

Statistics with R

http://web.abo.fi/fak/mnf/mate/kurser/statisticsr/

Prepared by José Gama, MSc

Department of Mathematics
Åbo Akademi University

http://web.abo.fi/fak/mnf/mate/kurser/statisticsr/

References:

"A Practical Guide to Geostatistical Mapping of Environmental Variables", Tomislav
Hengl, Joint Research Centr, Institute for Environment and Sustainability pp. 56, 80

The R Core Team, "What is R?", R News, Volume 1/1, January 2001

http://cran.r-project.org/doc/html/interface98-paper/paper_2.html

http://en.wikipedia.org/wiki/R_%28programming_language%29

Believe nothing merely because you have been told it.
Do not believe what your teacher tells you merely out of respect for the teacher.
But whatever, after due examination and analysis, you find to be kind, conducive to the good,
the benefit, the welfare of all beings - that doctrine believe and cling to, and take it as your
guide.

However many holy words you read, however many you speak, what good will they do you if
you do not act on upon them?

There are only two mistakes one can make along the road to truth; not going all the way, and
not starting.

What we think, we become.

Buddha, spiritual teacher from India

I hear and I forget. I see and I remember. I do and I understand.

Confucius

Chinese philosopher & reformer
(551 BC - 479 BC)

Revision of R/statistical concepts

Examples of reviewed R/statistical concepts

R commands to work on these concepts

Questions, to be solved with R, by the students

Answers and explanations before moving on

How the classes will be organized

Course structure

The course will be 14 lessons of 2 hours each.

The class starts 10 minutes after the scheduled hour.

The grade is pass/fail.

To pass, a student must attend 11 lessons and answer correctly 10 questions
from the questionnaire.

Alternatively, a student must answer correctly 15 questions from the
questionnaire.

The reading assignments are optional but recommended, in particular for
students who will not attend the class.

The online material is enough to learn the basics and answer the questionnaire.

The classes will cover more details and have from 5 to 10 times more examples
than the online material. This can be exhausting, but you must ask if you want
something explained differently or if you need a break.

The classes will also be more friendly to students not from Computer Science,
unlike the online material.

Course structure

R has many strong points, two of which are its great help system and available packages.

However, many students complaint that, after an introductory course on R, they are not
comfortable with using the help or packages.

Usually it doesn't matter because they will never use R again or use it only for a few
histograms or boxplots, once in a blue moon.

Students from Statistics, Bioinformatics and Environmental Sciences will have to work with
many packages and find help on any topic without assistance.

That is why the initial lessons will be long and boring, but necessary to get solid
foundations on R.

The R Project for Statistical Computing

“R is a free software environment for statistical computing and graphics. It compiles
and runs on a wide variety of UNIX platforms, Windows and MacOS.”

“R is an integrated suite of software facilities for data manipulation, calculation and
graphical display. It includes an effective data handling and storage facility,
a suite of operators for calculations on arrays, in particular matrices, a large,
coherent, integrated collection of intermediate tools for data analysis, graphical
facilities for data analysis and display either on-screen or on hardcopy, and a well-
developed, simple and effective programming language which includes conditionals,
loops, user-defined recursive functions and input and output facilities. ”

http://www.r-project.org/

What is R

R is a software environment and programming language for statistical computing
and graphics. R is the open source equivalent to the programming language S.
S is very popular on statistical methodology research and was developed by John
Chambers and, previously, by Rick Becker and Allan Wilks of Bell Laboratories.
The name "R" comes from the fact that "R" precedes "S" and both authors'
names start with "R", Ross Ihaka and Robert Gentleman.
The R basic distribution comes with plenty of statistical procedures such as:
linear and generalized linear models, nonlinear regression models, time series
analysis, classical parametric and nonparametric tests, clustering and smoothing.
There are many graphical procedures such as: plot, scatterplot, boxplot,
distribution-comparison plot, histogram, dotchart, contour lines, 3D surface, etc...
R is extensible with a multitude of packages, some of them for very specialized
areas or highly optimized for intensive computations. R is a programming
language, allowing object-oriented programming (OOP) and with lexical (static)
scoping semantics similar to Scheme (dialect of Lisp).
C, C++, and Fortran code can be linked and called at run time, adding more
power and flexibility.

The history of R

R was developed by Ross Ihaka and Robert Gentleman at the University of
Auckland, New Zealand.
Ross Ihaka read the book "The Structure and Interpretation of Computer Programs"
about the Scheme programming language. Later, he tried to use lexical scope, to
obtain own variables, in S, which didn't work because of the differences in the
scoping rules of S and Scheme. Years passed, and Robert Gentleman and Ross
Ihaka were at the University of Auckland, both working on statistical computing.
They decided to create a small Scheme-like interpreter, to be used as a software
environment. It was similar to S in syntax because Scheme and S are similar and
both authors were familiar with S.
There was a first release in August of 1993. In June of 1995, the source code was
distributed under the terms of the Free Software Foundation's GNU general license
(GPL).
The interest kept growing and a small mailing list to exchange ideas had to grow to
a larger automated mailing list, then to newsgroups and the distribution of code,
documentation and binaries expanded to more mirror sites. Finally, the core group
of developers had to grow, as well.
In 2001, Robert Gentleman started the project Bioconductor that uses statistical
computing, with R, in Computational Biology.

Portable R

R is "perfectly relocatable", that is, after being installed in one machine, the directory can be
copied, for example, to a memory stick and it will run from there.
Notes:
Installing packages - download the package from CRAN, use Packages -> Install
Package(s) from local zip file(s)
workspace and history can be relocated by copying .Rhistory and .RData

http://my.opera.com/semin/blog/2007/04/02/portable-r

Portable GIS

Runs from a memory stick.
Contents:
●Desktop GIS packages GRASS (windows native version 6.3: does not need cygwin), QGIS
(version 0.10 with GRASS plugin) and gvSIG (version 1.1),
●FWTools (GDAL and OGR toolkit, version 2.10)
●XAMPPlite (Apache2/MySQL5/Php5),
●PostgreSQL (version 8.2)/Postgis (version 1.1),
●Mapserver, OpenLayers, Tilecache, Featureserver, and Geoserver web applications.

http://www.archaeogeek.com/blog/portable-gis/

Portable GIMP

The GIMP (GNU Image Manipulation Program), Open Source image editor in a portable
version:

http://portableapps.com/apps/graphics_pictures/gimp_portable

OpenOffice.org Portable

OpenOffice.org Portable is a complete OpenOffice.org office suite, compatible with Microsoft
Office, Word Perfect, Lotus and other office applications.
Includes:
●Word processor
●Spreadsheet
●Presentation tool
●Drawing package
●Database

http://portableapps.com/apps/office/openoffice_portable

Two students sharing one computer

Open two R windows and change the working directory on
both:

Two students sharing one computer

If the default is user\Documents Click Make New Folder and name it user1

Do the same for the other R window but creating a directory user2

Two students sharing one computer

Change the working directory on the other R window:

Two students sharing one computer

If the default is user\Documents Click Make New Folder and name it user2

Two students sharing one computer

Use getwd() to check the current working directory:

Both students can take turns on the computer, using their own R window and saving their work
to separate workspaces.

Downloading and Installing R

The R Project for Statistical Computing Homepage:
http://www.r-project.org/

That page has a link to anther page with the CRAN mirrors

Scrolling down the list, there are links to Sweden, UK and the US, among many
others

Scroll down to Sweden

Links to the different platforms

Let's download the Windows version (base)

Installing the Windows version (base)

Download R-2.9.2-win32.exe (the 2.9.2 is the version number, it might be
different) and execute it. There are several languages that can be used during the
installation, which is very straightforward.

Installing the Windows version (base)

On Fedora 10, as root:
yum install R

On Fedora 8 or 9, as root:
yum install R R-devel

Installing the Linux version

More info here

On Ubuntu:

gpg --keyserver subkeys.pgp.net --recv-key E2A11821
gpg -a --export E2A11821 | sudo apt-key add -

sudo gedit /etc/apt/sources.list
Add this line to the bottom of the sources.list file:
deb http://rh-mirror.linux.iastate.edu/CRAN/bin/linux/ubuntu hardy/
Use your own: feisty or jaunty, etc... instead of hardy
Save the file and go back to the Bash terminal.

sudo apt-get update

sudo apt-get install r-base r-base-dev

From: https://stat.ethz.ch/pipermail/r-help/2009-February/187644.html

Installing the Linux version

Installing the MacOSX version

First, download "R-2.9.2.dmg" from the "bin/macosx" directory of a CRAN site

Double-click on the icon to mount the disk image file

http://blogs.oreilly.com/digitalmedia/2008/06/free-statistics-package-for-yo.html

Installing R

References/to learn more:

The R book
Michael J. Crawley pp 1
2007 John Wiley & Sons Ltd

Basic statistics using R pp. 8
Jarno Tuimala (CSC) and Dario Greco (HY)
http://www.csc.fi/english/csc/courses/archive/R2008s

Statistics with R
Vincent Zoonekynd, pp 3
http://zoonek2.free.fr/UNIX/48_R/all.html

Aprendizaje del software estadístico R: un entorno para simulación y computación estadística
Prof. Alberto muñoz garcía
Departamento de Estadística
Universidad Carlos III de Madrid
http://ocw.uc3m.es/estadistica/aprendizaje-del-software-estadistico-r-un-entorno-para-simulacion-y-computacion-
estadistica/introduccion-al-analisis-de-datos-y-al-lenguaje-s

Geographic Data Analysis
Pat Bartlein
http://geography.uoregon.edu/bartlein/courses/geog417/exercises/ex1.htm

Software Tools, Part 1: introduction to R software
Petri Koistinen
http://www.rni.helsinki.fi/~pek/s-tools/RGetToKnow.html

Chem 351 Archives Page
David Harvey
http://fs6.depauw.edu:50080/~harvey/Chem%20351/PDF%20Files/Handouts/RDocs/Obtaining%20and
%20Installing%20R.pdf

Starting R

On Windows, if there is a shortcut on the desktop:

Or on the Start menu:

Starting R

On Ubuntu, type R at the prompt

Starting R

On Fedora, type R at the prompt

Rgui

Load R functions

Open the R editor

Open a file on the R editor

Display text file(s)

Print the History

Save the History as text

History is the text on the console:

For editing a matrix or dataframe from the current session

For customizing the GUI

Rgui

Data Editor

For editing a matrix or
dataframe from the
current session

Same as the fix
function

The cells are editable,
like a spreadsheet

Rgui

Rgui
Customizing the GUI

Some editors will only
work with MDI

Buffer chars and Lines
can be increased if it is
necessary to work with a
long History and there is
an error because there is
no space for it

This will apply
the changes to
the current
session

To make changes
permanent, that is, for
every session,they must be
saved. The default file
Rconsole is loaded when a
session starts

Rgui

Stop computation on the current window

Stop computation on all the windows

Uncheck to get output immediately on the console*

Lists the names of the objects on the workspace

Deletes all the objects on the workspace

Lists attached packages and R objects

* for example, to call some code and
see its progress on the screen

ls()
rm(list=ls(all=TRUE))

search()

???

R help

Help about the console controls

Help about a known function name

R HTML manuals and references

R HTML search engine for keywords,
function and data names and text in help
page titles

Search a reference from the manual

Use the online R Site Search

Look for a function name, partially known

help("plot")
?plot

help.start()

help.search("test")
??test

RSiteSearch("test")

apropos(“test”)

From the console:

R help

On the console:

help("stem")

Which could be called
directly..

A help file will open on a
new window.

Search for function “stem”

R help
Function stem was found

Description of what the function does

Function call with arguments

Description of arguments, sometimes with
links to related objects

References to literature

How to use the function, the two examples
provided will run automatically:

 example("stem")

R help

It doesn't show on the
console but the
equivalent command is:

help.start()

A new tab will open on
the browser with the
HTML help page.

R HTML manuals and references

R help

Manuals in HTML format

Very complete
introduction to
R

Installing and
customizing R

R help

List of installed packages:

R help
List of installed packages:

Alternatively:

Click on MASS

This is a faster way to list the
packages but without links to help

R help

Package MASS

Links to function names by their first
character

Function names and a simple
description

R help

It doesn't show on the console but the
equivalent command would be:

help.start()

Followed by clicking the link

Search Engine & Keywords

R HTML search engine

R help

Search for a reference from the manual on the keyword “test”

From the prompt:

help.search("test")

or

??test

R help

From the prompt:

RsiteSearch("test")

Use the online R Site Search

R help

From the prompt:

apropos(“test”)

Look for a function name,
partially known

Try this:
apropos("test")
apropos(".test")
apropos("[\\.]test")
apropos("[^\\.]test")
apropos("^test")
apropos("([^\\.]test)|(^test)")

R help
apropos("test")
apropos(".test")
apropos("[\\.]test")
apropos("[^\\.]test")
apropos("^test")
apropos("([^\\.]test)|(^test)")

1. “test” is anywhere within the function name

2. find “test” preceded by any character

3. find “.test”

4. find “test” preceded by any character, other than “.”

5. find “test”, only if at the end of the name

6. both 4. and 5.
Remember:
Apropos uses regular expressions
for searches

R help
How to use help

To show the documentation
help() or ?help

To find the documentation about the function "plot"
?plot
help("plot")

To find the documentation about reserved words or non-alphanumeric commands
?"for"
?"[["
?"[<-.data.frame"

To find all the installed help files (packages) that have an alias, concept or title named
"plot"
??plot
help.search("plot")

Package "graphics" has a function "plot", let's examine it:
?graphics::plot
Package "lattice" has a function "xyplot", let's examine it:
?lattice::xyplot

To get a short description of a package:
library(help = graphics)

Use double quotes

R help

How to use help

When not sure about the function name (on the search path), but it contains "plot"
apropos("plot")

To search R the web site and the R-help mailing list (http://search.r-project.org)
RSiteSearch("plot")

To run the examples from a help topic
example(topic)

To find where there are some demos for the loaded packages
demo()

To find where there are some demos for all the packages
demo(package = .packages(all.available = TRUE))

To show the demo "graphics" from package "graphics", pausing between pages
demo(graphics, package="graphics", ask=TRUE)

To show the demo "graphics" from package "graphics", whithout pausing between pages
demo(graphics, package="graphics", ask=FALSE)

Other sources of help

R Project search engine
http://www.r-seek.org

mailing lists which are used by R users and developers. See
http://www.R-project.org/mail.html

Bug-tracking system
R has a bug-tracking system (or perhaps a bug-filing system is a more precise
description) available on the net at
http://bugs.R-project.org/

The R Journal
http://journal.r-project.org/

Journal of Statistics Education
http://www.amstat.org/PUBLICATIONS/JSE/

Technology Innovations in Statistics Education
http://repositories.cdlib.org/uclastat/cts/tise/

Journal of Statistical Software
http://www.jstatsoft.org

R help

R help

Exercise

How to get random numbers in R?

Use only the help tools discussed today

R help

?random # no results...

??random

base::RNG Random Number Generation
base::sample Random Samples and Permutations
datasets::randu Random Numbers from Congruential Generator RANDU

?base::RNG # Random Number Generation
?base::sample # Random Samples and Permutations
?datasets::randu # Random Numbers from Congruential Generator RANDU ("widely
considered to be one of the most ill-conceived random number generators designed",
Wikipedia)

The command-line editor

Recall and correction of previous
commands

R keeps a command history, a list
of the commands executed at the
prompt.

Enter will execute the current line
of text, at the prompt.

Cursor keys:
Arrow up - show previous
command
Arrow down - show next
command
Arrows left and right - move
around the current line of text, at
the prompt.

Editor comands:

The command-line editor

R startup message

User expression

Result

Prompt, this is the input area

The command-line editor
Incomplete expressions will result on an annoying + that will disappear once the
expression is completed.

A string must be within
enclosing double quotes
but, pressing enter, will
cause a newline
character to be part of
the string.

An expression is
incomplete if it
ends with an
operator. There
are no side
effects, once the
expression is
completed.

An expression
with parenthesis
will not work, until
all the parenthesis
are paired. There
are no side
effects, once the
expression is
completed.

The command-line editor

The console will accept multiple commands, if pasted, and execute one line at a time.

For example, copying from Notepad:

And pasting on R:

This is unnecessary because R has its own text editor, the R Editor

The R Editor

Open the R editor

Open a file on the R editor

Run all the code
Open R file

Save R file
Run current line

or selected code

Menu changes:

The R Editor
The R Editor has all the capabilities of a basic text editor, just like notepad or pico.

The R Editor can be an alternative to the console because it can execute code, one line
at a time, a selection of lines or even a selected portion of code within a larger
expression. The code can be saved and loaded as a text file with the extension .R.

On Rgui on the menu go to File/New script
Type this:

myvec <- seq(1,by=3, length.out=9)
mymatrix1 <- matrix(myvec,3,3)
mymatrix2 <- matrix(9:1,3,3)
component-wise multiplication
mymatrix1 * mymatrix2

Edit/Run all

The R Editor

Position the cursor on any line and press ctrl-r, the line of code will execute on the R
console and the cursor will mode down to the next line. It is possible to follow the execution
of code by pressing ctrl-r continuously.

myvec <- seq(1,by=3, length.out=9)
|mymatrix1 <- matrix(myvec,3,3)
mymatrix2 <- matrix(9:1,3,3)
component-wise multiplication
mymatrix1 * mymatrix2

Position the cursor at the beginning of any line and use shift+cursor keys or keep the left-
click button on the mouse pressed and move the cursor, to select a few lines of code and
press ctrl-r, the line of code will execute on the R console.

mymatrix2 <- matrix(9:1,3,3)
component-wise multiplication
mymatrix1 * mymatrix2

The cursor is on this line, ctrl-r will execute it

myvec <- seq(1,by=3, length.out=9)
mymatrix1 <- matrix(myvec,3,3)

The R Editor
Position the cursor at the beginning of an expression and use shift+cursor keys or
keep the left-click button on the mouse pressed and move the cursor, to select a valid
expression and press ctrl-r, the expression will execute on the R console.

myvec <- seq(1,by=3, length.out=9)
mymatrix1 <- matrix(myvec,3,3)
mymatrix2 <- matrix(9:1,3,3)
component-wise multiplication
mymatrix1 * mymatrix2

myvec <- seq(1,by=3, length.out=9)
mymatrix1 <- matrix(myvec,3,3)
mymatrix2 <- matrix(9:1,3,3)
component-wise multiplication
mymatrix1 * mymatrix2

myvec <- seq(1,by=3, length.out=9)
mymatrix1 <- matrix(myvec,3,3)
mymatrix2 <- matrix(9:1,3,3)
component-wise multiplication
mymatrix1 * mymatrix2

Tinn-R, an editor with more options

http://jekyll.math.byuh.edu/other/howto/tinnr/using.shtml

Features:

●R console window access
from within Tinn-R.
●Incremental execution of
R code.
●Integrated R help.
●R Object explorer.
●Line number for a source
file.
●Search and Replace.
●Current line highlighting.
Etc...

Getting information about R and the system

To get the R
version

To get the license
info

To learn how to cite
R in publications

info about the
platform under
which R was
built

system and user
information

R.version license() citation() .Platform Sys.info()

Getting information about R and the system

To get a list
of the
installed
packages

To get a list
new
packages
available

version
information
about R and
attached or
loaded
packages

numerical
characterist
ics of the
machine

names of
open
graphics
devices

installed.pac
kages()

old.packages
()

sessionInfo() .Machine .Device

command line+R Editor

References/to learn more:

The R book
Michael J. Crawley pp 9
2008 John Wiley & Sons Ltd

Basic statistics using R pp. 34
Jarno Tuimala (CSC) and Dario Greco (HY)
http://www.csc.fi/english/csc/courses/archive/R2008s

Software Tools, Part 1: introduction to R software
Petri Koistinen
http://www.rni.helsinki.fi/~pek/s-tools/calculator.r

Chem 351 Archives Page
David Harvey
http://fs6.depauw.edu:50080/~harvey/Chem%20351/PDF%20Files/Handouts/RDocs/Some
%20Basic%20R%20Commands.pdf

Packages

The base distribution of R is the R programming language interpreter and some packages
that are loaded by default. Packages, AKA extensions, are libraries that can be installed
and used when needed and extend the functionality of R by adding new objects, for
example new statistical functions, and their documentation and even data.

A package is a zip file, containing a file with the description of the package and
subdirectories with the source code of the package and other information such as
documentation, configuration, license, etc... This is described on the manual "Writing R
Extensions".
Several projects distribute contributed packages, such as CRAN (The Comprehensive R
Archive Network), Bioconductor (Analysis and comprehension of genomic data),
OmegaHat (software for S, R and Xlisp-Stat), etc...

There are about 30 default packages, the base package has functions for the R
programming language, other packages have functions for data input/output, graphics,
utilities and statistical tools.

Packages are one of the strengths of R, with over 2000 packages available, therefore,
there are many functions to handle packages.

Packages

How to get and use a package

Two steps for using a package

Get/download/install the package (get the file
into the hard drive)

Use/access/load the package (get the file from
the hard drive into memory, from R)

Packages

Installing a
package

Select repository (repositories store packages distributed
by the main projects), optional

Set CRAN mirror (there are CRAN mirrors in most
countries, allowing fast downloads), optional

Install package (get the file into the hard drive)
Download from the web

Copy from a USB stick

Packages

Select repository

Which distributor has the necessary
packages

CRAN is the basic R distribution

CRAN (extras) are Contributed R
packages

BioC are packages from
Bioconductor
(bioinformatics/biostatistics,
focused on inference using DNA
microarrays)

R-forge are packages from
Omegahat (umbrella project for S,
R and Lisp-stats, focused on
statistical tools, with web
applications, web services, Java,
distribuited computing, etc...)

Packages

Set CRAN mirror

Which server is closer or faster/more reliable

Sweden is the closest

Packages

Install package

If no CRAN mirror was selected in this
session, then it will ask for one.

Multiple packages can be chosen by pressing
the control key and clicking on the package
name.

Packages

Install package from local zip file

Instead of from the web, for machines without web access

Packages

available.packages
old.packages
new.packages
download.packages
update.packages
install.packages
remove.packages

Functions to work with packages

available.packages() - packages/bundles available at one or more repositories

old.packages() - packages/bundles that have newer versions on the repositories

new.packages() - uninstalled packages/bundles that are available at the repositories

download.packages() - downloads the newest versions of packages/bundles

update.packages() - the user will be prompted for which packages/bundles with a newer
version to update

install.packages() - installs new packages/bundles

remove.packages() - removes installed packages/bundles and updates index information as
necessary

Packages

When do I need such functions?

available.packages() - I want a list of all the existing packages!

old.packages() - are there newer versions of the packages/bundles installed?

new.packages() - are there new packages/bundles?

download.packages() - I want to download packages/bundles.

update.packages() - I want to see which packages/bundles have a newer version and decide,
interactively, which ones to update.

install.packages() - I want to install packages/bundles.

remove.packages() - I want to remove installed packages/bundles.

Packages
Other functions:

library() list all available packages

library(lib.loc = .Library) list all packages in the default library

library(ada) load package "ada"

require(ada) load the package "ada" from inside other functions

library(help = ada) documentation on package 'ada'

search() list of attached packages and R objects

.packages information about package availability

.packages(all.available = TRUE) return all available as character vector

detach("package:ada") unload package "ada"

Trying to use function "foo" from a package that is not yet loaded will return an error:
Error: could not find function "foo"

Packages

search() = .packages() + R objects

library() = .packages(all.available = TRUE) with description

Loaded packages

Installed packages

Packages
To browse packages by topics (views)

http://cran.r-project.org/web/views/

Maintainer

Introduction

View
description

Package names
sorted alphabetically

References

CRAN task views are categories of contributed packages with
simplified installation:

To automatically install these views, the ctv package needs to be
installed:
install.packages("ctv")
library("ctv")

The views can be installed now:
install.views("Genetics")
or
update.views("Genetics")

Packages

Data sets
A dataset is a collection of data, usually in a list form or in tabular form, which
corresponds, on R, to data types vector and data frame.

R loads datasets from:

1. files ending ‘.R’ or ‘.r’ are opened with source()
2. files ending ‘.RData’ or ‘.rda’ are opened with load()
3. files ending ‘.tab’, ‘.txt’ or ‘.TXT’ are read with read.table(..., header = TRUE) into
a data frame.
4. files ending ‘.csv’ or ‘.CSV’ are read with read.table(..., header = TRUE, sep = ";")
into a data frame.

