Arielle Simmons, Planner/GIS Specialist

Bridging GIS Environments:

using FWTools, OGR/GDAL, and Google Maps/Fusion Tables API.

- •WHO
- •WHY
- HOW

- •WHOuses it?
- •WHY ...use it?
- •HOW ...can I use it?

- •WHOuses it?
- •WHY ...use it?
- •HOW ...can I use it?

43 Communities w/ Population range: 426 to 152,000

PVPC: GIS/DATA CENTER

- 2 Full Time GIS staff & only 2 ArcInfo Licenses
- 1 Full Time Data Specialist
- 1 Full Time Graphic Artist for desktop/web publishing
- 2-3 part-time interns (1 GIS, 2 Data w/ some GIS knowledge)

Pioneer Valley Planning Commission Staff

- 10 Support Staff
- 9Transportation Planners (+ 4 interns)
- 9 Land Use Planners (+ 2-3 interns)
- 8 Community Development Planners (+ 2-3 interns)
- 5 Administrators....

Pioneer Valley Planning Commission Staff

- 10 Support Staff
- 9 Transportation Planners (+ 4 interns)
- 9 Land Use Planners (+ 2-3 interns)
- 8 Community Development Planners (+ 2-3 interns)
- 5 Administrators....

All wanting maps yesterday! –J.Scace

Introducing QGIS....

...Attempts to Fill the Resource Void...

QGIS – Open Source GIS

(January 24, 2013 : Formally Introduced 10 staff to QGIS by offering a 2-hr training session ...)

- -increasing staff GIS access = immediate need for improved data management
- Also... *many* data files (approx. 20 years worth) need to be converted from proprietary formatting (i.e. File GDB) into open source QGIS-friendly formats (i.e. Personal GDB, .shp). Preferably clipped to the PVPC region and properly projected.

- •WHOuses it?
- •WHY ...use it?
- •HOW ...can I use it?

Kenneth J Simmons

- Ø Math Teacher turned Electrical Engineer
- Ø Programmer/Problem Solver
- Ø Early Career: NASA (Hubble), Astrodata, Start Up's <?>, Disneyland (Pirates of the Caribbean)...
- Ø Late Career: Sr. System's Engineer at Lockheed-Martin -Skunk Works

...NOT EVEN close to being his most challenging job. ...

Which he started in 1982, when he became....

Brother (age < 1)

The Babysitter!

Me (age 1.9)

Rule #1: You can NEVER have too many tools....

Rule #1: You can NEVER have too many tools....

Rule #2: When in DOUBT read the instructions....

Why use Open Source?

ü PROs

- Affordable
- <u>Can</u> create efficiency & speedier delivery(once you know the libraries/APIs)
- Fast Bug Fixes
- & you can NEVER have too many tools....

ü CONs

- Smaller User Community
- Sparse & more Technical documentation (..Technical, but not illegible!)
- Extra installation steps....(i.e. setting up the "PATH" and "GDAL_DATA" variables)

...and if all else fails – just READ the INSTRUCTIONS... J

- •WHOuses it?
- •WHY ...use it?
- •HOW ...can I use it?

FWTools & OGR/GDAL

OVERVIEW:

FWTools – a packaged set of installs that INCLUDES the GDAL/OGR libraries (...granted a somewhat outdated version...)

GDAL stands for the **Geospatial Data Abstraction Library**.

- TWO different libraries combined into one!
 - 1) GDAL for manipulating geospatial raster data
 - 2) OGR for manipulating geospatial vector data

..many of the download and resource sites (including FWTools) sometimes truncate the name to just "GDAL"...

FWTools & OGR/GDAL

- ONE drawback: installation process...however, FWTools is a bit easier and a bit more packaged then the OGR/GDAL download.
- ONE positive thing: Multi-supported languages...
 - Ø Run OGR/GDAL functions from the FWTools shell OR Windows Terminal (*modifying the 'Environmental Variables' is necessary)...
 - Ø Bindings are available for Python, Perl, VB6, R, Ruby, Java, C#/.Net....

WHERE TO DOWNLOAD:

IF you are 'Just Starting Out'...

FWTools download website:

http://fwtools.maptools.org/

WARNING: This is *an old* installer. Python bindings DO NOT ALWAYS work.

OR

IF you are ready to 'Get Serious'....

