ROTORCRAFT FLIGHT SIMULATION WITH AEROELASTIC ROTOR AND IMPROVED AERO_ DYNAMIC REPRESENTATION. VOLUMEII. USER'S MANUAL

John M. Davis
Bell Helicopter Company

Prepared for:
Army Air Mobility Research and Development Laboratory

DISTRIBUTED BY:

Unclassified

GEMORT DOCUMENTATHON PACE	
1. RLJOKK NULLLL USANRDL-TR-74-10B	
```4. TITLE (ONC RMEMNa) ROTORCRAFT FLIGHT SIMULATION WITH AEROELASTIC ROTOR AND DMPRONED AERODYNAMIC REPRESENTATIONS, Volume II, User's Manual```	8. TYPE Of memont a memoo covenio Final Technical Report
	6. CEDromine ome. nEmit mumben BHC Rpt. 299-099-814
John M. Davis	DANJ02-72-C-0098
5. मenformin orsmization mami amb aooniss   Bell Helicopcer Company   P. O. Box 482   Fort Worth. Texas 76101	
11. COM PROLLINE O TICE Name ANO AODNESE Eustis Directorate	12. Remont date June 1974
U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia 23604	

Approved for public release; distribution unlimited.


Iredmenfiad

Block 20. Continued
The new, revised, or alternate mathematical models incorporated into the program during the current contract are listed below
(1) Fuselage aerodynamic forces and moments (revised)
(2) Aerodymamic surfaces (revised with two surfaces added)
(3) External stores/aerodynamic brakea (new)
(4) Rotor blade airfoil section dietribution (new)
(5) Rotor-induced velocity distribution (alternate)
(6) Rotor unsteady aerodynamic\% (alternate)
(7) Rotor wake effect at aerodynamic surfaces (alternate)
(8) Method for numerically integrating rotorcraft equations of motion (alternate)

This volume, The User's Manual, presents the detailed information necessary to use the computer program. Section 1 is a brief introduction. The specific input quantities and format are listed in Section 2 and diacussed in Section 3. Section 4 describes the program's output format and Section 5 discusses program error messages. A set of sample data is included for reference purposes.

Volume I, The Engineer's Manual, documents the background and development of the current version of the program. Volume III, the Programer's Manual, includes cross-references of FORTRAN COMHON BLOCK variables, a catalog of subroutines, and a discussion of programming considerations. The listings and related software for the computer programs documented in this report are unpublished data which arr on Eile at the Eustis Directorate, U. S. Army Air Mobility Research and Devciopment Laboratory (USMNMDL), Fort Eustis, Virsinia.

## 

This report has bean reviewed by the Euatis Directorate, U. 8. Army Air Mobility Rescarch and Developmant Ieboratory and is coabidared to be cechnically sound.

The computer progrea resultips from this contract will be provided, upon requent of quallfied users, for une in the dealga and analyals of rotary-vius alreraft. Volvae III of this raport, a programar's maul, heo not been widely diatributed, but will be provided with the computer progre to ald in progran inatallation.

The techascal monitor for this confect was Mr. Edward E. Austin, Aeromechapit in fachmoloyy Appll ,ilone Divistion.


## pmelamitie











## 




## PREFACE

This report and its accompanying computer program were developed under Contract DAAJO2-72-C-0098 awarded in June 1972 by the Eustis Directorate of the U. S. Army Air Mobility Research and Development Laboratory (USAAMRDL). In addition to the work performed under this contract, the report and computer program include the documentation and program features developed under USAAMRDL Contracts DAAJ02-70-C-0063 and DANJ02-73-C-0086. The contractor and USAAMRDL have agreed that the computer program documented herein is the new master version of the program. Hence, this report supersedes all previous versions of the C81 program and documentation.

Technical program direction was provided by Mr. E. E. Austin of JSAAMRDL. Piincipal Bell Helicopter personnel associated with the current contract were Messrs. B. L. Blankenship, J. M. Davis, and P. Y. Hsieh, and Dr. B. T. Waak. In addition, Dr. R. L. Bennett and Mr. B. J. Bird assisted in coordinating the work and documentation prepared under the two previous contracts noted above with that prepared under this contract.

## TABLE OF CONTENTS

Page
PREFACE ..... iii
LIST Of ILLUSTRATIONS ..... viii
LIST OF TABLES ..... $x i$

1. INTRODUCTION ..... 1-1
1.1 Primary and Secondary Operations of the Program ..... 1-3
1.2 Discussion of the Program Operations. ..... 1-17
1.3 Programming and Documentation Considerations ..... 1-19
2. INPUT FORMAT ..... 2-1
2.1 General ..... 2-1
2.2 Identification and Program Logic Group ..... 2-8
2.3 Data Table Group ..... 2-10
2.4 Fuselage Group ..... 2-25
2.5 Rotor Aerodynamic Group ..... 2-30
2.6 Main Rotor Group ..... 2-32
2.7 Tail Rotor Group ..... 2-35
2.8 Wing Group ..... 2-38
2.9 Stabilizing Surface Groups ..... 2-42
2.10 Jet Group. ..... 2-46
2.11 External Store/Aerodynamic Brake Group ..... 2-47
2.12 Rotor Controls Group ..... 2-49
2.13 Iteration Logic Group. ..... 2-52
2.14 Flight Constants Group ..... 2-53
2.15 Bobweight Group. ..... 2-54
2.16 Weapons Group ..... 2-55
2.17 SCAS Group ..... 2-56
2.18 Stability Analysis Times Group. ..... 2-58
2.19 Blade Element Data Printout Group. ..... 2-59
2.20 Maneuver Time Card. ..... 2-60
2.21 Variations From Trimmed Flight. ..... 2-61
2.22 Plotting of Maneuver Time History Data ..... 2-62
2.23 Harmonic Analysis of Maneuver Time History Data ..... 2-63
2.24 Vector Analysis of Maneuver Time History Data. ..... 2-64
2.25 Storing Maneuver Time History Data on Tape. ..... 2-65
Page
3. USER'S GUIDE TO INPUT FORMAT ..... 3-1
3.1 General ..... 3-1
3.2 Identification and Program Logic Group ..... 3-8
3.3 Data Table Group ..... 3-27
3.4 Fuselage Group ..... 3-36
3.5 Rotor Aerodynamic Group ..... 3-47
3.6 Main Rotor Group ..... 3-62
3.7 Tail Rotor Group ..... 3-70
3.8 Wing Group ..... 3-72
3.9 Stabilizing Surface Groups ..... 3-94
3.10 Jet Group. ..... 3-99
3.11 External Store/Aerodynamic Brake Group ..... 3-100
3.12 Rotor Controls Group ..... 3-103
3.13 Iteration Logic Group ..... 3-113
3.14 Flight Constants Group ..... 3-115
3.15 Bobweight Group. ..... 3-117
3.16 Weapons Group ..... 3-119
3.17 SCAS Group ..... 3-120
3.18 Stability Analysis Times Group. ..... 3-123
3.19 Blade Element Data Printout Group. ..... 3-124
3.20 Maneuver Time Card. ..... 3-125
3.21 Variations From Trimmed Flight. ..... 3-127
3.22 Plotting of Maneuver Time History Data ..... 3-139
3.23 Harmonic Analysis of Maneuver Time History Data ..... 3-140
3.24 Vector Analysis of Maneuver Time History Data. ..... 3-142
3.25 Storing Maneuver Time History Data on Tape. ..... 3-144
3.26 Miscellaneous ..... 3-145
4. OUTPUT GUIDE. ..... 4-1
4.1 Reference Systems ..... 4-1
4.2 Sign Conventions ..... 4-10
4.3 Output Groups for Input Data ..... 4-18
4.4 Trim Iteration Page ..... 4-29
4.5 Trimmed Flight Condition Pages. ..... 4-33
4.6 Time-Variant Trim Data ..... 4-40
4.7 Maneuver-Time-Point Printout ..... 4-42
