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Abstract

Channel State Information (CSI)-based localization with 802.11 has been proven feasible in multiple scenarios and is becoming
a serious threat to people’s privacy in workplaces, at home, and maybe even outdoors. Countering unauthorized localization
without hampering communications is a non-trivial task, although some very recent works suggest that it is feasible with marginal
modification of the 802.11 transmission chain, but this requires modifying 802.11 devices. Furthermore, if the attacker controls
two devices and not just a receiver, transmission side signal manipulation cannot help. This work explores the possibility of
countering CSI based localization with an active device that, instead of jamming signals to avoid that a malicious receiver exploits
CSI information to locate a person, superimpose on frames a copy of the same frame signal whose goal is not destroying reception as
in jamming, but only obfuscate the location-relevant information carried by the CSI. A prototype implementation and early results
look promising; they show the feasibility of location obfuscation with high efficiency and excellent preservation of communication
performance, and indicate that the technique works both against passive attacks, where the attacker controls only a receiver, and
active ones, where he/she controls both a transmitter and a receiver. These results pave the road for further research on smart spaces
that preserve users’ privacy with a technical solution and not only via legal prescriptions.
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1. Introduction and Background

Wi-Fi sensing is a broad topic that is receiving attention from
both academia and industry. Exploring the environment and get-
ting information on it through electromagnetic waves is surely
not novel, but doing it as a side-task of wireless communications
is indeed novel and compelling. Exploiting Wi-Fi signals to do
so is a natural choice given the ubiquity of Wi-Fi communica-
tions, and it is indeed enabled quite naturally by the same tech-
nology supporting Wi-Fi evolution: Advanced channel sounding.
The estimation of the propagation channel through the so-called
CSI is indeed one of the enabling mechanisms to support multi-
gigabit throughput in 802.11 systems. The development of
new CSI-based equalization techniques inside next-generation
802.11be (branded Wi-Fi 7 by the Wi-Fi Alliance) allows up
to 16 spatial streams and a data rate of 46 Gbit/s [1]. As the
goal of equalization moves from simple compensation of the
channel distortion to a complex operation that resembles more
the multi-reflection and multi-refraction analysis of a synthetic
aperture radar, the idea of using this information for ambient
sounding so far carried out with radars emerged, sometimes
calling this operation channel charting [2, 3], especially when
it is done with unsupervised techniques. Among all possible
applications, the one that received more attention is localization.
The attention to CSI-based localization was brought by early
works [4, 5, 6, 7] nearly ten years ago, immediately proving that
CSI-based localization techniques can outperform traditional
Received Signal Strength Indicator (RSSI)-based techniques.

After these initial works, the topic flourished, with propos-
als exploiting massive Multiple-Input Multiple-Output (MIMO)

[8, 9] or Bayesian estimators [10], or broadening the scope
of positioning, for instance to identify activities and gestures
[11, 12, 13], for health and medical applications [14] or even
to “hear” people [15]. Many other works, flavors and papers
exist, interesting but not strictly related to our contribution, as
they relate to applications of CSI-based localization and not to
fundamental techniques to perform it.

Recent years witnessed the explosion of Machine Learn-
ing (ML) and Artificial Intelligence (AI) methodologies applied
to the topic [9, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], which
achieve astounding results using different classification or analy-
sis techniques, often involving Deep Learning or Reinforcement
Learning.

What none of these works have ever discussed are the follow-
ing questions:

• How ethical or intrusive is CSI-based localization?

• Is it possible to prevent unauthorized use of CSI-based
localization?

• What is the cost in terms of communication performance
we have to pay to prevent CSI-based localization?

These are, instead, precisely the question our work addresses.
The answer to the first one is clear: CSI-based localization is
potentially highly intrusive, and tracking people without their
consent is unethical. Furthermore, we should also consider the
security problems that can arise when an attacker can tell if
and how many people are inside a room, house, or laboratory,
where they stand, or if they move. Thus the challenge of our
contribution is to give some answers to the last two questions.

Preprint submitted to Computer Communications December 23, 2021



The technology is particularly invasive because the attack can
be both passive or active, or even combined, and the victim
is completely unaware of the attack: she/he does not need to
wear any device to be located and has no means to detect the
attack. In a passive attack, attackers capture frames transmitted
by sources in well-known positions, like almost all the Access
Points (APs) we usually have at home or work. Attackers do not
need to control such transmitters; they only have to place a re-
ceiver somewhere in the same room or just outside it for precise,
Cartesian localization or classification-based positioning. In an
active attack, instead, the attacker controls both a transmitter
and one or more receivers. The attacker has more freedom and
power in the attack: the transmitter and receiver can be placed in
strategic positions, but in general he has to place these devices
outside the room where the victim stands to avoid easy spotting.

This paper overviews CSI-based localization fundamentals to
make the contribution self-contained, analyzes the works that
tackle the same privacy-preserving problem, and sketches the
general principles of localization privacy protection based on
the obfuscation of the location information carried by the CSI.
The core contribution of this work is the design, implementation,
and analysis of an obfuscation technique based on the injection
in the channel of artificial signal reflections that can prevent
both passive and active attacks. One may argue that an active
attack is detectable, as it implies “illegitimate” on-air traffic.
The observation is valid but of limited use: who cares when
yet another Service Set Identifier (SSID) appears at home? Not
to mention public spaces, where nobody can control who the
legitimate Wi-Fi users are. Even in office environments, it is
tough to imagine that the victim can identify an attack because
the victim can be an employee and the attacker the employer
who wants to control his/her employees beyond what legislation
permits. Alternatively, it could be a double-dealing worker who
installs a pair of devices in an office, lab, or room to monitor the
position and movements of fellow workers.

We already tackled the problem of localization obfuscation
for passive attacks in [26, 27, 28], as discussed in detail in
Sect. 3. The technique adopted in those works, albeit apparently
similar to the one presented here, is based on the manipulation
of the CSI at the transmitter, and cannot clearly cope with active
attacks, where the attacker controls also the transmitter. This
work, extending [29], deals instead with both passive and active
attacks exploiting an external signal reflector.

2. CSI-based Localization

No matter the technology used to extract location information
from the CSI, this information must be present in the signal itself.
This information is embedded in the signal during propagation
and carries pieces of information on people’s presence and loca-
tion because a human body absorbs, scatters, and reflects Wi-Fi
signals. Fig. 1 reports the amplitude and unwrapped phase of
100 frames collected with a person standing in two different lo-
cations in our lab in Brescia. The exact location is irrelevant, but
it is clear that the amplitude of consecutively received frames is
remarkably constant in the same location, while it significantly
changes when moving from one location to another. Repeating

Figure 1: Amplitude and unwrapped phase of the CSI collected from
100 frames with a person standing in two different locations in our lab
in Brescia.