Data set functions:

data() # list all available data sets
try(data(package = "car"))# list the data sets in the car package
data(car) # load the data set 'car'
help(car) # give information on data set 'car'
data(package = .packages(all.available = TRUE)) # lists the data sets in all available
packages

a

b

c

d

1 x j 7

2 y v 3

3 z r 9

R comes with some datasets already installed, one is pressure and it is the "Vapor
Pressure of Mercury as a Function of Temperature".

require(graphics) #just to make sure the graphics library is loaded
pressure
?pressure

mean(pressure)
median(pressure)
min(pressure)
max(pressure)
quantile(pressure$pressure)
summary(pressure)

var(pressure)
sd(pressure)
cor(pressure)

boxplot(pressure)

#decimal scale
plot(pressure, xlab = "Temperature (deg C)", ylab = "Pressure (mm of Hg)", main = "pressure
data: Vapor Pressure of Mercury")

#log scale
plot(pressure, xlab = "Temperature (deg C)", log = "y", ylab = "Pressure (mm of Hg)", main =
"pressure data: Vapor Pressure of Mercury")

Assignment: packages and help

1. Is the car package loaded?
2. Is the car package installed?
3. Install the car package
4. Load the car package
5. Is there help for the car package?
6. Find out information about the data frame Angell
7. Find out what the function scatterplot does
8. Run an example of scatterplot
9. Unload the car package
10. Uninstall the car package
11. List packages for epidemiology
12. List packages for environmental sciences

http://cran.r-project.org/web/packages/car/car.pdf

Packages

Packages

1. Is the car package loaded?
2. Is the car package installed?

> # 1. Is the car package loaded?
> (.packages())
[1] "stats" "graphics" "grDevices" "utils" "datasets" "methods"
[7] "base"
> # 2. Is the car package installed?
> (.packages(all.available=TRUE))
 [1] "biglm" "DBI" "ISwR" "leaps"
 [5] "RODBC" "RSQLite" "scatterplot3d" "base"
 [9] "boot" "class" "cluster" "codetools"
[13] "datasets" "foreign" "graphics" "grDevices"
[17] "grid" "KernSmooth" "lattice" "MASS"
[21] "Matrix" "methods" "mgcv" "nlme"
[25] "nnet" "rpart" "spatial" "splines"
[29] "stats" "stats4" "survival" "tcltk"
[33] "tools" "utils"

Packages

Before installing a package it is advisable to make sure all installed
dependencies have their latest versions.

On the console:

update.packages()

On RGui:

Packages
3. Install package car
with RGui from the web

From the console:

install.packages("car",
dependencies = TRUE)

Packages
Install package car from a zip file

Install package car from a zip file

Copy the zip file to the working directory

Packages

From the console:

install.packages("car_1.2-16.zip")

On linux or MacOsx:

R CMD INSTALL car.tar.gz

Packages

Double check:

Is the car package loaded?
Is the car package installed?

Installed

Packages

Double check:

Is the car package loaded?

4. Load the car package

Loaded

Packages

5. Is there help for the car package?

6. Find out information about the data frame Angell

library(help = car)

 help(Angell)

?scatterplot

Packages
7. Find out what the function scatterplot does

8. Run an example of scatterplot

scatterplot(prestige ~ income|type, data=Prestige, span=1)

Packages

9. Unload the car package
10. Uninstall the car package

.libPaths() # get library location
dir(.libPaths()) # show files and directories on the library location

1. Is the car package loaded?
search() is the "usual" command but it it also shows R objects (unnecessary info)
(.packages())
2. Is the car package installed?
library() is the "usual" command but it it also shows the description (unnecessary info)
(.packages(all.available=TRUE))

3. Install package car from the web
install.packages("car", dependencies = TRUE)

2. Is the car package installed?
(.packages(all.available=TRUE))

dir(.libPaths()) # show files and directories on the library location

4. Load the car package
library("car")

1. Is the car package loaded?
(.packages())

5. Is there help for the car package?
library(help=car)

9. Unload the car package

1. Is the car package loaded?
(.packages())

10. Uninstall the car package

2. Is the car package installed?
(.packages(all.available=TRUE))
dir(.libPaths()) # show files and directories on the library location

Internet
CRAN
mirror

Hard drive
.libPaths()

Install
package car
from the web

Load the car
package

R
Memory

Packages

11. List packages for epidemiology

12. List packages for environmental sciences

Check out BioConductor!

Look at the description of each view,
Spatial has this:

Packages
11. List packages for epidemiology

?? search the installed help files
For keywords “epidem”, “disease”, “illness”, etc...

R Site Search
http://search.r-project.org/

Rseek
http://www.rseek.org/

Read and maybe post a question on the Mailing List
R-help -- Main R Mailing List
https://stat.ethz.ch/mailman/listinfo/r-help

crantastic, a community site for R packages to search for, review and tag CRAN packages.
http://crantastic.org/

sos package
R related Search Engine
http://cran.r-project.org/web/packages/sos/

Stack Overflow a programming Q & A site
http://stackoverflow.com/

R Site Search
http://search.r-project.org/cgi-bin/namazu.cgi

Contributed Packages
http://cran.r-project.org/web/packages/

epiR
epibasix
epicalc
epitools etc...

Packages

packages
References/to learn more:

The R book
Michael J. Crawley pp 4
2009 John Wiley & Sons Ltd

Basic statistics using R pp. 16
Jarno Tuimala (CSC) and Dario Greco (HY)
http://www.csc.fi/english/csc/courses/archive/R2008s

Statistics with R
Vincent Zoonekynd, pp 115
http://zoonek2.free.fr/UNIX/48_R/all.html

Introductory Statistics with R
Peter Dalgaard, pp 35
2010 Springer

Geographic Data Analysis
Pat Bartlein
http://geography.uoregon.edu/bartlein/courses/geog417/lectures/lec05.htm

Quick-R
Rob Kabacoff
http://www.statmethods.net/interface/packages.html

R console input
The console will accept R code, functions, expressions, variables and data.

Numbers can be positive or negative, and with a decimal part.

Strings are delimited by double quotes. Strings are text, character data.

Comments are marked with the # sign. Everything after a comment is ignored.
Comments are useful for explaining the code, otherwise it would be hard trying to
guess or remember what the code does.

Examples:

Using R as a calculator
R can execute expressions directly from the console, like a calculator

Type 1+1 and enter

Mathematical operators

Using R as a calculator

Comparison operators

The logical values are TRUE, FALSE and NA for missing values.

Using R as a calculator
Logical operators

The logical values are TRUE, FALSE and NA for missing values.

> !FALSE # logical negation
[1] TRUE
> TRUE & FALSE # logical AND
[1] FALSE
> TRUE | FALSE # logical OR
[1] TRUE
> xor(TRUE, FALSE) # logical eXclusive OR
[1] TRUE
>
> TRUE && FALSE # logical AND
[1] FALSE
> TRUE || FALSE # logical OR
[1] TRUE
>
> c(T,F,F) & c(F,T,F) # logical AND
[1] FALSE FALSE FALSE
> c(T,F,F) | c(F,T,F) # logical OR
[1] TRUE TRUE FALSE
> c(T,F,F) && c(F,T,F) # logical AND
[1] FALSE
> c(T,F,F) || c(F,T,F) # logical OR
[1] TRUE

Using R as a calculator

Rounding functions

Using R as a calculator

Mathematical functions

Using R as a calculator

Complex functions

> mycomplexvar<-3+5i # a variable with a complex value
> mycomplexvar
[1] 3+5i
> Re(mycomplexvar) # real part
[1] 3
> Im(mycomplexvar) # imaginary part
[1] 5
> Conj(mycomplexvar) # complex conjugate
[1] 3-5i
> Mod(mycomplexvar) # complex modulus
[1] 5.830952
> Arg(mycomplexvar) # complex argument
[1] 1.030377

argument

modulus r =

R Built-in Constants

Constants that come with the R base package.

LETTERS: the 26 upper-case letters of the Roman alphabet;
letters: the 26 lower-case letters of the Roman alphabet;
month.abb: the three-letter abbreviations for the English month names;
month.name: the English names for the months of the year;
pi: the ratio of the circumference of a circle to its diameter.

pi * 10 # the perimeter of a circumference of diameter 10

months in English
month.name
months in your current locale
format(ISOdate(2009, 1:12, 1), "%B")
format(ISOdate(2009, 1:12, 1), "%b")

Using R as a calculator

R as calculator
References/to learn more:

The R book
Michael J. Crawley pp 9
2010 John Wiley & Sons Ltd

Basic statistics using R pp. 35
Jarno Tuimala (CSC) and Dario Greco (HY)
http://www.csc.fi/english/csc/courses/archive/R2008s

Statistics: an introduction using R
Michael J. Crawley pp 281
2008 John Wiley & Sons Ltd

Aprendizaje del software estadístico R: un entorno para simulación y computación estadística
Prof. Alberto muñoz garcía
Departamento de Estadística
Universidad Carlos III de Madrid
http://ocw.uc3m.es/estadistica/aprendizaje-del-software-estadistico-r-un-entorno-para-simulacion-
y-computacion-estadistica/resolveUid/6bfdf37a91c966902de8395629e9fef6

Introductory Statistics with R
Peter Dalgaard, pp 3
2011 Springer

Software Tools, Part 1: introduction to R software
Petri Koistinen
http://www.rni.helsinki.fi/~pek/s-tools/calculator.r

Assigning values to objects = or <- or ->

R Variables

> myvar <- 123 # to assign value 123 to variable "myvar"
> print(myvar) # display the variable
[1] 123
> #or
> myvar
[1] 123
> x = 5
> y <- 6
> 7 -> z
> x
[1] 5
> y
[1] 6
> z
[1] 7
> (myvar2 <- 456) # assign and display
[1] 456

> a <- b <- 55
> a
[1] 55
> b
[1] 55
>
> x <- (y <- c(5, 14,234))*2
> x;y
[1] 10 28 468
[1] 5 14 234

Multiple commands in one line

Multiple assignments

R Variables

3 basic types of
variables

Numeric

Character

Boolean {true, false}

Functions to test an object's data type

is.integer, is.double, is.numeric,
is.character and is.logical

as.integer is used to pass data to C or
Fortran code

R Variables

Variable names

●Case sensitive
●R names depend on the operating system and country within which R is being run
(technically on the locale settings)
●All alphanumeric symbols are allowed (and in some countries this includes accented letters)
plus ‘.’ and ‘_’, with the restriction that a name must start with ‘.’ or a letter, and if it starts with
‘.’ the second character must not be a digit
●For portable R code (including that to be used in R packages) use only A–Za–z0–9

Although legal,
these variable names

are confusing

Reserved Words in R

These words should not be used as variable names or function names, to avoid parsing
errors.

Reserved words:

if else repeat while function for in next break

TRUE FALSE NULL Inf NaN NA

NA_integer_ NA_real_ NA_complex_ NA_character_

R Variables

Not Available / "Missing" Values

NA is a missing value indicator.

"Missing" Values are common in real world data because of no answers to surveys or
missing data from sensors readings.

is.na() returns TRUE for missing elements
is.na() <- sets elements to NA

> x <- 5
> x
[1] 5
> is.na(x)
[1] FALSE
> y <- NA
> y
[1] NA
> is.na(y)
[1] TRUE

R Variables

R Variables

Not Available / "Missing" Values

> z <- c(3,5,NA,6,7,8) # vector
> z
[1] 3 5 NA 6 7 8
> is.na(z) # which elements are NA
[1] FALSE FALSE TRUE FALSE FALSE FALSE
> is.na(z) <- c(1,5) # turn elements at position 1 and position 5 to NA
> z
[1] NA 5 NA 6 NA 8

> # math operators * + - / will return NA
> 5 * NA
[1] NA

> # comparison operators < <= > >= == != will return NA
> c(5, 5, NA) == c(5, NA, NA)
[1] TRUE NA NA

R Variables

Not Available / "Missing" Values

> # NA is "undetermined" for logical expressions
> c(T, F) & c(NA, NA) # FALSE AND whatever is FALSE
[1] NA FALSE
> c(T, F) | c(NA, NA) # TRUE OR whatever is TRUE
[1] TRUE NA
> xor(NA,T)
[1] NA

> myvec <- c(7,4,NA,2,65)
> mean(myvec) # this will return NA
[1] NA
> mean(myvec, na.rm=T) # ignoring NA in a calculation
[1] 19.5
> na.omit(myvec) # omitting NA
[1] 7 4 2 65
attr(,"na.action")
[1] 3
attr(,"class")
[1] "omit"

R Variables

> x <- c(7, 6, NA, NA, 5)
> x[!is.na(x)] # get the data except the NAs
[1] 7 6 5
> na.omit(x) # get the data except the NAs, proper way
[1] 7 6 5
attr(,"na.action")
[1] 3 4
attr(,"class")
[1] "omit"
> mean(x) # returns NA
[1] NA
> mean(x, na.rm=TRUE) # returns 6
[1] 6
> x[is.na(x)] <- 0 # replace NAs with 0
> x
[1] 7 6 0 0 5

http://www.khpa.ks.gov/data_consortium/Docs/022009/WorkForceSurvey.pdf

Missing image data LANDSAT 5 - 7

Anomalies description
Missing image data anomaly may be considered under different aspects. The most frequently
case of
missing data may be called “missing pixels”. Usually, the “missing pixels” anomaly is correlated
with
others anomalies (shifted swath – speckle - missing swath). Details are also provided about
wrong or
missing auxiliary data that implies swath misalignment (See also Anomaly slip 02). This section
describes
the following anomalies related to missing image data:
· Missing pixels.
· Missing pixels – shifted swath.
· Missing pixels – missing swath.
· Missing pixels – speckle.
· Corrupted Mirror Scan Correction Data (MSCD) – shifted swath.

http://earth.esa.int/pub/ESA_DOC/landsat_product_anomalies/GAEL-P157-SLP-001-03-01.pdf

NA

http://www.ktl.fi/attachments/suomi/julkaisut/julkaisusarja_b/2004b13.pdf

 http://www.woodrow.org/teachers/ci/1992/activities/birthdays.html

Using data from a website:

NA

The data is clean and organized on
a spreadsheet:

NA

<td>1</td><td>Eugene A. Demarcay, 1852

</td></tr><tr><td> 2</td><td>Roger Adams, 1889

Charles Hatchett, 1765

Rudolph Clausius, 1822

</td></tr><tr><td>4</td><td>Astrid V. Grosse, 1905

Joseph Elanger, 1874

R Variables
Finite Infinite and NaN Numbers

Infinite numbers are the result of finite numbers divided by zero
NaN (Not a Number) are the result of zero divided by zero

Inf ∞
-Inf -∞
NaN undetermined

is.finite() returns TRUE for a finite number
is.infinite() returns TRUE for an infinite number
is.nan() returns TRUE for a NaN

R Variables

> a <- 1/2
> a
[1] 0.5
> is.finite(a)
[1] TRUE
> is.infinite(a)
[1] FALSE
> is.nan(a)
[1] FALSE
>
> b <- 1/0
> b
[1] Inf
> is.finite(b)
[1] FALSE
> is.infinite(b)
[1] TRUE
> is.nan(b)
[1] FALSE
>
> c <- 0/0
> c
[1] NaN
> is.finite(c)
[1] FALSE
> is.infinite(c)
[1] FALSE
> is.nan(c)
[1] TRUE

a <- 1/2
a
is.finite(a)
is.infinite(a)
is.nan(a)

b <- 1/0
b
is.finite(b)
is.infinite(b)
is.nan(b)

c <- 0/0
c
is.finite(c)
is.infinite(c)
is.nan(c)

R Variables
Getting info from objects

class() returns the class attribute or the implicit class of this object

is() returns all the super-classes of this object's class

mode() to get or set the type or storage mode of an object

str() to compactly display the internal structure of an R object

length() to get or set the length of objects

dim() to retrieve or set the dimension of an object

nchar() to get or set the length of strings

object.size() to get an estimate of the memory used to store an R object

Common source of confusion:

class() vs is() vs mode()

length() vs dim() vs nchar()

R Variables
Type on R Editor:

Myint <- 567
is(myint)
Myreal <- 8.83
is(myreal)
mycomplex <- 34-7i
is(mycomplex)
mystring <- "quartz"
is(mystring)
myvector_i <- c(6,5,4)
is(myvector_i)
myvector_s <- c("a","b","c")
is(myvector_s)
mymatrix <- matrix(5,2,3)
is(mymatrix)

R Variables

> myint <- 567
> is(myint)
[1] "numeric" "vector"
> myreal <- 8.83
> is(myreal)
[1] "numeric" "vector"
> mycomplex <- 34-7i
> is(mycomplex)
[1] "complex" "vector"
>
> mystring <- "quartz"
> is(mystring)
[1] "character" "vector" "data.frameRowLabels"
> myvector_i <- c(6,5,4)
> is(myvector_i)
[1] "numeric" "vector"
>
> myvector_s <- c("a","b","c")
> is(myvector_s)
[1] "character" "vector" "data.frameRowLabels"
> mymatrix <- matrix(5,2,3)
> is(mymatrix)
[1] "matrix" "array" "structure" "vector"

All objects are vectors!

Scalars are vectors of length 1

is() returns all the super-classes of this object's class

R Variables
On R Editor, go to Edit/Replace and replace “is” with “class”

myint <- 567
class(myint)
myreal <- 8.83
class(myreal)
mycomplex <- 34-7i
class(mycomplex)
mystring <- "quartz"
class(mystring)
myvector_i <- c(6,5,4)
class(myvector_i)
myvector_s <- c("a","b","c")
class(myvector_s)
mymatrix <- matrix(5,2,3)
class(mymatrix)

Edit/Clear console to clear the previous calculations from the R Console

R Variables

> myint <- 567
> class(myint)
[1] "numeric"
> myreal <- 8.83
> class(myreal)
[1] "numeric"
> mycomplex <- 34-7i
> class(mycomplex)
[1] "complex"
> mystring <- "quartz"
> class(mystring)
[1] "character"
> myvector_i <- c(6,5,4)
> class(myvector_i)
[1] "numeric"
> myvector_s <- c("a","b","c")
> class(myvector_s)
[1] "character"
> mymatrix <- matrix(5,2,3)
> class(mymatrix)
[1] "matrix"

class() returns the class attribute or the implicit class of this object

This is the first class returned by is()

class(myvar) "class 1"

is(myvar) "class 1" "class 2" "class 3" ...

R Variables
On R Editor, go to Edit/Replace and replace “class” with “mode”

myint <- 567
mode(myint)
myreal <- 8.83
mode(myreal)
mycomplex <- 34-7i
mode(mycomplex)
mystring <- "quartz"
mode(mystring)
myvector_i <- c(6,5,4)
mode(myvector_i)
myvector_s <- c("a","b","c")
mode(myvector_s)
mymatrix <- matrix(5,2,3)
mode(mymatrix)

mode() to get or set the type or storage mode of an object

R Variables

> myint <- 567
> mode(myint)
[1] "numeric"
> myreal <- 8.83
> mode(myreal)
[1] "numeric"
> mycomplex <- 34-7i
> mode(mycomplex)
[1] "complex"
> mystring <- "quartz"
> mode(mystring)
[1] "character"
> myvector_i <- c(6,5,4)
> mode(myvector_i)
[1] "numeric"
> myvector_s <- c("a","b","c")
> mode(myvector_s)
[1] "character"
> mymatrix <- matrix(5,2,3)
> mode(mymatrix)
[1] "numeric"

The only difference is with matrix, let's try a
data frame:

> mydataf <- data.frame(1,2,3)
> mode(mydataf)
[1] "list"
> class(mydataf)
[1] "data.frame"
> mydataf <- data.frame("a","b","c")
> mode(mydataf)
[1] "list"
> class(mydataf)
[1] "data.frame"

By default, a matrix is stored as numeric data
in memory and a data frame as list data in
memory. This can be changed, for achieving
better performance or for compatibility.

R Variables
On R Editor, go to Edit/Replace and replace “mode” with “length”, “dim” and “nchar”

myint <- 567
length(myint)
myreal <- 8.83
length(myreal)
mycomplex <- 34-7i
length(mycomplex)
mystring <- "quartz"
length(mystring)
myvector_i <- c(6,5,4)
length(myvector_i)
myvector_s <-
c("a","b","c")
length(myvector_s)
mymatrix <- matrix(5,2,3)
length(mymatrix)

myint <- 567
dim(myint)
myreal <- 8.83
dim(myreal)
mycomplex <- 34-7i
dim(mycomplex)
mystring <- "quartz"
dim(mystring)
myvector_i <- c(6,5,4)
dim(myvector_i)
myvector_s <-
c("a","b","c")
dim(myvector_s)
mymatrix <- matrix(5,2,3)
dim(mymatrix)

myint <- 567
nchar(myint)
myreal <- 8.83
nchar(myreal)
mycomplex <- 34-7i
nchar(mycomplex)
mystring <- "quartz"
nchar(mystring)
myvector_i <- c(6,5,4)
nchar(myvector_i)
myvector_s <-
c("a","b","c")
nchar(myvector_s)
mymatrix <- matrix(5,2,3)
nchar(mymatrix)

R Variables

> myint <- 567
> length(myint)
[1] 1
> myreal <- 8.83
> length(myreal)
[1] 1
> mycomplex <- 34-7i
> length(mycomplex)
[1] 1
> mystring <- "quartz"
> length(mystring)
[1] 1
> myvector_i <- c(6,5,4)
> length(myvector_i)
[1] 3
> myvector_s <- c("a","b","c")
> length(myvector_s)
[1] 3
> mymatrix <- matrix(5,2,3)
> length(mymatrix)
[1] 6

> myint <- 567
> dim(myint)
NULL
> myreal <- 8.83
> dim(myreal)
NULL
> mycomplex <- 34-7i
> dim(mycomplex)
NULL
> mystring <- "quartz"
> dim(mystring)
NULL
> myvector_i <- c(6,5,4)
> dim(myvector_i)
NULL
> myvector_s <- c("a","b","c")
> dim(myvector_s)
NULL
> mymatrix <- matrix(5,2,3)
> dim(mymatrix)
[1] 2 3

> myint <- 567
> nchar(myint)
[1] 3
> myreal <- 8.83
> nchar(myreal)
[1] 4
> mycomplex <- 34-7i
> nchar(mycomplex)
[1] 5
> mystring <- "quartz"
> nchar(mystring)
[1] 6
> myvector_i <- c(6,5,4)
> nchar(myvector_i)
[1] 1 1 1
> myvector_s <- c("a","b","c")
> nchar(myvector_s)
[1] 1 1 1
> mymatrix <- matrix(5,2,3)
> nchar(mymatrix)
 [,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1

Length() is the number of elements, dim are the dimensions, nchar is the number of characters

Quitting R
Command q()

Or File/Exit or close the editor window (on Windows)

save workspace image?

Yes will save all the objects from memory to a file .Rdata and it wil also save all
the commands typed during the session to a file .Rhistory

Both files are saved on user\documents

The file .Rhistory is plain text and it can be examined or edited.

To close R without the question:
q(save = "no")

R's workspace

R can save all the objects from memory to a file .Rdata and save all the
commands typed during the session to a file .Rhistory, these are the default
file names and they are saved on the working directory

Once a workspace is saved, it will be automatically loaded:

By changing the working directory, many default workspace files can be
used, on different directories.

But, the next session will open the default workspace, on the default working
directory.

R's workspace

Workspace files can be saved and loaded from the File menu, with no need to
change the working directory:

Or on the console:
load.image()
and
save.image()

R's workspace

shows the contents of the workspace, sames as
objects() or ls()

clears the workspace, sames as
rm(list = ls(all = TRUE))

list of attached packages and R objects, sames as
search()

R's workspace
objects() or ls() shows the contents of the workspace
save(var1, var2, varN, file="myfile.R") saves objects var1, var2 and varN to a file "myfile.R"
load("myfile.R") loads objects from file "myfile.R"
rm(var1) removes var1 from the workspace
rm(list = ls(all = TRUE)) clears the workspace
dir() shows the files on the working directory

R's working directory

Working Directory
Default setting on Linux is $R_HOME\bin
Default setting on Windows is C:/Users/MyUserName/Documents

The command "system" executes OS commands

> getwd() # get the working directory
[1] "C:/Users/user/Documents"
> setwd("C:/Users/user/Documents/test123") # change the working directory
Error in setwd("C:/Users/user/Documents/test123") :
 cannot change working directory
> getwd() # it didn't change because the directory does not exist
[1] "C:/Users/user/Documents"
> system("md test123") # create a directory on Linux
Warning message:
In system("md test123") : md not found
> system(paste(Sys.getenv("COMSPEC"),"/c", "md test123")) # create a directory on
Windows
> setwd("C:/Users/user/Documents/test123")
> getwd()
[1] "C:/Users/user/Documents/test123"

getwd()
myvar1 <- "variable 1 is a string"
myvar2 <- -2342.452
dir()
dir(all.files = T)
savehistory() # save the command history to the default file (.Rhistory)
save.image() # save the workspace to the default file (.RData)
dir() # it won't show .Rhistory and .RData
dir(all.files = T) # now it shows all the files!
file.show(".Rhistory") # display the history file, a text file is ok
file.show(".RData") # a binary data can't be displayed

R's working directory and workspace

Creating a shortcut on the desktop to the working directory

R's working directory

On Windows explorer, right click on the
working directory and choose “Send To”, then
choose “Desktop (create shortcut)”

programming R workspace
References/to learn more:

Basic statistics using R pp. 76
Jarno Tuimala (CSC) and Dario Greco (HY)
http://www.csc.fi/english/csc/courses/archive/R2008s

Aprendizaje del software estadístico R: un entorno para simulación y computación estadística
Prof. Alberto muñoz garcía
Departamento de Estadística
Universidad Carlos III de Madrid
http://ocw.uc3m.es/estadistica/aprendizaje-del-software-estadistico-r-un-entorno-para-
simulacion-y-computacion-estadistica/resolveUid/a70c8973cb8798b0bd0e6bdf7abd6ec7

Introductory Statistics with R
Peter Dalgaard, pp 31
2012 Springer

Quick-R
Rob Kabacoff
http://www.statmethods.net/interface/workspace.html

Data Structures in R

All objects are vectors

there are five other classes
for the basic data structures

Factor

Matrix

Array

Dataframe

list

Data Structures in R

3 types of vectors

Numeric

Character

Boolean {true, false}

A vector is a dynamic array, that is, a unidimensional array that can be resized and
allows elements to be added or removed.

