Simple C for the PIC
Microcontroller

Simon Bramble

Simple C for the PIC Microcontroller

Copyright Notice
Copyright© 2010 Simon Brambleyww.simonbramble.co.uk
All rights reserved

All contents contained within Simple C for the PMicrocontroller is copyrigh© 2010 Simon
Bramble.

Thank you.

© Simon Bramble 2010

2

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4.

Chapter 5:

Contents

Ccontents

The PIC Architecture

The Basics of the PIC architecture
Memory

Input/Output Pins

Interrupts

Stack

Downloading the C Compiler

The HI-Tech editor
MPLAB

First Steps in Programming

Comments
#include files
Header files
Configuration bits
The main function

Writing Code that Does Stuff

for loops

while loops
do..while loops

if statements
if..else statements
switch statements

The First Complete Program

Type definitions

Ob and Ox notation
Disabling the comparator
Basic binary manipulation

© Simon Bramble 2010
3

10

13

18

30

Chapter 6:

Chapter 7:

Chapter 8:

Chapter 9:

Chapter 10:

Simple C for the PIC Microcontroller

Simulating Code and
Programming the PIC

Staring a project in MPLAB

Editing a project using the Hi Tech editor
Building a project

Configuring the MPLAB Debugger
Programming the PIC

Timers and Interrupts

Configuring the Timer 1 control register
Configuring the Timer 1 count register
Configuring the Interrupt register

Functions

Creating Functions
Data Types

Local Variables
Prototyping
Variable Scope

Working with Binary Numbers
and Bits

Bits, nibbles, bytes
Binary numbers
Hexadecimal numbers
Logic Functions
Shifting Bits

Data Types

Unsigned char
Unsigned int
Converting data types

© Simon Bramble 2010

4

35

49

58

65

79

Contents

Chapter 11: Arrays

Single Dimensional arrays
Multidimensional arrays
Storing text

Driving LCDs

Chapter 12: Other Useful Snippets

The enum keyword
The static keyword
The volatile keyword

Appendix A: Variable Names

Appendix B: C Operators and their
Shortforms

Appendix C: The #define Directive
Appendix D: Suggested LED Schematics
Appendix E: Suggested LCD Schematic
Appendix F: Preprocessor Directives

Appendix G: ASCII Codes

© Simon Bramble 2010
5

82

100

102

103

106

108

111

112

113

Simple C for the PIC Microcontroller

Introduction

Microprocessors are becoming more complex yearean §s are the tasks that are required of
them. While it is acceptable to obtain a grasghefworkings of a microprocessor using assembly
language, if more complex tasks are to be perfoymeimpler language is needed. In addition, an
engineer can cut his teeth on one processor, bepasfieient in its assembly language but then be
a complete novice if he needs to upgrade to a psocdrom a different manufacturer that uses a
completely different set of instructions. A univar&anguage is needed that is not processor
dependent that enables an engineer to write sadtvemyardless of the platform and regardless of the
complexity of the task in hand.

This is where the C programming language comelsgodscue. C was designed to be simple, yet
flexible enough to allow engineers to perform coempasks with little knowledge. Moreover,
because it has been widely adopted by the engimgeeommunity, many microprocessor suppliers
have employed compiler companies to design consplilased on their particular architecture.
Therefore, once an engineer becomes proficiertarCt programming language, he can switch
from one microprocessor to another with little effand use simple and complex processors with
similar ease. The C compiler handles the probletnamislating high level C into lower level
assembly code (and thence the native machine code).

The problem with C compilers is that they are belythe budget of most engineers trying to learn
C, so assembly language still reigns supreme imotsdy market. C is kept to those engineers
employed in companies not afraid to spend thousahdsllars on compilers. This is a pity,
because although C occupies more memory spaceydo mmore can be achieved with C over
assembly language and indeed an engineer with ledgelof the basics of C can explore many
more applications and processors expanding hisrefecs knowledge as he goes.

Another reason why some hobby engineers do nottabdeC programming language is that it can
look intimidating. Ironically many proficient C pgoammers think the same of assembly language
and baulk at having to write hundreds of linessgeanbly code to perform a simple task. However,
C does not have to be complex and many complidasés can be performed with only the
slightest knowledge of C. In fact, this is oftee thest way of learning any language (computer or
spoken): start with the simple stuff, build yountidence with this and slowly learn the
complicated aspects as your confidence grows.

Finally, many C programming books are aimed atimgiPC based software, so many of the
programming examples include functions that sckeykoard and print the results. In the
embedded world (software designed to run on a rpioaessor inside a piece of equipment that
does not necessarily have a keyboard, mouse, pantescreen) the print and scan functions are
completely redundant.

© Simon Bramble 2010

6

Introduction

This book has 3 aims:

Firstly to present to the reader a way of obtairariggal, free of charge C compiler and show the
reader how to install the compiler and write a der(® program for a PIC microcontroller.

Secondly to demonstrate that complex C programsnchaed be written using only the simplest of
C language commands. This will enable the readbuild confidence with the C programming
language in order to move on to other books tleattt¢he more complex aspects of C.

Thirdly to provide the reader with code snippett theve been tried and tested on the PIC
microcontroller and actually work. As with learniagconventional language (like English) you
learn by copying then doing and these code examyilelback up the theory so the reader can
become proficient in writing simple code in C fonleedded applications. This book has been
written to get the reader exposed to code as quakpossible so he can start writing his own
programs (however rudimentary) almost immediat€his has been done at the expense of a more
traditional logical flow of chapters. Rather thaade through chapters of theory, this book dives
into code almost immediately with the finer detaifthe code explained in later chapters.

In writing this book, the author has consideredaa®ycompletely new to microprocessors and
included a brief chapter on how microprocessorswogeneral. This will help the reader
understand the mechanics of a microprocessort Buhot essential to read this chapter firsts It i
perfectly acceptable to dive straight into the ogdthapters and refer back to the basics if needed.

All of the code in this book has been based orPlilgl6F627A microprocessor. It is worth
downloading the latest copy of this datasheet from

www.microchip.com
to see what components inside the PIC16F627A ang lbeferred to.
You will also need a PIC16F627A I/P chip. These eitimer be purchased from any good
electronics component supplier or ordered as a lgafrgon the Microchip website. It is worth
ordering 2 just in case things go wrong..
Finally, since this book is available in electrofucmat, it can be changed and updated very easily
to suit the reader. If you have any comments omavgments that can be made to this book, please

email us at:

enquiries@simonbramble.co.uk

© Simon Bramble 2010
7

Simple C for the PIC Microcontroller

Chapter 1
The PIC Architecture

The Basics of the PIC architecture

Although it is not essential to know every lastailesf how the PIC microcontroller works, it helps
to have an understanding of memory, ports, inteés;ignd peripherals and how they all interact.

Memory
The PIC has 2 types of memory: ROM (Read Only Mgfiand RAM (Random Access Memory).

ROM is memory that holds your program. Once itrsgpammed, it cannot be modified by
program execution. It can be erased and reprogran{ifigou want to change your software and
reprogram the microprocessor), but during executfoyour program, the ROM remains
unchanged. There are several types of ROM, butyffeemost PICs use is Flash ROM. This daft
name comes from the fact that its predecessordgek to erase and program, whereas Flash
memory can be erased and programmed quickly (lash): If you remove the power to the
microprocessor, the ROM remains programmed, soythat program can restart when the power is
reapplied.

RAM memory is where all the variables of a progiam stored. If you are counting the number of
times a particular part of code is executed, thentwalue is stored in RAM. If you remove the
power to the processor, all RAM data is lost.

Input/Output Pins

The most fundamental parts of any microprocessotrar port pins. These interface your program
to the outside world, so the first step in learrmy computer language or microprocessor is to get
the port pins moving. The simplest applicationday microprocessor is to flash an LED and this
will be our first code example. This simple applioca proves that we have been successful in
several tasks: we have found a program that enablés enter code, program some registers to
toggle the port pins, compile it without errorsyaidoad it to the target microprocessor, power up
the processor and run the program.

Simplistically, programming a microprocessor ishiiag more than programming its internal
registers to do stuff. If you can program the micoressor registers to set port pins high and low,

you can do pretty much anything you want within ¢apabilities of that particular processor. Being
able to toggle the port pins is a very big stepvérd in mastering the complete microprocessor.

© Simon Bramble 2010

8

The PIC Architecture

Interrupts

To keep things simple, it is convenient to imagim& the program you write starts at address 0000
and steps through memory addresses 0001, 0002.soamal. Many microprocessors have
interrupts included in their architecture. Theseiacredibly handy functions as they allow the
program to flow normally until some outside eveoturs. When the event happens, the
microprocessor jumps to a known location wherepttoggrammer has written software (known as
an Interrupt Service Routine) to handle the intgtriihe interrupt is dealt with and normal program
execution is resumed. Fortunately for the programthe C compiler handles all the addressing
and jumps to and from the interrupt service routilethe programmer has to do is worry about
writing the code to handle the interrupt, but thil be covered later. A good example of this is if
program needs to perform a function every 2 secohus programmer can set up a timer to count a
2 second period then generate an interrupt. Trausntbroprocessor can perform its other tasks (for
example measuring a temperature and displayingeghdts on an LCD) and every 2 seconds
saving the temperature to external memory or flfaghin LED, or sounding a buzzer.

Stack

Software is normally written as a series of funasioSo for a temperature logger, you will write a
function that reads in the analogue voltage froentdmperature sensor, there will be another
function to convert this to a series of numberdisplay on the LCD, there will be one to drive the
actual display and finally, possibly a functiortime how often the reading takes place (once per
second for example). All of these functions areggelty ‘called’ from the main program. The
program starts by stepping through its instructkatsaddress 0000, 0001, 0002...). When a
function is called, the current address of the @oyis stored in an area of memory called the stack
and the program jumps to the address where theidunis located. When the function has been
executed, the microprocessor looks to the stask@owvhat address to return to. One function call
takes up one place on the stack. If a call is niadefunction and then inside that functmmother

call is made to another function, 2 places arertakeon the stack and so on... A 2 level deep stack
allows a ‘call within a call’ to be made. So a &t&ca temporary storage space for addresses to be
stored by the processor during the execution optbgram.

Fortunately much of the addressing issues outlatexe are handled by the C compiler, so the
programmer does not have the worry of locating adad@OM/RAM or at any specific memory
address. Nor does he have to worry about his eaodping to the correct address during an
interrupt or handling the stack during functioni€al

© Simon Bramble 2010
9

Simple C for the PIC Microcontroller

Chapter 2
Downloading the C
Compiler

In this chapter we will download free of chargelsao allow you to write C code, compile it,
debug it and program a PIC microcontroller with it.

Until recently, Hi Tech provided a very good corepidnd editor that could be used to write and
debug code. Unfortunately the simulator (in ourezignce) was not as good as the one offered by
Microchip. This meant that code was written usimg Hi Tech editor and simulated in Microchip’s
MPLAB environment. There was also a program cdlledsersal Toolsuite to link the two
programs to ensure that a modified file in the ch editor appeared as a modified file in
MPLAB.

All that has changed since Microchip bought Hi Tagbw everything is done within the
Microchip environment and the latest version of MBLincludes the Hi Tech C compiler and can
be downloaded free of change from the Microchip siteb However, we still feel that it is easier to
write code in the editor from Hi Tech, then comglel simulate it in MPLAB. Since you cannot
obtain the editor from Hi Tech anymore, we havevghed it on the SimonBramble Website:

www.SimonBramble.co.uk

We suggest you write the code in gator provided by Hi Tech and use MPLAB to compile and
simulate your code as well as download your codbddarget microprocessor.

To install Hi Tech'’s editor (HI TIDE Integrated Delepment Environment), run the executable
file, hi-tide_v3.15.exe downloaded from our websitel follow the instructions.

When prompted to install HI TECH C JTAG Debug Ifaee Driver, unselect the checkbox as this
iS not needed.

© Simon Bramble 2010

10

Downloading the C Compiler

Installing HI-TIDE

S W

HI-TIDE

Integrated Development Environment

Flease choose the foldet to install into, then click Mextto complete the installation,

[CTHI-TECH C JTAG Debug-nterface Driver
C:AProgram FilezhHI-TECH SoftwarehHI-TIDEYI 15

Space required: 99.9 MB Space available: 37731 MEB

Cancel

The Universal Toolsuite will be installed when yiagtall MPLAB, thus any changes made in your
editor will automatically be updated in MPLAB.

To download MPLAB, go to Microchip’s website at:

www.microchip.com
Their homepage is constantly changing, but looKNt®LAB IDE’. This is Microchip’s Integrated
Development Environment. Download MPLAB ‘Full Reded ZIP version’ and save it in a folder

of your choice.

To install MPLAB, unzip the files and follow thesitmuctions. When you get greeted with:

© Simon Bramble 2010
11

Simple C for the PIC Microcontroller

MPLAB® Tools

Setup Status

ﬁ'\ MICROCHIP

9 The HI-TECH C installer is in an external executable,
L.)

It is not controlled by this installer.

It will not be uninstalled if wou uninstall MPLAE IDE,

C Lo wou want to run the HI-TECH © installer now? I not, wou can find it at
C:\Program FilesiMicrachip\HCPIC-pro-9, 70, exe

Cancel

Select ‘Yes’ regardless of whether you have alraastyalled the Hi Tech C compiler as this will
install any additional components that MPLAB miglktd. How to use MPLAB will be outlined in
a future chapter.

© Simon Bramble 2010

12

First Steps in Programming

Chapter 3
First Steps Iin
Programming

Let's get down to learning how to program. The gtudg about C is that it is a ‘high level’
language. Basically, low level languages have usions close to machine code (the 1's and O’s
that the microcontroller works on). Higher levatdgmages are nearer to English. The C compiler
translates high level code into 1's and 0’s, sopfeggrammer does not have to worry too much how
the microprocessor works. With C being a high ldaryuage, much of the programming technique
becomes instinctive after a while as C is veryelwsour native English.

Let's start with a skeletal program on which welWwiild our program. Don’t worry too much
about not understanding the following few pages @diately. The following template can be
copied across from one program to the next andrstated over time.

A good template to start with is the following:

/* Program Name: LED Flasher */

#i ncl ude <htc.h>

_ CONFIG(PROTECT & CPD & LVPDIS & BOREN &
MCLRDIS & PWRTEN & WDTDIS & INTIO);

voi d mai n(voi d)

{

Starting at the top, you will notice a comméntyreen) . Comments are completely ignored by
the compiler. Comments at the top of the code nilyrreclude the name of the file, the author, the
date the code was written, code revision, typerot@ssor used, clock frequency etc. You can put
as many comments throughout your code as you é&melssary and some programmers say the

© Simon Bramble 2010
13

Simple C for the PIC Microcontroller

more comments the better. It helps explain youedodanyone reading it and can also be useful if
you need to go back to your code at a later dadlecannot work out what your code means (yes
this does happen).

In C a comment is defined by at the start of the comment andat the end of the comment.
Anything between these lines is classed as the @mmcluding carriage returnsTherefore the
above comment can span multiple lines with just/onat the start and‘a at the end as shown
below:

It looks neater if the comment is terminated atghe of each line with‘a and the next line
started with a new , but this is personal preference.

You might also see comments written as follows:

/l Program Name: LED Flasher

Here a/ is used at the start of every line. However, leeecomment is terminated at the carriage
return, so a new is needed at the start of every new comment 8tiectly this does not conform
to the C standard and some purists will say flagal. However, most compilers accept it.
Personally, to keep your code conforming to thadsded, only the:*/ format should be used.

The next line of our skeletal program is:

#i ncl ude <htc.h>

Now, we mentioned that C is a high level language @ne of the benefits of using a high level
language is its readability. Some programmers gextaordinary lengths to make their code
readable, often at the cost of code size. The ¢fuind about C is that the programmer can write
several functions, all in separate files and tedl € compiler to compile them all together as thoug
they were one big file. This has huge benefithereadability of the code and a large program will
be divided into lots of smaller functions in separ@es often only a few lines long. Moreoveraif
programmer writes a particularly useful functidmstcan be copied over into another completely
different program and used again, thus saving lgatamewrite code from scratch. This benefit of
being able to hive off code into other files is ajon benefit of C.

© Simon Bramble 2010

14

First Steps in Programming

Header files (defined by the ‘.h’ on the end of fiteename) are used to define variables and
addresses that are used across several diffelesitifistead of defining these variables in edeh fi
we put them all into a header file and just ‘in@duthe header file (using the statemeintc! ude)

at the top of each file. The compiler then look¢hie header file for the variable definitions. The
overall effect is that the code looks very muchteewith all the variable definitions out of the ya
in a separate file.

As an example, your code might write a value to PARPORTA is located at address 0005hex.
Rather than your code having statements like:

setport 0005hex

It is far more readable if your code reads as Vadlo

setport PORTA

If you define PORTA as being equal to an addreg§6b€x in the header file, then every time the
compiler reaches a statement including ‘PORTAbdKs to the header file to see what the
definition of PORTA actually is. It then replacdkiastances of PORTA with 0005 and compiles
the code. Therefore when reading through your cgole know exactly what your code is doing
(operating on Port A) instead of having to decipdmme strange register address. The file above
(ntc.h), contains all the definitions of the port pinsgister bits, register names etc are defined
which make your code easier to read.

(Technically,htc.h calls up another file that contains all the deiims, but to keep things simple,
it can be assumed that.n contains all the definitions. For the more curioesder, thétc.h file
is located in the:\program files\hi-tech software\picc\9.70\includieectory.

Inside thentc.h file, there is a line

#i ncl ude <pic.h>

telling the compiler to look in thgic.h file. Inside thepic.n file, there is a line

#i ncl ude <picl6f62xa.h>

© Simon Bramble 2010
15

Simple C for the PIC Microcontroller

telling the compiler to look in theici6f62xa.h file. Inside this file is where all the 16F627A
registers are defined, including a line that tedks compiler to replace all ‘PORTA comments with
the more mysterious address of Port A, 0005.)

So here we are making use of C’s ability to comiomakiple files to get rid of a lot of variable
definitions that would otherwise clutter up our gm@m and make it difficult to read.

