Solenoidal Spectrometers and Techniques: HELIOS and SOLARIS

Ben Kay, Argonne National Laboratory
ISS meeting, Manchester 2017

Overview

Why develop a solenoidal spectrometer?

- Why inverse kinematics, concept

HELIOS

- The first generation, how it works in reality
- Things we have learnt

Next steps in the US

- SOLARIS @ FRIB, 3rd generation
- ISS @ ISOLDE

Transfer reactions ${ }_{\text {(approx. pre } 90}$

- An essential probe of nuclear structure
- Energies, angular momentum, overlaps
- (High-resolution detectors developed accordingly)
- Direct reactions, well understood models
- Highly selective
- (Over 50-60 years experience)
- Count rates $10-1000 \mathrm{~s} \mathrm{~Hz}$

- Technique limited to stable systems
- Few doubly-magic systems studied
- Limited to changes of ~ 12 neutrons/ protons excess
- Poor overlap with nuclei involved in astrophysical processes

Kinematics: normal vs. inverse

Inverse-kinematics challenges:

- Particle identification, $\Delta \mathrm{E}-\mathrm{E}$ techniques more challenging at low energies
- Strong energy dependence with respect to laboratory angle
- Kinematic compression at forward c.m. angles (in fact nearly all angles)
- Typically leading to poor resolution (100s of keV)
- ... and beams a few to 10^{6} orders of magnitude weaker

Kinematics: normal vs. inverse

- For negative Q-value reactions e.g. (d, ${ }^{3} \mathrm{He}$) there is a double-valued kinematic solution ...
- ... ions cannot scatter beyond $\theta_{\text {max. }}$ in the laboratory, in this case $\theta_{\text {lab. }}=44.6^{\circ}$
- Particularly challenging for fixed lab-angle measurements, especially near $\theta_{\text {max }}$.

[^0]
Early inverse-kinematics studies

Necessities: complex Si arrays, high intrinsic resolution, high angular granularity, low thresholds, large acceptance, often coincident gamma-ray detection, e.g., MUST-2 (GANIL), T-REX (ISOLDE), SHARC (TRIUMF), ORRUBA (ORNL), TIARA (GANIL), etc.

Recent 'state-of-the-art'
 (highly idealized conditions)

Q-value resolution of 40 keV FWHM

On the whole, results are often limited

Using the traditional approach of placing a segmented Si detector at a fixed laboratory angle can result in poor excitation-energy resolution, typically of the order of $\sim 300 \mathrm{keV}$ (better can be achieved for light nuclei).

Would like an approach that consistently:

- Gives better than 100-keV FWHM resolution
- 7-10 day runs with RI beams ($10^{4} \mathrm{pps}, 100 \mu \mathrm{~g} / \mathrm{cm}^{2}$ targets)
H. Y. Lee et al., Phys. Rev. C 81, 015802 (2010), K. L. Jones et al., Nature 465, 454 (2010).

Solenoids

Solenoids ...

Connection made

Interestingly DGS was mentioned ... now a reality
processing of pulse shapes. Digital processing provides the additional benefit of allowing higher count rate. Currently, intensive R\&D work is being carried out and prototype electronics have already been constructed. However, further developments in miniaturization and cost reduction

As was GRETA / GRETINA ... now a reality

pursued. One concept, called GRETA (Gamma-Ray Energy Tracking Array) builds on the Gammasphere concept of segmentation of large HpGe crystals. About 60 of the present Gam-

HELIOS ... now a reality
a) Solenoidal Geometry

A magnetic solenoid with its axis oriented along the beam direction could serve as a very largeacceptance magnetic spectrograph for low-energy light particles from inverse reactions such as $d\left({ }^{132} \mathrm{Sn}, p\right)^{133} \mathrm{Sn}$. In this case the protons of interest are emitted in the backwards hemisphere with energies of $1-10 \mathrm{MeV}$. The particle energy measurements are done via silicon detector barrels surrounding the beam axis. This type of magnetic spectrograph deserves further study.