Vector elements are numbered from 1 to n, n is the size of the vector. Elements can be
accessed through their index with square brackets [], negative indeces = exclusion

4 ways to create vectors

: - colon operator

c() - "concatenate" function

seq() - "sequence" function

rep() - repetition function

> c(734, 985, 43, 952)
[1] 734 985 43 952
> c("Helsinki","Tampere","Turku")
[1] "Helsinki" "Tampere" "Turku"
> c(T,F,F,F,T,F,T,F,T,T)
 [1] TRUE FALSE FALSE FALSE TRUE
FALSE TRUE FALSE TRUE TRUE

a

b

c

d

Vector

Data Structures in R
: - colon operator

Generates regular sequences from a starting value of the sequence to an end value of the
sequence. The values are either a number (numeric or integer) or a factor.
The first element is from and the next ones' are from plus or minus one, up to or down to to.

Syntax:
from:to

The increment is always 1 or -1 for numeric arguments.
If from is integer then the result is integer, regardless of to.

from:to is equivalent to seq(from, to)

> 2:5 # sequence of numbers from 2 to 5
[1] 2 3 4 5
> 5:2 # sequence of numbers from 5 down to 2
[1] 5 4 3 2
> -3:4 # sequence of numbers from -3 to 4
[1] -3 -2 -1 0 1 2 3 4
> 0:pi # sequence of numbers from 0 to π
[1] 0 1 2 3
> pi:7 # sequence of numbers from π to 7
[1] 3.141593 4.141593 5.141593 6.141593

F(n+1) = F(n) + 1
or
F(n+1) = F(n) - 1

N integer implies F(n) integer
N real implies F(n) real

Data Structures in R

c() - "concatenate" function

Combine Values into a Vector or List.

c(myobj1, ..., myobjN, recursive=FALSE) combines all arguments from myobj1 to myobjN,
with each element of the object as an element of the resulting vector, unless the object is a
list, in which case the list is stored as one element of the resulting vector.

c(myobj1, ..., myobjN, recursive=TRUE) recursively combines all arguments from myobj1
to myobjN, with each element of the object as an element of the resulting vector, if the
object can be listed, that is split into its elements.

> c(734, 985, 43, 952) # numeric vector
[1] 734 985 43 952
> c("Helsinki","Tampere","Turku") # string vector
[1] "Helsinki" "Tampere" "Turku"
> c(T,F,F,F,T,F,T,F,T,T) # logical vector
 [1] TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE
> c(23,10:16) # numeric vector
[1] 23 10 11 12 13 14 15 16
> c(T,F,F,5) # numeric vector
[1] 1 0 0 5
> c(1:5, 10.5, "next") # string vector
[1] "1" "2" "3" "4" "5" "10.5" "next"

Data Structures in R

The elements of a vectors are of one data type only (Boolean, Numeric or
Character) and mixing data types results in automatic data conversion.
Order of conversion: boolean numeric character

> c(T,F,F,55) # boolean becomes numeric
[1] 1 0 0 55
> c(TRUE, FALSE, F, "Turku") # boolean becomes character
[1] "TRUE" "FALSE" "FALSE" "Turku"
> c(734, 985, "Turku") # numeric becomes character
[1] "734" "985" "Turku"
> c(TRUE, FALSE, F, T, -7.34, 72+9i, "Turku") # boolean and numeric become
character
[1] "TRUE" "FALSE" "FALSE" "TRUE" "-7.34" "72+9i" "Turku"

Data Structures in R
seq - "sequence" function

Generate regular sequences:
seq(from = 1, to = 1, by = ((to - from)/(length.out - 1)), length.out = NULL, along.with
= NULL, ...)

Arguments
... arguments passed to or from methods.
from, to the starting and (maximal) end value of the sequence.
by number: increment of the sequence.
length.out desired length of the sequence. A non-negative number, which for seq and
seq.int will be rounded up if fractional.
along.with take the length from the length of this argument.

> seq(4, 9) # same as 4:9
[1] 4 5 6 7 8 9
> seq(1,10, by= 3) # numbers starting at 1, incrementing by 3, up to 10
[1] 1 4 7 10
> seq(1,15, length.out= 6) # 6 numbers evenly spaced between 1 and 15
[1] 1.0 3.8 6.6 9.4 12.2 15.0
> seq(along.with= 4:8) # the length of this argument will be the length of the output
[1] 1 2 3 4 5
> seq(7) # same as 1:7
[1] 1 2 3 4 5 6 7
> seq(length.out= 7) # same as 1:7
[1] 1 2 3 4 5 6 7
> seq(1,by=3, length.out= 9) # 9 numbers, starting in 1, incremented by 3
[1] 1 4 7 10 13 16 19 22 25

F(n+1) = F(n) + 1, F(n) [4, 9]

F(n+1) = F(n) + 3, F(n) [1, 10] the result is between 1 and 10

F(n+1) = F(n) + x, F(n) [1, 15] x = (15-1)/(6-1)

Data Structures in R

rep() - repetition function

Replicate elements of vectors and lists

rep(x, times, length.out, each)

Arguments
x is a scalar, a vector (including a list) or a pairlist or a factor
... further arguments:
times - a scalar or vector with the number of times repeat each element if times has the
same length as the input, or to repeat the whole vector if times has length 1
length.out - an integer with the length of the result
each - an integer with the number of times each element of the input will be repeated

rep(x, times=1, length.out=NA, each=1) this is the default action

Data Structures in R

rep() - repetition function

> rep(14,3) # repeat number 14, 3 times
[1] 14 14 14
> rep(c(8,3,7),1:3) # repeat number 8, once, number 3, twice and number 7, thrice
[1] 8 3 3 7 7 7
> rep(c(8,3,7),1:3,4) # repeat number 8, 3 and 7 but limit the result to 4 elements
[1] 8 3 7 8
> rep(c(8,3,7),each=3) # repeat number 8, number 3 and number 7, thrice
[1] 8 8 8 3 3 3 7 7 7
> rep(c(8,3,7), length.out=7,each=3) # repeat number 8, number 3 and number 7, thrice -
but limit the result to 7 elements
[1] 8 8 8 3 3 3 7
> rep(c(8,3,7), times=2,each=3) # repeat number 8, number 3 and number 7, thrice - do this
twice
 [1] 8 8 8 3 3 3 7 7 7 8 8 8 3 3 3 7 7 7
> rep(c(8,3,7), times=2,length.out=15,each=3) # repeat number 8, number 3 and number 7,
thrice - do this twice and limit the result to 15 elements
 [1] 8 8 8 3 3 3 7 7 7 8 8 8 3 3 3

Data Structures in R
rep(14,3) # repeat number 14, 3 times
rep(14,4)
rep(14,5)

rep(c(8,3,7),1:3) # repeat number 8, once, number 3, twice and number 7, thrice
rep(c(8,3,7),2:4)
rep(c(8,3,7),3:5)

rep(c(8,3,7),1:3,4) # repeat number 8, 3, and 7 but limit the result to 4 elements
rep(c(8,3,7),1:3,5)
rep(c(8,3,7),1:3,6)

rep(c(8,3,7),each=3) # repeat number 8, number 3 and number 7, thrice
rep(c(8,3,7),each=4)
rep(c(8,3,7),each=5)

rep(c(8,3,7), length.out=7,each=3) # repeat number 8, number 3 and number 7, thrice -
but limit the result to 7 elements
rep(c(8,3,7), length.out=8,each=3)
rep(c(8,3,7), length.out=9,each=3)

rep(c(8,3,7), times=2,each=3) # repeat number 8, number 3 and number 7, thrice - do
this twice
rep(c(8,3,7), times=3,each=3)
rep(c(8,3,7), times=4,each=3)

Data Structures in R

3 ways to extract vector
elements

By the element index(es)

By a logical expression

By keys

Extracting vector elements, or subsets

a

b

c

d

myvector

1
2
3
4

Indices values

On vector "myvector"
Element 1 has value "a"

> myvec <- c(734, 985, 43, 952, 67, 28, 235, 885, 193)
> myvec
[1] 734 985 43 952 67 28 235 885 193
> myvec[5] # 5th element, starring Bruce Willis
[1] 67
> myvec[c(1,5,7)] # elements 1, 5 and 7
[1] 734 67 235
> myvec[-5] # all but the 5th element
[1] 734 985 43 952 28 235 885 193
> myvec[-c(1,5,7)] # all but elements 1, 5 and 7
[1] 985 43 952 28 885 193
> myvec[4:6] # elements 4 to 6
[1] 952 67 28

Extracting vector elements by the element index(es)

Data Structures in R

a

b

c

d

myvector

1
2
3
4

Indices values

Data Structures in R

Extracting vector elements by a logical expression

The elements are selected by their value, regardless of their index

> myvec <- c(734, 985, 43, 952, 67, 28, 235, 885, 193)
> myvec
[1] 734 985 43 952 67 28 235 885 193
> myvec[myvec > 500] # only elements above 500
[1] 734 985 952 885
> myvec[(myvec %% 2)==0] # only even elements
[1] 734 952 28
> myvec[myvec %in% 100:500] # elements with values from 100 to 500
[1] 235 193

a

b

c

d

myvector

1
2
3
4

Indices values

Data Structures in R

Extracting vector elements by keys

A key (name) can be used to access the vector's elements

The comand names() will add names to an existing vector, or they can be defined
when creating the vector

> myvec <- c(734, 985, 43)
> myvec
[1] 734 985 43
> names(myvec) <- c("Helsinki","Tampere","Turku")
> myvec
Helsinki Tampere Turku
 734 985 43
> myvec["Helsinki"]
Helsinki
 734
> myvec[c("Turku","Tampere")]
 Turku Tampere
 43 985
> myvec2 <- c(Helsinki=734, Tampere=985, Turku=43)
> myvec2
Helsinki Tampere Turku
 734 985 43

Data Structures in R

subset

Subset returns subsets of vectors, matrices or data frames

subset(x, subset, ...)

for matrix or data frame:
subset(x, subset, select, drop = FALSE, ...)

x object to be subsetted.
subset logical expression indicating elements or rows to keep: missing values
are taken as false.
select expression, indicating columns to select from a data frame.
drop passed on to [indexing operator.
... further arguments to be passed to or from other methods.

subset(airquality, Temp > 80, select = c(Ozone, Temp))
subset(airquality, Day == 1, select = -Temp)
subset(airquality, select = Ozone:Wind)

Data Structures in R

> myvec1 <- c(3,6,7,8,12,23,94)
> 10 + myvec1 # adding a scalar
[1] 13 16 17 18 22 33 104
> 3 * myvec1 # multiplying by a scalar
[1] 9 18 21 24 36 69 282
> myvec1 ^ 2 # power by a scalar
[1] 9 36 49 64 144 529 8836
> log(myvec1) # natural logarithm
[1] 1.098612 1.791759 1.945910 2.079442 2.484907 3.135494 4.543295
> sin(myvec1) # sine
[1] 0.1411200 -0.2794155 0.6569866 0.9893582 -0.5365729 -0.8462204 -0.2452520
> myvec2 <- c(5,7,8,152,71,77,89)
> myvec1 + myvec2 # vector addition
[1] 8 13 15 160 83 100 183
> myvec1 * myvec2 # vector multiplicaton
[1] 15 42 56 1216 852 1771 8366

Operations on vectors

Most operations for scalars will work on vectors

Data Structures in R

> myvec1 <- c(3,6,7,8,12,23,94)
> myvec2 <- c(5,7,8,152,71,77)
> union(myvec1, myvec2) # set union
 [1] 3 6 7 8 12 23 94 5 152 71 77
> c(myvec1,myvec2) # notice the difference betwen union() and c()
 [1] 3 6 7 8 12 23 94 5 7 8 152 71 77
> intersect(myvec1, myvec2) # set intersection
[1] 7 8
> setdiff(myvec1, myvec2) # set difference
[1] 3 6 12 23 94
> setequal(myvec1, myvec2) # set equality
[1] FALSE
> is.element(4, myvec1) # set membership, is.element and %in% are synonims
[1] FALSE
> is.element(6, myvec1) # set membership
[1] TRUE
> 4 %in% myvec1 # set membership
[1] FALSE
> 6 %in% myvec1 # set membership
[1] TRUE

Vector set operations

set operations (union, intersection, asymmetric difference, equality and membership) on two
vectors.
Union() is not the same as concatenation c() because c() will duplicate values that are
common to both vectors.

Data Structures in R

Sorting functions for vectors

> myvec <- c(734, NA, 985, 43, NA, 952, 67)
> myvec
[1] 734 NA 985 43 NA 952 67
> sort(myvec) # Sort a vector or factor
[1] 43 67 734 952 985
> sort(myvec, decreasing = TRUE) # Sort a vector or factor, decreasing
[1] 985 952 734 67 43
> rev(myvec) # Reverse elements
[1] 67 952 NA 43 985 NA 734
> unique(myvec) # Get non duplicate elements of a vector
[1] 734 NA 985 43 952 67
> order(myvec) # Sort an object, return the indeces
[1] 4 7 1 6 3 2 5
> order(myvec, na.last = FALSE) # Sort an object, return the indeces, NA at the begining
[1] 2 5 4 7 1 6 3
> order(myvec, na.last = TRUE) # Sort an object, return the indeces, NA at the end
[1] 4 7 1 6 3 2 5
> order(myvec, decreasing = FALSE) # Sort an object, return the indeces,increasing
[1] 4 7 1 6 3 2 5
> order(myvec, decreasing = TRUE) # Sort an object, return the indeces, decreasing
[1] 3 6 1 7 4 2 5

Data Structures in R

Difference and length functions for vectors

> myvec <- c(734, 985, 43, 952, 67, 28, 235, 885, 193)
> myvec
[1] 734 985 43 952 67 28 235 885 193
> diff(myvec) # difference between elements
[1] 251 -942 909 -885 -39 207 650 -692
> c(myvec[2]-myvec[1],myvec[3]-myvec[2],myvec[4]-myvec[3],myvec[5]-myvec[4])
[1] 251 -942 909 -885
> diff(myvec, lag = 2) # difference between elements, with a lag of 2
[1] -691 -33 24 -924 168 857 -42
> c(myvec[3]-myvec[1],myvec[4]-myvec[2],myvec[5]-myvec[3])
[1] -691 -33 24
> diff(myvec, differences = 2) # order of the difference of 2
[1] -1193 1851 -1794 846 246 443 -1342
> length(myvec) # Get the length of the vector
[1] 9
> length(myvec) <- 12 # Set the length of the vector
> myvec
 [1] 734 985 43 952 67 28 235 885 193 NA NA NA
> length(myvec) # Get the length of the vector
[1] 12

Data Structures in R

Statistical functions for vectors

> myvec1 <- c(3,6,7,8,12,23,94)
> summary(myvec1) # Min. 1st Qu. Median Mean 3rd Qu. Max.
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 3.00 6.50 8.00 21.86 17.50 94.00
> min(myvec1) # Min
[1] 3
> quantile(myvec1, probs=0.25) # 1st Qu.
25%
6.5
> median(myvec1) # median
[1] 8
> quantile(myvec1, probs=0.5) # median = 2nd Qu.
50%
 8
> mean(myvec1) # mean
[1] 21.85714
> quantile(myvec1, probs=0.75) # 3rd Qu.
 75%
17.5
> max(myvec1) # max
[1] 94

Data Structures in R

> quantile(myvec1, probs=c(0.25, 0.75)) # 1st Qu. and 3rd Qu.
 25% 75%
 6.5 17.5
> IQR(myvec1) # inter-quartile range
[1] 11
> mad(myvec1) # robust alternative to IQR
[1] 5.9304
> sd(myvec1) # standard deviation
[1] 32.46243
> var(myvec1) # variance
[1] 1053.810

Statistical functions for vectors

Data Structures in R

any(..., na.rm = FALSE) returns TRUE if at least one value is TRUE
all(..., na.rm = FALSE) returns TRUE if all the values are TRUE

na.rm = TRUE will ignore all the NAs

> #compare vectors, all elements are equal
> x <- c(7, 5, 6)
> y <- c(7, 5, 6)
> x==y
[1] TRUE TRUE TRUE
> all(x==y)
[1] TRUE
> any(x==y)
[1] TRUE
>
> #compare vectors, one element is equal
> x <- c(7, 5, 6)
> y <- c(7, 8, 9)
> x==y
[1] TRUE FALSE FALSE
> all(x==y)
[1] FALSE
> any(x==y)
[1] TRUE

> #compare vectors, regardless
of element position
> x <- c(7, 5, 6)
> y <- c(5, 7, 6)
> x==y
[1] FALSE FALSE TRUE
> sort(x)==sort(y)
[1] TRUE TRUE TRUE

Data Structures in R

> # comparing 2 vectors, by position and with NAs
> x <- y <- c(7, 6, NA, NA, 5)
> all(x==y)
[1] NA
> all(x==y , na.rm = TRUE)
[1] TRUE
> identical(x, y)
[1] TRUE
> all.equal(x, y)
[1] TRUE
> x[!is.na(x)]==y[!is.na(y)]
[1] TRUE TRUE TRUE
> all(x[!is.na(x)]==y[!is.na(y)])
[1] TRUE
>
> # NA OR TRUE is TRUE
> # this will return TRUE despite the NAs
> any(x==y)
[1] TRUE
> # this will return NA, not FALSE
> y <- c(1, NA, 2, 3, 4)
> any(x==y)
[1] NA

Data Structures in R
Matrix

A matrix is a two-dimensional (m X n) object, like 2 or more vectors of the same size,
side by side.
A matrix ha sonly one data type, automatic data conversion like a vector and the
functions that apply to vectors also apply to matrices, excluding a few specific ones'.

a t i

b g k

c b m

Numeric

Character

Boolean {true, false}

matrix() - matrix function

rbind() - row bind function

cbind() - column bind function

3 types of matrices

3 ways to create matrices

matrix()

matrix creates a matrix from a set of values

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)

Arguments
data an optional data vector
nrow the desired number of rows
ncol the desired number of columns
byrow if TRUE, the matrix is filled by rows
dimnames list of names for rows or rows and columns

as.matrix tries to convert an object to a matrix.

is.matrix returns TRUE if an object is a matrix

Data Structures in R

Data Structures in R
> matrix(10,3,2) # matrix 3 x 2 with 5's
 [,1] [,2]
[1,] 10 10
[2,] 10 10
[3,] 10 10
> matrix(c(1,2,3),3,2)# matrix 3 x 2 with 2 columns with values [1,2,3]
 [,1] [,2]
[1,] 1 1
[2,] 2 2
[3,] 3 3
> matrix(c(1,2),3,2,byrow = T)# matrix 3 x 2 with 3 rows with values [1,2]
 [,1] [,2]
[1,] 1 2
[2,] 1 2
[3,] 1 2
> matrix(1:6,3,2)# matrix 3 x 2 with ascending values from each column
 [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
> matrix(1:6,3,2,byrow = T)# matrix 3 x 2 with ascending values from each row
 [,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

Data Structures in R

> mymatrix <- matrix(1:6,2,3,dimnames = list(c("row1", "row2"),c("col1", "col2", "col3")))
> mymatrix # row and column names
 col1 col2 col3
row1 1 3 5
row2 2 4 6
> mymatrix1 <- matrix(1:6,2,3,dimnames = list(c("row1", "row2")))
> mymatrix1 # row names
 [,1] [,2] [,3]
row1 1 3 5
row2 2 4 6
> mymatrix2 <- matrix(1:6,2,3,dimnames = list(NULL,c("col1", "col2", "col3")))
> mymatrix2 # column names
 col1 col2 col3
[1,] 1 3 5
[2,] 2 4 6

Setting row and column names

Data Structures in R

> #using colnames, rownames
> mymatrix3 <- matrix(1:6,2,3)
> colnames(mymatrix3) = c("col1", "col2", "col3") # adding column names
> rownames(mymatrix3) = c("row1", "row2") # adding row names
> mymatrix3
 col1 col2 col3
row1 1 3 5
row2 2 4 6
> #using dimnames
> mymatrix4 <- matrix(1:6,2,3)
> dimnames(mymatrix4) = list(c("row1", "row2"),c("col1", "col2", "col3"))
> mymatrix4
 col1 col2 col3
row1 1 3 5
row2 2 4 6

Setting row and column names, or changing them, on an existing matrix

Data Structures in R

cbind(), rbind()

Combine vector, matrix or data frames by columns or rows

> myvec <- seq(0,by=2, length.out= 8)
> rbind(myvec, 1:8)
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
myvec 0 2 4 6 8 10 12 14
 1 2 3 4 5 6 7 8
> cbind(myvec, 1:8)
 myvec
[1,] 0 1
[2,] 2 2
[3,] 4 3
[4,] 6 4
[5,] 8 5
[6,] 10 6
[7,] 12 7
[8,] 14 8

Data Structures in R
Extracting matrix elements

> mymatrix <- matrix(1:6*10,3,2)
> mymatrix
 [,1] [,2]
[1,] 10 40
[2,] 20 50
[3,] 30 60
> mymatrix[1,1] # row 1, column 1
[1] 10
> mymatrix[3,2] # row 3, column 2
[1] 60
> mymatrix[1] # row 1, column 1
[1] 10
> mymatrix[2] # row 2, column 1
[1] 20
> mymatrix[2,1:2] # row 2, column 1 and 2
[1] 20 50
> mymatrix[1,] # row 1
[1] 10 40
> mymatrix[2,] # row 2
[1] 20 50
> mymatrix[,1] # column 1
[1] 10 20 30
> mymatrix[,2] # column 2
[1] 40 50 60

mymatrix <- matrix(1:6*10,3,2)

if the row or column index is not
specified, the whole row or column
is taken
mymatrix[1,] # row 1
mymatrix[1,1:2] # row 1, all columns
explicitly selected
mymatrix[,1] # column 1
mymatrix[1:3,1] # column 1, all rows
explicitly selected

mymatrix[,] # if the row and column
index are not specified, it's the
same
mymatrix # as the whole matrix

a single index will show the matrix
elements by the order of insertion
which is columns from top to
botton, rows from left to right
mymatrix[1]
mymatrix[2]
mymatrix[3]
mymatrix[4]
mymatrix[1:6]

Data Structures in R

> mymatrix <- matrix(1:6*10,3,2)
> mymatrix
 [,1] [,2]
[1,] 10 40
[2,] 20 50
[3,] 30 60
> mymatrix[-1,-1] # remove row 1 and column 1
[1] 50 60
> mymatrix[-1,] # remove row 1
 [,1] [,2]
[1,] 20 50
[2,] 30 60
> mymatrix[-2,] # remove row 2
 [,1] [,2]
[1,] 10 40
[2,] 30 60
> mymatrix[,-1] # remove column 1
[1] 40 50 60
> mymatrix[,-2] # remove column 2
[1] 10 20 30

Negative indices remove rows or columns

Extracting matrix elements by row or column names

Data Structures in R

> mymatrix <- matrix(1:6*10,2,3,dimnames = list(c("row1", "row2"),c("col1", "col2", "col3")))
> mymatrix
 col1 col2 col3
row1 10 30 50
row2 20 40 60
> mymatrix["row1","col1"]# row 1, column 1
[1] 10
> mymatrix["row2",]# row 2
col1 col2 col3
 20 40 60
> mymatrix[,c("col1","col3")]# column 1 and column 3
 col1 col3
row1 10 50
row2 20 60

> mymatrix <- matrix(1:6*10,2,3,dimnames = list(c("row1", "row2"),c("col1", "col2", "col3")))
> mymatrix
 col1 col2 col3
row1 10 30 50
row2 20 40 60
> dim(mymatrix) # dimensions of the matrix, 2 x 3
[1] 2 3
> length(mymatrix) # number of elements
[1] 6
> dimnames(mymatrix) # dimension names (rows and columns names')
[[1]]
[1] "row1" "row2"

[[2]]
[1] "col1" "col2" "col3"

> colnames(mymatrix) # rows names
[1] "col1" "col2" "col3"
> rownames(mymatrix) # columns names
[1] "row1" "row2"
> mode(mymatrix) # Storage Mode of this Object
[1] "numeric"
> is(mymatrix) # all the super-classes of this object's class
[1] "matrix" "array" "structure" "vector"
> class(mymatrix) # class attribute or the implicit class of this object
[1] "matrix"

Data Structures in R
Matrix info

Data Structures in R

> myvec <- seq(1,by=3, length.out= 9)
> mymatrix1 <- matrix(myvec,3,3)
> mymatrix2 <- matrix(9:1,3,3)
> # component-wise multiplication
> mymatrix1 * mymatrix2
 [,1] [,2] [,3]
[1,] 9 60 57
[2,] 32 65 44
[3,] 49 64 25
> # matrix multiplication
> mymatrix1 %*% mymatrix2
 [,1] [,2] [,3]
[1,] 222 132 42
[2,] 294 177 60
[3,] 366 222 78
> # matrix transpose
> t(mymatrix1)
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 10 13 16
[3,] 19 22 25

> myvec
[1] 1 4 7 10 13 16 19 22 25
> mymatrix1
 [,1] [,2] [,3]
[1,] 1 10 19
[2,] 4 13 22
[3,] 7 16 25
> mymatrix2
 [,1] [,2] [,3]
[1,] 9 6 3
[2,] 8 5 2
[3,] 7 4 1

