
Interactive Actor-Critic for RL in
Cooperative-Competitive Environments

Prashant Doshi
THINC Lab1

University of Georgia

Keyang He
THINC Lab
University of Georgia

1http://thinc.cs.uga.edu

Outline
§ Reinforcement learning introduction

§ Organization domain

§ Multi-agent reinforcement learning

§ Interactive advantage actor-critic (IA2C)

§ Many-agent reinforcement learning

§ IA2C with Dirichlet-multinomial model

Outline
§ Reinforcement learning introduction

§ Organization domain

§ Multi-agent reinforcement learning

§ Interactive advantage actor-critic (IA2C)

§ Many-agent reinforcement learning

§ IA2C with Dirichlet-multinomial model

Reinforcement Learning
A learning agent interacts with an
environment to solve a sequential
decision-making problem. Fully
observable environments are
modeled as Markov Decision
Processes (MDPs) as:

𝑆 State Space

𝐴 Action Space

𝑇 Transition function
𝑇: 𝑆 × 𝐴 × 𝑆 ↦ [0, 1]

𝑅 Reward function
𝑅: 𝑆 × 𝐴 ↦ ℝ

The agent aims to find an optimal
policy 𝜋∗, a mapping from the
environment states to actions, that
maximizes the expected return.

Multi-Agent Reinforcement Learning

In multi-agent systems, state transition
and reward depend on the joint action
of all the agents.

The complexity of multi-agent system
arises many challenges such as:
§ Curse of dimensionality: exponential growth of the joint

action space
§ Learning goal: agent returns are correlated and cannot be

maximized independently
§ Nonstationarity: all agents learning simultaneously

Interactive Partially Observable
Markov Decision Process (I-POMDP)1

Partially observable multi-agent environments can be modeled as I-
POMDPs

1 Piotr Gmytrasiewicz and Prashant Doshi, JAIR 2005

Outline
§ Reinforcement learning introduction

§ Organization domain

§ Multi-agent reinforcement learning

§ Interactive advantage actor-critic (IA2C)

§ Many-agent reinforcement learning

§ IA2C with Dirichlet-multinomial model

Organization Domain: Overview
Models a business organization featuring a
mixed cooperative-competitive setting

§ Compete for individual rewards

§ Cooperate for group rewards

§ A proportion of past rewards is added
to current reward as a bonus

Organization Domain: Joint Action
Individual actions: self, balance, group

The joint action is determined as:

Joint Action Individual Actions

Self # of agents picking self > # of agents picking group

Balance # of agents picking self = # of agents picking group

Group # of agents picking self < # of agents picking group

If all agents pick balance action, the joint action is also balance.

Organization Domain: State Transition

States represent the organization’s financial health level:

The state transition is determined by:

Joint Action State Transition

Self State decrease by 1 level. State remain unchanged if it is already at the
‘Very Low’ level.

Balance State remain unchanged.

Group State increase by 1 level. State remain unchanged if it is already at the
‘Very High’ level.

Group (all) State increase by 2 level. State remain unchanged if it is already at the
‘Very High’ level. State increase by 1 level if it is at level ‘High’.

Organization Domain: Reward
Each agent receives rewards from three sources:

Reward Type Reward Function
Individual 𝑅!" ← 𝑅!(𝑠" , 𝑎!")
Group 𝑅#" ← 𝑅(𝑠" , 𝑎")
History-dependent 𝑅$%" = 𝜙(6

!

𝑅!"$% + 𝑅#"$%)

The goal for each agent 𝑖 is to optimize
𝔼!"#$%&!'"(%) ∑! 𝛾!(𝑅*! + 𝑅(! + 𝑅+,!)

To obtain optimal action, each agent needs to consider cooperation and
competition simultaneously.

Outline
§ Reinforcement Learning

§ Organization domain

§ Multi-agent reinforcement learning

§ Interactive advantage actor-critic (IA2C)

§ Many-agent reinforcement learning

§ IA2C with Dirichlet-multinomial model

Modeling Organization Domain as I-POMDP1

Integrate the non-Markovian reward
§ History-dependent reward is included as an extra state feature 𝑠", while

𝑠- represents the underlying physical state features

1 Gmytrasiewicz and Doshi, JAIR 2005

§ 𝑜- is the noisy observation of 𝑠-, 𝑜" is set equal to 𝑠" (i.e., agents have
perfect information about previous reward).

§ The reward function has an extra term 𝜙 ⋅ 𝑠" representing the history-
dependent reward.