Experimental Equipment for an Advanced ISOL Facility

March 1999

Transport through solenoid

- A simple linear relationship between energy and z, where the energy separation is (nearly) identical to the excitation energy in the residual nucleus.
- Removes kinematic compression.
- Factor of ~ 2.4 improvement in resolution (for this example)
- ... and an MRI magnet seems ideal (in fact too good)

A helical orbit spectrometer

Argonne and WMU and Manchester and others

or ATLAS (in-flight-produced beams) \rightarrow HELIOS
or ATLAS \rightarrow AIRIS \rightarrow HELIOS
or ATLAS (stable beams!) \rightarrow HELIOS

Argonne

Photo from upstream

Prototype Si array

- 4 sides, 6 elements long
- Detector size, $9 \times 50 \mathrm{~mm}$
- 700- $\mu \mathrm{m}$ thick (e.g. $\sim 10 \mathrm{MeV}$ protons)
- Φ coverage, 0.48 of 2π
- $\Omega_{\text {element }}=21 \mathrm{msr}$
- $\Omega_{\text {array }}=493 \mathrm{msr}$

Position $\approx(X 1-X 2) / E$

Motion of ions ${ }_{\text {bsad cartoon }}$

Energy, distance, time

Note: array $\sim 35-\mathrm{cm}$ long, 4 sides, 6 detectors on each

Analysis

We measure E vs. z, which is the excitation-energy spectrum of the residual nucleus

Final analysis

J. C. Lighthall et al., Nucl. Instrum. Methods Phys. A 662, 97 (2010)

Some milestones

Major component of the first 10 years of HELIOS has been instrument / technique R\&D ... this has been a nontrivial exercise

- Tuning techniques (a major challenge)
- Beam monitoring, absolute cross sections
- Types of reactions (single-nucleon, pair, cluster, inelastic scattering, etc)
- Full multi-final body reconstruction (decays from unbound states, branching ratios)
- Recoil detection (fast ionization) [a talk in itself - still not ideal]
- Gamma-ray detection with Apollo (LaBr and Csl)
- Gas targets (for astrophysics)
- Electron spectroscopy
- Light masses ($\mathrm{A}<30$), mastered
- Around A ~ 130-140 looks plausible soon
- AIRIS will be a game changer (Calem's talk)

ATLAS

(today and near future)

- Stable beams at high intensity and energies up to $20 \mathrm{MeV} / \mathrm{u}$
- In-flight beams approx. $10<A<30$ at energies up to $20 \mathrm{MeV} / \mathrm{u}$
- CARIBU beams at low intensity and energies up to $\sim 15 \mathrm{MeV} / \mathrm{u}$
- Low energy beams for trap measurements
- State of the art instruments, low-energy, Coulomb barrier, reactions above barrier

AIRIS

CARIBU

- Fission fragments stopped in high purity He
- Ions transported by RF fields, DC gradients, and gas flow
- Fast and essentially universal

EBIS source has been installed, commissioned, and beam accelerated
N.B. 2015 campaign used the ECR1 ion source for CARIBU beams

CARIBU: G. Savard et al., Hyperfine Interactions 199, 301 (2011)

Transfer with fission-fragment beams

A $10 \mathrm{MeV} / \mathrm{u}$ study of ${ }^{137} \mathrm{Xe}$ via (d,p)

Cautionary tale though — high-j states are tough (though results [$\mathrm{C}^{2} \mathrm{~S}$] comparable). It is likely the improved resolution of ISS will help.

Kay et al., Phys. Rev. C 84, 024325 (2011) and Talwar et al., to appear in Phys. Rev. C 2017

Potential CARIBU experiments

Potential CARIBU experiments

October 2016 rates, 252 beams > 100 pps

Potential CARIBU experiments

October 2016 rates, 141 beams > 1000 pps

Potential CARIBU experiments

October 2016 rates, 52 beams > 5000 pps

Potential CARIBU experiments

October 2016 rates, 18 beams > 10,000 pps

Potential CARIBU experiments

October 2016 rates, 18 beams > 10,000 pps
(~2-4 weeks transfer / scattering)

What could be done next?