Matrix calculations

Data Structures in R
Matrix calculations

> diag(1:4) # diagonal matrix 4 X 4
 [,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 2 0 0
[3,] 0 0 3 0
[4,] 0 0 0 4
> diag(1,2) # Identity matrix 2 X 2
 [,1] [,2]
[1,] 1 0
[2,] 0 1
> mymatrix <- matrix(1:9*10,3,3)
> det(mymatrix) # Determinant
[1] -5.32907e-13
> sum(diag(mymatrix)) # trace of a matrix
[1] 150
> eigen(mymatrix)$values # Eigenvalues
[1] 1.611684e+02 -1.116844e+01 -5.019627e-15
> eigen(mymatrix)$vectors # Eigenvectors
 [,1] [,2] [,3]
[1,] -0.4645473 -0.8829060 0.4082483
[2,] -0.5707955 -0.2395204 -0.8164966
[3,] -0.6770438 0.4038651 0.4082483

Data Structures in R
Matrix calculations

chol() Choleski factorization of a real symmetric positive-definite square matrix
qr() QR decomposition of a matrix
svd() singular-value decomposition of a rectangular matrix
crossprod() matrix cross-product
outer() outer product of arrays
scale() Scaling and centering of matrix
solve() Solve a system of equations
svd() singular-value decomposition of a rectangular matrix

Changing the matrix's elements

Data Structures in R

> #adding one row
> mymatrix <- matrix(1:6,2,3,byrow=T)
> mymatrix
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
> mymatrix <- rbind(mymatrix, 7:9)
> mymatrix
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
> #adding one column
> mymatrix <- cbind(mymatrix, seq(3.5,by=3,length.out = 3))
> mymatrix
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 3.5
[2,] 4 5 6 6.5
[3,] 7 8 9 9.5

Changing the matrix's elements

Data Structures in R

> #changing an entire row
> mymatrix[3,] <- 1:4
> mymatrix
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 3.5
[2,] 4 5 6 6.5
[3,] 1 2 3 4.0
> #changing an entire column
> mymatrix[,4] <- 7:9
> mymatrix
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 7
[2,] 4 5 6 8
[3,] 1 2 3 9
> #deleting one row
> mymatrix <- mymatrix[-2,]
> mymatrix
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 7
[2,] 1 2 3 9
> #deleting one column
> mymatrix <- mymatrix[,-4]
> mymatrix
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 1 2 3

Data Structures in R
Applying functions on matrix/array elements

apply() returns a vector or array or list, after applying a function to each of its members

apply(object, margin, function, ...)

object is the input array
margin are the subscripts where to apply the function, 1 indicates rows, 2 indicates
columns, c(1,2) indicates rows and columns
function
... optional arguments for the function

> mymatrix <- matrix(1:6*10,2,3)
> mymatrix
 [,1] [,2] [,3]
[1,] 10 30 50
[2,] 20 40 60
> apply(mymatrix,1,max) # rows
[1] 50 60
> apply(mymatrix,2,max) # columns
[1] 20 40 60
> apply(mymatrix,c(1,2),max) # rows and columns, useless

#try:
apply(mymatrix,1,mean) # rows
apply(mymatrix,2,mean) # columns

#try:
apply(mymatrix,1,sort) # rows
apply(mymatrix,2,sort) # columns

Data Structures in R

Array

An array is a three-dimensional (m X n X p) object, like 2 or more matrices of the same
dimensions, side by side.
An array has only one data type, automatic data conversion like a vector or matrix and
the functions that apply to vectors and matrices also apply to arraya, excluding a few
specific ones'.

array(data = NA, dim = length(data), dimnames = NULL) creates an array from data,
dim are the dimensions and dimnames are optional names for the dimensions

as.array() tries to convert an object to an array

is.array() returns TRUE if the object is an array

2 6 10 14

8 19 17 16

1 5 9 13

3 7 11 15

=

Dimension z = 1

Dimension z = 2

Data Structures in R
2 6 10 14

8 19 17 16

1 5 9 13

3 7 11 15

=

> array(c(1,3,5,7,9,11,13,15,2,8,6,19,10,17,14,16),c(2,4,2))
, , 1

 [,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 3 7 11 15

, , 2

 [,1] [,2] [,3] [,4]
[1,] 2 6 10 14
[2,] 8 19 17 16

Notice how the element
values are inserted by column

Data Structures in R
2 6 10 14

8 19 17 16

1 5 9 13

3 7 11 15

=

> # turning matrices into arrays
> # passing data by rows
> m1 <- matrix(c(1,5,9,13,3,7,11,15),2,4, byrow=T)
> m2 <- matrix(c(2,6,10,14,8,19,17,16),2,4, byrow=T)
> array(c(m1,m2),c(2,4,2))
, , 1

 [,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 3 7 11 15

, , 2

 [,1] [,2] [,3] [,4]
[1,] 2 6 10 14
[2,] 8 19 17 16

Data Structures in R

Adding dimension names

56 174 75 77

67 166 55 70
Men

Women

City
Age Hgt Wgt BPM

64 178 78 63

77 170 59 61
Men

Women

Countryside
Age Hgt Wgt BPM

This data is fake, can anyone get real data?

> myarray<-array(c(56,67,174,166,75,55,77,70,64,77,178,170,78,59,63,61),c(2,4,2))
> dimnames(myarray) = list(c("men","women"),c("age","height","weight","pulse"),
+ c("city","countryside"))
> myarray
, , city

 age height weight pulse
men 56 174 75 77
women 67 166 55 70

, , countryside

 age height weight pulse
men 64 178 78 63
women 77 170 59 61

dimension names defined directly:
myarray2<-
array(c(56,67,174,166,75,55,77,70,64,77,178,170,
78,59,63,61),c(2,4,2), dimnames =
list(c("men","women"),c("age","height","weight","pul
se"),c("city","countryside")))

or

Data Structures in R
Accesing the array's elements

City

 Age Hgt Wgt BPM

64 178 78 63

77 170 59 61
56 174 75 77

67 166 55 70

Men
Women

Countryside
Age Hgt Wgt BPM

Men
Women

> dimnames(myarray)
[[1]]
[1] "men" "women"

[[2]]
[1] "age" "height" "weight" "pulse"

[[3]]
[1] "city" "countryside"

> myarray["women",,] # women's all info, all cities
 city countryside
age 67 77
height 166 170
weight 55 59
pulse 70 61
> myarray["women",,"countryside"] # women's all info, countryside
 age height weight pulse
 77 170 59 61
> myarray[,,"countryside"] # all info, countryside
 age height weight pulse
men 64 178 78 63
women 77 170 59 61
> myarray[, "height",] # height
 city countryside
men 174 178
women 166 170

Same, with indices

myarray[2,,] # women's all info, all cities
myarray[2,, 2] # women's all info,
countryside
myarray[,,2] # all info, countryside
myarray[, 2,] # height

Data Structures in R

Operations on the array's elements

City

 Age Hgt Wgt BPM

64 178 78 63

77 170 59 61
56 174 75 77

67 166 55 70

Men
Women

Countryside
Age Hgt Wgt BPM

Men
Women

> apply(myarray,1,max) # rows
 men women
 178 170
> apply(myarray,2,max) # columns
 age height weight pulse
 77 178 78 77
> apply(myarray,c(1,2),max) # rows and columns
 age height weight pulse
men 64 178 78 77
women 77 170 59 70

Meaningless, age vs htg...

Oldest, tallest...

Oldest, tallest... by gender

apply(myarray,2,mean) # columns mean
apply(myarray,c(1,2),mean) # rows and columns mean
apply(myarray,2,quantile) # columns quartiles
apply(myarray,c(1,2),quantile) # rows and columns quartiles

apply(myarray,2,quantile,.5) # columns median

Changing the array's elements

Data Structures in R

City

 Age Hgt Wgt BPM

64 178 78 63

77 170 59 61
56 174 75 77

67 166 55 70

Men
Women

Countryside
Age Hgt Wgt BPM

Men
Women

myarray <- array(c(56,67,174,166,75,55,77,70,64,77,178,170,78,59,63,61),c(2,4,2))
dimnames(myarray) = list(c("men","women"),c("age","height","weight","pulse"),
c("city","countryside"))

myarray <- myarray[, -4,] # remove pulse, by index
myarray <- myarray[, colnames(myarray) != "age",] # remove age, by column name

myarray <- array(c(myarray,c(167,162,75,60,179,168,77,65)),c(2,2,4)) # adding 2 "places"
dimnames(myarray) = list(c("men","women"),c("height","weight"), c("city","countryside",
"p1","p2"))

Data Structures in R
List

A list is a vector containing elements of different types

The elements are accessible by indices, like on a vector,
there is just an extra square bracket [] for the list index
and there might be other indices from contained
elements.

vector
matrix
array
dataframe
list

> myvec <- 3:8
> mymatrix <- matrix(6:1*10,3,2)
> mydataframe <- as.data.frame(mymatrix)
> mylist <- list(myvec, mymatrix, mydataframe, 56,"test")
> mylist[[1]][1]
[1] 3
> mylist[[1]][2]
[1] 4
> mylist[[2]][1,1]
[1] 60
> mylist[[3]]$V1[2]
[1] 50
> mylist[[4]]
[1] 56
> mylist[[5]]
[1] "test"

> mylist
[[1]]
[1] 3 4 5 6 7 8

[[2]]
 [,1] [,2]
[1,] 60 30
[2,] 50 20
[3,] 40 10

[[3]]
 V1 V2
1 60 30
2 50 20
3 40 10

[[4]]
[1] 56

[[5]]
[1] "test"

Data Structures in R

> myvec <- 3:8
> mymatrix <- matrix(6:1*10,3,2)
> mydataframe <- as.data.frame(mymatrix)
> mylist <- list(mv=myvec, mm=mymatrix,
mdf=mydataframe, mn=56,ms="test")
> mylist$mv[1]
[1] 3
> mylist$mv[2]
[1] 4
> mylist$mm[1,1]
[1] 60
> mylistmdfV1[2]
[1] 50
> mylist$mn
[1] 56
> mylist$ms
[1] "test"

Naming the elements of the list is recommended

> mylist
$mv
[1] 3 4 5 6 7 8

$mm
 [,1] [,2]
[1,] 60 30
[2,] 50 20
[3,] 40 10

$mdf
 V1 V2
1 60 30
2 50 20
3 40 10

$mn
[1] 56

$ms
[1] "test"

Accessing the elements of the list

Data Structures in R

myvec <- 3:8
mymatrix <- matrix(6:1*10,3,2)
mydataframe <- as.data.frame(mymatrix)
mylist <- list(myvec, mymatrix, mydataframe, 56,"test")
is(mylist) # list, of course
length(mylist)
dim(mylist) # the dimensions of the elements don't count
mylist[1] # [1] <=> [[1]]
mylist[2]
mylist[3]
mylist[4]
mylist[5]
is(mylist[1]) # each element is a list
is(mylist[2])
is(mylist[3])
is(mylist[4])
is(mylist[5])
mylist[1:3]

Data Structures in R

Changing the elements of the list

> mylist
$mv
[1] 3 4 5 6 7 8

$mm
 [,1] [,2]
[1,] 60 30
[2,] 50 20
[3,] 40 10

$mdf
 V1 V2
1 60 30
2 50 20
3 40 10

$mn
[1] 56

$ms
[1] "test"

myvec <- 3:8
mymatrix <- matrix(6:1*10,3,2)
mydataframe <- as.data.frame(mymatrix)
mylist <- list(mv=myvec, mm=mymatrix,
mdf=mydataframe, mn=56,ms="test")
updating one element
mylist$ms <- "new test"
mylist$ms
mylist[[5]] <- "newer test"
mylist$ms
inserting two elements
mylist <- c(mylist,wname="Friday", mday=13)
mylist
deleting one element at a time
mylist$ms<- NULL
mylist[["mn"]]<- NULL
mylist[[1]]<- NULL
mylist

Data Structures in R

Using the $ notation

myvec <- 3:8
mymatrix <- matrix(6:1*10,3,2)
mydataframe <- as.data.frame(mymatrix)
mylist <- list(mv=myvec, mm=mymatrix, mdf=mydataframe, mn=56,ms="test")
inserting one element
mylist <- c(mylist,tree_info=list(family="Fagaceae", genus ="Fagus"))
mylist
mylist$tree_info # this is NULL, must specify the sub-elements
mylist$tree_info.family
mylist$tree_info.genus
mylist[["tree_info.family"]]

Data Structures in R
Factors

A factor is a vector that specifies a discrete clasification of other vectors. Factors store
categorical data, qualitative values, non numeric such as gender, job, color, species, model,
brand, etc... Or numeric but meaningless like model numbers or site numbers or zip codes.
> student.residence <-
c("Helsinki","Tampere","Turku","Helsinki","Helsinki","Turku","Oulu","Tampere","Helsinki","Tu
rku","Tampere","Helsinki")
> student.residence
 [1] "Helsinki" "Tampere" "Turku" "Helsinki" "Helsinki" "Turku"
 [7] "Oulu" "Tampere" "Helsinki" "Turku" "Tampere" "Helsinki"
> fstudent=as.factor(student.residence)
> fstudent
 [1] Helsinki Tampere Turku Helsinki Helsinki Turku Oulu Tampere
 [9] Helsinki Turku Tampere Helsinki
Levels: Helsinki Oulu Tampere Turku
> levels(fstudent)
[1] "Helsinki" "Oulu" "Tampere" "Turku"
> summary(fstudent)
Helsinki Oulu Tampere Turku
 5 1 3 3
> student.height=c(175,162,170,170,192,170,115,155,150,130,220,160)
> student.height
 [1] 175 162 170 170 192 170 115 155 150 130 220 160
> tapply(student.height,fstudent,mean)
Helsinki Oulu Tampere Turku
169.4000 115.0000 179.0000 156.6667

Sorted factors

Factor with levels of hierarchy

function ordered() turns a factor into a sorted factor

Data Structures in R

> # sort the cities by increasing longitude
> flevel.residence <- ordered(student.residence,
levels=c("Helsinki","Turku","Tampere","Oulu"))
> flevel.residence
 [1] Helsinki Tampere Turku Helsinki Helsinki Turku Oulu Tampere
 [9] Helsinki Turku Tampere Helsinki
Levels: Helsinki < Turku < Tampere < Oulu
> # check each student whether he/she lives south of Tampere
> flevel.residence < "Tampere"
 [1] TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE
TRUE

Data Structures in R
Data Frames

Data Frames are matrices with columns of different data types.

data.frame(..., row.names = NULL, check.rows = FALSE,
 check.names = TRUE,
 stringsAsFactors = default.stringsAsFactors())

... value or tag = value
row.names a column to be used as row names, or a vector with the row names
check.rows if TRUE then the rows are checked for consistency of length and names
check.names If TRUE then the names of the variables in the data frame are checked for
syntax and uniqueness
stringsAsFactors true if character vectors should be converted to factors

25 174 75 Pekka

22 166 55 Anna

Pekka
Anna

Age Hgt Wgt Name

> mydataf <- data.frame(age=c(25,22),height=c(174,166),weight=c(75,55),
city=c("Turku","Espoo"),row.names =c("Pekka","Anna"))
> mydataf
 age height weight city
Pekka 25 174 75 Turku
Anna 22 166 55 Espoo
> is(mydataf)
[1] "data.frame" "list" "oldClass" "vector"

Data Structures in R
Accessing the data frame's elements

> #getting the info for Anna
> mydataf[2,] # by index, row 2
 age height weight city
Anna 22 166 55 Espoo
> mydataf["Anna",] # by key
 age height weight city
Anna 22 166 55 Espoo
> #getting the weight for everybody
> mydataf[,3] # by index, column 3
[1] 75 55
> mydataf[,"weight"] # by key
[1] 75 55
> mydataf$weight # by list key
[1] 75 55

Data Structures in R
Sorting the data frame's elements

mydataf <- data.frame(age=c(25,22,26,28),height=c(174,166,174,170),weight=c(75,55,60,60),
city=c("Turku","Espoo","Kuopio","Helsinki"),row.names =c("Pekka","Anna","Ari","Tove"))
mydataf

#order by height
order(mydataf$height)
#order by name
order(row.names(mydataf))
#order by height and weight
order(mydataf$height, mydataf$weight)

#order by height
mydataf[order(mydataf$height),]
#order by name
mydataf[order(row.names(mydataf)),]
#order by height and weight
mydataf[order(mydataf$height, mydataf$weight),]
#order by height and weight, both decreasing
mydataf[order(mydataf$height, mydataf$weight, decreasing = T),]
#order by decreasing height and increasing weight
mydataf[order(-mydataf$height, mydataf$weight),]

Changing the data frame's elements
Data Structures in R

> mydataf <- data.frame(age=c(25,22),height=c(174,166),weight=c(75,55),
city=c("Turku","Espoo"),row.names =c("Pekka","Anna"))
> mydataf
 age height weight city
Pekka 25 174 75 Turku
Anna 22 166 55 Espoo
> mydataf <- cbind(mydataf,course=c("Math","Art")) # adding a column
> mydataf
 age height weight city course
Pekka 25 174 75 Turku Math
Anna 22 166 55 Espoo Art
> mydataf <- data.frame(mydataf, hobby=c("walking","reading")) # adding a column
> mydataf
 age height weight city course hobby
Pekka 25 174 75 Turku Math walking
Anna 22 166 55 Espoo Art reading
> mydataf <- rbind(mydataf,
zed=data.frame(age=28,height=199,weight=115,city="Oulu",course="Sports",hobby="sleep")) # adding
a row
> mydataf
 age height weight city course hobby
Pekka 25 174 75 Turku Math walking
Anna 22 166 55 Espoo Art reading
zed 28 199 115 Oulu Sports sleep

Data Structures in R
Operations on the data frame's elements

> mean(mydataf[,1]) # the mean of all ages
[1] 23.5
> mean(mydataf[,c("height","weight")]) # the mean of height, weight
height weight
 170 65
> apply(mydataf,2,mean) # ERROR!
 age height weight city
 NA NA NA NA
Warning messages:
1: In mean.default(newX[, i], ...) :
 argument is not numeric or logical: returning NA
2: In mean.default(newX[, i], ...) :
 argument is not numeric or logical: returning NA
3: In mean.default(newX[, i], ...) :
 argument is not numeric or logical: returning NA
4: In mean.default(newX[, i], ...) :
 argument is not numeric or logical: returning NA
> apply(mydataf[,1:3],2,mean) # the mean of age, height, weight
 age height weight
 23.5 170.0 65.0

Data Structures in R
with() evaluate an expression in a data environment
with(data, expr, ...)

data data to use for constructing an environment, a list, a data frame, or an integer
expr expression to evaluate
... arguments to be passed to future methods

library(MASS)

 anorex.1 <- glm(anorexia$Postwt ~ anorexia$Prewt + anorexia$Treat +
offset(anorexia$Prewt), family = gaussian)
 summary(anorex.1)

with(anorexia, {
 anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt), family = gaussian)
 summary(anorex.1)
})

Data Structures in R
lapply, sapply applies a function over a list or vector

lapply returns a list of the same length as X, each element of which is the result of applying FUN
to the corresponding element of X

sapply is a user-friendly version of lapply by default returning a vector or matrix if appropriate

lapply(X, FUN, ...)

sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

X a vector (atomic or list) or an expressions vector
FUN the function to be applied to each element of X
... optional arguments to FUN
simplify if TRUE the result is simplified to a vector or matrix if possible
USE.NAMES if TRUE and if X is character, use X as names for the result unless it had names
already
n number of replications
expr expression to evaluate repeatedly

at1 <- list(athlete="Johnson",coach="Earp",swimming=c(154,171,165), cycling=c(598,632,621),
running=c(1046,1102,1095),wetsuit=c(T,F,T))
compute the list mean for each list element
mean(at1)
mean(at1$swimming) # one at at time...
lapply(at1,mean)
sapply(at1,mean)

Statistical functions

mydataf <- data.frame(age=c(25,22),height=c(174,166),weight=c(75,55),
city=c("Turku","Espoo"),row.names =c("Pekka","Anna"))
mydataf
sapply(mydataf, mean, na.rm=TRUE)

Other functions useful for sapply:

sd, var, min, max, med, range, and quantile

summary will return the Min. 1st Qu. Median Mean 3rd Qu. Max.

summary(mydataf)

fivenum will return Tukey's five number summary (minimum, lower-hinge, median, upper-
hinge, maximum)

fivenum(mydataf[1:3])

Data Structures in R

Concatenate strings
paste("a","b","c")
paste("a","b","c",sep="")

Concatenate a vector of strings
myvec <- c("a","b","c")
paste(myvec)
paste(myvec,sep="",collapse="")

extract part of the string
mystr <- "Hello world!"
substring(mystr, 7, 11)

split a string into each character
mystr <- "Hello world!"
strsplit(mystr, "")

split a string into pieces, using regex
mystr <- "Hello world!"
strsplit(mystr, " ")
strsplit(mystr, "\\s")
strsplit(mystr, "[\\seo]")

string functions

Data Structures in R

find characters within the string, position + length
regexpr("e", mystr)

replace one substring within the string, once only
sub("l","+",mystr)

replace one substring within the string, for all matches
gsub("l","+",mystr)

format formats an R object for pretty printing

format(x, trim = FALSE, digits = NULL, nsmall = 0L,
 justify = c("left", "right", "centre", "none"),
 width = NULL, na.encode = TRUE, scientific = NA,
 big.mark = "", big.interval = 3L,
 small.mark = "", small.interval = 5L,
 decimal.mark = ".", zero.print = NULL, drop0trailing = FALSE, ...)

string functions

Data Structures in R

date functions

Sys.Date() # current date

date() # current date and time

Use theformat() function to print dates
%d day of the month (0-31)
%a short week day
%A long weekday
%m month (00-12)
%b short month
%B long month
%y 2-digit year
%Y 4-digit year

format(Sys.Date(), format="%d %B %Y")

Data Structures in R

Data Type Conversion

Checking the data type

is.numeric(), is.character(), is.vector(), is.matrix(), is.data.frame()

Explicit conversion

as.numeric(), as.character(), as.vector(), as.matrix(), as.data.frame)

Data Structures in R

 to

from

vector Factor Matrix Array Dataframe list

vector c(x,y) as.factor(myve
c,
labels=c("L1",
"L2", "L3"))
as.factor(myve
c,ordered=T,
labels=c("L1",
"L2", "L3"))

cbind(x,y)
rbind(x,y)

array(x) data.frame(
x,y)

list(x)

Factor ordered(f) list

Matrix as.vector(m
ymatrix)

array(x) as.data.fra
me(mymatri
x)

list

Array list

Dataframe mydataf[n,] as.matrix(m
yframe)

list

list unlist(mylist
)

Data Structures in R

Data Structures in R
Frequencies and Crosstabs

margin.table() compute the sum of table entries for a given index

margin.table(x, margin=NULL)

x an array
margin index number (1 for rows, etc...)

m <- matrix(1:9,3)
m
row sum
margin.table(m,1)
sum(m[1,]);sum(m[2,]);sum(m[3,])
apply(m, 1, sum)
column sum
margin.table(m,2)
sum(m[,1]);sum(m[,2]);sum(m[,3])
apply(m, 2, sum)

note: there are functions for row sum and column sum:
colSums(m)
rowSums(m)
rowMeans(m)
colMeans(m)

Data Structures in R
Frequencies and Crosstabs

prop.table() Express table entries as a fraction of the marginal table

prop.table(x, margin=NULL)

x table
margin index, or vector of indices

m <- matrix(1:9,3)
m
prop.table(m) # cell percentages
prop.table(m, 1) # row percentages
prop.table(m, 2) # column percentages

prop.table(m) # cell percentages
m / sum(m)
sweep(m,1, margin.table(m),"/")

prop.table(m, 1) # row percentages
m[1,]/sum(m[1,])
m[2,]/sum(m[2,])
m[3,]/sum(m[3,])
sweep(m,1, margin.table(m,1),"/")

prop.table(m, 2) # column percentages
m[,1]/sum(m[,1])
m[,2]/sum(m[,2])
m[,3]/sum(m[,3])
sweep(m,2, margin.table(m,2),"/")

Data Structures in R

table() Cross tabulation and table creation

table(..., exclude = if (useNA == "no") c(NA, NaN), useNA = c("no", "ifany", "always"), dnn =
list.names(...), deparse.level = 1)

... one of more objects which can be interpreted as factors
exclude levels to remove from all factors in If set to NULL, it implies useNA="always"
useNA whether to include extra NA levels in the table
dnn the names to be given to the dimensions in the result (the dimnames names)
deparse.level controls how the default dnn is constructed. See details
x an arbitrary R object, or an object inheriting from class "table" for the as.data.frame method
row.names a character vector giving the row names for the data frame
responseName The name to be used for the column of table entries, usually counts