OGR/GDAL download website:

http://www.gisinternals.com/sdk/

WARNING: Make sure you download the right bindings for your version of Python. This is the best, most up-to-date package to install.. but not as simple as FWTools.

Problem: New QGIS user needs me to (quickly) re-project all 11 of their shapefiles to the NAD 1983 Massachusetts State Plane Coordinate System, Mainland Zone, 2001. Meters.

- -A quick review of the data shows that all the files are in one folder/directory...
- -AND ALL the projections are 'GCS_WGS_1984' thus I am not required to use transformations...

Solution: Use the FWTools installation package and write a .bat file that loops through all the shapefiles and re-writes their projection....

...In order to get the most out of the FWTools install it is recommended that you set the Environmental Variables For both the PATH ...and the GDAL_DATA variables.

Solution: Using the FWTools installation package write a .bat file that loops through all the shapefiles and re-writes their projection....

 \emptyset Step 1: Open a text editor -- Notepad will work -- Enter the following:

Solution: Using the FWTools installation package write a .bat file that loops through all the shapefiles and re-writes their projection....

ØStep 2: Save as a .bat file....by going to File>Save As> AND entering

'batchreproj.bat' in the entry field.

ØStep 3: Place the batchreproj.bat file in the SAME folder as the data.

batchreproj

Solution: Using the FWTools installation package write a .bat file that loops through all the shapefiles and re-writes their projection....

ØStep 4: Run the .bat file by:

1) Open MS DOS command line terminal (Start Menu>(type 'cmd' into the 'Search Programs and Folder' box>Select and enter).

C:\Users\asimmons\Desktop\test>cd C:\WorkOrder\WO_47_Vulcan_PVTA_Shapefile\Vulca nSHP\shps390\

2) In the Terminal type cd and the <folder directory path> where the data & .bat file are

C:\WorkOrder\WO_47_Vulcan_PVTA_Shapefile\VulcanSHP\shps390>C:\WorkOrder\WO_47_Vu lcan_PVTA_Shapefile\VulcanSHP\shps390\batchreproj.bat

3) Enter the .bat file from command line (it will be the full path and file name of the .bat file). After you do, hit enter and *RUN...*

Processor: Intel (QUAD) Core™ i7-3770 CPU @ 3.40GHz RAM: 16.0 GB

```
OGR_ReadData.py - C:\Users\Ari\Desktop\Code_test\Scripts\OGR_ReadData.py
File Edit Format Run Options Windows Help
************************************
## Arielle Simmons
## Planner/GIS Specialist
## Pioneer Valley Planning Commission
## Date created: January 28, 2013
## Date modified:
## This script reads file information using the
## functions available in the GDAL library (http://www.gisinternals.com/sdk/)
## In order to work, the following steps have to be taken:
## 1. Get the GDAL core files
## 2. Get the Python bindings for the ver. of Python you
     are running (I am using python 2.6)
## 3. Install GDAL Core files (choose the 'typical' installation)
## 4. Edit Environmental Variables
## 5. Run/Test Python bindings by using 'from osgeo import ogr' and
     'from osgeo import gdal' in the Python shell...if
     everything prints then you are good to go!
##
## The GDAL Core files and bindings (for Python 2.7) can be found
## at the above website. Procedures for modifying the
## Environmental Variables (for Windows XP, & 7) can be found
## http://pythongisandstuff.wordpress.com/2011/07/07/installing-gdal-and-ogr-for
## In general, you must make modifications in the 'System Variables' pane
## on the 'Path' variable.
## This script is based on tutorial data gathered from:
## 'Westra, E. "Python Geospatial Development" 2010.'
## and examples provided here:
## http://www.gdal.org/ogr/ogr apitut.html &
## and here: http://tinyurl.com/ctrc4bx
from osgeo import ogr
import osr
import os
import fnmatch
import sys
```

 Problem: I am in a hurry, ArcMap is already shut down... and a staff member asks me:

"...what can you tell me about these **11** shapefiles...?

..what projection..
...what fields...
..how much data is there...

..NOW?!?"

 Solution: Open IDLE and run my ready-made Python script with OGR/GDAL functions!

>> OGR_ReadData.py

How long would this take to do manually?

Computer Specs:

Processor: Intel® Core™ i7-3770 CPU @ 3.40GHz

RAM: 16.0 GB

System: 64-bit

>> OGR_ReadData.py

OGR data drivers...

