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Reinforcement Learning
A learning agent interacts with an 
environment to solve a sequential 
decision-making problem. Fully 
observable environments are 
modeled as Markov Decision 
Processes (MDPs) as:

𝑆 State Space

𝐴 Action Space

𝑇 Transition function 
𝑇: 𝑆 × 𝐴 × 𝑆 ↦ [0, 1]

𝑅 Reward function 
𝑅: 𝑆 × 𝐴 ↦ ℝ

The agent aims to find an optimal 
policy 𝜋∗, a mapping from the 
environment states to actions, that 
maximizes the expected return.



Multi-Agent Reinforcement Learning

In multi-agent systems, state transition 
and reward depend on the joint action 
of all the agents.

The complexity of multi-agent system
arises many challenges such as:
§ Curse of dimensionality: exponential growth of the joint 

action space
§ Learning goal: agent returns are correlated and cannot be 

maximized independently
§ Nonstationarity: all agents learning simultaneously



Interactive Partially Observable 
Markov Decision Process (I-POMDP)1

Partially observable multi-agent environments can be modeled as I-
POMDPs

1 Piotr Gmytrasiewicz and Prashant Doshi, JAIR 2005
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Organization Domain: Overview
Models a business organization featuring a 
mixed cooperative-competitive setting

§ Compete for individual rewards

§ Cooperate for group rewards

§ A proportion of past rewards is added 
to current reward as a bonus



Organization Domain: Joint Action
Individual actions: self, balance, group

The joint action is determined as:

Joint Action Individual Actions

Self # of agents picking self  > # of agents picking group

Balance # of agents picking self  = # of agents picking group

Group # of agents picking self  < # of agents picking group

If all agents pick balance action, the joint action is also balance.



Organization Domain: State Transition

States represent the organization’s financial health level:

The state transition is determined by:

Joint Action State Transition

Self State decrease by 1 level. State remain unchanged if it is already  at the  
‘Very Low’ level.

Balance State remain unchanged.

Group State increase by 1 level. State remain unchanged if it is already at the  
‘Very High’ level.

Group (all) State increase by 2 level. State remain unchanged if it is already at the 
‘Very High’ level. State increase by 1 level if it is at level ‘High’.



Organization Domain: Reward
Each agent receives rewards from three sources:

Reward Type Reward Function
Individual 𝑅!" ← 𝑅!(𝑠" , 𝑎!")
Group 𝑅#" ← 𝑅(𝑠" , 𝑎")
History-dependent 𝑅$%" = 𝜙(6

!

𝑅!"$% + 𝑅#"$%)

The goal for each agent 𝑖 is to optimize
𝔼!"#$%&!'"(%) ∑! 𝛾!(𝑅*! + 𝑅(! + 𝑅+,! )

To obtain optimal action, each agent needs to consider cooperation and 
competition simultaneously.
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Modeling Organization Domain as I-POMDP1

Integrate the non-Markovian reward
§ History-dependent reward is included as an extra state feature 𝑠", while 

𝑠- represents the underlying physical state features

1 Gmytrasiewicz and Doshi, JAIR 2005

§ 𝑜- is the noisy observation of 𝑠-, 𝑜" is set equal to 𝑠" (i.e., agents have 
perfect information about previous reward).

§ The reward function has an extra term 𝜙 ⋅ 𝑠" representing the history-
dependent reward.



Modeling Organization Domain as I-POMDP
Interactive state: 𝐼𝑆!
§ Include 𝑠" , 𝑠# , and 𝑀$

Private observation: 𝜔! noised observation of other agents’ action

The belief update for the new I-POMDP formulation is:

𝑏!"(𝑖𝑠"|𝑏! , 𝑎! , 𝑜!", 𝜔!") = 𝑏!"(⟨𝑠#" , 𝑠$"⟩|𝑏! , 𝑎! , 𝑜!", 𝜔!")×𝑏!"(𝑚%"|⟨𝑠#" , 𝑠$"⟩, 𝑏! , 𝑎! , 𝑜!", 𝜔!")
belief over states                   belief over models

The Bellman equation for the new I-POMDP formulation is:

𝑉 𝑏! = max
"!
[,
#",#$

,
"%

𝑅!( 𝑠$, 𝑠% , 𝑎! , 𝑎&) Pr 𝑎& 𝑚& 𝑏! 𝑠$, 𝑠% +

reward from current belief state

𝛾,
"%

,
#"
& ,#$&() #","!,"% *+⋅#$

Pr 𝑎& 𝑚& ,
-!
&,.!

