upon the
user pressing the Enter key will call the broadcast function to distribute it to other
chat users.

• Add the onclick event to the Post button, which will enable users to send a message
by clicking the Post button.

After you make those changes, the function should look like this:

function chat_html(author) {
 <div id=#conversation
 onready={function(_) { Model.register_message_callback(user_update)}} />
 <div id=#footer class="navbar navbar-fixed-bottom">
 <div class=container>
 <div class=input-append>
 <input id=#entry class=input-xxlarge type=text
 onnewline={function(_) { broadcast(author) }}>
 <button class="btn btn-primary" type=button
 onclick={function(_) { broadcast(author) }}>Post</>
 </div>
 </div>
 </div>
}

You are now ready to compile and run the application. With the Makefile generated by
opa create, it is as simple as invoking:

Tokyo:~ henri$ make run

That’s it!

Understanding Networks
This advanced section explains the low-level mechanism of networks, which are also
accessible in Opa. As we said earlier, networks are based on a lower-level object named
sessions. A session in Opa is a unit of state and concurrency:

Understanding Networks | 69

www.it-ebooks.info

http://www.it-ebooks.info/

• Constructing a new session requires you to provide the session’s initial state and a
message handler. As a result of constructing a session, a channel is created, which
provides a means of communicating with the session. A session created on one
machine will always remain there; however, its channels can be distributed and
duplicated at will.

• When you have access to a session’s channel, you can send it a message. This message
is passed and processed to the message handler. A message handler has access to
the current state of the session and, as a result of processing the message, can modify
that state.

Let’s detail a generic use of sessions, as represented in Figure 6-2.

Figure 6-2. Flow of information in Opa sessions

To create a new session, you write:

chan = Session.make(msg_handler, initial_state)

The resultant value, chan, is a channel that can be used to communicate with the session.

The parameters are initial_state, the value for the initial state of the session, and
msg_handler, which is the handler used to process messages sent to this session.

70 | Chapter 6: The Web Chat App

www.it-ebooks.info

http://www.it-ebooks.info/

Before we look in detail at what the handler is, note that when chan is created server-
side, the session will stay server-side. Reciprocally, if the session is created client-side,
it will stay client-side.

The message handler is a function that takes two parameters:

• The current state of the session
• The message that was received

The message responds with a Session.instruction. This has the following type:

type Session.instruction('state) = {'state set} or {unchanged} or {stop}

The preceding type is a variant of these three types:

• {set: value}, which sets the new value to the state of the session
• {unchanged}, which leaves the state of the session unchanged
• {stop}, which terminates the session; future messages sent to it will be ignored

Let’s use this. On a server-side function, you can call:

Session.send(msg1, chan)

This causes asynchronous sending of msg1 to the session identified with chan. Upon
receipt of this message, the session will invoke the message handler, in this case resulting
in a call to msg_handler(initial_state, msg1).

If the handler responds with {set: state1}, state1 will become the new state of the
session.

Later, when the application is executed, a client-side function may then send the
following from Client 1:

Session.send(msg2, chan)

Then it may send the following from another client, Client 2:

Session.send(msg3, chan)

As a result, “Client 2” will reciprocally invoke msg_handler(state1, msg2) and
msg_handler(state2, msg3).

Thanks to Opa’s transparent client/server communication, although chan resides
server-side, it is OK to pass chan as an argument in the program flow to make it accessible
client-side, for instance. It’s that simple.

In Opa, you can directly use high-level networks for real-time web applications, but
the low-level sessions on which they are built can also be very useful in many more
situations.

Understanding Networks | 71

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises
Now it’s time to apply what you have learned! Here are a few exercises that will test your
Opa skills.

Customizing the Display
Customize the chat app in the following ways:

• Make the text box appear at the top.
• Have each new message added at the top, rather than at the bottom.

You will need to use the += operator instead of =+.

Saying “Hello”
Customize the chat app so that, at startup, in the beginning of #conversation, it displays
the following message to the current user: “Hello, you are user 8dh335.”

Customize the chat app so that, at startup, it displays the following message to all users:
“User 8dh335 has joined the room.”

Combine both: customize the chat app so that one user sees something like “Hello, you
are user 8dh335” and other users see “User 8dh335 has joined the room.”

Distinguishing Messages Between Users
Customize the chat app so that the user’s own messages are distinguished from messages
sent by other users.

User Customization
Let users choose their own username, and let them choose their own icon. You can let
them enter a URI, for instance.

For security reasons, values with type xhtml cannot be transmitted from
one client to another client. So you will have to find another way to send
one user’s icon to all other users.

And Beyond
And now, here’s an open exercise: invent and implement unique features to make your
version of the chat app stand out! A starting point here can be a more complete, finished
application such as this one.

72 | Chapter 6: The Web Chat App

www.it-ebooks.info

https://github.com/MLstate/hello_chat
http://www.it-ebooks.info/

CHAPTER 7

More Advanced Features of Opa

Before we dive into developing Birdy, you need to learn few more things about Opa. In
this chapter, we will discuss more complex types, which will help you deal with more
complex data that you will encounter in this part of the book.

Learning More About Types
You learned about primitive values (int, float, string) in “Primitive Values” (page 13)
and about records in “Records” (page 17). Now it is time to extend your type arsenal.

Variant Types
Variant types, as the name suggests, allow you to express values that can take several
different variants. Probably the simplest such type is a boolean value, which is defined
in Opa as follows:

type bool = {false} or {true}

The variants are separated with the or keyword and the variants themselves are just
regular record types. Lack of a type for a given field implies it is of type void (which we
covered in “Event Handlers” (page 43)), so the preceding code can also be written as
follows:

type bool = {void false} or {void true}

Such void-typed fields make little sense in regular records, as the field value carries no
information. However, in variant types they make perfect sense, as their presence is
important and differentiates between variants.

In this simple form, with all variants having just one field of type void, those types
correspond to enumeration types, as you may know from other programming languages.
Here is another example from the standard Opa library:

73

www.it-ebooks.info

http://www.it-ebooks.info/

type Date.weekday = {monday} or {tuesday} or {wednesday} or {thursday}
 or {friday} or {saturday} or {sunday}

However, note that in Opa we are not restricted to such degenerated records. For in‐
stance, say we need to keep track of the logged-in user, and suppose we have a User.t
type describing the user. We can keep track of the logged-in user with the following
type:

type User.logged = {guest} or {User.t user}

Example values of type User.logged are {guest} and {user: u} if u is a value of type
User.t. Of course, we are not restricted to single-field records.

Pattern Matching
But how can we work with such values? How do we figure out which variant was used
to construct the value; for instance, to check whether the user is logged in?

This is where pattern matching comes in handy. Pattern matching is a way of analyzing
and decomposing values. At first, it can seem deceptively similar to switch statements,
which you may know from languages such as JavaScript, C, and Java, but as you will see
later in this chapter, pattern matching can do much more than that.

Let’s look at some examples. We’ll start with Boolean values:

function int int_of_bool(bool b) {
 match (b) {
 case {true}: 1
 case {false}: 0
 }
}

Here, the match is followed by an expression (it does not need to be a simple variable)
that we want to match against, put in parentheses. This is followed by a number of
different matching cases introduced with the case keyword, followed by the matched
pattern, a colon, and the expression with the result for that particular case.

Now let’s match a value of type User.logged:

function string greet(User.logged u) {
 name =
 match (u) {
 case {guest}: "guest"
 case {user: user}: User.get_name(user)
 }
 "Hello, {name}"
}

In this second pattern-matching case, user will be matched against the value of the user
field in the record u and can be accessed in the expression User.get_name(user). Just
as with regular records, you can abbreviate {user: user} to ~{user} in the pattern.

74 | Chapter 7: More Advanced Features of Opa

www.it-ebooks.info

http://www.it-ebooks.info/

With pattern matching, there are a few things to keep in mind. First, the pattern-
matching part of the code is an expression, not a statement (as switch is in many lan‐
guages). This means it is perfectly permissible to write the previous function as:

function string greet(User.logged u) {
 "Hello, " + match (u) {
 case {guest}: "guest"
 case {user: user}: User.get_name(user)
 }
}

Second, the compiler makes sure that all possible cases are covered by the given patterns,
and otherwise will fail with a nonexhaustive pattern-matching error. This means that if
at some point you need to add to the program a new feature that requires extending
some type with an additional variant, you can safely do so. The compiler will then point
out all the places that need to be adjusted because of this change.

Note that in the vocabulary of languages such as Java and C#, pattern-matching com‐
bines features of if, switch, instanceof/is, and casting, but without the usual (type)
safety issues of the last two operations.

Polymorphic Types
In this section, we will examine at an important extension of variant types:
polymorphism. We will start with a simple definition:

type nullable_int = {null} or {int value}

Many programming languages allow a special null value as a value for any type. Not
so in Opa. The type in the preceding code describes nullable integers by allowing two
types of values: {null} and {value: x} for any integer x.

Yes, you guessed right: Opa does not have the notorious problem of
null pointer exceptions. Using types like the one in the preceding text
for situations when you really need “nullability” has one big advantage:
while pattern-matching on such values, you will be prompted to ex‐
plicitly handle the null case.

That seems like a useful definition, but we may need null for values of types other than
just int. Repeating it for every single type where we need this feature would be terribly
inefficient.

Learning More About Types | 75

www.it-ebooks.info

http://www.it-ebooks.info/

Fortunately, we can do better. Here is a definition from the standard Opa library:

type option('a) = {none} or {'a some}

Here, 'a is a type variable (type variables always begin with a single apostrophe) and
the definition of option is parameterized by this type variable. It has two variants:
{none}, meaning no value, and {some: x}, representing an existing value x of the par‐
ameterized type 'a.

We call such a type a polymorphic type as we can substitute the type variable, 'a, with
an arbitrary type to obtain a concrete type. For instance, you can get optional integers
by instantiating 'a with int to obtain option(int).

Also note that, thanks to Opa’s type inference, you will not need to spell out the type
names in many cases. If you just write {some: 5}, the compiler will be able to figure
out that this is a value of type option(int).

It’s important to realize that you can also write polymorphic functions like this one:

function bool is_some(option('a) v) {
 match (v) {
 case {some: _}: true
 default: false
 }
}

The underscore in the second pattern means we do not care about this value. It allows
us to avoid the unused variable warning that would be generated if we used a {some:
value} pattern with an unused variable value. It also clearly shows that the value itself
is irrelevant. Note that we do not inspect the value, which is why the function can retain
a fully generic option('a) type for its v argument and allows us to write:

b1 = is_some({some: 5}) // b1 == true
b2 = is_some({some: "Text"}) // b2 == true
b3 = is_some({none}) // b3 == false

Another new feature that we used in the previous example is the catchall default
pattern, which always needs to be specified as the last pattern and handles all the re‐
maining cases.

Note that many functions that handle options are already defined in the standard library;
one of these is Option.default, which gets the some case and returns the default value
of none:

Option.default(default_value, option_value)

76 | Chapter 7: More Advanced Features of Opa

www.it-ebooks.info

http://www.it-ebooks.info/

Use default sparingly. It is important to use it only when you really
want to handle “all remaining cases”: a typical use is when you want to
distinguish between one particular variant and “everything else.”
When not using default, the Opa typechecker always ensures that
pattern-matching cases are complete. For instance, the following
program:

option(void) v = none
match (v) {
 case {none}: 1;
}

defines an option but does not check for the {some: ...} case. If you
try to compile it, the Opa compiler tells only this:

Warning pattern
File "match1.opa", line 2, characters 1-30, (2:1-4:1 | 23-52)
Incomplete pattern matching: case {some} is missing
Error: Fatal warning: 'pattern'

The option type above has only one type variable, but types with several of them are
possible. For instance, here is another type from the standard Opa library:

type outcome('ok, 'ko)= { 'ok success } or { 'ko failure }

This represents an outcome of some operation, which can be either success, with the
resultant value, or failure, with an indication of the problem that occurred. The types
of the values returned in case of success and in case of failure can be different. For
example, an arithmetic operation could produce an int if successful or a string indi‐
cating the type of problem that occurred. Such an instance would have type out
come(int, string).

Recursive Types
The types you’ve learned about so far allow you to only express values with a fixed, finite
structure. But what about things like lists and trees? This is where recursive types come
to the rescue.

A list is a finite sequence of values of a given type. In Opa, it is defined as:

type list('a) = {nil} or {'a hd, list('a) tl}

This is a polymorphic type, with list('a) being either an empty list, {nil}, or an
element hd of type 'a followed by tl of type list('a). This definition of a type expressed
in terms of itself is what gives it the name recursive type.

Traditionally, the first element of a list is called the head and the remainder is called the
tail, hence the field names hd and tl, respectively.

Learning More About Types | 77

www.it-ebooks.info

http://www.it-ebooks.info/

Opa does not have a type of fixed-size array, and lists are used instead.
In fact, lists are used very extensively in Opa, so it is important that you
become comfortable with using them.

So how do we represent a list with three elements: 1, 2, and 7?

l1 = {hd: 1, tl: {hd: 2, tl: {hd: 7, tl: nil}}}

This is not very readable, so Opa supports special syntax for lists that enables us to write
the preceding code equivalently as:

l2 = [1, 2, 7]

Opa also offers [head | tail] syntax for a list with a given head and given tail, so we
can write:

l3 = [0 | l2] // == [0, 1, 2, 7]

or even:

l4 = [0, 3 | l2] // == [0, 3, 1, 2, 7]

Recursive types are very useful, so we will conclude this section with an illustration of
how to use them to express binary trees (of arbitrary type):

type bin_tree('a) = {leaf} or {'a value, tree('a) left, tree('b) right}

When writing functions that do pattern matching on recursive types, the functions
themselves will often use recursion. Since this is a new and very important concept, we
will take a closer look at them in the next section.

Recursive Functions
To pattern-match on recursive types, such as the list introduced in the preceding section,
we just follow the same rules we used for records:

match (l) {
case {nil}: ...
case ~{hd, tl}: ...
}

Here, Opa also offers syntactic sugar, allowing us to replace the preceding code with:

match (l) {
case []: ...
case [hd | tl]: ...
}

The interesting point here is that the tl binding in the second case will be of the same
type as the whole list l. To make this more concrete, let’s try to write a function that
computes the length of a list:

78 | Chapter 7: More Advanced Features of Opa

www.it-ebooks.info

http://www.it-ebooks.info/

function int length(list('a) l) {
 match (l) {
 case []: 0
 case [hd | tl]: ?
 }

The case when the list is empty is easy, as we just return 0 (since that is the length of an
empty list). However, how do we handle the second case? What is the length of a list
with an element hd followed by a list tl? Well, it is the length of tl plus one (for hd).
This is exactly what we can write in Opa, too (we replace hd with an underscore, as we
do not need to inspect the head of the list and hence do not need this binding):

function int length(list('a) l) {
 match (l) {
 case []: 0
 case [_ | tl]: 1 + length(tl)
 }

Note how the length function is called in the definition of the length function. This is
what makes it a recursive function. While writing such functions, we need to be careful,
though. What would happen if we just wrote the following?:

function f() {
 f()
}

Invocation of such a function would cause an infinite loop, just as if we wrote while
(true) { } in a language like Java.