(A driver is an object that knows how to interact with certain data types...like shapefiles...)

```
C:\Users\asimmons\Desktop\OGR ReadData test\OGR Proj\tot fall.shp
['ID', 'O XMIN', 'O XMAX', 'O YMIN', 'O YMAX', 'TOTCO2']
Number of Features: 180492
C:\Users\asimmons\Desktop\OGR ReadData test\OGR Proj\tot fall.shp has the WKT spatial reference:
OGCS["GCS WGS 1984", DATUM["WGS 1984", SPHEROID["WGS 84", 6378137, 298.257223563]], PRIMEM["Greenwich", D],
UNIT["Degree", 0.017453292519943295]]
EPSG: 4326
    # Using os.walk & fnamtch functions, I construct a list of shapefile paths to pass
     # In my driver. Open() function
        shpList = []
        for path, dirs, files in os.walk(folder):
               for filename in fnmatch.filter(files, pattern):
                          shpList.append(os.path.join(path, filename))
        for shp in shpList:
                                                  Driver Open() method returns a DataSource object...
               dataset = driver.Open(shp, 0)
                                                  Open(<filename>, <update>)
                                                  0 = Read-only...
```

1 = Writeable..

OGR/GDAL supports:

... What is better then being 'fast'..... Supporting multiple data formats!!!.

- Shapefiles, personal geodatases, ArcSDE, FileGDB
- MapInfo, GRASS, Microstation
- Military Elevation Data (.dt0, .dt1, .dt2), ENVI (.hdr), Erdas Imagine (.img), Irdisi, USGS ASCII DEM, GDAL Virtual (.vrt)
- ASCII Gridded XYZ, Arc/Info ASCII Grid
- TIGER/Line, SDTS, GML, KML
- MySQL, PostgreSQL, Oracle Spatial, Informix, ODBC
- ...and many many more!

Format Name	Creation	Georeferencing
Arc/Info Binary Coverage	No	Yes
Atlas BNA	Yes	No
Comma Separated Value (.csv)	Yes	No
DODS/OPeNDAP	No	Yes
ESRI Personal GeoDatabase	No	Yes
ESRI ArcSDE	No	Yes
ESRI Shapefile	Yes	Yes
FMEObjects Gateway	No	Yes
GeoJSON	No	Yes
Géoconcept Export	Yes	Yes
GML	Yes	Yes
GMT	Yes	Yes
GPX	Yes	Yes
GRASS	No	Yes
INTERLIS	Yes	Yes
KML	Yes	No
Mapinfo File	Yes	Yes
Microstation DGN	Yes	No
Memory	Yes	Yes
MySQL	No	No
OGDI Vectors	No	Yes
ODBC	No	Yes
Oracle Spatial	Yes	Yes
PostgreSQL	Yes	Yes
S-57 (ENC)	No	Yes
SDTS	No	Yes
SQLite	Yes	No
UK .NTF	No	Yes
U.S. Census TIGER/Line	No	Yes
VRT - Virtual Datasource	No	Yes
Informix DataBlade	Yes	Yes

...Because OGR/GDAL is so flexible , my scripting capabilities have expanded...

>>downloadData.py

A series of python scripts that I have been working on that automates the downloading, unzipping, organizing, transferring, and exporting of different MassGIS data types (Note: I can run this using Windows Task Scheduler).

Uses OGR/GDAL functions as well as functions from the Shapely library (Shapely = library capable of preforming complex geometric calculations -- like buffer - on geospatial data)...

ALSO because OGR/GDAL is so flexible, I do not have any license limitations on what machine I can work on and where I can work ...

Fusion Tables/Google Maps...

- **Problem**: I have a WebGIS product to deliver in a week or less time frame (<40 hours).
 - -The request only requires ONE data layer (2000+ Building polygons)
 - Has to display at least 8 fields of information
 - -Minimal or no money for long-term data storage or server admin work...
- Solution : Google Maps/Fusion Tables API (w/ Google visualizations)

Hatfield Solar Map

Address:

Click to Find Address

Select a building outline or search for an address to identify buildings that you'd like to select.

Buildings are symbolized according to roof size, and the possibility of increased panel placement.

A WebGIS in an hour (or less)...