&

𝑇 𝑠$, 𝑎! , 𝑎&, 𝑠$/ ×𝑏! 𝑠$, 𝑠% 𝑍 𝑎! , 𝑎&, 𝑠$, 𝑠$/ , 𝑜$/ 𝑊! 𝑎! , 𝑎&, 𝜔!/ 𝑉(𝜏(𝑏! , 𝑎! , 𝑜!/, 𝜔!/, 𝑏!/))

discounted future reward



Related Work: MADDPG1

Multi-agent deep deterministic policy 
gradient (MADDPG) adopts a 
centralized critic and decentralized 
actor network structure:
§ Actor networks use local 

observations for deterministic 
actions

§ Critic network uses joint state-
action pairs to estimate Q-values.

§ Policy inference: maximize the log 
probability of other agent’s actions

1 Lowe et al., NIPS 2018

ℒ 𝜙!
& = −𝔼'!,)![log >𝝁!

& 𝑎& 𝑜& + 𝜆𝐻(>𝝁!
&)]



Related Work: COMA1

Counterfactual multi-agent policy 
gradient addresses the credit assignment 
in multi-agent reinforcement learning 
by quantifying contributions
of individual agents

§ Unlike MADDPG, COMA trains a probabilistic policy. 
§ COMA calculates an expected value over all actions that an agent 

can take while keeping the actions of all other agents fixed.

𝐴# 𝑠, 𝒖 = 𝑄 𝑠, 𝒖 −5
.?@

𝜋# 𝑢/# 𝜏# 𝑄(𝑠, (𝒖+#, 𝑢/#))

1 Foerster et al., AAAI 2018



Related Work: LOLA

Learning with opponent learning awareness takes account of the 
learning of other agent when updating its own policy 
§ LOLA include an extra term in its update rule:

CD0 E1
0,E1

2

CE1
2

F C2D2(E1
0,E1

2)
CE1

0CE1
2 ⋅ 𝛿𝜂

§ LOLA agents try to optimize their return after one anticipated 
learning step of the opponent.

1 Foerster et al., AAMAS 2018
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Interactive Advantage Actor-Critic (IA2C)1

Overview
§ IA2C extends advantage 

actor-critic by predicting 
other agents’ actions based 
on maintaining beliefs over 
models.

§ A belief filter is added to 
the critic network for 
predicting other agents’ 
action.

§ The belief filter uses 𝜔!
and 𝑜", 𝑜# to predict other 
agents’ action #𝑎$ for next 
timestep used in advantage 
computation.



Interactive Advantage Actor-Critic (IA2C)
Advantage function is modified to accommodate I-POMDP and history-
dependent reward state feature.

§ 𝐴(⟨𝑜-, 𝑜"⟩, 𝑎(, 𝑎
̂
$) = 𝑎𝑣𝑔[𝑟 + 𝛾𝑄(⟨𝑜-/ , 𝑜"/ ⟩, 𝑎(/, 𝑎

̂
$
/) − 𝑄(⟨𝑜-, 𝑜"⟩, 𝑎(, 𝑎

̂
𝑗)]

The actor’s gradient is:

§ 𝑎𝑣𝑔[𝛻1log𝜋1(𝑎(|⟨𝑜-, 𝑜"⟩)𝐴(⟨𝑜-, 𝑜"⟩, 𝑎(, 𝑎
̂
$)]

𝑟, ⟨𝑜-/ , 𝑜"/ ⟩, and 𝑎(/ are samples, 𝑎
̂
$ and 𝑎

̂
$
/ are predicted actions. The 𝑎𝑣𝑔 is 

taken over sampled trajectories.