4.8 Time History Plots. ..... 4-52
4.9 Output of Harmonic Analysis Routine ..... 4-54
4.10 Vector Analysis Data ..... 4-56
4.11 Output of Stability Analysis Routine ..... 4-58
4.12 Blade Element Aerodynamic Data. ..... 4-72
5. 13 Blade Element Bending Moment Data. ..... 4-74
6. DIAGNOSTIC AND ERROR MESSAGES . . . . . . . . . . 5-1

7. Variables saved during maneuvers . . . . . . . . . 6-1
8. REFERENCES

## LIST OF ILLUSTRATIONS

Figure Page
1-1 Trim-Only Operation ..... 1-4
1-2 Trim Followed by Maneuver ..... 1-5
1-3 Trim Followed by Maneuver With Stability Analysis ..... 1-4
1-4 First Maneuver in Restart Procedure ..... 1-7
1-5 Second and Later Restart Maneuvers ..... 1-8
1-5 Trim and Stability Analysis. ..... 1-9
1-7 Retrieving Maneuver Data Stored Permanently ..... 1-10
1-8 Trim or Trim and Stability Analysis Followed by Parameter Sweep ..... 1-11
1-9 Block for Operations Performed on Maneuver Time History Data ..... 1-12
1-10 Plotting Operation. ..... 1-13
1-11 Harmonic Analysis Operation. ..... 1-14
1-12 Vector Analysis and Data Reduction Operation ..... 1-15
1-13 Operation for Storing Maneuver Time History Data on Tape ..... 1-16
2-1 Example of Data Deck for MODLL Option ..... 2-7
2-2 Schematic Diagram of Card Deck for RIVD Table ..... 2-21
2-3 Schematic Diagram of Card Deck for a Set of RWAS Tables. ..... 2-24
3-1 Schematic of Matrices Used in the Stability Analysis. ..... 3-22
3-2 General Lift Coefficient Versus Angle of Attack Curve. ..... 3-54
3-3 General Drag Coefficidnt Versus Angle of Attack Curve ..... 3-54
Fiqure Page
3-4 Flow Chart for Steady-State Pitching Moment Calculation. ..... 3-56
3-5 Typical Curves of Pitching Moment Coefficient Versus Angle of Attack at Various Mach Numbers ..... 3-57
3-6 Set of Data Tables for the NACA 0012 Airfoil Section ..... 3-59
3-7 Aerodynamic Surface Dihedral and Incidence Angles ..... 3-73
3-8 Wing Wake Model ..... 3-87
3-9 Aerodynamic Surface Control Linkage ..... $3-91$
3-10 Effect oi Rotor Downwash on the Fiow Field at the Stabilizing Surfaces ..... 3-97
3-11 Schematic Diagram of Rotor Control System ..... 3-105
3-12 Schematic Diagram of Control Coupling/Mixing Box. ..... 3-110
3-12 Sample Output From Program AS812A. ..... 3-152
4-1 Relationship of Ground, Body, and Fuselage Reference Systems ..... 4-2
4-2 Relationship of Body and Aerodynamic Surface Reference Systems ..... 4-6
4-3 Relationship of Body and Shaft Reference Systems. ..... 4-8
4-4 Reference System for Rotor Analysis ..... 4-9
4-5 Relationship of Wind and Body (Component)
Reference Systems ..... $4-11$
4-6 Blade Flapping and Elastic Displacement. ..... $4-15$
4-7 Message Card. ..... $4-19$
4-8 Partial Printout of Deta Deck Listing ..... 4-20
4-9 Problem Identification and Basic Input Data Group ..... 4-21
4-10 Aeroelastic Blade Data ..... 4-25
Fipure Pare
4-11 Maneuver Specification ..... 4-28
4-12
Trim Iteration Paze. ..... 4-30
4-13 Trimmed Flight Condition Page ..... 4-34
4-14 Optional Trim Page ..... 4-38
4-15 Partial Printout of Time-Variant Trim Data ..... 4-41
$4-16$
Harmonic Analysis Following Time-Variant Trim ..... 4-43
4-17 Bending Moment Summary Following Time-Variant Trim ..... 4-44
4-18
Maneuver-Time-Point Printout Page ..... 4-48
4-19 Rotor Elastic Response During Maneuver ..... 4-51
4-20 Example Time History Plot. ..... 4-53
4-21 Output of Harmonic Analysis Routine ..... 4-55
4-22 Vector Analysis Data ..... 4-57
4-23 Control Partial Derivative Matrix From STAB. ..... $4-60$
4-24 Example of Partial Derivatives for STAB Degrees of Freedom ..... 4-61
4-25 Rotor and Total Partial Derivative Matrices. ..... 4-64
4-26 Stability Matrices and Stick-Fixed Stability Results ..... 4-65
4-27 Examples of Mode Shapes of Stability Results ..... 4-69
4-28 Numerator of Transfer Function ..... 4-71
4-29 Frequency Response of Transfer Functions. ..... 4-73
4-30 Blade Element Aerodynamic Data ..... 4-77
4-31 Blade Element Bending Moment Data ..... 4-80

## LIST OF TABLES

Table Page
2-1 Sequential Summary of Input Groups ..... 2-2
2-2 Input Data Arrays Included in NaMELIST Specification Statement ..... 2-5
3-1 Rotor Analysis Used During Trim and Maneuver ..... 3-18
3-2 Systems of Equations Used in Trim ..... 3-19
3-3 Radial Stations for Induced Velocity Distribution Tables ..... 3-33
3-4 Fuselage Lift Equations ..... 3-40
3-5 Fusclage Drag Equations ..... 3-41
3-6 Fuselage Pitching Moment Equations ..... 3-42
3-7 Fuselage Side Force Equations ..... 3-43
3-8 Fuselage Rolling Moment Equations. ..... 3-44
3-9 Fuselage Yawing Moment Equations ..... 3-45
3-10 Relationship of Unsteady and Yawed Flow Models ..... 3-48
3-11 Basic Rotor Control Rigging. ..... 3-104
3-12 Definitions of Control System Variables. ..... 3-108
3-13 Control Coupling Linkages ..... 3-108
3-14 Intermediate Control Angles. ..... 3-109
3-15 Complete Model for Collective and Swashplate Angles ..... 3-111
3-16 Reset Values for Control Inputs ..... 3-112
3-17 Rotor Naraing Convention ..... 3-145
4-1 Output Groups ..... 4.3
4-2 Sign Conventions for Rotor Related Parameters ..... 4-12
4-3 Conventions for Specific Configurations. ..... $4-13$
Table
Page
4-4 Definitions of Blade Element Aerodynamic Parameters. ..... 4-75
6-1 Code Numbers for Variables Saved ..... 6-2

## 1. INTRODUCTION

The purposes of this volume of the report are to inform the reader of the capabilities of the current master version of the Rotorcraft Flight Simulation Program C81 and to provide the information necessary for assembling an infil data deck and successfully executing the program. With respect to the most recently documented version of the program (ASAJO1) described in Reference 1, the program has been expanded in both inputs and capabilities to a point where few comparisons can be made. The basic format of inputting data in groups which correspond to components of the rotorcraft (e.g., fuselage, rotors, and aerodynamic surfaces) has been mainta!ned. However, the mathematical model and input format of every component included in ASAJOl has been revised, and new components have been added.

This version of the program, designated AGAJ73, is capable of modeling the following components of a rotorcraft: a fuselage; two rotors, each with a dynamic pylon, aeroelastic blades, and a nacelle; a wing; four stabilizing surfaces, none of which must be purely vertical or horizontal; four external stores or aerodynamic brakes; a nonlinear, coupled control system including a collective bobweight, stability and control augmentation system, and automatic pilot simulator; two jets; and a we apon.

The five sections following this introduction present only the information required to set up and successfully execute a C8l simulation. The reader is referred to Volume I for complete documentation of the programmed mathematical models and to Volume III for detailed information regarding the computer program hardware requirements and software.

