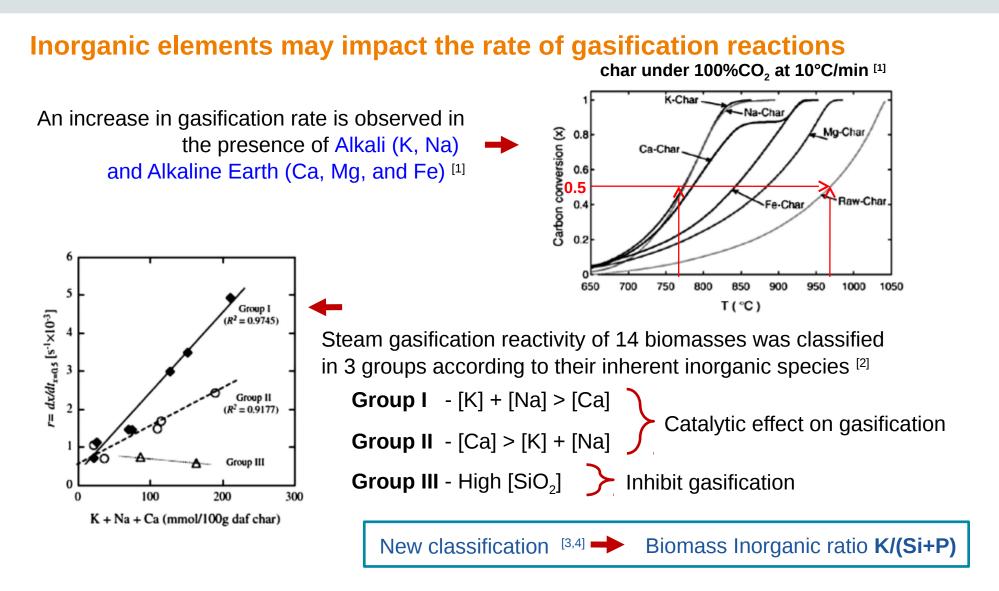

The catalytic effect of inherent and adorbed metals on the pyrolysis and gasification of biomass

Lina Maria ROMERO, Ange NZIHOU

RAPSODEE Research Center, CNRS, IMT Mines Albi, France

7th International Conference on Sustainable Solid Waste Management Heraklion, 26-29 June 2019

Waste and Biomass to VALUE (Energy and Valuable Materials)


2

OUTLINE

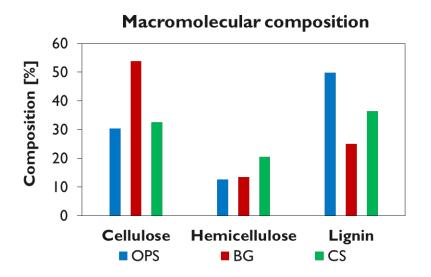
- **1.** Context
- **2.** Gasification experiments
- **3.** Results and discussion
- 4. Take to home

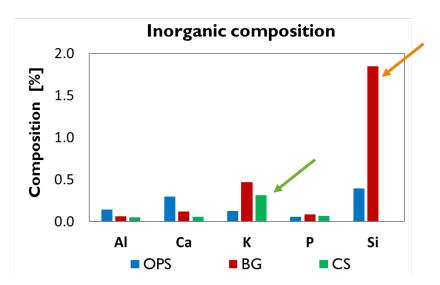
1. Context: State of the art – Gasification mechanisms

[1] Huang et al. Biotechnol Adv, 2009, 27; [2] Zhang W. Fuel Process Technol, 2010, 91;

[3] Romero M. at al, Fuel, 2019, 235; [4] Dupont C et al, Energy, 2016;

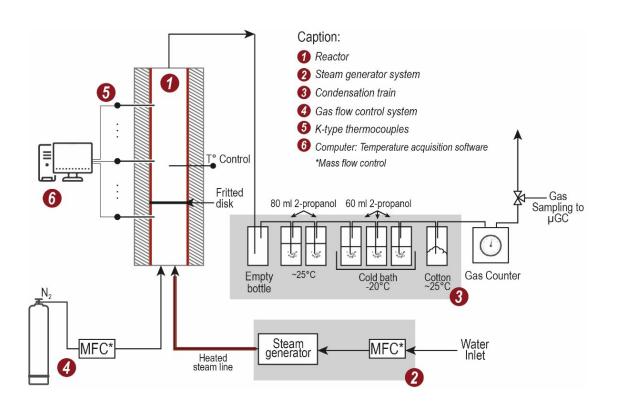
2. Gasification experiments: selection of biomass


Steam gasification experiments of three different Agrowastes


Composition and heating value		Oil Palm Shells	Coconut Shells	Bambou guadua
Elemental Analysis	С	46.7±0.2	46.8 ±0.2	42.7±0.3
(wt. % daf)	Н	6.5±0.1	5.8 ±0.1	5.4±0.1
	0	46.2±0.1	47.1 ±0.1	51.5±0.1
	N	0.6±0.1	0.3 ±0.1	0.4±0.1
	O/C	0.7±0.1	0.7±0.1	0.9±0.1
	H/C	1 7+0 1	1 5+0 1	1 5+0 1
Proximate analysis	Volatile Matter	69.9±0.3	71.4±0.3	68.3±0.2
(wt. %)	Fixed Carbon	19.0±0.3	17.1±0.2	18.1±0.3
	Ash	1.6±0.2	1.3±0.1	5.6±0.4
Heating value (MJ/kg) dry basis.	HHV	19.6±0.3	18.7±0.3	18.1±0.4

