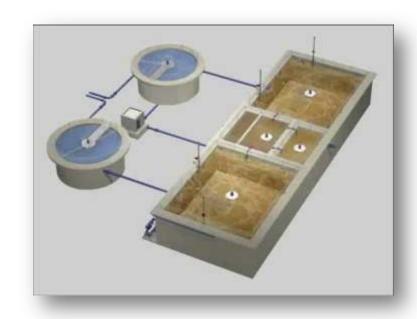


AquaPASS® Phased Activated Sludge System

Mark P. Hughes, P.E. Product Manager – Biological Processes



Presentation Outline

- Definition of the AquaPASS® System
- Process Description of the AquaPASS® System
- Applications
- Process Comparisons/Advantages
- Summary

What is an AquaPASS® System?

- Phased Activated Sludge System
- Continuous Flow, Activated Sludge
- Aqua MixAir® System
- Biological Nutrient Removal (BNR) Focus

Aqua MixAir® System

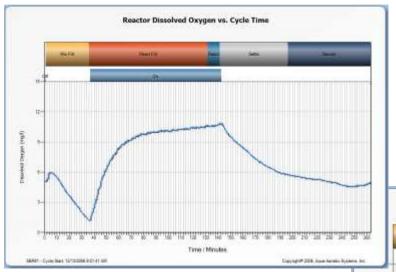
Aqua MixAir® System Heart of Biological Systems

- Independent Mixing
 - AquaDDM® Mixer
 - AquaCAM-D®
- Independent Aeration
 - Diffused or surface aeration
 - Retrievable or fixed

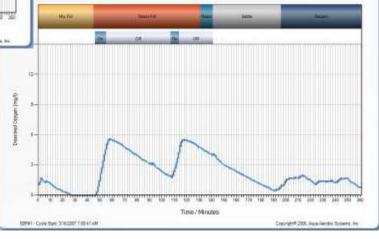
Aqua MixAir® System

Biological Nutrient Removal

Aerobic Mixing (Nitrification)



Anoxic Mixing
(Denitrification and Power Savings)


Aqua MixAir® System

Energy Control

"Significant power savings can be experienced with the Aqua MixAir® system"

"A 1 MGD plant could save \$10,000 in the first year with the Aqua MixAir® system and proportional D.O. control"

Reactor Dissolved Oxygen vs. Cycle Time

Supplemental Carbon Addition

Aiding Denitrification

- Review of 40 AquaSBR® installations with effluent TN requirement of 10 mg/l or less.
 - 12% additional carbon
- Literature review of 20 flow-through BNR plants designed for 10mg/l or less.
 - 65% add additional carbon

Supplemental Carbon Addition

Plant Name	Design Effluent TN (mg/l)	Carbon Addition	% of Design Load BOD	Design C:N Ratio	Current C:N Ratio (no Carbon)	Current C:N Ratio (w/ Carbon)	Carbon Added (Ibs/day)
Big Coppitt, FL	3	No	19.9%	4.03	1.63	1.63	N/A
Boonsboro,MD	3	No	42.5%	4.76	4.01	4.01	N/A
Key Largo, FL	3	Yes	31.5%	5.00	4.69	4.90	86.7
Mashantucket, CT	3	No	17.9%	3.60	6.12	6.12	N/A
Millville, FL	3	No	60.2%	3.89	8.31	8.31	N/A
Huntington, NY	4	Yes	66.8%	4.50	4.03	4.20	104.1
Lee, MA	6	No	42.3%	5.80	6.48	6.48	N/A
Dale Service Section 1, VA	8	Yes	47.1%	4.41	4.00	4.71	891.7
Dale Service Section 8, VA	8	Yes	47.1%	4.41	4.00	5.03	1,288.0