Modeling Organization Domain as I-POMDP
Interactive state: 𝐼𝑆!
§ Include 𝑠" , 𝑠# , and 𝑀$

Private observation: 𝜔! noised observation of other agents’ action

The belief update for the new I-POMDP formulation is:

𝑏!"(𝑖𝑠"|𝑏! , 𝑎! , 𝑜!", 𝜔!") = 𝑏!"(⟨𝑠#" , 𝑠$"⟩|𝑏! , 𝑎! , 𝑜!", 𝜔!")×𝑏!"(𝑚%"|⟨𝑠#" , 𝑠$"⟩, 𝑏! , 𝑎! , 𝑜!", 𝜔!")
belief over states belief over models

The Bellman equation for the new I-POMDP formulation is:

𝑉 𝑏! = max
"!
[,
#",#$

,
"%

𝑅!(𝑠$, 𝑠% , 𝑎! , 𝑎&) Pr 𝑎& 𝑚& 𝑏! 𝑠$, 𝑠% +

reward from current belief state

𝛾,
"%

,
#"
& ,#$&() #","!,"% *+⋅#$

Pr 𝑎& 𝑚& ,
-!
&,.!

&

𝑇 𝑠$, 𝑎! , 𝑎&, 𝑠$/ ×𝑏! 𝑠$, 𝑠% 𝑍 𝑎! , 𝑎&, 𝑠$, 𝑠$/ , 𝑜$/ 𝑊! 𝑎! , 𝑎&, 𝜔!/ 𝑉(𝜏(𝑏! , 𝑎! , 𝑜!/, 𝜔!/, 𝑏!/))

discounted future reward

Related Work: MADDPG1

Multi-agent deep deterministic policy
gradient (MADDPG) adopts a
centralized critic and decentralized
actor network structure:
§ Actor networks use local

observations for deterministic
actions

§ Critic network uses joint state-
action pairs to estimate Q-values.

§ Policy inference: maximize the log
probability of other agent’s actions

1 Lowe et al., NIPS 2018

ℒ 𝜙!
& = −𝔼'!,)![log >𝝁!

& 𝑎& 𝑜& + 𝜆𝐻(>𝝁!
&)]

Related Work: COMA1

Counterfactual multi-agent policy
gradient addresses the credit assignment
in multi-agent reinforcement learning
by quantifying contributions
of individual agents

§ Unlike MADDPG, COMA trains a probabilistic policy.
§ COMA calculates an expected value over all actions that an agent

can take while keeping the actions of all other agents fixed.

𝐴# 𝑠, 𝒖 = 𝑄 𝑠, 𝒖 −5
.?@

𝜋# 𝑢/# 𝜏# 𝑄(𝑠, (𝒖+#, 𝑢/#))

1 Foerster et al., AAAI 2018

Related Work: LOLA

Learning with opponent learning awareness takes account of the
learning of other agent when updating its own policy
§ LOLA include an extra term in its update rule:

CD0 E1
0,E1

2

CE1
2

F C2D2(E1
0,E1

2)
CE1

0CE1
2 ⋅ 𝛿𝜂

§ LOLA agents try to optimize their return after one anticipated
learning step of the opponent.

1 Foerster et al., AAMAS 2018

Outline
§ Reinforcement learning introduction

§ Organization domain

§ Multi-agent reinforcement learning

§ Interactive advantage actor-critic (IA2C)

§ Many-agent reinforcement learning

§ IA2C with Dirichlet-multinomial model

Interactive Advantage Actor-Critic (IA2C)1

Overview
§ IA2C extends advantage

actor-critic by predicting
other agents’ actions based
on maintaining beliefs over
models.

§ A belief filter is added to
the critic network for
predicting other agents’
action.

§ The belief filter uses 𝜔!
and 𝑜", 𝑜# to predict other
agents’ action #𝑎$ for next
timestep used in advantage
computation.

Interactive Advantage Actor-Critic (IA2C)
Advantage function is modified to accommodate I-POMDP and history-
dependent reward state feature.

§ 𝐴(⟨𝑜-, 𝑜"⟩, 𝑎(, 𝑎
̂
$) = 𝑎𝑣𝑔[𝑟 + 𝛾𝑄(⟨𝑜-/ , 𝑜"/ ⟩, 𝑎(/, 𝑎

̂
$
/) − 𝑄(⟨𝑜-, 𝑜"⟩, 𝑎(, 𝑎

̂
𝑗)]

The actor’s gradient is:

§ 𝑎𝑣𝑔[𝛻1log𝜋1(𝑎(|⟨𝑜-, 𝑜"⟩)𝐴(⟨𝑜-, 𝑜"⟩, 𝑎(, 𝑎
̂
$)]

𝑟, ⟨𝑜-/ , 𝑜"/ ⟩, and 𝑎(/ are samples, 𝑎
̂
$ and 𝑎

̂
$
/ are predicted actions. The 𝑎𝑣𝑔 is

taken over sampled trajectories.