Figure 2: 802.11 modified receiver to infer people location; first the
localization system is trained with a person standing in positions of
interest building a reference set, while during the attack the localization
system infers the position where the person can be classifying CSI data
on the reference set.

the experiment at different times shows a time-based variation,
but still, the CSI carries enough location-specific information to
allow a proper algorithm to infer the person’s location. It is clear
that both the amplitude and phase are affected, although the lin-
ear variation of the phase with the carrier frequency has nothing
to do with localization, and only phase jumps are relevant.

The transmission technique has an essential importance in
CSI manipulation, and the structure of Wi-Fi frames, their gen-
eration, and filtering at both the transmitter and the receiver are
fundamental to understand localization techniques fully. Fig. 2
sketches the diagram of a single antenna receiver modified to
retrieve information on people’s localization. At the receiver,
after sampling the incoming signal, samples are duplicated. The
standard data path goes through the equalizer that compensates
the channel distortions and then to the demodulation and decod-
ing blocks that yield the frame bits if decoding is successful.
Instead, the duplicated samples enter the localization system
that, exploiting the same CSI used by the equalizer, estimates
the person’s location. The CSI is implicitly carried by the train-
ing sequences at the beginning of the frame, and in particular by
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the Long Training Sequence (LTS), whose bits and structure are
known, allowing the equalizer to compute the channel frequency
response, and the localization system to use this information to
fingerprint the person’s position.

The localization techniques that have recently received more
attention are based on neural networks (NNs) trained with some-
one standing in known positions and then, during the attack,
determine the position of a person based on the training finger-
prints. Given a localization technique, the system that imple-
ments it can follow several design lines. One critical design
decision regards the transmissions. The localization system can
be passive, i.e., it exploits the data packets usually sent by users,
or it can be active, i.e., it uses frames that are sent by a device
specifically to perform the localization.

In some sense, a passive system is more accessible as only a
specialized receiver is needed to perform the localization. How-
ever, the frames used for localization must come from a trans-
mitter in a fixed location (not necessarily known) because the
change in the CSI determined by the moving transmitter will
taint the collected fingerprints. This is not a problem in most
cases since APs are fixed and generate most of the traffic; thus,
the localization device only needs to filter frames transmitted
by the AP to achieve its goal. On the other hand, as we have
shown in [26, 27], it is possible to obfuscate the information on
localization carried by the CSI by properly manipulating the
transmitted frames.

An active localization system, instead, requires an attacker to
use both a transmitter and a receiver. While this is somewhat
more complex and detectable because frames on-air that do not
belong to a legitimate Basic Service Set (BSS), there is no way
to hinder the localization by manipulating the transmitted frames,
as the transmitter is not controlled by legitimate users but by the
attacker himself.

In this work, we consider both passive and active localization
systems based on fingerprinting and a single transmitter-receiver
pair. We do not consider localization techniques based on the
angle of arrival, and we do not consider the possibility of having
more than one receiver that works coordinately to improve the lo-
calization accuracy. All of these topics are extremely interesting,
but they are outside the scope of this paper.

2.1. Localization Adopted

The localization technique adopted in this work relies on a
Convolutional Neural Network (CNN) to perform a classifica-
tion task. The design of the CNN is inspired by the work in [19]
and refined in [30] and it is not a contribution of this paper, thus
we refer the interested reader to the original works. Based on
these two works, we have developed an efficient implementa-
tion within the CSI-MURDER project1 with good localization
efficiency and properties. The CNN-based localization system
can work both with active and passive attacks, as long as the
trasmitter—either controlled by the attacker or by some other

1Further details on this project, the software produced an so forth can be found at
https://ans.unibs.it/projects/csi-murder/. The software is going
to be released as FOSS, so that results can be replicated also in other scenarios.
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Figure 3: Architecture of the CNN used by our localization system.

user depending on the case—stays in a fixed position. In both
cases (active and passive scenario), the attack is mounted in two
phases: first, the attacker trains the CNN using data collected
with the help of another person standing in the target positions;
then, when the victim enters the room, the attacker can use the
trained model to associate the received CSI to the victim’s po-
sition. In the remaining part of this section, we briefly present
the main features of the localization framework. The interested
reader can find a more complete presentation of the properties
of our localization system in [26], and as already mentioned in
the documentation of the software published on-line.

In Fig. 3 we show a high-level representation of the CNN
architecture. One CSI data point is extracted from each 802.11
frame correctly decoded at the receiver. Each CSI data point
is an array of complex values (the IQ samples) computed at
the receiver to estimate the channel’s frequency response. In
this work, we consider 802.11ac frames transmitted on 80 MHz
channels; therefore, each raw CSI consists of 256 complex val-
ues. During the preprocessing phase, we remove the subcarriers
at the edges of the spectrum as well as the three central ones
because they are all suppressed by the modulator and cannot
carry any information about the propagation channel. The input
of the CNN is thus a 242 × 2 matrix. The first two convolutional
layers of the CNN shown in Fig. 3 extract complex features
from the input data by exploiting the similarity of adjacent fre-
quencies. In cascade to the convolutional layers, there are three
fully-connected layers. The output of the last layer corresponds
to a choice among one of the possible classes, i.e., positions.
The range and scope of this network are relatively flexible: the
number of classes to predict can be changed as needed without
modifying the other layers of the CNN and it will still have good
fingerprinting performance (clearly, we must train the network
every time we use a new dataset). All the layers but the last
(which uses a softmax function) use a standard Rectified Linear
Unit (ReLU) activation function. The Adaptive Momentum Es-
timation (ADAM) algorithm is used to adjust the weights of the
CNN during the training phase.

As shown also in [26, 27, 30], the CNN structure can extract
features from raw data CSI to perform many different localiza-
tion tasks in indoor environments: from coarse to finer clas-
sification in specific locations to, finally, fine-grained training
that enables (x, y) coordinates estimation. However, localization
becomes more fragile as the precision requirement is increased;
thus, to validate the obfuscation technique in this paper we de-
cided to rely on a robust 8-location-points classification.
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3. Related Work

A review of CSI-based localization techniques and systems,
beyond the overview in Sect. 2, is out of the scope of this paper.
We focus instead only on works whose goal is localization ob-
fuscation or localization privacy protection, a topic, as already
highlighted, that received so far less attention than it deserves.