C:N Ratio from 1.63-8.31 with and without carbon addition

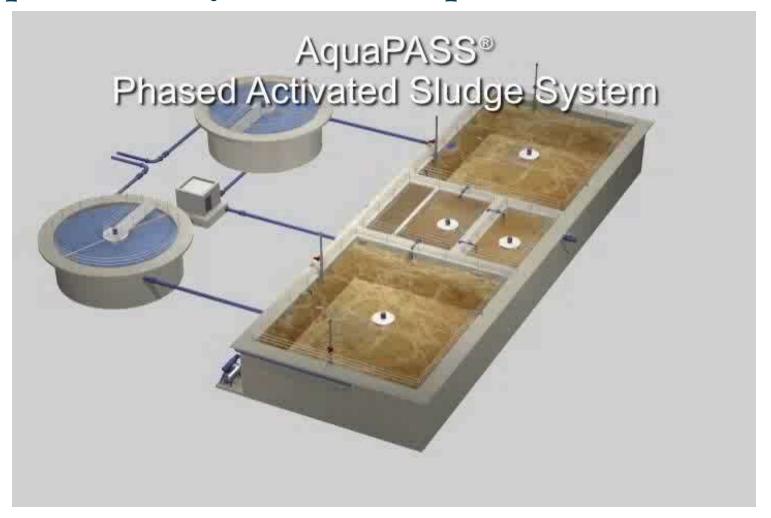
Supplemental Carbon Addition

Flow-Through Systems

	<u>8 5 J</u>						
Plant Name	Design Effluent TN (mg/l)	Carbon Addition	Current C:N Ratio (no Carbon)	Current C:N Ratio (w/ Carbon)	Carbon Added (lbs/day)	Process	
Alexandria Renew WRF, VA	3	Yes	5.5	7.8	12028.2	5 Stage Bardenpho	
Central Johnston, NC	3.7	Yes	Unknown	10	Unknown	Activated Sludge with denite filter	
Clark County, NV	5.8	No	5.5	5.50	N/A	A/O	
Clearwater, FL	3	No	6.7	6.7	Unknown	Bardenpho	
Crowders Creek WWTP	6	Yes	Unknown	Unknown	1200.0	A ² O	
Easton WWTF, MD	4	Yes	Unknown	Unknown	62.8	Oxidation Ditches configured as 5 Stage Bardenpho	
Elkton WWTF, MD	3.8	No	Unknown	Unknown	120.1	Oxidation Ditch with Post-Anoxic and Re-aeration tanks.	
Henrico County, VA	5	Yes	Unknown	7.90	Unknown	5 Stage Bardenpho	
JD Phillips, CO	10	Yes	Unknown	Unknown	5343.5	A ² O - 3 stage	
Kalispell, MT	4	No	5.7	5.70	N/A	Modified UCT	
Kelowna, BC	4.38	No	5.3	5.3	Unknown	Westbank	
Lee County, FL	3	Yes	Unknown	4	Unknown	Activated Sludge with denite filter	
Long Creek WWTP	6	Yes	Unknown	Unknown	1660.0	A ² O	
Lott WWTP, WA	10	Yes	Unknown	4.75	3616.4	4 stage bardenpho	
MWRD RWHTF, CO	10	Yes	Unknown	Unknown	10000.0	MLE	
Neuse River WWTP, NC	2.7	Yes	Unknown	Unknown	8917.1	4 Stage Bardenpho with denite filters	
Noman M. Cole PCP, VA	5.25	No	5.40	5.40	N/A	Step Feed Activated Sludge and denite filter	
North Cary, NC	3.94	No	4.3	4.3	Unknown	Oxidation Ditch	
TP Smith WRF, FL	3	Yes	Unknown	Unknown	8818.0	4 Stage Bardenpho	
Western Branch WWTP, MD	3	Yes	Unknown	13.90	Unknown	4 anoxic, 8 aerobic reactors	

C:N Ratio > 4 required to meet effluent TN limits

Aqua MixAir® System Summary

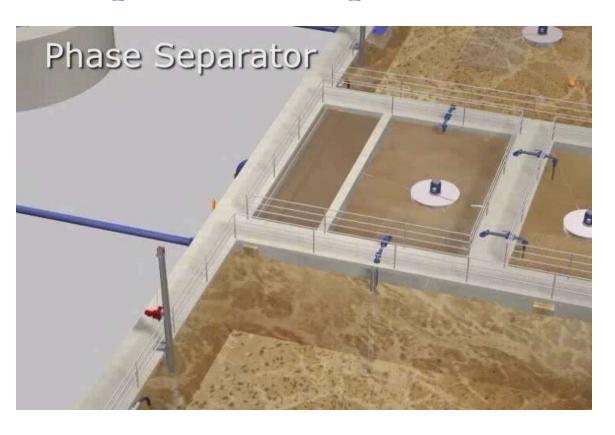

- The Heart of Aqua-Aerobic Systems' Biological Process and Adaptive Design
- Advantages of Efficient Mixing
 - Process Control
 - Energy Savings
 - Carbon Savings
 - Improved Treatment (BNR) at Minimal Additional Cost