One final remark: all top-level functions (i.e., functions that are defined in a file or in a
module, but not local functions that are defined within other functions) can use recur‐
sion directly. However, if you want to use recursion in a local function, you will need to
precede function with the recursive keyword.

For instance, we can write the following sample functions:

function f(x) {
 if (x==1) { 1; }
 else g(x)
}
function g(x) {
 f(x-1)
}

function f(x) {
 recursive function aux(x) {
 if (x==1) { 1; }
 else aux(x-1)
 }
 aux(x)
}

Recursive Functions | 79

www.it-ebooks.info

http://www.it-ebooks.info/

What About Loops?
If you’re familiar with some programming languages, you may have been wondering
why we have not talked about loops yet. The reason is simple: there aren’t any in Opa.

If you have no prior experience with functional programming, the notion of a lack of
loops can be truly confounding; how can you write programs without loops? It turns
out that just as you can do without variables [see “Bindings Versus Variables” (page
23)], you can also do without loops.

In Chapter 6, you wrote a function to compute the length of a list using recursion instead
of iteration (i.e., loops). It turns out that recursion is a very powerful notion and it can
replace loops altogether.

Opa has an even more powerful weapon in its arsenal: iterators. Iterators in Opa have
a slightly different meaning than in imperative languages; they are functions that capture
some important schema for manipulating collections.

To make this discussion more concrete, let’s discuss three important iterators on lists:
List.filter, List.map, and List.iter:

• List.filter takes a function f and a list l and produces a new list containing only
those elements of l for which f returns true. In other words, it filters elements of
a list based on a given predicate.

• List.map takes a function f and a list l and produces a new list by applying f to all
elements of l. So, if l = [x1, x2 ,... xN], List.map(f, l) == [f(x1),
f(x2), ... f(xN)].

• List.iter takes a function f and a list l. It does not produce any result, but it
invokes f on all elements of l. It is equivalent to a foreach loop in other languages.

Here is a summary of those iterators:

List.map(_ * 3, [1, 2, 3, 4]) = [3, 6, 9, 12]
List.filter(_ < 3, [1, 2, 3, 4]) = [1, 2]
List.iter(f, [1, 2, 3, 4]) = f(1); f(2); f(3); f(4)

Now that you’ve learned about pattern matching, polymorphic types, iterators, recursive
types, and functions, it’s time to apply this knowledge to a real project.

Bigger Projects
In Coding a Mini Wikipedia of this book, all the applications we developed, except for
the chat app, consisted of a single source file. This is fine for very simple projects, but
it’s unlikely to work very well for more elaborate ones. It is time to learn how to create
such projects.

80 | Chapter 7: More Advanced Features of Opa

www.it-ebooks.info

http://www.it-ebooks.info/

The overhead of creating such projects is minimal, but Opa features a tool that helps in
setting up new projects. To get started, change to a root directory in which you can
create the new project, and enter the following:

Tokyo:opa henri$ opa create birdy --template mvc

This will create a new birdy directory containing a complete scaffolding for it. The
resultant directory is similar to the one in Chapter 6 and has the following structure:

+- birdy
| +- Makefile
| +- Makefile.common
| +- opa.conf
| +- resources
| | +- css
| | | +- style.css
| +- src
| | +- model
| | | +- data.opa
| | +- view
| | | +- page.opa
| | +- controller
| | | +- main.opa

This newly created project includes the following:

• A Makefile file for the project (which can be customized)
• A generic Makefile.common file (which usually will not be modified)
• A configuration file, opa.conf (which lists all the source files of the project and their

dependencies; more about this in a moment)
• An example style file, style.css
• The source files, following the classic MVC pattern, divided into three sub-

directories: model, view, and controller, for the standard three application layers

The opa-create tool allows for some customization; for instance, it supports multiple
templates that can be set with the --template TEMPLATE_NAME argument. Version 1.1
of Opa supports three templates:
mvc-small (default)

A template for a small project following the MVC pattern, where the src directory
contains no subdirectories but only three files: model.opa, view.opa, and
controller.opa

mvc
An MVC template for bigger projects, where the src directory contains three folders:
model, view, and controller, containing respectively data.opa, page.opa, and
data.opa

Bigger Projects | 81

www.it-ebooks.info

http://www.it-ebooks.info/

mvc-wiki
Which is based on mvc-small but contains an example wiki application, ready to be
modified/extended

Every template provides a Makefile that eases the compilation of the project with:

make

and compilation followed by execution with:

make run

Your application should look like Figure 7-1.

Figure 7-1. Birdy application created with MVC

Let’s take a quick look at the opa.conf file. In our newly created project, it will look as
follows:

birdy.controller:
 import birdy.view
 src/controller.opa

birdy.view:
 import birdy.model
 import stdlib.themes.bootstrap
 src/view.opa

birdy.model:
 src/model.opa

82 | Chapter 7: More Advanced Features of Opa

www.it-ebooks.info

http://www.it-ebooks.info/

Usage of such a configuration file is optional, but it can be quite convenient as it creates
a central point listing all project files and packages, as well as dependencies between
them. You can consider this as a way to sanitize your project further.

Packages
Packages are the main unit of abstraction in Opa. For Birdy, there are three packages:
birdy.controller, birdy.view, and birdy.model. Each section starts with optional import
statements, followed by the list of paths to files constituting the given package (one file
per project in this example).

Packaging is very important in Opa, as typechecking and compilation are done sepa‐
rately at the package level. Packages are therefore highly reusable bits of code and a
major addition to JavaScript, which even lacks modules.

Packaging is also very powerful when combined with abstract data types, which hide
types from other packages. We will introduce the latter feature in the next chapter.

Summary
In this chapter you learned more about Opa types; in particular, you learned how to
use:

• Variant types
• Pattern matching
• Polymorphic types
• Recursive types
• Recursive functions
• Iterators

Using Opa, you generated an MVC template for your first big project, Birdy, looked
inside the opa.conf file, and learned about packages. In the next chapter you will learn
how to manage user accounts in Birdy.

Packages | 83

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

User Management

Managing user accounts is one of the main features of any real application. We would
like Birdy users to sign up with their email first, and then be able to sign in.

To create an account, the user will sign up with his email and create his username and
password. He will then receive an account activation link via email. After he activates
his account, the user will be able to sign in and start posting messages.

Usually, the “Sign in” link for accounts is placed in the top-right corner of the top bar,
so that’s what we’ll do here. We will place the “Sign up” button in the center of the home
page. Both links will activate a modal window that contains the login or registration
form.

In this chapter you will:

• Create a modal window for registration and learn how to quickly handle Bootstrap
components

• Create a registration form and learn how to handle forms
• Create new user accounts
• Send registration code via email and learn how to send emails
• Handle account activation links and learn how to handle data encoded in URLs
• Track a logged-in user throughout the site and learn how to handle user-associated

data

Setting Up the View
Before we jump into proper login/registration features, let’s take a moment to slightly
customize the default view to better suit the needs of our application.

85

www.it-ebooks.info

http://www.it-ebooks.info/

First, take a look at the code of the view part of the application, as it was generated by
opa create. You will find it in src/view/page.opa and it should look as follows:

module Page {

 // View code goes here

 function page_template(title, content) {
 html =
 <div class="navbar navbar-fixed-top">
 <div class=navbar-inner>
 <div class=container>
 birdy</>
 </div>
 </div>
 </div>
 <div id=#main class=container-fluid>
 {content}
 </div>
 Resource.page(title, html)
 }

 function default_page() {
 content =
 <div class="hero-unit">
 Page content goes here...
 </div>
 page_template("Default page", content)
 }

}

This code defines a Page module with two functions: page_template, which is a tem‐
plate of any page, parameterized by its title and content; and default_page, a default
page using the page_template function and which, for now, is set up to be displayed
for every page of the application (we will explain this in more detail later).

To learn more about fixed versus fluid layouts in Bootstrap, as well as
many other aspects of the application, visit the project’s website.

Now we will build the Birdy home page using page_template and Bootstrap’s hero-
unit element. Hero-unit is a clearly visible box for taglines and other important content.

We will put the HTML content of the home page into the main_page_content value:

 main_page_content =
 <div class=hero-unit>
 <h1>Birdy</h1>

86 | Chapter 8: User Management

www.it-ebooks.info

http://twitter.github.com/bootstrap
http://www.it-ebooks.info/

 <h2>Micro-blogging platform.

 Built with Opa.
 </h2>
 </div>

We won’t use the default_page function. Instead, we will create a main_page function
and use a page_template function to display the content:

 function main_page() {
 page_template("Birdy", main_page_content)
 }

The last thing to do is to register main_page as the default page of the application. This
is taken care of by the controller, the code of which is in src/controller/main.opa. We
talked about URL dispatching in “URL Dispatching” (page 31), so the code in that file
should not present any surprises and all we have to do for now is replace Page.
default_page with Page.main_page:

module Controller {

 // URL dispatcher of your application; add URL handling as needed
 dispatcher = {
 parser {
 case (.*) : Page.main_page()
 }
 }

}

After making those changes, run the application and it should look like Figure 8-1.

Figure 8-1. Birdy home page v01

Setting Up the View | 87

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrap Widgets: Modal Windows
We will use Bootstrap to build the modal window UI so that we don’t have to deal with
graphical widgets manually in Opa: don’t reinvent the wheel unless you have to! Modal
windows are windows that block the main application and require the user to interact
with the window before returning control back to it. Figure 8-2 presents a demo of a
modal window from the Bootstrap page.

Figure 8-2. Modal window demo from the Bootstrap page

To offer these features, Bootstrap provides the CSS and DOM nomenclature we dis‐
cussed in previous chapters, as well as a set of components with interaction aspects
implemented in a JavaScript library.

Opa is directly and fully compatible with JavaScript, so it will be very easy to use this
library and others.

We will start by creating the “Sign up” feature and its user interface. First we’ll create a
new View file, src/view/signup.opa, and add it to the project by modifying the view part
of opa.conf. Then we’ll import the stdlib.widgets.bootstrap.{modal} package,

88 | Chapter 8: User Management

www.it-ebooks.info

http://www.it-ebooks.info/

which provides the Bootstrap’s modal window, drop-down, and alert features in the
opa.conf file:

[...]
birdy.view:
 import birdy.model
 import stdlib.widgets.bootstrap.{modal}
 import stdlib.themes.bootstrap
 src/view/page.opa
 src/view/signup.opa
[...]

Note that we are splitting the view into several source files and placing them in a view
subdirectory.

For now, in the Signup module we would like to have two pieces of the user interface:
the modal window and a button to activate it. Since the id attribute of the window will
be used to identify it, it is a good practice to make a constant referring to it:

module Signup {

 window_id = "signup"

}

Now we will create the code for the modal window itself. For this, we will use the
Modal.make function of the bootstrap.modal package. It takes five arguments: the
window identifier, HTML markup of its header, body, and footer, and the options for
the modal window.

function modal_window_html() {
 win_body =
 <div>
 Sign up form will appear here
 </>
 win_footer =
 <>
 Submit button will appear here
 </>
 Modal.make(window_id, <>New to Birdy?</>, win_body, win_footer, Modal.
 default_options)
}

For now, win_body and win_footer are just placeholders for the registration form and
the Submit button that we will put there in “Form Handling in Opa: Registration
Form” (page 91).

Bootstrap Widgets: Modal Windows | 89

www.it-ebooks.info

http://www.it-ebooks.info/

It is time to create a “Sign up” button on the home page that will fire up the modal
window. It will be just a regular HTML link, with the data-toggle=modal attribute
(which indicates that it’s a toggle for the modal window) and the href attribute pointing
to the ID of the window:

 signup_btn_html =

 Sign up

}

With those two elements in place, we can put the markup for the modal window, which
is invisible by default until window opening is triggered, in page_template in src/view/
page.opa:

function page_template(title, content) {
 html =
 <div class="navbar navbar-fixed-top">
 <div class=navbar-inner>
 <div class=container>
 birdy</>
 </div>
 </div>
 </div>
 <div id=#main class=container-fluid>
 {content}
 {Signup.modal_window_html()}
 </div>
 Resource.page(title, html)
}

Here is the code to place the “Sign up” button into main_page_content:

 main_page_content =
 <div class=hero-unit>
 <h1>Birdy</h1>
 <h2>Micro-blogging platform.

 Built with Opa.
 </h2>
 <p>{Signup.signup_btn_html}</p>
 </div>

Our application now looks similar to Figure 8-3, which has some additional style.

90 | Chapter 8: User Management

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-3. Birdy home page v02

Form Handling in Opa: Registration Form
Web forms are used to collect input from the user. Opa makes it very easy to use them
by means of the stdlib.web.forms package, which we first need to import in the
opa.conf file:

import stdlib.web.forms

The two main modules of this package are Field and Form. The former one is used to
create fields of the form and the latter to compose a form of them.

Our registration form will consist of four fields: one each for entering the username,
email, password, and a repetition of the password (used to rule out the possibility of
making a typo while providing the password). We will turn each field into a private
variable in our Signup module. For instance, the one for the username field will look
as follows:

private fld_username =
 Field.text_field({Field.new with
 label: "Username",
 required: {with_msg: <>Please enter your username.</>},

Form Handling in Opa: Registration Form | 91

www.it-ebooks.info

http://www.it-ebooks.info/

 hint: <>Username is publicly visible. You will use it to sign in.</>
 })

We used the Field.text_field function to create a new text field. The type of the field
will influence the type of the value we obtain when reading the state of the field. The
text field will give us a value of type string, but, for instance, the input field for an email
will return a value of type Email.email. What if the user enters text that is not a valid
email address? We will discuss that topic in a moment.