Interactive Advantage Actor-Critic (IA2C)
IA2C workflow
§ Actor interacts with environment, receives

observations. At the same time, the actor also
receives private observations (𝜔!).

§ Actor sends 𝑜", 𝑜# and 𝜔! to the belief filter in
critic network for action prediction.

§ Actor updates network parameter based on
the advantage value.

§ Critic sends advantage value to actor.

§ The critic network use the predicted action #𝑎$
from belief filter to compute advantage.

Experiments: History-Dependent Rewards

IA2C- only utilizes 𝒔𝒇 and 𝒐𝒇 , omits 𝒔𝒓
and 𝒐𝒓.
§ IA2C-(LSTM): converged to optimal

policy.

§ IA2C-(CNN): converged to sub-optimal
policy.

§ Figure is plotted by averaged data from
5 independent runs.

Experiment shows that our approach of
accommodating history in the I-POMDP
formulation is not only sufficient, but
also necessary.

Experiments: Cooperation in Organization

We compare Independent actor-critic (IAC)
with IA2C.
§ Independently learning agent cannot

learn optimal policy.

§ IA2C+ utilizes 𝒔𝒓, 𝒐𝒓.

§ Both IA2C+ and IA2C- learn optimal
policy, while IA2C+ converges faster.

§ Figure is plotted by averaged data from 5
independent runs.

Experiment shows that cooperation is needed
to reach optimality in Organization domain.

Experiments: Comparison with MARL
techniques

We compare the performance of IA2C with
COMA and MADDPG.

§ Both COMA and MADDPG can
converge to optimal policy but requires
almost twice as many episodes as
IA2C+.

§ Figure is plotted by averaged data from
5 independent runs.

Experiment shows that IA2C+ demonstrates
better performance compared to existing
MARL techniques.

Experiments: Varying private observation
noise

We gradually increase the noise level in private
observation to test the robustness of each method.

§ The performance of COMA and MADDPG
drop drastically when the private observation
noise level becomes greater than 0.9.

§ IA2C+ still managed to learn optimal policy
when private observation only reveals other
agents’ true actions at 0.6 probability.

§ Figure is plotted by the # of optimal policy
learned from 10 experiment runs.

Experiment shows that IA2C demonstrates
consistent learning and robustness to higher
levels of noise.

IA2C Summary

§ IA2C+ combines decentralized actor-critic based learning with belief filter that
maintains beliefs over a finite set of models of the other agents.

§ IA2C+ doesn’t require policy exchanging among agents or perfect observation
of other agents’ actions. It converges faster and is less prone to noise from
observing other agents’ actions compared to existing MARL techniques.

§ IA2C+ still suffers from the curse of dimensionality:
§ The joint action space grows exponentially.
§ Belief updates needs to be done for each other agents.

Outline
§ Reinforcement learning introduction

§ Organization domain

§ Multi-agent reinforcement learning

§ Interactive advantage actor-critic (IA2C)

§ Many-agent reinforcement learning

§ IA2C with Dirichlet-multinomial model

Many-Agent Domain Features

Many-agent domains often exhibit the following features:
§ Population homogeneity

§ All agents have the same action space
§ Action anonymity

§ State transition and reward only depend on the count
distribution of actions in the population

Related Work: Mean-Field Reinforcement Learning1

To address the exponentially increased joint action space, mean-field
reinforcement learning factorize Q-function using only pairwise local interactions:

𝑄& 𝑠, 𝒂 = %
,!
∑-𝑄&(𝑠, 𝑎& , 𝑎-) ≈ 𝑄&(𝑠, 𝑎& , M𝑎&), M𝑎& = %

,!
∑- 𝑎-

§ G𝑎$ = [G𝑎,
$, … , G𝑎|3|

$] can be interpreted as the empirical distribution of the
actions taken by agent 𝑗’s neighbors.

The pairwise interactions 𝑄$(𝑠, 𝑎$, 𝑎4)
between agent 𝑗 and each neighboring
agent 𝑘 are simplified as that between
the central agent and the virtual mean
agent. Many-agent interactions are
converted into two-agent interactions.