The first countermeasure against Wi-Fi sensing attacks has
been implemented in [31] for preventing gesture recognition;
similarly to our proposal, this system relies on an additional
component acting as a relay placed in the environment. We
also inherited from this work the term obfuscation with the
meaning of distorting the information imprinted on a frame
by the environment, contrasted to the more common jamming
that instead superimposes a different signal (possibly noise)
with the goal of making the frame useless, thus also killing
communication capabilities. However, the artificial reflection
techniques proposed here are different, and [31] is focused on
gesture recognition rather than localization. Furthermore, in our
opinion, [31] opens a research field rather than writing “The End”
on it, and our work adds novel insight into this fascinating topic.

The idea in common with [31] is the potential use of dy-
namically changing reflective surfaces or, in general, of active
devices that randomly change the electromagnetic (EM) envi-
ronment. The technology to obtain this random behavior of the
EM environment is outside the scope of this work and ranges
from reconfigurable intelligent surfaces to metasurfaces and to
more traditional fast relays able to retransmit a signal with slight
random delays. We only mention here two works that, even
if they do not explicitly mention location privacy, are in some
way closer to our work. The first one presents a simple yet
effective device implementing a passive reflector with different
delays corresponding to 0, λ

4 , and λ
2 additional paths, which can

be selected randomly [32]. Though conceptually very broad,
the device is in some sense tailored for Wi-Fi, which connects
this work to our contribution. The authors are more concerned
with the challenge of using their proposal to enhance commu-
nications. However, we observe that several of these devices
that act randomly and without coordination—adding random
delay on a per-frame basis—can well be building blocks of the
obfuscation system we propose. As we show at the end of this
paper, obfuscation based on intelligent reflecting/relaying does
not hamper the communication performance, and we claim that
a privacy-preserving ambient is part of a Smart Space, further
linking our work to [32]. The second one takes a networking per-
spective to smart EM spaces, called here programmable wireless
environment [33], and it is related to our work mainly because,
as we do, abstract from physical layer details and focuses on
potential goals and services. The work is extensive, but the
authors explicitly mention the goal of privacy protection, even if
referred to eavesdropping rather than localization.

In previous works [26, 27, 28], we have focused on passive at-
tacks only, and albeit the final goal is the same, the methodology
adopted in those works is different because the CSI manipulation
is implemented directly at the transmitter as a pre-distortion of
the frames. No additional devices are needed, and the counter-
measures can be implemented in the AP alone, as it is the only

device of a BSS that we can consider fixed in a given position.
In [26], we presented a simple proof-of-concept showing that
proper manipulation at the transmitter can obfuscate a person’s
actual position. The work in [27] extends the contribution with a
deeper analysis in which we have defined the localization prob-
lem as a more straightforward classification problem rather than
positioning in the Cartesian coordinate space. Still, the obfus-
cation technique was proven to remain very effective. Playing
the devil’s advocate, in [28] we conjectured that a multi-point
multi-receiver attack would be far more powerful and far more
challenging to counter. While the former claim is valid, the latter
turned out to be false, as a proper pre-distortion at the transmitter
completely obfuscates the victim position even if the attacker
controls five different receivers in different positions. In [28],
we also introduced the idea of manipulating the signal accord-
ing to a Markov random process that introduces memory in the
random distortion and makes the distortion more similar to the
one introduced by a person’s motion or by erratic changes in the
EM environment. The work we present in this paper, instead, ex-
tends the work in [29] to make a complete archival contribution.
It focuses on obfuscation induced by additional time-varying
reflections of the frames on-air and can thus counter both active
and passive attacks with a single methodology.

The authors of [34] manipulate the CSI to avoiding device
radiometric fingerprinting to help preventing impersonation at-
tacks. Their paper’s goal is not directly location obfuscation;
however, the techniques used are similar to those we use in this
work, and we do not exclude that, in case a person holds a Wi-Fi
device, the double attack identifying the device and the location
of the person is feasible.

Finally, we can conceive reactive jamming devices that “kill”
the frames used for localization attacks, adapting techniques like
[35, 36] to our scope. To the best of our knowledge, this has
never been proposed in the literature, so it is difficult to state
how effective it can be. Moreover, this approach would require
to know that a localization attack is underway, and the jamming
device must recognize the illegitimate traffic and try to kill those
frames only. By contrast, our approach is transparent, as it does
not affect the reception of frames significantly, indeed it can
even improve it, so that the obfuscating device can be active at
any time on any frame.

4. Localization Attack Models

A malicious user with the ability to overhear Wi-Fi traffic
can perform two different types of localization attacks. The
classification is based on the capability of the attacker to control
transmissions: if she/he can control a transmitter with a fixed
position, the attack is active; otherwise, if he must rely on stan-
dard, legitimate traffic, the attack is passive. Fig. 4 depicts the
scenario in both cases: Red arrows refer to the active attack, and
blue ones to the passive one. Solid lines define the control of
devices, dashed the transmitted frames, and dotted ones the ob-
fuscator replica. The attacker can eventually use more than one
receiver, presumably improving the localization performance
by correlating the position estimation by all the receivers. This
possibility was explored in [28] for passive attacks only and with
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Attacker’s
Transmitter

Attacker’s
Receiver

Obfuscator

Localization 
Target

AP

Figure 4: In an active attack, the attacker controls both the transmitter
and at least one receiver (red arrows); in a passive attack he/she controls
only the receivers and rely on traffic sent by an AP (blue arrows).
In both cases the location privacy of the victim can be protected if an
active device is able to obfuscate the CSI of frames (green dotted arrows
indicating a reflected or relayed frame.

a different obfuscation technique, but it is beyond the scope of
this paper.

4.1. Active Attack’s Model
During an active localization attack, the attacker controls

one transmitter and at least one receiver; therefore, the attacker
has complete control over the transmission chain, and the only
way to interfere with his/her intrusion is by actively mingling
transmitted frames on the channel. Red arrows in Fig. 4 depict
this attack model. A person is standing in a room (can be an
office or home or anywhere) and the attacker aims to collect
information on the person’s position. To achieve this goal, the
attacker has installed a standard Wi-Fi transmitter and a modified
receiver. The receiver implements the localization technique
described in Sect. 2 and can access the room at some time to train
the CNN. After training the CNN, the attacker can configure
the system to send frames periodically and estimate the person’s
position when she/he is in the room.