There is only one argument to the Field.text_field method, and it is a record with a
description of this field. It is usually a good idea to extend the default Field.new value,
only alerting the relevant aspects. In our case, we:

• Provide the label for this field, which is the text that the user will see as the
description of the field

• Provide the hint, which is additional information about the field that is displayed
to help the user fill in the field

• Indicate that the field is required and provide the error message (with_msg) that
will be displayed to the user if the user leaves the field empty

In a similar manner, we can create a field for the user’s email, but now using the
Field.email_field function:

private fld_email =
 Field.email_field({Field.new with
 label: "Email",
 required: {with_msg: <>Please enter a valid email address.</>},
 hint: <>Your activation link will be sent to this address.</>
 })

Next in line is the field for the password:

private fld_passwd =
 Field.passwd_field({Field.new with
 label: "Password",
 required: {with_msg: <>Please enter your password.</>},
 hint: <>Password should be at least 6 characters long and contain at least
one digit.</>,
 validator: {passwd: Field.default_passwd_validator}
 })

We use the Field.passwd_field which also creates a field with an associated value of
type string, but the field shows asterisks instead of the actual text to protect the pass‐
word from onlookers, and the obtained string value is a hashed value of the password,
ready to be stored in the database. Storing plain-text passwords is unacceptable from
the point of view of security, and this feature of Opa form management enforces the
good practice of properly processing the password before storing it. Whenever a web

92 | Chapter 8: User Management

www.it-ebooks.info

http://www.it-ebooks.info/

application or service is able to send you an email that contains your password in clear
text (e.g., when you’ve forgotten it), you know you are in trouble!

The only other new aspect is the validator, which is a passwd validator for password,
and is parameterized by the specification of the site’s requirements on the passwords
that can be used by its users. In this case, we are happy with the default specification of
Field.default_passwd_validator, which corresponds to the requirements that are
outlined in the hint.

Finally, our last field is the repeated password:

private fld_passwd2 =
 Field.passwd_field({Field.new with
 label: "Repeat password",
 required: {with_msg: <>Please repeat your password.</>},
 validator: {equals: fld_passwd, err_msg: <>Your passwords do not match.</>}
 })

The only new piece here is the equals validator that checks that a value of the field is
precisely the same as the previous one, fld_passwd here. The beauty of Opa’s type safety
is also visible here: we can only enforce equality for two fields of the same type. If we
tried to ensure equality of, for example, one field with an email and another one with a
password, we would end up with a compile type error message.

Now that we have all the fields in place, we can construct a form with those fields and
put it in place of the previous placeholder in our modal window. The new version of
the modal_window_html function becomes:

function modal_window_html() {
 form = Form.make(signup, {})
 fld = Field.render(form, _)
 form_body =
 <>
 {fld(fld_username)}
 {fld(fld_email)}
 {fld(fld_passwd)}
 {fld(fld_passwd2)}
 </>
 win_body = Form.render(form, form_body)
 win_footer =
 <a href="#" class="btn btn-primary btn-large" onclick={Form.submit_
 action(form)}>Sign up</>
 Modal.make(window_id, <>New to Birdy?</>, win_body, win_footer, Modal.
 default_options)
}

Let’s go through this code step by step. First, we create a new empty form by calling the
Form.make function. It takes two arguments: a function to call on successful form sub‐
mission (signup, which we will write next) and a configuration record, which allows a

Form Handling in Opa: Registration Form | 93

www.it-ebooks.info

http://www.it-ebooks.info/

certain degree of customization for the form. Here we are happy with the defaults, and
therefore just supply it with an empty record.

Second, we construct form_body, which is just a regular xhtml value. We place form
fields there with calls to the Field.render function, which takes two arguments: the
form and its field to render. Since we will be repeatedly displaying fields of a single form,
we first create a convenient abbreviation, fld, and use it subsequently to construct the
form_body value.

Then, we replace the previous placeholder that we used for the window body
(win_body) with the form, which we get using the Form.render function with two
arguments: the form and its body.

Finally, we add a “Sign up” button. Its onclick event invokes the Form.submit_
action function, which takes care of form processing by doing the following:

• It validates all form fields and informs the user if there are any errors.
• If the form validation is successful, it calls the function responsible for form pro‐

cessing, which was provided in the Form.make function (signup in our case). We
will discuss this in more detail.

It is worth noting that Opa takes care of all the form handling for us, including (client-
side) form validation, presentation of error messages, and presentation of explanatory
text to the user (optionally, only for the active field), among other features.

Now it is time to focus on the missing signup function, which is called when the form
validates successfully:

private client function signup(_) {
 email = Field.get_value(fld_email) ? error("Cannot read form email")
 username = Field.get_value(fld_username) ? error("Cannot read form name")
 passwd = Field.get_value(fld_passwd) ? error("Cannot read form passwd")
 Modal.hide(#{window_id})
 new_user = ~{email, username, passwd}
 #notice =
 match (User.register(new_user)) {
 case {success: _}:
 Page.alert("Congratulations! You are successfully registered. You will
receive an email with account activation instructions shortly.", "success")
 case {failure: msg}:
 Page.alert("Your registration failed: {msg}", "error")
 }
}

First, we read the values of the three form fields using the Field.get_value function.
The fourth, repeated password, being redundant, is skipped. On the next line we hide
the modal window, with Modal.hide. Then we construct a record, new_user, holding
all user-provided information, and call a function to register this new user, User.

94 | Chapter 8: User Management

www.it-ebooks.info

http://www.it-ebooks.info/

register, which we will build in “Modeling and Adding Users” (page 96). This function
will return a value of type outcome(void, string). Depending on this outcome, we
construct an appropriate alert message and put its content in the element with the
notice ID, which will be used for system messages and which we will pass to the function
page_template:

{notice}

 ...
 <div id=#main class=container>

 {content}
 </>
 ...

Alerts
Let’s discuss Page.alert now. As you can see, this function contains two parameters:
the first represents the text message that will be displayed, and the second corresponds
to the class of the Bootstrap alert box.

Bootstrap has several styles for alert messages: we will use the classes .error
and .success. The HTML structure of all alerts is the same, but we will need to change
the class and message for each alert.

Let’s add alert to the import stdlib.widgets.bootstrap package of the configuration
file:

[...]
birdy.view:
 import birdy.model
 import stdlib.widgets.bootstrap.{modal,alert}
[...]

Now we’ll create an alert function in src/view/page.opa that will take those two
parameters:

function alert(message, cl) {
 <div class="alert alert-{cl}">
 <button type="button" class="close" data-dismiss="alert">×</button>
 {message}
 </div>
 }

We also need to add notice as a third argument to our page_template function. Then,
we will display the alert message inside the HTML element, #notice div.

function page_template(title, content, notice) {
 html =
 <div class="navbar navbar-fixed-top">
 ...

Form Handling in Opa: Registration Form | 95

www.it-ebooks.info

http://www.it-ebooks.info/

 </div>
 <div id=#main class=container-fluid>
 {notice}
 {content}
 {Signup.modal_window_html()}
 </div>
 Resource.page(title, html)
}

Finally, we should also update the main_page function:

function main_page() {
 page_template("Birdy", main_page_content, <></>)
 }

Modeling and Adding Users
So far you’ve learned about the view part of the registration process, so now it is time
to turn our attention to the model.

We will need to create two new files:

• src/model/user.opa, which will contain a User module representing a user of our
application

• src/model/topic.opa, for the Topic module

Let’s add them to the src/model/opa.conf file:

[...]
birdy.model:
 src/model/data.opa
 src/model/user.opa
 src/model/topic.opa

Before we start working on model files, let’s learn some type definitions.

Type definitions can only be given at the top level, outside of all mod‐
ules. However, it is customary to use the same prefix; for instance, to
use the User.xxx pattern for all type definitions related to the User
module. We will follow this convention.

Let’s start with a type definition for the username:

abstract type User.name = string

This is an abstract type. This means the type can be treated as a string within the package
in which this type declaration occurs; however, outside of this package it is opaque, and
therefore can only be manipulated by functions from the package. This is a very powerful

96 | Chapter 8: User Management

www.it-ebooks.info

http://www.it-ebooks.info/

abstraction mechanism that allows you to hide implementation details and expose only
those operations on values of a given type that you choose to expose. It also helps tre‐
mendously in terms of making sure that value invariants are preserved, as we will discuss
soon.

Then we introduce the user’s status:

abstract type User.status = {active} or {string activation_code}

The user account can be either active or awaiting activation, in which case we store
the activation_code.

We then declare a type for topics in /src/model/topic.opa:

abstract type Topic.t = string

This is just a synonym for a string, but by making it abstract we make sure that it is
opaque and can only be manipulated within the package.

We are now ready to give a definition of the user’s account in the src/model/user.opa
file:

abstract type User.info =
 { Email.email email,
 string username,
 string passwd,
 User.status status,
 list(User.name) follows_users,
 list(Topic.t) follows_topics
 }

This definition consists of the user’s email, username, password (passwd), status, a list
of people the user is following (follows_users), and the list of topics the user follows
(follows_topics, a feature that is sadly missing in the Twitter service).

With those declarations in place, we will provide the following database definition,
consisting of a set of users indexed by their usernames in src/model/data.opa:

database birdy {
 User.info /users[{username}]
}

You can choose to have many separate database declarations in modules to which they
relate, or one central declaration in a dedicated place. For Birdy, we chose the latter
approach.

Now we are ready to write our User.register function in src/model/user.opa:

 exposed function outcome register(user) {
 activation_code = Random.string(15)
 user =
 { email: user.email,
 username: user.username,

Modeling and Adding Users | 97

www.it-ebooks.info

http://www.it-ebooks.info/

 passwd: user.passwd,
 follows_users: [],
 follows_topics: [],
 status:{~activation_code}
 }
 x = ?/birdy/users[{username: user.username}]
 match (x) {
 case {none}:
 /birdy/users[{username: user.username}] <- user
 send_registration_email({~activation_code, username:user.username,
email: user.email})
 {success}
 case {some: _}:
 {failure: "User with the given name already exists."}
 }
 }

Let’s digest the code step by step. First, we randomly generate the activation_code for
the new user. The Random.string function constructs a string of a given length con‐
sisting exclusively of lowercase letters. A more generic Random.generic_string func‐
tion is also available, which takes a string s and a number n and constructs a random
string of length n consisting of characters present in s.

Next, we construct a value, user, that represents a new user (it will be of type User.
info). Finally, we query the database and check whether a user with the given name
already exists. If that is the case, we return failure, indicating that the username is
already taken. Otherwise, we add this value to the database, invoke send_registra
tion_email (we will work on that next), and indicate success.

Account Creation Notification: Sending Emails
The next step is to send an email to the user, in order to verify that her email address is
correct. The email will contain a link with the randomly generated activation code. By
clicking on it, the user will complete account activation.

First we will import two packages, stdlib.web.mail and stdlib.web.mail.smtp.
client, into the model part of the configuration file. The former is a generic package
for email-related activities and the latter is the client for the SMTP, the protocol used
for sending emails.

birdy.model:
 import stdlib.web.mail
 import stdlib.web.mail.smtp.client
 src/model/data.opa
 src/model/user.opa
[...]

98 | Chapter 8: User Management

www.it-ebooks.info

http://www.it-ebooks.info/

At the same time, we’ll update the view part by adding the import stdlib.web.
client package:

birdy.view:
[...]
 import stdlib.web.client

The stdlib.web.mail package contains, among other things, these two type
definitions:

type Email.content = {string text} or {xhtml html} or {string text, xhtml html}

type Email.send_status = { void bad_sender } or { void bad_recipient } or
{ void sending } or { string ok } or { string error }

The stdlib.web.mail.smtp.client contains, among other things, two functions for
sending email:

Email.send_status try_send (Email.email from, Email.email to, string subject,
Email.content content, Email.options options)

void try_send_async (Email.email from, Email.email to, string subject,
Email.content content, Email.options options, (Email.send_status → void)
continuation)

The Email.content type defines the content of the email, allowing the user to provide
only a text version, only an HTML version, or both. Then the first five arguments of
both functions are the same and include the email address of the sender (from) and
recipient (to), the email subject, the email content, and sending options.

Most modern email clients accept rich HTML emails, but some accept
only plain-text messages. Therefore, most email messages contain both
versions of the content. If you provide only the HTML content of the
message to Opa’s email sending functions, the plain-text version will be
automatically generated from it.

The try_send function sends the email synchronously, returning the status of the op‐
eration. The try_send_async function sends it asynchronously, and once the sending
is complete, it invokes the continuation function with the status of the operation.

Now let’s write the missing send_registration_email function, where we use the
asynchronous method of sending emails and ignore the status:

private function send_registration_email(args) {
 from = Email.of_string("no-reply@{Data.main_host}")
 subject = "Birdy says welcome"
 email =
 <p>Hello {args.username}!</p>
 <p>Thank you for registering with Birdy.</p>

Account Creation Notification: Sending Emails | 99

www.it-ebooks.info

http://www.it-ebooks.info/

 <p>Activate your account by clicking on
 <a href="http://{Data.main_host}{Data.main_port}/activation/{args.
 activation_code}">
 this link
 .
 </p>
 <p>Happy messaging!</p>
 <p>--------------</p>
 <p>The Birdy Team</p>
 content = {html: email}
 continuation = function(_) { void }
 SmtpClient.try_send_async(from, args.email, subject, content, Email.
 default_options, continuation)
}

The email contains an activation link that consists of the name of the domain at which
the application is deployed (which is parameterized as a constant), followed by
the /activation/ path and then the sequence of characters constituting the activation
code itself.

If we deploy our application on the example.com domain, the Data module should
contain a constant declaration:

module Data {
 main_host = "example.com"
}

An example activation link would be:

http://example.com/activation/swxrjvaprz

To be able to test emails deploying the application locally, we will declare main_host
and main_port separately:

module Data {
 main_host = "localhost"
 main_port = ":8080"
}

As you can see, sending emails does not differ much from constructing regular web
pages (although clearly you should refrain from using event handlers in email
messages), allowing code reuse between those two features.

Now you can run the application and test the sign-up form. It should look similar to
Figure 8-4, which has some additional styling.

100 | Chapter 8: User Management

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-4. Birdy sign-up form

Activating a User Account Without an Activation Email
Before we more forward, we would like to show you how to add an option to be able to
test the application locally without sending users’ activation links via email.