Section 2 of this report lists the input data to the program in a equence which corresponds to the input and card sequence required for the data deck. The inputs are grouped according to either their function in the program or the rotorcraft component they simulate. For example, the names of three of the input groups are the Program Logic Group, the Main Rotor Group, and the Wing Group. Each group is read into an array. The array name is given in all uppercase letters at the left of the input sequence numbers in Section 2. Except for the first letter, the array names were chosen to be very abbreviated acronyms for the title of the group or component. As an aid to the user and the programmer, a special convention was established for the first letter of each array: arrays beginning with the letter $I$ control program logic; arrays beginning with $Y$ contain the inputs used in the equations which compute the aerodynamic forces on the rotor blades, wing, and stabilizing surface; arrays beginning with $T$ ontain times which are used during maneuvers; and arrays beginning with $X$ contain for the most part inputs which are physically measurable quantitites, e.g., locations, weights, angles, lengths and control linkages.

> Where possible, the definition of each input is a brief, one-line description with the required units, if any, given in parentheses at the right end of the line. However, some inputs cannot be defined so concisely. In some of these cases, the FORTRAN symbol assigned to the input in the program is listed. The symbol is generally an acronym for the input which will have meaning to the experienced user of the program.

In all cases where a FORTRAN array or variable name is used, the standard
FORTRAN convention for the format of the input applies. That is, if the first letter of an array or symbol is $I, J, K, L, M$, or $N$, the corresponding input must be a fixed point number (integer), i.e., "I" format code. All fixed point inputs must end in the right most column of the field for the input and must not contain a decimal point. If the first letter is not one of the six listed above, the input must be a floating point (decimal) number, i.e., "F" format code. In view of the floating point formats used in C81, all such inputs should include a decimal point. If the decimal point is omitted, it is placed at the far right end of the field. For example, if the number one is punched in the first column of a ten-column field and the decimal point is omitted, the number will be interpreted as 1000000000.0 rather than the 1.0 intended.

Section 2 is designed to be the only documentation that a very experienced user needs to set up an input deck. The less-experienced user should consult Section 3 for a more complete explanation of the inputs, setup of the deck, and program options. This section is arranged in the same order as Section 2 and includes many of the equations used in the various mathematical models.

Section 4 provides information on the output of the program. The first major subsection discusses the sign conventions, including definitions of the reference systems used, and can be useful in setting up the deck as well as int.rpreting output. The second major subsection explains each group of output which the program can generate during a successful execution. The vast majority of the groups are output on the computer printer. This printed output falls into three general categories: input, trim, and maneuver data. In addition, some of the maneuver data can be output on a CALCOMP plotter. Examples of all possible groups of output data were taken from actual computer runs and are included in the section.

Section 5 lists and discusses the error messages which the program can generate. Some of the errors terminate program execution, while others are only warnings of conditions which may affect the data being computed. In each case, the source of the error is noted, and where necessary a suggestion on how to correct the error is iven. Section 6 identifies the variables which are saved for future analysis during the computation of maneuvers.

In this document, the rotors are referred to as Main Rotor (or Rotor 1) and Tail Rotor (Rotor 2). In the output, additional names, which are appropriate to the rotorciaft configuration, are used. All rotor names fall into two groups:
(1) Rotor 1, First, Main, Right, Forward
(2) Rotor 2, Second, Tail, Left, Aft

The names within a group may be considered synonymous, with context determining the appropriate word. The groups also indicate the input groups which should be used for a specific rotor. For example, inputs for the forward rotor of a tandem-rotor configuration should be input to the Main Rotor Group and the aft rotor inputs to the Tail Rotor Group. However, this input sequence is not mandatory. (The program does not verify that Rotor 1 is actually forward or right of Rotor 2.) With careful attention to the rotor control linkages, the two rotor groups can be swapped to reverse the direction of rotation of each rotor. See Section 3.26.1 for additional details.

### 1.1 PRIMARY AND SECONDARY OPERATIONS OF THE PROGKAM

The general operations of which the program is capable are:
(1) Computing a trimmed flight condition
(2) Computing a maneuver
(3) Performing a stability analysis
(4) Performing parameter sweeps of trim conditions
(5) Retrieving maneuver time history data stored on magnetic tape
(6) Plotting maneuver time history data
(7) Harmonic analysis of maneuver time history data
(8) Vector analysis of maneuver time history data
(9) Storing maneuver time history data on magnetic tape

The first five general operations are primary operations and are illustrated in the flow charts in Figures $1-1$ through 1-8. These operations are shown alone, if possible, and in all permissible combinations with other operations. The last four operations are secondary operations and occur within the block labeled "Operations on Maneuver Time History Data" in Figures $1-2,1-3,1-4,1-5$, and $1-7$. The flow chart for the contents of this block is shown in Figure 1-9. The flow charts of the four secondary operations contained in the block are shown in Figures 1-10 through 1-13.

Each primary operation or combination of operations is controlled by input data. Thus, the flow charts for the primary operations all begin with a "Read Data Deck" block. Since the amount of data to be read depends on the operation or operations desired, a data deck in this


Figure 1-1. Trim-Only Operation.


Figure 1-2. Trim Followed by Maneuver.


Figure 1-3. Trim Followed by Maneuver With Stability Analysis.


Figure l-4. First Maneuver in Restart Procedure.


Figure 1-5. Second and Later Restart Maneuvers.


Figure 1-j. Trim and Stability Analysis.


Figure 1-7. Retrieving Maneuver Data Stored Permanently.


Figure 1-8. Trim or Trim and Stability Analysis Followed by Parameter Sweep.


Figure 1-9. Block for Operations Performed on Maneuver Time History Data.


Figure 1-10. Plotting Operation.


Figure 1-11. Harmonic Analysis Operation.


Figure 1-12. Vector Analysis and Data Reduction Operation.


Figure 1-13. Operation for Storing Maneuver Time History Data on Tape.
context consists of a message card, an "NPART" card telling the program which primary operation or operations to perform, and thc additional data necessary to perform the indicated operation(s). In some cases, the additional data are contained on 100 or more additional cards, e.g., trim, stability analysis, maneuver. In other cases, as little as one card of additional data is required, e.g., data retrieval followed by only one secondary operation.

As is implied by Figures 1-1 through 1-8, data decks of primary operations other than parameter sweeps cannot be stacked one after the other; each deck must be submitted as a separate computer job. This situation does not impose any significant hardship on the user, since
(1) the parameter sweep operation can be used to replace stacked trim-only (TRIM) and trim-and-stability-analysis (TRIM-STAB) decks, and
(2) in praclice, the need to run more than one maneuver in a single job rarely, if ever, occurs.

The second step in several of the flow charts is "Calculate Problem Constants." In each operation containing this step, a number of quantities which remain constant throughout the performance of the operation(s) must be defined using the input data. For axample, the density ratio is computed from the input pressure altitude and temperature; the leng th of a blade segment for each rotor is computed from the radius of the corresponding rotor; the body reference distances from the center of gravity to the location of specific rotorcraft components are computed. Performing such computations drastically reduces the number of program inputs and also provides program flexibility necessary for incorporating such operations as parameter sweeping.

### 1.2 DISCUSSION OF THE PROGRAM OPERATIONS

### 1.2.1 Primary Operations

In finding the trim point, the program iterates on the pilot's control positions, fuselage orientation, and/or rotor attitude in space to reach desired values of the rotor flapping moments and forces and moments on the fuselage center of gravity. When these desired values are all zero, the trim point is an unaccelerated flight condition. With controls locked and no external disturbances such as gusts, the rotorcraft would theoretically continue indefinitely along the straight flight path prescribed by the program inputs. Sometimes the desired values of the forces and moments are not all zero. In this case, the use of the word "desired" rather than "predetermined" is significant because the desired values depend on the trim point. Two different results are possible in this case. In one, the rotorcraft is in a pushover or pull-up condition at a predetermined g-level. In the other, the rotorcraft is in a banked turn, either level or spiral, at a predetermined g-level. Either condition may be used as the starting point for a maneuver.