4.2. Passive Attack’s Model
Passive attacks instead are characterized by the collection of

frames sent by a legitimate AP on which the attacker has no
control, as indicated by the blue arrows in Fig. 4. The attacker
cannot control which frames to send and when, and training of
the localization system may be more complex. We have studied
this scenario in previous works [26, 27, 28], adopting a radically
different obfuscation technique based on the pre-distortion of
transmitted frames at the AP. However, active attacks could
not be prevented with such a technique. Here we are interested
in understanding if one single obfuscation method can prevent
unauthorized localization in both attack models.

5. Obfuscation Principles and Requirements

As discussed in Sect. 2, CSI-based localization exploits the
information carried by CSI on the EM environment. The goal
of an obfuscator is blurring this information without destroying
communication capabilities. We are interested in designing an

active device that can prevent unauthorized localization against
all types of attacks. The device must be able to randomly change
the channel response “reflecting” the incoming signal with an
adequately designed amplification, delay, and phase distortion.
The key idea is that this device acts as an additional feature of
the propagation environment, changing it in such a way that the
localization system cannot identify the position of the person
based on the CSI fingerprint because this latter contains too
much random information to allow identifying the features of
a target position. This device is the obfuscator in Fig. 4, but
since it conceptually reflects the Wi-Fi signal, we also call it the
reflector throughout the paper.

The obfuscator cannot operate only on non-legitimate frames,
simply because the reflection delay must be well below a single
symbol duration, and it is impossible to read the Medium Access
Control (MAC) addresses before reflection. Since the CSI infor-
mation is embedded in preambles, stopping the reflection when
MAC addresses are available would be detrimental to frame
reception as it is equivalent to have a channel coherence time
shorter than a frame.

Like an attacker controlling more than one receiver, the reflec-
tors can also be more than one, possibly enhancing the obfus-
cation performance. This possibility points toward the idea of
Smart Spaces, where the EM environment is active and partici-
pates both in enhancing the performance of communication and
in protecting users against intrusions.

A good obfuscation system must meet three fundamental
requirements: i) it does not hamper communication performance
(ideally, with an active device, it should even enhance it); ii)
it alters the signal in ways that are compatible with people’s
movements; iii) Its random behavior cannot be reversed in a
reasonable amount of time.

The last two requirements are needed to guarantee that even
sophisticated analysis cannot filter out the obfuscation distortion
so that privacy is protected almost surely. In other words, the
attacker should not get any information that is significantly better
than a random guess.

6. Randomized Reflection Strategies

In a real anti-localization system, the obfuscator can be a
repeater that mimics a reflective surface or, in a more futuristic
scenario, a reflective intelligent surface (or smart space [37, 33])
changing its properties under the control of a proper obfuscation
function. The goal of the obfuscator is to add one or more
“reflecting paths” into the propagation environment in such a
way that the behavior of the channel that embeds the information
on the victim’s location in the CSI becomes blurred and time-
varying, confusing the localization system. At the same time,
the channel distortion must remain plausible, meaning that it
should allow the equalizer at the receiver to correctly compensate
the distortion so that legitimate frames can be received without
reducing the communication capabilities.

To fix the ideas on what an active obfuscation shall achieve,
consider Fig. 5. On the left-hand side, there are 100 CSI ampli-
tude samples collected as reference (in blue) and 100 collected
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Figure 5: Effect of the active obfuscation on the CSI. In both cases the
victim is standing still in one position; however, when the obfuscator is
actively relaying the received signal, the channel conditions appear to
change over time.
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Figure 6: Processes driving the delay added by an active obfuscator, the
processes are centered around zero, then a proper offset τoff is added
depending on the use cases. The upper plot shows a random delay
swipe with δ = 0.1 adn 0.05 respectively; the lower plot shows the
outcome of a Markov-Uniform process with four different δ parameters.

after 10 s when a person is standing still in a given position and
there is no obfuscation. On the right-hand side, instead, we
repeated the same experiment with the obfuscator turned on. It
is clear that the obfuscator significantly alters the propagation
environment (the blue lines are very different in the two plots)
and after 10 s the red lines tell a different propagation story, or
at least they mimic it. In any case, we can conjecture that any
localization technique will have a hard time in fingerprinting
and classifying positions.2

Ideally, the outcome of the obfuscation at the receiver should
be indistinguishable from a standard channel response, both as a
distribution of attenuation and phase jumps in frequency and as
a correlation in time. However, it is not clear if this is entirely
achievable because there is a lack of experimental studies that
adequately characterize the stochastic properties of the channel
response.

In our preliminary contribution at WONS [29], we used a
simple implementation where the delay added by the reflector
is a swipe with some randomness between a minimum and a
maximum, as described by Eq. (1). It is clear that such an

2The rationale of the approach can be better appreciated dynamically, with a
video that is not possible to include in a paper. We have realized this video and
is available from our website at
https://ans.unibs.it/projects/csi-reflector/.

implementation does not meet the requirement iii) defined in
Sect. 5, as a prolonged observation with appropriate processing
can reveal such a periodic behavior.

A better approach would be to use a delay that mimics a
random walk of the person in the room. However, understanding
what delay corresponds to each position of the person in the room
is generally unfeasible, as it would require the characterization of
every space we want to protect and the tuning of the obfuscation
algorithm. A solution that appears feasible and robust, and that
may mimic movements of people in a room, is a random walk
of the delay itself, which can be efficiently implemented as a
Markov random process, as defined by Eq. (2), whose output is
the delay to be added to the next reflected or repeated frame.

The difference between the two approaches is clear looking at
Fig. 6 where the upper plot shows the output of a simple random
swipe (Eq. (1)) with two different values of the maximum delay
step δ while the bottom one reports the output of the Markov-
Uniform random process (Eq. (2)) with four different values of δ.
The processes are centered around zero; then, in the implementa-
tion, a constant τoff is added depending on the scenario to make
the output compatible with the actual scenario. For instance, if
the scenario is based on an active relay or reflector, then there is
a minimum positive delay corresponding to the propagation time
plus the minimum time required by the device to relay/reflect the
signal. Let us define the minimum and the maximum admitted
delays τmin and τmax respectively, so that for any frame the actual
delay introduced is τmin ≤ τ ≤ τmax. Setting these two limits
and τoff is fundamental to maintain the additional delay added
by the reflector within bounds that are coherent with the ambient
to be protected, as already commented. Since the movement of a
person in a room is based on time and not on transmitted frames,
we also define a time interval ∆t, used to pilot the random delay
evolution easily; τ(i) means the delay added at the i-th time
interval. For further random behavior, also ∆t, τmin, and τmax
can be random variables, but we have not explored this option
in our implementation.