The way to include the header file in your maineadto use thei ncl ude statement and if used,
should always be placed at the very top of the cdtis is known as preprocessor directivand it
tells the compiler to include certain definitionesified in another file. Preprocessor directiviasts
with the# symbol andti ncl ude is the only one you need for now. All the Hi Tqaeprocessor
directives are outlined in Appendix E.

Another benefit of a header file is that you cahgny port definitions and program constants into
the header file, then if they need to be changediatter date, you only need to change one entry in
a single file instead of having to open up eaahtbl see if it uses that constant. Port pins aenof
quite randomly chosen in some PIC programs (thexea difference between Port A and Port B
on the PIC16F627A), but if it is easier to lay out PCB such that the LED is driven from Port B
bit 0 instead of Port A bit 0, changing a singladher file is easier than changing each reference to
that port within all files.

So a header file is a file that is included in yoain code and makes your code easier to read.

The next line sets up the configuration bits ofthieroprocessor.

_ CONFIG(PROTECT & CPD & LVPDIS & BOREN &
MCLRDIS & PWRTEN & WDTDIS & INTIO);

The above statement is specific to the PIC compikeare going to use. Don’t worry about its
syntax too much as this line can be copied oven fpoogram to program and only modified

slightly if a new processor is used. The aboveesstant tells the compiler to program the processor
with the following attributes:

Code protect: enabled

Protect Data memory: enabled

Disable Low voltage programming: enabled
Brown out detect: enabled

Master clear pin: disabled

Power Up Timer: enabled

Watchdog timer: disabled

Oscillator is internal

© Simon Bramble 2010

16

First Steps in Programming

How these configuration bits affect the PIC micnatcoller can be found in the datasheet.
Again, these wordsPROTECT, CPD, LVPDIS etc) are defined in the header fite.h

And finally next is the all importantai n function:

voi d mai n(voi d)

{

Every program written in C has to have (only ome)n function. This tells the compiler where the
main program starts and takes the form of any dtheation in C which will be explained later.

The first word in any function defines tbetputof that function — what result the function
produces, if any. The worai d tells us that this particular function gives oathng. Next is the
name of the function and our main function hasec#llednai n.

Next (in brackets) is a list of variables that flnection takes amputs In this case, ourai n
function takes in no variables and we define tlyisiging the word voi d).

Any function then contains one or more lines ofetuht define what the function does. Most of
the time a function will have more than one linesoftware and these are grouped together in
brackets thus: {}. If there is just one line in thaction then curly brackets are not needed, It is
however, good to get into the habit of always pgttirackets around the function code even if it is
one line as this makes code readability easier.

In summary, this chapter has defined our skeletajqam. This can be used as a template for all
future programs you write with the only thing tishanges being the code we are going to insert
between the curly brackets in awi n function.

© Simon Bramble 2010
17

Simple C for the PIC Microcontroller

Chapter 4

Writing Code that
Does Stuff

A microprocessor (put simply) is nothing more tlaaseries of registers that the user programs to
do stuff. The simplest task a microprocessor cais dwitch on and off an LED on a port pin and
once we have proved that we can use the intergadtegs to flash an LED on and off,
programming the other registers inside the micrtrodlar is simple. The C programming language
makes it incredibly simple to change the state @di pin on the PIC microcontroller and this can
be achieved using one line of code.

Firstly, the PIC16F627A has two 8 way (or 8 bitytgains, RAO to RA7 and RBO to RB7 as shown
below. Please note that the port pins start wighstifix ‘0’, so referring to Port A bit 1 actually
refers to thesecond/O pin of Port A. These port pins are shared wither functions, but for the
moment, we will ignore these.

C. e
mz-nmm'ma—{ 1 18 [Je—s RATAN1
RAJAN3ICMP1 +— | 2 17 }-—- RAD/AND
I: 5
RA4TOCKICMP2 «—] | 3 3 16 | |«— RATIOSC1/CLKIN
RAS/MCLRPP —-[4 % 15 }-—» RABIOSC2/CLKOUT
vss —[|5 I 14 Je—voo
s
RBOMNT+—]|6 & 13]-—- RB7/T10SIPGD
w
RBIRWDT+—[|7 § 12 :I-—- RBG/T10SOITICKIPGC
(=N
RB2TXICK+——>] | & 11 |J«—> RBS
RBACCPY 4.—{ g 10 }._.. RB4/PGM

A binary number can be written to Port B and thils appear as a voltage (either 5V or 0V) on the
pins of the microprocessor. Binary numbers areamptl more in the chapter Working with Binary
Numbers and Bits. The line

© Simon Bramble 2010

18

Writing Code that Does Stuff

PORTB = 0b11110000;

sets Port B bits 7, 6, 5, 4 to logic ‘1’ (5V) andrPB bits 3, 2, 1, 0 to logic ‘0’ (OV). It is that
simple. Theob' is simply a way of telling our compiler that thember that follows is a binary
number. We will now demonstrate all of the impottamctions in C using the LED flashing
principle.

Most computer programs run from start to finishaetang statements as they go. There are a few
program statements that make decisions along tlgeané change the flow of the program
depending on the outcome of the decision.

You can write quite sophisticated programs withy@hprogram statements. These are:

for (..)
{

/[* put your instructions here */
}
whi | e(...)

/[* put your instructions here */
}
if(.);
{

/[* put your instructions here */
}
for_Loops:

If an instruction or group of instructions needexecuted a fixed number of times, the
program statement is ideal. An example is showaoviel

for (n=0; n<10; n++)

{
}

/* put your instruction to be repeated here */

The first line is theevaluationand it assigns the value O to a counter, n. (at®ger variable can

take the place of n and this will be explainedrlat€he instructions within the curly brackets are
then executed, n is incremented (using the statemeh the evaluation is performed again and the
instructions are executed while n<10. The+" is the same as writing

© Simon Bramble 2010
19

Simple C for the PIC Microcontroller

n=n+1

in other words, increment n by 1, so the instruct®executed 10 times.

Equally, the following statement does the samegthin

for (n=1; n<11; n++)

{
}

/[* put your instruction to be repeated here */

Likewise:

for (n=10; n>0; n--)
{

}

/* put your instruction to be repeated here */

The above lines assign the value 10 to a countexatute the instructions within the curly
bracketsdecremenh and continue to execute the instruction whil®.nfhe h-- ’ is the same as
writing

in other words, decrement n by 1, so the instraaScexecuted 10 times. Note also the change of
the < sign to > as we are executing the statenvemte n>0.

All 3 statements above perform exactly the sametfon, although the first one is probably more
instinctive in how it operates.

An actual example of theor statement is shown below.

for (n=0; n<10; n++)

PORTB = 0b11111111;
PORTB = 0b00000000;

© Simon Bramble 2010

20

Writing Code that Does Stuff

Thisf or statement assigns the value of O to a count@ha statement then executes the lines of
code inside the curly brackets. These lines assigadue of all 1’s to Port B, then assign a valtie o
all 0’s to Port B. If LEDs were connected to Portigey would flash on and off 10 times. Again,
note the use of th@t’ notation before our 8 binary bits telling the qaifar that the number we are
dealing with is a binary number with each binanyitdibit) representing a port pin.

Note the layout of the code. The code inside thi®y dwackets has been indented. The compiler
ignores this indentation, but it MUST be includeditake the code more readable. The curly
brackets containing the code relevant tofthe statement are directly below thatr statement.
Nothing else exists on this line. The code insktesé curly brackets starts on the line below and is
indented. Thus it can easily been seen what coalgpcable to theor statement. At the end of
thef or statement, the closing curly bracket is in linéhvihe opening curly bracket —i.e. not
indented. It is not so important with this examgilet if you get & or statement inside an

statement inside &hi | e statement, things can get a bit unreadable. lescliiee this, indentation
plays an essential part in the readability of theec

It is also worth noting that normal lines of codesé to be terminated in a semicolon and program
statements such asr, whi | e andi f do not have a semicolon at the end.

f or loops can be ‘nested’ and this is particularlyphdlin creating a delay routine. The code above
will turn PortB on and off, but at such a fast rabat the eye will not be able to see the LED
flashing, assuming the LED can even keep up wighsgieed! To give us some idea of the speed,
the default clock speed of the PIC microcontrae4MHz, or one clock cycle every 0.25us. It
takes four clock cycles to execute most assemhblyuage instructions so an instruction cycle
executes every 1lus. Each C instruction breaks dowrveral assembly language instructions so
we can immediately see that our code above is goifigsh our LED on and off every few
microseconds — far faster than the eye can see.

Assuming we need the LED to flash once per secondqf half a second and off for half a
second), we need to turn on the LED, haveraloop to create a delay of 0.5 seconds, turn @ff th
LED then have another delay of 0.5 seconds. We wsttlr the code below:

f or (n=0; n<255; n++)

PORTB = 0b11111111;

Our value oh can only count up to 255 (this will be explainatkl). Putting this code into
MPLAB and simulating it shows that it takes 3.34fgmsn to count from O to 255. Putting another
for loop around the above loop will ensure that oudf8loop occurs multiple times.

We calculate the loops needed as follows:

© Simon Bramble 2010
21

Simple C for the PIC Microcontroller

Loops= O.SSeoonds: 150
3.4ms

The code below will achieve this:

f or (x=0; x<150; x++)
for (n=0; n<255; n++)

PORTB =0b11111111;

Starting with the ‘inner’ loop, we are writing anlairy value of 1111 1111 to Port B 255 times. We
then repeat this complete sequence 150 times, esifeict we are writing to Port B 38250 times. We
have nested the loop of 255 counts inside anotiogr df 150 counts.

Simulating this code in MPLAB shows that the LEBOBI for 499.5ms.

We now need to turn the LED OFF, so can repeasdhnge exercise. The loop below takes 4.08ms
(simulated in MPLAB) to count from O to 255.

f or (n=0; n<255; n++)

PORTB = 0b00000000;

123 cycles of this loop will give us our OFF times®0ms, thus:

f or (x=0; x<123; x++)
f or (n=0; n<255; n++)

PORTB = 0b00000000;

© Simon Bramble 2010

22

Writing Code that Does Stuff

Note the indentation. All code applicable to thetfior statement is indented once. All code
applicable to the nextor statement is indented twice. With this indentatiogthod, it is easy to
see code inside eachr statement.

Suppose we want to flash our LED 5 times. Puttmgriotherf or statement allows us to do this:

[* flash LED 5 times */

f or (i=0; i<5; i++)

{
/* turn LED ON for 0.5s */

f or (x=0; x<150; x++)
f or (n=0; n<255; n++)

PORTB = 0b11111111;
}

[* turn LED OFF for 0.5s */
f or (x=0; x<123; x++)

{
f or (n=0; n<255; n++)

PORTB = 0b0000000Q0;

Now you can see the importance of indentation! ddwe for eaclhor loop is contained within its

own set of curly brackets and each closing braskeirectly below its associated opening bracket.

It is also worth pointing out that each loop usekff@rent variable counter,(x andn). If your

program starts doing strange things, check thathywe not used the same variable twice. Note also
the comments, telling the reader exactly what e hlock of code does.

There are easier ways of generating delay routindshese will outlined later, but for now, this is
a fine example of creating a delay routine witheatadf or loop.

whi | e Loops
The next statement in our armoury is thel e statement. As it would suggest, this executes a

group of instructionsvhile a condition is true, regardless of how many titas might be. Here is
an example.

© Simon Bramble 2010
23

Simple C for the PIC Microcontroller

=)

=0;
ile(n<10)

B

PORTB =0b11111111;
PORTB = 0b00000000;
n++;

Again we notice that each line of code within thadkets has a semicolon at the end whereas the
program statements do not.

Analysing this function, we start with the evaloatihi | e(n < 10) . If thewhi | e statement is true,
the statements inside the curly brackets are egdciihe evaluation is then reassessed and the
statements are executed again as long as the gwalisatrue. It may seem obvious, but there must
be a way of modifying the variable, n, otherwise kbop will continue forever. This is unlike the

f or loop that has the increment or decrement as pénedor statement at the top of the loop.

Now, sometimes a group of statements needs todmidoeforethe evaluation takes place. A
simple modification of thehi | e statement allows us to do this, as follows:

n=0;
do

PORTB = 0b11111111;
PORTB = 0b00000000;
n++;

}whi | e (n<10);

As always, each line has a semicolon at the eragpgxor the evaluation. There is also a semicolon
after thewhi | e statement. Now, some might argue that the cod®re readable if theni | e
statement is placed below the last curly bracketwéier, putting it on the same line groups it
together with the previouso statement and its associated curly bracketswére placed on the

line below, the reader might think that it was avnei | e statement and wonder why it had a
semicolon at the end.

Another way of looking at theni | e statement is as a True/False evaluation. In Coahapiler
assigns the evaluation a value of 1 if the evatumais True and O if False. Sometimes our program

might want to execute an infinite loop (loop forevand we can use thei | e statement with a
forced value of 1 (always true) to do just thatwilie statement below:

© Simon Bramble 2010

24

Writing Code that Does Stuff

whi | e(1)
{

}

/[* put your instructions here */

Any code inserted inside the curly brackets willexecuted forever.

To be more precise, theéi | e statement will execute if the evaluatiom@n-zero In the case of a
comparison, if the answer is true a value of Isggned to the evaluation and if the answer igfals
a value of O is assigned to the evaluation. Howeal/dre brackets were filled with any non zero
value then thehi | e statement would still execute, so

whi | e(10)
{

}

/[* put your instructions here */

has the same effect as

whi | e(1)

/[* put your instructions here */

i f Statements

Unlike thef or andwhi | e statements, thef statement is a single conditional test, so evatidte

i f statement, then executes the instructions insideurly brackets once on the condition that the
i f statement is true. Of course, the statement care$ted inside another statement that will force
it to loop as the following code illustrates

n=1;
whi | e(1)
{
n++;
i f(n==10)
n=0;
}

© Simon Bramble 2010
25

Simple C for the PIC Microcontroller

The above code illustrates a number of issues we thiscussed so far. Firstly, the variable, n, is
assigned the value 1. The next line ighal e statement and only executes if tihe | e condition is
true. In this case, because the condition is aMias(we have assigned it a permanent value of 1),
the loop will continue to execute permanently is #n infinite loop.

The variablen is increment by one to the value 2. Thenithetatement is reached. The code
within thei f curly brackets is only executed if n is equal @ It the first parse through this code,
n is equal to 2, so the code within thestatement is not executed. The code then reabbesntd of
thei f curly brackets, falls out of the statement, then reaches the end ofithe e statement, so
loops back to thehi | e(1) evaluation and the process starts again. n isitieeement to 3 and so
on... It can be seen that as soon as n reachesltteeMa the f statement becomes true, the code
within thei f statement is executed and n is given the vale of

Note the difference in the use of the ‘equals’ sigh single= sign is arassignment- it assigns a
number to a variable. A double equals sigH) (s a comparison — it compares one variable (or
value) with another variable. It can be seen that & needed in any conditional statements, like

i f, as the variable inside the brackets (n) is beomgpared, not assigned. Some compilers
(including the Hi Tech compiler) will only throw upwarning if you use arf statement with a
single equals sign, but will still compile the co@&ware: A simple mistake like this can take hours
of frustration working out why your code is misbeimg. Refer to Appendix B for more examples
of the difference between and-=.

Suppose we want to execute a group of statementeitondition is true, but execute another set
of statements if another condition is true. This ba achieved by expanding tife statement with
anel se statement.

=)

:1;
ile(l)

5

i f(n==10)
n=0;
el se

n++;

A Ay

The above code is the same as the last exampl&hibuime increments n in all cases other than
when n is equal to 10 where it sets n to zero. Als thewhi | e statement, thef statement can
evaluate to any non-zero value in order to exeantedoes not have to be ‘1’ or ‘0’. This is an
important point to note when it comes to bit mafapan and will be discussed later.

© Simon Bramble 2010

26

Writing Code that Does Stuff

Thei f statement is good for executing a set of statesrgimen the outcome of a single evaluation
and the f el se statement enables us to choose two differento$étstructions determined by a
single evaluation. Now let's suppose we have mieltgvaluations to make. This could be achieved
by cascading a seriesidf statements, but the code might start to look meBEsg following code
uses dor loop to increment a variable, from 0 to 4. During each increment, it evaluatesd
assigns another variabte¢o a multiple oh.

for (n=0; n<5; n++)
if(n==0)

X =2*n;
if(n==1)

X =3*n;
if(n==2)

X =4*n;
i f(n==23)

X =5*n;
i f(n==4)

X = 6*n;

L L s L e P i ™ S W e Wy

This is perfectly valid code, but there is a neatay of achieving the same goal. Tdw t ch
statement provides a useful alternative to multiplstatements.

for (n=0; n<5; n++)
{
swi t ch(n)
case 0: X =2*n; br eak;
case 1: x=3*n; br eak;
case 2: X =4*n; br eak;
case 3: X =5"n; br eak;
case 4: x=6™n; br eak;
default:x=x; br eak;
}
}

© Simon Bramble 2010
27

Simple C for the PIC Microcontroller

Here the variable), inside theswi t ch evaluation has to evaluate to typer ,int orl ong or any
unsi gned variants of these. Oneeis evaluated, the appropriatese statement is executed and the
code continues to execute untibraeak statement is reached, after which ¢het ch statement is
exited.

For example, in the above program, windmecomes equal to 3, the code jumps to the line

case 3:Xx=5"n; br eak;

x is assigned the valien |, thebr eak statement is reached and theét ch statement is exited.

If a br eak statement is not included at the end of a line,ciide will flow down to the nextase
statement and that line will be executed too, thuke following code

for (n=0; n<5; n++)
{
swi t ch(n)
{
case 0: x=2*n; br eak;
case 1: x=3*n; br eak;
case 2: X =4*n; br eak;
case 3: X =5*n;
case 4: x=6™n; br eak;
default:x=x; br eak;
}
}

if n evaluates to 3 the following line is executed

case 3: X =5*n;

and since there is no eak statement the code flows down to the line

case 4: X =6™n; br eak;

The net effect of this is thatis assigned the valien , then assigned the valueih as thecase
4: condition is executed. We can use this to our aidgge in situations where we want a set of
statements to be executed if our variabkvaluates to one of two values. In this case ¢ite ¢

© Simon Bramble 2010

28

Writing Code that Does Stuff

case 3:
case 4: X =6™n; br eak;

assigns the valugn tonif nis either 3 or 4.