37 lines of Javascript + HTML = 1 WebGIS

```
<! DOCTYPE html>
    -<html>
        <head>
          <meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
          <style type="text/css">
           html { height: 100% }
           body { height: 100%; margin: 0; padding: 0 }
            #hatfield map { height: 100% }
          </style>
          <script type="text/javascript"</pre>
10
11
            src="https://maps.googleapis.com/maps/api/js?sensor=false">
12
          </script>
13
          <script type="text/javascript">
14
            function initialize() {
15
              var mapOptions = {
16
                center: new google.maps.LatLng(42.37098, -72.59818),
17
18
                mapTypeId: google.maps.MapTypeId.ROADMAP
                                                                                                         description:
19
                                                                                                         name:
20
                                                                                                         TOTAL ROOF: 40989.072619
              var map = new google.maps.Map(document.getElementById("hatfield map"),
                                                                                                         PITCHED OR: Flat
                  mapOptions);
                                                                                                         POTENTIAL: 28692.350833
23
24
              var layer = new google.maps.FusionTablesLayer({
                                                                                                         NUMBER OF: 1619.000000
25
                    query: {
                                                                                                         WATTS: 404750.000000
26
                      select: 'geometry',
                                                                                                         KWH PER YR: 478110.937500
27
                      from: '167ErkCtcUvzDW11u30o9vbPuhd5omBxmJkOBxL4'
                                                                                                         ANNUAL DOL: 56417.090625
28
                    },
                                                                                                         MONTHLY DO: 4701.424219
29
                  1);
30
              layer.setMap(map);
31
32
          </script>
33
        </head>
34
        <body onload="initialize()">
                                                                                                      field
35
          <div id="hatfield map" style="width:100%; height:100%"></div>
                                                                                                      ntary A
                                                                                                      hool
        </body>
      </html>
```

A WebGIS in an hour (or less)...

```
<! DOCTYPE html>
    -<html>
        <head>
          <meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
          <style type="text/css">
            html { height: 100% }
            body { height: 100%; margin: 0; padding: 0 }
            #hatfield map { height: 100% }
          </style>
          <script type="text/javascript"</pre>
11
            src="https://maps.googleapis.com/maps/api/js?sensor=false">
12
          </script>
13
          <script type="text/javascript">
14
            function initialize() {
15
              var mapOptions = {
16
                center: new google.maps.LatLng(42.37098, -72.59818),
17
18
                mapTypeId: google.maps.MapTypeId.ROADMAP
              var map = new google.maps.Map(document.getElementById("hatfield map")
23
24
              var layer = new google.maps.FusionTablesLayer({
25
                    query: {
26
                      select: 'geometry',
27
                      from: '167ErkCtcUvzDW11u30o9vbPuhd5omBxmJkOBxL4'
28
                    },
29
30
              layer.setMap(map);
31
          </script>
33
        </head>
34
        <body onload="initialize()">
35
          <div id="hatfield map" style="width:100%; height:100%"></div>
        </body>
      </html>
```

HTML: Declare as HTML5 and create a div element to hold the map...

Javascript: Create a Map options object to contain map initialization variables & create a 'map' object.

Javascript: Using the Google Maps Javascript API (v3) I am adding the data from my fusion table (which was imported into my table as a KML file) as a Layers object.

A WebGIS in an hour (or less)...

What the table looks like in Fusion....

A WebGIS in 20-30 hours....

- Customize map symbolization using Fusion Tables function calls...
- Add an address locator (Javascript)
- Add some JQUERY UI...and a sidebar...and a title...and a legend....

```
/ Set up a styles array to fill in color for the different polygon types based on the query
/ of the value 'TYPE' in the FusionTable...
      var layer = new google.maps.FusionTablesLayer({
             query: {
               select: 'geometry',
              from: '1DGsws1bC5ijqWHPJvOH1NH7vltkZIPURJun L5I'
/ Set up the stroke color and opacity of all polygons...
             styles: [{
               polygonOptions: {
                  strokeColor: '#00ffff',
                  strokeOpacity: .4,
                  strokeWeight: .5
/ Set TYPE 'EXCELLENT' to orange-red R-G-B, 255-69-0
              where: "'TYPE' MATCHES 'EXCELLENT'",
              polygonOptions: {
                 fillColor: '#ff4500',
                 fillOpacity: 10
```

A WebGIS in 20-30 hours....