A random delay swipe, including τoff, is defined as

τ(i) = τoff + τ(i − 1) + I(τ) · δU[0,1] (1)

where I(τ) is an indication function that takes the value +1 if τ is
increasing and −1 if it is decreasing, U[0,1] is a uniform random
variable with support [0, 1], and δ is the maximum allowed
difference between additional delays in adjacent time intervals.
Switching between increasing and decreasing behavior happens
when τ reaches τmin and τmax respectively.

The Markov-Uniform delay is instead computed as

τ =
[
τoff + τ(i − 1) + δU[−1,1]

]τmax
τmin

(2)

where U[−1,1] is a uniform random variable with support [−1, 1],
and [·]τmax

τmin indicates the clipping between τmin and τmax. Other
types of Markovian processes can be used for obfuscation, and
the analysis to identify the one that guarantees optimal obfusca-
tion is an interesting future work, with the possibility of finding a
theoretical optimum that minimizes, or even nullify, the location
information carried by the CSI.
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In the case of the simple random swipe of Eq. (1), δ controls

the average period of the swipe, which is Ts =
2(τmax − τmin)

δ
.

In the Markov-Uniform case (Eq. (2)), instead, δ controls the
probability that the process is clipped. The plots in Fig. 6 reports
the realizations of both the swipe and the Markov random delays
for different values of δ. In all the experiments with the swipe
method we report results only for δ = 0.1 only, as we have veri-
fied that this value has little influence on the results, hence the
parameter is not repeated every time. For the Markov case, in-
stead, we report results for the four values δ = 0.01, 0.05, 0.1, 0.2
because we want to analyze the impact of the delay variation
amplitude on both the obfuscation performance and the commu-
nication performance. Of particular interest are the two extreme
values δ = 0.01 and 0.2, because from the bottom plot of Fig. 6
one might argue that δ = 0.01 has too small variations to obfus-
cate the location while δ = 0.2 might be too “noisy” to guarantee
good communication performance.

7. Implementation

Depending on the considered attack scenario, we can envision
the transmitter as a device on which the attacker has complete
control (active attack) or no control at all (passive attack). In the
former case, we cannot predict the attacker’s transmission and
either an active reflector of a signal relay seem to be the only
viable options to counter this type of attack.

Implementing the obfuscation mechanism in hardware, which
implied realizing a dedicated chip, is unfortunately beyond the
possibilities of our lab, let alone realizing a controllable re-
flective intelligent surface. Moreover, we believe that such an
expensive endeavor is only justified once it is clear that the pro-
posed technique works and is tamper-proof. Thus, we resort
to software-defined radio (SDR) devices and a little “trick” to
realize our proof-of-concept implementation.

Our setup consists of two SDRs—namely two Ettus USRP
N300, one for the transmitter and one for the obfuscator—and
a commercial AP (Asus RT-AC86U) used as the receiver. The
SDR transmitter keeps sending 802.11 frames generated using
the Matlab WLAN Toolbox at a constant rate of approximately
one frame every 10 ms. The receiver encloses a Broadcom
chipset from which we can extract the CSI data points using
the tools provided by the Nexmon project [38]. Finally, the
localization system works offline on the memorized CSI data
points. In general, there are no strict real-time requirements
to identify a person’s position. In any case, once the CNN has
been trained, the analysis of the CSI made by the localization
system is swift: according to our tests, an Intel Core i7 clocked at
4.4 GHz takes as little as 60 µs to process the CSI data extracted
from a single frame and estimate the related victim’s position.

Implementing a real-time 802.11 signal relay in software is
doable but still tricky: the latency introduced by typical SDR
systems cannot meet the strict timing requirements, and some
kind of hardware-accelerated processing is necessary. For this
reason, we resort to a gimmick, as we show in Fig. 7. The
two SDRs—one playing as the transmitter and the other as the
obfuscator—are synchronized through a common clock source.

Transmitter

Obfuscator

Receiver

Clock Distribution
Module

Direct Path

“Emulated”
Reflected Path

Figure 7: Schematic representation of the experimental setup; the
obfuscator acts as a configurable reflector.

This common clock source is provided in our case by an Ettus
Octoclock-G and consists of both a 10 MHz reference signal and
a 1 Hz separate signal that allow almost perfect synchronization.
Once the two SDRs are synchronized, the obfuscator can emu-
late the effects of a reflected path by re-transmitting the original
signal with a delay, as discussed in Sect. 6.

The easiest way to apply a time delay to the signal transmit-
ted by the obfuscator is to shift the sequence of IQ samples
transmitted by the obfuscator by a certain amount of samples.
However, despite being simple, this solution has a substantial
limitation. Since the radio transmits samples at a fixed rate, the
available bandwidth determines the time between two consec-
utive samples and the maximum granularity of the delay. In
our implementation, the transmission rate of the N300 SDRs
is 125 MSample/s, which corresponds to a sampling period of
8 ns; therefore, the minimum delay corresponding to a shift of
the sequence by one sample is equivalent to a path difference of
approximately 2.4 m. Moreover, this method can only emulate
propagation delays multiples of such quantity, which would be
an inconvenient limitation for our obfuscation system.

A better solution is to process the sequence of IQ samples in
the frequency domain. Given the digital signal x[n] and assum-
ing that all the conditions on proper sampling are satisfied, we
apply the Discrete Fourier Transform (DFT) to get its representa-
tion in the frequency domain X[k] (Eq. (3)). Then, we modulate
the digital frequencies by a complex exponential as in Eq. (4)
to obtain Xd[k], which is the frequency domain representation
of the delayed digital signal xd[n] obtained applying the Inverse
DFT (Eq. (5)). The effect of these operations is to produce a new
sequence of samples xd[n] representing a signal that is a copy
of x[n] delayed by a generic value τ. In this case, τ can also
be a fraction of the sampling period, which allows an arbitrary
resolution when tuning the delay introduced by the obfuscator.