The stability analysis operation uses a trim point or a time point during a maneuver as its initial condition. The stability derivatives are computed by making small independent perturbations to each of the rotorcraft degrees of freedom and primary flight controls; computing the forces and moments in the perturbed flight condition; subtracting the values of forces and moments in the initial condition from those at the perturbed condition; and finally dividing the differences by the appropriate perturbations. Using these derivatives, the roots to the rotorcraft equations of motion, mode shapes associated with the roots, and transfer functions for the rotorcraft system are computed.

The parameter sweep operation may be used to simulate the stacking of TRIM and TRIM-STAB data decks for a given rotorcraft. Within a sweep deck, the user specifies by input data those cases in the sweep for which a stability analysis is and is not to be performed. The parameters most frequently swept include airspeed, gross weight, center of gravity stationline, incidence of an aerodynamic surface, atmospheric conditions, and g-level. Generally within a single sweep deck, only one parameter is changed from case to case. However, any number and combination of inputs except some program logic switches and the values in data tables may be swept. The assumption is made that each desired trim condition bears some relationship to the previous one, and further that the previous trim point is a good starting condition for finding the next trim point. For example, in a speed sweep, a change of 20 or 0 knots is the most that should normally be used between 40 and 150 knots. Outside of this range, the maximum change should not exceed 10 knots.

All maneuvers require a trim point prior to computing the time history of a maneuver. The trim point is used to supply the initial conditions to a system of differential equations which describe the behavior of a rotorcraft in a maneuver. Various external inputs, or forcing functions, may be applied. Examples are control movements, gusts, store drops, and wing incidence change independent of control motion(s). The user has the option of specifying that the equations be numerically integrated by one of two methods: four-cycle Runge-Kutta or Hamming's method. At times specified by input data, the maneuver is suspended while a stability analysis is performed. The maneuver is then resumed as if no interrpution has occurred and continued until it reaches either the next time point to do a stability analysis or the end of the maneuver.

A maneuver restart operation is begun just like an ordinary maneuver using a trim condition as a starting point. The only difference is that the time history variables and many intermediate variables must be saved on the magnetic restart tape. Subsequent maneuver restarts use the condition at one of the saved time points and so do not require a trim condition or the complete data set defining the rotorcraft.

### 1.2.2 Secondary Operations

During the course of running all maneuvers, the values of a large number of time history variables at each time point are saved on the plot disk.

At the conclusion of the maneuver, the secondary program operations specified in the input data are performed on these variables. For example, the user may select any of the saved variables to be plotted on the printed output or on finished $8 \frac{1}{2} \times 11$ CALCOMP pages if such are available. Plots made as part of a maneuver restart run will show the entire maneuver starting at time zero.

A complete harmonic analysis may also be made for any of the saved variables. A Fast-Fourier-Transform technique is used to examine a broad range of frequencies. This option is especially useful for studying rotor bending moments and related variables.

Frequently, maneuvers are run where one of the controls or the fore-and-aft mast tilt angle is varied sinusoidally. In this case, the vector analysis operation can be very useful. This analysis uses the least-squared-errors technique to fit the saved data to a curve of the form

$$
F_{i}(t)=A_{i} \sin \left(\mu t+\phi_{i}\right)+B_{i}
$$

Then, any amplitude ratios, $A_{i} / A_{j}$, and phase angle differences, $\phi_{i}-\phi_{j}$, may be computed. Lastly, linear combinations of the variables may be ${ }^{j}$ derived in the following form:

$$
F_{i}(t)=C_{i} F_{j}(t)+D_{i} F_{k}(t)+E_{i}
$$

If the user thinks he may want to perform additional plotting or analysis of the saved variables, they may be transferred from the plot disk to a magnetic time history tape. Later the data on the tape may be reloaded to the plot disk for any use desired.

### 1.3 PROGRAMMING AND DOCUMENTATION CONSIDERATIONS

A great deal of effort was expended to mal.e the program as user-oriented as possible. For example, many of the prog:am logic switches which were prevlously buried deeply in some of the input groups have been moved to the new Program Logic Group, the first input group to the program. This new group also provides switches for significantly reducing the size of the data deck when certain groups are not needed, as in a wind tunnel simulation.

Also, the documentation of the input format (Section 2) has been expanded and the entire user's guide to the input format (Section 3) has been extensively rewritten and expanded to make the definition of the inputs as clear and specific as possible. The definitions are not all easy to understand because of the very nature of some of the variables, but it is thought that the definitions presented leave room for only one interpretation. A sample set of input data for a typical attack helicopter is included in Section 4 along with a detailed discussion of the program output so that the user can get an idea of the magnitude of most program inputs and outputs.

## 2. INPUT FORMAT

This section of the report presents the basic input format for an AGAJ73 card deck. The first subsection contains general information regarding the structure of and program features related to the card deck. The remaining subsections define the inputs to each of the basic input groups to the program. The groups are described in the same sequence in which they occur in the data deck.

For the very experienced user of $\mathbf{C 8 1}$, Section 2 is frequently the only documentation that is needed to set up, execute, and make changes to a data deck. When more explanation is required, the user should consult Section 3 which is arranged in the same order as Section 2 and includes detailed discussions of input definitions, program options, and many of the equations used in the program.

### 2.1 GENERAL

### 2.1.1 Composition of a Data Deck and Card Format

A complete input data deck for AGAJ73 can be divided into the forty-six groups or sets of cards listed in Table 2-1. The first thirty-eight groups form the basic card deck which is used for trimonly and trim-and-stability-analysis-only program operations. The remaining eight groups are only included in the deck when the maneuver program operation is to be performed.

The Program Logic Group should be considered one of the most important groups in the deck. It controls which groups must be included in the deck and the program options that will be used in the computations. The input format for this group is fourteen integers per card with five column fields for each input ( 1415 format). A primary reason for the integer format is to set the group apart from the rest of the groups where the vast majority of the inputs are floating point numbers.

Except for the Program Logic Group, a standard format of seven floating point numbers in ten column fields per card (7F10.0 format) is used whereever practical in the deck. Only the exceptions to this standard format are noted in the following sections. Where the format cannot be conveniently expressed by a FORTRAN statement like 7F10.0, the location of the input on the card is specified by the column or field of columns for the input. Unless otherwise noted, all formats start in Column 1 with Columns 71 through 80 reserved for card sequence number.

### 2.1.2 Group Identification Cards and Data Library

In Table 2-1 the input groups which include a Group Identification (ID) Card are noted by the inclusion of a sequence number for the ID card.

Group Title	Sequence Number of ID Card	Element Number in MODEL Data Set Array **	Discussed in Section
Deck Identification \& Program Flow Cards	None	N/A	2.2
Program Logic Group	05	1	2.2
Data Table Group	None	N/A	2.3
Airfoil Data Table No. 1	11	2	2.3.1.1
Airfoil Data Table No. 2	12	3	2.3.1.2
Airfoil Data Table No. 3	13	4	2.3.1.3
Airfoil Data Table No. 4	14	5	2.3.1.4
Airfoil Data Table No. 5	15	6	2.3.1.5
M/R Aeroelastic Blade Data Block	16	7	2.3.2.1
T/R Aeroelastic Blade Data Block	17	8	2.3.2.1
M/R Rotor-Induced Velocity Distribution (RIVD) Table	18	9	2.3.3.1
T/R RIVD Table	19	10	2.3.3.2
RWAS Table No. 1	***	11	2.3.4
RWAS Table No. 2	***	12	2.3 .4
RWAS Table No. 3	***	13	2.3 .4
RWAS Table No. 4	***	14	2.3 .4
RWAS Table No. 5	***	15	2.3 .4
RWAS Table No. 6	***	16	2.3 .4
RWAS Table No. 7	***	17	2.3 .4
RWAS Table No. 8	***	18	2.3 .4
RWAS Table No. 9	***	19	2.3 .4
RWAS Table No. 10	***	20	2.3 .4
RWAS Table No. 11	***	21	2.3 .4
RWAS Table No. 12	***	22	2.3 .4
Fuselage Group	20	23	2.4
Rotor Aerodynamic Group	30	24	2.5


TABLE 2-1. Continued			
Group Title	Sequence Number of ID Card	Element Number in MODEL Data Set Array **	Discussed in Sec.ion
Main Rotor Group	40	25	2.6
Tail Rotor Group	50	26	2.7
Wing Group	60	27	2.8
Stabilizing Surface No. 1 Group	70	28	2.9.1
Stabilizing Surface No. 2 Group	80	29	2.9 .2
Stabilizing Surface No. 3 Group	90	30	2.9 .3
Stabilizing Surface No. 4 Group	100	31	2.9 .4
Jet Group	110	32	2.10
External Store/Aerodynamic Brake Group	120	33	2.11
Rotor Controls Group	130	34	2.12
Iteration Logic Group	140	35	2.13
Flight Constants Group	Nor $=$	N/A	2.14
Bobweight Group	200	36	2.15
Weapons Group	210	37	2.16
SCAS Group	220	38	2.17
Stability Analysis Times Group	230	39	2.18
Blade Element Data Printout Times Group	240	40	2.19
Maneuver Time Card	None	N/A	2.20
Maneuver Specification Cards	None	N/A	2.21
Maneuver Analysis Cards	None	N/A	$\begin{aligned} & 2.22 \rightarrow \\ & 2.25 \end{aligned}$
* None indicates the group   ** N/A indicates the group   No specific sequence numb	does not hav   not includ   on RWAS	n identificatio in the MODEL e ID Cards.	(ID) card. set array.