AquaPASS® System Operation

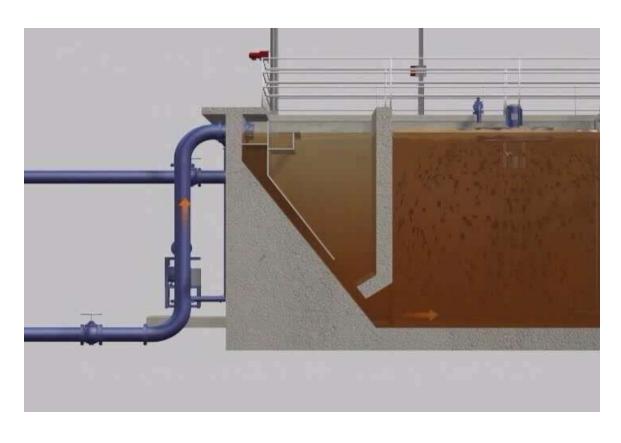
AquaPASS® System Description

Step 1: Anaerobic Treatment

- Influent Combined
 With Thickened RAS
- D.O.= $0 \text{ mg/l } & <3 \text{ mg/l NO}_x$ -N
- HRT 0.5 1.5 Hours
- Complete Mix
- Bio-P Release
- Selector Basin

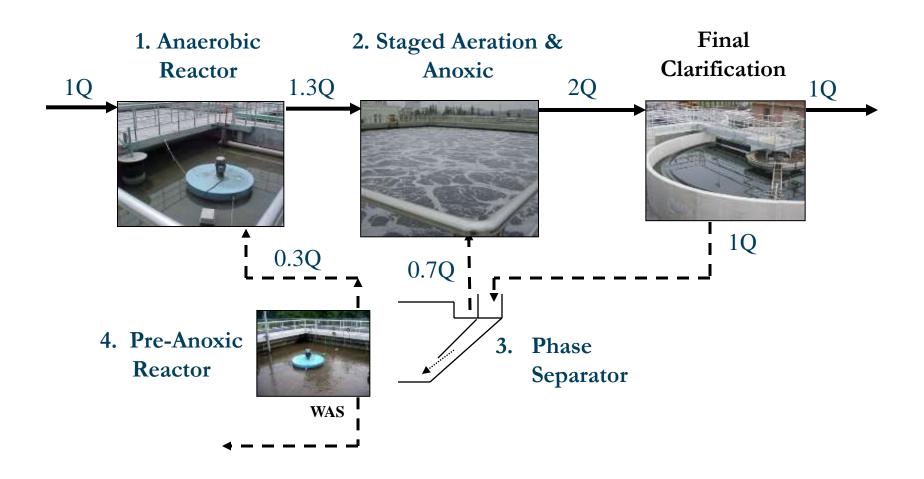


Step 2: Staged Aeration


- Multi-Level Aeration
 Management
 - Aerobic and Anoxic Events
 - D.O Control