Finally it is advisable, though not mandatory, &wvdr adef aul t : statement at the end of the
swi t ch evaluation. This statement is executed if nonhetase statements are true.

© Simon Bramble 2010
29

Simple C for the PIC Microcontroller

Chapter 5
The First Complete
Program

Shown below is a complete program. When programinteda PIC microcontroller it performed
the following functions: when Port B pin O was diedrto 5V, it flashed an LED at a rate of once
per second. When Port B pin 1 was shorted to 0% L&D stayed on continuously.

/* Program Name: LED Flasher */

#i ncl ude <htc.h>

_ CONFIG(PROTECT & CPD & LVPDIS & BOREN &
MCLRDIS & PWRTEN & WDTDIS & INTIO);

voi d mai n(voi d)

{

unsi gned char n, x;

[* set ports */
TRISB = 0b00000001;
PORTB = 0b00000000;

/* disable comparator */
CMCON = 0b00000111;

[* flash LED 5 times */
whi | e(1)

i f (PORTB & 0b00000001)

{
/* turn LED ON for 0.5s */
f or (x=0; x<150; x++)

{
f or (n=0; n<255; n++)

PORTB = 0b00000010;

© Simon Bramble 2010

30

The First Complete Program

/* turn LED OFF for 0.5s */
f or (x=0; x<123; x++)

f or (n=0; n<255; n++)
PORTB = 0b00000000;
}
el se

PORTB = 0b00000010;

Most of the code above we have discussed alreagfpr&we use any variables, we have to declare
them to the compiler as well as telling it how msthrage space to assign to them. The variables
andx used in our delay routines are declared withitie |

unsi gned char n, x;

The wordsunsi gned char are known as gype definitionand tell the compiler to set aside one byte
each of RAM space for variablesandx. This is explained more in the Data Types chaj8&rce
most microcontrollers used for embedded applicat{@nd especially the PIC) have little code
space, thensi gned char data type has been chosen since this only occlibgte.

TRISB andPORTB are defined in our header filehtc.h> . TRISB is the port direction register and
that allows us to specify which pins in Port B emguts and which are outputs. An input is assigned
by setting a bit to ‘1’ and an output by settingitato ‘0’. Thus the line

TRISB = 0b00000001;

sets Port B bit O to an input and all other bit®aort B to outputs. We could have equally written

TRISB = 0x01;

© Simon Bramble 2010
31

Simple C for the PIC Microcontroller

and specified the port values in hexadeciroalspecifies that the following number is in hex
format) but it is easier to see exactly which base been set if binary notation is used. See the
chapter on Working with Binary Numbers and Bits dolurther explanation.

The line

PORTB = 0b00000000;

sets all of the outputs in Port B to logic ‘0’ ov.0

Since we have includedhitc.n> using the#i ncl ude statement, every time we usReISB and
PORTBthe compiler, it replaces these words with ther@sksks of the direction register (86hex) and
the port register (05hex), thus making our codehressier to understand.

There is a register in the PIC16F627A that contifedsinternal comparator which we are not using
in this case. The register settings for this amwshbelow

REGISTER 10-1: CMCON - COMPARATOR CONFIGURATION REGISTER (ADDRESS: 01Fh)

R-0 R-0 RIW-0 R/W-0 RIW-0 RW-O RW-D RWO
| ceout | c1out | camv | cinv | cls | cm2 | cm | cmo |
bit 7 bit 0

We need to disable this comparator as it freeoupesoort pins. The datasheet tells us how to do
this using the picture below

Comparators Off

CM<2:0>=111
o,
RAD/AND D vin
“>——QOff (Read as ‘0"
RA3/AN3/CMP1 _D_ [ViN+ +E’lf‘ ()
-___.-"'
RA1/AN1 g
C2™~ Off (Read as ‘0"
RA2/IAN2IVREF —2 YN+ o ()
L -

Vs

4]

This means we need to set CM<2:0> (this meansObt®, CM2, CMO) to 111 to disconnect the
comparator inputs from the port pins and switchtlodf outputs. Thus, setting all bits in the
CMCON register to 0, except for bits 2,1 and 0 adhieve this. This is accomplished with the line

© Simon Bramble 2010

32

The First Complete Program

CMCON = 0b00000111;

Again, CMCON is defined in ownhtc.h> file, so we can use the word CMCON instead of its
proper address Ox1F.

Once we have disabled the comparator, our nexblim@de is the start of an infinite loop:

whi | e(1)

and this will permanently execute the code conthinghe curly brackets belonging to tlie | e
statement. The closing curly bracket for our in@rioop is 24 lines below the opening curly
brackets and this is easy to see because the esdmbn properly indented.

The next line contains theé statement

i f (PORTB & 0b00000001)

This line looks at Port B bit 0 and checks to $eeis at logic 0 or logic 1. It does this by ugithe
bitwise AND operator (&)This is explained more in the chapter Working vBihary Numbers

and Bits. There are four logical bitwise operatand these perform logical functions on variables.
The AND operator compares the corresponding bitsvofbinary numbers (in this case the binary
value read in through Port B and the binary nun@i®€0 0001) and returns either a ‘1’ or ‘0’
depending on the result of each comparison. Oriheifcorresponding bits are both ‘1’ is a value of
‘1’ returned. Below is an example:

1010 0011
& 1111 0000
1010 0000

In our specific case, if Port B reads back a valijéor example, 1010 0011 and we compare this
with a binary value of 0000 0001, we can see fiRabrt B bit O is set to 1 (i.e. shorted to 5V)rou
i f statement returns a value ‘1’. If Port B bit @&t to ‘0’ (i.e. shorted to 0V) our statement
returns a value of ‘0’. Moreover, because onlyGodf our binary number is at ‘1’, when this is
ANDed with Port B, bits 1 to 7 of Port B are igndras these will evaluate to ‘0’ when ANDed
with 0000 0001. Thus we have developed an effioiay of inspecting the condition of a single
port pin regardless of the state of the other pms.

© Simon Bramble 2010
33

Simple C for the PIC Microcontroller

To be more precise, if the statement returnsreon zerovalue it will execute (like theni | e
statement mentioned earlier). Thus ithestatement will execute if Port B bit O is shortedV and

the LED will be turned ON for 0.5 seconds and O&#.5 seconds. If Port B bit O is at OV, the
LED is switched ON and kept ON.

Thus it can be seen that with a few simple C irc$ibns we have written an embedded program for
the PIC microcontroller. The next chapter will diss how to compile this code and program a PIC
microcontroller with it.

© Simon Bramble 2010

34

Simulating Code and Programming the PIC

Chapter 6
Simulating Code and

Programming the
PIC

This chapter will outline the procedure of writifgcode in MPLAB, compiling it, simulating it and
programming a PIC microcontroller. It will also bné a choice of hardware needed to interface
MPLAB with the target PIC device to be programmed.

It is assumed that the Hi Tech editor and MPLABéhbeen downloaded and installed as outlined
in earlier chapters. From the Start button in Windpodrill down to MPLAB IDE and start the

program.

The following screen will appear

© Simon Bramble 2010
35

Simple C for the PIC Microcontroller

& MPLAB IDE vB. 46

Fle Edk Wiew Froject Debugger Programmer Tools Configure SWindow Help
|D@FH|!ma [ZAMNER ?
| Checksum: Dl dff 1=l Y

M Uniitled Wor.... [2 B[]

B Output
Buld | Viersion Conkiol | Findin Files

PICLIEFG2TA | zdec ! bank.0

In the menu bar, select Project -> Project Wizénside the Project Wizard, select the Device
PIC16F627A from the drop down menu then click <MNext

The next screen is shown below

© Simon Bramble 2010

36

Simulating Code and Programming the PIC

Project Wizard

Step Two:
Select a langquage toolzuite

Active Toolsuite: HI-TECH Univerzal ToolSuite

Toalzuite Contents

Location
|I::"-.F'ru:-gram Files"HI-TECH Software'PICCYS. 70Nbinhpice. exe | [Browse. .
[Help! My Suite sn't Listed!] [] 5how all installed toolsuites

[¢ Back ” f et > l[Cancel][Help]

Select the HI TECH Universal Toolsuite. The Locati®ox should fill in automatically, but if it
does not, browse to the address above (the veabiove, 9.70, will be different in later
installations). Click <Next>.

The next screen asks for a project name and wherprbject is to be saved. Fill in as necessary,
calling the project ‘LED Flasher’ for example. Thext screen asks if any files need to be included
in the project. Click <Next> to skip this step. &y, click <Finish> to complete the project
creation. The result is shown below

© Simon Bramble 2010
37

Simple C for the PIC Microcontroller

W LED Flasher - MPLAB IDE vB.46 - LED Flasher.mow

Fle Edi Wiew Project Debogger Programmer Tools Configure Window Help
|D@H|inm|sawan |
| Checksum: Oxdif | pebug ¥ S D BwmO | EE

M LED Flasher.... (= |[B]]

=) LED Flasher.mep
0 source Files
21 Header Files
[bieck Fles
1 Lbrary Files
|21 Cther Files

B Qutput
| Buld | Varsion Contiol | Findin Files |

PICIGFE2TA Wil zdoo bank 0

We now need to create some files. From the menusbé#ct File -> New and this will bring up an
untitled blank file. From the menu bar, click Fife Save As and name the filain.c . Remember
to include the ‘.c’ as the end as this is goingpéathe file that stores our C code.

Then in the project box in the top left corner leg screen, right click over ‘Source Files’ and sele

the option ‘Add Files’. This will bring up a boxeWwing themain.c program created earlier. Select
this file to add it to our project, thus

© Simon Bramble 2010

38

Simulating Code and Programming the PIC

M LED Flasher.... (= |(B][X]

o [LED Flasher.mcp*

(L1 object Files
3 Library Files
(L1 other Files

[Files | ¥2 Symbols |

Now, from here it is a matter of personal prefeeeas to whether you use the Hi Tech editor or
MPLAB. We prefer the Hi Tech editor as it automalliz indents the code, the fonts look nicer etc.
If you chose to use the Hi Tech editor, simply offenHi Tech program by going into the Start
button -> Programs -> HI TECH Software -> HI-TIDB.45 -> HI-TIDE Integrated Development
Environment. Once the program has opened, you pan any of the files created in MPLAB, edit
them and save them. If you then go back into MPLARill detect that changes have been made
to the file and ask you if you would like to updM@LAB to reflect these changes. Likewise, in
MPLAB, if you make any changes then save them, wioengo back to the Hi Tech editor, it will
detect the changes.

Copy the First Complete Program into thain.c file and save it.

Check your typing for semicolon errors and otheirtg mistakes. Fortunately MPLAB colour
codes the text making it easier to spot mistakes!(your code is in green, you have probably
missed off a closing and MPLAB thinks all of your code is a commentur code should look
like

© Simon Bramble 2010
39

Simple C for the PIC Microcontroller

M C:\...\main.c |Z| |E| [z|

finclude <htec_h=

_ CONFIG(PROTECT & CPD & LVPDIS & BOREN <
MCLEDIS o PWRTEN & WDTDIS & INTIO)

roid main(wvoid)

{
unsigned char n, x;

#* set ports *jF
TREIZE = 0kLOOOOOO0L:
PORTE = OkOOOOOO0O0:

F* disable cowmparator */f
CHMCOM = 0kbOO0OO0OL11:

#* flash LED & times *)
whileil)
{
if (PORTE < ObOOOOOOOL)
{
F* turn LED ON for O.5s *)f
for (x=0; x=1&50; xt++)
{
for (n=0; n<ZL5E5; nt+t)
{
PORTE = OLOOOOOOLO:
}
}
F* turn LED OFF for 0O.&5s */f
for (x=0; x=1E3; xt+)

[E4

|
|

We are now going to Build our project. Either hitl©> or from the menu bar, select Project ->
Build. If your code is bug free, you will get theessage

*kkkkkkkkk Bu"d SUCCGSSfU“ *kkkkkkkkk
in the Output Window.
(note: we noticed a bug in early versions of MPL(&&sions predating v8.50) whereby the

Frekkxkkrkk Build successfull ¥ *****x** gtgtement d id not appear at the end of a successful
compilation. This seemed to be a conflict betweehECH’s editor and MPLAB. After installing

© Simon Bramble 2010

40

Simulating Code and Programming the PIC

MPLAB v8.50, this problem seemed to disappear.dted that if the code was incorrect, the error
statements would still appear as expected anceittide was correct, the code compiled and
simulated properly and all that was missing was‘Bwgld successful’ statement.)

If your code has errors, you will get the message

*kkkkkhkkhkk Bu"d falledl kkkkkkkkhkk

Warning: If your build fails and you re-Build yoproject without correcting the error, you might
get a ‘Build Successful’ message. Only build yorgjgct when the Save Icon is NOT ‘greyed out’
thus

—
le Edit “iew Project Debugge

D é

Checks I o4f
o p—————

If you have build errors, they will look somethikhie this:

Error [312] C:\Documents and Settings\My Documents\ LED Flasher\main.c; 32.1 ;"
expected

This is telling us the error code (312), the fdattthe error is imain.c and on line 32 of the file. It
then goes on to say that a semicolon is missintadn the error is actually on line 31, but the
compiler only realised there was an error whemittg line 32 and realised the semicolon from line
31 was missing. Double clicking on the error messaij take us to the suspected error.

If you get any other error message, the compilanuabhas a list of them and a friendly
explanation for each one. This can be found in

C:\Program Files\HI-TECH Software\PICC\9.70\docsvonl. pdf.
Correct the bugs until you have code that comilks

If your code still does not work, it might be woghing back to the original template program
describe at the start of this book and compilirgg,tthen adding functions one by one until thererro
appears.

We now need to simulate our code. This is far edsan programming a part, plugging it into a
target board and wondering why nothing happeng,isavise to get into the habit of simulating
our code every time a change has been made ungteveertain that our code works perfectly.

Firstly, we need to set up the microprocessor spaddiscussed earlier about generating delay
routines to flash our LED on and off. Setting thensprocessor speed inside the simulator allows

© Simon Bramble 2010
41

Simple C for the PIC Microcontroller

us to see exactly how long each line of code takesecute. From the menu bar, select
Debugger -> Settings, go to the Osc/Trace tab mtidei Processor Frequency box, type in 4. This
sets MPLAB to simulate our code as though it wearening on a processor with a 4MHz clock.
Click OK to close the dialogue box.

To simulate the code, from the menu bar, selecubgér -> Select Tool -> MPLAB SIM. We are
now going to Single Step through the code and ttspew the ports and registers change as each
line of code executes.

Now, our compiler generates some startup codedpwtitten in assembly language that we don't
really need to worry about. Once the microprocessmset, Single Stepping will take us through
this assembly code. It is advisable to skip oveyisetting éreakpointin our code. A breakpoint
allows the simulator to run through the code, uititddd until it reaches the breakpoint, where it
stops. Breakpoints are extremely useful becauseailiev our simulator to execute code in near
real-time without us having to single step throeghry line of code.

Set a breakpoint by double clicking in the greyaamext to th@RISB statement

unsigned char n, =

f* set ports *F
B TRIEE = 0bOOOOOOOL;
FORTE = 0bO0OO0OO0;

f* disable comparator */
CMCON = 0OkLOOOOOL11:

fE FT~A-1- TTETH C +amm— 0

Reset the microprocessor by hitting the <F6> keytéxecute the code up to the breakpoint by
hitting the <F9> key. Hitting the <F9> key runs @ade up to a breakpoint, so we have neatly
skipped over all the startup assembly code ancethadithe point in code that is just about tolset t
TRIS register. Your breakpoint should now haveeegrarrow over it telling us that our code has
executed up to this line of code.

Hitting <F7> thereafter single steps through thde;dine by line and changes the registers to show
us what is happening. We now need to view thesetezg.

From the menu bar, select View -> Special FuncRegisters and the following window will
appear.

© Simon Bramble 2010

42

Simulating Code and Programming the PIC

B Special Function Registers [’._”’E”z|
TR vawe

| CCP1CCH a

CCPR1 1x0000 010 0ooooooo =
CCPR1H 000 0O 0ooooooo
CCPRIL 000 0O 0ooooooo
CHCON 000 0O 0ooooooo
EELDE 000 0O 0ooooooo
EECON1 000 0 0ooooooo
EECONEZ 000 0 0ooooooo =
TTTATA Saemim (m] (mininininininliel =
4 | >

Scrolling down this view we can see all the regsstaside the microcontroller. The registers that
have just changed (after the execution of theitestuction) are shown in red. Scroll down to
TRISB, click the mouse in theain.c window, hit <F7> and if TRISB changes, the colotithe
TRISB line will change to red. Regardless, oncs linie of code has been executed, TRISB should
have a value of 0000 0001. Hitting <F7> repeatediyws us to single step through our code,
watching PORTB, CMCON etc change.

Now somehow we need to be able to apply an inpsinolate a port pin being taken high (to 5V)
or low (to OV). From the menu bar, select Debugge$timulus -> New Workbook and the
following window will appear

M Stimulus - [Untitled] =3

Agpnch | Fin / Register Actionz | Advanced Pin / Begister || Clock Stmuluz | Begister Injection | Register Trace

Fire |Fin/SFR |Action Width | Unitz | Comments / Mezzage

v

Under the Pin/SFR heading, select RBO, under Ad&lect ‘Set Low’ and under the
Comments/Message heading write ‘Input Pin’. UndlerFire heading an arrow should have
appeared. Click this arrow to set RBO Low.

© Simon Bramble 2010
43

Simple C for the PIC Microcontroller

Reset the microcontroller (<F6>), hit <F9> to rartlie breakpoint then hit <F7> to single step
through the code.

Single step to the line

i f (PORTB & 0b00000001)

Go to the Special Function Registers window and RORT B. Single stepping past this point
takes us to the line

PORTB = 0b00000010;

Showing that thef statement has evaluated untrue and we have skalpt® commands inside
thei f curly brackets. Once this line is executed, wacedhat Port B bit 1 has been set, as
expected. Continued single stepping causes thegrotp hop between the evaluation and the
PORTB = 0b00000010 assignment.