The format for each of these ID cards is as follows:

## Field Description of the Input

Col. $1 \rightarrow 8$ IDEN, Data library name for the Group Col. $11 \rightarrow 70$ Alphanumeric identifying comments (optional) Col. $71 \rightarrow 80 \quad$ Card sequence numbers (optional)

If the user's version of AGAJ73 does not include the Data Library Option, Columns 1 through 8 (IDEN) must be blank. If this option is included, IDEN may be used to call the required inputs for the corresponding group from the data library. If MODEL Option data sets are stored in the library, IDEN on CARD 05 (Program Logic Group ID Card) may be used to call a complete set of groups from the library.

Input data which are called from library and whose array name is included in the list in Table 2-2 can be updated with the \&CHANGE program feature. When the MODEL Option is used, the \&GROUPS program feature can be used to replace entire groups in the MODEL Option data set by reference to the element number given in Table 2-1. Figure 2-1 shows an example MODEL Option data deck with the \&CHANGE and \&GROUPS features employed. See Section 3.1.2 for a complete discussion of the Data Library and MODEL Options. See Section 3.1 .3 for explanation of the \&CHANGE and \&GROUPS program features.

TABLE 2-2. INPUT DATA ARRAYS INCLUDED IN NAMELIST SPECIFICATION STATEMENT

Array Name and Range of Subscripts	Description of Array
IPL ( $1 \rightarrow 35$ )	Program Logic Group
XMW( $1 \rightarrow 63$ )	Main Rotor Weight \& Inertial Distribution
XTW( $1 \rightarrow 63$ )	Tail Rotor Weight \& Inertial Distribution
XFS ( $1 \rightarrow 98$ )	Fuselage Group
YRR ( $1 \rightarrow 35,1$ )	RAA Subgroup No. 1
YRR( $1 \rightarrow 35,2$ )	RAA Subgroup No. 2
$\operatorname{YRR}(1 \rightarrow 35,3)$	RAA Subgroup No. 3
YRR( $1 \rightarrow 35,4$ )	RAA Subgroup No. 4
YRR ( $1 \rightarrow 35,5$ )	RAA Subgroup No. 5
X XRR ( $1 \rightarrow 49$ )	Main Rotor Group
XMP( $1 \rightarrow 14$ )	Main Rotor Dynamic Pylon
XMC ( $1 \rightarrow 20$ )	Main Rotor Chord Distribution
XMT( $1 \rightarrow 20$ )	Main Rotor Twist Distribution
IDTABM ( $1 \rightarrow 20$ )	Main Rotor Airfoil Distribution
$X T R(1 \rightarrow 49)$	Tail Rotor Group
XTP( $1 \rightarrow 14$ )	Tail Rotor Dynamic Pylon
XTC( $1 \rightarrow 20$ )	Tail Rotor Chord Distribution
XTT( $1 \rightarrow 20$ )	Tail Rotor Twist Distribution
IDTABT ( $1 \rightarrow 20$ )	Tail Rotor Airfoil ristribution
XWG( $1 \rightarrow 42$ )	Wing Group (Basic)
YWG( $1 \rightarrow 28$ )	Wing Aerodynamics
XCWG( $1 \rightarrow 14$ )	Wing Control Linkages
$X S T B 1(1 \rightarrow 35)$	Stabilizing Surface No. 1 Group (Basic)
YSTB $(1 \rightarrow 28)$	Surface No. 1 Aerodynamics
XCSI ( $1 \rightarrow 14$ )	Surface No. 1 Control Linkages
XSTB2 $(1 \rightarrow 35$	Stabilizing Surface No. 2 Group (Basic)
YSTB2 ( $1 \rightarrow 28$ )	Surface No. 2 Aerodynamics
XCS2 ${ }^{(1 \rightarrow 14}$ )	Surface No. 2 Control Linkages
XSTB3( $1 \rightarrow 35$ )	Stabilizing Surface No. 3 Group (Basic)
YSTB3( $1 \rightarrow 28$ )	Surface No. 3 Aerodynamics


TABLE 2-2. Continued.	
Array Name and Range of Subscripts	Description of Array
	Surface No. 3 Control Linkages   Stabilizing Surface No. 4 Group (Basic)   Surface No. 4 Aerodynamics   Surface No. 4 Control Linkages   Jet Group   $\left.\begin{array}{l}\text { Store/Brake No. 1 } \\ \text { Store/Brake No. 2 } \\ \text { Store/Brake No. 3 } \\ \text { Store/Brake No. 4. }\end{array}\right\} \quad \begin{aligned} & \\ & \end{aligned}$   Rotor Controls Group (Basic)   Supplementary Rotor Controls   Iteration Logic Group   Flight Constants Group   Bobweight Group   Weapons Group   SCAS Group   Stability Analysis Times Group   Blade Element Data Printout Times Group
The following sets of inputs are specifically excluded from the NAMELIST specification statement:   (1) All airfoil data tables   (2) All mode shapes for both rotors   (3) Both RIVD tables   (4) All RWAS tables	

##  

RFTIJRN TO JOHA Me DAVIS


### 2.2 IDENTLFICATION AND PROGRAM LOGIC GROUP

CARD 00 Message card. Columns 1-80, alphanumeric.