Data Structures in R

x <- sample(c("heads","tails"),5, replace=T)
x
fx <- factor(x)
fx
table(fx)

mtcars
?mtcars
is(mtcars)
names(mtcars)
dim(mtcars)
rownames(mtcars);colnames(mtcars)
dimnames(mtcars)
how many cars for each Number of cylinders
table(mtcars$cyl,dnn = list("Number of forward cylinders"))
how many cars for each Number of cylinders / Number of forward gears
table(mtcars$cyl,mtcars$gear,dnn = list("Number of cylinders","Number of forward
gears"))
how many cars for each Number of cylinders / Number of forward gears / Transmission
table(mtcars$cyl,mtcars$gear,mtcars$am,dnn = list("Number of cylinders","Number of
forward gears","Transmission"))

xtabs() reate a contingency table from cross-classifying factors

xtabs(formula = ~., data = parent.frame(), subset, na.action, exclude = c(NA, NaN),
drop.unused.levels = FALSE)

formula a formula object with the cross-classifying variables (separated by +) on the right
hand side
data an optional matrix or data frame containing the variables in the formula formula
subset an optional vector specifying a subset of observations to be used
na.action a function which indicates what should happen when the data contain NAs
exclude a vector of values to be excluded when forming the set of levels of the classifying
factors
drop.unused.levels a logical indicating whether to drop unused levels in the classifying
factors

convert from table to dataframe
hair.df=as.data.frame(HairEyeColor)
convert from dataframe to table
xtabs(Freq~Hair+Eye+Sex,data=hair.df)

crosstabulation of Hair and Eye
xtabs(Freq~Hair+Eye,data=hair.df)
crosstabulation of Hair and Sex
xtabs(Freq~Hair+Sex,data=hair.df)
crosstabulation of Eye and Sex
xtabs(Freq~Eye+Sex,data=hair.df)

Data Structures in R

Data Structures in R
ftable() create "flat" contingency tables

ftable(x, ...)

x, ... R objects which can be interpreted as factors
exclude values to use in the exclude argument of factor when interpreting non-factor objects
row.vars a vector of integers giving the numbers of the variables, or a character vector giving
the names of the variables
col.vars a vector of integers giving the numbers of the variables, or a character vector giving
the names of the variables

HairEyeColor
dim(HairEyeColor)
dimnames(HairEyeColor)
rownames(HairEyeColor)
colnames(HairEyeColor)

the first variable ($Hair) on the rows
ftable(HairEyeColor, row.vars = 1)
the 2nd variable ($Eye) on the rows
ftable(HairEyeColor, row.vars = 2)
the 3rd variable ($Sex) on the rows
ftable(HairEyeColor, row.vars = "Sex") # by name

the first variable ($Hair) on the rows
on the columns the 2nd and 3rd ($Eye, $Sex)
ftable(HairEyeColor, row.vars = 1, col.vars=c(2,3))
ftable(HairEyeColor, row.vars = "Hair", col.vars=c("Eye","Sex"))

Data Structures in R

the first variable ($Hair) on the rows
on the columns the 3rd and 2nd ($Sex,$Eye)
ftable(HairEyeColor, row.vars = 1, col.vars=c(3,2))
ftable(HairEyeColor, row.vars = "Hair", col.vars=c("Sex","Eye"))

the first and 2nd variables ($Hair,$Eye) on the rows
ftable(HairEyeColor, row.vars = 1:2)

the first, 2nd and 3rd variables ($Hair,$Eye,$Sex) on the rows
ftable(HairEyeColor, row.vars = 1:3)

Data Structures in R

sweep return an array obtained from an input array by sweeping out a summary statistic

sweep(x, MARGIN, STATS, FUN="-", check.margin=TRUE, ...)

x an array
MARGIN a vector of indices giving the extents of x which correspond to STATS
STATS the summary statistic which is to be swept out
FUN the function to be used to carry out the sweep
check.margin If TRUE (the default), warn if the length or dimensions of STATS do not match
the specified dimensions of x
... optional arguments to FUN

attitude
med.att <- apply(attitude, 2, median)
med.att
sweep(data.matrix(attitude), 2, med.att)# subtract the column medians

Data Structures in R
Attach a set of R objects to the search path

attach(what, pos = 2, name = deparse(substitute(what)), warn.conflicts = TRUE)

Arguments
what a data.frame, list, R data file or an environment
pos position in search() where to attach
name name to use for the attached database
warn.conflicts if true then it shows conflicts from attaching the database

Objects on what will be accessible directly through their names

Data Structures in R

mydataf <-
data.frame(age=c(25,22,26,28),height=c(174,166,174,170),weight=c(75,55,60,60),city=c("Turk
u","Espoo","Kuopio","Helsinki"),row.names =c("Pekka","Anna","Ari","Tove"))
mydataf
ls()
search()
attach(mydataf)
ls()
search()
detach(mydataf)
ls()
search()
rm(mydataf)
ls()
search()

Data Structures in R
> mydataf <-
data.frame(age=c(25,22,26,28),height=c(174,166,174,170),weight=c(75,55,60,60),city=c("Turku","Espoo",
"Kuopio","Helsinki"),row.names =c("Pekka","Anna","Ari","Tove"))
> ls()
[1] "mydataf"
> search()
[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"
> attach(mydataf)
> ls()
[1] "mydataf"
> search()
 [1] ".GlobalEnv" "mydataf" "package:stats"
 [4] "package:graphics" "package:grDevices" "package:utils"
 [7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"
> detach(mydataf)
> ls()
[1] "mydataf"
> search()
[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"
> rm(mydataf)
> ls()
character(0)
> search()
[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"

Data Structures in R

mydataf <-
data.frame(age=c(25,22,26,28),height=c(174,166,174,170),weight=c(75,55,60,60),city=c("Turk
u","Espoo","Kuopio","Helsinki"),row.names =c("Pekka","Anna","Ari","Tove"))

> mydataf$weight
[1] 75 55
> weight
Error: object 'weight' not found

> attach(mydataf) # attach mydataf to the search path
> weight
[1] 75 55
> city
[1] Turku Espoo
Levels: Espoo Turku
> detach(mydataf) # detach mydataf from the search path
> weight
Error: object 'weight' not found

Accessing attached elements from a dataframe

Data Structures in R
Accessing attached elements from a dataset

data()
ToothGrowth
names(ToothGrowth) # len supp dose
supp # error
ToothGrowth$supp
attach(ToothGrowth)
supp
detach(ToothGrowth)
supp

Data Structures in R
References/to learn more:

The R book
Michael J. Crawley pp 15
2012 John Wiley & Sons Ltd

Basic statistics using R pp. 40
Jarno Tuimala (CSC) and Dario Greco (HY)
http://www.csc.fi/english/csc/courses/archive/R2008s

Statistics: an introduction using R
Michael J. Crawley pp 288
2010 John Wiley & Sons Ltd

Statistics with R
Vincent Zoonekynd, pp 34
http://zoonek2.free.fr/UNIX/48_R/all.html

Aprendizaje del software estadístico R: un entorno para simulación y computación estadística
Prof. Alberto muñoz garcía
Departamento de Estadística
Universidad Carlos III de Madrid
http://ocw.uc3m.es/estadistica/aprendizaje-del-software-estadistico-r-un-entorno-para-simulacion-y-computacion-
estadistica/resolveUid/a30d9f0c6a5ca66fdee17e6088a070ad

Introductory Statistics with R
Peter Dalgaard, pp 11
2013 Springer

Software Tools, Part 1: introduction to R software
Petri Koistinen
http://www.rni.helsinki.fi/~pek/s-tools/vectors.r

Quick-R
Rob Kabacoff
http://www.statmethods.net/input/datatypes.html

The Stem and Tendril simplified R manual
Professors Franzblau, Poje and Verzani of the College of Staten Island
http://wiener.math.csi.cuny.edu/st/stRmanual/

Displaying data on R
dir() and list.files() lists the files in a directory

list.files(path = ".", pattern = NULL, all.files = FALSE, full.names = FALSE, recursive = FALSE,
ignore.case = FALSE)

dir(path = ".", pattern = NULL, all.files = FALSE, full.names = FALSE, recursive = FALSE,
ignore.case = FALSE)

path vector of full path names; the default is the working directory getwd()
pattern match an optional regular expression. Not wildcards!
all.files If TRUE, all file names will be returned, even hidden and system files or not visible for
other reason
full.names If TRUE, the directory path is prepended to the file names
recursive logical If TRUE, the listing will recurse into sub-directories
ignore.case If TRUE, the search will be case-insensitive. It's always case-insensitive on
Windows

Note:

R.home() # the path of R's home directory

Displaying data on R

dir()
list.files()
dir(pattern="^a") # list all files that start with "a"
dir(pattern="\\.R$") # list all files that end with ".R"
list.files(path = "c:/temp") # list all files from c:\temp
list.files(path = "c:/temp", all.files =TRUE) # list all files from c:\temp, even not
visible files

file.show() display one or more files, usually text files

file.show(..., header = rep("", nfiles), title = "R Information", delete.file = FALSE, pager =
getOption("pager"), encoding = "")

... one or more character vectors containing the names of the files
header character vector (of the same length as the number of files specified in ...) giving a
header for each file
title an overall title for the display
delete.file should the files be deleted after display? Used for temporary files
pager the pager to be used
encoding character string giving the encoding to be assumed for the file(s)

dir()
file.show(".Rhistory")

Displaying data on R

Displaying data on R
print displays values, expressions or variables

print(123) # displaying a number
print("abc") # displaying a string
print(123+567) # displaying an expression

cat concatenates and outputs objects
By default it will output to the Console (screen)

cat(... , sep = " ", fill = FALSE, labels = NULL)

... R objects
sep a character vector of strings to append after each element
fill a logical or (positive) numeric controlling how the output is broken into successive lines. If
FALSE (default), only newlines created explicitly by "\n" are printed. Otherwise, the output is
broken into lines with print width equal to the option width if fill is TRUE, or the value of fill if
this is numeric. Non-positive fill values are ignored, with a warning.
labels character vector of labels for the lines printed. Ignored if fill is FALSE.

cat(5,"*",12,"=",5*12,"\n")
cat(5,"*",12,"=",5*12,"\n", sep = "_")
cat(5,"*",12,"=",5*12,"\n", sep = " ")
cat(rep("0123456789",20), fill = T, width=3, labels = c("line 1","line 2","line 3","line 4"))

Displaying data on R

paste concatenate vectors to strings

paste(..., sep = " ", collapse = NULL)

... one or more R objects, to be converted to character vectors
sep a character string to separate the terms. Not NA_character_
collapse an optional character string to separate the results. Not NA_character_

paste(1:3) # same as as.character(1:3)
paste(1:3,sep = "") # separate terms - only 1 term, nothing to do
paste(c("one","two","three"))
paste(c("one","two","three"), sep = "")# separate terms - only 1 term, nothing to do
paste(c("one","two","three"), collapse="***") # separate results OK

paste(1,2,3)
paste(1,2,3,sep = "") # separate terms OK
paste("one","two","three")
paste("one","two","three", sep = "") # separate terms OK
paste("one","two","three", collapse="***") # separate results - only 1 result, nothing to do

Displaying data on R

Write write data to a connection or file

write(x, file = "data", ncolumns = if(is.character(x)) 1 else 5, sep = " ")

Arguments
x the data to be written out
file If "", print to the standard output connection
ncolumns the number of columns to write the data in
sep a string used to separate columns. Using sep = "\t" gives tab delimited output; default is
" "

write("hello", file="")
write(1:10, file="")
write(c("one","two","three"), file="")

write(1:10, file="", sep = "")
write(c("one","two","three"), file="", sep = "")

write(1:10, file="", ncolumns = 3)
write(c("one","two","three"), file="", ncolumns = 2)

sink redirects R output to a connection

sink.number() displays the number of current redirections

sink(file = NULL, append = FALSE, type = c("output", "message"),
 split = FALSE)

sink.number(type = c("output", "message"))

file a connection or a file name or NULL to stop
append If TRUE, output will be appended, otherwise, it will be overwritten
type either output stream or the messages stream
split if TRUE, output will be sent to both new and old streams

sink("output.txt") # creates a file to store the output
the output will now be sent to file "output.txt"
print("Hello world!")
print(123*pi)
sink() # stop sending the output to the file

Redirecting data on R

edit invokes a text editor on an R object

edit(name = NULL, file = "", title = NULL, editor = getOption("editor"), ...)

vi(name = NULL, file = "")
emacs(name = NULL, file = "")
pico(name = NULL, file = "")
xemacs(name = NULL, file = "")
xedit(name = NULL, file = "")

name R object or file name to edit
file file name
title a title for the object
editor text editor to use
... further arguments to be passed to or from methods

Editing data on R

Invoking a specific editor

open a file
dir()
edit(file="output.txt")

v1 <- c(734, 985, 43, 952)
v2 <- c("Helsinki","Tampere","Turku")
v3 <- c(T,F,F,F,T,F,T,F,T,T)
myarray<-array(c(56,67,174,166,75,55,77,70,64,77,178,170,78,59,63,61),c(2,4,2))
dimnames(myarray) = list(c("men","women"),c("age","height","weight","pulse"),
c("city","countryside"))
mydataf <-
data.frame(age=c(25,22,26,28),height=c(174,166,174,170),weight=c(75,55,60,60),city=c("Turku","
Espoo","Kuopio","Helsinki"),row.names =c("Pekka","Anna","Ari","Tove"))
mymatrix <- matrix(1:6*10,3,2)

open the R Editor with the code to define the variables
edit(v1)
edit(v2)
edit(v3)
edit(myarray)

open the R Data Editor
edit(mydataf)
edit(mymatrix)

Editing data on R

Editing data on R

Fix an R object

fix invokes edit on x and then updates x in the user's workspace

fix(x, ...)

x the name of an R object
... arguments to pass to edit

> mymatrix <- matrix(1:6*10,3,2)
> mymatrix
 [,1] [,2]
[1,] 10 40
[2,] 20 50
[3,] 30 60
> edit(mymatrix)
 col1 col2
[1,] 10 40
[2,] 20 50
[3,] 30 60
[4,] 55 66
> mymatrix
 [,1] [,2]
[1,] 10 40
[2,] 20 50
[3,] 30 60
> fix(mymatrix)
> mymatrix
 col1 col2
[1,] 10 40
[2,] 20 50
[3,] 30 60
[4,] 55 77

Editing data on R

Data input on R

> mydata1 <- scan()
1: 1
2: 2
3: 3
4:
Read 3 items
> mydata1
[1] 1 2 3
> is(mydata1)
[1] "numeric" "vector"
> mydata1 <- scan()
1: 1 2 3
4:
Read 3 items
> mydata1
[1] 1 2 3
> is(mydata1)
[1] "numeric" "vector"

Reading input from the console

Type
1 Enter 2 Enter 3 Enter Enter

Type
1 Space 2 Space 3 Enter Enter

Same input

Data input on R

> mydata1 <- scan()
1: a
1: b
Error in scan(file, what, nmax, sep, dec, quote, skip,
nlines, na.strings, :
 scan() expected 'a real', got 'a'

Trying to enter text as input:

The default input data type is numeric, solution: use the what argument

Useful arguments for console input

what input data type logical, integer, numeric, complex, character

nmax maximum number of input values

nlines maximum number of lines of data

na.strings vector of elements interpreted as missing (NA) values

Data input on R

> mydata1 <- scan(what=character())
1: a b c
4:
Read 3 items
> mydata1
[1] "a" "b" "c"
> mydata1 <- scan(what=character())
1: "one two" "three four"
3:
Read 2 items
> mydata1
[1] "one two" "three four"

what input data type logical, integer, numeric, complex, character

> mydata1 <- scan(what=logical())
1: T
2: F
3: TRUE
4: FALSE
5:
Read 4 items
> mydata1
[1] TRUE FALSE TRUE FALSE

> mydata1 <- scan()
1: 25*pi
1: 15
Error in scan(file, what, nmax, sep, dec, quote,
skip, nlines, na.strings, :
 scan() expected 'a real', got '25*pi'
> mydata1 <- scan()
1: sqrt(2)
1: 5
Error in scan(file, what, nmax, sep, dec, quote,
skip, nlines, na.strings, :
 scan() expected 'a real', got 'sqrt(2)'

> mydata1 <- scan(what=complex())
1: -6576.9898
2: 3.54i
3: -5.543-.68767i
4:
Read 3 items
> mydata1
[1] -6576.990+0.00000i 0.000+3.54000i
-5.543-0.68767i

Quotes allow
space on
strings

Constants and
functions are
not allowed

5i and 5*i are
not the same

Logical will not
accept 1 or 0

Data input on R

nmax maximum number of input values

nlines maximum number of lines of data

> mydata1 <- scan(nmax=4)
1: 9
2: 8
3: 7
4: 6
Read 4 items
> mydata1
[1] 9 8 7 6
> mydata1 <- scan(nmax=4)
1: 22 33 44 55 66 77 88 99
Read 4 items
> mydata1
[1] 22 33 44 55

> mydata1 <- scan(nlines=4)
1: 11
2: 22
3: 33
4: 44
Read 4 items
> mydata1
[1] 11 22 33 44
> mydata1 <- scan(nlines=4)
1: 1 2 3 4 5 6 7 8
9: 99 88 77
12: 66 55 44
15: 33 22 11
Read 17 items
> mydata1
 [1] 1 2 3 4 5 6 7 8 99 88 77 66 55 44 33 22 11

Data input on R
na.strings vector of elements interpreted as missing (NA) values

> mydata1 <- scan()
1: 1 2 NA 3 NA NA 4 5
9:
Read 8 items
> mydata1
[1] 1 2 NA 3 NA NA 4 5
> mydata1 <- scan(na.strings="*")
1: 9 8 * * 7 *
7:
Read 6 items
> mydata1
[1] 9 8 NA NA 7 NA

Data input on R
Reading input from the the web

read a text file from the web to a string
con <- url("http://www.rni.helsinki.fi/~pek/r-koulutus/e2.dat") # open a connection
mytxt <- readLines(con) # read the file
close(con) # close the connection
mytxt

execute code from the web
source("http://www.rni.helsinki.fi/~pek/r-koulutus/hello.R")

download a file from the web
download.file("http://www.rni.helsinki.fi/~pek/r-koulutus/hello.R",destfile="hello.R")
download.file("http://www.rni.helsinki.fi/~pek/r-koulutus/e2.dat",destfile="e2.dat")
dir() # show the files on the working directory

reading a data frame from the web
mydf <- read.table(url('http://www.rni.helsinki.fi/~pek/s-tools/e1.dat'))
mydf
class(mydf)

Data input on R
Reading input from a file

Comma-separated values (CSV) files
Text files containing data, each line of text is a row (record) of data and within each line,
each column (field) of data is separated by a comma. Usually the first line has the column
names.

Rules

●Records are separated by end-of-line
characters
●Fields are separated by commas
●Leading or trailing spaces are part of the
field data
●Commas within fields are enclosed with
double-quotes
●double-quotes within fields are replaced
by a pair of double-quotes
●The first line might have the column
names

Exceptions

●Line breaks can be placed inside double
quotes
●If the comma is used as a decimal sign
then semicolons will separate the columns
●Some implementations remove leading or
trailing spaces
●Some implementations enclose fields with
leading or trailing spaces, within double-
quotes
●Some implementations enclose all fields
within double-quotes

Data input on R
Reading input from a file

Tab delimited values (TAB) files
Text files containing data, each line of text is a row (record) of data and within each line,
each column (field) of data is separated by a tab (ASCII 10). Usually the first line has the
column names.

Rules

●Records are separated by end-of-line
characters
●Fields are separated by tab
●Leading or trailing spaces are part of the field
data
●There are no tabs within fields
●Line breaks can be placed within fields
●The first line might have the column names

Data input on R
Reading input from a file

Fixed Width Text Files
Text files containing data, each line of text is a row (record) of data and within each line,
each column (field) of data has a constant, pre-defined number of characters. Usually the
first line has the column names.

Rules

●Records are separated by end-of-line
characters
●Fields have a fixed size
●Leading or trailing spaces are used as padding,
unless anothe character is chosen for that
purpose
●Line breaks can be placed within fields
●The first line might have the column names

Data input on R
Reading input from a file

File "hello.R" from the previous example should be on the working directory, "e2.dat" too.

To read and execute it:
source("hello.R")
To open a window for choosing a file to open:
source(file.choose())

read a text file from a file to a string
con <- file("e2.dat") # open a connection
mytxt <- readLines(con) # read the file
close(con) # close the connection
mytxt

Data input on R
Reading input from a file

scan()

Useful arguments for file input

what input data type logical, integer, numeric, complex, character, list

nmax maximum number of input values

nlines maximum number of lines of data

na.strings vector of elements interpreted as missing (NA) values

sep character that delimits fields, the default is white-space or end-of-line
(unless within quotes)

dec decimal point character because of "." vs ","

skip the number of lines to skip from the beginning of the file

blank.lines.skip if true then blank lines are skipped

comment.char a character that marks comment lines, which are skipped

Data input on R
Reading input from a file

> mytxt <- scan("e2.dat") # read the file
Error in scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings, :
 scan() expected 'a real', got '#'

> mytxt <- scan("e2.dat", skip=2) # read the file, skip the 1st 2 lines
Read 14 items
> mytxt
 [1] 46 148 54 182 48 173 50 166 44 109 42 141 52 166

> mytxt <- scan("e2.dat", what = list("",""), skip=2)
Read 7 records
> mytxt
[[1]]
[1] "46" "54" "48" "50" "44" "42" "52"

[[2]]
[1] "148" "182" "173" "166" "109" "141" "166"

Data input on R
Reading input from a file

sep character that delimits fields, the default is white-space or end-of-line (unless within
quotes)

blank.lines.skip if true then blank lines are skipped

comment.char a character that marks comment lines, which are skipped

> cat("12:34:56:78:90",file="numbers.txt") # create a text file with text "12:34:56:78:90"
> edit(file="numbers.txt")
> mytxt <- scan("numbers.txt", sep=":") # read the file
Read 5 items
> mytxt
[1] 12 34 56 78 90
>
> cat("12:34\n56:78:90",file="numbers.txt") # end-of-line also works
> edit(file="numbers.txt")
> mytxt <- scan("numbers.txt", sep=":") # read the file
Read 5 items
> mytxt
[1] 12 34 56 78 90

Data input on R
Reading input from a file

> # suppose that % is the symbol for lines with comments
> cat("12:ab\n% this is a comment between lines of data\n56:cd",file="numbers.txt")
> mytxt <- scan("numbers.txt", sep=":", what = list("","")) # read the file
Read 3 records
Warning message:
In scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings, :
 number of items read is not a multiple of the number of columns
> mytxt
[[1]]
[1] "12"
[2] "% this is a comment between lines of data"
[3] "cd"

[[2]]
[1] "ab" "56" ""

> # the comment was read as data, that is wrong
> #this is the correct way
> mytxt <- scan("numbers.txt", sep=":", what = list("",""), comment.char="%") # read the file
Read 2 records
> mytxt
[[1]]
[1] "12" "56"

[[2]]
[1] "ab" "cd"

Data input on R
Reading input from a file

read.table()

header if true, the first line of the file contains the names of the variables

sep character that delimits fields, the default is white-space or end-of-line (unless within
quotes)

dec decimal point character because of "." vs ","

row.names a vector with the row names or the number of the column with the row names
or the name of the column with the row names

col.names a vector of optional names for the variables ???

na.strings vector of elements interpreted as missing (NA) values

nrows maximum number of rows read

blank.lines.skip if true then blank lines are skipped

comment.char a character that marks comment lines, which are skipped

Data input on R
Reading input from a file

read.table() Reads a text file in table format and creates a data frame from it

read.csv(file, header = TRUE, sep =
",", quote="\"", dec=".",
 fill = TRUE, comment.char="",
...)

read comma separated value files (CSV)

read.csv2(file, header = TRUE, sep
= ";", quote="\"", dec=",",
 fill = TRUE,
comment.char="", ...)

CSV with comma as decimal point and a semicolon as
field separator

read.delim(file, header = TRUE,
sep = "\t", quote="\"", dec=".",
 fill = TRUE,
comment.char="", ...)

read TAB delimited files (TAB)

read.delim2(file, header = TRUE,
sep = "\t", quote="\"", dec=",",
 fill = TRUE,
comment.char="", ...)