We have to modify our user register function and add an additional user status of
NO_ACTIVATION_MAIL, which should be set to active like so:

exposed function outcome register(user) {
 activation_code = Random.string(15)
 status =
 #<Ifstatic:NO_ACTIVATION_MAIL>
 {active}
 #<Else>
 {~activation_code}
 #<End>
 user =
 { email: user.email,
 username: user.username,
 passwd: user.passwd,
 follows_users: [],
 follows_topics: [],
 ~status

Activating a User Account Without an Activation Email | 101

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 x = ?/birdy/users[{username: user.username}]
 match (x) {
 case {none}:
 /birdy/users[{username: user.username}] <- user
 #<Ifstatic:NO_ACTIVATION_MAIL>
 void
 #<Else>
 send_registration_email({~activation_code, username:user.username,
email: user.email})
 #<End>
 {success}
 case {some: _}:
 {failure: "User with the given name already exists."}
 }
 }

In the function <Ifstatic> , <Else> and #<End> are compilation directives. So, if you
run your Birdy application using this command:

Moorea:~ ida$ NO_ACTIVATION_MAIL=1 make run

all new users’ accounts will be activated immediately following registration. No account
activation email will be sent. We will use this command for Birdy testing so that we don’t
need to set a domain name.

Account Activation: URL Data Handling
The last thing we need to do to complete the registration process is to handle user
account activation.

We need to handle URLs of the form /activation/ACTIVATION_CODE that we generated
previously. This is the role of the controller. First, let’s change its style, from parsing
against an unstructured string to matching against a structured representation of a URL,
as we discussed in “URL Dispatching” (page 31).

To do that, we first replace { custom: Controller.dispatcher } with {dispatch:
Controller.dispatcher } in the server definition in src/controller/main.opa. Then we
need to change the definition of the Controller.dispatch function accordingly. The
new version will look as follows:

function dispatcher(Uri.relative url) {
 match (url) {
 case {path: ["activation", activation_code] ...}:
 Signup.activate_user(activation_code)
 default:
 Page.main_page()
 }
}

102 | Chapter 8: User Management

www.it-ebooks.info

http://www.it-ebooks.info/

We’ve included two cases here. The first one handles URLs following the pat‐
tern /activation/ACTIVATION_CODE and dispatches rendering of those requests to
Signup.activate_user, with the given ACTIVATION_CODE as the only function argu‐
ment. The second one is a catchall case that dispatches all other requests to the main
page that we developed previously.

That was the controller part. Now let’s change the view part. We need to add the function
activate_user to our Signup module:

function activate_user(activation_code) {
 notice =
 match (User.activate_account(activation_code)) {
 case {success: _}:
 Page.alert("Your account is activated now.", "success") <+>
 <div class="hero-unit">
 <div class="well form-wrap">
 {Signin.form()}
 </div>
 </div>
 case {failure: _}:
 Page.alert("Activation code is invalid.", "error") <+>
 Page.main_page_content
 }
 Page.page_template("Account activation", <></>, notice)
}

This produces a page using Page.page_template. The content depends on the result of
the call to the model function User.activate_account, which tries to activate the user
account with the given activation code. Depending on whether that is successful or not,
we display to the user an appropriate notification message placing it inside the notice
element.

Finally, let’s set the model part and the User.activate_account function:

exposed function outcome activate_account(activation_code) {
 user = /birdy/users[status == ~{activation_code}]
 |> DbSet.iterator
 |> Iter.to_list
 |> List.head_opt
 match (user) {
 case {none}: {failure}
 case {some: user}:
 /birdy/users[{username: user.username}] <- {user with status: {active}}
 {success}
 }
}

Note that we use pipes here. A pipe, |>, takes the result and sends it to the following
function.

Account Activation: URL Data Handling | 103

www.it-ebooks.info

http://www.it-ebooks.info/

First, we search for all accounts whose status is inactive and whose activation code
corresponds to the one given as a parameter to this function. That gives us a database
set, which we then convert to a list and try to get its head.

If there is no head in the list, this means no user account is pending with the given
activation code, so we respond with a {failure} result. Otherwise, we have the corre‐
sponding user and we just update his status to {active} and return {success}, in which
case he will see the notification message saying that activation was successful. Now the
user can sign in, so it is time to develop the login feature for our application.

Keeping Track of Logged-In User: Handling User
Associated Data
How do we keep track of information related to the currently connected user?

Before we answer that question, let’s begin with two user-related type definitions, in the
src/model/user.opa file:

type User.t = { Email.email email, User.name username }

Values of type User.info contain all the information about the user, including his
(hashed) password. Therefore, we should be careful with passing those values to the
client side, as that would be inefficient: most of this data is not needed most of the time,
and moreover, the values contain sensitive information.

A typical approach in such a situation is to create a simplified type containing a subset
of the data and use it in most of the places. This is the role of the User.t definition. For
more complex types, it often makes sense to create simplified “views” on a type, as one
of the fields. In our case, that would mean:

type User.t = { Email.email email, User.name username }
abstract type User.info =
 { User.t data,
 string passwd,
 User.status status,
 list(User.name) follows_users,
 list(Topic.t) follows_topics
 }

But for our application, we will stick with the previous definitions instead.

We can now introduce a type to store information about the currently logged-in user:

type User.logged = {guest} or {User.t user}

You can see that this type is functionally equivalent to option(User.t), as it essentially
stores an optional value of type User.t. But having such dedicated descriptive types
often leads to much cleaner code and easier understanding of the code.

104 | Chapter 8: User Management

www.it-ebooks.info

http://www.it-ebooks.info/

So now we are ready to answer the question we posed earlier: how do we associate data
with the currently connected user? In Opa, this is achieved with the UserContext
module:

private UserContext.t(User.logged) logged_user = UserContext.make({guest})

The UserContext.make function creates a new user-aware value, and the argument
given to it is the initial value for every user. We can then read it with the UserCon
text.get function or modify it with UserContext.set, in which case it will only be
modified for the relevant user.

Association of UserContext values with users is short-lived and does
not survive a server restart or cookie-cleaning operation. All values that
need to be persisted in a longer context should be stored in the database.

To get username and email out of User.info, we will use the following function:

private function User.t mk_view(User.info info) {
 {username: info.username, email: info.email}
}

We can now write the login function:

exposed function outcome(User.t, string) login(username, passwd) {
 x = ?/birdy/users[~{username}]
 match (x) {
 case {none}: {failure: "This user does not exist."}
 case {some: user}:
 match (user.status) {
 case {activation_code: _}:
 {failure: "You need to activate your account by clicking the link we sent
you by email."}
 case {active}:
 if (user.passwd == passwd) {
 user_view = mk_view(user)
 UserContext.set(logged_user, {user: user_view})
 {success: user_view}
 } else
 {failure: "Incorrect password. Try again."}
 }
 }
}

We query the database for a user with the given username, and if it is absent, we fail
with the “This user does not exist.” message. Otherwise, we check the user’s status. If it’s
awaiting activation, we fail with the appropriate message. Finally, we compare the user’s
password with the given one. If they match, we use UserContext.set to note that the
user is now logged in, and we succeed with the value representing the user; otherwise,
we fail with “Incorrect password…”

Keeping Track of Logged-In User: Handling User Associated Data | 105

www.it-ebooks.info

http://www.it-ebooks.info/

We can now turn our attention to the view layer. Let’s create a new file, src/view/
signin.opa, with a new Signin module and add it to the configuration file.

We begin by constructing the login form; first, we create its fields:

window_id = "signin"

 private fld_username =
 Field.text_field({Field.new with
 label: "Username",
 required: {with_msg: <>Please enter your username.</>}
 })

 private fld_passwd =
 Field.passwd_field({Field.new with
 label: "Password",
 required: {with_msg: <>Please enter your password.</>}
 })

No surprises here: just two fields for the username and password, and we saw them both
in the sign-up form. Now let’s build the form itself:

private function register(_) {
 Modal.hide(#{window_id});
 Modal.show(#{Signup.window_id});
 }

function modal_window_html() {
 form = Form.make(signin(none, _), {})
 fld = Field.render(form, _)
 form_body =
 <>
 {fld(fld_username)}
 {fld(fld_passwd)}
 <div id=#signin_result />
 <div class="control-group">
 <div class="controls">New to Birdy? Sign up</>.
 </div>
 </div>
 </>
 win_body = Form.render(form, form_body)
 win_footer =
 <a href="#" class="btn btn-primary btn-large" onclick={Form.submit_
 action(form)}>Sign in</>
 Modal.make(window_id, <>Sign in</>, win_body, win_footer, Modal.default_
 options)
}

This code is very similar to its sign-up counterpart. Perhaps the only novel part is that
the form body, apart from the two fields, contains a link allowing a user without an
account to sign up. The onclick action of this link simply closes the sign-in modal
window and opens the one for signing up.

106 | Chapter 8: User Management

www.it-ebooks.info

http://www.it-ebooks.info/

To handle the sign-up action, we will call modal_window_html in page_template in src/
view/page.opa:

function page_template(title, content) {
 [...]
 <div id=#main class=container-fluid>
 {content}
 {Signin.modal_window_html()}
 {Signup.modal_window_html()}
 </div>
 [...]
}

For a better user experience, we will add the following function that displays the “Sign
in” form on the page where the user is redirected after successful account activation:

function form() {
 form = Form.make(signin(some("/"), _), {})
 fld = Field.render(form, _)
 form_body =
 <div class="signin_form">
 <legend>Sign in and start messaging</legend>
 {fld(fld_username)}
 {fld(fld_passwd)}
 <a href="#" class="btn btn-primary btn-large"
 onclick={Form.submit_action(form)}>Sign in</>
 </div>
 Form.render(form, form_body)
}

The last bit is the signin function to be called to process the form:

private function signin(redirect, _) {
 username = Field.get_value(fld_username) ? error("Cannot get login")
 passwd = Field.get_value(fld_passwd) ? error("Cannot get passwd")
 match (User.login(username, passwd)) {
 case {failure: msg}:
 #signin_result =
 <div class="alert alert-error">
 {msg}
 </div>
 Dom.transition(#signin_result, Dom.Effect.sequence([
 Dom.Effect.with_duration({immediate}, Dom.Effect.hide()),
 Dom.Effect.with_duration({slow}, Dom.Effect.fade_in())
])) |> ignore
 case {success: _}:
 match (redirect) {
 case {none}: Client.reload()
 case {some:url}: Client.goto(url)
 }
 }
 }

Keeping Track of Logged-In User: Handling User Associated Data | 107

www.it-ebooks.info

http://www.it-ebooks.info/

Here we fetch the values of the form fields and invoke the model’s User.login function.
In case of failure, we put an error message in the signin_result placeholder and then
perform a simple animation to fade in this message. In case of success, we redirect the
user to her wall page, the /user/USERNAME URL, which will contain the user’s own
messages, messages posted by users she follows, and messages mentioning topics she
follows; a first-time user will land on an empty page where she can start posting mes‐
sages. We will develop this later in “User and Topic Pages” (page 142).

We need to add an accessory function in the User module for the username exposed as
a string (remember that the User.name type is abstract):

function string get_name(User.t user) {
 user.username
}

The User’s Top-Bar Menu
As we decided in the beginning of the application development process, the “Sign in”
link should be placed on the top bar of the page. To do this, we will create a contextual
element that displays a “Sign in” link for users who have not yet logged in, and a drop-
down menu with a link to log out (or other features) for logged-in users.

We will need to know who is logged in and be able to log them out, so let’s start by adding
two appropriate functions in our User module:

function User.logged get_logged_user() {
 UserContext.get(logged_user)
}

function logout() {
 UserContext.set(logged_user, {guest})
}

Since we will be using a drop-down menu, let’s add dropdown to the import
stdlib.widgets.bootstrap package of the configuration file, create a new src/view/
topbar.opa file with a Topbar module in the birdy.view package, and add it to the
configuration file as well.

In our Page module, we will move the top-bar markup to this newly created Topbar
module, so we replace this:

...
 <div class=container>
 birdy</>
 </div>
...

with this:

108 | Chapter 8: User Management

www.it-ebooks.info

http://www.it-ebooks.info/

...
 <div class=container>
 {Topbar.html()}
 </>
...

Now we will add the HTML elements taken from the Page module to the Topbar module.
We will also create a user_menu element.

function html() {

 Birdy
 <+>
 user_menu()
}

Now let’s use the Bootstrap nav element to style the “Sign in” link and the drop-down
menu:

signinup_btn_html =
 <ul class="nav pull-right">

 <a data-toggle=modal href="#{Signin.window_id}">Sign in

function user_menu() {
 match (User.get_logged_user()) {
 case {guest}: signinup_btn_html
 case ~{user}: user_box(user.username)
 }
}

The user_menu function checks whether the user is currently logged in. If the user is
logged in, we add the user_box to the top bar; if not, we include a reference to the “Sign
in” link.

private function user_box(username) {
 id = Dom.fresh_id()
 <ul id={id} class="nav pull-right">
 <li class="dropdown">

 {username}
 <b class="caret">

 <ul class=dropdown-menu>
 Sign out</></>
 </>
 </>
 </>
}

The User’s Top-Bar Menu | 109

www.it-ebooks.info

http://www.it-ebooks.info/

The user_box function first obtains a unique DOM ID for the drop-down menu. Thus
far, we have always used manually chosen identifiers, which is fine for fixed elements,
and therefore, we could have used them here as well. However, if we generate DOM
elements programmatically, we may need some other way of assigning identifiers to
them. This is the role of Dom.fresh_id.

Once again we will use the Bootstrap nav element to style our username link and a
dropdown menu. We create a element with appropriate markup for a Bootstrap
drop-down menu. Use of the data-toggle attribute with Bootstrap allows us to activate
the menu by clicking on the username link. The drop-down menu items are encoded
via the tag. For now we only have a single entry for Sign out, which calls the
logout function when the user logs out:

private function logout(_) {
 User.logout();
 Client.reload()
}

The logout function logs the user out and reloads the page, via Client.reload, to
refresh the top bar; our element will now indicate that no user is logged in.

Compile and run your Birdy application now to test the “Sign in” form, which should
look similar to Figure 8-5.

Figure 8-5. Birdy “Sign in” form

Exercise
The activation mechanism provided in the application is pretty simple. In particular,
nothing prevents conflicts between the activation of different users. Can you fix that?

110 | Chapter 8: User Management

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In this chapter you learned how to:

• Build user registration and user login forms using modals
• Send user registration emails
• Handle user account activation
• Track logged-in users
• Manage URLs and more

Summary | 111

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Building Reactive UIs: New Messages with
a Real-Time Preview

We will now work on a modal window to post new messages in Birdy. As in the micro-
blogging app developed earlier, we want certain markup to be interpreted in a special
way. More precisely:

• #topic text should indicate messages about a given topic.
• @user should indicate that the message is directed to the given user.
• http://example.com-like text should be interpreted as links.

Those three elements will be formatted in a special way. This formatting will be shown
to the user in a live preview, which is a preview of the final rendering of the message
updated with every keystroke. A UI in which the interface reacts continuously to user
events is called a reactive UI.

