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Abstract - In this paper a CNN based wave type metric
is discussed and designed for object classification. The
autowave metric, a “nonlinear” variant of the
Hausdorff metric, is used. This approach turned out to
be superior compared to some other classification
methods, e.g. the Hamming distance calculation. A
number of tests have been completed within the so-
called “bubble/debris” segmentation experiments
using original and artificial gray-scale images [13, 14].
Here, we show the details of the CNN implementation
and discuss its properties. The single-layer trigger
wave generation and the two-layer implementation of
wave type metric results in a flexible and efficient tool
for object classification. The VLSI complexity of the
proposed solution is also analyzed.

I. INTRODUCTION
Since the publication of the original paper in 1988 [1],
the rapidly growing field of Cellular Neural Networks
(CNNs) have found numerous potential applications,
especially in image processing problems where real-
time signal processing is required [2, 3]. Pattern
recognition and object classification are central
problems in image processing as well. Their major
task is to determine the extent to which one shape
differs from another. There are several methods that
can all be viewed as techniques for image
classification or recognition via comparison with
prototypes (pattern matching). This comparison
requires the measurement of the coincidence of two
different overlapping point sets. One possibility is to
compute the Hamming distance between objects.
Another known distance metric is the Hausdorff
metric which is more tolerant to shift and noise [4]. A
variant of this latter (nonlinear) metric is called
autowave metric and provides an increased tolerance
to noise effects [0]. The goal is to develop a shape
comparison method that is efficient to compute, and
produce intuitively reasonable results. Here, it will be
shown that the Hausdorff distance or its variant, the

autowave metric is often superior to the Hamming
distance computation. We focus primarily on
autowave metric. This approach can easily be
implemented on CNN resulting an efficient, fast, and
robust tool for object classification. Its use was
already reported in [13, 14].

Limits of Hamming Distance
The most obvious criterion of the degree of
coincidence of points sets is a measure of symmetrical
difference (number of different points). It is obvious
that this so called Hamming distance is sensitive to
object shift and noise. Another problem is that in
several cases the Hamming distance gives opposite
judgment than a human observer would. Fig. 1 shows
a simple example. The Hamming distance cannot
measure the shape similarity, only the differences. It
will be shown that another distance metric, e.g.
autowave metric is more proper for this type of

Model (M) Object 1 (O1) Object 2 (O2)

HD(M, O1) = 1081 HD(M, O2) = 660

AD(M, O1) = 0.88 AD(M, O2) = 2.16
Figure 1: Using different distance metrics for object
matching. Object O1 resembles more model M than
object O2. Objects are positioned so the Hamming
distances result in lowest values. The autowave metric
chooses object O1 like a human observer would, while
Hamming distance cannot take into account the shape
information.
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classification where shape information is very
important.

II. AUTOWAVE METRIC ON CNN

Autowaves
The autowave approach has several advantages for
pattern recognition [0]. Autowaves represent a
particular class of nonlinear waves which spread in
active media at the expense of the energy stored in the
medium [6, 7]. Autowaves can be described by a PDE
of the form
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Here, ∂ ∂u t/ for an image, is the rate of change of
intensity values u(x, y, t). It is induced by f(u) plus the
diffusion term D u x u y⋅ +( / / )∂ ∂ ∂ ∂2 2 2 2 . Eq. (1)
describes an autowave if f(u) satisfies some
requirements. It should be describe a time-varying or a
nonlinear interaction. We will focus on the simplest
type of autowaves called traveling or trigger waves
where the transition from state -1 to state 1 of a cell
can propagate in the array. It should be noted that
trigger waves do not have the annihilation property.
We only need the conservation of amplitude during
propagation.
Implementation of trigger wave on CNN
Applications proposed for using autowave metric [0]
can be realized by a CNN structure. Such a system can
be built using Chua’s circuits as cells [8, 9], or with the
original cell-type but with a delay-type template [10,
11]. Here, the possible simplest solution was chosen
for trigger wave generation, namely, waves propagate
on a single-layer architecture with the original cell-type
and the active local dynamics are generated with a
simple nonlinear function. This takes into account the
problem of the VLSI implementation. By proper
discretization of Eq. (1) we obtain:
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The autowave equation can be directly mapped onto
the CNN array (D=1) resulting in the following simple
template
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In the middle of template A the effect of -1/R in the
CNN equation is considered (R=1). The term f(u) is
the following.
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The initial state should contain the trigger points of
the autowaves. Although the f(u) is the simplest
nonlinearity useable for trigger waves it is still not
available on the existing CNN chips. The advantages
of this implementation is that the speed of the waves
can be adjusted.
Implementation of wave type metric on CNN
Below we discuss in details how the autowave
approach can be applied to the problem of image
classification or recognition via comparison with
prototypes (pattern matching). A variant of the
Hausdorff metric called autowave metric which has
several advantages over Hausdorff metric will be used
in our experiments [0]. Fig. 2 shows the interpretation
of the autowave distance. The properties of autowave
distance provide increased tolerance to noise effects
than Hausdorff distance. For instance, if two images
exactly coincide, except for only one exceeding pixel
apart from the image, then the Hausdorff distance
may be large depending on the position of the
exceeding pixel, whereas the autowave distance
between these images would be zero.