TAB with comma as decimal point

read.fwf(file, widths, header =
FALSE, sep = "\t",
 skip = 0, row.names,
col.names, n = -1,
 buffersize = 2000, ...)

read a table of fixed width formatted data

mydataf <- data.frame(age=c(25,22,26,28),height=c(174,166,174,170),weight=c(75,55,60,60),
city=c("Turku","Espoo","Kuopio","Helsinki"),row.names =c("Pekka","Anna","Ari Wan","Tove"))
mydataf

saving with default values: separator = space, strings within "" and row names on the 1st line
write.table(mydataf, file = "z.txt")
edit(file="z.txt")
mydataf2 <- read.table("z.txt")
mydataf2

saving as CSV
write.csv(mydataf, file = "z.csv")
edit(file="z.csv")
mydataf2 <- read.table("z.csv")
mydataf2
mydataf2 <- read.csv("z.csv")
mydataf2

saving as TAB-delimited
write.table(mydataf, file = "z.tab", sep="\t")
edit(file="z.tab")
mydataf2 <- read.table("z.tab", sep="\t")
mydataf2

saving as TAB-delimited, no "", no row names
write.table(mydataf, file = "z.tab", sep="\t",quote=F,row.names=F)
edit(file="z.tab")
mydataf2 <- read.table("z.tab", sep="\t",quote="")
mydataf2

Data input on R

Data input on R
read.ftable(), write.ftable() read, write "flat" contingency tables

Usage
read.ftable(file, sep = "", quote = "\"", row.var.names, col.vars, skip = 0)

write.ftable(x, file = "", quote = TRUE, append = FALSE, digits = getOption("digits"))

file either a character string naming a file or a connection which the data are to be read from or
written to

sep character that delimits fields, the default is white-space or end-of-line (unless within
quotes)

quote a character string giving the set of quoting characters for read.ftable

row.var.names a character vector with the names of the row variables

col.vars a list giving the names and levels of the column variables

skip the number of lines of the data file to skip before beginning to read data

x an object of class "ftable"

append If TRUE, the output from write.ftable is appended to the file

digits an integer giving the number of significant digits

Data input on R

Write an object to a file in ASCII format or read an object from a file

dget() and dput()

dget(filename) reads an R object from file "filename"
dput(obj, filename) writes an object "obj" to a file "filename", in ASCII format

> mydataf <- data.frame(age=c(25,22),height=c(174,166),weight=c(75,55),
city=c("Turku","Espoo"),row.names =c("Pekka","Anna"))
> dput(mydataf,"mydf.dat")
> mydataf2 <- dget("mydf.dat")
> mydataf2 == mydataf
 age height weight city
Pekka TRUE TRUE TRUE TRUE
Anna TRUE TRUE TRUE TRUE

dump(list, file = "dumpdata.R", append = FALSE, control = "all", envir = parent.frame(),
evaluate = TRUE)

list vector wi names of one or more R objects to be dumped.
file either a character string naming a file or a connection. "" indicates output to the console.
append if TRUE and file is a character string, output will be appended to file; otherwise, it will
overwrite the contents of file.

source() reads R code from a file or a connection

source(file, local = FALSE, echo = verbose, print.eval = echo, verbose =
getOption("verbose"), prompt.echo = getOption("prompt"), max.deparse.length = 150, chdir
= FALSE, encoding = getOption("encoding"), continue.echo = getOption("continue"),
skip.echo = 0, keep.source = getOption("keep.source"))

file a connection or a character string giving the pathname of the file or URL to read from
echo if TRUE, each expression is printed after parsing, before evaluation
print.eval if TRUE, the result of eval(i) is printed for each expression i; defaults to the value
of echo
verbose if TRUE, more diagnostics (than just echo = TRUE) are printed during parsing and
evaluation of input, including extra info for each expression
prompt.echo character; gives the prompt to be used if echo = TRUE
encoding The encoding(s) to be assumed when file is a character string: see file
skip.echo if echo = TRUE, how many lines to skip from the beginning

Data input on R

Data input on R

a <- 543.86
dump(a, "test_a.R") # error!
dump(ls(pattern ="a"), "test_a.R") # works...
dir(pattern="test")
ls()
rm(a)
a
ls()
source("test_a.R")
a
ls()

to choose a file interactively:
source(file.choose())

Data input on R

mydataf <-
data.frame(age=c(25,22,26,28),height=c(174,166,174,170),weight=c(75,55,60,60),city=c("Turk
u","Espoo","Kuopio","Helsinki"),row.names =c("Pekka","Anna","Ari","Tove"))
dump(ls("mydataf"), file ="test_mydataf.R") # error!
ls()
search()
attach(mydataf)
ls()
search()
dump(ls("mydataf"), file ="test_mydataf.R")
dir(pattern="test")
detach(mydataf)
rm(mydataf)
ls()
search()
source("test_mydataf.R")
ls()
search() # "age" "city" "height" "weight"!
mydataf # got attached!
edit(file="test_mydataf.R") # this is why!

Write write data to a connection or file

write(x, file = "data", ncolumns = if(is.character(x)) 1 else 5, sep = " ")

Arguments
x the data to be written out
file If "", print to the standard output connection
ncolumns the number of columns to write the data in
sep a string used to separate columns. Using sep = "\t" gives tab delimited output; default is
" "

write("hello", file="hello.txt")
write(1:10, file="1to10.txt")
write(c("one","two","three"), file="123.txt")

write(1:10, file="1to10b.txt", sep = "")
write(c("one","two","three"), file="123b.txt", sep = "")

write(1:10, file="1to10c.txt", ncolumns = 3)
write(c("one","two","three"), file="123c.txt", ncolumns = 2)

myvector<-c(1,2,3,4,5)
write(myvector,"myvector.txt")

mymatrix<-matrix(1:9,ncol=3,byrow=T)
write(t(mymatrix),"mymatrix.txt",ncol=ncol(mymatrix))

Data input on R

cat concatenates and outputs objects, also to a file
By default it will output to the Console (screen)

cat(... , file = "", sep = " ", fill = FALSE, labels = NULL, append = FALSE)

... R objects
file file name to get the output
sep a character vector of strings to append after each element
fill a logical or (positive) numeric controlling how the output is broken into successive lines. If
FALSE (default), only newlines created explicitly by "\n" are printed. Otherwise, the output is
broken into lines with print width equal to the option width if fill is TRUE, or the value of fill if
this is numeric. Non-positive fill values are ignored, with a warning.
labels character vector of labels for the lines printed. Ignored if fill is FALSE.
append if TRUE, the outpur is appended at the end of the file

cat("Hello world!", file = "cattest.txt")
edit(file="cattest.txt")
cat("Hello aliens!", file = "cattest.txt", append = TRUE)
edit(file="cattest.txt")

Data input on R

Data input on R
save() saves R objects

save(..., list = character(0L),
 file = stop("'file' must be specified"),
 ascii = FALSE, version = NULL, envir = parent.frame(),
 compress = !ascii, eval.promises = TRUE, precheck = TRUE)

... the names of the objects to be saved
list A vector containing the names of objects to be saved
file a connection or the name of the file where the data will be saved
ascii if TRUE, an ASCII representation of the data is written
compress if TRUE, the filr is compressed
precheck if TRUE, the existence of the objects is checked before saving

load() loads datasets saved with save()

v1 <- c(734, 985, 43, 952)
v2 <- c("Helsinki","Tampere","Turku")
save(v1, v2, file = "v1v2.Rdata")
#remove all objects
rm(list=ls(all=TRUE))
v1;v2
load("v1v2.Rdata")
v1;v2
save(v1, v2, file = "v1v2.Rdata", ascii = TRUE)
edit(file="v1v2.Rdata")

Data input on R
References/to learn more:

The R book
Michael J. Crawley pp 97
2014 John Wiley & Sons Ltd

Basic statistics using R pp. 57
Jarno Tuimala (CSC) and Dario Greco (HY)
http://www.csc.fi/english/csc/courses/archive/R2008s

Statistics: an introduction using R
Michael J. Crawley pp 286
2012 John Wiley & Sons Ltd

Statistics with R
Vincent Zoonekynd, pp 91
http://zoonek2.free.fr/UNIX/48_R/all.html

Aprendizaje del software estadístico R: un entorno para simulación y computación estadística
Prof. Alberto muñoz garcía
Departamento de Estadística
Universidad Carlos III de Madrid
http://ocw.uc3m.es/estadistica/aprendizaje-del-software-estadistico-r-un-entorno-para-simulacion-y-computacion-
estadistica/resolveUid/81279218bad3be4326b943c4c3e62e4d

Introductory Statistics with R
Peter Dalgaard, pp 46
2014 Springer

Software Tools, Part 1: introduction to R software
Petri Koistinen
http://www.rni.helsinki.fi/~pek/s-tools/data-input.r

Quick-R
Rob Kabacoff
http://www.statmethods.net/input/index.html

The Stem and Tendril simplified R manual
Professors Franzblau, Poje and Verzani of the College of Staten Island
http://wiener.math.csi.cuny.edu/st/stRmanual/

Control Flow

Conditional
statements

if

ifelse

switch

Loop
statements

for

while

repeat

if - Conditional statement

if(condition) expression # if the condition is true then the expression will execute
if(condition) expression else alternate.expression # if the condition is true then the
expression will execute, otherwise the alternate.expression will execute

condition - a logical result, not NA. Only the first element of a vector is considered.
expression, alternate.expression - Either a simple expression, one command only, or a so
called compound expression { expression1 ; expression2 } or:
{
expression1
expression2
}

To separate several expressions can be done with ; or newline but newline is more clear and
understandable.
A newline before an else statement will cause an error.

> if (5 > 3) print ("OK") # this always returns "OK"
[1] "OK"

Control Flow

get a random integer number from 1 to 10, say if it is greater than 5 or not
if (sample(1:10, 1) > 5) print ("random number > 5") else print ("random number < 5")

same as above but in separate lines of code
if (sample(1:10, 1) > 5)
print ("random number > 5") else
print ("random number < 5")

get a random integer number from 1 to 10, if greater than 5 then show its square value
otherwise show it multiplied by 4
myrnd <- sample(1:10, 1)
if (myrnd > 5) {myrnd2 <- myrnd^2;print (myrnd2)} else {myrnd2 <- myrnd*4;print (myrnd2)}

same as above but in separate lines of code
myrnd <- sample(1:10, 1)
if (myrnd > 5)
{
 myrnd2 <- myrnd^2
 print (myrnd2)
} else
{
 myrnd2 <- myrnd*4
 print (myrnd2)
}

This code should be tested on the R editor, selecting a block if code + ctrl r

Control Flow

"If" can be used as a function within expressions:

> x <- 5
> strwhartx <- if(is.complex(x)) "imaginary" else "real"
> strwhartx
[1] "real"

Control Flow

Conditional Element Selection

Ifelse - returns 1 out of 2 elements, depending on a logical condition.

ifelse(condition, condition.true.expression, condition.false.expression)

> x <- 5-7i
> ifelse(is.complex(x), "imaginary", "real") # if x is complex, return "imaginary", otherwise "real"
[1] "imaginary"
> x <- 16
> ifelse(is.complex(x), "imaginary", "real") # if x is complex, return "imaginary", otherwise "real"
[1] "real"

Control Flow

Control Flow
Ifelse on multiple elements

Ifelse can affect elements from vectors, matrices, etc... directly, with no need for loops or
for "apply" functions

get the sign (-1, 0, 1) from numbers
> ifelse(myvec >0, 1, ifelse(myvec <0, -1, 0))
[1] -1 -1 -1 0 1 1 1

replace numbers with a word
NA MISSING
Inf INFINITY
>0 POSITIVE
<0 NEGATIVE
=0 ZERO
myvec <- c(-3:3, Inf, NA)
myvec
myvec <- sample(myvec) # random permutation
myvec
myvec.str <- ifelse(is.na(myvec),"MISSING",

ifelse(is.infinite(myvec),"INFINITY",
ifelse(myvec>0,"POSITIVE",

ifelse(myvec<0,"NEGATIVE",
"ZERO"

))))
myvec.str

Control Flow
switch - choose from several results depending upon an expression
It is not a statement like the C or C++ switch statement but a function, like the CASE WHEN
THEN from SQL.

switch(expression, alternative1,alternative2,alternative3,alternative4,...)

> for(ch in c("c","k","a","B","A","b")) print(switch(EXPR = ch,a=,A="ai",b="bee",c="see","????"))
[1] "see"
[1] "????"
[1] "ai"
[1] "????"
[1] "ai"
[1] "bee"

a=,A="ai" both "a" and "A" will return the same value
"????" is the default value (aka "otherwise") for values not in the alternatives' list

Numeric EXPR has no "otherwise"

> for(i in c(-1:3,9)) print(switch(i, 1,2,3,4))
NULL
NULL
[1] 1
[1] 2
[1] 3
NULL

Control Flow
for

for (var in seq) expr
break
next

for will cycle throught the elements of a vector sequentially until it reaches the last element or
the break command is found within the loop. Next skips the current iteration.

> for(i in 4:7) print(i)
[1] 4
[1] 5
[1] 6
[1] 7
> for(i in c(734, 985, 43, 952)) print(i)
[1] 734
[1] 985
[1] 43
[1] 952
> for(i in c("Helsinki","Tampere","Turku")) print(i)
[1] "Helsinki"
[1] "Tampere"
[1] "Turku"

Loop through a sequence of numbers

Loop through a vector of numbers

Loop through a vector of strings

Control Flow

> for(i in 1:10)
+ {
+ print(i)
+ if (i==3) break
+ }
[1] 1
[1] 2
[1] 3
>
> for(i in 1:10)
+ {
+ if (i/2==i %/%2) next
+ print(i)
+ }
[1] 1
[1] 3
[1] 5
[1] 7
[1] 9

next skips the current iteration

All the even numbers are skipped

break exits the loop

Control Flow

while

while(cond) expr
break
next

while will test a condition and execute an expression if the condition is TRUE, then it will
test the condition again and so forth.

break exits the loop
next skips the current iteration, it will cause an infinite loop unless the variable is updated
before the next statement

Control Flow
example of using while
n <- 1
while (n < 5)
{
print(n)
n <- n+1
}
example of using while and next
n <- 0
while ((n <- n+1) < 5)
{
if (n==2) next
print(n)
}
example of using while and next
n <- 0
while (n < 5)
{
n <- n+1
if (n==2) next
print(n)
}
example of using while and break
n <- 1
while (n < 5)
{
if (n==2) break
print(n)
n <- n+1
}

The code before next is executed
The code after next is skipped

The code before break is executed
The code after break is skipped and
the loop ends

The code before next is executed
The code after next is skipped

The loop variable
must be updated
before reaching the
next, otherwise the
loop will be infinite

Control Flow
print("Game: I will choose 3 numbers between 1 and 8, you have to guess them to win this
game")
x <- sample(1:8,3)
user.score <- c()
while (length(x)>0)
{
print("Give me a number between 1 and 8")
user.try <- scan(,what=numeric(),1)
if (user.try %in% x)
 {
 user.score <- c(user.score, user.try)
 x <- x[x != user.try]
 print("Correct!")
 }
else print("Wrong!")
if (length(x)==0)
 {
 print("You win! Now give 10 euros to the instructor and play again!")
 }
else
 {
 cat("You already guessed", ifelse((length(user.score)==0),"nothing!", paste(user.score,
collapse=", ")), " Try again!\n")
 }
}

Control Flow

repeat

repeat expr
break

repeat will execute an expression and, from within that expression, test a condition, if the
condition is TRUE, it will use break to stop, otherwise it will execute the expression again
and so forth.

break exits the loop

Control Flow
example of using repeat
n <- 1
repeat
{
print(n)
n <- n+1
if (n == 5) break
}

n <- 0
repeat
{
n <- n+1
print(n)
if (n == 4) break
}

example of using repeat and next
n <- 0
repeat
{
n <- n+1
if (n == 2) next
print(n)
if (n == 4) break
}

The code before break is executed
The code after break is skipped and
the loop ends

The code before next is executed
The code after next is skipped

The loop variable
must be updated
before reaching the
next, otherwise the
loop will be infinite

Control Flow
while vs repeat

while checks the conditional expression before entering the loop, it might not
execute all at.

repeat executes the loop and then it checks the conditional expression
anywhere from within the loop, usually, it will execute once, at least partially.

Control Flow
References/to learn more:

The R book
Michael J. Crawley pp 58
2015 John Wiley & Sons Ltd

Statistics: an introduction using R
Michael J. Crawley pp 283
2013 John Wiley & Sons Ltd

Statistics with R
Vincent Zoonekynd, pp 26
http://zoonek2.free.fr/UNIX/48_R/all.html

Aprendizaje del software estadístico R: un entorno para simulación y computación estadística
Prof. Alberto muñoz garcía
Departamento de Estadística
Universidad Carlos III de Madrid
http://ocw.uc3m.es/estadistica/aprendizaje-del-software-estadistico-r-un-entorno-para-simulacion-y-computacion-
estadistica/resolveUid/a70c8973cb8798b0bd0e6bdf7abd6ec7

Introductory Statistics with R
Peter Dalgaard, pp 44
2015 Springer

Software Tools, Part 1: introduction to R software
Petri Koistinen
http://www.rni.helsinki.fi/~pek/s-tools/cond.r

Quick-R
Rob Kabacoff
http://www.statmethods.net/management/controlstructures.html

The Stem and Tendril simplified R manual
Professors Franzblau, Poje and Verzani of the College of Staten Island
http://wiener.math.csi.cuny.edu/st/stRmanual/

Function Syntax
R commands are R functions, syntax:

calling a function, passing no parameters, the parenthesis are mandatory
result <- my_function()

calling a function, passing parameters by position
result <- my_function(arg1,arg2,...,argN)

calling a function, passing parameters by name
result <- my_function(arg_nameN=argN,arg_name1=arg1,...,arg_name2=arg2)

calling a function, passing parameters by position and with optional parameters
result <-
my_function(arg1,arg2,...,argN,optional_arg1=value1,optional_arg2=value2,...optional_N=valueN)

Calling a function without parenthesis will return its code, unless it is an internal function.

Functions
To get the arguments of a function:

args() will return the arguments

args(plot) # get the arguments for function plot
args(graphics::plot) # specify package

y = f(x)
input(independent variable or argument)
output(dependent variable or value)

Example: quadratic function
y = f(x) = x2

f: [-10,10] [0,100]
X <- -10:10
plot(x, x^2, col = "red",type="l")
points(x,x^2,col="blue")

Functions

Argument List of a Function

args() returns the argument names
and corresponding default values
of a function or primitive

Functions

Function Definition

function(arglist) expr
return(value)

Arguments
arglist Empty or one or more terms
value An expression to be returned

The return command is unnecessary if the
function end with the expression tobe returned

A simple function

fncube <- function(x) x^3

fncube(7)
fncube(1:5)

function

(arglist)

(value)

Function body
(code)

declaration

Function name

Example of using return

Improve the function fncube by returning 0 when the input is a character

fncube <- function(x) x^3

fncube2 <- function(x)
{
if (is.character(x)) return(0) else return(x^3)
}

fncube(123)
fncube("a")

fncube2(123)
fncube2("a")

Functions

Functions

A function with multiple parameters

fnpower <- function(x, n) x^n
fnpower(5, 3)
fnpower(1:5, 3)
fnpower(5, 1:3)
fnpower(1:8, 1:2)
c(1^1, 2^2, 3^1, 4^2, 5^1, 6^2, 7^1, 8^2)
fnpower(1:8, 1:4)
c(1^1, 2^2, 3^3, 4^4, 5^1, 6^2, 7^3, 8^4)
fnpower(1:8, 1:6) # error!

Functions

A recursive function

Fibonacci sequence, each element is the sum of the previous and the one before

Fibonacci F(n) = Fn-1 + Fn-2, F(0)=0, F(1)=1
n=0, 1, 2, ... F(n) = 0, 1, 1, 2, 3, 5, 8, 13, 21

iterative implementation
Fibonacci <- function(v)
{
if (v<2) return(v)
t <- c(1, 1)
for (n in 3:v) t <- c(t, t[n-1]+t[n-2])
return(t[v])
}

Fibonacci2 <- function(n) ifelse(n==0, 0,ifelse(n==1 | n==2, 1, Fibonacci2(n-1)+Fibonacci2(n-
2)))

Fibonacci(8)
sapply(0:8,Fibonacci)

Functions

my.foo <- function(x, y) {
return(x^3 + y*9)
}

calling the function
passing arguments by position
my.foo(4, 3)
my.foo(4) # error!
passing arguments by name
my.foo(y=3, x=4)

default values
my.foo <- function(x, y=3) {
return(x^3 + y*9)
}

calling using the default value
my.foo(4)

Default values

An argument can be optional and have a default value

Functions

passing a function as an argument
my.foo <- function(x, y=3, foo2) {
return(foo2(x^3 + y*9))
}

my.foo(2, 3, sin)
sin(2^3 + 3*9)

passing a function as an argument, with parameters for that function
my.foo <- function(x,y=3, foo2, ...) {
return(foo2(x, x^3 + y*9, ...))
}

my.foo(2:20,3, plot,col = "blue",type="l")

Passing functions as arguments

Functions
Passing an arbitrary number of arguments

my.foo <- function(x,y=3, ...) {
return(x^3 + y*9 +mean(...))
}

my.foo(2,3,76,45,43,976,34)
2^3 + 3*9 +mean(76,45,43,976,34)

Functions
References/to learn more:

The R book
Michael J. Crawley pp 47
2016 John Wiley & Sons Ltd

Statistics: an introduction using R
Michael J. Crawley pp 292
2014 John Wiley & Sons Ltd

Statistics with R
Vincent Zoonekynd, pp 27
http://zoonek2.free.fr/UNIX/48_R/all.html

Aprendizaje del software estadístico R: un entorno para simulación y computación estadística
Prof. Alberto muñoz garcía
Departamento de Estadística
Universidad Carlos III de Madrid
http://ocw.uc3m.es/estadistica/aprendizaje-del-software-estadistico-r-un-entorno-para-simulacion-y-computacion-
estadistica/resolveUid/a70c8973cb8798b0bd0e6bdf7abd6ec7

Introductory Statistics with R
Peter Dalgaard, pp 46
2016 Springer

Software Tools, Part 1: introduction to R software
Petri Koistinen
http://www.rni.helsinki.fi/~pek/s-tools/f-own.r

Chem 351 Archives Page
David Harvey
http://fs6.depauw.edu:50080/~harvey/Chem%20351/PDF%20Files/Handouts/RDocs/Writing%20Functions%20Using%20R.pdf

Quick-R
Rob Kabacoff
http://www.statmethods.net/management/userfunctions.html

The Stem and Tendril simplified R manual
Professors Franzblau, Poje and Verzani of the College of Staten Island
http://wiener.math.csi.cuny.edu/st/stRmanual/

The "graphics" package contains many functions for drawing graphics

Graphics on R

high level functions

plot
barplot
dotchart
stripchart
pie
hist
boxplot
pairs
stem
mosaicplot
qqnorm
contour
persp
image

low level functions
(add details to the
graphic)

axis
title
text
legend
points
lines
abline
polygon
qqline

Graphics on R
mtcars
?mtcars

attach(mtcars)
plot(wt, mpg)
abline(lm(mpg~wt))
title("Regression of MPG on Weight")
detach(mtcars)

instead of attach, "with" would work,
not adding to the search path
with(mtcars, {
plot(wt, mpg)
abline(lm(mpg~wt))
title("Regression of MPG on Weight")
})

Graphics on R
The graphic can be saved as an image file from the menu:

Or from code:

win.metafile("MPGonWeight.wmf")
postscript("MPGonWeight.ps")
pdf("MPGonWeight.pdf")
png("MPGonWeight.png")
bmp("MPGonWeight.bmp")
tiff("MPGonWeight.jpg")
jpeg("MPGonWeight.jpg")

Graphics on R
Plotting the sine and a parabola:

plot(sin, -pi, 2*pi)
plot(function(r) r^2, -pi, 2*pi)

The second plot will overwrite the first one

If that is not the efect wanted:

Multiple graphics

Each graphic on a window

All graphics on separate parts of one window

All graphics merged together, on one window

Graphics on R

Several graphic windows (graphic devices)

To create a graphic device (different commands for different OSs), that will become the
active graphic device:
windows() or win.graph() Windows
X11() Unix
macintosh() Mac

The first device is device 2, then device 3, etc...

To make a graphic device the active one:
dev.set(2) # set active graphic device 2

To close the active graphic device
dev.off()

To close the graphic device 5
dev.off(5)

Graphics on R
plot(sin, -pi, 2*pi)
windows()
plot(function(r) r^2, -pi, 2*pi)

dev.set(2) # set active graphic device 2

Graphics on R
dev.off() # close the active graphic device

dev.off() # close the active graphic device

This graph is gone too

Graphics on R
Multiple graphs in one window

par() set or query graphical parameters

Many parameters but the one needed:

mfcol, mfrow A vector of the form c(nr, nc). Subsequent figures will be drawn in an nr-by-nc
array on the device by columns (mfcol), or rows (mfrow)

par(mfrow=c(2,1))
plot(sin, -pi, 2*pi)
plot(function(r) r^2, -pi, 2*pi)

Graphics on R
par(mfrow=c(1,2))
plot(sin, -pi, 2*pi)
plot(function(r) r^2, -pi, 2*pi)

par(mfrow=c(2,2))
plot(sin, -pi, 2*pi)
plot(function(r) r^2, -pi, 2*pi)
plot(cos, -pi, 2*pi)
plot(function(r) r^3, -pi, 2*pi)

Graphics on R

graphics merged together, on one window

plot(sin, -pi, 2*pi)
par(new=T)
plot(function(r) r^2, -pi, 2*pi)

The y axis has a
different title and scale,
making the overlay look
funny...

But the two graphs are
there!