Let’s get started!

Parsing
To analyze all the special elements in our messages, we will need to parse them. Parsing
is the process of analyzing text to determine its structure. The code that performs such
an analysis is called a parser. Opa offers extensive support for building parsers, so let’s
begin by exploring this support.

113

www.it-ebooks.info

http://example.com-like
http://www.it-ebooks.info/

A popular set of rules for parsing goes by the name context-free
grammar (CFG). Opa does not use CFG, and instead uses a newer set
of rules known as parsing expression grammar (PEG). You do not need
prior knowledge of these rules to understand the concepts presented in
this chapter. We just wanted you to know about them!

Parsing is somewhat similar to pattern matching. Pattern matching analyzes an arbitrary
data structure and computes some value depending on the result of this analysis. Parsing
is a similar process, only the input is a string. In Opa, parsing can also be applied to one
of the foundation data types of web apps: XML. Therefore, parsing in Opa is a way to
compute a result depending on the value of a string or an XML fragment; but this book
only covers parsing of strings.

The code that performs parsing is called a parser. Opa offers extensive support for
building parsers, so let’s begin by exploring it. Opa parsers are introduced with the
parser keyword followed by a number of cases. Each case follows this scheme:

case EXPR: VALUE

This consists of the case keyword (just like in pattern matching) and then a parsing
expression (more on that shortly) and the value corresponding to the given case (again,
just like in pattern matching). Cases are evaluated one by one, in order. Similar to pattern
matching, the first succesful VALUE is used. Note that VALUEs in all parser cases must be
of the same type t, and then the type of the complete parser expression is
Parser.general_parser(t).

Now let’s explore the parsing expressions. The simplest one is just an explicit literal
string where the parsed string contains the given text. Hence, the simplest parser one
can write is:

simple_parser =
 parser {
 case "Hello Opa": {success}
 }

This has only one case, which expects the precise Hello Opa text. It has type
Parser.general_parser({success}). The main function that uses such parsers is:

Parser.try_parse(parser, text)

This function takes two arguments: the first one is the parser to be used and the second
one is the text (string) to parse. The result is option(t) if parser was of type
Parser.general_parser(t), i.e., it is an optional value of the type produced by the
parser.

For example, we will have the following two results:

114 | Chapter 9: Building Reactive UIs: New Messages with a Real-Time Preview

www.it-ebooks.info

http://www.it-ebooks.info/

Parser.try_parse(simple_parser, "Hello Opa") == some({success})
Parser.try_parse(simple_parser, "Hello") == none

Parsing Expressions
Let’s continue to extend our arsenal of parsing expressions. A set of collating elements
between square brackets is a range expression, which parses a single provided character
if it belongs to the given set. It also allows ranges using a hyphen (-); for example,
[a-zA-Z_] is an expression that accepts a letter (lowercase or uppercase) or an under‐
score character.

Next in line is the sequence expression. If E1 and E2 are parsing expressions, E1 E2 is a
parsing expression that means “parse E1 and then E2”.

On to the repetition expression. If E is a parsing expression, E+ and E* are valid expres‐
sions, the former denoting one or more occurrences of E and the latter denoting zero
or more occurrences of E. Note that as many occurrences as possible are consumed from
the input. Hence, the parsing expression [ab]* [a] will never succeed: [ab]* will con‐
sume all as from the input and there will be none left for the final [a] to match against.
We say that the repetition operator of PEG is greedy, meaning it consumes as much as
it can from the input.

CFG is different from PEG in two main ways:

• PEG is greedy: it consumes as much input as possible.
• The choice operator in PEG is prioritized: if a certain case expres‐

sion succeeds, other ones will never be tried.

Both properties make writing PEG easier, as their behavior is more
easily predictable than in CFG.

We are now ready to write a parser for an arbitrary word consisting of a sequence of
letters, digits, underscores, and hyphen characters:

word = parser { case word=([a-zA-Z0-9_\-]+) -> Text.to_string(word) }

Here we have escaped the hyphen in the range operator, as it’s meant as a hyphen
operator and not part of a range, like in [a-z].

Second, as you saw earlier, every expression has a default parsing value associated with
it. For instance, the range operator gives the character that was parsed and the repetition
operators give a list of values of parsed elements. So the [a-zA-Z0-9_\-]+ expression
would give us a list of parsed characters. Since we’re not interested in individual char‐
acters, but rather in the complete parsed text, we put the expression in parentheses,

Parsing | 115

www.it-ebooks.info

http://www.it-ebooks.info/

which has precisely this effect: the result of parsing (E) is always the text that was con‐
sumed while parsing E.

Finally, for efficiency, parsing uses a special data type of text, which is better suited for
complex text manipulation than the default string type. It’s easy to convert from text
to the more classic string using the Text.to_string function, which is part of the stan‐
dard Opa library.

With all this knowledge at hand, we can turn to our original task: parsing Birdy messages.
This task essentially consists of extracting three types of elements from the message:
user mentions (@user), topic mentions (#topic), and links (http://example.com). Here
is a parser that recognizes those elements:

element = parser {
 case "@" user=word: ~{user}
 case "#" topic=word: ~{topic}
 case &"http://" url=Uri.uri_parser: {link: url}
 }

This parser consists of three cases:

• An @ character followed by a word, indicating a reference to the given user
• A # character followed by a word, indicating a reference to the given topic
• A link starting with the http:// string

This last case requires some additional explanation. We use a URI parser from the
standard library, Uri.uri_parser. However, this parser is liberal as it accepts go.To as
a valid URL. Indeed, as most users omit http:// from URLs, go.To can be interpreted as
a URL (and the domain exists), but it can also just be a missing whitespace in a sentence
as in “We should go.To be there…”. Therefore, we put an additional restriction that the
URL should start with the http:// string.

This is where the new &exp construction comes in. It tries to parse using exp, and if that
fails, the &exp expression fails too. However, if it succeeds, the parsing continues, but as
though the parsing of exp consumed no input. In other words, this allows us to check
whether exp would succeed at this point in the input, without really performing this
parsing (in a sense). This operator is called a logical predicate. It allows us to perform a
look-ahead in the parsed input. It has important implications for the expressive power
of PEG, but this is a subject beyond the scope of this book.

We are now ready to write a parser for a message segment, which can be either one of
the special elements mentioned earlier (user, topic, or link) or a piece of text:

116 | Chapter 9: Building Reactive UIs: New Messages with a Real-Time Preview

www.it-ebooks.info

http://www.it-ebooks.info/

segment_parser = parser {
 case ~element: element
 case text=word: {~text}
 case c=(.): {text: Text.to_string(c)}
 }

This parser has three cases:

• The first one takes care of special elements.
• The second one parses a word (as we defined it earlier) as text.
• The last one just consumes a single character.

Now a message simply consists of a number of such segments, and therefore, we can
parse it with:

msg_parser = parser { case res=segment_parser*: res }

You may be wondering why we needed two separate cases for a word and a single char‐
acter in the segment_parser. If we keep only the case for a single character, the message
xxhttp://example.go would be parsed as text xx, followed by a link to http://exam‐
ple.go. This does not match our needs, and therefore, we parse one word at a time which,
in this case, would result in the text xxhttp, followed by three special characters: ://.
We still need the case for a single character to consume all characters that are not covered
by the word case (punctuation marks and such).

Modeling Messages
We are now ready to provide a model for Birdy messages. We create a model file, src/
model/msg.opa, and add it to the project (i.e., to the opa.conf file).

We then provide a definition for a message, Msg.t, which consists of the message content
(content), its author (author), and the date it was published (created_at). We make
it abstract as well:

abstract type Msg.t =
 { string content,
 User.t author,
 Date.date created_at
 }

We also introduce a type for a message segment, Msg.segment, in the sense introduced
in the previous section:

type Msg.segment =
 { string text } or
 { Uri.uri link } or
 { User.name user } or
 { Topic.t topic }

Modeling Messages | 117

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, we build a Msg module, with two accessory functions for message fields and a
function to create a new message, as well as the parser we developed previously. We
expose this parser as an analyze function, which takes a message, Msg.t, and returns
the list of segments, list(Msg.segment), it is composed of:

module Msg {

 function Msg.t create(User.t author, string content) {
 { ~content, ~author, created_at: Date.now() }
 }

 function get_author(Msg.t msg) { msg.author }
 function get_created_at(Msg.t msg) { msg.created_at }

 private function list(Msg.segment) analyze(Msg.t msg) {
 word = parser { case word=([a-zA-Z0-9_\-]+) -> Text.to_string(word) }
 element = parser {
 case "@" user=word: ~{user}
 case "#" topic=word: ~{topic}
 case &"http://" url=Uri.uri_parser: {link: url}
 }
 segment_parser = parser {
 case ~element: element
 case text=word: {~text}
 case c=(.): {text: Text.to_string(c)}
 }
 msg_parser = parser { case res=segment_parser*: res }
 Parser.parse(msg_parser, msg.content)
 }

}

Rendering Messages
It’s time to turn our attention to the user interface. Let’s create an src/view/msg.opa file;
we’ll use the same filename as before, as we are still dealing with messages, but we’ll put
it in the view directory. Also, the model code was placed in the Msg module, but all the
code of this chapter will go into the MsgUI module. We’ll then add it to the project as
usual, in src/opa.conf.

We will first write a function to show (render) a message to the user:

function xhtml render(Msg.t msg) {
 msg_author = Msg.get_author(msg)
 <div class=well>
 <p class="author-info">
 @{msg_author}
 {Date.to_string(Msg.get_created_at(msg))}
 </p>
 <p>

118 | Chapter 9: Building Reactive UIs: New Messages with a Real-Time Preview

www.it-ebooks.info

http://www.it-ebooks.info/

 {List.map(render_segment, Msg.analyze(msg))}
 </p>
 </div>
}

This function creates a <div> with a well class, which is Bootstrap markup for a page
element with an inset effect. The element consists of two paragraphs (<p>). The first one
contains a tag (bold text) which contains a link to the author, msg_author,
and a tag which contains the message creation date. Note how we use accessor
methods from the Msg module; this is because the Msg.t type is abstract, and hence, its
structure is only visible in the birdy.model package and outside of it must be manip‐
ulated with functions from that package. This is data abstraction at work.

The second paragraph contains the text of the message itself. To obtain it, we use the
Msg.analyze function which gets the list of the message segments, and then we use
the List.map function to convert each segment into its HTML representation using the
following render_segment function:

private function render_segment(Msg.segment seg) {
 match (seg) {
 case ~{user}:
 @{user}
 case ~{topic}:
 <i>#{topic}</i>
 case ~{link}:
 {Uri.to_string(link)}
 case ~{text}:
 <>{text}</>
 }
}

This function just does the pattern matching of the segment type, and for every possible
variant produces its HTML representation: both user mentions and topics are rendered
as links, the former with a bold style () and linking to /user/[USERNAME] URLs and
the latter with italics (<i>) and linking to /topic/[TOPICNAME]. We will talk about how
we are going to handle those URLs in “User and Topic Pages” (page 142). Link segments
are just rendered as HTML links (<a>) and text as normal text.

There is one small caveat. If you try to use the preceding code to render a message, you
will be greeted with the following message:

Can't make an xml with {email : Email.email; username : string}

This is because in the earlier snippet, in the render function, we used an insert with a
User.t value of the message author:

[...]
 @{msg_author}
[...]

Rendering Messages | 119

www.it-ebooks.info

http://www.it-ebooks.info/

The error message essentially says that the Opa compiler does not know how to display
values of that type. We can instruct it by creating an xmlizer, which is a special function
that converts an arbitrary data type to HTML. For User.t values, it could look as follows:

@xmlizer(User.t) function user_to_xml(user) {
 <>{user.username}</>
}

The return type of this function must be of type xhtml. The only special thing about
this function is the @xmlizer(User.t) annotation, which translates to “This is a func‐
tion that converts User.t values into HTML.”

There is an equivalent mechanism of stringifiers and an @stringifier(type) annota‐
tion, which are used for conversions to strings:

@stringifier(User.t) function user_to_string(user) {
 user.username
}

Let’s add those two functions to our User module.

Reactive UI: Live Preview
We will now work on the feature that allows users to enter new messages. To make it
more user-friendly, we will add a real-time preview that displays the formatted message
while the user is typing.

Let’s start by creating an interactive button that opens a modal window for entering a
new message:

window_id = "msgbox"

function html() {
 match (User.get_logged_user()) {
 case {guest}: <></>
 case {user: _}:

 <i class="icon-edit icon-white" />
 New message

 }
}

The feature of adding new messages is only available to logged-in users who will see a
Bootstrap button that opens the modal window identified by window_id [you learned
how to deal with modal windows in “Bootstrap Widgets: Modal Windows” (page 88)].
For unlogged guests, we just return an empty snippet.

Now we will work on the modal window itself:

120 | Chapter 9: Building Reactive UIs: New Messages with a Real-Time Preview

www.it-ebooks.info

http://www.it-ebooks.info/

private preview_content_id = "preview_content"
private input_box_id = "input_box"

function modal_window_html() {
 match (User.get_logged_user()) {
 case {guest}: <></>
 case ~{user}:
 win_body =
 <textarea id={input_box_id} onready={update_preview(user)} onkeyup=
 {update_preview(user)} placeholder="Compose a message"/>
 <div id=#preview_container>
 <p class=badge>Preview</p>
 <div id={preview_content_id} />
 </div>
 win_footer =
 <>
 Post button will appear here
 </>
 Modal.make(window_id, <>What's on your mind?</>, win_body, win_footer, Mo
dal.
 default_options)
 }
 }

Again, we only create this for logged-in users. The modal body contains a <textarea>
with an input_box_id for the user’s message and a <div> element with the preview_con
tent_id preview. Besides that, the input text area contains a placeholder and event
handlers for onready and onkeyup events, both invoking the update_preview function.
This means this function will be called when the window is created (onready) and every
time the user edits the message (onkeyup), and will update the live preview. In the modal
footer, for the moment, we add some temporary text for the forthcoming Post button.

Here is a very simple event handler, the update_preview function:

private client function update_preview(user)(_) {
 msg = Dom.get_value(#{input_box_id})
 |> Msg.create(user, _)
 #{preview_content_id} = render(msg)
}

In the preceding code, first we get the content of the text box with Dom.get_value, and
then we turn it into a message with the Msg.create function that we wrote previously.
In the last line of the function, we update the preview container (accessing it by its ID:
preview_content_id) with the rendered version of the message, obtained with our
render function.