Now go back to the stimulus window and under Actget RBO High. Hit the Fire button and
continue to single step through the code. We can se® that thef statement is executed and we
enter the nesteicbr loop.

We now need to inspect the countenside the innefor loop. From the menu bar, select View ->
Locals to bring up a window showing the variabtendn. As we single step through the code, we
seen increments while remains at O.

Inside the Locals window, we can double click oa ¥alue oh and change it. Make sure one of
the headings inside this window reads ‘Decimakiow our value of in decimal. This can be
done by right clicking over the heading and enguiiecimal’ is checked. Change the valuendd
250. A few more single steps through the code shmarement n over 255, the inn@j) (oop will
stop, the outend) loop will increment by one and the inner looptstagain.

We are now going to test how long our LED is ON aod long it is OFF. From the menu bar,
select Debugger -> Stopwatch thus

© Simon Bramble 2010

44

Simulating Code and Programming the PIC

I Stopwatch
Stopwatich Tatal Simulated
Instruction Cycles 0 539
Time [uSecs] 0.000000 539.000000
Processor Frequency [MHz) 4. 000000

Double click next to the line

PORTB = 0b00000000;

to set a breakpoint here. This is the line of cibdé clears Port B and switches OFF the LED. Hit
<F9> to run to that breakpoint. You will have neticthat the Stopwatch has changed its value and
now displays how long it has taken to get to treakpoint. Click on the ‘Zero’ button to clear the
timer.

Locate the line

PORTB = 0b00000010;

This is the line inside thes statement, NOT the one inside thee statement. Double click next
to this line to set a breakpoint here. This lines $&ort B bit 1 and turns ON our LED.

Double click on the breakpoint next to the line

PORTB = 0b00000000;

to clearthe breakpoint. Now hitting <F9> will take us teetline of code that switches on the LED.
Inspecting the timer shows that the code has t&k8ms to execute, so our LED has been off for
503ms. Clear the timer again. Set a breakpoint toettte line

© Simon Bramble 2010
45

Simple C for the PIC Microcontroller

PORTB = 0b00000000;

clear the breakpoint next to the line

PORTB = 0b00000010;

Hit <F9> again and we see that the time the LEONis 499ms, so we can see that our LED is
now flashing ON for 503ms and OFF for 499ms.

Our code has now been compiled and simulated. Newegd to program it into the
microprocessor. The following procedures will vdgpending on what programmer you have.
Below will be described the procedure for the PIBET Plus.

Programming a PIC

Now some basic code has been written, it is timgrégram a microcontroller. There are a whole
myriad of programmers available to the engineea oestricted budget. The author has always used
the PICSTART Plus from Microchip, although at tiofewriting, this was priced at £125, so might
be beyond the budget of some.

Velleman Electronics have a programmer (serial remi8048) with a simple interface at a much
lower cost that can be purchased from a variestakists globally. This can be investigated
further at:

www.velleman.be

We have also discovered an article in EPE magw{.epemag.coinUK edition, May 2010 that is a
low cost programmer for PICs and dsPICs.

The two programmers above have not been tested thyough.

In addition, because of the popularity of the Pli€rotontroller, there are hundreds of designs
available on the web that allow someone with omhtéd soldering skills to build a programmer.

The rest of this chapter will be dedicated to tHeSTART Plus programmer as this has performed
fault free for over 10 years.

Connect the PICSTART Plus to the RS 232 port of @®@. Connect the power to the PICSTART

Plus. From the menu bar, select Programmer -> SRlegrammer then choose PICSTART Plus.
Then under Programmer -> Settings in the Commuinicaitab, select the COM port that your

© Simon Bramble 2010

46

Simulating Code and Programming the PIC

PICSTART Plus is connected to. Click OK. Now seleaigrammer -> Enable Programmer. A
message should come up in the Output window showing

PICSTART Plus Firmware Version 04.50.11
Place the PIC16F627A into the PICSTART Plus sotikietg up Pin 1. Close the handle down to
clamp the chip. In MPLAB, from the menu bar selRaigrammer -> Erase Flash Device. The
Output window should display

Erase operation is successful.

Then select Programmer -> Program to program thge Bluring the Build process, the compiler
produces a .hex file. This file is written in mawdicode and can be understood by the
microprocessor. It is this hex file that is dowrded to the chip.

If you get a warning

Configuration Warning

=l

Press “ves" ko accept the current configuration

= ar "Ma" ta abort the operation,

T Configuration Memory has nok been updated.

[‘fes l [Mo]

select ‘Yes’ to accept the current configurationc®the device has been programmed
successfully, you will get the message:

Programming/Verification completed successfully

If any warnings appear, check that you have remegdbi® ‘Erase Flash Device’, check that the
chip is seated in the programmer correctly andptheer supply is connected to the PICSTART
Plus.

Warning:

If you want to go back and resimulate your code yave to go back to the menu bar and select
Debugger -> Select Tool -> MPLAB SIM. Likewise, @ia the simulator mode, to get back into
programming mode, you need to go back to the manahd select Programmer -> Select
Programmer -> PICSTART Plus

Once your PIC is programmed, you need to putdt atircuit. The good thing about PICs is that
they require no external components to work. Froenfigure below, we can see that we need to
connect 5V to Vdd (pin 14) and 0OV to Vss (pin 5).

© Simon Bramble 2010
47

Simple C for the PIC Microcontroller

RA2IA MWREF.—.{

RAJAN3/CMP1 +— |

RA4TOCKICMPZ +— |

RASMCLRVPe —|

Vsg —n[

REOMNT .—{

RB1RXDT +—— |

RB2TXICK+—] |
RBICCP1 +— |

=0

L= I = R = R R " T ¥ |

PIC16FE2T AJG 2BA/G4BA

-
.

18
17
15
15
14
13
12
1
10

[Je— ratan1

[Je— RaoanD

|« rRaTIOSCUCLKIN
[Je— Ras/OSC2/CLKOUT

:[-— VoD
]-—- RETT10SIPGD
:Ia—- REGT10SOMICKIPGE

:]-—-» RES
}._.. RE4/PGM

We need to connect a jumper to Port B pin 0 andEdD and resistor to Port B bit 1. A suitable
circuit is shown in Appendix D: Suggested LED Schéos.

Nothing more is needed! Just check the power supmgnnected correctly and switch on. The
LED should flash when Port B bit 0 is connecteth®5V supply and stay on permanently when

Port B bit 0 is connected to 0V.

© Simon Bramble 2010

48

Timers and Interrupts

Chapter 7
Timers and

Interrupts

Although the code in the previous chapter doestgxathat we want it to do, there is a neater way
of achieving the same goal. Most PICs have oneavertimers enabling us to create delay routines
that run in the background. They tick away incretimgnevery 4 clock cycles, regardless of what
the rest of the code is doing. This enables usdate very precise timing delays without relying on
lines of code to make up the delay.

Most PICs also include an interrupt structure dilaws program code to be diverted when certain
events happen. Such events include Timer Overf@vange on Port Pin, Data Received on the
UART etc. While intimidating to begin with, leargrmow to harness the power of the interrupt will
make your code easier to write and understand maedygur programs much more flexibility.

Therefore this chapter is going to examine howotmlaine Timers with Interrupts to modify our
LED Flasher program.

The PIC16F627A has 3 timers: two 8-bit timers (Tifdeand Timer 2) and a 16 bit timer (Timer 1).
The 8 bit timers count from 0 to 255°(2 1) then ‘overflow’ back to 0. The 16 bit timesunts

from 0 to 65535 (£ — 1) then overflows back to 0. When the overflosewrs, an interrupt is
generated, telling us that our delay has passed.

We are going to use the 16 bit timer. Firstly wedé&o configure the timer. The datasheets shows
us that the control register for Timer 1 is

REGISTER 7-1: T1CON - TIMER1 CONTROL REGISTER (ADDRESS: 10h)
U-0 UD RWO RWO RWOD RWO RWOD RWO
| — | — |Tickesi|TickPso| T10SCEN |TTSYNC|TMRICS | TMRION |
bit 7 bit 0

It is worthwhile locating this register in the dshte@et and reading the explanations of each bit. The
above figure not only tells us the names of the ibside the register, but it also tells us if tlaeg

© Simon Bramble 2010
49

Simple C for the PIC Microcontroller

Unused (U), Read Only (R), Write Only (W) or Readité/(R/W). It also tells us their state on
power-up and we can see that all of the bits inréigéster above are reset to ‘0’ on power-up.

These will be expanded on below.
Bits 7 and 6 are unused, so we are going to set dwial to zero.

Bits 5 and 4 are TLCKPS1 and T1CKPSO which thestle& tells us are the Timer 1 clock
prescale bits. Normally Timer 1 increments evesgrinction cycle. Since we are using the internal
4MHz clock ourclock cycleis 0.25us long. There are 4 clock cycles per urcsion cycle so our
instruction cyclas 1us long. In our LED flasher program, we needénerate a delay of 0.5
seconds. Timer 1 can count to a maximum of 65585tlais equates to a delay time of (65535 x
lus = 65.535ms). This is clearly not long enoudte prescaler allows us to change the time
between increments of Timer 1 and the datashdetuge can change this from 1:1 (no change)
to 1:8 (Timer 1 increments every 8 instruction egclor 8us).

If Timer 1 increments every 8us and can count ®365this allows us to count to 0.52428 seconds
(8us x 65535), which means we can achieve a délayey 0.5 seconds with a prescaler of 1:8.

To calculate what Timer 1 has to count up to fdekay of 0.5 seconds, we have to work
backwards.

count= 05 = 62500
8us

Now, we want to make use of our interrupts. Intetstonly occur when Timer 1 overflows. It
would be much nicer if we could generate an infg@rmuhen the counter reaches 62500, but PICs
aren’t built that way!

We therefore need fareload Timer 1 with a value such that it will overflowtarf the desired time.
We know that Timer 1 can count to 65535, so thaevate preload Timer 1 with is

(65536 — 62500) = 3036
Thus, Timer 1 counts from 3036 to 65536 (62500 ts)uihen generates an interrupt when it
overflows. We will see how to do this later. Thea$deet says that to set the prescaler equal to 1:8
we need to set TLICKPS1to ‘1’ and TICKPSO to ‘1'.
Bit 3 is TLOSCEN, or Timer 1 oscillator enable @ohbit. This is an internal oscillator that can be
connected up to an external 32.768kHz crystalifoiny seconds, minutes, hours etc. We are going
to use the main 4MHz oscillator, so we set thigdiO’.

Bit 2 is TLSYNC allowing us to synchronise the gmmenting of Timer 1 with an external clock.
We are not going to do this and the datasheetuslte set this bit to ‘1’ if we do not need extdrn

© Simon Bramble 2010

50

Timers and Interrupts

synchronisation. Incidentally, TAISYNC has a barvabib in the datasheet — see the Register
diagram above. This means that its function isvatéd by setting this bit equal to a ‘0’ insteadhof
‘1’ (it is ‘active low’ not ‘active high’). This ca sometimes also be written as /TLSYNC with a
forward slash before it. Therefore, if we wantedd¢tivate the synchronisation of Timer 1 we
would set Bit 2 equal to logic ‘0'.

Bit 1 is TMR1CS and is the Timer 1 clock source ¥ want our clock source to be the internal
4MHz clock and the datasheet tells us to set thi® B0’ to use the internal clock.

Bit 0 is TMR1ON which is the ON/OFF bit of Timer e don’t want Timer 1 to start just yet, so
we will set this bit later. For the moment, to tdrimer 1 off, we set Bit O to ‘O'.

All of the above can be configured neatly in ome lihus

T1CON = 0b00110100;

This means our Timer 1 increments using the interloak (multiplied by 8) as its clock source,
increments every 8us and it is currently turned \3fé have written the TLCON value in binary as
it makes it easier to see which bits are set andhltits are cleared.

Now we need to preload the Timer 1 registers torenge get an overflow after 62500 counts.

Timer 1 has two 8 bit registers to hold the 16cbmint value. These are TMR1L (Timer 1 low) and
TMR1H (Timer 1 high). We need to preload thesestegs with thelecimalvalue 3036. We are
going to use hex numbers to load TMR1L and TMR1Ht sseasier to work out what number has
to go in TMR1L and what number has to go into TMR1H

The Calculator function in Windows (in scientifiode) can be used to convert numbers between
binary, decimal and hex. It can be started fromStat Button -> Programs -> Accessories ->
Calculator. We can see that 3036 decimal is OB&®CThe chapter entitled Working with Binary
Numbers and Bits explains that each hex digitbénéry bits and therefore a 16 bit value can be
represented by 4 hex digits. Therefore we can insbelgt see that the upper two hex digits (0OB)
need to be loaded into TMR1H and the lower two digis (DC) need to be loaded into TMR1L.
This can be achieved with the following lines ofleo

TMR1H = 0x0B;
TMR1L = 0xDC,;

Our timer is now configured. We now need to configthe interrupts to ensure we get an interrupt
when Timer 1 overflows. The datasheet has a haatulg that shows us what registers to configure
to use Timer 1.

© Simon Bramble 2010
51

Simple C for the PIC Microcontroller

TABLE 7-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address | Mame | Bit7 | Bité | Bit5s Bit 4 Bit3 Bit 2 Bit 1 Bit 0 Var'}gR"" ‘2?."&%‘2'?
Resets
0Bh, 8Bh, |INTCON | GIE | PEIE | TOIE INTE REIE TOIF INTF RBIF | 0000 000x | 0000 000u
10Bh, 18Bh
OCh PIR1 EEIF CMIF RCIF TXIF — CCPIF | TMR2IF | TMR1IF | 0000 -000 | 2000 -000
BCh PIE1 EEIE CMIE RCIE THIE — CCPMIE | TMR2IE | TMR1IE | 0000 -000 | 2000 -000
0Eh TMRIL | Holding Register for the Least Significant Byte of the 16-bit TMR1 Register 006X 0000 | Uuuu uuun
DFh TMR1H | Holding Register for the Most Significant Byte of the 16-bit TMR1 Register 000X 0000 | Uuuu uuun
1oh | Ticon | — [— | Tickest | Tickeso [Tioscen | TISYNC | TMRICS | TMR1ON | --00 0000 | --uu wuus
Legend: x = unknown, u = unchanged, - = unimplemented read as '0". Shaded cells are not used by the Timer1 module.

We have configured TMR1L, TMR1H and T1CON, so w# mow address INTCON, PIR1 and
PIE1 below.

The INTCON register is shown below

REGISTER 4-3: INTCON - INTERRUPT CONTROL REGISTER (ADDRESS: 0Bh, 8Bh, 10Eh, 18Bh)

RWO RWO RWO RWO RIW-0 RWO RWO RWx
| ge | Pele | To0E | INTE | RBIE | TOF | INTF | RBIF |
bit 7 bit 0

Bit 7 is GIE and is the global interrupt bit. lIishs cleared, whatever we set any of the othertbit
will have no effect, so this needs to be set to ‘1’

Bit 6 is PEIE and is the Peripheral Interrupt Epdtit. Timer 1 is classed as a peripheral (we know
this because Timer 1 is mentioned in the Periphatairupt Enable Register — see below). This bit
therefore needs to be set to ‘1’

Bit 5 is TOIE and is the interrupt enable bit fam&r 0. We are not using this timer, so can set thi
bit to ‘0’

Bit 4 is INTE and enables us to use Port RBO asxéernal interrupt input. We do not use this, so
set this bit to ‘0’

Bit 3 is RBIE and enables us to use a logic letainge on any of Port B’s pins to act as an
interrupt. We do not use this, so set this bit0to

Bit 2 is TMRO and tells us that an interrupt haswoed on Timer 0. We set this to ‘0’ as we are not
using Timer 0.

Bit 1 is INTF and tells us that an external int@trbas been generated. We set this to ‘0’ as we are
not using external interrupts

© Simon Bramble 2010

52

Timers and Interrupts

Bit O is RBIF and tells us that there has beenaamgh on Port B. We are not using the ‘Port B
change’ interrupt so set this to ‘0.

We can set the INTCON register to the above settmith the line:

INTCON = 0b11000000;

Now we need to configure the PIEL register

REGISTER 4-4: PIE1 - PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS: 8Ch)

RW-D RWO RWO RWO U-0 RW-0 RWD RWO
| EEE | cmE | RCE | TXE | — | CCPIE | TMR2IE | TMRIIE |
bit 7 bit 0

The only bit we need to worry about in PIE1 isitAll other bits are not related to Timer 1. Bit O
is TMRL1IE, the Timer 1 Interrupt Enable bit. Sasthit to ‘1’

We can set the PIEL register to the above settuittpsthe line:

PIE1 = 0b00000001;

Finally, we need to configure the PIR1 register.

REGISTER 4-5: PIR1 - PERIPHERAL INTERRUPT REGISTER 1 (ADDRESS: 0Ch)

RW-0 RW-0 R-0 R-0 u-0 RW-0 RW-D RW-J
| EelF | cmF | RCIF | TXF | — | CCP1IF | TMR2IF | TMRIIF |
bit 7 bit 0

Now, the only bit applicable to Timer 1 is the TMRXlag. Thisshouldbe reset to ‘0’, but just in
case it is not we are going to reset it using it |

PIR1 = 0b0O0000000;

We now need to write the Interrupt Service Rou{lis®R). The Hi Tech compiler manual has a
reserved worchterrupt to tell the compiler that the function you aret jasout to write is an

© Simon Bramble 2010
53

Simple C for the PIC Microcontroller

interrupt. The compiler then makes sure that tipe@piate registers are saved before the interrupt

is serviced. A simple ISR is written below:

voi d interrupt isr(voi d)

i f (TMRLIF == 1)

{
TMR1IF = 0;
global = 0x01;
TMR1H = 0xO0B;
TMR1L = 0xDC;
}

[* int service routine */

/* indicate overflow */

The above code is only executed when an interragirs. It checks the TMRL1IF flag to see if the
interrupt has been generated because of an oveoftoWwmer 1. If this is the case, it resets thg fla
(to stop any further interrupts) and sets bit @ general purpose register callg@dbal '. This is a
register we are going to define in our code araluseful way of indicating that certain events have
occurred. After this, because we want anothernapeto be generated in 0.5 seconds time, here is
a good place to reload our timer values in TMR1d aMR1L.