X[k] =

N−1∑
n=0

x[n] · e− j 2π
N kn, k = {0, ...,N − 1} (3)

Xd[k] = X[k] · e− j 2π
N kτ (4)

xd[n] =
1
N

N−1∑
k=0

Xd[k] · e j 2π
N kn, n = {0, ...,N − 1} (5)

As already discussed in Sect. 6, the delay τ changes over time
and can vary between a minimum value τmin and a maximum
value τmax as defined in Eqs. (1) and (2). When we consider
active attacks, the obfuscator is somehow reflecting the incoming
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Wi-Fi signals; hence the reflected signal in Fig. 7 will always be
transmitted after the original signal. Therefore, for active attacks
emulation, we have arbitrarily chosen an offset delay τoff = 88 ns
when generating the delay processes reported in Fig. 6. The
applied delay τ is updated every ∆t = 100 ms—following either
Eq. (1) or Eq. (2)—and it can range between τmin = 32 ns and
τmax = 144 ns. All these values are arbitrary, but in principle
they can be tuned based on the expected performance of the
emulated system. It is interesting to notice that the time delays
we are considering are so tiny (tens of nanoseconds) that they
do not affect the Wi-Fi MAC layer, but still have a considerable
effect at changing the physical properties of the communication
channel.

From a technical perspective, the implementation of the sys-
tem does not change whether we are considering an active or
passive attack scenario, since in both cases the obfuscator can
act as a reflector following the same rules. However, to fur-
ther explore the possibilities of our obfuscation mechanism, we
would like to consider a different implementation that can only
work when dealing with passive attack scenarios. Let us imagine
that the transmitter and the obfuscator can cooperate in obfus-
cating the CSI; for instance, they can be two radio frontends
driven by a single controller. We notice that in such case the
obfuscator can even transmit the signal before the transmitter
once the two devices are synchronized, i.e., τ can take negative
values. For this reason, when discussing about the passive attack
scenario in the following parts of this paper, we have chosen to
set τoff = 0 ns, τmin = −56 ns and τmax = 56 ns to explore the
effect of this configuration.

8. Scenario and Measures

We carried out the experiments in a laboratory of the ANS3

group at the University of Brescia. The plan of the laboratory
with the positions of the transmitting and receiving nodes is
shown in Fig. 8. Here, we distinguish between the cases of
active and passive attacks. The transmitter is outside the room
when the attack is active (TXA), and the attacker controls it. In
the case of passive attacks, the transmitter is instead inside the
room (TXP), and the attacker cannot control it. All the receivers,
controlled by the attacker, are placed outside the room on two
opposite sides. The five different positions are useful to explore
whether relative positions of the transmitter and receiver have
an influence on the localization and/or the obfuscation. For
instance, RX5 should have abysmal performance in localization
during the active attack, as it is too close to the transmitter (TXA)
for the EM environment inside the room to have a meaningful
effect on the received CSI.

We assume that the victim is standing inside the room in one
of eight possible spots, indicated by small blue squares in Fig. 8
and enumerated from 1 to 8. The square at the center of the
room indicates a metallic pole with an electrical cabinet; thus,

3The Advanced Networking Systems (ANS) group is a research groups in
telecommunications at the Department of Information Engineering of the
University of Brescia
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Figure 8: Plan of the lab in which localization experiments are per-
formed. The small square dots represent the target locations of the
victim. The red ‘shadows’ labeled A, B, C are the locations of the ob-
fuscator in different scenarios. Five different positions for the receiver
are also considered, while the transmitter is inside (TXP) for the passive
attacks and outside (TXA) for the active attacks.

it is a position where a person cannot stand, and it introduces
additional EM complexity beyond walls, cabinets, tables, and
chairs (not shown in the figure).

As indicated in Fig. 8, we consider three different positions of
the obfuscator, which have a different relative positioning w.r.t.
the transmitter depending on the attack scenario. If the attack
is active and the transmitter is TXA, then the obfuscator is: A)
in front of the transmitter; B) at a 45◦ angle from TXA and the
receiver RX2; and C) in front of RX2, on the line of sight with
TXA. If the attack is passive and the transmitter is TXP, then
the obfuscator is: A) at a 45◦ angle from TXP and on the line of
sight with RX5; B) right on the side of the transmitter TXP; and
C) in front of RX2, at 45◦ degrees from TXP.

The three positions of the obfuscator and the five positions of
the receivers cover many different configurations, both for the
case of active and passive attacks. At first glance, the position of
RX4 and RX5 can seem “weird” in case of active attacks, and
one may think that with the receiver outside the room on the
same side the localization system cannot work, but this is not
always the case as results will show. Overall the setup consists
of 15 possible configurations (three positions of the obfuscator
times five positions of the receiver) for each attack type (active
and passive). For each configuration, we use 5 different random
delay patterns (one random swipe and four Markov processes).
Considering also the measures when the obfuscator is off, overall
the experiments consist of (15 + 1) × 5 × 2 = 160 different
configurations, giving a good “coverage” of different layouts
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and scenarios.
We collect a few thousand samples (i.e., CSI data points

associated with one 802.11 frame) for each target position and
experiment; the exact number of samples can vary depending
on several other parameters, but this is irrelevant. Overall, we
use 8000 samples for the training phase and 8000 samples for
the testing phase, i.e., 2000 samples for each target position.
Training and testing samples are collected from two different
experiments with the same setup separated by several minutes to
make the setup more realistic. Given the impossibility of leaving
the experiments mounted overnight, we cannot say if training
on one day and testing on another one gives good localization
results or not, but we deem that obfuscation will always work.

To assess the validity of the proposed CSI randomization tech-
nique, we compare the classification accuracy of the localization
system when the obfuscator is on (in the three different posi-
tions) and when it is turned off for all five receivers. Training
and testing are always performed with the same obfuscation
setup, which is the most favorable case for the attacker and the
most challenging one for the obfuscator.

8.1. Scenario Validity and Extension
In this paper we consider one single scenario, inside the lab-

oratory of our group. The reason is twofold. First, and trivial,
we only have one laboratory, and since experiments are rather
long and intrusive, we could not occupy offices, corridors, meet-
ing rooms, etc. Second, the scenario we crafted is extremely
favorable to the attacker (recall that our contribution is the ob-
fuscation, not the localization technique that we inherit from
the state of the art). In the CSI-MURDER experiments, which
partially funded this work too, presented also in [26, 27], we
have shown that a less sophisticated obfuscation technique still
works in a completely different environment, i.e., a very large
room full of reflective metallic objects in the imec w-iLab.t in
Ghent, Belgium. Indeed, considering a completely different
scenario would be an additional challenge from the attacker’s
point of view but does not change the main ideas at the core of
the proposed obfuscation technique.

Extending this work to other scenarios and topologies is con-
ceptually trivial, but it does not add insight in the problem. We
think that a large-scale measurement campaign may be due if
and when localization obfuscation techniques will have found a
sound theoretical framework, and hopefully found their way into
standards to protect people while offering them novel services.