Reactive UI: Live Preview | 121

www.it-ebooks.info

http://www.it-ebooks.info/

All that remains to be done is to hook up our message creation button. For the best user
experience we will make it accessible all the time, and therefore place it in the top bar
of the app. To do so, we add a call to MsgUI.html in the html function in src/view/
topbar.opa:

function html() {

 Birdy
 <+>
 MsgUI.html() <+>
 user_menu()
}

It’s better to place the modal window content outside of the top bar, to minimize the
depth of the HTML structure. Therefore, we add some modal window HTML to the
page_template function in src/view/page.opa:

function page_template(title, content) {
[...]
 <div id=#main>
 {notice}
 {content}
 {Signin.modal_window_html()}
 {Signup.modal_window_html()}
 {MsgUI.modal_window_html()}
 </div>
[...]
}

We’re done! If you compile and run your Birdy application, after signing in you should
see the “New message” button in the top bar similar to Figure 9-1.

Figure 9-1. Birdy “New message” button is displayed in the top-bar

Clicking on the “New message” button results in a modal window similar to the one
shown in Figure 9-2.

122 | Chapter 9: Building Reactive UIs: New Messages with a Real-Time Preview

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-2. By clicking on the “New message” button a modal window is displayed

Let’s make the following two improvements to this page:

• Add a message submission button to the modal window.
• Add an info box indicating how many characters have been entered. Let’s stick to

the micro-blogging tradition and limit messages to 140 characters in length.

In addition to this, the character counter will switch to a warning mode when the mes‐
sage size limit is approached, and to an error mode once the limit has been exceeded.
In this last case, the submission button will also be disabled.

We’ll start with a few constants for characters limits and UI element identifiers:

private MAX_MSG_LENGTH = 140
private MSG_WARN_LENGTH = 120

private chars_left_id = "chars_left"
private submit_btn_id = "submit_btn"

Getting the current message and closing the window are tasks that will now be per‐
formed in more than one place, so it is better to factor them out into dedicated functions:

private client function get_msg(user) {
 Dom.get_value(#{input_box_id})
 |> Msg.create(user, _)
}

Reactive UI: Live Preview | 123

www.it-ebooks.info

http://www.it-ebooks.info/

private client function close() {
 Modal.hide(#{window_id})
}

Now let’s place the character counter and Post button HTML elements to the win_
footer in the modal_window_html function. For a nicer display, we would like to place
the character counter on the left side of the footer, and the Post button on the right side.
We will use a parent element with Bootstrap’s pull-left class to float the char‐
acter counter to the left. We will use Bootstrap’s pull-right and btn btn-large btn-
primary classes for a nice, highly visible Post button:

[...]
win_footer =

 characters left

 <button id={submit_btn_id} disabled=disabled class="pull-right btn btn-large
btn-primary disabled" onclick={submit(user)}>
 Post
 </button>
[...]

Now we need the submit function that is invoked once the user decides to approve and
post his message:

private function submit(user)(_) {
 get_msg(user) |> Msg.store;
 Dom.clear_value(#{input_box_id});
 close();
 Client.reload();
}

In the four lines of this function we respectively are doing the following, in the order
shown:

1. Constructing the message and storing it by invoking Msg.store
2. Clearing the input box so that the creation of the next message will start with an

empty box
3. Closing the modal window
4. Reloading the page to see the posted message

124 | Chapter 9: Building Reactive UIs: New Messages with a Real-Time Preview

www.it-ebooks.info

http://www.it-ebooks.info/

After we enter a message, it does not appear on the current page, even
if it belongs there. One can see it only after refreshing the browser win‐
dow. We solve this problem by always enforcing page refresh after pub‐
lishing a new message. We’ll return to this problem in Chapter 10.

The function that stores messages belongs to the Msg module in src/model/msg.opa. For
the moment, we will write an empty temporary function that will be replaced with a
real one when we discuss storage in Chapter 10.

function store(Msg.t msg) {
 void
}

The last remaining bit is to update the update_preview function:

private client function update_preview(user)(_) {
 msg = get_msg(user)
 #{preview_content_id} = render(msg)

 // show status
 msg_len = Msg.length(msg)
 #{chars_left_id} = MAX_MSG_LENGTH - msg_len
 remove = Dom.remove_class
 add = Dom.add_class
 remove(#{chars_left_id}, "char-error");
 remove(#{chars_left_id}, "char-warning");
 remove(#{submit_btn_id}, "disabled");
 Dom.set_enabled(#{submit_btn_id}, true);

 if (msg_len > MAX_MSG_LENGTH) {
 add(#{chars_left_id}, "char-error");
 add(#{submit_btn_id}, "disabled");
 Dom.set_enabled(#{submit_btn_id}, false);
 } else if (msg_len > MSG_WARN_LENGTH) {
 add(#{chars_left_id}, "char-warning");
 }
}

The first two lines in the preceding code just update the message preview using the
get_msg function that we factorized. Then we check the message length, using the
Msg.length function that we need to add to the message model:

function int length(Msg.t msg) {
 String.length(msg.content)
}

Reactive UI: Live Preview | 125

www.it-ebooks.info

http://www.it-ebooks.info/

The Dom.add_class (resp. Dom.remove_class) is a function that adds
(resp. removes) a certain style class to a given HTML element. DOM
classes are a set in that each element can have several classes. A common
mistake web developers make is to write code in JavaScript, such as:

if $('foo').class == bar

instead of:
if class_contains($('foo'), bar)"

Opa makes it harder to make this kind of mistake.

We then remove all the warning/error styling from the element indicating the number
of characters left and set the Post button to the enabled state. If the message is over its
length limit, we add a char-error class to the counter element and disable the Post
button. If the message is only over the warning threshold, we just add a char-
warning to the counter element.

We are done! In Figure 9-3, the character count number is in orange to warn that only
5 characters are left. In Figure 9-4, the character count number is in red to indicate that
we passed 140 characters limit. Both figures show the final version of the modal window
we created in this chapter.

Figure 9-3. Birdy message preview with a warning

126 | Chapter 9: Building Reactive UIs: New Messages with a Real-Time Preview

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-4. Birdy message preview with an error

Summary
In this chapter you learned how to:

• Use parsing for modeling
• Render messages
• Build a real-time preview

In Chapter 10 we will talk about data storage and retrieval. We will extend Birdy with
real storage of new messages and with pages containing all messages for a given user or
topic.

Summary | 127

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Data Storage and Querying: Storing and
Fetching Relevant Messages

In this chapter you will learn more about data storage and retrieval (i.e., querying in
Opa). We will start with some general concepts and then illustrate them by applying
them to our Birdy app.

Collections in Opa: Lists, Sets, and Maps
Collections are used to represent multiple instances of the same type of data. In Opa,
there are three primary types of collections:

• Lists
• Sets
• Maps

Lists represent a sequence of items. The order of items is the order of insertion. There
may be multiple occurrences of the same value in a list. We talked about lists in
“Recursive Types” (page 77).

Sets represent a group of items, ordered by an order, typically an alphanumerical sort.
Sets cannot contain duplicates. They correspond to the mathematical notion of a set.

Maps are mappings from keys to values. They are often known by alternative names,
such as associative array or dictionary. All the keys in a map are distinct.

Figure 10-1 depicts these different types of collections.

129

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-1. Illustration of different types of collections available in Opa

In the following sections we will discuss how to:

• Declare data for storage
• Write new or update previously stored data
• Query and retrieve data from storage

In each section we will also discuss features specific to records, lists, sets, and maps.

Declaring Data
We briefly talked about using databases in Opa in Chapter 4, but now it it time to present
a more complete picture. Imagine that we want to write a movie-related application.
Let’s begin with a few relevant definitions.

An abstract type is the directive that can be put on type definitions to
hide the implementation of a type to the users of a library. Abstracting
forces users to go through the interface of the library to build and
manipulate values of that type.

Let’s take the following type declaration:

130 | Chapter 10: Data Storage and Querying: Storing and Fetching Relevant Messages

www.it-ebooks.info

http://www.it-ebooks.info/

abstract type Movie.id = int
type Movie.cert = {G} / {PG} / {PG-13} / {R} / {NC-17} / {X}

type Movie.crew =
 { Person.name director,
 list(Person.name) cast
 }

Movie.id is an abstract identifier of a movie; by keeping it abstract, we ensure that only
the package in which this declaration occurs can manipulate such identifiers (e.g., create
new values of that type). Movie.cert is an enumeration type for the U.S. motion picture
rating system. Finally, Movie.crew holds (simplified) information about the people
involved in the movie, with a single director and a list of the cast (in credits order).

We can now define a data type for a movie:

type Movie.t =
 { Movie.id id,
 string title,
 Movie.crew crew,
 int no_fans,
 int release_year,
 Movie.cert cert
 }

This movie consists of an ID, title, and crew (id, title, and crew), the number of fans
(no_fans) of the movie, the year the movie was released (release_year), and the movie’s
rating (cert).

Now we are ready to declare the database:

database data {
 Movie.t /movies[{id}];
 map(Movie.id, string) /synopsis;
 int access_counter = 0;
}

The /data/synopsis path should look familiar [we briefly discussed maps in “Maps
(Dictionaries)” (page 38)]; it declares a mapping from a Movie.id to its string synopsis.

As for /data/movies, it declares a set of values of type Movie.t. Here the set is indicated
by the square brackets after the path. Within square brackets one needs to specify record
fields (comma-separated) that will be used as the primary key for the set. This means
the combination of those fields should be unique across all set values. In our simple
example, we use a dedicated id field for that, which is a common strategy. Finally, we
have a single int field, access_counter, which is initialized to 0.

Declaring Data | 131

www.it-ebooks.info

http://www.it-ebooks.info/

1. This synopsis was taken from the Internet Movie Database (IMDb), http://imdb.com.

Inserting/Updating Data
We already discussed some ways of adding/updating data in “Maps (Dictionaries)” (page
38). For example, adding a synopsis for the movie with ID 1 can be done with:1

/data/synopsis[1] <- "The aging patriarch of an organized crime dynasty
 transfers\
control of his clandestine empire to his reluctant son."

Can you guess which movie this synopsis belongs to?

Manipulating sets is done in a similar way:

/data/movies[{id: 1}] <-
 { id: 1,
 title: "The Godfather",
 crew:
 { director: "Francis Ford Coppola",
 cast: ["Marlon Brando", "Al Pacino", "James Caan"]
 },
 release_year: 1972,
 no_fans: 0,
 cert: {R}
 }

By providing only a subset of fields, we can do partial updates. The following examples
also illustrate special features for updating int and list values:

 // update a single field only
/data/movies[{id: 1}] <- { no_fans: 100 }
 // increase no_fans by 1
/data/movies[{id: 1}] <- { no_fans++ }
 // increase no_fans by 10
/data/movies[{id: 1}] <- { no_fans += 10 }

 // add one element at the end of a list
/data/movies[{id: 1}]/crew/cast <+ "Richard S. Castellano"
 // add several elements at the end of a list
/data/movies[{id: 1}]/crew/cast <++ ["Robert Duvall", "Sterling Hayden"]
 // remove the first element of a list
/data/movies[{id: 1}]/crew/cast pop
 // remove the last element of a list
/data/movies[{id: 1}]/crew/cast shift

Can you figure out what data about The Godfather is stored after all those operations?
At the end of the complete program of this section, add the following:

println("{/data/movies[{id: 1}]}")

Then execute it and you will see something along the lines of this:

132 | Chapter 10: Data Storage and Querying: Storing and Fetching Relevant Messages

www.it-ebooks.info

http://imdb.com
http://www.it-ebooks.info/

{crew: {cast: [Al Pacino, Marlon Brando, Richard S. Castellano, Sterling
 Hayden],
 director: Francis Ford Coppola}, id: 1, no_fans: 111, release_year: 1972,
 title: The Godfather}

Reading (and Querying) Data
Now that you know how to declare and insert/update data, it’s time to learn how to
query the database to obtain required information. For simple structures, such as single
values or records, all we can do is read the data; we discussed that many times already:

int n = /data/access_counter

However, things get more interesting with collections; that is, sets and maps. You already
saw how to obtain single elements of collections, by indexing them:

movie_id = 1
string movie_synopsis = /data/synopsis[movie_id]
Movie.t movie_data = /data/movies[{id: movie_id}]

By indexing with a single value, which corresponds to the primary key for the set, we
are certain to get no more than one value as a result. If the value does not exist, we will
get a default result; if this is not what we need, we can always use the optional read
operator:

option(string) opt_synopsis = ?/data/synopsis[movie_id]
option(Movie.t) opt_data = ?/data/movies[{id: movie_id}]

In this case, the result of the operation is none if the data does not exist, and some(...)
if it does.

However, it is possible to use less precise indexing, in which case we may get more than
one value as a result. The general scheme of such operations is the following:

/path/to/data[query; options]

Comparison operators represent an important building block of queries:

• == expr means the value equals that of expr.
• != expr means value does not equal that of expr.
• < expr, <= expr, > expr, and >= expr means the value is, respectively, less than,

less than or equal to, greater than, or greater than or equal to that of expr.
• in expr means the value belongs to that of expr, where expr is a list.

Now a query can be any of the following:
op

This is just a comparison operator; this query works for maps and means that we
will be comparing keys of map entries.

Reading (and Querying) Data | 133

www.it-ebooks.info

http://www.it-ebooks.info/

field op

This is the field’s name followed by a comparison operator, meaning we filter entries
based on comparisons of the record field.

field/subfield op

This means we are using some field located deeper in the record structure for
comparison.

f1 op1, f2 op2, ...

This means we are using the comparison operator op1 for field f1, op2 for f2, and
so on.

field[_] op

The given field should contain a list, and this query means any element of the list
passes the comparison.

There are also few binary operators to combine queries into more complex ones:
q1 or q2

All values satisfying either query q1 or query q2

q1 and q2

All values satisfying both queries q1 and q2

not q

Values not satisfying the query q

Finally, the query options consist of a list of zero or more of the following entries,
separated by semicolons:
skip n

Skips the first n results (n should be an expression of type int).

limit n

Limits the result to the maximum of n results (n should be an expression of type
int).

order fld1, fld2, ...

Specifies that the results should be ordered first by fld1, then fld2, and so on. Every
fld value should be an identifier preceded by a plus sign (+) or a minus sign (-),
with +field indicating ascending sorting by field and -field indicating
descending sorting by field. It is also possible to use a version of field=expr to
choose the order dynamically, where expr should be an expression evaluating to
either {up} or {down}, indicating, respectively, ascending and descending order.

As mentioned earlier, such queries may result in more than one matching result; hence,
the natural question is: what is the type of the result of such queries?