CARD 01

```
Col. 1 - 2 NPART (permissible values are 1, 2, 4, 5, 7,
 8, and 10)
Col. 4 - 6 NPRINT
Col. 11-15 NVARA
Col. 31 - 35 NVARB
Col. 51-55 NVARC
```

CARD 02
Col. 3-10 IPSN
Col. 11 - 70 Identifying Comments
CARD 03
Col. 1-68 Identifying Comments
CARD 04

CARD 05 Program Logic Identification Card
CARD 06 Input Group Control Logic (14I5 format)
IPL (1) Switch for reading reduced data deck ( $0=$ off)
(2) Number of airfoil data tables $(=0,1,2,3,4$, or 5 )
(3) Number of $M / R$ mode shape inputs ( 0 none)
(4) Number of $T / R$ mode shape inputs ( $0=$ none)
(5) Switch for rinding rotor-induced velocity distribution table ( $0=0$. )
(6) Number of Rotor Airfoil Aerodynamic Subgroups ( $=1,2,3,4$, or 5 )
(7) Switch for deleting rotor groups ( $0=$ off)
(8) Switch for reading rotor pylon cards ( $0=$ off)
(9) Switch for reading wing inputs ( $0=$ off)
(10) Switch for reading Stabilizing Surface inputs ( $0=$ off)
(11) Switch for reading Jet Group ( $0=$ off)
(12) Number of Store/Brake subgroups ( $=0,1,2,3$, or 4)
3) Switch for reading Supplemental Rotor Controls subgroup ( $0=$ off)
( $1:$ : Switch for reading maneuver input groups ( 0 - off)

CARD 07 Analysis Logic (14I5 format)
IPL (15) Flight condition indicator ( $0=$ turn or unaccelerated flight)
(16) Euler angle iteration selector for TRIM ( $0=$ holds yaw angle constant)
(17) Switch for computing partial derivative matrix ( $0=$ every fifth ittration)
(18) Control variable for main rotor steady-state aerodynamics
(19) Control variable for tail rotor steady-state aerodynamics
(20) Switch for activating unsteady rotor aerodynamic options ( $0=$ off)
(21) Switch for specifying which rotor can use the timevariant (TV) analysis ( $0=$ none; both rotors use quasistatic (QS) analysis)
(22) Switch for activating TV analysis in TRIM and MANU when IPL $(21) \neq 0$ ( $0=Q S$ trim followed by $T V$ trim and maneuver)
(23) Control variable for rebalancing main rotor in TRIM ( $0=$ off)
(24) Control variable for rebalancing tail rotor in TRIM ( $0=$ off)
(25) Print control for trim iteration data ( $0=$ minimum output)
(26) Print control for optional trim page ( $0=$ page omitted)
(27) Print control for blade element aerodynamic data ( $0=$ none)
(28) Switch for locking fuselage degrees of freedom in maneuver ( $0=$ unlocked)

CARD 08 Stability Analysis and Miscellaneous Logic (14I5 format)
IPL (29) Switch for fuselage coupling in STAB ( $0=$ uncoupled)
(30) Switch for pylon degrees of freedom in STAB ( $0=$ off)
(31) Switch for rotor degrees of freedom in $S T A B(0=o f f)$
(32) Switch for rebalancing rotors in STAB when $\operatorname{IPL}(31)=0$ (0 = rebalance)
(33) Output control for STAB matrices ( $0=$ print only)
(34) Output selector for STAB diagnostics ( $0=$ off)
(35)
(36) Print control for input data ( $0=$ print all input data)
(37) Switch for reading Rotor Wake at Surfaces (RWAS) tables ( $0=$ off)
(38)
(39)
(40)
(41) Rotor fold indicator ( $0=$ unfolded)
(42) Switch for shifting cg with rotor folding ( $0=$ no shift)

This group does not have an all-inclusive Group Identification Card; each set of tables has its own. Hence, CARD 10 is not included in the deck.
2.3.1 Airfoil V tia Table Sets (omit if $\operatorname{IPL}(2)=0$ )
2.3.1.1 Airfoil Data Table Set No. 1 (include only if $\operatorname{IPL}(2) \geq 1$ )

CARD 11 Table Identification Card
CARD 11/A Titlc and Control Card (7A4, A2, uI2 format)
Col $\quad 1 \rightarrow 30$ Alphanumeric title for the sets of tables $31 \rightarrow 32$ NXL, number of Mach number entrics in $C_{L}$ table $33 \rightarrow 34$ NZL, number of angle of attack entries in $C_{L}$ table
35,36 NXD, number of Mach number entries in $C_{D}$ table $3 \rightarrow 38$ NZD, number of angle of attack entries in $C_{D}$ table $30 \rightarrow 40 \mathrm{NXM}$, number of Mach number entries in $C_{M}$ table 41-42 NXM, number of angle of attack entries in $C_{M}$ table

### 2.3.1.1.1 Lift Coefficient Table

CARD 11/B1 Mach number entrics for $C_{L}$ table ( $7 \mathrm{X}, 9 \mathrm{~F} 7$. ( format)
Col $\quad 8 \rightarrow 14 \quad M_{1}$, lowest Mach number
$15 \rightarrow 21 \mathrm{M}_{2}$, nexi highest Mach number
$22 \rightarrow \mathrm{M}_{3}$, next highest Mach number
$29 \rightarrow 35 \mathrm{M}_{4}$, aext highest Mach number
$3 G \rightarrow 42 M_{5}$, next highest Mach number
$43 \rightarrow 49 M_{6}$, next highest Mach number
$50 \rightarrow 56 \quad M_{7}$, next highest Mach number
$57 \rightarrow 63 \mathrm{M}_{8}$, next highest Mach number $64 \rightarrow 70 \mathrm{M}_{9}$, next highest Mach number

CARDS 11/B2 Additional Mach Numbers (include only if NXL $\geq 10$ )
Same format as CARD ll/Bl; include additional cards as required with the same format to input NXL values of Mach numbers

## Card Sets for Angle of Attack/Lift Coefficient Data

NZL card sets follow the Mach number entrits. Each set has the following format:

First Card:

> Col $\quad \rightarrow 7 \quad$ Angle of attack, degrees
> $B \rightarrow 14$ Coefficient at $M=M_{1}$
> $15 \rightarrow 21$ Coefficient at $M=M_{2}$
> $22 \rightarrow 28$ Cocfficient at $M=M_{3}$
> $29 \rightarrow 35$ Coefficient at $M=M_{4}$
> $36 \rightarrow 42$ Coefficient at $M=M_{5}$
> $43 \rightarrow 49$ Coefficient at $M=M_{6}$
> $50 \rightarrow 56$ Coefficient at $M=M_{7}$
> $57 \rightarrow 63$ Coefficient at $M=M_{8}$
> $64 \rightarrow 70$ Cocfficient at $M=M_{9}$

Second Card: (include only if NZL $\geq 10$ )

$$
\text { Col } \begin{array}{ll}
\begin{array}{ll}
l \rightarrow 7 \\
& \rightarrow 14
\end{array} & \text { (Not used) } \\
& \text { Cocfficient at } M=M_{10}
\end{array}
$$

Third Card: (include only if $N Z L \geq 19$ )
Same format as Second Card; include additional cards as required to input NXL values of $C_{L}$.

### 2.3.1.1.2 Drag Coefficient Table

CARDS $11 / C 1,11 / C 2$, etc. Mach number entries
Same format as CARDS $11 / B 1,11 / B 2$, etc; NXD entries required

## Card Sets for Angle of Attack/Drag Coefficient Data <br> NZD card sets required; same format as for lift coefficient card sets; NXD values of $C_{D}$ required for each card set

### 2.3.1.1.3 Pitching Moment Coefficient Table

CARDS 11/D1, 11/D2, etc. 11/D1, 11/D2, etc.
Same format as lift and drag coefficient tables; NXM Mach number entries required; NZM card sets required with NXM values of $C_{D}$ for each card set.
2.3.1.2 Airfoil Data Table Set No 2 (include only if IPL(2) $\geq 2$ )

CARD 12 Table Identification Card
CARD 12/A Title and Control Card
CARDS 12/Bl Lift Coefficient Table
CARDS $12 / \mathrm{Cl}$ Drag Coefficient Table
CARDS 12/Dl Pitching Moment Coefficient Table
2.3.1.3 Airfoil Data Table Set No. 3 (include only if $\operatorname{IPL}(2) \geq 3$ )

CARD 13 Table Identification Card
CARD 13A Title and Control Card
CARDS $13 /$ Bl Lift Coefficient Table
CARDS 13/Cl Drag Coefficient Table
CARDS 13/Dl Pitching Moment Coefficient Table
2.3.1.4 Airfoil Data Table Set No. 4 (include only if IPL(2) $\geq 4$ )

CARD 14 Table Identification Card
CARD 14A Title and Control Card
CARDS 14/Bl Lift Coefficient Table
CARDS $14 / \mathrm{Cl}$ Drag Coefficient Table
CARDS i4/Dl Pitching Moment Coefficient Table

# 2.3.1.5 Airfoil Data Table Set No. 5 (include only if $\operatorname{IPL}(2)=5$ ) 

CARD 15 Table Identification Card
CARD 15A Title and Control Card
CARDS 15/Bl Lift Coefficient Table
CARDS 15/Cl Drag Coefficient Table
CARDS 15/Dl Pitching Moment Coefficient Table
Note: A set of tables for an NACA 0012 airfoil is compiled within the program and stored in the region allocated for Data Table Set No. 5. If IPL(2) $=5$, the fifth set of tables input overlays this set of internal 0012 tables.

