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Abstract. In this report, we present the results@tima in the Ontology Align-

ment Evaluation Initiative (OAEI) 2011. We participate imree tracks of the
campaign offered in SEALS platform: Benchmark, Confereand Anatomy.

We review the iterative ontology alignment approach adbpteOptima and its

results for the Benchmark and Conference tracks.

1 Presentation of the system

The increasing usefulness of the semantic Web is in partalae increase in the num-
ber of ontologies on the Web. Applications such as Web semtienpositions and se-
mantic Web search, which utilizes these ontologies demavai/do align these ontolo-
gies. Nowadays numerous ontology alignment tools existydan be broadly identi-
fied using, 1) the level of human intervention needed; 2) theunt of prior training
data needed; and 3) the facets of ontologies used and thehsgyate utilized. We
present a fully automatic, general purpose ontology aligmirtool calledOptima [2],
which does not need any prior training. Like many other tp@istima utilizes both
lexical and structural facets of ontologies to arrive at lignanent. However, it primar-
ily differs in a different aspect — being iterative — from rhogher alignment tools that
presently exists. Common approaches build an alignmensingde pass using a vari-
ety of heuristics and similarity measures. In contrastngls pass approach&ptima
continues to improve an alignment in an iterative fashioptima formulates the prob-
lem of inferring a match between two ontologies as a maximkafihood problem, and
solves it using the technique of expectation-maximizaiei). Specifically, it adopts
directed graphs as its model for ontology schemas and usesarajized version of
EM to arrive at a map between the nodes of the graphs. At theoEadch iteration,
Optima derives a possibly inexact match. Inexact matching is tegss of finding a
best possible match between the two graphs when exact mgtishnot possible or is
computationally difficult.

We describe briefly the formal model of an ontology as utdibgy Optima and the
EM-based algorithm adopted Iyptima in the next two subsections.

1.1 Ontology Model

Optima adopts the common directed labeled graph model for ontadofgmas where
the nodes of the graphs are the concepts (named classes & RRIFOWL) and the
labeled edges are the relationships (properties) betvneeridsses. Contemporary lan-
guages for describing ontologies such as RDFS and OWL alew #he ontologies



to be modeled as directed labeled graphs [3]. Bec&ystéma focuses on identify-

ing a many-one map, let the graph with the larger number oesdik labeled as
the data graph while the other as thraodel Formally, the data graph is modeled as:
Oq = (Vy, Eq, Lg), whereVy is the set of labeled vertices representing the concepts,
Ey is the set of edges representing the relations which is & setlered two subsets of
Vi, andL, : E; — A whereA is a set of labels, gives the edge labels. Analogously,
O = (Vi Em, Ly,) is the model graph against which the data graph is matched. Le
M be the standarfi/;| x |V,,,| matrix that represents the match between the two graphs:
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Each assignment variable M is,

Lif f(xa) =Ya :Ta € Vg, Yo € Vin
Maa = :
0 otherwise

where f(-) represents the correspondence between the two ontologhgr&onse-
quently,M is a binary matrix representing the match.

1.2 EM-based Algorithm

Optima views the mapping between two ontologies as the problenhefcbncepts of

source ontology (data graph) emitting the concepts of tasglogy (model graph)

with an underlying Bernoulli distribution. It formulatelsi¢ model as a maximum like-
lihood problem and solves it using the popular expectati@ximization algorithm

(EM) developed by Dempster et al. [1] to find the maximum iikebd estimate of

the alignment from observed data instances in the presémessing correspondence.
It iteratively searches for the match matrid, , that gives the maximum conditional
probability of the data grapl),, given the model graph?,,,, and the match assign-
ments. Formally,

M, = argmax Pr(O0q|Op,, M)
MeMm

whereM is the set of all match matrices. While there may be as manyas" |
possible alignment®ptima shrinks this space by considering many-one maps only.
In the equation abové)ptima uses heuristics to guide its search space. Section 1.4
explains the heuristics used in Optima.

Pr(0aOm,M)= T > Pr(zalya, M)ma (2)
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wheren, = Pr(y.|M) is the prior probability of the model graph vertey,, given
the match matrix)/. The correspondencé, is hidden from us. The matrix/ may be
seen as a mixture model by viewing each assignment variafyle, as a model.

This modeling does not have an inherent way of finding mapp#&taween edges.
Though it is viable forOptima to map the bipartition transformation of the provided
graph it avoids it for the excessive complexity involved.nide, Optima additionally
allows matching the concept graph and labeled relatiosskgpseparate but dependent
tasks.