Here is the complete code:

#i ncl ude <htc.h>

_ CONFIG(PROTECT & CPD & LVPDIS & BOREN &

MCLRDIS & PWRTEN & WDTDIS & INTIO);

unsi gned char global = 0;

voi d interrupt isr(voi d)

i f (TMRLIF == 1)

{
TMR1IF = 0;
global = 0x01;
TMR1H = 0xO0B;
TMR1L = 0xDC;
}

[* int service routine */

/* indicate overflow */

© Simon Bramble 2010

54

Timers and Interrupts

/* _________________ */

/* MAIN PROGRAM */
/* _________________ */
voi d main(voi d)
{
/* set ports */
TRISB = 0b00000001;
PORTB = 0b00000000;
/* disable comparator */
CMCON = 0b00000111;
/* initialise Timer 1 */
T1CON = 0b00110100;
TMR1H = 0x0B;
TMR1L = 0xDC;
/* initialise interrupts */
INTCON = 0b11000000;
PIE1 = 0b00000001;
PIR1 = 0b00000000;
TMR1ON = 1;
/* flash LED 5 times */
whi | e(1)
i f (PORTB & 0b00000001)
{
/* turn LED ON for 0.5s */
whi | e((global & 0b00000001)==0)
PORTB = 0b00000010;
}
global = global & 0b11111110;
/* turn LED OFF for 0.5s */
whi | e((global & 0b00000001)==0)
PORTB = 0b00000000;
}
global = global & 0b11111110;
}
el se
PORTB = 0b00000010;
}
}
}

© Simon Bramble 2010
55

Simple C for the PIC Microcontroller

There are 2 functions:
voi d interrupt isr(voi d) and voi d main(voi d)

Any variables defined within a function can onlyused inside that function whereas variables
defined outside of the functions can be used bfuatitions. In our First Complete Program, we
implemented the line

unsi gned char n, x;

as we wanted to use variableandx as counters for the loops. If we had other fumsim our
program, we could equally use the same variable®sa andx, but if they are defined in separate
functions, they would be completely different vaites. In other words, the variabieould be
defined in more than one function and modifyingp one function will not affect the variable n in
another function. However, if the variables ardroef outside the functions, then the variables are
global They can be used across all functions. This igtwie are doing with the line

unsi gned char global = 0;

Since the variablglobal is defined outside ofiterrupt isr andmain it can be used by both
functions.

This allows us to set bit O of tlywbal variable inside thaterrupt ~ function, then inspect its
value in themain routine. This is explained more in the Functiohapter.

All the registers associated with Timer 1 are paogmed as described in the text above. We also
opted to start Timer 1 just before we used it. Thidone using the instruction

TMR1ON =1,

TMRI1ON is the Timer 1 ON bit inside the TLCON regisand is defined in our header fiteg.h .
Quite handily, the header file given to us by Hcli@lso includes a vast array of bit definitions as
well as register definitions. We could equally eriib the entire TLCON register, but the above
instruction allows us to individually address thHdR1ON bit without affecting the other bits.

This project can be set up in MPLAB as before dmeddode can be single stepped and the registers

can be seen in the Special Function Registers windaostimulus file can be set up to set Port B bit
0 to logic ‘1’ or logic ‘0’. If you want to inspedheglobal register, this can be seen by going into

© Simon Bramble 2010

56

Timers and Interrupts

the menu bar, clicking on View -> Watch then insidis window, click on the drop down list next
to the <Add Symbol> button.

The code scrolls through the ‘LED ON’ phase usimg following loop

whi | e((global & 0b00000001)==0)

PORTB = 0b00000010;

until an interrupt occurs. As it loops through Hive code, the Special Functions Registers
window allows us to see Timer 1 incrementing. Hare are just constantly setting Port B bit 1 to
‘1", but we could do something far more useful émle Timer 1 to increment in the background.

When TMR1L and TMR21H roll over to 0000 0000, the RMF flag is set in the PIR1 register
causing the interrupt to assert and the code jumpsir interrupt service routine.

Inside the ISR, the TMRL1IF flag is reset, the Tinsereloaded with the hex value OBDC and bit O
of theglobal register is set to 1. The code then returns tpraésinterrupt address and continues to
execute. We see that the loop evaluating bit G®fibbal register is now false, so the loop is
exited, bit O in thelobal register is set to ‘0’ and the code moves to LD OFF’ phase. For
more information on how to set and clear bit, rédethe chapter on Working with Binary Numbers
and Bits.

Finally, testing the code in MPLAB using the stopeta shows us that the ON time is 500.044ms
and the OFF time is 500.034ms, so we have gairegsmn in our timing (because our timer
increments in shorter intervals than a loop infrevious code) as well as enabled the timer to run
in the background while our code can do somethisg e

Programming the above code into a PIC16F627A cahsasED connected to Port B bit 1 to flash
(ON for 0.5 seconds, OFF for 0.5 seconds) if Poit® is held high. If Port B is connected to
ground, the LED stays permanently on.

© Simon Bramble 2010
57

Simple C for the PIC Microcontroller

Chapter 8
Functions

Further improvement can be made to the readabilibur code. It is desirable to write the principal
block of our code (in themain program) as nothing more than a series of ‘ca&dlgither function
blocks each with a specific tasks to execute. Uiegexample above, ounain function might
consist of calls to functions blocks to executg, Hae micro initialisation, LED ‘flash’ routine dn
LED ‘permanently ON’ routine. Our program (in pseuzbde) would then look something like

voi d main(voi d)

{
[* initialise micro */
Call initialisation routine

TMR1ON = 1;

[* flash LED 5 times */
whi | e(1)

i f (PORTB & 0b00000001)

{
[* flash LED on and off */

Call LED flash routine
}

el se

Call LED ON routine

In the above code, we have moved the individuakliof code into separate files and these files are
then called in thenain program. Writing code as a series of separatdifumcmakes code a lot
easier to debug and much easier to read. If yoa hgwoblem with the LED flashing routine, this
problem will manifest itseléverytime that routine is called. The LED flash routowuld be tested

as an individual entity and once we know that itkgoit can be merely treated as a ‘black box’ that
executes a desired task without having to re-aeaigsv it does it.

© Simon Bramble 2010

58

Functions

Moreover, if later a program requires an LED flashtine, the file containing the code can be
copied over, knowing it works, and easily imporiat the other program. Writing programs as a
series of individual functions (callesfructured programmingis definitely the way to go.

As programs grow in complexity, thousands of lioésode can be broken down into a series of
simpler functions and this is another benefit ahgs structured programming approach.
Sometimes it is nearly impossible, once given agte® implement in software, knowing where to
start. If a data logger has to be designed, wamarediately assume that we will need an LCD
display, an interface to download data, a userfexte to read in button presses, a power
management routine that might switch on and offaseparts of circuitry. It is often to mentally
easier to start writing either easy code, or chde @are you familiar with. Implementing structured
programming enables us to do exactly this, thenexamvthe more complex functions, then write
some ‘glue’ code to bond all the functions togeiheyurmain function.

Now we will look at the anatomy of a function. Tluaction below adds two numbers together and
returns the result.

unsi gned i nt add(unsigned char A, unsigned char B)
{
unsi gned char answer;
answer = A + B;
r et ur n answer;

Here we are defining a function calledtl that takes in two 8 bit numbews,andB, adds them
together and returns the resahswer. The first line of the function starts with a detion of the
typeof the number to be returned, in this caseihis gned i nt. Data types are discussed more in
the Data Types chapter. Then comes the name ddiction, add, followed by the numbers that
are to be read into the function defined in bragkalong with their type - in this case they arthbo
unsi gned char.

Inside the function itself, we can use the varialfleand B without having to define their type as
these have been defined in the function headingveder any other variables, including the one
used in the et ur n statement, have to be defined in the functiorfitseaddition, variables A and
B arelocal variablesand are limited to use only inside the functioeamng that we can then use
different variables, also called A and B, elsewheranother function or inside thain function
without affecting ourdd function. Any variables defined in the functiorvedo be defined at the
top of the function, before any lines of code aréten.

The function itself is called thus

© Simon Bramble 2010
59

Simple C for the PIC Microcontroller

result = add(first_number, second_number);

and when implemented in a complete program:

voi d main(voi d)
{
unsi gned char first_number, second_number;
unsi gned i nt result;
first_number = 3;
second_number = 4;
result = add(first_number, second_number);
}

We notice first that the variables read into adi function do not have to have the same variable
name, but they must have the same typei(gned char). Therefore it might be more convenient
to use variable namésst_numberandsecond_numben themain program, but use the variable
namesA andB in the function. Howevefjrst_numbemust have the same typeAaand
second_numbemust have the same typeEad. ikewise, the function returns the resalswer ,

and this must have the same type our variglét . We also notice that when we call the
function, we do not have to include the variableety (eginsi gned char) for the input variables.

Now, in C every function has to Ipeototyped This means we need to tell the compiler that we
have defined a function, what it is called withiriput and output types. To prototype a functidh, a
we do is copy the heading of the function, butihaesemicolon at the end of the line, thus

unsi gned i nt add(unsi gned char A, unsigned char B);

Ideally, all the function prototypes should be plddefore the first function is used and should all
be placed together.

If the function does not return a value, then #teinn typevoi d is used. If a function has nothing to
return, we can also dispense with tleeur n statement at the end of the function. The compiler
detects that the end of the function has been eghathen it comes to the function’s closing
bracket. In the same way that some functions doetatn variables, other functions might not take
any variables as inputs. In this case the keyword is used in place of the input variables in
brackets.

© Simon Bramble 2010

60

Functions

You will notice that oumain program used above is in fact a function thatsakeno variables and
returns no variables so thei d keyword is used as follows

voi d main(voi d)

It is worth noting thatnain andinterrupt are special functions and do not need a prototypery
C program has main function, so the compiler expects it and itherupt function is defined by
a keywordinterrupt ~ and is not called in the traditional way.

We are now going to modify our LED Flasher progtanhave separate functions to handle the
microprocessor initialisation and LED flashing riogs.

/* _________________ */
/* Program Name: LED Flasher */
/* _________________ */

#i ncl ude <htc.h>

_ CONFIG(PROTECT & CPD & LVPDIS & BOREN &
MCLRDIS & PWRTEN & WDTDIS & INTIO);

unsi gned char global = 0;

/* _________________ */
/* FUNCTION PROTOTYPES */
/* _________________ */
voi d micro_init(voi d);

voi d flash_LED (voi d);

/* _________________ */
/* INTERRUPTS */
/* _________________ */
voi d interrupt isr(voi d) /* int service routine */

i f (TMRLIF == 1)

TMR1IF = 0;
global = 0x01; /* indicate overflow */
TMR1H = 0x0B;
TMR1L = 0xDC;
}
}
/* _________________ */
/* FUNCTION DEFINITIONS */
/* _________________ */
[* initialise micro */
voi d micro_init(voi d)

© Simon Bramble 2010
61

Simple C for the PIC Microcontroller

[* set ports */
TRISB = 0b00000001;
PORTB = 0b00000000;

/* disable comparator */
CMCON = 0b00000111;

/* initialise Timer 1 */
T1CON = 0b00110100;
TMR1H = OxO0B;
TMR1L = OxDC;

/* initialise interrupts */
INTCON = 0b11000000;
PIE1 = 0b00000001;
PIR1 = 0b00000000;
}
/* _________________ */
[* flash LED */
voi d flash_LED(voi d)

{
/* turn LED ON for 0.5s */
whi | e((global & 0b00000001)==0)
PORTB = 0b00000010;
}
global = global & 0b11111110;
/* turn LED OFF for 0.5s */
whi | e((global & 0b00000001)==0)
PORTB = 0b00000000;
}
global = global & 0b11111110;
}
/* _________________ */
/* MAIN PROGRAM */
/* _________________ */
voi d main(voi d)
{
micro_init();
TMR1ON = 1;

/* flash LED 5 times */
whi | e(1)

i f (PORTB & 0b00000001)
flash_LED ();
}

el se

© Simon Bramble 2010

62

Functions

PORTB = 0b00000010;

The code has changed very little from its origiimain. However, we now have function prototypes
defining our two functions

voi d micro_init(voi d);
voi d flash_LED (voi d);

A large comment above these two lines makes the oacth easier to read.

Below the interrupt service routine we have definadtwo functions. We have done nothing more
than a cut and paste exercise on the original code.

It must also be stressed that our two functionsatsideof themain function as are their
prototypes. They can be pictured as being a cosiglseparate block of code, independent from
themain statement that theain statement calls upon to perform specific tasks.

In themain program we call our two functions using their nam&e do not need to include the
variable types, and indeed if the function requiessariables as inputs then we can remove the
voi d keyword in the function call.

Variable Scope

We mentioned earlier that variables defined insidenction are only accessible within that
function. These are callddcal variables because they can only be used locathimihe function.
This allows us to use a counter varialxlan two different functions and keep these vaeabl
completely separate.

Referring to the program above, if we placed the li

unsi gned char global = 0;

inside themain function, we would get a compilation error (undefi variable) in thaterrupt
function as the variablglobal is only defined in thenain function. Likewise, if we use this line
inside themain functionandtheinterrupt function we would be defining two variables — doe

© Simon Bramble 2010
63

Simple C for the PIC Microcontroller

useonly in theinterrupt ~ and one for usenly themain function. Our code would compile OK, but
would not perform as expected. Our loop

whi | e((global & 0b00000001)==0)

PORTB = 0b00000010;

would inspect bit O of thglobal register, but when the interrupt service routsealled, it would
modify its copy of thejlobal register, but leave thgobal register defined in th@ain function
unchanged, so it would never leave the loop.

Global variables need to be defined outside ofuhetions in which they are going to be used in
order to give them global status. Technically tebeguld also beeclaredinside each function that
is going to use them using thet er n global keyword thus

extern unsi gned char global;

However, this declaration can be omitted as lonthaglobal variable is declared before it is used
and this is indeed what most programmers do. Tiesting the line

unsi gned char global = 0;

at the topmost part of the code enables us to thexixt er n declaration.

© Simon Bramble 2010

64

Working with Binary Numbers and Bits

Chapter 9

Working with Binary
Numbers and Bits

Before we dive into this chapter is worth explaghdome terminology. A binatyit is single binary
digit (either ‘0’ or ‘1’). Four binary bits make wpnibble (a term that is not often used, but worth
knowing anyway) and eight binary bits make up @byt byte can represent numbers from 0 to 255
(decimal) and this will be explained later. If weed to represent a number higher than 255 then we
need to use more than 8 bits.

We have used binary (base 2), decimal (base 10hexadecimal (base 16) numbers in this book
so far, but not really explained the benefits ahgsach. If we are going to program a
microcontroller effectively and be familiar withwdo manipulate the data read in from the port
pins, we need to be conversant with these 3 nu lvdmses.

From a very early age, all of us learned to conttaise 10. In doing so we count in single digits up
to 9 then when the value of 10 is reached, we mer# the next ‘power of 10’ and reset the single
digit ‘counter’ to zero. When we have incrementee digits (16) as far as they will go, the next
digit (10" is incremented. When this has incremented aasfarwill go, the next digit (1) is
incremented and so on.. So the number 1234 cagpbesented by

(1x10) + @2x 10) + 3x 10" + (4 x 1)

The same is true for base 2 (binary). We increrttemtnits counter €2 from 0 to 1 and when the
value of 2 is reached, we increment the next ‘pavié (2') and reset the units. Likewise when we
have incremented thé Bigit as far as it will go, we increment thedlgit and reset the'digit.

Thus the first eight binary numbers are:

000
001
010
011
100
101

© Simon Bramble 2010
65

Simple C for the PIC Microcontroller

110
111

We mentioned earlier that an 8 bit binary numbdryi) can represent numbers up to 255
(decimal). Obviously the highest number we can ttamvith only 8 bits is 11111111 (base 2) and
this can be represented as

Ax2)+AxD)+@AxD)+(Ax D) +(1xD)+(1x D+ @Ax 2D+ 1 x D)
= 128 +64 +32+16+8+ 4+ 2 +1 =255

In all counting systems, we increment to the véhase — 1) before incrementing the next ‘power’.
So in base 10, we increment to 9 then reset ths anil increment the next power YL@ ikewise
with base 2, we increment to 1 then reset the amitsincrement the next power’)2

The same is true for hexadecimal numbers, whereowat in base 16. We count from O to 15
before incrementing the next power {Lénd resetting the units. However, we run intdofEms

with the hexadecimal counting system in that whemget to the value aénwe have not reached
the limit of our units — we can still count frornteo fifteen before needing to increment the next
power. To get around this, we use the letters ACHD, E, F to represent the numbers ten, eleven,
twelve, thirteen, fourteen and fifteen. Thus thedekecimal counting system is

0,1,2,3,45,6,7,8,9,AB,C,D,E,F10,11,12,13,14683,71,18,19,1A,1B,1C,1D,1E,1F,20 etc
So why use binary and hexadecimal when normal ddciitl do?

Binary is used extensively in microcontrollers hesmthey operate on 2 logic states (‘0’ and ‘1’),
So it is far more convenient to work in numbersated to the power of 2 than those related to the
power of 10. It is easy to detect if a voltageiibex high or low (5V or 0V). Detecting a voltage i
the middle (2.5V) requires a lot more circuitry,mmputers have traditionally always operated
with just these 2 logic states.

However, working with only 2 digits means that esg@nting a large value means your number can
be very long. For example, the value 240 decimegpsesented by 11110000 in binary. You can
imagine if we have a microcontroller with 1 milliaifferent addresses, the corresponding binary
number will be huge.