### 2.3.2 Rotor Aeroelastic Blade Data Blocks

### 2.3.2.1 Main Rotor Data Block (omit entire data block if $\operatorname{IPL}(3)=0$ )

CARD 16 Main Rotor Acroclastic Blade Data Block Identification Card

### 2.3.2.1.1 Average Weight of Blade Segments

CARD 16/Al

XMW (1) Blade Segment No. 1 (root)
(lb/in.)
(2) Blade Segment No. 2 (lb/in.)
(3) Blade Segment No. 3 (lb/in.)
(4) Blade Segment No. 4
(5) Blade Segment No. 5 (lb/in.)
(6) Blade Segment No. 6 (lb/in.)
(7) Blade Segment No. 7

CARD 16/A2

XMW (8) Blade Segment No. 8
(lb/in.)
(9) Blade Segment No. 9 (lb/in.)
(10) Blade Segment No. 10
(11) Blade Segment No. 11
(12) Blade Segment No. 12
(13) Blade Segment No. 13
(14) Blade Segment No. 14
(lb/in.)
( $1 \mathrm{~b} / \mathrm{in}$. )
(lb/in.)

CARI 16/A3
XMW (15) Blade Segment No. 15
(lb/in.)
(16) Blade Segment No. 16
(lb/in.)
(17) Blade Seginent No. 17
(lb/in.)
(18) Blade Segment No. 18
(19) Blade Segment No. 19
(20) Blade Segment No. 20 (Lip)
(1b/in.)
(21) Tip Weight
(lb/in.)
(lb/in.)
( 1 b )

### 2.3.2.1.2 Average Beamwise Mass Moment of Inertia ol Blade Segments

CARD 16/B1
XMW (22) Blade Segment No. 1 (root)
(23) Blade Segment No. 2
(24) Blade Scgment No. 3
(25) Blade Segment No. 4
(26) Blade Segment No. 5
(27) Blade Segment No. 6
(28) Blade Segment No. 7

```
(in.-lb-scc
(in.-lb sec
(in.-lb-sec}\frac{2}{2}/in.
(in.-lb-sec}\frac{2}{2}/in.
(in.-lb-sec}\frac{2}{2}/in.
(in.-lb-sec}2/in.
(in.0-lb-sec}/in.
```


## CARD 16/B2

XMW (29) Blade Segment No. 8
(30) Blade Segment No. 9
(31) Blade Segment No. 10
(32) Blade Segment No. 11
(33) Blade Segment No. 12
(34) Blade Segment No. 13
(35) Blade Segment No. 14

$$
\begin{aligned}
& \text { (in. }-1 b-\sec _{2}^{2} / i n_{0} \text { ) } \\
& \text { (in. } \left.-1 b-\sec _{2} / \text { in. }\right) \\
& \text { (in.-lb-sec } 2 \text { /in.) } \\
& \text { (in. }-1 b-\sec _{2}^{2} / i n_{.} \text {) } \\
& \text { (in. }-1 b-\sec _{2} / \text { in.) } \\
& \text { (in.-1b-sec } 2 / i n_{0} \text { ) } \\
& \text { (in.-1b-sec } 2 / i n . \text { ) }
\end{aligned}
$$

## CARD 16/B3

XMW (36) Blade Segment No. 15

$$
\begin{aligned}
& \text { (in.-Ib-sec } \frac{2}{2} / \text { in.) } \\
& \text { (in. } \left.-1 b-\sec \frac{2}{2} / \mathrm{in} .\right) \\
& \text { (in. } \left.-1 b-\sec _{2} / \mathrm{in} .\right) \\
& \text { (in. }-1 b-\sec 2 \text { /in.) } \\
& \text { (in. }-1 b-\sec _{2} / \text { in.) } \\
& \text { (in.-1b-sec } 2 / i n \text {.) }
\end{aligned}
$$

(37) Blade Segment No. 16
(38) Blade Segment No. 17
(39) Blade Segment No. 18
(40) Blade Segment No. 19
(41) Blade Segment No. 20 (tip)
(42)

### 2.3.2.1.3 Average Chordwise Mass Moment of Inertia of Blade Segment

CARD $16 / \mathrm{Cl}$
XMW (43) Blade Segment No. 1 (root)
(in. $\left.-1 b-\sec \frac{2}{2} / i n.\right)$
(44) Blade Segment Nu. 2
(45) Blade Segment No. 3
(46) Blade Segment No. 4
(47) Blade Segment No. 5
(48) Blade Segment No. 6
(49) Blade Segment No. 7

```
(in.-lb-sec 2/in.)
(in.-1b-sec 2/in.)
(in.-lb-sec 2/in.)
(in.-lb-sec 2/in.)
(in.-lb-sec}\frac{2}{2}/in.
(in.-lb-sec 2/in.)
```

CARD $16 / C 2$
XMW (50) Blade Segment No. 8
(51) Blade Segment No. 9
(52) Blade Segment No. 10
(53) Blade Segment No. 11
(54) Blade Segment No. $1:$
(55) Blade Segment No. I
(56) Blade Segment No. 14

```
(in.-1b-sec 2/in.)
```

(in.-1b-sec 2/in.)
(in.-lb-scc 2/in.)
(in.-lb-scc 2/in.)
(in.-lb-sec 2/in.)
(in.-lb-sec 2/in.)
(in.-lb-sec}2/in.
(in.-lb-sec}2/in.
(in.-1b-sec 2/in.)
(in.-1b-sec 2/in.)
(in.-lb-sec 2/in.)
(in.-lb-sec 2/in.)
(in.-lb-sec}/\mathrm{ /in.)

```
(in.-lb-sec}/\mathrm{ /in.)
```


## CARD 16/C3

XMN (57) Blade Segment No. 15
(58) Blade Segment No. 16
(59) Blade Segment No. 17
(50) Blade Segment No. 18
(b1) Blade Segment No. 19
(62) Blade Segment No. 20 (tip)

```
(in.-1b-sec 2/in.)
(in.-lb-sec}2/in.)
(in.-1b-sec /in.)
(in.-lb-sec}2/in.
(in.-1b-sec 2/in.)
(in.-lb-sec 2/in.)
(in.-lb-sec}/\textrm{in}.
```

(63)

### 2.3.2.1.4 Rotor Mode Shapes

Format for first eleven cards of each set of mode shape data is 6F10.0; the twelfth (last) card of each set has a 6F10.0, 2 F5.0 format.

### 2.3.2.1.4.1 Mode 1

CARD 16/D1
XMRMS (1) Out-of-plane component at Station No. O (root) (ft)
(2) Inplane component at Station No. 0
(3) Torsional component at Station No. 0
(4) Out-of-plane component at Statior No. 1
(5) Inplane component at Station No.:
(6) Torsional component at Statior. No. 1

CARD 16/D2
XMRMS (7) Out-of-plane component at Station No. 2
(8) Inplane component at Station No. 2
(9) Torsional component at Station No. 2
(10) Out-of-plane component at: Station No. 3
(11) Inplane component at Station No. 3
(12) Torsional component at Station No. 3
(deg)
CARD 16/D3 Component data for Stations No. 4 and 5
CARD 16/D4 Component data for Stations No. 6 and 7
CARD 16/D5 Component data for Stations No. 8 and 9
CARD 16/D6 Component data for Stations No. 10 and 11
CARD 16/D7 Component data for Stations No. 12 and 13
CARD 16/D8 Component data for Stations No. 14 and 15
CARD 16/D9 Component data for Stations No. 16 and 17
CARD 16/D10 Component data for Stations No. 18 and 19

## CARD 16/Dll

XMRMS

(61)	Out-of-plane component at Station No. 20 (tip)	(ft)
(62)	Inplane component at Station No. 20	(ft)
(63)	Torsional component at Station No. 20	(deg)
(64)	Natural frequency of Mode 1 at iaseline rpm and pitch angle	(/rev)
(65)	Mode type indicator	
(66)	Modal danping ratio	

## CARD ig/Dl2

XMRMS (67) Natural frequency at low rpm and low pitch (rpm) angle
(68) Natural frequency at low rpm and high pitch (rpm) angle
(69) Natural frequency at high rpm and low pitch (rpm) angle
(70) Natural frequency at high rpm and high pitch (rpm) angle
(71) Difference between reference pitch angle and (deg) high or low value
(72) Difference between reference rpm and either high or low value
(73) Reference pitch angle (in Col. 61 $\rightarrow$ 65)
(74) Reference rpm value (in $\mathrm{Col}, 66 \rightarrow 70$ )
(rpm)
(deg)
(rpm)

### 2.3.2.1.4.2 Modes 2 through 6

CARDS $16 / E 1$ through $16 / E 12$ (include only if $\operatorname{IPL}(3) \geq 2$ )
XMRMS $(75) \rightarrow$ XMRMS (148) Mode 2 data; same input sequence and format as Mode 1.