134 | Chapter 10: Data Storage and Querying: Storing and Fetching Relevant Messages

www.it-ebooks.info

http://www.it-ebooks.info/

For maps, the type is the same as that of the queried map and the result of a query is a
sub-map, that is, a map containing only part of the bindings of the original one.

For sets, the resultant value is of a special type, dbset(t, _), where t is the type of
queried values and the second argument to the dbset type depends on what database
backend is used; it can be safely ignored and replaced with an underscore in most cases.

The first step in dealing with such results will usually be to convert them to iterators
with the DbSet.iterator function, and then to use standard functions from the Iter
module.

As is often the case, an example is worth a thousand words, so let’s look at a few examples
of queries in action.

dbset(Movie.t, _) movies2000 = /data/movies[release_year == 2000]
Iter.t(Movie.t) it = DbSet.iterator(movies2000)
xhtml movies = <>{Iter.map(Movie.render, it)}</>

dbset(Movie.t, _) popular_movies = /data/movies[no_fans >= 1000]
dbset(Movie.t, _) children_movies = /data/movies[cert in [{G}, {PG}]]
dbset(Movie.t, _) new_popular = /data/movies[release_year >= 2000
 and no_fans >= 1000]
dbset(Movie.t, _) non_x_rated = /data/movies[not cert == {X}]
dbset(Movie.t, _) some_popular = /data/movies[no_fans >= 10000;
 skip 100; limit 50; order -release_year, -no_fans]
dbset(Movie.t, _) by_coppola = /data/movies[
 crew/director == "Francis Ford Coppola"]
dbset(Movie.t, _) with_pacino = /data/movies[
 crew/cast[_] == "Al Pacino"]

map(Movie.id, string) synops = /data/synopsis[>=1000 and <=1500]

Fetch all the movies that were released in the year 2000.
Convert the results to an iterator.
Use the Iter.map function to render all fetched movies with the Movie.render
function and obtain the xhtml value.
Fetch all movies with at least 1,000 fans.
Fetch all movies with a G (General Audiences) or PG (Parental Guidance
Suggested) age certificate.
Fetch all movies released after 2000, that have at least 1,000 fans.
Fetch all non-X-rated movies.
Fetch the positions 101-150 (skip the first 100 and limit the results to 50) of
movies with at least 10,000 fans, sorted by decreasing release year and, within
the same release year, by the number of fans.

Reading (and Querying) Data | 135

www.it-ebooks.info

http://www.it-ebooks.info/

Filter based on the subfield director of the crew record, effectively fetching all
movies directed by Francis Ford Coppola.
This is somewhat similar to the preceding query, but this time we filter based on
a cast list of the crew record, fetching records where any elements of this list
satisfy the given condition; this effectively fetches all movies starring Al Pacino.
Fetch a submap of the /data/synopsis map, for movies with an ID above 1,000
and below 1,500.

From these instructions and examples it is worth noting that sets and maps are very
powerful for data storage. They essentially allow you to store collections of data, and
then query them in fairly arbitrary ways. We will now discuss a powerful extension to
the query mechanism: projections.

Projections
Imagine that we did not need all the information about some particular movie, but only
the title of the movie with a particular ID. We could do that with the following query:

string title = /data/movies[{id: 1}]/title

The query /data/movies[{id: 1}] returns a single movie (with ID 1), and the re‐
maining path, /title, means to project the resultant record to its single title field, which
is of type string. Hence, that is the final type of such a query. It also works for queries
with multiple results; for instance, to get the titles of all movies released in the year 2000,
we could use the following query:

dbset(string, _) titles = /data/movies[release_year == 2000]/title

It is also possible to project into more than one field, although then, the syntax is slightly
different. For example, imagine that we just wanted to fetch the title and the name of
the director of a movie with a given ID; this query would do the job:

{string title, string director} m = /data/movies[{id: 1}].{title, crew.director}

Of course, it is also possible to do this kind of projection for multiple-result queries.

The main reason for using projections is performance. Most of the time it would be fine
to fetch all the data from the database and only use the portions that we need. However,
this may be an expensive operation, and we may be fetching a lot of information that
we won’t use anyway. Projections allow us to fine-tune the information transfered from
the database to our program.

Data Manipulations in Birdy
You will now apply the knowledge you’ve gained from this chapter to Birdy. You will
learn how to:

136 | Chapter 10: Data Storage and Querying: Storing and Fetching Relevant Messages

www.it-ebooks.info

http://www.it-ebooks.info/

• Declare appropriate data storage
• Store new messages
• Retrieve messages based on some filtering criterion

Database Declaration
You’ve already manipulated Birdy messages and introduced a type representing them,
Msg.t. Now it is time to save them in the database for persistent storage. First, we will
recapitulate the definition of the Msg.t type introduced in “Modeling Messages” (page
117):

abstract type Msg.t =
 { string content,
 User.t author,
 Date.date created_at
 }

Since this is a self-contained type with all the information about the message, including
its author, content, and creation date, one possibility is to store all the Birdy messages
as a set of values of that type. This can be accomplished with the following database
declaration:

database msgs {
 Msg.t /all[{author, created_at}]
}

Here, we declare a primary key consisting of two fields: the author and the creation date
of the message. Since dates work with millisecond precision, we assume that no author
will publish two different messages in the same millisecond, and hence, this is a unique
primary key.

If there is no natural primary key for the stored data, it is a frequent
practice to introduce a dummy id field in the record, whose sole pur‐
pose is to identify the accompanying data and to serve as its primary
key.

The previous database declaration relates to messages, so we could just add it to the /src/
model/msg.opa file. But as our strategy is to use a dedicated source file collecting all
database declarations, we will slightly modify our declaration and add it to src/model/
data.opa:

database birdy {
 User.info /users[{username}]
 Msg.t /msgs[{author, created_at}]
}

Data Manipulations in Birdy | 137

www.it-ebooks.info

http://www.it-ebooks.info/

Storing New Messages
With the database declaration in place, we can now replace the dummy store function
with a real one:

function void store(Msg.t msg) {
 /birdy/msgs[{author:msg.author, created_at:msg.created_at}] <- msg;
}

This function just adds a new entry to the /birdy/msgs set, indexed by the author and
creation date of the given message.

Running this program and monitoring message creation activity with
a network profiler, which is an integral part of most modern browsers,
reveals that creating a new message results in nine network requests.
This is because the store function uses the database, and hence resides
on the server and needs to be accessed from the client when creating a
new message. We can optimize this behavior by declaring this function
as exposed:

exposed function void store(Msg.t msg) {
 /birdy/msgs[{author:msg.author, created_at:msg.cre-
ated_at}] <- msg;
}

After this change, the number of network requests drops to two: the
expected single round-trip communication with the server.

Fetching Relevant Messages
While developing code to render messages in “Rendering Messages” (page 118) we
introduced internal links of the shape /user/[USERNAME] and /topic/[TOPICNAME].
Those URLs will serve pages showing messages for a given user and topic, respectively.
In order to develop such pages, we first need to fetch relevant messages that will be
displayed on those pages; we will address this topic in this section and you will learn
how to create those pages in “User and Topic Pages” (page 142).

What messages should be displayed on those pages? It is quite clear for the topics: every
topic page should display all messages containing references to that topic. For the user
pages, it is more complicated, as we want them to display:

• All messages posted by the page owner (i.e., the given user)
• Messages of all the users followed by the given user
• Messages concerning all the topics followed by the given user
• Messages mentioning the given user

138 | Chapter 10: Data Storage and Querying: Storing and Fetching Relevant Messages

www.it-ebooks.info

http://www.it-ebooks.info/

First we’ll turn our attention to a function that returns all the messages for a given topic.
How do we write it? Recall that our type for a message looks as follows:

abstract type Msg.t =
 { string content,
 User.t author,
 Date.date created_at
 }

The content contains the content of the message as an unstructured string and we were
using the analyze function to decompose it into segments, with user and topic refer‐
ences. However, with this data organization we have no chance of performing our task
effectively, as we would need to fetch all the messages, analyze them one by one, and
filter those that mention the topic we are interested in, an approach that would quickly
become unacceptable in terms of performance.

How can we improve it? By employing the classic technique of enriching the data with
redundant information that will enable us to perform the data querying we need effec‐
tively. In our case, we need to know which users and which topics every message refers
to, so the solution is to add two new fields containing this information to our Msg.t
type:

abstract type Msg.t =
 { string content,
 User.t author,
 Date.date created_at,
 list(Topic.t) topic_refs,
 list(User.name) user_refs
 }

We now need to initialize those two fields in the create function that creates a new
message. We would like to reuse the analyze function to get the list of topics and users
referenced in the message, but the problem is that this function takes a Msg.t argument
and we cannot supply it yet, as at this point we are in the process of creating a new
message value. The solution is to change the type of this function to operate on the string
containing the raw content of the message, so this:

function list(Msg.segment) analyze(Msg.t msg) {
 ...
 Parser.parse(msg_parser, msg.content)
}

becomes this:

private function list(Msg.segment) analyze_content(string msg) {
 [...]
 Parser.parse(msg_parser, msg)
}

function list(Msg.segment) analyze(Msg.t msg) {

Data Manipulations in Birdy | 139

www.it-ebooks.info

http://www.it-ebooks.info/

 analyze_content(msg.content)
}

As you can see, we still make available the analyze function with the same type signature
as before, which ensures that all the code outside of this module will work just as before.
However, internally we develop a more low-level analyze_content function. We make
it private to ensure that it is not visible from outside of the Msg module. We can now
use it in the create function to initialize the topic_refs and user_refs fields:

function Msg.t create(User.t author, string content) {
 msg_segs = analyze_content(content)
 { ~content, ~author,
 created_at: Date.now(),
 topic_refs: get_all_topics(msg_segs),
 user_refs: get_all_users(msg_segs)
 }
}

We use two private functions, get_all_topics and get_all_users, that (given the list
of segments of the message) return, respectively, the list of topics and users referenced
in this message. A possible implementation of those functions could look as follows:

private function list(Topic.t) get_all_topics(list(Msg.segment) msg) {
 function filter_topics(seg) {
 match (seg) {
 case ~{topic}: some(topic)
 default: none
 }
 }
 List.filter_map(filter_topics, msg)
}

private function list(User.name) get_all_users(list(Msg.segment) msg) {
 function filter_users(seg) {
 match (seg) {
 case ~{user}: some(user)
 default: none
 }
 }
 List.filter_map(filter_users, msg)
}

Now we are done with user pages and topic fetching. It is easy to miss the importance
of what happened here, though. Note that we changed the internal representation of
messages in the system (by enriching it with some information) without making any
changes outside of the message module. This was possible thanks to the fact that:

140 | Chapter 10: Data Storage and Querying: Storing and Fetching Relevant Messages

www.it-ebooks.info

http://www.it-ebooks.info/

• Msg.t type was abstract, meaning the type could only be directly manipulated in
the package in which it was declared and from the outside had to be accessed via
the function provided in the package.

• We did not change the API (i.e., the signatures of the nonprivate functions) of the
Msg module.

This is an extremely important lesson in data encapsulation. Lessons
that should be learned from this exercise are:

• Whenever possible, make types abstract so that irrelevant imple‐
mentation details are hidden in the given module.

• Be careful when designing the public API of the module, which
should only expose relevant features. Ideally, changing the internal
representation of the type should be possible without making any
changes to the public API, in which case such a change will only
be local to the relevant package, just as was the case in our example.

The bigger the team, the larger the project, and the more important it
is to use abstract data types. For large projects, abstract data types might
be one of the most powerful features of Opa.

Having our message type enriched with data, we can now easily write functions to return
messages related (in the aforementioned sense) to a given topic or user:

function msgs_for_topic(Topic.t topic) {
 /birdy/msgs[topic_refs[_] == topic; order -created_at; limit 50]
}

To understand this better, let’s take a look at all the components of this query and their
meanings, step by step:

/msgs/all[
 topic_refs[_] == topic;
 order -created_at;
 limit 50
]

Return all the messages...
... such that there is an element in the list topic_refs that is equal to topic.
Sort the results by the creation date, in descending order (i.e., from newest to
oldest).
Limit the result to the first 50 entries (at most).

Data Manipulations in Birdy | 141

www.it-ebooks.info

http://www.it-ebooks.info/

The function returning messages for a given user is only slightly more complicated:

function msgs_for_user(User.t user) {
 userdata = /birdy/users[{username: user.username}]
 /birdy/msgs[author.username in userdata.follows_users or
 topic_refs[_] in userdata.follows_topics or
 user_refs[_] == user.username or
 author.username == user.username;
 order -created_at;
 limit 50]
}

Fetch the data of the user with username user.username and bind it to userdata.
Return all messages whose author belongs to the list userdata.follows_users,
that is, to the list of those followed by the given user...
...or which refers to the topic that is on the list of topics followed by the given
user (userdata.follows_topics)...
...or which refers to the given user...
...or whose author is the given user.
Order the results in descending order by creation date.
Limit the result to the first 50 entries (at most).

In our example application we will always show, at most, the 50 most
recent results. Usually, in a real application one would want to allow
users to get access to older messages as well. This is typically achieved
by pagination of results. To implement this, we would need to extend
the preceding queries with a skip X; limit Y clause that would ensure
that we obtain a window of, at most, Y results starting from position X.

User and Topic Pages
Now that we have functions to retrieve relevant messages, let’s construct user and topic
pages. First, we need to take care of the navigation, or URL dispatching. This is the role
of the controller, so we will add two more cases to the Controller.dispatcher function
in /src/controller/main.opa:

function dispatcher(Uri.relative url) {
 match (url) {
 case {path: ["activation", activation_code] ...}:
 Signup.activate_user(activation_code)
 case {path:["user", user | _] ...}:
 Page.user_page(user)
 case {path:["topic", topic | _] ...}:
 Page.topic_page(topic)
 default:

142 | Chapter 10: Data Storage and Querying: Storing and Fetching Relevant Messages

www.it-ebooks.info

http://www.it-ebooks.info/

 match (User.get_logged_user()) {
 case {~user}: Page.user_page(User.get_name(user))
 default: Page.main_page()
 }
 }
}

Note that we also modify default, adding a new case for the logged-in user that will
display the user’s page upon signing in when the URL doesn’t change. This new
dispatcher function needs to be connected to the Birdy User module, so we need to
import birdy.model to the controller in the /src/opa.conf file:

birdy.controller:
 import birdy.{model,view}
 [...]