Graphics on R

Overlaying graphs with different scales
Use different y axis

Use the same scale

Graphics on R
Using different y axis on the same plot

Usually misleading, this seldom used but it is just an example of R's graphing
capabilities

par(mar = c(5, 4, 4, 4) + 0.3) # Leave space for z axis
plot(sin, -pi, 2*pi)
par(new = TRUE)
plot(function(r) r^2, -pi, 2*pi, axes = FALSE, bty = "n", xlab = "", ylab = "")
axis(side=4, at = pretty(c(pi^2, 4*pi^2)))
mtext("r^2", side=4, line=3)

Graphics on R

plot(sin, -pi, 2*pi, ylim=c(-10,10))
par(new=T)
plot(function(r) r^2, -pi, 2*pi, ylim=c(-10,10))

plot(sin, -pi, 2*pi, xlim=c(-1,2), ylim=c(-2,2))
par(new=T)
plot(function(r) r^2, -pi, 2*pi, xlim=c(-1,2),
ylim=c(-2,2))

Choosing a range for the x or y axis

Graphics on R

plot()

The plot() function is very versatile and very useful

plot() can draw

simple plot
function plot
line chart
scatterplot
density plot

Graphics on R
Simple plot

A simple plot plot(X) has each element of a discrete variable X ploted on the y-axis
and the element's index on the x-axis

simple plot
women
plot(women)

Function plot

A function plot is a simple plot for a continuous variable

function plot
x = seq(-2,2)
y = x^2
edgy graph!
plot(x,y,type="l",xlab="X axis",ylab="Y axis",main="Parabola", col = "red")
better
sp <- spline(x, y) # spline interpolation of data points
lines(sp, col = "blue")
much better
sp <- spline(x, y,n=20) # interpolation at n points spanning [xmin, xmax]
lines(sp, col = "green")

Graphics on R
Line chart

A line chart is a simple plot with consecutive plots connected by lines

line chart

x <- c(1:5); y <- x # create some data
par(pch=22, col="blue") # plotting symbol and color
par(mfrow=c(2,4)) # all plots on one page
opts = c("p","l","o","b","c","s","S","h")
for(i in 1:length(opts))
{
 heading = paste("type=",opts[i])
 plot(x, y, main=heading)
 lines(x, y, type=opts[i])
}

x <- c(1:5); y <- x^4 # create some data
par(pch=22, col="blue") # plotting symbol and color
par(mfrow=c(2,4)) # all plots on one page
opts = c("p","l","o","b","c","s","S","h")
for(i in 1:length(opts))
{
 heading = paste("type=",opts[i])
 plot(x, y, main=heading)
 lines(x, y, type=opts[i])
}

Graphics on R

Scatterplot

A scatterplot plot(X, Y) has each element of a variable Y ploted on the y-axis and the
corresponding element for variable X on the x-axis

scatterplot
attach(mtcars)
plot(wt, mpg, main="Weight / MPG graph", xlab="Car Weight (lbs)", ylab="Miles Per
Gallon", pch=19)

Graphics on R
Kernel density plots

Kernel density plots nicely visualize the shape of a distribution. They can be better than
histograms, even with normal curves because histograms are strongly affected by the number
of bins used and by outliers.

Kernel density plot
d <- density(mtcars$mpg) # kernel density estimates
plot(d)

Filled density plot
d <- density(mtcars$mpg)
plot(d, main="Kernel Density of Miles Per Gallon")
polygon(d, col="red", border="blue")

Graphics on R
Kernel density for comparing groups

To compare the kernal density plots of two or more groups,
the sm package has the function sm.density.compare():
sm.density.compare(x, factor)
x numeric vector
factor grouping variable

Compare MPG distributions for cars with 4,6, or 8 cylinders
library(sm)
attach(mtcars)

create value labels
cyl.f <- factor(cyl, levels= c(4,6,8), labels = c("4 cylinder", "6 cylinder", "8 cylinder"))

plot densities
sm.density.compare(mpg, cyl, xlab="Miles Per Gallon")
title(main="MPG Distribution by Car Cylinders")

add legend
colfill<-c(2:(2+length(levels(cyl.f))))
legend("topright", levels(cyl.f), fill=colfill)

Graphics on R
barplot

boxplot(X) is a plot that, if X is a vector, the vector elements are the heights of the bars in the
plot, if X is a matrix, the matrix columns are the heights of the bars in the plot, stacked after
the first bar (column)
If the argument beside=TRUE, then the values in each column are juxtaposed, not stacked.
The argument horiz=TRUE creates an horizontal barplot.

VADeaths
class(VADeaths)
dimnames(VADeaths)
simple barplot
barplot(VADeaths[,"Rural Male"])
stacked barplots
barplot(VADeaths[,c("Rural Male", "Rural Female")])
juxtaposed barplots
barplot(VADeaths[,c("Rural Male", "Rural Female")],beside=T)
stacked barplots
barplot(VADeaths)
juxtaposed barplots
barplot(VADeaths,beside=T)

Graphics on R
dotchart

dotchart(X) plots a dot chart or dot plot which plots the values
 of variable X in groups

Simple Dotplot
dotchart(mtcars$mpg,labels=row.names(mtcars),cex=.7,
main="Gas Milage for Car Models",xlab="Miles Per Gallon")

Dotplot: Grouped Sorted and Colored
Sort by mpg, group and color by cylinder
x <- mtcars[order(mtcars$mpg),] # sort by mpg
x$cyl <- factor(x$cyl) # it must be a factor
x$color[x$cyl==4] <- "red"
x$color[x$cyl==6] <- "blue"
x$color[x$cyl==8] <- "darkgreen"
dotchart(x$mpg,labels=row.names(x),cex=.7,groups= x$cyl,main="Gas Milage for Car
Models\ngrouped by cylinder",xlab="Miles Per Gallon",gcolor="black", color=x$color)

stripchart

A stripchart(X) plots a one dimensional or dot plot of the variable X, this is a good
alternative to boxplots when sample sizes are small

Data from Cartoon Guide to Statistics, from Larry Gonick, Woollcott Smith, Collins
Reference, 1993
The weights of some Penn State students, in 1992

mydataf2 <- read.csv("PennState92.csv", header=F,row.names=1)
mydataf2
put all the data in one vector
v1 <- c(as.matrix(mydataf2[1,]),as.matrix(mydataf2[2,]))
v1 <- v1[!is.na(v1)]
nice strip chart
stripchart(v1)
nice strip chart with groups
stripchart(v1, method = "stack",xlim = c(min(v1),max(v1)))

Graphics on R
pie

pie(x) draws a circle (pie) cut into segments (slices), each slice represents a unique value from
the elements of x and the sixe of the slice and the relative frequency of each unique value is
represented by the size of the slice.

simple pie
pie(unique(mtcars$cyl), labels = unique(mtcars$cyl), main="Pie Chart of N. of cylinders")

pie with percentages and colors
with(mtcars, {
n.cyl <- unique(cyl)
percent.cyl <-round(table(cyl)/dim(mtcars)[1]*100,2)
lbls <- paste(n.cyl," cyl=",percent.cyl,"%", sep="")
pie(n.cyl, labels = lbls , main="Pie Chart of N. of cylinders", col=rainbow(length(lbls)))
})

Graphics on R
hist
hist(X) is an histogram, a bar plot with the frequencies of the values in X on the y-axis and the
ranges of values on the x-axis
A cumulative distribution curve is the proportion of X on the y-axis, up to the current position
on the x-axis

simple histogram
hist(faithful$waiting, prob=TRUE)

Frequency polygon
http://addictedtor.free.fr/graphiques/RGraphGallery.php?graph=101
h <- hist(faithful$waiting, prob=TRUE, plot=FALSE)
compute the frequency polygon
diffBreaks <- h$mids[2] - h$mids[1]
xx <- c(h$mids[1]-diffBreaks, h$mids, tail(h$mids,1)+diffBreaks)
yy <- c(0, h$density, 0)
draw the histogram
hist(faithful$waiting, prob = TRUE, xlim=range(xx),border="gray", col="gray90")
adds the frequency polygon
lines(xx, yy, lwd=2, col = "royalblue")

cumulative distribution
h <- hist(faithful$waiting)
h$counts <- cumsum(h$counts)
plot(h)

Graphics on R
boxplot

boxplot(X) is a box-and-whisker plot with the values of variable X, this is an effective way to
summarize larger datasets

mydataf2 <- read.csv("PennState92.csv", header=F,row.names=1)
mydataf2
plot the data for Males and Females
apply(mydataf2, 1, summary)
boxplot(as.numeric(mydataf2[1,]), as.numeric(mydataf2[2,]), names=c("Males","Females"))

Graphics on R

Changing the scale

mydataf2 <- read.csv("PennState92.csv", header=F,row.names=1)
mydataf2

plot the data for Males and Females
apply(mydataf2, 1, summary)
use a y-axis scale of 10
boxplot(as.numeric(mydataf2[1,]), as.numeric(mydataf2[2,]), names=c("Males","Females"),
horizontal=T, xaxt = "n")
axis(1, 10:21*10, las = 2)

Graphics on R
mydataf2 <- read.csv("PennState92.csv", header=F,row.names=1)
mydataf2

plot the data for Males and Females
summary points on the y-axis
boxplot(as.numeric(mydataf2[1,]), as.numeric(mydataf2[2,]), names=c("Males","Females"), horizontal=T,
las = 2)
summdtf <- apply(mydataf2, 1, summary)
axis(1, summdtf$Males, las = 2, col.axis="red")
axis(1, summdtf$Females, las = 2, col.axis="blue")

> apply(mydataf2, 1, summary)
$Males
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 123.0 145.0 155.0 158.3 170.0 215.0

$Females
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 95.0 115.5 122.0 123.8 130.5 150.0 22.0

Adding references to points

Graphics on R
boxplot(as.numeric(mydataf2[1,]), as.numeric(mydataf2[2,]), names=c("Males","Females"),
horizontal=T, las = 2)
summdtf <- apply(mydataf2, 1, summary)
axis(1, summdtf$Males, las = 2, col.axis="red")
axis(1, summdtf$Females, las = 2, col.axis="blue")

female <- as.numeric(mydataf2[2,])
female <- female[!is.na(female)]
male <- as.numeric(mydataf2[1,])
IQRmale <- IQR(male, na.rm =T) # interquartile range
IQRfemale <- IQR(female, na.rm =T) # interquartile range
q1male <- quantile(male,.25, na.rm =T)
q3male <- quantile(male,.75, na.rm =T)
q1female <- quantile(female,.25, na.rm =T)
q3female <- quantile(female,.75, na.rm =T)
whiskers = Q1 - 1.5 * IQR and Q3 + 1.5 * IQR
min(female[female > q1female - 1.5 * IQRfemale])
max(female[female < q3female + 1.5 * IQRfemale])
min(male[male > q1male - 1.5 * IQRmale])
max(male[male < q3male + 1.5 * IQRmale])

axis(1, max(male[male < q3male + 1.5 * IQRmale]), las = 2, col.axis="green")

Calculating the whiskers

Graphics on R
pairs

pairs() shows a matrix with all the scatterplots for the columns of variable X

pairs(~mpg+disp+drat+wt,data=mtcars, main="Scatterplot Matrix MPG, Displacement,
Rear axle ratio, Weight")

Graphics on R

stem
stem(X) creates a stem-and-leaf plot, which shows the shape of a distribution and displays
each observation, useful for small datasets

mydataf2 <- read.csv("PennState92.csv", header=F,row.names=1)
mydataf2
put all the data in one vector
v1 <- c(as.matrix(mydataf2[1,]),as.matrix(mydataf2[2,]))
v1 <- v1[!is.na(v1)]
stem-and-leaf plot
stem(v1)

 The decimal point is 1 digit(s) to the right of the |

 8 | 5
 10 | 288002556688
 12 | 000123555550000013555688
 14 | 000025555580000000000355555555557
 16 | 000045000055
 18 | 000500005
 20 | 5

Stem Leaf

Graphics on R
Details about the R stem()

Data from Basic Biostatistics, by Burt Gertsman, chapter 3

stem(x, scale = 1, width = 80, atom = 1e-08)

x a numeric vector
scale This controls the plot length
width The desired width of plot
atom a tolerance

myvec <- c(14, 17, 18, 19, 22, 22, 23, 24, 24, 26, 26, 27, 28, 29, 30, 30, 30, 31, 32, 33, 34, 34, 35, 36, 37,
38)
stem(myvec) # this is wrong!
length(myvec) # n=26
stem(myvec,atom =26) # OK!
Too squished to see shape
Split stem
stem(myvec,atom =1) # OK!

myvec <- c(14, 17, 18, 19, 22, 22, 23, 24, 26, 26, 27, 28, 29, 30, 30, 30, 31, 32, 33, 34, 34, 35, 36, 37, 38)
stem(myvec) # this is wrong!
length(myvec) # n=25
stem(myvec,atom =25) # OK!
Too squished to see shape
Split stem
stem(myvec) # OK!

Graphics on R
mosaicplot

mosaicplot() draws a mosaic plot, a relationship betwen two or more categorical variables, the
widht of the bars is horizontally and vertically proportional to the probabilities associated with
the categorical variables

mosaicplot(Titanic, main = "Survival on the Titanic", color = TRUE)
Formula interface for tabulated data:
mosaicplot(~ Sex + Age + Survived, data = Titanic, color = TRUE)

Formula interface for raw data: visualize cross-tabulation of numbers
of gears and carburettors in Motor Trend car data.
mosaicplot(~ gear + carb, data = mtcars, color = TRUE, las = 1)
color recycling
mosaicplot(~ gear + carb, data = mtcars, color = 2:3, las = 1)

Graphics on R
Examples to explain mosaicplot()

Titanic
is(Titanic)
dim(Titanic)
dimnames(Titanic) # Class Sex Age Survived

Overall gender proportion the Titanic
mosaicplot(~ Sex, main = "Overall gender proportion on the Titanic", data = Titanic, color =
TRUE)
ladies first
mosaicplot(~ Sex, main = "Overall gender proportion on the Titanic", data = Titanic[,2:1,,],
color = TRUE)

split vertically by survival rate
mosaicplot(~ Sex+ Survived, main = "Overall gender/survival proportion on the Titanic", data =
Titanic[,2:1,,], color = TRUE)

#Overall age/survival proportion on the Titanic
mosaicplot(~ Age+ Survived, main = "Overall age/survival proportion on the Titanic", data =
Titanic, color = TRUE)

Graphics on R
qqnorm and qqline

qqnorm(X) draws a normal probability chart for variable X, with the values of variable X on
the y-axis and their associated probability based on a cummulative frequency on the x-axis,
assuming a normal distribution

qqline(X) draws the expected linear relationship, assuming a normal distribution

Data from Transcriptomics Bioinformatics, by Attila Gyenesei
"An experiment was conducted to evaluate the effectiveness of a treatment for tapeworm in
the stomachs of sheep. A random sample of 24 worm-infected lambs of the same age and
health was randomly divided into two groups. 12 were injected with the drug and the
remaining 12 were left untreated. After a 6-month period the worm counts were recorded"

sheep <- read.table("sheep.txt", sep="\t", header=T)
par(mfrow=c(1,2))
qqnorm(sheep$treated, main="Treated")
qqline(sheep$treated)
qqnorm(sheep$untreated, main="Untreated")
qqline(sheep$untreated)

Graphics on R
contour

contour(X,Y,Z) draws a contour plot, with vector X for the
 rows, vector Y for the columns and matrix X for the data

Example from R Graph Gallery by Romain François
http://addictedtor.free.fr/graphiques/RGraphGallery.php
?graph=22

contour plot Maunga Whau Volcano

x <- 10*(1:nrow(volcano)); x.at <- seq(100, 800, by=100)
y <- 10*(1:ncol(volcano)); y.at <- seq(100, 600, by=100)
Using Terrain Colors
image(x, y, volcano, col=terrain.colors(100),axes=FALSE)
contour(x, y, volcano, levels=seq(90, 200, by=5), add=TRUE, col="brown")
axis(1, at=x.at)
axis(2, at=y.at)
box()
title(main="Maunga Whau Volcano", sub = "col=terrain.colors(100)", font.main=4)

Graphics on R
persp

persp(X,Y,Z) draws a 3d graph, with vector X for the rows, vector Y for the columns and
matrix X for the data

(2) Visualizing a simple DEM model

z <- 2 * volcano # Exaggerate the relief
x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)
persp(x, y, z, theta = 120, phi = 15, scale = FALSE, axes = FALSE)

Graphics on R
Example from R Graph Gallery by Romain François
http://addictedtor.free.fr/graphiques/RGraphGallery.php?graph=1

Kernel density estimator in R2 Perspective plot and contour plot

require(MASS)
set.seed(125)
x <- rnorm(150,mean=3*rbinom(150,prob=.5,size=1),sd=1)
y <- rnorm(150,mean=4*rbinom(150,prob=.5,size=2),sd=1)
d <- kde2d(x,y,n=50)
kde2dplot <- function(d, # a 2d density computed by kde2D
 ncol=50, # the number of colors to use
 zlim=c(0,max(z)), # limits in z coordinates
 nlevels=20, # see option nlevels in contour

 theta=30, # see option theta in persp
 phi=30) # see option phi in persp
 {

z <- d$z
nrz <- nrow(z)
ncz <- ncol(z)
couleurs <- tail(topo.colors(trunc(1.4 * ncol)),ncol)
fcol <- couleurs[trunc(z/zlim[2]*(ncol-1))+1]
dim(fcol) <- c(nrz,ncz)
fcol <- fcol[-nrz,-ncz]
par(mfrow=c(1,2),mar=c(0.5,0.5,0.5,0.5))
persp(d,col=fcol,zlim=zlim,theta=theta,phi=phi,zlab="density")
par(mar=c(2,2,2,2))
image(d,col=couleurs)
contour(d,add=T,nlevels=nlevels)
box()
}
kde2dplot(d)

Graphics on R

x <- 1:10
y <- 1:10
m <- outer(x,y)
m
image(m)

volcano
image(volcano)

image() Creates a grid of colored or gray-
scale rectangles with colors corresponding
to the values in z

Graphics on R
References/to learn more:

The R book
Michael J. Crawley pp 135
2017 John Wiley & Sons Ltd

Basic statistics using R pp. 110
Jarno Tuimala (CSC) and Dario Greco (HY)
http://www.csc.fi/english/csc/courses/archive/R2008s

Statistics: an introduction using R
Michael J. Crawley pp 297
2015 John Wiley & Sons Ltd

Statistics with R
Vincent Zoonekynd, pp 147
http://zoonek2.free.fr/UNIX/48_R/all.html

Aprendizaje del software estadístico R: un entorno para simulación y computación estadística
Prof. Alberto muñoz garcía
Departamento de Estadística
Universidad Carlos III de Madrid
http://ocw.uc3m.es/estadistica/aprendizaje-del-software-estadistico-r-un-entorno-para-simulacion-y-computacion-estadistica/resolveUid/a68d739b891b9a30368f756ba473b81d

Introductory Statistics with R
Peter Dalgaard, pp 71
2017 Springer

Geographic Data Analysis
Pat Bartlein
http://geography.uoregon.edu/bartlein/courses/geog417/lectures/lec02.htm

Software Tools, Part 1: introduction to R software
Petri Koistinen
http://www.rni.helsinki.fi/~pek/s-tools/g-intro.r

Chem 351 Archives Page
David Harvey
http://fs6.depauw.edu:50080/~harvey/Chem%20351/PDF%20Files/Handouts/RDocs/Graphing%20Data%20in%20R%20-%20A%20Gallery%20of%20Plots.pdf

Thomas AP Statistics
thomasmathematics.com
http://www.thomasmathematics.com/Aims/Ch1Aim50001.pdf

Quick-R
Rob Kabacoff
http://www.statmethods.net/graphs/index.html

The Stem and Tendril simplified R manual
Professors Franzblau, Poje and Verzani of the College of Staten Island
http://wiener.math.csi.cuny.edu/st/stRmanual/

Sexual Discrimination at Berkeley

UCBAdmissions(datasets)

This data set is frequently used for illustrating Simpson's paradox, see Bickel et al. (1975). At
issue is whether the data show evidence of sex bias in admission practices. There were 2691
male applicants, of whom 1198 (44.5%) were admitted, compared with 1835 female applicants
of whom 557 (30.4%) were admitted. This gives a sample odds ratio of 1.83, indicating that
males were almost twice as likely to be admitted. In fact, graphical methods (as in the
example below) or log-linear modelling show that the apparent association between admission
and sex stems from differences in the tendency of males and females to apply to the individual
departments (females used to apply more to departments with higher rejection rates).

Simpson's paradox
http://en.wikipedia.org/wiki/Simpson%27s_paradox

Admissions by Department
Male Female

Department A Admitted 512 89
Rejected 313 19

Department B Admitted 353 17
Rejected 207 8

Department C Admitted 120 202
Rejected 205 391

Department D Admitted 138 131
Rejected 279 244

Department E Admitted 53 94
Rejected 138 299

Department F Admitted 22 24
Rejected 351 317

Gender Admitted Rejected %Admitted
Male 1198 1493 44.5
Female 557 1278 30.4

More males are admitted than females is this discrimination?

UCBAdmissions
is(UCBAdmissions) # contingency table!
dim(UCBAdmissions)
rownames(UCBAdmissions)
colnames(UCBAdmissions)
dimnames(UCBAdmissions)

creating the table Gender Admitted Rejected %Admitted
> apply(UCBAdmissions, 1:2, sum)
 Gender
Admit Male Female
 Admitted 1198 557
 Rejected 1493 1278
> apply(UCBAdmissions, 1:2, sum)[1,]/apply(UCBAdmissions, 2, sum)
 Male Female
0.4451877 0.3035422

creating the table Admissions by Department

xtabs(Freq~Dept+Gender+Admit,data=UCBAdmissions)

apply(UCBAdmissions, c(3,2,1), sum)

On a mosaicplot, 2 variables are independent when their proportions are the same, this is
not the case

mosaicplot(apply(UCBAdmissions, c(2, 1), sum), main = "Student admissions at UC
Berkeley")

More males are
admitted!

mosaicplot(UCBAdmissions, sort = 3:1,col = hcl(c(120, 10)),main = "Student admissions at UC
Berkeley")

High bias pro
Females

low bias pro
Males

low bias pro
Females

par(mfrow = c(2,3))
for (dpt in LETTERS[LETTERS <= "F"]) mosaicplot(UCBAdmissions[,,dpt], sort = c(1,2), main
= paste("Dept",dpt),col = hcl(c(120, 10)))

There is very low bias and it favors
females, so, why the huge disparity in
admissions?

More clear picture:

which departments admitted less
people?
mosaicplot(apply(UCBAdmissions, c(3, 1),
sum), main = "Student admissions at UC
Berkeley")

which departments did females
applied to mostly?
mosaicplot(apply(UCBAdmissions, c(3,
2), sum), main = "Student admissions
at UC Berkeley")

Females applied mostly to departments that admitted less people, basically competing
against each other, while males took the departments more accessible

Saving CSV and TAB from Excel

data from:
ECO 231W Econometrics, Summer 07, Session A
Instructor: Tak Wai Chau
http://troi.cc.rochester.edu/~tchau/eco231/height_weight.xls

Height (inches) Weight (lbs) Color of eyes (1=blue, 2=green, 3=brown, 4=other) gender (1=male, 2=female) Year
Height Weight Eyecolor Gender Year

72 190 1 1 2001
66 130 2 2 2001
63 98 3 2 2001

72.5 210 1 1 2001
73 175 4 1 2001

Save as height_weight2.csv

Let's read the table and check out its data:
DataStudents<-read.csv("height_weight2.csv",skip=1)
DataStudents # Height Weight Eyecolor Gender Year

(a) Calculate the sample means and standard deviations from each variable.
mean(DataStudents$Height)
mean(DataStudents$Weight)
sd(DataStudents$Height)
sd(DataStudents$Weight)
or
mean(DataStudents[,c("Height","Weight")]) # the mean of height, weight
sd(DataStudents[,c("Height","Weight")]) # the sd of height, weight

(b) Calculate the sample means and standard deviations for height and weight, this time by
gender.
mean(DataStudents[which(DataStudents$Gender==1),c("Height","Weight")]) # the mean of
height, weight
mean(DataStudents[which(DataStudents$Gender==2),c("Height","Weight")]) # the mean of
height, weight
sd(DataStudents[which(DataStudents$Gender==1),c("Height","Weight")]) # the sd of height,
weight
sd(DataStudents[which(DataStudents$Gender==2),c("Height","Weight")]) # the sd of height,
weight
or
aggregate(DataStudents[,c(1,2,4)], list(DataStudents[,4]), mean)
aggregate(DataStudents[,c(1,2,4)], list(DataStudents[,4]), sd)

(c) Calculate the sample means and standard deviations for height and weight, this time by color of eyes.
aggregate(DataStudents[,1:3], list(DataStudents[,3]), mean)
aggregate(DataStudents[,1:3], list(DataStudents[,3]), sd)

(d) Suppose it is a random sample of students in the university, test the null hypothesis that the mean
weight is 200lb for male students against a two-sided alternative.