Interactive Advantage Actor-Critic (IA2C)
IA2C workflow
§ Actor interacts with environment, receives 

observations. At the same time, the actor also 
receives private observations (𝜔!).

§ Actor sends 𝑜", 𝑜# and 𝜔! to the belief filter in 
critic network for action prediction. 

§ Actor updates network parameter based on 
the advantage value.

§ Critic sends advantage value to actor.

§ The critic network use the predicted action #𝑎$
from belief filter to compute advantage.



Experiments: History-Dependent Rewards

IA2C- only utilizes 𝒔𝒇 and 𝒐𝒇 , omits 𝒔𝒓
and 𝒐𝒓.
§ IA2C-(LSTM): converged to optimal 

policy.

§ IA2C-(CNN): converged to sub-optimal 
policy.

§ Figure is plotted by averaged data from 
5 independent runs.

Experiment shows that our approach of 
accommodating history in the I-POMDP 
formulation is not only sufficient, but 
also necessary.



Experiments: Cooperation in Organization

We compare Independent actor-critic (IAC) 
with IA2C.
§ Independently learning agent cannot 

learn optimal policy.

§ IA2C+ utilizes 𝒔𝒓, 𝒐𝒓.

§ Both IA2C+ and IA2C- learn optimal 
policy, while IA2C+ converges faster.

§ Figure is plotted by averaged data from 5 
independent runs.

Experiment shows that cooperation is needed 
to reach optimality in Organization domain.



Experiments: Comparison with MARL 
techniques

We compare the performance of IA2C with 
COMA and MADDPG.

§ Both COMA and MADDPG can 
converge to optimal policy but requires 
almost twice as many episodes as 
IA2C+.

§ Figure is plotted by averaged data from 
5 independent runs.

Experiment shows that IA2C+ demonstrates 
better performance compared to existing 
MARL techniques.



Experiments: Varying private observation 
noise

We gradually increase the noise level in private 
observation to test the robustness of each method.

§ The performance of COMA and MADDPG
drop drastically when the private observation 
noise level becomes greater than 0.9.

§ IA2C+ still managed to learn optimal policy 
when private observation only reveals other 
agents’ true actions at 0.6 probability.

§ Figure is plotted by the # of optimal policy 
learned from 10 experiment runs.

Experiment shows that IA2C demonstrates 
consistent learning and robustness to higher 
levels of noise. 



IA2C Summary

§ IA2C+ combines decentralized actor-critic based learning with belief filter that 
maintains beliefs over a finite set of models of the other agents.

§ IA2C+ doesn’t require policy exchanging among agents or perfect observation 
of other agents’ actions. It converges faster and is less prone to noise from 
observing other agents’ actions compared to existing MARL techniques. 

§ IA2C+ still suffers from the curse of dimensionality:
§ The joint action space grows exponentially.
§ Belief updates needs to be done for each other agents.
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Many-Agent Domain Features

Many-agent domains often exhibit the following features:
§ Population homogeneity

§ All agents have the same action space
§ Action anonymity

§ State transition and reward only depend on the count 
distribution of actions in the population



Related Work: Mean-Field Reinforcement Learning1

To address the exponentially increased joint action space, mean-field 
reinforcement learning factorize Q-function using only pairwise local interactions:

𝑄& 𝑠, 𝒂 = %
,!
∑-𝑄&(𝑠, 𝑎& , 𝑎-) ≈ 𝑄&(𝑠, 𝑎& , M𝑎& ), M𝑎& = %

,!
∑- 𝑎-

§ G𝑎$ = [G𝑎,
$, … , G𝑎|3|

$ ] can be interpreted as the empirical distribution of the 
actions taken by agent 𝑗’s neighbors.

The pairwise interactions 𝑄$(𝑠, 𝑎$, 𝑎4)
between agent 𝑗 and each neighboring 
agent 𝑘 are simplified as that between 
the central agent and the virtual mean 
agent. Many-agent interactions are 
converted into two-agent interactions.