1 Yang et al., ICML 2018

Representing Joint Action as Action Configuration

Action configuration is a vector of the distinct actions performed by
the agent population, denoted as:

𝐶𝒂 = ⟨#𝑎N, #𝑎O, … , #𝑎 P ⟩

Joint actions are mapped to configurations by a projection function 𝛿.
§ For example, 𝛿 ⟨𝑠𝑒𝑙𝑓, 𝑠𝑒𝑙𝑓, 𝑔𝑟𝑜𝑢𝑝, 𝑔𝑟𝑜𝑢𝑝⟩ = ⟨2,2,0⟩.
§ 𝛿 is a many-to-one mapping. The original joint action cannot be

decided given its projected action configuration.

Action Configuration in POMDP

Let �̇�Q𝟎 denotes any permutation of 𝒂Q𝟎. For any s, aS, sT, �̇�Q𝟎, we
have:
§ 𝑇S 𝑠, 𝑎S, �̇�QS, 𝑠T = 𝑇S(𝑠, 𝑎S, 𝐶QS𝒂 , 𝑠′)
§ 𝑍S 𝑎S, �̇�QS, 𝑠, 𝑠T, 𝑜′ = 𝑍S(𝑎S, 𝐶QS𝒂 , 𝑠, 𝑠T, 𝑜′)
§ 𝑊S 𝑎S, �̇�QS, 𝜔ST = 𝑊S(𝑎S, 𝐶QS𝒂 , 𝜔S′)
§ 𝑅S 𝑠, 𝑎S, �̇�QS = 𝑅S(𝑠, 𝑎S, 𝐶QS𝒂)

The above equivalences naturally lead to the following property of
the Q-function:
§ 𝑄S 𝑜, 𝑎S, �̇�QS = 𝑄S(𝑜, 𝑎S, 𝐶QS𝒂)

Action Configuration Belief Update

𝑏ST 𝑚UT 𝑏S, 𝑎S, 𝑜ST , 𝜔ST

∝ H
V3∈X3

𝑏S 𝑚U H
Y3

𝑃𝑟 𝑎U 𝑚U) H
Z∈𝑪𝒂5𝟎

Pr 𝐶 𝑏S 𝑀N , … , 𝑏S 𝑀\

𝑊S 𝑎S, 𝐶, 𝜔ST 𝛿] 𝜋U, 𝜋UT 𝛿](𝐴𝑃𝑃𝐸𝑁𝐷 ℎU, 𝑎U, 𝑜T , ℎUT)

The probability of an action configuration in the distribution over
the set of configurations is obtained using a dynamic programming
procedure introduced by Jiang et al.1

1 Jiang et al., Games and Economic Behavior 2011

Dynamic Programming for Obtaining Action
Configuration Distribution

Check if the new agent’s
action distribution introduces
new configurations

Compute probabilities of
all possible configurations

Limitations of Belief Update

The belief update procedure requires models of other
agents or a pre-defined model set
§ Beliefs are over other agent’s models
§ Models are required for obtaining other agent’s action

distributions
The belief update procedure needs to be done for each
other agents

Outline
§ Reinforcement learning introduction

§ Organization domain

§ Multi-agent reinforcement learning

§ Interactive advantage actor-critic (IA2C)

§ Many-agent reinforcement learning

§ IA2C with Dirichlet-multinomial model

Modeling Agent Population

The Dirichlet-multinomial distribution models categorical variables.

(1,1,1) (0.2,0.2,0.2) (10,10,10) (1,10,5)
§ Action configuration can be treated as a set of samples drawn from the

Dirichlet distribution.

≈
§ The Dirichlet distribution is updated using private observation at every

time step.
§ The accuracy benefits from large agent population.

Dirichlet-Multinomial for Action Configuration

§ Suppose the action space is 𝑎N, … , 𝑎 P for each agent.
§ 𝜽 = (𝜃N, … , 𝜃|P|), 𝜃_ is the probability for action 𝑎_

§ 𝜽 has a Dirichlet-multinomial distribution with parameter 𝜶 if:

𝑃 𝑟 𝜽 𝜶 =
Γ(∑_𝛼_)
Π_Γ(𝛼_)

Π_𝜃_
`7QN

𝛼_ > 0 for all 𝑛, 𝜶 = (𝛼N, … , 𝛼\), and ∑_𝜃_ = 1.