Null hypothesis H0:μ = 200 Alternative hypothesis H1:μ ≠ 200
5% significance level
m=177.9864
s=28.42943
n= length(which(DataStudents$Gender==1)) = 147
T=(177.9864-200)/(28.42943 / sqrt(147))=-9.388184

On R:
t.test(DataStudents$Weight[DataStudents$Gender==1], NULL,"two.sided", mu = 200, paired = FALSE,
var.equal = FALSE, conf.level = 0.95)

 One Sample t-test

data: DataStudents$Weight[DataStudents$Gender == 1]
t = -9.3882, df = 146, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 200
95 percent confidence interval:
 173.3522 182.6206
sample estimates:
mean of x
 177.9864

200 is over the confidence interval, in the rejection zone, so it has to be rejected

(e) Suppose it is a random sample of students in the university, test the null hypothesis that mean weights
are the same for male and female students.

null hypothesis: mean weights are the same for male and female students

Null hypothesis H0:μ1 = μ2 Alternative hypothesis H1:μ ≠ μ2
5% significance level
m1=177.9864
m2=133.5093
s1=28.42943
s2=20.10362
n1= length(which(DataStudents$Gender==1)) = 147
n2= length(which(DataStudents$Gender==2)) = 54
T=(177.9864 - 133.5093) / sqrt(28.42943 ^ 2 / 147 + 20.10362 ^ 2 / 54) = 12.34402

On R:
t.test(DataStudents$Weight[DataStudents$Gender==1],
DataStudents$Weight[DataStudents$Gender==2],"two.sided",paired = FALSE, var.equal = FALSE,
conf.level = 0.95)

 Welch Two Sample t-test

data: DataStudents$Weight[DataStudents$Gender == 1] and
DataStudents$Weight[DataStudents$Gender == 2]
t = 12.344, df = 133.349, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 37.35046 51.60382
sample estimates:
mean of x mean of y
 177.9864 133.5093

Null hypothesis rejected

To do a dot plot in R:
dotchart(DataStudents$Weight, main='Students Weight',xlab='Weight in pounds')

stripchart(DataStudents$Weight, method = "stack",xlim =
c(min(DataStudents$Weight),max(DataStudents$Weight)))

To examine a distribution of the weight, an histogram is quite useful:

hist(DataStudents$Weight*0.45359237,main='Histogram of weight',xlab='Kilos')

Are men taller and heavier than women?

boxplot(DataStudents$Height ~ DataStudents$Gender, main='Height / Gender',
ylab='Height in inches',names=c('Male','Female'))
boxplot(DataStudents$Weight ~ DataStudents$Gender, main='Weight / Gender',
ylab='Weight in pounds',names=c('Male','Female'))

How are weight and height related? A scatter plot will show all the data.

plot(DataStudents$Height, DataStudents$Weight)

That could be more interesting if the gender was also involved:

sex<-ifelse(DataStudents$Gender==1,'blue','pink')
plot(DataStudents$Height, DataStudents$Weight, col=sex)

Who's fat?
Using the BMI(Body Mass Index) formula, BMI Overweight >= 25
BMI=(weight in pounds * 703) / height in inches²
So, the curve that separates Overweight people from the rest is:
weight = (25 * height in inches²)/703

In R:

sex<-ifelse(DataStudents$Gender==1,'blue','pink')
plot(DataStudents$Height, DataStudents$Weight, col=sex)
x1<- 50:100 #height
y1<- 25 * x1 * x1 / 703 #weight
points(x1, y1,type='l',col='red')

It seems like more men than women
are Overweight in this sample data.
But there are almost 3 times more
men than women and the scatter plot
shows one plot for one or more
coincident data values and draws the
blue over the pink!

smoothScatter(DataStudents, nrpoints=0)
x1<- 50:100 #height
y1<- 25 * x1 * x1 / 703 #weight
points(x1, y1,type='l',col='red')

library(RODBC)
connection <- odbcConnectExcel("Forbes2000.xls", readOnly = TRUE)
#odbcConnectExcel2007
connection
sqlTables(connection)

odbcGetInfo(connection)

sqlFetch(connection,'Sheet1$')
sqlQuery(connection, "select * from [Sheet1$]")
dfForbes2000 <- sqlFetch(connection,'Sheet1$')

class(dfForbes2000)
names of the columns
names(dfForbes2000)
colnames(dfForbes2000)
names of the rows are the row numbers, usually plenty of them!
rownames(dfForbes2000)

close(connection)

layout(matrix(1:2, nrow = 2))
hist(dfForbes2000$marketvalue)
hist(log(dfForbes2000$marketvalue))

Connecting to Excel through ODBC

reactime AUC10 AUC20 AUC30

10 361 729 1105

25 541 1089 1645

55 721 1449 2185

80 901 1809 2725

85 1081 2169 3265

105 1261 2529 3805

110 1441 2889 4345

135 1621 3249 4885

150 1801 3609 5425

155 1981 3969 5965

Problem: the data from a chemical analysis comes in
several columns (table 1), each for a different
concentration, 10, 20 and 30. AUC is area under the
concentration-time curve. The concentration value is
stored with the column name, but some statistical analysis
would require it to be on a column of its own (table 2)

ReacTime Concentration AUC

10 10 361

10 20 729

10 30 1105

25 10 541

25 20 1089

25 30 1645

55 10 721

55 20 1449

55 30 2185

80 10 901

80 20 1809

80 30 2725

85 10 1081

85 20 2169

85 30 3265

105 10 1261

105 20 2529

105 30 3805

110 10 1441

110 20 2889

110 30 4345

135 10 1621

135 20 3249

135 30 4885

150 10 1801

150 20 3609

150 30 5425

155 10 1981

155 20 3969

155 30 5965

Table 1 Table 2

The data is on a
TAB delimited file
datawnoise.txt
and it will have to
be converted and
saved onto file
datawnoise2.txt

read table data, TAB separated
RTable<-read.table("datawnoise.txt", header = T, sep = "\t")
examine the data
RTable
store the number of rows and columns
iNrows<-dim(RTable)[1]
iNrows
iNcols<-dim(RTable)[2]
iNcols
reactime values are needed for each AUC value
rep(RTable$reactime,iNcols-1)
sort the repeated reactime values
ReacTime<-sort(rep(RTable$reactime,iNcols-1))
ReacTime
#get the AUC col names
sColName<-colnames(RTable)[-1]
sColName
the concentration values are extracted from the AUC column names'
sub("\\D+", "", sColName,perl = TRUE)
concentration values are needed for each original row
Concentration<-rep(sub("\\D+", "", sColName,perl = TRUE),iNrows)
Concentration
convert to vector, by columns
AUC<-c(t(as.matrix(RTable[-1])))
#create a matrix with the new data
newdata<-cbind(ReacTime,Concentration,AUC)
save the new data
write.table(newdata, file = "datawnoise2.txt", sep = "\t",row.names =FALSE, quote =FALSE)

Example from R Graph Gallery by Romain François
http://addictedtor.free.fr/graphiques/RGraphGallery.php?graph=139

Scatterplots with smoothed densities color representation

library("geneplotter") ## from BioConductor
require("RColorBrewer") ## from CRAN

 x1 <- matrix(rnorm(1e4), ncol=2)
 x2 <- matrix(rnorm(1e4, mean=3, sd=1.5), ncol=2)
 x <- rbind(x1,x2)

 layout(matrix(1:4, ncol=2, byrow=TRUE))
 op <- par(mar=rep(2,4))
 smoothScatter(x, nrpoints=0)
 smoothScatter(x)
 smoothScatter(x, nrpoints=Inf,
 colramp=colorRampPalette(brewer.pal(9,"YlOrRd")),
 bandwidth=40)
 colors <- densCols(x)
 plot(x, col=colors, pch=20)

par(op)

Open PennState92.xls
Save as
PennState92.csv

PennStudents<-read.csv("PennState92.csv",row.names=1,header =F)
PennStudents

Statistical Inference

Distributions

standard univariate discrete distributions

binom Binomial Distribution
nbinom Binomial negative Distribution
pois Poisson Distribution
geom Geometric Distribution
hyper Hipergeometric Distribution

Statistical Inference

Distributions

standard univariate continuous distributions

unif Uniform Distribution
norm Normal Distribution
lnorm Log-normal Distribution
chisq Chi Square Distribution
t Student t Distribution
f f Distribution Distribution
exp Exponential Distribution
gamma Gamma Distribution
weibull Weibull Distribution
cauchy Cauchy Distribution
beta Beta Distribution
logis Logistic
signrank Wilcoxon Signed Rank Statistic
wilcox Wilcoxon Rank Sum Statistic

Statistical Inference

Distributions

Multivariate continuous distributions

mvrnormmultivariate normal (pkg MASS)
wishWishart (pkg MCMCpack)
iwish inverse Wishart (pkg MCMCpack)
dirichlet Dirichlet (pkg MCMCpack)
mvnorm multivariate normal (pkg mvtnorm)
mvt multivariate t (pkg mvtnorm)

Multivariate discrete distributions multinom multinomial

Statistical Inference

Distributions

Functions for distribution
"dist"

ddist(x, ... params ..., log=FALSE) density function or probability
density function, log=TRUE for log-likelihoods

pdist(q, ... params ..., lower.tail=TRUE, log.p=FALSE) distribution
function (cumulative density function), lower.tail=FALSE for one-
tailed upper p-values, log.p=TRUE for very small p-values

qdist(p, ... params ...,lower.tail=TRUE,log.p=FALSE) quantile
function (inverse cumulative density function)

rdist(n, ... params ...) random deviate generator, n is the number of
deviates

Statistical Inference

Distributions

R has several algorithms for pseudo random number generators (RNG), these algorithms will
generate the same sequence of pseudo random numbers by specifying the seed for the
algorithm (to start the sequence) and the version number (the algorithms are updated for bugs
and improvements)

RNG functions

RNGkind
RNGversion
set.seed

For simplicity, the examples will use the default RNG and change the seed to assure
reproducibility of results
rnorm(5) # draw a sample of size 5 from a normal distribution
rnorm(5) # draw a sample of size 5 from a normal distribution
rnorm(5) # draw a sample of size 5 from a normal distribution
set.seed(2012) # setting a seed for the RNG
rnorm(5) # draw a sample of size 5 from a normal distribution
rnorm(5) # draw a sample of size 5 from a normal distribution
rnorm(5) # draw a sample of size 5 from a normal distribution
set.seed(2012) # setting a seed for the RNG
rnorm(5) # draw a sample of size 5 from a normal distribution
rnorm(5) # draw a sample of size 5 from a normal distribution
rnorm(5) # draw a sample of size 5 from a normal distribution

the RNG will return the same
sequences for reproducibility
of tests

Statistical Inference

Distributions

rnorm(1) # draw a sample of size 1 from a normal distribution
rnorm(5) # draw a sample of size 5 from a normal distribution
rnorm(5,mean=1,sd=3) # draw a sample of size 5 from a normal distribution with mean 1 and
standard deviation 3
rnorm(60, 4, 7) # draw a sample of size 60 from a normal distribution with mean 4 and standard
deviation 7

dnorm(0) # density for the normal distribution on point 0
dnorm(1) # density for the normal distribution on point 1
dnorm(3) # density for the normal distribution on point 3
pnorm(0) # acumulated probability for the normal distribution below point 0
pnorm(3) # acumulated probability for the normal distribution below point 3
qnorm(0.5) # quantile 50% of the normal distribution is 0
qnorm(0.9986501) # quantile for pnorm(3)
x<-seq(-4,4,length=200) # create a sequence of 200 values [-4, 4]
plot(x,dnorm(x),type="l") # plot a normal distribution

rpois(50, lambda=3) # draw a sample of size 50 from a Poisson distribution with lambda=3

rbinom(100, 40, .25) # draw a sample of size 100 from a Binomial distribution with size=40 and
prob=.25

Statistical Inference

Sampling

sample draws a random sample from a population, replacement=T for sampling with
replacement

sample(5) # random permutation of sequence [1, 5]
sample(20) # random permutation of sequence [1, 20]

sample(seq(3:45), 10) # random sample of size 10 from [3, 45]

sample(4, 10, prob = c(0.3, 0.5, 0.1, 0.1), replace = T) # random sample of size 10 from
sequence [1, 4] with different probabilities of being chosen P(1)=.3, P(2)=.5 etc...

sample(c(0,1), 20, replace = TRUE) # 20 Bernoulli trials

sample(c("heads","tails"),1) # flipping a coin once
sample(c("heads","tails"),5, replace=T) # flipping a coin 5 times

sample(6,1) # rolling a dice once
sample(6,20,replace=T) # rolling a dice 20 times

sample(c("rock","paper", "scisors"),1) # draw rock-paper-scisors once

sample(39, 7) # drawing lottery numbers

Statistical Inference

Tests

One-Sample and Paired Data

t.test t-test
wilcox.test Wilcoxon signed rank

Two-Sample t.test t-test
wilcox.test Wilcoxon 2-sample rank-sum

k-Sample
kruskal.test Kruskal-Wallis
oneway.test One-way ANOVA

Unified Unpaired Nonparametric Tests spearman2

Statistical Inference

Tests

Student's sleep data
plot(extra ~ group, data = sleep)
t test
t.test(extra ~ group, data = sleep)

Statistical Inference

Tests

Explanatory

response

continuous categorical

categorical Logistic
regression

Cpntigency
tables, 2x2,
Chi2, Fisher

continuous Regression,
correlation

Anova, t-test

Statistical Inference

Correlations

cor() correlations

cov() covariances

cor.test() test a single correlation coefficient

corrgram() plot correlograms

Correlations/covariances among numeric variables in
dataframe mtcars. Use listwise deletion of missing data.
cor(mtcars, use="complete.obs", method="kendall")
cov(mtcars, use="complete.obs")

Correlation matrix from mtcars
with mpg, cyl, and disp as rows
and hp, drat, and wt as columns
x <- mtcars[1:3}
y <- mtcars[4:6]
cor(x, y)

Statistical Inference

Correlations

First Correlogram Example
library(corrgram)
corrgram(mtcars, order=TRUE, lower.panel=panel.shade, upper.panel=panel.pie,
text.panel=panel.txt, main="Car Milage Data in PC2/PC1 Order")

Second Correlogram Example
library(corrgram)
corrgram(mtcars, order=TRUE, lower.panel=panel.ellipse, upper.panel=panel.pts,
text.panel=panel.txt, diag.panel=panel.minmax, main="Car Milage Data in PC2/PC1 Order")

Third Correlogram Example
library(corrgram)
corrgram(mtcars, order=NULL, lower.panel=panel.shade, upper.panel=NULL,
text.panel=panel.txt, main="Car Milage Data (unsorted)")

http://www.statmethods.net/stats/correlations.html

Statistical Inference

Linear Regression

Model Fitting

Multiple linear regression: lm, ols [Residuals: residuals.ols]
General linear model: glm, glmD (just change glm to glmD in call)
Binary logistic model: glm, lrm
Ordinal logistic model: lrm [Residuals: residuals.lrm]
Parametric survival models: survreg, psm
Cox proportional hazards model: coxph, cph [Residuals: residuals.coxph,
residuals.cph]
Buckley-James censored least squares regression: bj

After-Fitting Analysis

Specifications for predictor transformations used by Design: specs
Predictions and confidence intervals: predict.Design
Overly influential observations: which.influence
Sensitivity to unmeasured confounder in lrm: sensuc
Create S function to evaluate fitted equation: Function
Compose LATEX code for typesetting algebraic expressions containing model fit:
latex.Design
Odds and hazard ratios and effect differences: summary.Design
General contrasts and CLs: contrast.Design
ANOVA: anova.Design
Fast backward stepdown variable selection: fastbw
Huber-White-Efron robust covariance matrix estimator with optional cluster
sampling adjustment: robcov
Bootstrap nonparametric covariance matrix estimator with optional cluster
sampling adjusting: bootcov
Generate data frame with predictor combinations: gendata

Statistical Inference

Linear Regression

exec.df = read.delim("salary.txt",col.names=c("years.experience","exec.salary"), header =
F)
class(exec.df)
plot(exec.df)
attach(exec.df)
exec.salary.lm = lm(exec.salary~years.experience) # regression
abline(exec.salary.lm) # regression line
summary(exec.salary.lm) # SUMMARY OF THE REGRESSION PROCESS
exec.salary.lm$residuals # check residuals
plot(exec.salary.lm$residuals) # plot residuals
abline(h=0)
horizontal line on y=0 because residuals are centered around it
data far from this line was not predicted well by the regression model, because the
residual is high

exec.salary.lm$fitted.values # predicted salary for each executive, by the adjusted model
predict.lm(exec.salary.lm,data.frame(years.experience=0)) # to predict the salary for a new
executives, with 0 years of experience
predict.lm(exec.salary.lm,data.frame(years.experience=c(1.5,2,3.5))) # to predict the salary
for 3 new executives, with 1.5, 2 and 3.5 years of experience

Years of experience and executive salaries in millions

Statistical Inference

Linear Regression

Simple Linear Regression

0 4.61
2 6.97
2 6.36
2 6.61
1 3.61
5 10.15
0 4.00
3 8.63
3 9.34
0 3.86
5 12.62
4 9.42
3 7.63
4 9.97
2 6.33
0 3.19
1 5.62
2 7.98
4 10.49
4 8.54

Statistical Inference

Linear Regression

Multiple linear regression

Instead of a regression line there is a regression plane

data(mtcars) # load dataset
attach(mtcars)
cars.lm = lm(mpg~hp+wt) # explain gas milleage in function of power and weight
summary(cars.lm)
the model is: gas milleage = 37.22 - 0.03 power - 3.87 weight
the more powerful the car, the lower the MPG, less milles per gallon
the heavier the car, the lower the MPG, less milles per gallon
R-Squared is 82%, these 2 variables explain the gas milleage very well

let's draw the residuals to check if any car behaves differently
plot(cars.lm$residuals)
abline(h=0)

to predict how many milles per gallon a car with 150 horse power and weight 2.t tons:
predict.lm(cars.lm,data.frame(hp=150,wt=2.5))

Statistical Inference

ANOVA

When is Anova Used?
• All explanatory variables are categorical—unquantified and unordered
• The explanatory variables are called ‘factors’; each has two or more levels.
• If there is one factor with two levels, use Student’s t.
• If there is one factor with three+ levels, use one-way Anova.
• If there are two factors, use two-way Anova.
• For three factors, use three-way Anova, and so on…
• If every combination of factors is present, you have a factorial design, allowing you to study
interactions between variables (and order no longer matters!).

Statistical Inference

ANOVA

Modelling the mileage (mpg) with variables weight (wt), transmission type (am), and/or the number of
cylinders (cyl), 3 models:

data(mtcars) # load dataset
res.lm = lm(mpg ~ wt, data = mtcars)
res.lm2 = lm(mpg ~ wt + cyl, data = mtcars)
res.lm3 = lm(mpg ~ wt + cyl + am, data = mtcars)

#Applying anova() to a single model object produces an analysis of variance for computing the F-test of
whether the constant mean model is appropriate
anova(res.lm)

there is a relationship between mpg and wt

Applying anova() to two model objects for test if nested models produces an analysis of variance for
computing the F-test of whether the extra term is warranted.

anova(res.lm, res.lm2)

the differences are significant, the number of cylinders seems to have a statistically significant effect.

Applying anova() to three nested models produces sequential F-tests.
anova(res.lm, res.lm2, res.lm3)

This shows that in the model mpg modeled by wt and cyl, the cyl variable is statistically significant.
However, in the full model of mpg modeled by wt, cyl, and am, the variable am is not statistically
significant.
http://wiener.math.csi.cuny.edu/st/stRmanual/anova.pdf

Statistical Inference
References/to learn more:

The R book
Michael J. Crawley pp 370
2018 John Wiley & Sons Ltd

Basic statistics using R pp. 213
Jarno Tuimala (CSC) and Dario Greco (HY)
http://www.csc.fi/english/csc/courses/archive/R2008s

Statistics: an introduction using R
Michael J. Crawley pp 125
2016 John Wiley & Sons Ltd

Statistics with R
Vincent Zoonekynd, pp 620
http://zoonek2.free.fr/UNIX/48_R/all.html

Aprendizaje del software estadístico R: un entorno para simulación y computación estadística
Prof. Alberto muñoz garcía
Departamento de Estadística
Universidad Carlos III de Madrid
http://ocw.uc3m.es/estadistica/aprendizaje-del-software-estadistico-r-un-entorno-para-simulacion-y-computacion-estadistica/resolveUid/4b28fd8154f6521f963aa058ec6baf31

Introductory Statistics with R
Peter Dalgaard, pp 109
2018 Springer

Geographic Data Analysis
Pat Bartlein
http://geography.uoregon.edu/bartlein/courses/geog417/lectures/lec10.htm

Software Tools, Part 1: introduction to R software
Petri Koistinen
http://www.rni.helsinki.fi/~pek/s-tools/test-ci.r

Chem 351 Archives Page
David Harvey
http://fs6.depauw.edu:50080/~harvey/Chem%20351/PDF%20Files/Handouts/RDocs/Using%20R%20for%20Linear%20Regression.pdf

Thomas AP Statistics
thomasmathematics.com
http://www.thomasmathematics.com/Aims/Ch3Aim30001.pdf

Quick-R
Rob Kabacoff
http://www.statmethods.net/stats/correlations.html

The Stem and Tendril simplified R manual
Professors Franzblau, Poje and Verzani of the College of Staten Island
http://wiener.math.csi.cuny.edu/st/stRmanual/

● The rgdal Package
October 17, 2008
Title for the Geospatial Data Abstraction Library
Version .5-27
Date -10-09
Depends (>= 2.3.0), methods, sp
LazyLoad
Description bindings to Frank Warmerdam’s Geospatial Data Abstraction Library (GDAL) (>= 1.3.1) and
access to projection/transformation operations from the PROJ.4 library. The
GDAL and PROJ.4 libraries are external to the package, and, when installing the package from
source, must be correctly installed first. Both GDAL raster and OGR vector map data can be
imported into R, and GDAL raster data and OGR vector data exported. Use is made of classes
defined in the sp package.
Author H. Keitt <tkeitt@mail.utexas.edu>, Roger Bivand <Roger.Bivand@nhh.no>, Edzer Pebesma
<e.pebesma@geo.uu.nl>, Barry Rowlingson
Maintainer Bivand <Roger.Bivand@nhh.no>
License (>= 2)
URL ://www.gdal.org, http://rgdal.sourceforge.net/, http://sourceforge.net/projects/rgdal/
System Requirements for building from source:GDAL >= 1.3.1 library from
http://www.gdal.org/download.html and PROJ.4 (proj >= 4.4.9) from http://proj.maptools.org/

● OGR Simple Feature Library

The OGR Simple Features Library is a C++ open source library (and commandline tools) providing read
(and sometimes write) access to a variety of vector file formats including ESRI Shapefiles, S-57, SDTS,
PostGIS, Oracle Spatial, and Mapinfo mid/mif and TAB formats.

OGR is a part of the GDAL library.
http://www.gdal.org/ogr/

R and GIS

R has several packages that can work with GIS data, the most commonly used is the rgdal
Package. The acronym rgdal stands for "R Geospatial Data Abstraction Library".
The rgdal Package provides bindings to Frank Warmerdam’s Geospatial Data Abstraction
Library (GDAL), this library can work with both raster and vector data in many of the available
GIS formats in use. The vector library (OGR) is incorporated into GDAL (raster library) and it is
fine to mention either one as separate libraries or GDAL as a whole. RGDAL can work with
GDAL raster and OGR vector map files, and it can use both together.

Using rgdal

Loading the library:
> library(rgdal)
Loading required package: sp
Geospatial Data Abstraction Library extensions to R successfully loaded
Loaded GDAL runtime: GDAL 1.5.3, released 2008/09/09
GDAL_DATA: C:/PROGRA~1/R/R-28~1.0/library/rgdal/gdal
Loaded PROJ.4 runtime: Rel. 4.6.1, 21 August 2008
PROJ_LIB: C:/PROGRA~1/R/R-28~1.0/library/rgdal/proj
>

To get a list of the available drivers:
> getGDALDriverNames()
 name long_name create copy
1 AAIGrid Arc/Info ASCII Grid FALSE TRUE
2 ADRG ARC Digitized Raster Graphics TRUE FALSE
3 AIG Arc/Info Binary Grid FALSE FALSE
...
These are just the first 3, there are over 70, including geoTIFF, ESRI HDR, Erdas IMG, Idrisi RST, USGS
DEM, etc...

To get the gdal version:
getGDALVersionInfo()

Loading dem30m_erdas.img (about 5 Megs):
dem30 <- readGDAL('dem30m_erdas.img')

Getting the projection, datum, etc...
proj4string(dem30)

What kind of variable is dem30?
class(dem30)

Getting detailed information about dem30:
summary(dem30)

dimensions and their names
dim(dem30)
names(dem30)

Plotting a density map:
plot(density(dem30$band1))

read as GDALReadOnlyDataset
dem30 <- GDAL.open('dem30m_erdas.img', read.only = TRUE)
Displaying the raster
displayDataset(dem30,offset=c(0,0), region.dim=dim(dem30), reduction=1, band=1)

Lattice (trellis) plot method for spatial data with attributes
spplot(as(dem30, "SpatialGridDataFrame"))

storing the elevation on a matrix
rt <- as.matrix(getRasterTable(dem30)[,3])

fixing the dimensions
rm<-matrix(rt,dim(dem30)[1],dim(dem30)[2],byrow=T)
dim(rt)
dim(rm)

using function image to show the DEM
image(1:dim(dem30)[1],1:dim(dem30)[2],rm)

using function persp to show the DEM
v1 <- seq(1,dim(dem30)[1],100)
v2 <- seq(1,dim(dem30)[2],100)
persp(1:length(v1), 1:length(v2),rm[v1,v2])

Cholera mortalities, Soho

Load unit0_slides.R

and read unit0_slides-2x2.pdf

To learn more:

One-day introductory course on Spatial Data Analysis with R
www.bias-project.org.uk/ASDARcourse

Geographic Data Analysis
Geog 4/517, Pat Bartlein
http://geography.uoregon.edu/bartlein/courses/geog417/syll09.htm

R for Medicine and Biology
Paul D. Lewis pp 58
Jones and Bartlett Series in Biomedical Informatics

Applied Spatial Data Analysis with R
http://www.amazon.com/Applied-Spatial-Data-Analysis-Use/dp/0387781706

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338
	Slide 339
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350
	Slide 351
	Slide 352
	Slide 353
	Slide 354
	Slide 355
	Slide 356
	Slide 357
	Slide 358
	Slide 359
	Slide 360
	Slide 361
	Slide 362
	Slide 363
	Slide 364
	Slide 365
	Slide 366
	Slide 367
	Slide 368
	Slide 369