E Step Optima formulates a conditional expectation of the log likelihawith respect
to the hidden variables given the data graph and a guess ofidteh matrix,M/" at
some iteration n, in order to find the most likely match matrix

QM M™) = E [logPr(ze|ye, M™ )it zg, M"]
= Z‘le‘ Z‘le‘ Pr(ya|Ta, M™) log Pr(xe|ye, M T1)antL

a= a=

3)

Optima derives the probability that the data graph nagejs in correspondence
with the model graph nodg,,, under the match matrix of iteration, M™ as ,

Pr(zq|ya, M™) = [ 1 :||lelvm‘—l

V. Vim n
Pr(@alya) Hl‘zzll ,IB:I‘ Pr(zalya, mys) 4)

Here, it is assumed that the individual modeis,;, are independent of each other.

Optima extends the structural graph matching initially proposgd o and Han-
cock [5] with label similarity measures to derive the praitighthat z,, is in correspon-
dence withy,, given the assignment modet,3.

Pr (zalya, mis) = (1 = Pe(2a,Ya)) " Pe(wa,ya)' ~F¢ (5)
where the correspondence errBr,: V; x V,,, — [0, 1], is defined as,

Pe(@a,ya) = Pe(|Val, [Vin]) = 0 X Ps(2a, Ya) (6)

EC denotes the edge consistency between the two graphd) isldefined as,

1 (Ia,xb>eEd/\<ya,y;5>€Em/\mbﬁ:1
EC = .
0 otherwise

The correspondence errdt,, is based on the structural err@t, (|Vy|, |Vin|) , @ func-
tion based on the sizes of the graphs, and the similarityeohtide labelsP; (x,, ¥« )-
Parameted € [0, 1] controls how much weight is given to the similarity betweatitg
labels. The structural error is defined as,

[Va| = [Vin|

Optima employs the integrated similarity mentioned in Sectiontt.8valuate the
lexical similarity Ps (24, Yo )-

Pu(Val [Vinl) = 2]



M Step The maximization step chooses the match mathi* !, that maximizes
Q(Mn™+L|M™), as shown in Eq. 3. This mapping matrix becomes the inputtHer t
expectation step of the next iteratid@ptima adopts the generalized EM, which re-
laxes maximization by settling for a mixture mod&f**+!, that simply improves the Q
values.

MM =M e M QMM M™) > Q(M™M™) 7
The prior,77*!, for each model graph node, is updated as:
1 [Val
7T2+1 =N Pr Yo xauMn (8)

The updated”*! will be used in the next iteration of the EM.

1.3 Specific Techniques Used
We configuredptima slightly different for OAEI from its default configuration.

Integrated Similarity Measure Concept or word similarity measures may be broadly
categorized into syntactic and semantic. Syntactic siityldetween concepts is en-
tirely based on the string similarity between the concepéshes, labels and other as-
sociated text. Semantic similarity measures attempt tzeitihe meaning behind the
concept names to ascertain the similarity of the conc&gtma utilizes both syntactic
and semantic similarities.
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Fig. 3. Our integrated similarity measure as a function of the WNeghsemantic similarity
(Sem and Smith-Waterman based syntactic similariByrj. Notice that the value is lower if
semantic similarity is low but syntactic is high comparedite versa.

There is no standard way of integrating WN-based similagiityn syntactic mea-
sures. We employs a technique from our previous work in [8htegrate similarity



measures. We define a normalized 3D function that maps a gaiernf semantic and
syntactic similarity to an integrated value. In order togete this function, we observe
that labels that are syntactically similar (suctcasandbat) may have different mean-
ings. Because we wish to meaningfully map entities, sernamiilarity takes prece-
dence over syntactic. Consequently, high syntactic butdemantic similarity results
in a lower integrated similarity value in comparison to loyntactic but high seman-
tic similarity. We model such an integrated similarity me@esas shown in Fig. 3 and
give the function in Eq. 9. Our integrated similarity furzetiis similar to a 3D sigmoid
restricted to the quadrant where the semantic and syn&gtitarities range from 0 to
1. One difference from the exact sigmoid is due to the spegifiperty it must have
because semantic similarity takes precedence over simta&t used Lin [4] similarity
measure and gloss-based cosine similarity measure toadg@dhe semantic similarity.
On the other hand we used Smith-Waterman [7] technique Gartesning the syntactic
similarity between concept and relationship names.

1
1+ et-r—c(Sem)

Int(xaa ya) =7 (9)
Here,y is a normalization constant;= /Syn? + Sem?2, which produces the 3D sig-

moid about the origin¢ is a scaling factor and(Sem) is a function of the semantic

similarity as shown below:(Sem) = - wheret’ is the scaling fac-

1+ et/»Sem(ma,yQ)—c
tor andc’ is the translation factor, if needed. The specific functiofig. 3 is obtained
whent =4, ¢ = 3.5, andd’ = 2.