- Add some JQUERY UI to your HTML file....


```
tabs {
   padding: 0px !important;
.tabs .ui-tabs-nav {
   position: relative !important:
   background: #f5f3e5 important;
   scrollbar: false important;
   cursor: pointer !important;
   font-weight: normal important;
   border-width: Opx Opx 1px Opx !important;
   -moz-border-radius: 0px important:
   -webkit-border-radius: 0px !important;
   border-radius: 0px !important;
   padding-left : 0px [important]
   width: relative !important;
   height: 380px;
.tabs .ui-tabs-panel {
   background: #f5f3e5 | important;
   margin: 0em 0.2em 0.2em 0.2em !important
.tabs li {
   background : lightgrey !important
   border-width: 0px !important;
   padding: 0px;
.tabs li.ui-state-active {
   background : lightblue limportant;
   color : black !important;
tabs li a {
   font-weight: bold important
```

A WebGIS in 100-140 hours....

https://googledrive.com/host/0BxTGtYdXPZ8QNE5tUWxZOWdzU2M

Google Visualizations...

Javascript

```
// global function to create column chart from fusion table data
                                                                                 25.000
                                                                                               Building
                                                                                      Bldg. Solar Area Bldg. Roof Area
   function drawVisualization(e) {
           var data = google.visualization.arrayToDataTable([
              ['Area', 'Bldg. Solar Area', 'Bldg. Roof Area'],
              ['Building', Math.round(e.row['POTENTIAL'].value), Math.round(e.row['TOTAL ROOF'].value)],
           1);
           var options = {
             title: 'Available Roof Area for Solar Panels (sq. ft)',
             titleTextStyle: {color: '#5c5c5c'},
             chartArea: {width: "75%", height: "70%"},
             legend: 'bottom',
            };
           var chart = new google.visualization.ColumnChart(document.getElementById('visualization div'));
           chart.draw(data, options);
        };
```

Available Roof Area for Solar Panels (sq.

45,000

40,000

35.000

30.000

Google Visualizations...

Javascript

```
// Function call: Click Listener on layer using jquery
google.maps.event.addListener(layer, 'click', function(e) {
    $("#roof-panel-area").html(
    '<strong>fortal Roof Area (sqft)</strong>: ' + '&nbsp;&nbsp;' + Math.round(e.row['TOTAL_ROOF'].value) +
    '<br><strong> Potential Roof Area (sqft)</strong>:' + '&nbsp;&nbsp;' + Math.round(e.row['POTENTIAL_'].value) +
    '<br><strong> Pitched or Flat Roof (?)</strong>:' + '&nbsp;&nbsp;' + e.row['PITCHED_OR'].value +
    '<br><strong> # of Panels per Roof Area :</strong>' + '&nbsp;&nbsp;' + Math.round(e.row['NUMBER_OF_'].value) +
    '
    '/p>');
    drawVisualization(e);
}
layer.setMap(map);
```

HTMI

```
<div id = "visualization div" style="width: 100%; height: 266%; align=center;"></div>
```

"Reading the Instructions" GOOGLE vs. OGR/GDAL....

 Problem: It takes time to learn a new API/Libraries – and the legibility of the instructions vary....

VS

Main Page Related Pages Classes Files Directories

OGR Simple Feature Library

- ü Provides clear & frequent code samples...
- ü Documentation is clean, direct, and not technocentric
- ü Easy Menu to Move through

As a python developer...before I went here I usually tried to explore the documentation using Python's built-in help(), or pydoc –g osgeo (for command line).

- Q Very few examples... and not all methods are documented so you might have to refer to the C++ docs on the GDAL website...
- Q Documentation is... technically precise, but does require a higher degree of familiarity with code than the Google API.
- q Not an Easy Menu to Move through

Resources to seek out ...

More information on how to modify the System Variables and Path variables (for GDAL): http://tinyurl.com/bmlncmg

GDAL library (includes links to wiki, downloads, API reference documentation, and the Python

Library) : http://www.gdal.org

Information about the Python package and

interfacing it with the GDAL library : https://pypi.python.org/pypi/GDAL/

FWTools (Open Source GIS Binary Kit for Windows

AND Linux) : http://fwtools.maptools.org/

Resources to seek out....

...the very CRAZY intimidating webpage which has the

most recent build versions of GDAL : http://www.gisinternals.com/sdk/

Contact Information

- Ari Simmons
 - •413-781-6045 (w)
 - •508-723-2496 (c)
 - •Asimmons@PVPC.org or ari.ucb.fire@gmail.com

Feel free to ask me questions!