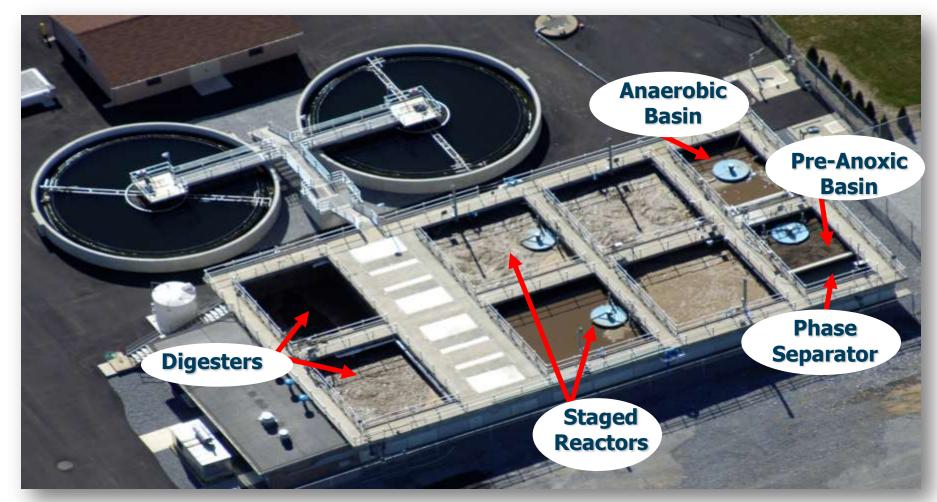
Step 3: Phase Separator

- RAS from Final Clarifier
- Typical HRT 0.5 Hours
- RAS Concentrated 20% 50%
- Supernatant Transferred to Staged Reactors
- Thickened Sludge to Pre-Anoxic Reactor


Step 4: Pre-anoxic Reactor

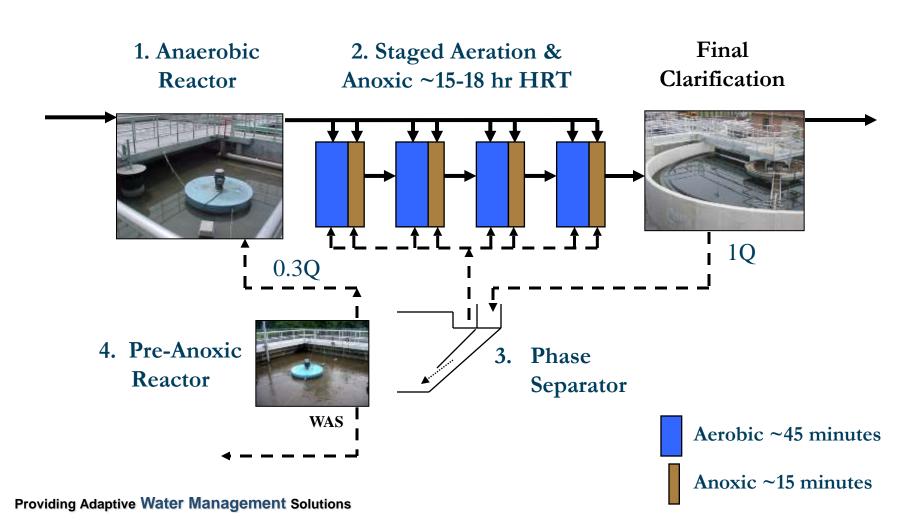
- Thickened RAS from Phase Separator
- Typical HRT 0.5 1.5 Hours
- NO₃-N Reduced Prior to Anaerobic Reactor
- Internal Recycle
 Rates 15% 30% of
 Influent Flow