We’ll now turn our attention to the view in /src/view/page.opa, as we need to add two
functions used—Page.topic_page and ̀ Page.user_page`—that will construct pages for
a given topic and user, respectively. Those two pages are similar in the sense that they
display a list of messages, so let’s enclose this common feature in a function:

private function msgs_page(msgs, title, header) {
 msgs_iter = DbSet.iterator(msgs)
 msgs_html = Iter.map(MsgUI.render, msgs_iter)
 content =
 <div class=container>
 <div class=user-info>
 {header}
 </div>
 <div id=#msgs>
 {msgs_html}
 </div>
 </div>
 page_template(title, content, <></>)
}

Here, we’ve taken a list of database results as msgs and converted them to an iterator
with DbSet.iterator. Then we converted those results to rendered messages using
Iter.map with the MsgUI.render function. Finally, we built the HTML structure of our
messages page to display messages.

With the messages page in place, we can easily build a page for a topic:

Data Manipulations in Birdy | 143

www.it-ebooks.info

http://www.it-ebooks.info/

function topic_page(topic_name) {
 topic = Topic.create(topic_name)
 msgs = Msg.msgs_for_topic(topic)
 title = "#{topic}"
 header = <h3>{title}</h3>
 msgs_page(msgs, title, header)
}

Now we need a function to convert a string into a Topic.t type, which we place in the
Topic module in /src/model/topic.opa:

function Topic.t create(string topic) {
 topic
}

We create a page for a user in a similar way, but if the requested user does not exist, we
will display an error page:

function user_page(username) {
 match (User.with_username(username)) {
 case {some: user}:
 msgs = Msg.msgs_for_user(user)
 title = "@{username}"
 header = <h3>{title}</h3>
 msgs_page(msgs, title, header)
 case {none}:
 page_template("Unknown user: {username}", <></>,
 alert("User {username} does not exist", "error")
)
 }
}

We need to add a function to get a user with a given username to the User module:

function option(User.t) with_username(string name) {
 ?/birdy/users[{username: name}] |> Option.map(mk_view, _)
}

And that’s it! By creating some messages and then clicking on the links contained in
published messages or entering appropriate URLs by hand, you can verify that the pages
work and display relevant messages.

Figure 10-2 is an example of a user page and Figure 10-3 is an example of a topic page.

144 | Chapter 10: Data Storage and Querying: Storing and Fetching Relevant Messages

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-2. Birdy user page

Figure 10-3. Birdy topic page

Data Manipulations in Birdy | 145

www.it-ebooks.info

http://www.it-ebooks.info/

Following Users and Topics
Now we would like to add one more micro-blogging feature to our Birdy app: the ability
to follow other users and topics. Our plan is to:

• Write functions to follow users.
• Write functions to follow topics.
• Build a Follow button and add it to the user interface.

The ability to follow will apply to logged-in users only, so first let’s write a function in
the User module that will allow us to perform some action with logged-in users:

private function do_if_logged_in(action) {
 match (get_logged_user()) {
 case {guest}: void
 case {user: me}: action(me)
 }
}

Following Users
Now let’s use the preceding function to write a function to follow a user:

function follow_user(user) {
 function mk_follow(me) {
 /birdy/users[{username: me.username}]/follows_users <+ user.username
 }
 do_if_logged_in(mk_follow)
}

The function mk_follow allows us to update the list. As you saw in “Inserting/Updating
Data” (page 132), <+ is used to add an element at the end of the list. We then use the
do_if_logged_in function to apply it only to logged-in users.

Using the same method, let’s write a function that allows us to unfollow a followed user:

function unfollow_user(user) {
 function mk_unfollow(me) {
 /birdy/users[username == me.username]/follows_users <-- [user.username]
 }
 do_if_logged_in(mk_unfollow)
}

Here we use <-- to remove the element from the list.

The next function we would like to write is a function that allows us to check if one
given user A is followed by one logged-in user B:

146 | Chapter 10: Data Storage and Querying: Storing and Fetching Relevant Messages

www.it-ebooks.info

http://www.it-ebooks.info/

function isFollowing_user(user) {
 match (get_logged_user()) {
 case {guest}: {unapplicable}
 case {user: me}:
 if (user.username == me.username) {
 {unapplicable}
 } else {
 if (/birdy/users[username == me.username and follows_users[_] ==
user.username]
 |> DbSet.iterator |> Iter.is_empty) {
 {not_following}
 } else {
 {following}
 }
 }
 }
}

This function applies to logged-in users and returns unapplicable for non-logged-in
users as well as for the logged-in user B. The function looks for users who have the same
username as logged-in user B and who follow given user A, and returns a DbSet that we
transform to an iterator to check if the result is empty or not. If the result is empty, the
function returns not_following; otherwise, it returns following.

Following Topics
Now we’ll use the same methods we just used to write the follow_topic, unfollow_
topic, and isFollowing_topic functions:

function follow_topic(topic) {
 function mk_follow(me) {
 /birdy/users[{username: me.username}]/follows_topics <+ topic
 }
 do_if_logged_in(mk_follow)
}

function unfollow_topic(topic) {
 function mk_unfollow(me) {
 /birdy/users[username == me.username]/follows_topics <-- [topic]
 }
 do_if_logged_in(mk_unfollow)
}

function isFollowing_topic(topic) {
 match (get_logged_user()) {
 case {guest}: {unapplicable}
 case {user: me}:
 if (/birdy/users[username == me.username and follows_topics[_] == topic]
 |> DbSet.iterator |> Iter.is_empty) {
 {not_following}
 } else {

Data Manipulations in Birdy | 147

www.it-ebooks.info

http://www.it-ebooks.info/

 {following}
 }
 }
}

Follow Button
The last thing we need to address is the Follow button. Let’s return to /src/view/
page.opa and modify our msgs_page function as follows:

private function msgs_page(msgs, title, header, follow, unfollow, isFollowing) {
 recursive function do_follow(_) {
 _ = follow();
 #follow_btn = follow_btn();
 }
 and function do_unfollow(_) {
 _ = unfollow();
 #follow_btn = follow_btn();
 }
 and function follow_btn() {
 match (isFollowing()) {
 case {unapplicable}: <></>
 case {following}: Unfollow
 case {not_following}: <i
class="icon icon-white icon-plus"/> Follow
 }
 }
 msgs_iter = DbSet.iterator(msgs)
 msgs_html = Iter.map(MsgUI.render, msgs_iter)
 content =
 <div class=container>
 <div class=user-info>
 {header}
 <div id=#follow_btn>{follow_btn()}</div>
 </div>
 {if (isFollowing() == {unapplicable} && Iter.is_empty(msgs_iter)) {
 <div class="well">
 <p>You don't have any messages yet. <a data-toggle=modal
href="#{MsgUI.window_id}">Compose a new message.</p>
 </div>
 } else <></>}
 <div id=#msgs>
 {msgs_html}
 </div>
 </div>
 page_template(title, content, <></>)
}

We add the do_follow and do_unfollow functions that take the user or topic and re‐
construct the Follow button, and then we write the follow_btn function that takes the
state returned by isFollowing and returns the corresponding HTML. We use Bootstrap

148 | Chapter 10: Data Storage and Querying: Storing and Fetching Relevant Messages

www.it-ebooks.info

http://www.it-ebooks.info/

classes to distinguish the Follow and Unfollow buttons by color. We create a <div>
element with a #follow_btn identifier and call the follow_btn function. For a better
user experience, we create a special page for the user (first-time) who doesn’t have any
messages. We display a short notification about it and suggest that he create a new
message. If the user has messages, they are displayed on the page.

Now let’s call the follow, unfollow, and isFollowing functions in the topic_page and
user_page functions:

function topic_page(topic_name) {
 topic = Topic.create(topic_name)
 msgs = Msg.msgs_for_topic(topic)
 title = "#{topic}"
 header = <h3>{title}</h3>
 function follow() { User.follow_topic(topic) }
 function unfollow() { User.unfollow_topic(topic) }
 function isFollowing() { User.isFollowing_topic(topic) }
 msgs_page(msgs, title, header, follow, unfollow, isFollowing)
}

function user_page(username) {
 match (User.with_username(username)) {
 case {some: user}:
 msgs = Msg.msgs_for_user(user)
 title = "@{username}"
 header = <h3>{title}</h3>
 function follow() { User.follow_user(user) }
 function unfollow() { User.unfollow_user(user) }
 function isFollowing() { User.isFollowing_user(user) }
 msgs_page(msgs, title, header, follow, unfollow, isFollowing)
 case {none}:
 page_template("Unknown user: {username}", <></>,
 alert("User {username} does not exist", "error")
)
 }
}

Compile and run your Birdy application to check the Follow button. Figure 10-4 shows
a user’s page viewed by another logged-in user who doesn’t follow him. Figure 10-5
shows the topic page that is followed by the logged-in user: the Follow button has turned
into an Unfollow button.

Data Manipulations in Birdy | 149

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-4. Following a Birdy user

Figure 10-5. Following a Birdy topic

This concludes our detailed tour of the functions we have implemented in Birdy. Now
it’s time to play.

150 | Chapter 10: Data Storage and Querying: Storing and Fetching Relevant Messages

www.it-ebooks.info

http://www.it-ebooks.info/

Exercise
Remember when we talked about enforcing page refresh to display a user’s new messages
in “Rendering Messages” (page 118)? We solved half of the problem. However, what if
some other user entered a message that should be displayed on the current page? In
such a case, Twitter displays a window saying that there are N new messages and by
clicking on it one can see them.

Apply what you learned when writing the chat application in Chapter 6 to display all
relevant messages in real time in Birdy.

Summary
In this chapter you learned about data storage and querying. Specifically, you learned
how to:

• Declare, insert, update, read, and acquire data
• Store and fetch relevant messages
• Handle navigation
• Build functions to follow and unfollow users

We hope that by reading this book you have learned many things about Opa and web
programming. Programming is a never-ending subject, and our goal was to give you
enough knowledge to fly on your own and build great applications or even companies.

As a last reminder, there are many online resources to help you in your quest to build
great applications in Opa, including the following:

• The Opa forum, available at http://forum.opalang.org, is a great start.
• The online documentation at http://doc.opalang.org is the best way to browse the

standard library.
• The GitHub repository at http://github.com/MLstate/opalang hosts a wiki and pro‐

vides a way to report issues.

That’s all, folks!

Exercise | 151

www.it-ebooks.info

http://forum.opalang.org
http://doc.opalang.org
http://github.com/MLstate/opalang
http://www.it-ebooks.info/

About the Authors
Henri Binsztok is the creator of Opa and was previously a researcher and teacher at the
University of Paris.

Adam Koprowski is a software developer at Google. He has authored numerous articles
on Opa. Adam was previously a researcher at Radboud University.

Ida Swarczewskaja graduated from Tallinn University of Technology. She is leading
the work on the user experience and design of the Opa portal, tools, demos, and
applications.

Colophon
The animal on the cover of Opa: Up and Running is the Opah fish (Lampris guttatus).

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC
Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	What Is Opa?
	How Do I Work with Opa?
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Coding a Mini Wikipedia
	Chapter 1. First Steps: Getting to Know Opa
	Installing Opa
	Installing Node.js
	Auto-Installing MongoDB

	Our First Program
	Writing and Running the Code
	What localhost:8080 Means
	What the Code Means
	What Happens When We Run Your Application
	Details About the Opa Runtime

	Toward Real Programs
	Battle Plan
	Summary

	Chapter 2. Opa Fundamentals
	Primitive Values
	Dynamic Content
	Records
	Introduction to Types, and More About Records
	A Brief Introduction to Variants
	Functions: Building Blocks
	Functional Programming
	Functional + Typed
	Summary

	Chapter 3. Servers, Resources, and URLs
	Web Resources
	Embedding (Static) Resources
	Serving Resources
	Constructing (Dynamic) Resources
	URL Dispatching
	Summary

	Chapter 4. Data Storage
	CRUD (Create, Read, Update, and Delete)
	Maps (Dictionaries)
	Summary

	Chapter 5. Building the UI in HTML and CSS
	HTML Markup
	Tags and Attributes
	Inserts
	Event Handlers
	DOM Manipulation
	Example: A Guessing Game

	The Wiki Interface (HTML)
	HTML Plumbing
	Markdown
	Dynamically Updating the Page

	Adding Style (CSS)
	Explicit Style Attributes
	Opa-Powered Style
	External CSS
	Wiki with Style

	Bootstrap: Nice, Out-of-the-Box Styling
	Working with Designers
	How Should I Use the DOM Structure?
	Can You Describe Your Development Environment?
	How Should I Write CSS with Opa?
	Which Tools Should I Use to Write CSS?
	How Do I Improve the CSS Workflow in Opa?
	How Often Should Developers and Designers Interact?
	What Should Developers Know About CSS?
	What Should Designers Know About Opa?
	Can You Provide Some Tips for Quickly Customizing Your App’s Bootstrap-Based UI?

	Summary

	Part II. Coding a Mini-Twitter
	Chapter 6. The Web Chat App
	Starting a New Project
	View: Building User Interface
	Model: Application Logic
	Connecting the Model and the View
	Showing New Messages
	Broadcasting the Current User’s Messages
	Connecting Everything

	Understanding Networks
	Exercises
	Customizing the Display
	Saying “Hello”
	Distinguishing Messages Between Users
	User Customization
	And Beyond

	Chapter 7. More Advanced Features of Opa
	Learning More About Types
	Variant Types
	Pattern Matching
	Polymorphic Types
	Recursive Types

	Recursive Functions
	What About Loops?
	Bigger Projects
	Packages
	Summary

	Chapter 8. User Management
	Setting Up the View
	Bootstrap Widgets: Modal Windows
	Form Handling in Opa: Registration Form
	Alerts

	Modeling and Adding Users
	Account Creation Notification: Sending Emails
	Activating a User Account Without an Activation Email
	Account Activation: URL Data Handling
	Keeping Track of Logged-In User: Handling User Associated Data
	The User’s Top-Bar Menu
	Exercise
	Summary

	Chapter 9. Building Reactive UIs: New Messages with a Real-Time Preview
	Parsing
	Parsing Expressions

	Modeling Messages
	Rendering Messages
	Reactive UI: Live Preview
	Summary

	Chapter 10. Data Storage and Querying: Storing and Fetching Relevant Messages
	Collections in Opa: Lists, Sets, and Maps
	Declaring Data
	Inserting/Updating Data
	Reading (and Querying) Data
	Projections

	Data Manipulations in Birdy
	Database Declaration
	Storing New Messages
	Fetching Relevant Messages
	User and Topic Pages
	Following Users and Topics
	Following Users
	Following Topics
	Follow Button

	Exercise
	Summary

	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