2. Gasification experiments: selection of biomass

Agrowastes


- Oil palm shells (OPS) and Coconut shells (CS) are endocarps with high lignin content
- Bamboo guadua (BG) is mainly composed of cellulose

- **Si, K** is the most important inorganic constituents of Bamboo guadua (BG)
- K is the most important inorganic constituent of Coconut shells (CS)

2. Gasification experiments

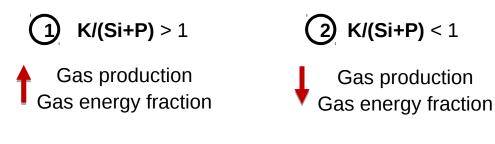
Experimental setup

Semi-continuous fluidized bed H: 60 ੴA? ☞ = 6 cm Raw biomass: 80 g Particle size: 2-3 mm

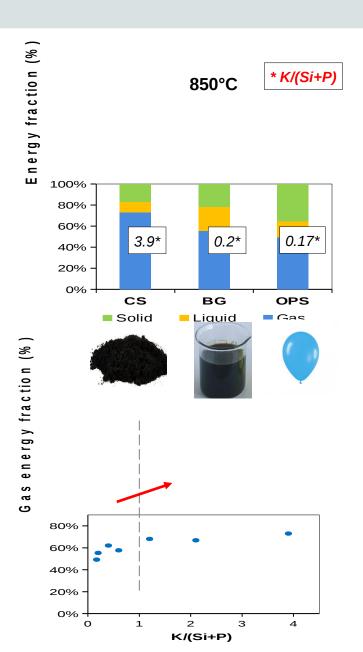
Experimental conditions and protocol

Experimental conditions

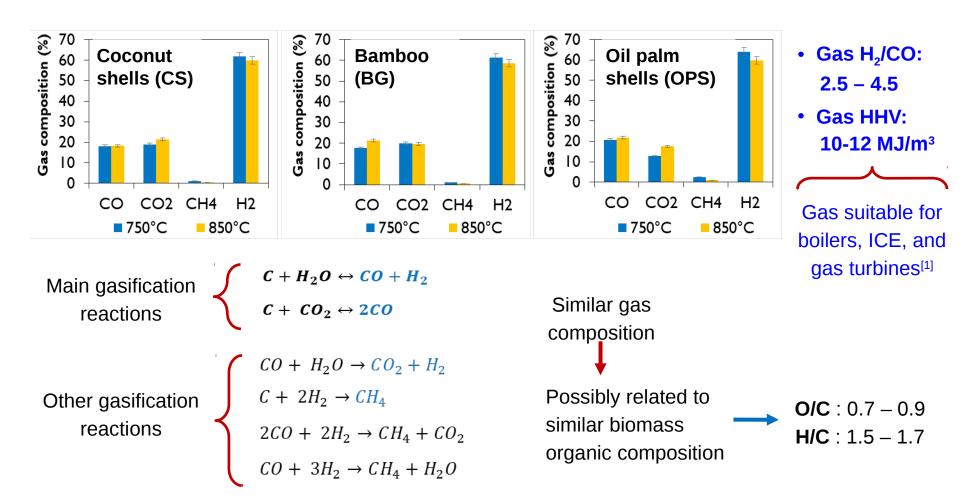
3. Results and discussion


Energy distribution in the gasification products

Biomass composition impacts the product energy distribution:


Product yield (%) = $\frac{m_{product}}{m_{biomass} + m_{steam}} x \ 100$

$$\begin{split} E_{products} &= E_{solid} + E_{gas} + E_{liquid} \\ E_{gas} &= m_{gas} \left(h_{gas \ (T_r)} + HHV_{gas} \right) \\ E_{liquid} &= m_{steam} \left(h_{steam \ (T_r)} \right) + m_{tars} \left(h_{tars \ (T_r)} + HHV_{tars} \right) \\ E_{solid} &= m_{char} \left(C_{p \ char} T_r + HHV_{char} \right) \end{split}$$


Under the same gasification conditions:

K/(Si+P) > 1 are associated with higher gasification
reactivities and process efficiencies

Gas composition and heating value

Results and discussion

Impact of biomass composition on the gasification behavior

Catalytic impact of AAEM* Oxygen transfer mechanism via the metal M^[1,2] on gasification reactions *AAEM: Alkali and Alkaline Earth Metal

Explaining water gas reaction mechanisms :