This is where hexadecimal (beX comes to the rescue. Each 4 binary digits carejesented by

1 hexadecimal digit. This is not surprising singarfbinary bits enable us to count from 0 to 15 and
one hexadecimal digit also allows us to count ffdbta 15. Thus any binary number can be divided
into groups of 4 binary digits (starting with theits) and easily turned into the hexadecimal
number. Thus

© Simon Bramble 2010

66

Working with Binary Numbers and Bits

11 0010 01101101 10101111 0001 in binary

equals

3 2 6 D A F 1 inkhe

It is equally advantageous that larger numbersheagxpressed with fewer digits in hex than
decimal. The number above occupies only 7 digitseix, where as its equivalent decimal
(52878065) occupies 8.

So when would we use binary over hex numbers azelwersa? This depends on each

programmer’s preferences, since both numbers arsaime. Setting bits in registers and ports is
more easily done using binary since each indivithitatan be seen. In the following line

PORTB = 0b10101010;

it is easier to see that every other line has keeto logic 1 than with the line

PORTB = OxAA,

When using addresses and variables, binary cangetayut of hand and hex presents a neater
solution.

That said, it can get tedious to constantlyRSBTB = 0b11111111 whenPORTB = 0xFF will do,
so this is not a strict rule to live by.

Logic Functions

Now we have learnt how to switch between binargirdal and hex bases, it is worth learning how
to manipulate binary data.

There are four logical operators in C that candmdito manipulate binary data. These are AND,
OR, XOR and NOT and they operate as follows.

The AND (&) operator compares corresponding bitsia binary numbers and gives a resultant bit
depending on whether theth bits are logic ‘1’ not. Thus

10101111 binary number 1
& 11110000 binary number 2
= 10100000 result

© Simon Bramble 2010
67

Simple C for the PIC Microcontroller

Here, each bit in the result is ‘1’ if both corresding bits in binary number 1 and binary number 2
match. The result is ‘0’ if they don't.

The truth table for the AND function is

I nputs Output
00 0
01 0
10 0
11 1

The OR (]) operator does the same as the AND fumdbiut returns a ‘1’ iéither of the
corresponding bits is set to logic 1, thus

10101010 binary number 1
& 11110000 binary number 2
= 11111010 result

Here, a comparison of each bit in binary numbend. lsinary number 2 shows that only bit 0 and
bit 2 have no ‘1’'s, thus returning a value of ‘9’the result.

The truth table for the OR function is

I nputs Output
00 0
01 1
10 1
11 1

The XOR (®) operator sets the bits in the resudnify onebit in either of the binary numbers is set,
thus

10101010 binary number 1
& 11110000 binary number 2
= 01011010 result

We can see that in the above example, only bils 8,and 1 have ‘1’ exclusively in either binary
number 1 or binary number 2. If binary number bioary number 2 have the same corresponding
bits then the result is ‘0.

© Simon Bramble 2010

68

Working with Binary Numbers and Bits

The truth table for the XOR function is

| nputs Output
00 0
01 1
10 1
11 0

The NOT (~) operator simply inverts all the bitslod binary number and hence only requires one
binary number to act on. Thus

~(11110000) = 00001111
So why is this useful? Designing a digital systéat teads values in from port pins means that
sooner or later we are going to have to manipultaise values. Data read in from an 8 way data

port is nothing more than an 8 bit binary number.

We saw in our first program the line

i f (PORTB & 0b00000001)

This is a test to see if bit 0 in Port B is at ghhwoltage (logic 1) or a low voltage (logic 0).

We mentioned that the statement executes if the evaluation takes oruee vd ‘1’ (true) or ‘0’
(false) but more precisely it executes if the esan isnon-zero Thus we could simply write

i f (PORTB)
{

}

/* code goes here */

and if Port B bit O is set, we would effectively éealuating

© Simon Bramble 2010
69

Simple C for the PIC Microcontroller

i f (00000001)
{

}

/* code goes here */

and ouri f statement would execute. If Port B bit O were rddave would effectively be evaluating

i f (00000000)
{

}

/* code goes here */

and ouri f statement would not execute. However, this leagegulnerable to other bits in Port B
being set. If bit 7 were set, then ourstatement would always execute regardless oft#te sf bit
0 (since the value of Port B would always be noro)e

Thus we need a way of masking out the other biBoirt B and only looking at bit 0. This is an
ideal job for the AND function and by ANDing thelva read in from Port B, we can force certain
bits to ‘0.

From the following example

10101010 data read in from Port B
& 11110000 Data that we AND with Port B
= 10100000 result

we can see that regardless of the state of thehiBort B, we can force them to ‘0’ just by
ANDing them with a corresponding ‘0’, as shownea rabove. (note that we are not changing the
port value, just the result read in from the pdftjve AND them with a ‘1’ the data remains
unchanged, as shown in blue above.

Thus in the following example

10101010 data read in from Port B
& 00000010 Data that we AND with Port B
= 00000010 result

we can inspeabnly bit 1 and see if it is a logic ‘1’ or ‘0’, with &result evaluating to zero if bit 1 is
‘0’ and non-zeroaif bit 1 is ‘1.

© Simon Bramble 2010

70

Working with Binary Numbers and Bits

While the AND function is useful for clearing bitkie OR function is good for setting bits. Suppose
we need to make sure a bit in a register is definget. We can see from the example below

101010 register value
& 11110000 binary number we OR with register value
= 11111010 new register value

that ORing our register value with 11110000 enstinasthe new register value always has the top
four bits set regardless of their original valug shown in red. ORing the register bits with ‘0’
keeps the bits unchanged, as shown in blue.

Suppose we need to change the state of a bit ftoto ‘0’ or from ‘0’ to ‘1". Instinctively the NOT
function comes to mind. However, the NOT functioyovorks on the entire register and changes
the state of all the bits. This is where the XORchion can be used.

From our earlier example:

10101010 binary number 1
& 11110000 binary number 2
= 01011010 result

we can see that the top 4 bits in binary numb&ren XORed with the corresponding logic ‘1’ in
binary number 2 actually change state, while the ¥ORed with logic ‘O’ remain unchanged. So if
an individual bit inside a register needs to bengeal, XORIing that bit with a logic ‘1’, keeping all
the other bits at logic ‘O’ will change only that.b

With this in mind, our LED flasher function can nd& considerably reduced. Below is our new
code:

[* flash LED */
voi d flash_LED(voi d)
{
/* turn LED ON for 0.5s */
whi | e((global & 0b00000001)==0)

}
global = global & 0b11111110;
PORTB = PORTB ~ 0b00000010;

© Simon Bramble 2010
71

Simple C for the PIC Microcontroller

We have replaced\hi | e statements with just one. Instead of setting tearing bit 1 in Port B
using 2whi | e statements, we are now using the XOR operatdp (t9ggle Port B bit 1 between ‘0’
and ‘1’. Note also the use of the & function to westhatglobal bit O is cleared.

Finally, we have also used the Null Statemenftlfy)s is a statement that does nothing, but just
stops our compiler getting upset if it sees norutdions inside thehi | e loop. This is not often
seen in C, but is a perfectly valid command.

Shifting Bits

There are two more operators that are often usddnany numbers. These are the << and >>
operators.

The operator << shifts the binary byte a specifiathber of places to the left. This has the same
effect as doubling the binary number. If you coasithat shifting a decimal number one place to
the left has the same effect as multiplying the benby 10, then it is easy to see that shifting a
binary number one place to the left multiplies nloenber by 2.

The operator >> shifts the binary byte a specifiathber of places to the right, halving the number.

The two operators above have all sorts of usefpliegtions, but are most commonly used when
setting, clearing and checking bits.

To set bit 4 in a register the following line igerf used:

register = register |(1<<4),

Here we are shifting a single logic ‘1’left by 4gitions and ORingegister ~ with the result. This
has the effect of setting bit 4 iegister . Naturally, the number 4 can be replaced with any
number you like from O to the size of the register.

Likewise if we need to clear a bit 4 in a regigter following line is often used

register = register & ~(1<<4));

Again we are shifting a single logic ‘1’ left bypbsitions, inverting all the bits (using the NOT
function) then ANDing this number witlgister

Thus 00000001 is shifted 4 places to the left v@ @0010000. This is inverted to give 11101111.
This is ANDed withregister to clear bit 4 inegister

© Simon Bramble 2010

72

Working with Binary Numbers and Bits

Finally, if we need to check if bit 4 is ‘1’ or ‘Dive can use the following

register & (1<<4);

This shifts a single logic ‘1’ left by 4 places aANDs the result withegister . If bit 4 is ‘1’ then
the result returned is non zero. If bit 4 is clelatben the result is zero.

Now let’s write a program demonstrating some ofdheve techniques.

This program uses our existing LED flasher, budddition has a Knight Rider strobe (LEDs are lit
in sequence: 1,2,3,4,5,6,7,8,7,6,5,4,3,2,1) asagedin ‘alternate flash’ where LEDs 1,3,5,7 flash o
and off. We have also revised some of our earbeledo neaten it up a bit.

The Simple Flash routine (from before) is showroelbut this time flashes 10 times without the
intervention of a button press. Note that one ‘@GNdJ one ‘OFF’ is counted as 2 cycles in our count
below

[* flash LED */
voi d simple_flash(voi d)

{

unsi gned char n;

f or (n=0; n<20; n++)

{
/* turn LED ON for 0.5s */
whi | e((global & 0b00000001)==0)
{
}
global &= 0b11111110;
PORTB = 0b00000001;
}

The Knight Rider strobe consists simply of loadin@ binary number using the line

PORTB = 0x01; [* far right LED ON */

© Simon Bramble 2010
73

Simple C for the PIC Microcontroller

then using the command << to shift the data lefisegutively until a count of 7 is reached, then
shifting the data back again, displaying the dat#he port pins as we go. The program below is an
example of this

[* knight rider */
voi d knight_rider (void)
{
unsi gned char n, count;
count = 0;
PORTB = 0x01; [* far right LED ON */
[* strobe LEDs back and forth */
f or (n=0; n<10; n++)
f or (count=0; count<7; count++)
whi | e((global & 0b00000001)==0)
/* 0.5 seconds delay */
}
global &= 0b11111110;
PORTB <<=1;
f or (count=0; count<7; count++)
whi | e((global & 0b00000001)==0)
/* 0.5 seconds delay */
}
global &= 0b11111110;
PORTB >>=1;
}
}
}

Our Knight Rider strobe uses the lines

global &= 0b11111110;
PORTB >>=1;

which is a shorter way of writing

global = global & 0b11111110;
PORTB = PORTB >> 1;

© Simon Bramble 2010

74

Working with Binary Numbers and Bits

Shortcuts are found in virtually all C programs gmdsent a neater way of programming. These are
explained in more detail in Appendix B.

The alternate flash routine makes use of the XOtetfan which is good for flipping the state of
bits. Again, one ‘ON’ and one ‘OFF’ is counted asy2les:

/* alternate LED flash */
voi d alt_flash(voi d)
{
unsi gned char n;
PORTB = 0x00;
f or (n=0; n<20; n++)
{
/* turn LED ON for 0.5s */
whi | e((global & 0b00000001)==0)
}
global &= 0b11111110;
PORTB "= 0b10101010;
}
}

The complete code is shown below

/* _________________ */
/* Program Name: LED Flasher */
/* _________________ */

#i ncl ude <htc.h>

_ CONFIG(PROTECT & CPD & LVPDIS & BOREN &
MCLRDIS & PWRTEN & WDTDIS & INTIO);

unsi gned char global = 0;

/* _________________ */
/* FUNCTION PROTOTYPES */
/* _________________ */

void mcro_init(void);
voi d sinple_flash(void);
voi d kni ght_rider(void);
voi d alt_flash(void);

/* _________________ */
/* INTERRUPTS */

© Simon Bramble 2010
75

Simple C for the PIC Microcontroller

/*
voi d interrupt isr(

voi d)

i f (TMRLIF == 1)

{
TMR1IF = 0;
global = 0x01;
TMR1H = 0xO0B;
TMR1L = 0xDC;
}
}
/*
/* FUNCTION DEFINITIONS
/*

/* initialise micro */

void mcro_init(void)

{
/* set ports */
TRISB = 0x00;
PORTB = 0x00;

/* disable comparator */
CMCON = 0b00000111;

/* initialise Timer 1 */
T1CON = 0b00110100;
TMR1H = Ox0B;
TMR1L = OxDC;

/* initialise interrupts */
INTCON = 0b11000000;
PIE1 = 0b00000001;
PIR1 = 0b00000000;
}
/*
[* flash LED */
voi d sinple_flash(void)

{
unsi gned char n;
f or (n=0; n<20; n++)
{
/* turn LED ON for 0.5s */
whi | e((global & 0b00000001)=
}
global &= 0b11111110;
PORTB "= 0b00000001;
}
}
/*

/* knight rider */
voi d kni ght_rider(void)

/* int service routine */

/* indicate overflow */

/* port B is all outputs */

:0)

© Simon Bramble 2010

76

Working with Binary Numbers and Bits

unsi gned char n, count;
count =0;
PORTB = 0x01; /* far right LED ON */
/* strobe LEDs back and forth */
f or (n=0; n<10; n++)
f or (count=0; count<7; count++)
whi | e((global & 0b00000001)==0)
; /* 0.5 seconds delay */

}

global &= 0b11111110;

PORTB <<=1;

f or (count=0; count<7; count++)
whi | e((global & 0b00000001)==0)
; /* 0.5 seconds delay */

}

global &= 0b11111110;

PORTB >>=1;

}
}
}
/* _________________ */

/* alternate LED flash */
voi d alt_flash(void)

{
unsi gned char n;
PORTB = 0x00;
f or (n=0; n<20; n++)
{
/* turn LED ON for 0.5s */
whi | e((global & 0b00000001)==0)
{
}
global &= 0b11111110;
PORTB "= 0b10101010;
}
}
/* _________________ */
/* MAIN PROGRAM */
/* _________________ */
voi d mai n(voi d)
{
micro_init();
TMR1ON = 1;

© Simon Bramble 2010
77

Simple C for the PIC Microcontroller

whi | e(1)

{
simple_flash();
knight_rider();
alt_flash();

© Simon Bramble 2010

78

Data Types

Chapter 10
Data Types

Before we use any variables in C, we have tohelldompiler what data type they are. This informs
the compiler how many bits to assign to storingvidweable. Generally once a variable has been
declared as a certain data type, it remains asltiattype throughout the entire program.

The PIC only has a limited amount of RAM (the PIE&B7A has 224 bytes), unlike most PCs that
have several trillion bytes. Therefore we havedwéry conservative with the way we use it.
Because most of the interface with the outside dvisrdone via the 8 bit port pins of the PIC and
most of the internal registers are 8 bits wide nodshe data manipulation inside the PIC can be
kept to 8 bits. The table below shows the datasypat are available.

Type Size (bits) Arithmetic Type
b 1 unsigned integer
char 8 signed or unsigned integer
unsigned char 8 unsigned integer
short 16 signed integer
unsigned short 16 unsigned integer
int 16 signed integer
unsigned int 16 unsigned integer
short long 24 signed integer
unsigned short long | 24 unsigned integer
long 32 signed integer
unsigned long 32 unsigned integer
float 24 real
double 24 or 32 real

We note that an 8 bit variable can be specifieelith&rchar orunsi gned char. char is asigned
data type meaning it enables us to represent lusihiye and negative numbers. The price we pay
for this is that we lose the most significant IMSIB, or bit 7) as this is now used asign bit.
Therefore with the data typs#ar we can count from +127 to -128. Since most oftitne we only
deal with positive numbers (and indeed all of onrgpams so far have only handled positive
numbers), having a sign bit is of little use, soelext to use thensi gned char data type allowing
us to count from 0 to 255. Don't think that thtiear data type is only applicable to characters

© Simon Bramble 2010
79

Simple C for the PIC Microcontroller

though. Any variable that can take on a value ffbta 255 can be assigned thei gned char
data type.

Now supposing we need to use a variable that naightain a value higher than 255. Then we must
move up to the next data typeysi gned i nt. The Hi Tech compiler allows us to also use thada
typeunsi gned short butunsi gned int is the more popular term to use for 16 bit datéades

and allows us to represent values from 0 to 65B68&in if we omit theunsi gned keyword, then

the compiler assumes we are referring to a sigaeidhle, so we are only allowed to use numbers
in the range +32767 to -32768. Since most of oukwath the PIC deals with positive numbers,
theunsi gned i nt data type is the preferred one.

We have already come across thei gned i nt data type before in our Functions chapter in the
function shown below.

unsi gned i nt add(unsigned char A, unsigned char B)
{
unsi gned char answer;
answer = A + B;
r et ur n answer;

VariablesA andB can take on a value of up to 255, but if adde@tiogy can result in a number
greater than 255, so we had to defineditver variable asinsi gned int.

All of the above also applies to data typesi gned short | ong andunsi gned | ong allowing
us variables up to 24 bits and 32 bits respectivébwever these data types are very rarely used
with the PIC microcontroller.

Converting Data Types

We have explained previously that once a variabssigned a type, it cannot be changed. This is
not strictly true and C allows us to ‘coerce’ aiahte into a different type. With the PIC, an
example of this would be where we read in an &dmiable from the port pins, but we need to
perform 16 bit manipulation on that data. If thetgmns represent the lower 8 bits of a 16 bit

unsi gned i nt variable, the 8 bitinsi gned char variable from our port pins will have to be
coerced into a variable of typ@si gned i nt. This is done as follows

unsi gned char port_var;
unsi gned i nt int_var;

int_var = 0;
port_var = PORTB;
int_var = (i nt)port_var;

© Simon Bramble 2010

80

Data Types

We see that a 16 bit variablet, var , as well as an 8 bit variablegrt var have been declared.

We read in the value of the Port B register pdo var , but need to perform 16 bit manipulation
on it. The line

int_var = (i nt)port_var;

coercegort_var into a 16 bit variable.