1 Yang et al., ICML 2018



Representing Joint Action as Action Configuration

Action configuration is a vector of the distinct actions performed by 
the agent population, denoted as:

𝐶𝒂 = ⟨#𝑎N, #𝑎O, … , #𝑎 P ⟩

Joint actions are mapped to configurations by a projection function 𝛿.
§ For example, 𝛿 ⟨𝑠𝑒𝑙𝑓, 𝑠𝑒𝑙𝑓, 𝑔𝑟𝑜𝑢𝑝, 𝑔𝑟𝑜𝑢𝑝⟩ = ⟨2,2,0⟩.
§ 𝛿 is a many-to-one mapping. The original joint action cannot be 

decided given its projected action configuration.



Action Configuration in POMDP

Let �̇�Q𝟎 denotes any permutation of 𝒂Q𝟎. For any s, aS, sT, �̇�Q𝟎, we 
have:
§ 𝑇S 𝑠, 𝑎S, �̇�QS, 𝑠T = 𝑇S(𝑠, 𝑎S, 𝐶QS𝒂 , 𝑠′)
§ 𝑍S 𝑎S, �̇�QS, 𝑠, 𝑠T, 𝑜′ = 𝑍S(𝑎S, 𝐶QS𝒂 , 𝑠, 𝑠T, 𝑜′)
§ 𝑊S 𝑎S, �̇�QS, 𝜔ST = 𝑊S(𝑎S, 𝐶QS𝒂 , 𝜔S′)
§ 𝑅S 𝑠, 𝑎S, �̇�QS = 𝑅S(𝑠, 𝑎S, 𝐶QS𝒂 )

The above equivalences naturally lead to the following property of 
the Q-function:
§ 𝑄S 𝑜, 𝑎S, �̇�QS = 𝑄S(𝑜, 𝑎S, 𝐶QS𝒂 )



Action Configuration Belief Update

𝑏ST 𝑚UT 𝑏S, 𝑎S, 𝑜ST , 𝜔ST

∝ H
V3∈X3

𝑏S 𝑚U H
Y3

𝑃𝑟 𝑎U 𝑚U) H
Z∈𝑪𝒂5𝟎

Pr 𝐶 𝑏S 𝑀N , … , 𝑏S 𝑀\

𝑊S 𝑎S, 𝐶, 𝜔ST 𝛿] 𝜋U, 𝜋UT 𝛿](𝐴𝑃𝑃𝐸𝑁𝐷 ℎU, 𝑎U, 𝑜T , ℎUT)

The probability of an action configuration in the distribution over 
the set of configurations is obtained using a dynamic programming 
procedure introduced by Jiang et al.1

1 Jiang et al., Games and Economic Behavior 2011



Dynamic Programming for Obtaining Action 
Configuration Distribution

Check if the new agent’s 
action distribution introduces 
new configurations

Compute probabilities of 
all possible configurations



Limitations of Belief Update

The belief update procedure requires models of other 
agents or a pre-defined model set 
§ Beliefs are over other agent’s models
§ Models are required for obtaining other agent’s action 

distributions
The belief update procedure needs to be done for each 
other agents
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Modeling Agent Population

The Dirichlet-multinomial distribution models categorical variables.

(1,1,1)                    (0.2,0.2,0.2)                  (10,10,10)                       (1,10,5)
§ Action configuration can be treated as a set of samples drawn from the 

Dirichlet distribution.

≈
§ The Dirichlet distribution is updated using private observation at every 

time step. 
§ The accuracy benefits from large agent population.



Dirichlet-Multinomial for Action Configuration

§ Suppose the action space is 𝑎N, … , 𝑎 P for each agent.
§ 𝜽 = (𝜃N, … , 𝜃|P|), 𝜃_ is the probability for action 𝑎_

§ 𝜽 has a Dirichlet-multinomial distribution with parameter 𝜶 if:

𝑃 𝑟 𝜽 𝜶 =
Γ(∑_𝛼_)
Π_Γ(𝛼_)

Π_𝜃_
`7QN

𝛼_ > 0 for all 𝑛, 𝜶 = (𝛼N, … , 𝛼\), and ∑_𝜃_ = 1.

§ The probability of an action configuration 𝐶 can be expressed as:

Pr 𝐶 𝜽 = Pr #𝑎NZ , … , #𝑎 P
Z 𝜽 = Π_aN

P 𝜃_
#Y78



Dirichlet Distribution Update

After receiving private observation 𝜔ST at each time step, the 
Dirichlet-multinomial distribution can be updated by:

Pr 𝜃 𝑎S, 𝜔ST ∝H
Z

Pr 𝐶,𝜔ST 𝑎S, 𝜽 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜶)

∝H
Z

𝑊S 𝑎S, 𝐶, 𝜔ST Pr 𝐶 𝜽 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜶)

∝H
Z

𝑊S 𝑎S, 𝐶, 𝜔ST 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜶 + 𝐶) ≈ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜶 + 𝐶VYc)



Many-Agent IA2C

Action configuration in actor-critic network:
§ Actor network gradient:

𝑎𝑣𝑔[∇E log 𝜋S,𝜽 𝑎S 𝑜 𝐴S(𝑜, 𝑎S, 𝐶𝒂59)]

§ Advantage function:
𝐴* 𝑜, 𝑎*, 𝐶𝒂AB = 𝑎𝑣𝑔[𝑟 + 𝛾𝑄* 𝑜/, 𝑎*/ , 𝐶𝒂AB

? − 𝑄* 𝑜, 𝑎*, 𝐶𝒂AB ]
𝑟, 𝑜/, 𝑎*/ are samples, 𝒂+*, 𝒂+*/ are predicted actions. 

§ Joint actions in IA2C advantage function are replaced by action 
configurations.



Many-Agent IA2C Network
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Many-Agent IA2C Network
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Experiment Domain: Organization Structures

We select five Organization structures that differ in the number of 
neighborhoods and the number of agents in each neighborhood.
§ Group reward is only shared within the neighborhood.



Experiment: Prediction Accuracy

§ Dirichlet-multinomial 
achieves higher accuracy given 
large population size.

§ Belief update has higher 
accuracy for small agent 
population.

Dirichlet-multinomial model is 
more robust than belief update 
in noisy environments with 
relatively large population size.



Experiment: Prediction Time

§ Dirichlet-multinomial has a 
near constant run time.

§ Belief update run time 
increase polynomially.

Dirichlet-multinomial 
model saves time by 
directly modeling the 
whole population 
instead of individuals.



Experiment: Action Configuration

§ The cumulative rewards are 
higher in fully connected 
structures than other 
structures.

§ It is harder to coordinate 
across many small 
neighborhoods.



Experiment: Comparison with Many-Agent 
Methods 

§ (top) Tree structure Organization 
and (bottom) Fully connected 
Organization with 100 agents.

§ Both IA2C methods converged to 
optimal policies. IA2C-DM learns 
much faster than IA2C-BU.

§ MF-AC and QMIX cannot 
converge within time limit.

IA2C-DM shortens the amount 
of time IA2C-BU required to 
converge to optimal policy in 
Organization by 30-40%.



Many-Agent IA2C Summary

IA2C++ replaces joint action with action configuration to reduce the 
exponentially increased action space.

IA2C++ efficiently models agent population.
§ IA2C++BU has higher accuracy in small agent populations.
§ IA2C++DM does not require pre-defined models and is 

advantageous in large agent populations.



Overall Conclusion

§ Organization domain: a quintessential cooperative-competitive 
multi-agent domain that features history-dependent reward

§ IA2C+ incorporates Bayesian belief update into advantage actor-
critic for modeling agent interactions in partially observable 
settings

§ IA2C++ with belief update filter that use action configuration 
scales up in many-agent settings with a relatively small population 
size. IA2C++ that utilizes Dirichlet-multinomial distribution can 
accurately and efficiently model large agent populations 



Thank You

Questions 