9. Experimental Results

The amount of data collected prevents the presentation of all
the results in detail, so we try to highlight the properties of the
obfuscation system, selecting the more meaningful ones.4

4All the data we collected, the software of the implementation, and all the results
are available through our web site at
https://ans.unibs.it/projects/csi-murder/
If the paper gets accepted for publication, we will make the data available as
Open Data for future research and include some of the results omitted here
(which are repetitive, thus inappropriate for a scientific paper) in an extended
Technical Report.
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Figure 9: Active attack, RX1, Obfuscator in C). Correct and misclassi-
fied location estimates, indicated with blue and red dots respectively.
Top: obfuscator off; Middle: Markov process with δ = 0.2; Bottom:
Swipe.

We split the results between the obfuscation performance and
the communication performance in the following two subsec-
tions.

9.1. Obfuscation Performance

We start the analysis with detailed results, as they allow us to
appreciate better and understand the aggregated results presented
later. Figs. 9 and 10 present a set of plots that show the accuracy
of the localization classification in several different situations.
Fig. 9 refers to an active attack, while Fig. 10 to a passive one.
Both figures refer to RX1 and the obfuscator in position C) (see
Fig. 8). Results for other receivers and obfuscator positions
confirm the same discussion and conclusions we draw here. As
discussed in Sect. 7, when both the transmitter and the reflector
are controlled by the same organization and not by the attacker
(passive attack scenario), our prototype implementation allows
centering the additional delay around zero. This means that
in some cases, the “reflected” copy is transmitted before the
original one. Indeed, given the setup based on two identical

9

https://ans.unibs.it/projects/csi-murder/


Target position

P1 P2 P3 P4 P5 P6 P7 P8

Obfuscator Off

P1

P2

P3

P4

P5

P6

P7

P8

P
re

d
ic

te
d
 p

o
si

tio
n

P1 P2 P3 P4 P5 P6 P7 P8

Random Walk 0.2

P1

P2

P3

P4

P5

P6

P7

P8

P
re

d
ic

te
d
 p

o
si

tio
n

P1 P2 P3 P4 P5 P6 P7 P8

Swipe

P1

P2

P3

P4

P5

P6

P7

P8

P
re

d
ic

te
d
 p

o
si

tio
n

Figure 10: Passive attack, RX1, Obfuscator in C). Correct and misclas-
sified location estimates, indicated with blue and red dots respectively.
Top: obfuscator off; Middle: Markov process with δ = 0.2; Bottom:
Swipe.

devices, it is impossible to state which one is acting as the
transmitter and which one as the obfuscator, as it would really
be in a EM Smart Space.

The x-axis identifies the person’s true position and the y-axis
the position predicted by the localization system; thus, the plots
report on the diagonal, as blue dots, the correct estimates, while
all the red dots outside the diagonal are misclassifications. For
each position, we plot one thousand dots, i.e., position estimates.
These plots represent the same information of a confusion matrix:
they miss the precision of numbers, but we argue that they
are easier to appreciate at a glance. The top plot refers to the
benchmark of the localization without obfuscation, and it is clear
that localization is very effective, albeit not perfect: the precision
is, on average, above 90%.

The middle and bottom plots report the outcome when the
obfuscator is active, with the Markov process and with the swipe-
based delay, respectively. Obfuscation is effective in both cases,
but the Markov process generally ensures a better dispersion of
the misclassified position. The dispersion is not uniform, i.e.,
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Figure 11: Active attack. Accuracy of the localization system for all the
experiments. For each experiments the colored markers are the accuracy
at each receiver, while the horizontal line is the average. The dashed
horizontal line at 12.5% marks the random guess over 8 positions. RX5
is excluded from these results because of its peculiar position, the
relative marker (blue triangle) for the clean experiment shows that even
in this case the localization outcome is just a random guess.

when the localization system makes a mistake, the distribution
of the mistakes is not evenly distributed on all possible positions,
as a perfect obfuscator should do. The reasons are many, but
they can all be reconducted to the complexity of the scenario
and the behavior of the CNN. In the end, the CNN makes a
decision based on the similarity of the CSI received, and since
the measures are taken in a relatively short time of a few tens
of seconds per position, the randomness introduced has enough
correlation to make the CNN decide for some positions with a
higher probability. It must be noted that introducing a totally
uncorrelated random delay is inappropriate because a “white
noise” can be filtered out given enough observations. One last
remark regards the simple swipe technique. Apparently, the
technique works reasonably well, but the cases of positions P1,
P6, and P7 in Fig. 10 highlight a specific behavior that can
probably be used to overcome the effects of the obfuscation in
the long run. The errors in these cases are almost deterministic.
This is most probably due to a coincidence in the added random
delay between training and testing: during the training phase for
P4, P7, and P8, the added delay of the reflector is very similar
to the one added in P1, P6, and P7 during testing. This is a
possibility that with the swipe technique is relatively probable,
while with the Markov process is almost impossible.

Having analyzed the detailed behavior of the localization sys-
tem and the obfuscation counter-measures, we can now analyze
the overall results. Figs. 11 and 12 report the aggregated results
of all the experiments for the active and passive attacks, respec-
tively. First, let us comment on the localization performance
when the obfuscator is off, named clean in the figures. The aver-
age accuracy is around 90%, with minor variations depending
on the position of the receiver. Accuracy may vary from one
position to another, but the analysis of all the detailed results,
as done for a single case in Figs. 9 and 10, indicate that these
variations are casual from one experiment to another, most prob-
ably due to how the CNN interprets the CSI during training.
Indeed, CSI-based localization has never been proven able of
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Figure 12: Passive attack. Accuracy of the localization system for
all the experiments. For each experiments the colored markers are
the accuracy at each receiver, while the horizontal line is the average.
The dashed horizontal line at 12.5% marks the random guess over 8
positions.

higher accuracy in complex scenarios; thus, these results are in
line with the literature. One note is due for RX5 performance
in active attacks. As we expected as a sanity check, in this case,
the localization system cannot correctly localize the person due
to the “overwhelming” direct path between a transmitter and a
receiver so close. The upward triangle for the clean experiment
in Fig. 9 shows in this case the localization outcome is just a
random guess, so we excluded RX5 for all the active attack
experiments.