In context of this work, ${ }^{134} \mathrm{Te}(\mathrm{d}, \mathrm{p})$ is obvious ... and approved
${ }^{143} \mathrm{Nd}$ is a nucleus where "complete" spectroscopy has been done: $\left.{ }^{142} \mathrm{Nd}(d, p)\right)^{143} \mathrm{Nd}$ - singles-particle states
${ }^{143} \mathrm{Nd}\left(d, d^{\prime}\right)^{143} \mathrm{Nd}$ - particles coupled to the surface vibrations ${ }^{144} \mathrm{Nd}(\mathrm{d}, \mathrm{t})^{143} \mathrm{Nd}$ - holes coupled to pairing vibration

Maybe we could do the same with ${ }^{137} \mathrm{Xe}$? And potentially lower Z systems in time with either CARIBU or ISOLDE

Gd-146	Gd-148	Gd-148
Eu-145	$\mathrm{Eu}-146$	$\mathrm{Eu}-147$
$\mathrm{Sm}-144$	$\mathrm{Sm}-145$	$\mathrm{Sm}-146$
$\mathrm{Pm}-143$	$\mathrm{Pm}-144$	$\mathrm{Pm}-145$
$\mathrm{Nd}-142$	$\mathrm{Nd}-142$	$\mathrm{Nd}-142$
Pr -141	$\mathrm{Pr}-142$	$\mathrm{Pr}-143$
$\mathrm{Ce}-140$	$\mathrm{Ce}-141$	$\mathrm{Ce}-142$
$\mathrm{La}-139$	$\mathrm{La}-140$	$\mathrm{La}-141$
$\mathrm{Ba}-138$	$\mathrm{Ba}-139$	$\mathrm{Ba}-140$
$\mathrm{Cs}-137$	$\mathrm{Cs}-138$	$\mathrm{Cs}-139$
$\mathrm{Xe}-136$	$\mathrm{Xe}-137$	$\mathrm{Xe}-138$
$\mathrm{I}-135$	$\mathrm{I}-136$	$\mathrm{I}-137$
$\mathrm{Te}-134$	$\mathrm{Te}-135$	$\mathrm{Te}-136$
$\mathrm{Sb}-133$	$\mathrm{Sb}-134$	$\mathrm{Sb}-135$
$\mathrm{Sn}-132$	$\mathrm{Sn}-133$	$\mathrm{Sn}-134$
$\mathrm{~N}=82$	$\mathrm{~N}=84$	

FRIB and SOLARIS

- FRIB will be the US flagship nuclear physics lab. It is progressing at an outstanding rate
- Has a major reaccelerated beam component, ReAX, where X is around 3 currently
- 'Fast beams' and a reaccelerated beam program
- Instrumentation is king, natural to develop a solenoid spec (HELIOS and a "super HELIOS" discussed in 2009, and every year since)
- The 'model' will be similar to the European ISS one. A 4-T solenoid being home to a Si array spectrometer and an active target system

Brad DiGiovine, Argonne (chief engineer/designer on SOLARIS project) — concept

Argonne

Upcoming HELIOS run

${ }^{6} \mathrm{He}(d, d),(d, p)$ run and the "stub" array ... our first 'dual array' measurement. Likely a nice way to commission the ISS 'stub' array

Jie Chen, FRIB-China fellow, Argonne (End of August 2017)

Summary

Solenoid spectrometers offer a very attractive approach to studying transfer and inelastic scattering reactions

- simple set ups, good resolution, outstanding efficiency, highly versatile

The success of the ANL device evident from published results

- It is now being emulated elsewhere

The technique is still relatively new. Lots of scope for improvements. Higher B-field devices and exciting facilities coming ...

[^0]:

