

Solenoidal Spectrometers and Techniques: HELIOS and SOLARIS

Ben Kay, Argonne National Laboratory ISS meeting, Manchester 2017

Overview

Why develop a solenoidal spectrometer?

→ Why inverse kinematics, concept

HELIOS

- → The first generation, how it works in reality
- → Things we have learnt

Next steps in the US

- → SOLARIS @ FRIB, 3rd generation
- → ISS @ ISOLDE

Transfer reactions (approx. pre 90s)

- An essential probe of nuclear structure
- Energies, angular momentum, overlaps
- (High-resolution detectors developed accordingly)
- Direct reactions, well understood models
- Highly selective
- (Over 50-60 years experience)
- Count rates 10-1000s Hz

- Technique limited to stable systems
 - Few doubly-magic systems studied
 - Limited to changes of ~12 neutrons/ protons excess
 - Poor overlap with nuclei involved in astrophysical processes

Kinematics: normal vs. inverse

Inverse-kinematics challenges:

- Particle identification, ΔE-E techniques more challenging at low energies
- Strong energy dependence with respect to laboratory angle
- Kinematic compression at forward c.m. angles (in fact nearly all angles)
- Typically leading to poor resolution (100s of keV)
- ... and beams a few to 10⁶ orders of magnitude weaker

Kinematics: normal vs. inverse

- For negative Q-value reactions e.g. (d, ³He) there is a *double-valued kinematic solution* ...
- ... ions cannot scatter beyond $\theta_{max.}$ in the laboratory, in this case $\theta_{lab.} = 44.6^{\circ}$
- Particularly challenging for fixed lab-angle measurements, especially near $\theta_{\text{max.}}$

Early inverse-kinematics studies

<u>Necessities:</u> complex Si arrays, *high intrinsic resolution*, *high angular granularity*, low thresholds, large acceptance, often coincident gamma-ray detection, e.g., MUST-2 (GANIL), T-REX (ISOLDE), SHARC (TRIUMF), ORRUBA (ORNL), TIARA (GANIL), etc.

Kraus et al., Z. Phys. A **340**, 339 (1991), K. E. Rehm et al., Phys. Rev. Lett. **80**, 676 (1998)

V. Margerin et al., Phys. Rev. Lett. **115**, 062701 (2015)

Argonne

On the whole, results are often limited

Using the traditional result in poor excitation achieved for light nuclei).

a segmented Si detector at a fixed laboratory angle can , **typically of the order of ~300 keV** (better can be

Would like an approach that consistently:

- Gives better than 100-keV FWHM resolution
- 7-10 day runs with RI beams (10⁴ pps, 100 μ g/cm² targets)

H. Y. Lee et al., Phys. Rev. C 81, 015802 (2010), K. L. Jones et al., Nature 465, 454 (2010).

Solenoids ...

APEX experiment, Argonne

Connection made ...

Interestingly DGS was mentioned ... now a reality

processing of pulse shapes. Digital processing provides the additional benefit of allowing higher count rate. Currently, intensive R&D work is being carried out and prototype electronics have already been constructed. However, further developments in miniaturization and cost reduction

As was GRETA / GRETINA ... now a reality

pursued. One concept, called GRETA (Gamma-Ray Energy Tracking Array) builds on the Gammasphere concept of segmentation of large HpGe crystals. About 60 of the present Gam-

HELIOS ... now a reality

a) Solenoidal Geometry

A magnetic solenoid with its axis oriented along the beam direction could serve as a very largeacceptance magnetic spectrograph for low-energy light particles from inverse reactions such as $d(^{132}\text{Sn},p)^{133}\text{Sn}$. In this case the protons of interest are emitted in the backwards hemisphere with energies of 1-10 MeV. The particle energy measurements are done via silicon detector barrels surrounding the beam axis. This type of magnetic spectrograph deserves further study. Experimental Equipment for an Advanced ISOL Facility

March 1999

... by John P. Schiffer, Argonne

Transport through solenoid

- A simple linear relationship between energy and z, where the energy separation is (nearly) identical to the excitation energy in the residual nucleus.
- Removes kinematic compression.
- Factor of ~2.4 improvement in resolution (for this example)
- ... and an MRI magnet seems ideal (in fact too good)

A helical orbit spectrometer

Photo from upstream

Preamps

Prototype Si array

J. C. Lighthall et al., Nucl. Instrum. Methods Phys. A 662, 97 (2010)

- 4 sides, 6 elements long
- Detector size, 9×50 mm
- 700-µm thick (e.g. ~10 MeV protons)
- Φ coverage, **0.48 of 2**π
- $\Omega_{element} = 21 \text{ msr}$
- Ω_{array} = **493 msr**

Energy, distance, time

Note: array ~35-cm long, 4 sides, 6 detectors on each

Analysis

We measure E vs. z, which is the excitation-energy spectrum of the residual nucleus

Final analysis

J. C. Lighthall et al., Nucl. Instrum. Methods Phys. A 662, 97 (2010)

Some milestones

<u>Major component of the first 10 years of HELIOS has been instrument / technique R&D ...</u> <u>this has been a nontrivial exercise</u>