When the obfuscator is turned on, the localization accuracy
drops both for active and passive attacks, which is very inter-
esting as it shows that a smart space with intelligent reflective
devices can successfully preserve privacy in the face of different
attacks. The performance of the obfuscator is still not ideal, as
for very few experiments the output of the localization system is
comparable to a random guess. However, for nearly all experi-
ments the average accuracy is below 40%, a value that makes the
system hardly usable for any attacker. In both figures, the system
based on the Markov process is called RW, meaning that the
delay selection process is a Random Walk. Interestingly, even if
it is less efficient than the other cases, setting δ = 0.01 (RW 0.01)
does significantly disturb the localization system, even if the
delay added by the reflector is hardly detectable (cfr. Fig. 6).

From all the results we have it is difficult to draw a general
conclusion on what is the best possible location for the obfusca-
tor, or in turn, what is the best place for the attacker to place its
nodes knowing where the reflector is, and this is valid both for
the active and for the passive attacks. We notice that in the case
of a passive attack, the receiver’s position seems to have a higher
impact on the misclassification (the markers are more spread).
However, there is no clear correlation with the actual positions
of the receiver and the obfuscator, as the ranking between the
receivers change from one configuration to the other.

The swipe method, disregarding its other drawbacks, seems
to work particularly well for the passive attack. We think this is
indeed accidental, and further experiments would highlight that
any one of the many configurations seems to work particularly
well, just to change the ranking if a new configuration is tested.
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Figure 13: Active attack (transmitter TXA outside the room). Average
packet delivery ratio computed over all the receivers and all the po-
sitions of the obfuscator as a function of the Modulation and Coding
Scheme (MCS) for all the obfuscation techniques tested and without
the obfuscator.

The fundamental observation remains that a simple reflector
can protect people’s privacy against unauthorized surveillance,
opening one more application for EM Smart Spaces, and grant-
ing that Wi-Fi-like systems can be safely used also in the future,
even with pervasive EM fingerprinting capabilities.

9.2. Impact on Throughput

Protecting users’ privacy is useless if the service gets de-
stroyed; therefore, we have run experiments to verify that the
obfuscating node is not harming the communication throughput
between the transmitter and the receiver. To this end, we send
1000 frames from the transmitter and monitor how many of them
we correctly decode at the receiver so that we can compute the
Packet Delivery Rate (PDR) for different scenarios as reported
in Figs. 13 and 14 for the transmitter in position TXA and TXP
respectively. Notice that now we are now not much concerned
with the localization attack, as the interest is in legitimate frames,
and we use the same positions of the transmitter and the receivers
just for convenience. Moreover, even if the receiver has four re-
ceiving chains, we collect these measures with a single antenna
like in a Single-Input Single-Output (SISO) system, just like we
do for the CSI-based localization.

The PDR is expected to decrease with the MCS order because
frames with a higher MCS yield a high throughput, but they are
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Figure 14: Passive attack (transmitter TXP inside the room). Average
packet delivery ratio computed over all the receivers and all the positions
of the obfuscator as a function of the MCS for all the obfuscation
techniques tested and without the obfuscator.

more sensitive to noise and interference, especially in a complex
environment such as our lab. This expected behavior is entirely
confirmed for the clean case (obfuscator off), with the PDR
dropping sharply for MCS larger than 6 in Fig. 13 and larger
than 7 in Fig. 14. The difference between the two cases can be
explained with the additional wall that frames received by RX1,
RX2, and RX3 have to traverse. Indeed, for these cases, the PDR
is much lower for these receivers than for RX4 and RX5. In
general, high order MCS are known to be fragile, meaning that,
if there is no clear line-of-sight between transmitter and receiver,
then the channel distortions, not completely compensated for
by the equalizer, lead to systematic decoding errors, that cannot
be corrected by the forward error correction code. Recall that
MCS = 8, 9 use a 256QAM modulation, clearly extremely sensi-
tive to distortions, while MCS = 7 uses a 64QAM modulation,
but with a 5/6 code ratio, which is not capable of compensating
high error rates.

However, the most intriguing result is that the PDR improves
when the obfuscator is active for all the transmitter and receiver
positions and all the obfuscation techniques. The rationale is
that the obfuscator is working as a relay for the frame sent by
the transmitter, creating a dominant second path and increasing
the overall signal strength; hence, improving the quality of the
link between transmitter and receiver. Actually, in our prototype,
the signal strength is doubled as each SDR device transmits a

copy of the frame. This observation is valid in general for any
scenario and layout: injecting two copies of the same frame
separated by a sub-symbol delay, doubles (in a stochastic sense,
as the instantaneous power depends on reflections) the signal
power at the receiver independently from the specific propaga-
tion environment, hence improves performance.

It can be exciting to explore the performance when the power
of the reflector is different or when there are more reflectors.
This observation is extremely interesting because again it hints
at creating privacy-preserving Smart Spaces with extremely high
communication performance, possibly using more than one re-
flector. A detailed analysis of the potential communication gains
maintaining the overall power injected in the channel, but ex-
ploiting intelligent reflective surfaces that protect privacy is very
interesting, but goes well beyond the scope of this paper.

10. Discussion and Conclusions

Environment sensing attacks exploiting 802.11 BSSs have
been proven feasible by recent works and represent a severe
threat to users’ privacy, exposing the presence of people in a
room and even their precise position within it.

In this work, we have shown that it is possible to counter
CSI-based localization with an active device that acts as a relay
and forwards the received frames with a random delay instead
of jamming malicious signals and killing communications. The
device produces continuous variations of the electromagnetic
environment (mimicking the movement of a person in a room)
to obfuscate the CSI and prevent unauthorized localization.

This work considers the CSI from a single antenna for lo-
calization purposes. We believe that using MIMO systems can
drastically improve the localization accuracy since a set of other
measures (e.g., angle of arrival or time of flight) can concur to
give a better location estimate. However, it is not easy to imagine
how these techniques can be used for the localization of a person
that does not carry any device. It would be interesting to explore
whether our obfuscation technique also works in MIMO com-
munications with the localization algorithm optimized for such
systems. Indeed, this can open new research paths and foster
novel ideas on using EM Smart Spaces to enhance communica-
tion performance and peoples’ privacy. Maybe 6G networks, or
beyond, will go in this direction.

To conclude, we highlight that the random delay introduced
by the obfuscator and the distance between the transmitter and
the obfuscator itself make our system very different from an
“extended” MIMO platform, even when the transmitter and the
obfuscator work together as in the passive attack case we an-
alyzed. In a MIMO system, indeed, the phase-delay between
closely spaced antenna elements relates only to the carrier phase;
in our system, the delay—albeit of the order of ns and even
smaller—is a time delay of the entire signal, which is repeated
by a device several meters away from the transmitter.
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