 $C + H_2 O \rightarrow CO + H_2$

Alkali metals (K, Na)	Alkaline earth metals (Ca, Mg)	H ₂	
$M_2CO_3 + 2C \rightarrow 2M + 3CO$	$MCO_3 + 2C \rightarrow M + 3CO$	→ M₂CO₃ + C	
$2M + 2H_2O \rightarrow 2MOH + H_2$	$M + 2H_2O \rightarrow M(OH)_2 + H_2$		
$2MOH + CO \rightarrow M_2CO_3 + H_2$	$M(OH)_2 + CO \rightarrow MCO_3 + H_2$		
	+ ($CO = 2 C + 2 H_2 O = 2 CO + 2 H_2$	

Explaining Boudouard reaction mechanism: **

 $C + CO_2 \rightarrow CO$

Alkali metals	Alkali
$M_2CO_3 + 2C \rightarrow 2M + 3CO$	MCO ₃
$2M + CO_2 \rightarrow M_2O + CO$	M + CC
$M_2O + CO_2 \rightarrow M_2CO_3$	MO + 0

line earth metals $+ 2C \rightarrow M + 3CO$ $O_2 \rightarrow MO + CO$ $CO_2 \rightarrow MCO_3$

Metal (M) loop

oxygen transfer

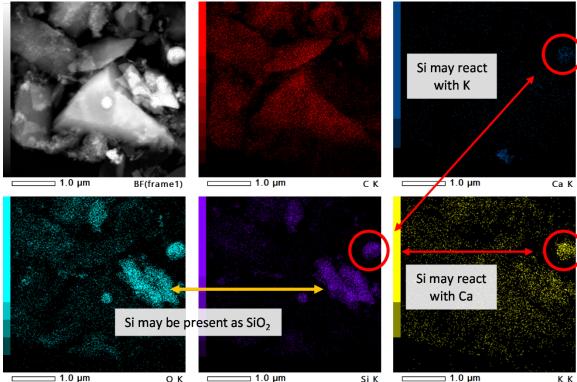
MOH

Η,

Syngas

 $+ H_2O$

3. Results and discussion


Impact of biomass composition on the gasification behavior

AAEM

AAEM* Catalytic effect inhibition

*AAEM: Alkali and Alkaline Earth Metal

Steam gasification biochar TEM-EDX cartography images

Formation of alkali phosphates, silicates and aluminosilicates [1-3]

M reactions with P, Si, Al

Inhibits the oxygen transfer mechanism via the metal M and its catalytic effect

Water gas reaction inhibition mechanism:

 $\boldsymbol{C} + \boldsymbol{H}_2 \boldsymbol{O} \rightarrow \boldsymbol{C} \boldsymbol{O} + \boldsymbol{H}_2$

Alkali metals (K, Na)

$$M_{2}CO_{3} + 2C \rightarrow 2M + 3CO$$

$$2M + 2H_{2}O \rightarrow 2MOH + H_{2}$$

$$2MOH \pm CO \rightarrow M_{2}CO_{3} + H_{2}$$

$$2MOH + nSiO_{2} \rightarrow M_{2}O \cdot nSiO_{2} + H_{2}O$$

[1] Zhang et al, Fuel, 2008; [2] Y. Niu, et al, Prog. Energy Combust. Sci. 52 (2016) 1–61; [3] D. Nutalapati et al. Fuel Process. Technol. 88 (2007) 1044–1052.

- The **inorganic content** of biomass has an important impact on the steam gasification reactivity, product yield, and gasification efficiency
- The **beneficial effect** of **AAEM (Alkali and Alkaline Earth Metals)** on the gasification behavior was **confirmed**, as well as the **inhibitory effect** of **Si** and **P**
- The inorganic ratio K/(Si+P) is a suitable indicator for gasification reaction of lignocellulosic biomass

www.wasteeng2020.org

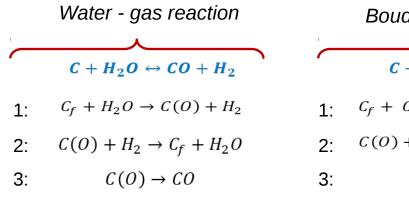
WasteEng

8th International Conference on Engineering for Waste and Biomass Valorisation

July 13-16, 2020 Guelph, Canada

In collaboration with

SPRINGER NATURE



Deadline for abstracts submission: October 3, 2019

Main gasification reactions and mechanisms

	Boudouard reaction	
_		
	$C + CO_2 \leftrightarrow 2CO$	
.:	$C_f + CO_2 \to C(0) + CO$	
2:	$C(0) + CO \rightarrow C_f + CO_2$	
8:	$C(0) \rightarrow CO$	

Intermediate steps

[1,2]: Step 1: Dissociation of the reactant at a carbon-free active site (C_i)

- Step 2: Formation of a carbon-oxygen surface complex C(O)
- Step 3: Desorption of product species

Other gasification reactions

- Methanation reactions

- Water - gas shift reaction $\langle CO + H_2O \rightarrow CO_2 + H_2 \rangle$ Hydrogasification reaction $\langle C + 2H_2 \rightarrow CH_4 \rangle$ $2CO + 2H_2 \rightarrow CH_4 + CO_2$ $CO + 3H_2 \rightarrow CH_4 + H_2O$ $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$