MPLAB shows the result of the above code in thedl®gvindow where we can clearly see the 16
bit variableint var containing the data from the varialplat_var

o x]
Syvnbol Name Hex Decima Einary I
mainfint wvar D=ooco 192 Q0000000 11000000
mainflport wvar OxCa 192 11000000

© Simon Bramble 2010
81

Simple C for the PIC Microcontroller

Chapter 11
Arrays

So far we have worked with LEDs and indeed the soeldave used to flash the LEDs can be
found in millions of C programs across the worlde e now going to investigate LCDs (liquid
crystal displays) and in doing so learn about agro#ispect of C: Arrays. A typical LCD datasheet
is available from the SimonBramble Website andighthbe prudent to download this to help with
the understanding of LCDs and their addressing siode

Arrays are a convenient way of storing lots oféoftelated) variables all with the same data type
and we are going to write a small LCD routine tendestrate this. The LCD display we are going
to use consists of 2 rows, each row with 16 charads typically used in swipe card machines,
faxes, photocopiers and many consumer electrot@iossi Each character has a unique code (an
ASCII code — see Appendix G) that determines exauctiat letter, number or symbol it is and
whether it is upper or lower case. ASCII codes dpam O to 255 so can be represented as
variables with theinsi gned char data type. Rather than assign 32 individual végiabmes to

each character (then trying to remember which bégisg assigned to which LCD character), we are
going to put all of our variables into two arraysnre for row 1 of our LCD and one for row 2.

There are a number of different ways of declaringuaay. The following line declares an array,
calledrowl ofunsi gned char thatis 16 elements long.

unsi gned char rowl[16];

The array name w1l and has to follow all the same guidelines for mgyrother variables as
outlined in Appendix A. All elements inside theayrthave to have the same data type, in this case
unsi gned char. The number in the square brackets tells us homyrakements the array can hold,
in this case 16 elements, each element 8 bitsgtle If the array was declared to consist of

unsi gned i nt then the compiler would assign storage space@aldments, each 16 bits in length.

The array elements are labelled 0 to 15 with ttst 8lement being element 0 and the last element
15, thus addressing element 1 means we are insge¢hsecondelement in the array. This is most
important and easily forgotten.

We now need to fill the array. An example of hovassign a value to a single array element is
shown below.

© Simon Bramble 2010

82

Arrays

rowl1[0] = 10;

This assigns the value 10 to the first elemenhefarrayowl .

Like any other variable, arrays can be inserted lmbps and filled, thus

unsi gned char rowl[16];
unsi gned char n;

f or (n=0; n<16; n++)

rowl[n] = n;

This function fills the elements adw1 with the numbers from 0 to 15. Note that the loop
counts from 0 to 15. It would be incorrect to use following line

f or (n=1; n<17; n++)

as this would leaveow1[0] unfilled, but more importantly try to fill elemea6 which does not
exist. It is interesting to note that the aboveecddes in fact compile correctly. Leavirg/1[0]
unfilled (or uninitialized) is perfectly legal, &g as you do not rely on it holding non-random
data further on in your program.

Another way of filling the array is as follows, @claration stage

unsi gned char rowi[16] ={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}

or we can omit the array dimension and let the ¢mmgecide how much space to assign given the
initialisation values thus

unsi gned char rowl[] ={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

Alternatively we can declare the array in one steen initialise it in another, thus

© Simon Bramble 2010
83

Simple C for the PIC Microcontroller

unsi gned char rowl[16];
unsi gned char rowl[16] ={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}

It is advisable to stick with only one of the ab@adutions. Leaving the brackets empty and letting
the compiler decide how big the array should kibeaspreferred method for single dimensional
arrays.

Multidimensional arrays can also be declared byifgag first therow sizethencolumn sizeof the
array thus

unsi gned char row[2][16] ={
0,1,2,3,45,6,7,8,9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26,26,27,28,30,31
I

Here we make use of rigid formatting of the textttihe compiler ignores, but makes the code
much more readable. We could have declared thg aliran one long line, but it would not be
obvious to the reader that we are defining 2 reash of 16 columns. Inserting spaces where
appropriate makes this a lot more visible. Sincdtichmensional arrays are a bit more confusing,
you need to specify the rows and columns at deaaratage (you cannot leave the square brackets
empty). Initialising them at declaration stage &seps things simple.

In truth any number of array dimensions can be ifpdcalthough more than 3 dimensions starts to
get hard to visualise. Here is a 3 dimensionalyacoasisting of 3 rows of 4 columns, and 2 layers
deep. The format is

unsi gned char cube[layer][row][column]

and a practical example is:

unsi gned char cube[2][3][4] = {
1,2,3,4,

5,6,7,8,

9,10,11,12,

13,14,15,16,
17,18,19,20,
21,22,23,24
h

© Simon Bramble 2010

84

Arrays

Remembering that all arrays start with element®gcan say that

cube[1][2][3] = 24

since the first ‘block’ of numbers tsibe[0][x][x] , SO we are picking an element from the second
block of numbers, 3row, 4" column.

If you simulate this in MPLAB, the Locals windowvgs a handy display of a 3 dimensional array:

=101
Syvibol Name Hex Decima Einary L:
El mainfcube
------- = [0] Q=01 1 oooooool
------- = [a,o] Q=01 1 oooooool
e [0,0,0] 1 QOooooo

------- [O,0,1] D=0z Z ooooooio

------- [O,0,2] Q=03 3 ooooooll

------- [O,0,3] Dx04 4 oooooion

....... = [0, 1] Ox05 5 ooooolol

------- [O,1,0] Q=05 5 oooooiol

------- [O,1,1] Q=06 & oooooiin

------- [O,1,2] Q=07 7 oooooiil

------- [O,1,3] Q=05 = ooooioon

....... = o[0,2] Q09 = ooooloo1

------- [O,2,0] Q=09 = ooooiool

------- [O,2,1] Ox0n 14 ooooiolion

------- [O,2,2] Qx0OE 11 ooooioil

------- [O,2,3] Qzx0c 12 ooooiioo

------- = [1] Q0D 13 ooooiiol

------- Bl [1,0] Q0D 13 ooooiiol

------- [1,0,0] Q0D 13 oooo11o1

------- [1,0,1] Qx0E 14 ooooiiio

------- [1,0,2] Qx=0OF 15 oooo11il

------- [1,0,3] Q=10 156 oooioooo

------- Bl [1,1] Oxi1 17 oooioool

------- [1,1,0] Oxi1 17 oooiooo0l

------- [1,1,1] Qx1z 15 oooiooio

------- [1,1,2] Q=13 13 oooioo011

------- [1,1,3] Ox14 Z0 oooioioo

------- Bl [1,2] Ox15 21 oooioiol
------- [1,2,0] Ox15 21 ooo10i10l —

------- [1,2,1] Ox1a ZZ oooio1in

------- [1,2,2] Q=17 23 oooio111
------- [1,2,3] Q=15 Z4 00011000 ||«

© Simon Bramble 2010
85

Simple C for the PIC Microcontroller

If you are totally crazy, C allows you to specifyays with more than 3 dimensions, but most
programs can be adequately achieved with only Z2dgmons.

Text is defined slightly differently in arrays. éntext array the last character has to belh
character This is represented by the symbol \O. This mehatsif we declare an array, it can hold
one less character than we specify since the ltesticter has to be a \0. Thus

unsi gned char rowl[14] = {
‘e, L ,"E®,*Cc,T,R,O0,N, W, O, R, K,6'Ss,"\
I

It is interesting to note that if we reduce the @irsion of owl from 14 to 13 elements and leave off
the \0’ on the end of our character string, thedecstill compiles in MPLAB and simulates OK,
implying that MPLAB is happy with character stringsterminated with the null character.
However, reducing the dimension to 12 does caugmanany initializers’ error.

As with single dimension arrays, we can let the jgiben decide how much space we need if we use
the following format. Indeed this is the more conmformat:

unsi gned char rowl[] = "ELECTRONWORKS"

Using this format, the compiler also automaticallserts the \0’ character at the end of our string
By putting the character string in quotes alsorutdtthe compiler to store the ASCII code of each
letter in the array elements.

We are now going to write a program to display anloCD:

ELECTRONWORKS
Simple C for PIC

The most common alphanumeric LCDs are driven bytacHi HD44780 driver. The datasheet is
readily downloadable, but is not easy to understanlgaves many engineers pondering why their
LCD display does not work. We have written a bufietof LCD program that has behaved well for
years and this will be used here.

The HD44780 generates the following characters:

© Simon Bramble 2010

86

Arrays

R ENE =35 [ut
xo000001 | @) TR &)= nT:.r'liléIl:l
ol "ZIBRIBIFL | TR
o001 | () #EEEEE d r::l-.T-:EE-ﬂ*l
wo|o| [FGDITHL | [[T[FFpa
A SR - [AF =0
ool [BBFIUFN | FN-FpE
wori | |T 1G]] ?*?“:‘HI[
woroo| o || [BIH[E]2 A [F T
xoodant | @ EIIEE "'.'lJI.J".I"l;l
oo | @) *:-IE-jE Ijl'-ll.-"_j_:':
wiort | @ | [(KL (K[+ =0 R
oo 100 |) « [L1 220 A% M
woed 101 | @) _=I.'-]r'.|.':' J.Eh":ﬂ*_+
oo 110 | @) .}I"-'ﬁ'l"l':" E.EITII"-Fl

st | @ |] 20| _|ia]€ w27 El

Note in the top left corner of the table, it statest the binary numbers along the top from 0000 to
1111 represent the upper 4 bits of the charac# ead the binary numbers in the left hand column
represent the lower 4 bits of the character coties dharacter table is loosely based on the ASCII

© Simon Bramble 2010
87

Simple C for the PIC Microcontroller

character set as outlined in Appendix G. We sawalbleat reading text into an array using the
format

unsi gned char rowl[] = "ELECTRONWORKS"

automatically converts each character into its\eant ASCII code and places it into our array,
therefore we can read our ASCII values directlyafuhe array into the LCD controller without
any complex maths in between.

Now, most 2 line LCD displays based on the HD44@&®roller have 8 data pins, 3 supply pins
and 3 control pins as described below.

Pin No. Symbol Function
1 Vss Ground
2 vdd Supply 2.7V to 5.5V
3 Vo Liquid Crystal Supply
4 RS Register Select
5 R/W Read/Write
6 E Enable
7 DBO DBO
8 DB1 DB1
9 DB2 DB2
10 DB3 DB3
11 DB4 DB4
12 DB5 DB5
13 DB6 DB6
14 DB7 DB7
15 N/A Backlight
16 N/A Backlight

Although it provides 8 data pins, the HD44780 aows us to interface it to a microprocessor
using only the top 4 data lines (DB4 — DB7), thagiisg us 4 port pins. This makes the code
slightly more complicated, but it is worth it toveaon port pins. The code outlined here works with
a 4 bit wide data bus.

Put simply, either commands or data can be writteéhe LCD display. Commands instruct the
LCD to clear the display, move the cursor etc. wherdata tells the LCD what characters to
display. If the Register Select pin (RS) is held,lthe LCD interprets the data on pins DB4 — DB7
as a command whereas if the RS pin is held highdéta on pins DB4 — DB7 is interpreted as
character information.

© Simon Bramble 2010

88

Arrays

The Enable pin (E) clocks in the data. The enalviespset high, the data is presented on pins DB4
— DB7, then the enable pin is set low, clockinghe data.

The R/W pin determines if we are reading to orimgittrom the LCD. Since we will always be
writing to the LCD, we will tie this pin permaneytbw and not connect it to a port pin.

The write sequence is shown graphically in thergoelow

RIW / \

E /NSNS NSNS

Internal Signal / internal Operation \ ya
Data __ X X X /Bus\ X_X ausy/ XX XXX

The code for implementing this is shown later. Tode is written in a series of files with each file
containing one or more functions of our progranclefle was written then saved, then added to
the MPLAB by right clicking over the Source Filesdding in the Project Window of
lcd_demo.mcw.

= a lcd_demo.mcp -
= ([source Files
delay.c
display.c
initialise.c
lcd.c
main,
= (L1 Header Files
header. b
[object Files
3 Library Files
[other Files w

[] Files ## Symbols |

These functions are called bwgin.c.

The files that make up the complete program asi.c, delay.c, display.c,
initialise.c, lcd.c and a header fileaeader.h.

© Simon Bramble 2010
89

Simple C for the PIC Microcontroller

As a general rule, all port pin definitions, fulctiprototypes and variables common to all program
files should be placed in the header file. Pictheeheader file as being a file that stores all the
‘junk’ common to all the other program files. Thewal functions themselves are stored in separate
‘.c files.

If you are going to write code spread over sevileed, MPLAB needs to be told where to look for
them when it compiles them. This is done by gomthe main menu and selecting Project -> Build
Options -> Project. Then in ‘Directories and Sedalths’ click the dropdown menu for ‘Show
Directories For’ and select ‘Include Search Pdaiilick ‘New’ then click the Directories button:

Build Options For Project “lcd_demo.mcp®

Directories | Custom Build | Trace | Driver | Compiler | Linker | Global

Directoriez and Search Paths

Shove directaries far: Ihzlude Search Path "

[few] [Celete

' =

Suite Defaultz

Then select the directory in which your projedbased and click OK. Thus MPLAB will search
this directory for all your files when it comesdompiling your project.

Here are the final files:
main.c File:

Firstly, we have declared 2 arraysingi[] andstring2[] to hold the characters for row 1 and
row 2 respectively.

In main.c we call functionsnicro_initialise andlcd_initialise that are both stored in file
initialise.c . Icdwrite IS a function that presents the data to the mioragssor port pins and is

stored in the fileécd.c. showrow Is a function stored idisplay.c ~ and reads the characters out of
our array and puts them on the LCD display.

© Simon Bramble 2010

90

Arrays

*/

/* Program Name: LCD Program
/* Software By: Simon Bramble

*/
*/

/* Date: March 2010 */

/* Processor: PIC 16F627A */

/* Clock Speed: Internal 4MHz oscillator */

/* Compiler: HI-TECH/MPLAB compiler *
=== s */
=== s */
/* INCLUDES */

*/

#i ncl ude <htc.h>
#i ncl ude <header.h>

__ CONFIG(PROTECT & CPD & LVPDIS & BOREN &
MCLRDIS & PWRTEN & WDTDIS & INTIO);

*/

*/

*/

voi d interrupt isr(voi d)

setbit(global, 0);
TMRL1IF = 0;

/* int service routine */

*/

*/

*/

voi d mai n(voi d)
{
unsi gned char stringl[] =
unsi gned char string2[] =

micro_initialise();
Icd_initialise();

/I set row 1
Icd_write(0b10000000);
show_row(stringl);

Il set row 2
Icd_write(0b11000000);
show_row(string2);

whi | e(1)

"ELECTRONWORKS *;
"Simple C for PIC" ;

/* initialise micro */
/* Initialise LCD */

/* move cursor to start line 1 */

/* move cursor to start line 2 */

© Simon Bramble 2010
91

Simple C for the PIC Microcontroller

Header.h file

You will notice we have also added a header.htdileelp de-clutter the program. Inside the header
file we have put all the port pin definitions at function prototypes. We have also defined some
macros. Macros are explained in more detail in AppendixXI@ese allow us to replace code with
statements that are more meaningful and easieath WWe have defined 2 macros

#defi ne setbit(address, bit) (address |= (1<<bit))
#defi ne clearbit(address, bit) (address &= ~(1<<bit))

At compile stage, the compiler replaces the text

setbit(address, bit)

with

(address |= (1<<bit))

The above code allows us to write for example

sethit(PORTA, 0)

to set Port A bit O instead of having to write

PORTA |= 0

It makes the code a lot easier to read. Note tlaaros are defined with thelef i ne preprocessor
directive and do not have a semicolon at the ertleofine (like#i ncl ude statements), but when
used in code are treated as a normal statememhasidhave a semicolon included at the end of the
line.

We have also defined our global variafiilebal to act as a general purpose status registereln th

code, we set bit O if Timer 1 has overflowed anduse bit 1 to determine if we are writing to the
LCD using one 4-bit transfer or two — see later.

© Simon Bramble 2010

92

Arrays

If we are going to use the macros definedeser.n in any other of our files then we have to
includeheader.n in each of those files using the line

#i ncl ude <header.h>

This leads to the possibility that the compiler Idoget upset if it sees more than one definitioa of
variable defined in the header file. In other woitigie define a variable (for examplesi gned

char global;), then include the header file in two or more offiles (using#i ncl ude

<header.h>), the compiler might see this as being a multg@énition of the variablglobal

Therefore, we use the preprocessor directives:

#i f ndef HEADER_H_
#def i ne HEADER_H_

/* header contents go here*/

#endi f MFHEADER_H_*/

at the top and bottom of our header file. The statd@#i f ndef is like thei f statement, but is an
instruction to the compiler. It evaluates if theatler file has already been defined and if it hds no
it defines it. Thus any variable defined in our dhexafile will only be compiled once.

Here is theheader.n file:

#i f ndef HEADER_H_
#def i ne HEADER_H_

/* _________________ */
/* GLOBALS */

/* _________________ */
unsi gned char global; [* gen purpose register */
/* global bits:

b0 = has timer overflow occurred?
bl = are we doing 1 or 2 4 bit transfers?
)

/* _________________ */
/* PIN DEFINITIONS */

/* _________________ */
/* PORT A PINS */

#def i ne EO /* enable */

#def i ne RS 1 /* data/command mode */

© Simon Bramble 2010
93

Simple C for the PIC Microcontroller

/* PORT B PINS */
/* RB7:RB4 = data lines DB7:DB4 */

/*_ _________________ */
/* MACROS */

/*_ _________________ */
#defi ne setbit(address, bit) (address |= (1<<bit))

#defi ne clearbit(address, bit) (address &= ~(1<<bit))

/* FUNCTION PROTOTYPES ============================ =—==—===—===—===c=%/
voi d interrupt isr(voi d); /* int service routine */

void mcro_initialise(void); /* Initialise Micro */

void lcd_initialise(void); /* Initialise LCD */

void I cd_write(unsi gned char data); /* 4 bit LCD transfer */

voi d | oad_I cd(unsi gned char data); /* load data into LCD */

voi d show_row(unsi gned char string[]); /* display row on lcd */

voi d del ay_10ns(voi d); /* 10ms delay */

#endi f MFHEADER_H_*/

Initialise.c File

The initialisation of our microprocessor and LCOl@ne insidénitialise.c . We have discussed
the initialisation of the microprocessor and thas Imot changed from before.