Fig. 3 shows a possible implementation of the
autowave metric on CNN. The advantage of this two-
layer implementation is that several object-model pairs
can be compared at the same time.

1 2 3

A B

Figure 2: Autowave distance between point sets. (1)
Two partially overlapping point sets. (2) The autowave
spreads from the intersection through the union of
point sets. (3) The wave propagates until all the points
belonging to the union of point sets become triggered.
The symmetric autowave distance is the time required
to occupy the union and it can be used as a measure of
the difference between A and B.
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The 2-nd layer is filled with a constant current to
measure the time while waves are propagating on the
1-st layer. At the end of the process the cells at
boundaries of the unions of objects and models will
contain the highest voltage levels. This will be
thresholded and indicate large difference if any. At last
those objects will be recalled where these differences
are large.

III. COMPARING HAMMING
DISTANCE TO AUTOWAVE METRIC

Advantages of wave type metric
Here we try to explain why the autowave metric is
more natural for object classification than Hamming
distance. We consider the case where the classification
is based on object and model (prototype) matching.
The major problems of Hamming distance are the
sensitivity to shift (position error) and noise. Another
important bottleneck is that it does not take into
account any shape information of objects. The
advantages of autowave metric are the following. First,
the computed distance mainly depends on shape
similarity and not only on differences (Fig. 4). Second,
the autowave metric is less sensitive to position error
than Hamming one (Fig. 5).

IV. DISCUSSION
The Hamming distance is unambiguous at a given
image resolution while autowave metric depends also
on settings of autowave generation, i.e. the level of the
diffusion term and properties of the active local
dynamics ( f(u) ). This might cause some undesired
effects. Fig. 6 shows the dependence of speed of wave
propagation if the wave propagates on lines with
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Figure 3: Implementation of wave metric on CNN.
From the intersections of sets to be compared trigger
waves propagate on the first layer and time is
measured via constant current filling on the second
layer. The current term has only three possible
combinations.
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Figure 4: Autowave distances between model and
objects presented in Fig. 1. The upper two images
show layers filled with constant current. The voltage
level of a cell corresponds to the time which is
required for an autowave to reach a given cell. The
diagram shows that autowaves fill in earlier the union
of round shaped object and circle model than the
object containing several extensions although the two
circles differ more in sense of Hamming distance.

Model (M) Object 3 (O3) Object 2 (O2)
shifted O1

HD(M, O3)=1271 HD(M, O2) = 660

AD(M, O3)=1.90 AD(M, O2) = 2.16
HD(M, O3) >> HD(M, O2) and AD(M, O3) < AD(M, O2)

Figure 5: Illustration of sensitivity of distance metrics
to position errors. The Hamming distance is very
sensitive while autowave distance is much less.
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different widths. This dependence always occurs due
to the diffusion term in Eq. 1. This effect can be
eliminated if the f(u) triggers the state of a cell very
fast, i.e. the breakpoint is near to the lowest value of
cell’s output and the value of the f(u) is high enough.
By proper settings, the speed of wave propagation
might be independent of object’s wide, although it is
very fast and this requires high accuracy in current.
Considering the VLSI complexity, feasible solution
can not avoid this dependence. This means that
objects and models should not have sharp edges and
thin lines but the one-pixel wide extensions are only
critical parts.

V. CONCLUSIONS
We have described a possible implementation of wave
type metric on CNN for object segmentation and
classification. The discussed solution requires the so-
called fixed-state map technique, and nonlinear cell
interactions. The VLSI implementation complexity of
the solution mainly depends on the implementation of
wave generation, since this is the only building block
which require nonlinear template interaction.
Although the proposed CNN solution of wave type
metric has undesired effects, it turned out to be more
efficient for object classification than another
methods.
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Figure 6: The speed of wave propagation strongly
depends on settings of wave generation. In example,
image size is 64x64 and lines widths are 1, 2, 3, and 5
pixels. The active local dynamics - f(u) has strong
effect on speed of propagation. The ideal case is if the
propagation on a one pixel wide line is equal with the
speed on a more pixel wide line. Speeds of wave
propagation are on a 1-pixel wide line: 1.7 pixel/τ. and
on a more-pixel wide line: 3 pixel/τ
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