- Tuning techniques (a major challenge)
- Beam monitoring, absolute cross sections
- Types of reactions (single-nucleon, pair, cluster, inelastic scattering, etc)
- Full multi-final body reconstruction (decays from unbound states, branching ratios)
- Recoil detection (fast ionization) [a talk in itself still not ideal]
- Gamma-ray detection with Apollo (LaBr and Csl)
- Gas targets (for astrophysics)
- Electron spectroscopy
- Light masses (A < 30), *mastered*
- Around A ~ 130-140 looks plausible soon
- AIRIS will be a game changer (Calem's talk)

ATLAS (today and near future)

CARIBU

EBIS source has been installed, commissioned, and beam accelerated N.B. 2015 campaign used the ECR1 ion source for CARIBU beams CARIBU: G. Savard et al., Hyperfine Interactions 199, 301 (2011)

A 10 MeV/u study of ¹³⁷Xe via (d,p)

Kay et al., Phys. Rev. C 84, 024325 (2011) and Talwar et al., to appear in Phys. Rev. C 2017

October 2016 rates, **315 beams** > 10 pps

Ν

7

October 2016 rates, **252 beams** > 100 pps

Ν

7

October 2016 rates, **141 beams** > 1000 pps

October 2016 rates, **52 beams** > 5000 pps (~4–8 weeks transfer / scattering)

7

October 2016 rates, **18 beams** > 10,000 pps (~2–4 weeks transfer / scattering)

7

October 2016 rates, **18 beams** > 10,000 pps (~2–4 weeks transfer / scattering)

7

¹³⁸Xe(*d*,*t*)¹³⁷Xe @ 10 MeV/u

[¹³⁸Xe(*d*,*p*)¹³⁹Xe @ 10 MeV/u, for 'free']

104Mo	1.2
105Mo	1.2
106Mo	1.4
107Tc	1.5
108Tc	1.3
109Ru	1.2
110Ru	1.5
113Pd	1.0
137Xe	1.1
138Xe	1.5
138Xe 139Xe	1.5 1.4
139Xe	1.4
139Xe 140Xe	1.4 1.0
139Xe 140Xe 140Cs	1.4 1.0 1.2
139Xe 140Xe 140Cs 141Cs	1.4 1.0 1.2 1.6
139Xe 140Xe 140Cs 141Cs 142Ba	1.4 1.0 1.2 1.6 1.1
139Xe 140Xe 140Cs 141Cs 141Cs 142Ba 143Ba	1.4 1.0 1.2 1.6 1.1 1.8

134Te	0.99	
132Sn	0.057	

What could be done next?

In context of this work, ¹³⁴Te(d,p) is obvious ... and approved

¹⁴³Nd is a nucleus where "complete" spectroscopy has been done:
¹⁴²Nd(d,p)¹⁴³Nd — singles-particle states
¹⁴³Nd(d,d')¹⁴³Nd — particles coupled to the surface vibrations
¹⁴⁴Nd(d,t)¹⁴³Nd — holes coupled to pairing vibration

Maybe we could do the same with ¹³⁷Xe? And potentially lower Z systems in time with either CARIBU or ISOLDE

Gd-146	Gd-148	Gd-148
Eu-145	Eu-146	Eu-147
Sm-144	Sm-145	Sm-146
Pm-143	Pm-144	Pm-145
Nd-142	Nd-142	Nd-142
Pr-141	Pr-142	Pr-143
Ce-140	Ce-141	Ce-142
La-139	La-140	La-141
Ba-138	Ba-139	Ba-140
Cs-137	Cs-138	Cs-139
Xe-136	Xe-137	Xe-138
I-135	I-136	I-137
Te-134	Te-135	Te-136
Sb-133	Sb-134	Sb-135
Sn-132	Sn-133	Sn-134
N=82		N=84

FRIB and SOLARIS

- FRIB will be the US flagship nuclear physics lab. It is progressing at an outstanding rate
- Has a major reaccelerated beam component, ReAX, where X is around 3 currently
- 'Fast beams' and a reaccelerated beam program
- Instrumentation is king, natural to develop a solenoid spec (HELIOS and a "super HELIOS" discussed in 2009, and every year since)
- The 'model' will be similar to the European ISS one. A 4-T solenoid being home to a Si array spectrometer and an active target system

Upcoming HELIOS run

⁶He(d,d'), (d,p) run and the "stub" array ... our first 'dual array' measurement. Likely a nice way to commission the ISS 'stub' array

Jie Chen, FRIB-China fellow, Argonne (End of August 2017)

Summary

Solenoid spectrometers offer a very attractive approach to studying transfer and inelastic scattering reactions

simple set ups, good resolution, outstanding efficiency, highly versatile

The success of the ANL device evident from published results

It is now being emulated elsewhere

The technique is still relatively new. Lots of scope for improvements. Higher B-field devices and exciting facilities coming ...