The initialisation of the LCD is the tricky bit. i&ie we are starting with commands (not data) the

RS pin is held low. We start with a delay routiridd@0ms to allow the LCD to power up and for

the power supply rails to settle. This is followsd3 cycles of writing 0011 to DB7 — DB4

(clocking the E pin as we go). We then need tathellLCD that the interface is 4 bits wide and this

is done by writing 0010 to DB7 — DB4 twice. In thecond parse, we also instruct the LCD to use 2
lines and 5x7 matrix font using the code 0010 10U8.then switch the display off, cursor off and
blink off using the byte 0000 1000. We then cléwr display with the byte 0000 0001 and finalise
the initialisation with the byte 0000 0110. Variadedays are meant to be inserted between each bus
transaction, but in our code, we simply use a deféy0ms.

The functionicd_initialise() is fairly straight forward. We have a delay of fi¥at the start to
wait for the power supply to settle. We then wdgga to the LCD using either one or two 4-bit data
transfers. The functiolad_write() (stored in thecd.c file) uses the status of bit 1 in thiebal
register to determine if the transfer is a onenar 4-bit transfer. A typical LCD datasheet is
available from the SimonBramble website and it rhigdnprudent to download this to help with the
understanding of LCDs and their addressing modes.

Here is thenitialise.c file:

© Simon Bramble 2010

94

Arrays

#i ncl ude <header.h>
#i ncl ude <htc.h>

void mcro_initialise(void)

{
/* set ports */
TRISA = 0x00;
PORTA = 0x00;
TRISB = 0x00;
PORTB = 0x00;

/* disable comparator */
CMCON = 0b00000111;

/* initialise Timer 1 */
T1CON = 0b00110100;
TMR1H = OxO0B;
TMR1L = OxDC;

/* initialise interrupts */
INTCON = 0b11000000;
PIE1 = 0b00000001;
PIR1 = 0b00000000;

void lcd_initialise(void)

{

/* tie the R/W pin low permanently, refer to the HD

unsi gned char data, n;

setbit(global, 1);
f or (n=0; n<10; n++)

delay_10ms();

for (n=0; N<3; n++)

{
data = 0b00110000;
lcd_write(data);
delay_10ms();

}

/* function set */
data = 0b00100000;
lcd_write(data);
delay_10ms();

/* port A is all outputs */

/* port B is all outputs */

/* Initialise LCD */

44780 d/sheet */

/* indicate 1x 4 bit transfer*/

/* wait for power to stabilise*/

© Simon Bramble 2010
95

Simple C for the PIC Microcontroller

clearbit(global, 1);

data = 0b00101000;
lcd_write(data);
delay_10ms();

/* display off */
data = 0b00001000;
lcd_write(data);
delay_10ms();

/* display clear */
data = 0b00000001;
lcd_write(data);
delay_10ms();

/* entry mode set */
data = 0b00000110;
lcd_write(data);
delay_10ms();

/* display on */
data = 0b00001100;
lcd_write(data);
delay_10ms();

/* indicate 2x 4 bit transfer */

/*N=1; F=0 */

F1/ID=1S=1%

/* initialisation ends */

lcd.c File

Here is thacd.c file:

#i ncl ude <header.h>
#i ncl ude <htc.h>

voi d lcd_write(unsi gned char data)

load_lcd(data & OxFO0);
i f ((global & 0b00000010)==0)

data <<= 4;
load_Icd(data & OxFO0);

}
delay_10ms();

/* (e e e e

voi d load_lcd(unsi gned char lcd_data)

setbit(PORTA, E);

/* 4 bit LCD transfer */

/* load top 4 MSBs */
/* 2 nibble transfer if bit clear */

/* shift LSBs to MSBs */
/* load bottom 4 MSB */

/* load data into LCD */

© Simon Bramble 2010

96

Arrays

PORTB &= 0x0F; [* clear top 4 bits */
PORTB |=Icd_data; /* toggle only DB7:DB4 */
asnm("nop");

asnm("nop");

asnm("nop");

asnm("nop");

clearbit(PORTA, E); * clock in data */

The functionicd_write() takes in an 8-bit variable and the statement

load_Icd(data & OxFO0);

clears the lower 4 bits of this variable in readmér presenting this byte to the port. Since e a
only using the upper 4 bits of Port B and do nahinto change the lower 4 bits, we need to set the
lower 4 bits equal to ‘0’. The functidead_Icd() sets the Enable pin on the LCD high then clears
the top 4 pins of Port B using the statement

PORTB &= OxO0F;

Note that we set the Enable line using the maetsx defined in our header file. The data (with
the lower 4 bits cleared) is then OR’d with PorthBs enabling us to only change the upper 4 bits
of Port B, leaving the lower 4 bits unchanged.

The line

asn("nop");

is a ‘No Operation’ that effectively inserts a detE a few instruction cycles between presenting
the data to the port and taking the Enable lineuswg the line

clearbit(PORTA, E);

In our functionicd_write() , once we have sent the top 4 bits to the porther check the status
of bit 1 in theglobal register. If bit 1 is cleared, we enter thestatement, shift the lower 4 bits
into the place of the upper 4 bits and load thethéooutput port as before.

© Simon Bramble 2010
97

Simple C for the PIC Microcontroller

display.c File

We are now going to examine ttisplay.c file.

Here isdisplay.c

#i ncl ude <header.h>
#i ncl ude <htc.h>

/* Steps through array and puts characters onto the LCD */
/*:: :::::::::::::ﬁ
voi d show_row(unsi gned char string[]) /* display row on lcd */

{

unsi gned char n;

setbit(PORTA, RS); /* put into data mode */
f or (n=0; n<16; n++)

Icd_write(string[n]);

}
clearbit(PORTA, RS);

This function does nothing more than set the RSrpiort A. This puts the LCD in data mode so it
can accept characters instead of instructions.N&fe tise aor statement to step through the array
and thecd_write() function to write the characters to the LCD digpla

delay.c File
Finally, we are going to discuss tieay.c file.

Here is thelelay.c file

#i ncl ude <htc.h>
#i ncl ude <header.h>

/* 10ms Delay */
/*:: :::::::::::::ﬁ
voi d delay_10ms(voi d) /* 10ms delay */

TMR1L = Ox1E;

TMR1H = OxFB;

setbit(TLCON, 0); [* start TMR1 */

© Simon Bramble 2010

98

Arrays

whi | e (!(global & 0b00000001)) [* has interrupt occurred? */
asn("nop");
clearbit(global, 0); I* reset interrupt flag */
/* delay has passed */
clearbit(T1CON, 0); * stop TMR1 */
}

This is the same as before, but with differleetvalues loaded into the Timer 1 registers. We need
a delay of 10ms. A clock cycle of 8us (using a padéex of 1:8) implies that our count is calculated
as follows

10ms

8us
We need to ensure Timer 1 overflows after 1250es/c30 we have to preload Timer 1 with a value
of

count= =1250

65536 — 1250 = 64286 = FBIEeX

Once the files above have been added to our prafetthe Search Path has been set, the project
can be compiled.

The program was downloaded to the PIC and opepddctly. The power supply was
intermittently connected to try to get the progrtancrash without success, implying that our LCD
program is rock solid!

© Simon Bramble 2010
99

Simple C for the PIC Microcontroller

Chapter 12
Other Useful

Shippets

In this chapter we will outline code techniqued §@u might need as your programming
progresses.

Theenumkeyword

Theenumkeyword provides a useful way of assigning integdues to a series of constants. You
can then use the constant names instead of theanamithe first constant in the brackets is
automatically assigned a value of ‘O’ unless spegibtherwise. In the example below, we assign
the value 1 to Monday. The constants that folloesthen assigned a value of 1 greater than the
constant before, so Tuesday is assigned the vaM&@nesday the value 3 and so on. This can
make your code a lot easier to read. An exampdbasvn below.

enumdays
{Monday=1, Tuesday, Wednesday, Thursday, Friday, S aturday, Sunday};

X = Monday + 1;

This returns the result foras ‘2'.

Thest ati ¢ keyword

We have discussed functions already and we knowwtrébles defined in a function are local to
that function. We can define exactly the same deian another function and the two variables can
co-exist in the same program as completely separdiies. Once a function is exited, all variables
defined in that function are cleared, thus wherretarn to that function, we have to reassign values
to those variables and cannot pick up from wherdefteff. The variable has no memory once the
function is left.

© Simon Bramble 2010

100

Other Useful Snippets

Thest ati c keyword overcomes this. Variables definedtas i ¢ maintain their value between
function calls.

In honesty, it is perfectly possible to programyears with the PIC and never have to use the
stati c keyword, but we had to reference it for completion

Thevol ati | e keyword

We have discussed that a compiler breaks down € icd assembly language and then into
machine code. Since embedded applications (suap@Eations that run on the PIC
microcontroller) need to run in small amounts adespace, C compilers really have a tough job in
optimising the code to fit into a small code space.

Some compilers are cleverer than you think andaftsee that a variable cannot be modified in
code, they will construct assembly language taectfihis. An example of this is if a variable is
defined, but never used, some C compilers will igisbre it removing it from the assembly code.
The net effect of this is that some simulators (MBLncluded) will not show that variable in the
Locals window. After all, why bother showing a \&bie that does not do anything?

Now, variables are not only modified by C code. &nocontroller interacting with the outside
world can have its port pins and registers chargeshy instant and you don’t want a clever
compiler thinking that, since yazodeis not modifying a variable, then that variabldl weverbe
modified. If there is a chance that a variable ddad modified in any way aside from in code, then
it should be declared asl atile. Thevol ati | e keyword tells the compiler that the variable might
be altered by outside forces and it should notagetlever in optimising the code around that
variable.

© Simon Bramble 2010
101

Simple C for the PIC Microcontroller

Appendix A
Variable Names

You have a large degree of freedom in what youtballvariables in your program, although C does
impose some restrictions. Firstly, it is advisabl@ame the variable according to the data that it
holds in the program. Thus if you are writing agraim to stores an address, calling the variable
address Instead ofarl makes the code much more readable.

Variable names can be made up of letters and digitsthe first character of the variable name has
to be a letter. Thereforear1l is OK, butivar is not. You can use an underscore in the variable
name too as this is classed as a letter, so ihgeul to store a memory address, the variable
memory_address IS perfectly valid. However, it is not advisabteuse an underscore at the start of
a variable name as the compiler sometimes genatai@an internal variable names starting with
an underscore. Variable names cannot contain spaces

The latest versions of C allow you to use up teldracters in a variable name.
C makes the distinction between upper and lowes tas, but the convention in many

programming language states that variables are chantle lower case and constants are named
with upper case. Thus

unsi gned char n;
#define Pl 3.1415

Naturally, C has its own set of keywords that yaorot use, many of these have been discussed so
far. These are

auto double int struct
break else long switch
case num register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

© Simon Bramble 2010

102

Appendix B: C Operators and their Shortforms

Appendix B

C Operators and
their Shortforms

The table below shows all the C operators withscdgtion.

Operator What it does
= Assigns a value to a variable**
+ Add

Subtract
* Multiply
/ Divide
% Modulus *
> Is greater than
>= Is greater than or equal to
< Is less than
<= Is less than or equal to
== Compares a variable with a value**
1= Is not equal
&& Logical AND
| Logical OR
! Logical NOT
++ Increment
- Decrement
& Bitwise AND
| Bitwise OR
" Bitwise exclusive OR
<< Move bits to the left
>> Move bits to the write
- Invert all bits

* The modulus of a number is the remainder whenrmamaber is divided by another.

**A distinction has to be made between an equas &) and a double equals sig=).

© Simon Bramble 2010
103

Simple C for the PIC Microcontroller

The single equals sign is assignmentFor example:

If A =10 and B= 20 then

A=B

assigns the value of 20 to A (and keeps B unchgnged

The operatoe= is a comparison, so the phrase

A==B

compares A with B (and in this case declares tmepewison to be false since A is not equal to B).

Here is a simple example to help explain:

A=0

B =10;

whi | e(1)

{ A++;
i f (A==B)
{

A=0

}

}

A is assigned the value 0 and B the value 10 usiagingle ‘=" sign (the assignment operator).
The code inside the brackets belonging tovtiie e(1) statement loops forever. A is compared to B
using the comparison operatet* in the line

i f (A==B)

If A is equal to B, then A is reset to zero. If #\riot equal to B the statement is ignored.

Shortforms of some of the above operators are afted. The table below shows examples of the
shortforms with a description.

© Simon Bramble 2010

104

Appendix B: C Operators and their Shortforms

Operator Shortform M eans

+ a+=3 a=-a+3

- -—a b=b-a

* c*=2 c=c*2

/ d/=a d=d/a

% e %=2 e=e%?2
++ X++ X=x+1

-- X-- Xx=x-1

<< y<<=3 y=y<<3

>> zZ>>=2 z2=72>>2

© Simon Bramble 2010
105

Simple C for the PIC Microcontroller

Appendix C
The #def | ne

Directive

We said that C is a language that is designed tedsable and many programmers go to
extraordinary lengths to make their code as neaotwentional English as possible. Fhef i ne
statement allows this to happen.

The#def i ne statement allows the programmer to replace celiteas of code with something more
readable.

In the code below, we are replacing the statemenhe far right with the statement in the middle.

#defi ne setbit7 PORTB = (PORTB | 0b10000000)

Thus every time the compiler sees the code

setbit7

it replaces it with the code

PORTB = (PORTB | 0b10000000)

Note: the define statement does not have a semmietlthe end.

Nearly all C programs use this trick to make thdecomuch easier to read. The most common usage
of the#def i ne statement is when setting, clearing and checkitsgals follows

© Simon Bramble 2010

106

Appendix C: Thetdefine Directive

#defi ne setbit(address, bit) (address = address | (1<<bit)
#def i ne clearbit(address, bit) (address = address &~(1<<bi t)
#defi ne checkbit(address, bit) (address & (1<<bit))

It is useful to always have these lines in a geneeader file that you use in all programs.

Therefore the line

setbit(PORTB, 1);

can be used to set Port B bit 1 instead of

(PORTB = PORTB | (1<<1));

© Simon Bramble 2010
107

Simple C for the PIC Microcontroller

Appendix D

Suggested LED
Schematics

Below are shown suitable schematics for the LEDeerpents in this book.

The PIC16F627A is powered from 5V. An LED need®lage across it to turn it on (about 1.8V)
and when it is lit it needs about 15mA to lightgirily. Assuming the port pins output 5V when
high and each LED has 1.8V across it, this meaatseifich resistor (R1 — R8) has 3.2V across it.
From Ohm'’s Law, where R is resistance, V is voltagd | is current
R :Y_
implying that a resistance of
32

R=
0.01¢

is needed, meaning our resistor needs to be 213 OFmrefore, we use a 220 Ohm resistor.

Capacitor C1 is 100uF, 6.8V electrolytic and isydhlkere to smooth any noise that might appear on
the power supply rail from the LEDs switching.

© Simon Bramble 2010

108

Appendix D: Suggested LED Schematics

“—GND
Single LED Circuit

© Simon Bramble 2010
109

Simple C for the PIC Microcontroller

SV vce

1C +
AV =
=l) Rrg 180 e
—rra RR7PE C1
drre FReHS
“dvez vagd —GEND
Eles resls
Lder regHlS
—LMND Eles recpd
dden reqfd
16FEZ 7 H
vl I R B e B e B e R s A L e
(7 (74 [(7 [(7 [(I
(| i N i " (o] i |

S

el DAl (U4 ol el /7] [E

"—CND
8 Way LED Circuit

© Simon Bramble 2010

110

Appendix E: Suggested LCD Schematic

Appendix E

Suggested LCD
Schematic

The schematic for the LCD display is shown belowe Vcc line (5V) has been omitted for clarity. PRB7 — RB4
connect to DB7 — DB4 respectively. RAO connectoEnable pin of the LCD and RA1 connects to tBepit.

sv Vcc

IC1 . +
—LXaa\ fratH %
2kaz eaaHL 19ouE—
-dbas ra7HE C1
Abas easHS
= ves \'dd|1* —__GND I—CD1
73 S ex16 LCO
—Zha1 rasH2
—r pa2 rash-l
—GNETpe e 28002.820825085 g
16F627 k] ||I L5
PN
10k /VR 1
/]
—GND "—GND

A 10k variable resistor can be used to adjust tmtrast (by adjusting the voltage on the VO pimfr0 to 5V).

© Simon Bramble 2010
111

Simple C for the PIC Microcontroller

endix
Preprocessor Directives

Directive Meaning Example
Preprocessor null directive, do nothing | 2
tassert Generate error if condition false %assert SIZE 10
$asm Signifies the beginning of in-line ¥asm MOVLW FFh
assembly #endasm
#define Define preprocessor macro g$define SIZE 5
#define FLAG
$#define add(a,b) ((a)+{b))
$=1if Shortfor gelse #if see #ifdef
t=lze Conditionally include source lines ses #if
$endasm Terminate in-line assembly ses #asm
$endif Terminate conditional source inclusion | se= #if
berror Generate an error message ferror S5ize too big
$if Include source lines if constant $if SIZE < 10
expression true = process (10}

$ifdef Include source lines if preprocessor
symbol defined
$ifndef Include source lines if preprocessor

symbol not defined

$include | Include text file into source

$line Specify line number and filename for |%#lins 3 final
listing
£nn (Where nn is 8 number) short for #20
$lin= NN
$pragma Compiler specific options Refer to Section 3.10.3 “Pragma
Directives”
$undef Undefines preprocessor symbol fundef FLAG
twarning |Generate a waming message #warning Length not set

© Simon Bramble 2010

112

Code
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Appendix G: ASCII Codes

Appendix G
ASCII| Codes

Character
(space)
|
#
$
%
&

* N~

+

©CooO~NOOOUA~AWNEFEO ~-

A - -

Code
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

Character Code Character

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

—N<XS<CHWITOUVOZZIrXe—IO@TMMUOUO®T>EO VDV

© Simon Bramble 2010
113

\
]

AN

‘|

<K X S<C~~W--OTOIIT3 —XN——T0TQ—-~0DQQLOTD

Code
122
123
124
125

Character
z

{
|
}