1.4 Adaptations made for the evaluation

The iterative alignment algorithm requires a seed map.i$tan initial list of mappings
between concepts often provided to iterative algorithmil&the seed map could
be generated manuall@dptima additionally utilizes a simple technique of mapping
nodes across the ontologies whose labels are syntactaalhar. Candidate alignments
are generated using simple but intuitive heuristics. Fangxe, given each previously
mapped node pair, their parents are considered for a matiditidnally, their sibling
nodes could be considered. Analogous to the seed map, nodeapwng the parents
that are sufficiently similar are matched. Different poignalignments are generated
based on how many parent nodes are matched and whethegsiblie matched as
well. These candidate alignments are considered durifgigaation ofOptima. More
details abouOptima are available in [2].

We also relaxed th®ptima 's many-to-one constrain in candidate alignment gen-
eration to generate many-to-many alignments for OAEI.

1.5 Link to the system and parameters file

The Optima can be found ahtt p: //t hi nc. cs. uga. edu/ t hi ncl abwi ki /
i ndex. php/ Aut omat ed_Al i gnnent _of _Ont ol ogi es.



1.6 Link to the set of provided alignments (in align format)
The OAEI 2011 results can be foundwtt p: // t hi nc. cs. uga. edu/ t hi ncl abwi ki /

i ndex. php/ OAElI _2011.
2 Results

As stated above)ptima participated in three tracks in OAEI 2011. However for this
report preliminary results of two tracks are presented &edrélated analysis are re-
ported.

2.1 Benchmark

The average precision and recall@ptima are depicted in 1.

Precision/Recall
100 0.90 1.0
200 0.79 | 0.73
300 0.74 | 0.79

Table 1. Recall and Precision of Optima on benchmark track

2.2 Conferences

Optima attains an average recall of 0.60 and an averagespmedif 0.26 in conference
track. See Appendix A for details.

2.3 Anatomy

We could not produce the results for anatomy track u€ipgima within the provided
time. SinceOptima utilizes an iterative algorithm and anatomy track has vargé
ontologies, we were unable to complete aligning these ogies.

3 General comments

The primary challenge faDptima is to align very large ontologies. Due to its iterative
nature and inherent computational complexity of evalgathee Equation 30Optima
takes considerably longer time to align larger ontologi¢awever it is able to align
small to medium ontologies competitively.

We also found that computing semantic similarity measuoesvbrd phrases and
compound words is difficult. Tokenizing these correctly &whting individual glosses
in WN is often challengingbut crucial for a better performance.

! The conceptMeta-Reviewshould be tokenized into two wordMeta, Reviewwhile Regis-
tration_.Non—-Membemeeds to be tokenized into two wor¢Registration, NonMembelut



4 Conclusion

In this report we present the results@jptima in OAEI 2011 campaign. We participate

in three tracks including Benchmark, Conference and Angtakie reviewed the iter-
ative algorithmOptima adopts to arrive at an inexact match between two ontologies.
Though we have been using OAEI datasets for various expatgaad fine tuning of
Optima , this is the first time we participate officially in an OAEI cpaign. Due to its
iterative naturéDptima takes substantially longer time to align large ontologiksa
result we are unable to provide our preliminary results @tamy track for this report.

In future, we would like to participate in more tracks. ESpég we hope to leverage
Optima to be able to efficiently solve instance matching and largelogy matching
challenges.
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should not be tokenized into three woiRegistration, Non, MemberThe hyphen (-) is a de-
limiter in the former concept but should be just ignored ia lgter concept. This tokenization
is demanded by WN matchers sindetaRevievdoes not exist in WN but the wotdonMem-
ber exists in WN.



A Optima’s performance in conference track

The precision and recall for individual test cases in cagriee track is shown tn the
table 2 below.

Ontology pair PrecisionRecal

cmt-confOf 0.35 | 0.50
cmt-conference 0.18 | 0.44
cmt-edas 0.24 | 0.69
cmt-ekaw 0.15 | 0.45
cmt-iasted 0.33 | 1.00
cmt-sigkdd 0.39 | 0.75
confOf-edas 0.27 | 0.68
confOf-ekaw 0.30 | 0.55
confOf-iasted 0.33 | 0.67

confOf-sigkdd 0.26 | 0.71
conference-confQf 0.32 | 0.67
conference-edas| 0.17 | 0.53
conference-ekaw| 0.16 | 0.40
conference-iasted 0.15 | 0.29
conference-sigkdd 0.34 | 0.67

edas-ekaw 0.21 | 0.52
edas-iasted 0.35 | 0.47
edas-sigkdd 0.26 | 0.60
ekaw-iasted 0.20 | 0.60
ekaw-sigkdd 0.27 | 0.64
iasted-sigkdd 0.31 | 0.73
|average | 0.26 [0.60]

Table 2.Optima s performance in conference track of OAEI 2011