§ The probability of an action configuration 𝐶 can be expressed as:

Pr 𝐶 𝜽 = Pr #𝑎NZ , … , #𝑎 P
Z 𝜽 = Π_aN

P 𝜃_
#Y78

Dirichlet Distribution Update

After receiving private observation 𝜔ST at each time step, the
Dirichlet-multinomial distribution can be updated by:

Pr 𝜃 𝑎S, 𝜔ST ∝H
Z

Pr 𝐶,𝜔ST 𝑎S, 𝜽 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜶)

∝H
Z

𝑊S 𝑎S, 𝐶, 𝜔ST Pr 𝐶 𝜽 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜶)

∝H
Z

𝑊S 𝑎S, 𝐶, 𝜔ST 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜶 + 𝐶) ≈ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜶 + 𝐶VYc)

Many-Agent IA2C

Action configuration in actor-critic network:
§ Actor network gradient:

𝑎𝑣𝑔[∇E log 𝜋S,𝜽 𝑎S 𝑜 𝐴S(𝑜, 𝑎S, 𝐶𝒂59)]

§ Advantage function:
𝐴* 𝑜, 𝑎*, 𝐶𝒂AB = 𝑎𝑣𝑔[𝑟 + 𝛾𝑄* 𝑜/, 𝑎*/ , 𝐶𝒂AB

? − 𝑄* 𝑜, 𝑎*, 𝐶𝒂AB]
𝑟, 𝑜/, 𝑎*/ are samples, 𝒂+*, 𝒂+*/ are predicted actions.

§ Joint actions in IA2C advantage function are replaced by action
configurations.

Many-Agent IA2C Network

CRITIC

Belief Filter

Advantage with Configuration

ACTOR

ENVIRONMENT

b0(mj)

BM0

|Mj|⇥ |O|

⇤

|A| V0

|Mj|⇥ |O|
⇥

⌃

+

Indexing

⌘ normalize

|A| k0

F
u
lly

C
o
n
n
e
c
t
e
d
(|O

|)

F
u
lly

C
o
n
n
e
c
t
e
d
(|O

|)

F
u
lly

C
o
n
n
e
c
t
e
d
(|C

|)

C
onv

(F
:|C

|⇥
1,

S
:
1
⇥

1)

Q Value

Configuration DP

C
onv

(F
:|C

|⇥
1,

S
:
1
⇥

1)

V Value

�

Gradient Update

update

âj

observation

action

w o a0 o w

c

b0(m�0)C
C

adv

Many-Agent IA2C Network

CRITIC

Belief Filter

Advantage with Configuration

ACTOR

ENVIRONMENT

DM(↵) +

F
u
lly

C
o
n
n
e
c
t
e
d
(|O

|)

F
u
lly

C
o
n
n
e
c
t
e
d
(|O

|)

F
u
lly

C
o
n
n
e
c
t
e
d
(|C

|)

C
onv

(F
:|C

|⇥
1,

S
:
1
⇥
1)

Q Value

C
onv

(F
:|C

|⇥
1,

S
:
1
⇥

1)

V Value

�

Gradient Update
Ĉ

observation

action

w a0 o w

C

Ĉ

adv

Experiment Domain: Organization Structures

We select five Organization structures that differ in the number of
neighborhoods and the number of agents in each neighborhood.
§ Group reward is only shared within the neighborhood.

Experiment: Prediction Accuracy

§ Dirichlet-multinomial
achieves higher accuracy given
large population size.

§ Belief update has higher
accuracy for small agent
population.

Dirichlet-multinomial model is
more robust than belief update
in noisy environments with
relatively large population size.

Experiment: Prediction Time

§ Dirichlet-multinomial has a
near constant run time.

§ Belief update run time
increase polynomially.

Dirichlet-multinomial
model saves time by
directly modeling the
whole population
instead of individuals.

Experiment: Action Configuration

§ The cumulative rewards are
higher in fully connected
structures than other
structures.

§ It is harder to coordinate
across many small
neighborhoods.

Experiment: Comparison with Many-Agent
Methods

§ (top) Tree structure Organization
and (bottom) Fully connected
Organization with 100 agents.

§ Both IA2C methods converged to
optimal policies. IA2C-DM learns
much faster than IA2C-BU.

§ MF-AC and QMIX cannot
converge within time limit.

IA2C-DM shortens the amount
of time IA2C-BU required to
converge to optimal policy in
Organization by 30-40%.

Many-Agent IA2C Summary

IA2C++ replaces joint action with action configuration to reduce the
exponentially increased action space.

IA2C++ efficiently models agent population.
§ IA2C++BU has higher accuracy in small agent populations.
§ IA2C++DM does not require pre-defined models and is

advantageous in large agent populations.

Overall Conclusion

§ Organization domain: a quintessential cooperative-competitive
multi-agent domain that features history-dependent reward

§ IA2C+ incorporates Bayesian belief update into advantage actor-
critic for modeling agent interactions in partially observable
settings

§ IA2C++ with belief update filter that use action configuration
scales up in many-agent settings with a relatively small population
size. IA2C++ that utilizes Dirichlet-multinomial distribution can
accurately and efficiently model large agent populations

Thank You

Questions