AquaPASS® System


Process Flow

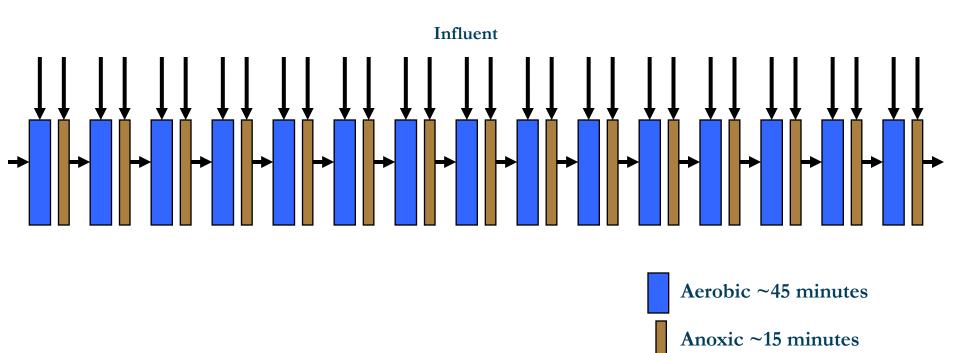
AquaPASS® System

Layout Example

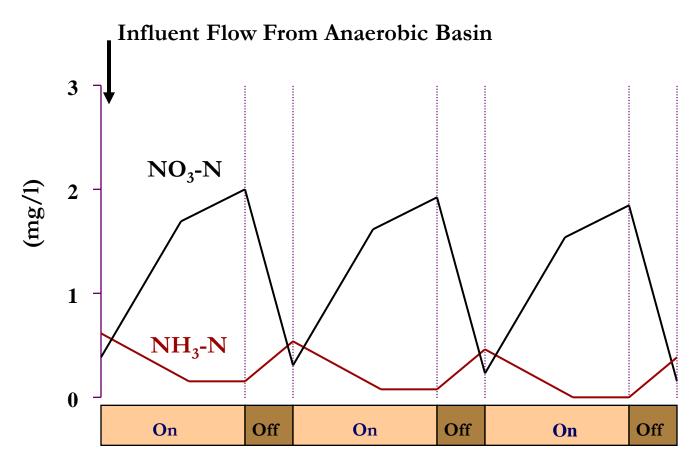


AquaPASS® Design Considerations

AquaPASS® System


SAR - Aerobic/Anoxic

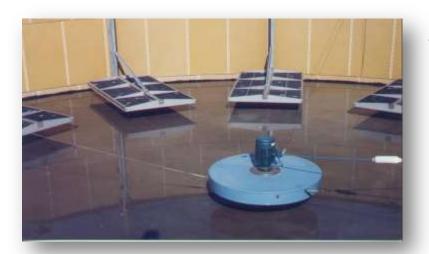
AquaPASS® System


SAR - Aerobic/Anoxic ~15-18 hours HRT

Nutrient Control

Staged Aeration/Anoxic Reactor - Nitrogen Control On/Off Management

Phase Time



AquaPASS® System Components

AquaPASS® Components

Unequaled Quality

Aqua MixAir®

Aqua-Aerobic Control Solutions

Phase Separator

Phase Separator

AquaPASS® Installation Profiles

Installation Profile

Salisbury Township WWTP, PA - Retrofit

Expansion of an existing activated sludge system to meet new BNR requirements.

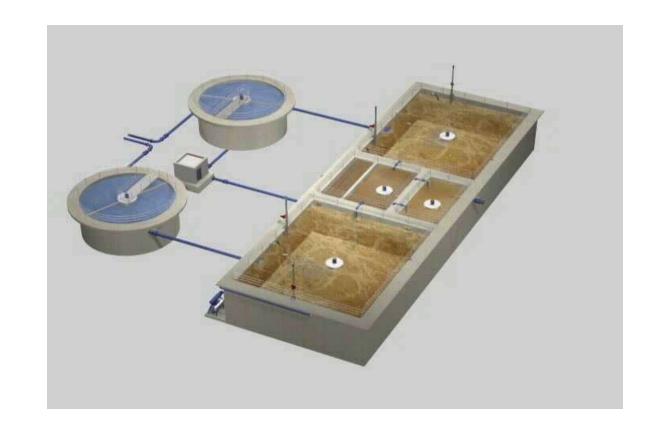
Installation Profile

Salisbury Township WWTP, PA - Retrofit

Avg. Flow 0.58 MGD / Peak Flow 1.16 MGD						
Loading	Design Influent (mg/l)	Design Effluent (mg/l)	Avg. Effluent (mg/l)*			
BOD	250	15	2.5			
TSS	215	30	4.6			
TKN	35		2.6			
NH3-N		1	0.42			
Total N		6.9	4.5			
Total P	6	0.86	0.25			

*Based on data from 01/2011 - 04/2012

Summary


Summary

- Efficient "BNR" Performance
- Time-Management of Process (Flexibility)
- Proportional Aeration Turndown via Aqua MixAir® System
- Low Headloss (constant water level)
- Flexible Design
- Low Life-Cycle Cost (Mixing, Pumping, Aeration)

AquaPASS® Phase Activated Sludge System

Questions?