CARDS $16 /$ Fl through $16 /$ Fl2 (include only if $\operatorname{IPL}(3) \geq 3$ )
XMRMS(149) $\rightarrow$ XMRMS(222) Mode 3 data; same input sequence and format as Mode 1.

CARDS $16 /$ G1 through $16 / G 12$ (include only if $\operatorname{IPL}(3) \geq 4$ )
XMRMS(223) $\rightarrow$ XMRMS(296) Mode 4 data; same input sequence and format as Mode 1.

CARDS $16 / \mathrm{Hl}$ through $16 / \mathrm{Hl2}$ (include only if $\operatorname{IPL}(3) \geq 5$ )
XOMRMS(297) $\rightarrow$ XMRMS(370) Mode 5 data; same input sequence and format as Mode 1.

CARDS $16 /$ Il through $16 /$ Il2 (include only if IPI (3) $=6$ )
XMRMS (371) $\rightarrow$ XMRMS (444) Mode 6 data; same input sequence and format as Mode 1.
2.3.2.2 Tail Rotor Data Block (omit entire block if IPL (4) $=0$ )

This data block uses the same input format and sequence as the main rotor data block discussed in the preceding section.

CARD 17 Tail Rotor Aeroelastic Blade Data Block Identification Card

$\left.\begin{array}{l}\text { CARD 17/C1 } \\ \text { CARD 17/C2 } \\ \text { CARD 17/C3 }\end{array}\right\} \mathrm{XTW}(43) \rightarrow \mathrm{XTW}(62) \begin{aligned} & \text { Average blade chordwise mass } \\ & \text { moment of inertia distribution } \\ & \text { (root to tip) }\end{aligned} \quad$ (in.-lb-sec ${ }^{2} / \mathrm{in}$ )
CARDS 17/D1 through 17/D12
XTRMS $(1) \rightarrow \operatorname{XTRMS}(74) \quad$ Mode 1 data
CARDS 17/El through 17/E12 (include only if IPL(4) $\geq 2$ )
$\operatorname{XTRMS}(75) \rightarrow \operatorname{XTRMS}(148) \quad$ Mode 2 data
CARDS $17 / \mathrm{Fl}$ through $17 / \mathrm{Fl} 2$ (include only if $\operatorname{IPL}(4) \geq 3$ )
XTRMS (149) $\rightarrow$ XTRMS(222) Mode 3 data
CARDS $17 /$ GI through $17 / G 12$ (include only if $\operatorname{IPL}(4) \geq 4$ )

```
 XTRMS(223) }->\mathrm{ XTRMS(296) Mode 4 data
```

CARDS $17 / \mathrm{Hl}$ through $17 / \mathrm{Hl2}$ (include only if $\operatorname{IPL}(4) \geq 5$ )
XTRMS (297) $\rightarrow$ XTRMS (370) Mode 5 data
CARDS 17/Il through $17 / 112$ (include only if $\operatorname{IPL}(4)=6$ )

$$
\text { XTRMS (371) } \rightarrow \text { XTRMS(444) } \quad \text { Mode } 6 \text { data }
$$

$$
2-18
$$

### 2.3.3 Rotor-Induced Velocity Distribution Tables (omit if IPL(5) $=0$ )

A rotor-induced velocity distribution (RIVD) table may be input for each rotor. If a table is not input for a particular rotor, the distribution is computed from the equation in Section 3.26 .3
2.3.3.1 Main Rotor Table (include only if $\operatorname{IPL}(5)=1$ or 3 )

CARD 18 Main Rotor RIVD Table Identification Card
CARD 18/A Title and Control Card (8A4, 8X, 4 I 3 format)
Col $1 \rightarrow 32$ Alphanumeric title for table
$41 \rightarrow 43 \mathrm{NMU}$, Number of advance ratios ( $1 \leq \mathrm{NMU} \leq 10$ )
$44 \rightarrow 46$ NLM, Number of inflow ratios ( $1 \leq$ NLM $\leq 5$ )
$47 \rightarrow 49$ NRS, Number of radial stations $(=4, \overline{5}, 10$, or 20)
$50 \rightarrow 52 \mathrm{NHH}$, Order of highest harmonic $(0 \leq \mathrm{NHH} \leq 16)$

### 2.3.3.1.1 Advance Ratio Inputs

CARD 18/B1 (include only if NMU $\geq 2 ; 7$ FlU. 0 format)
WKMU (1) Lowest advance ratio
(2) Next highest advance ratio
(3) Next righest advance ratio
(4) Next fighest advance ratio
(5) Next highest advance ratio
(i) Nex: highest advance ratio
(7) Next highest advance ratio

CARD 18/B2 (include only if $N M U \geq 8 ; 3 F 10.0$ format)
WKMU (8) Next highest advance ratio
(9) Next highest advance ratio
(10) Next highest advance ratio

### 2.3.3.1.2 Inflow Ratio Inputs

CARD 18/C (include only if NLM $\geq 2$; 5F10.0 format)
WKLM (1) Lowest inflow ratio
(2) Next highest inflow ratio
(3) Next highest inflow ratio
(4) Next highest inflow ratio
(5) Next highest inflow ratio

NOTE: Include card(s) for advance ratio inputs if and only if NMU $\geq 2$; include card for inflow ratio inputs if and only if NLM $\geq 2$; i.e., if $N M U=1$ and/or NLM $=1$ for a table, that table is independent of advance ratio and/or inflow ratio, respectively.

### 2.3.3.1.3 Sets of Coefficients (NMU*NLM*NRS sets required)

Each set of coefficients corresponds to a specific combination of advance ratio, inflow ratio, and radial stations (WKMU(I), WKLM(J), and WKRS(K) respectively). See Figure 2-2 for input sequence of the sets. Each set of coefficients starts on a new card and consists of one to six cards in the following format:

First Card (7F10.0 format)
Col $1 \rightarrow 10$ Constant (zero ${ }^{\text {th }}$ harmonic)
$11 \rightarrow 20$ Sine compenent of first harmonic
$2 l \rightarrow 30$ Cosine component of first harmonic
$31 \rightarrow 40$ Sine component of second harmonic
$4 l \rightarrow 50$ Cosine component of second harmonic
$51 \rightarrow 60$ Sine componelit of third harmonic
$61 \rightarrow 70$ Cosine component of third harmonic
Second Card (include only if $\mathrm{NHH} \geq 4 ; 10 \mathrm{X}, 6 \mathrm{~F} 10.0$ format)
Col $\quad 1 \rightarrow 10$ (Not used)
$11 \rightarrow 20$ Sine component of fourth harmonic
$21 \rightarrow 30$ Cosine component of fourth harmonic
$31 \rightarrow 40$ Sine component of fifth harmonic
$41 \rightarrow 50$ Cosine component of firth harmonic
$51 \rightarrow 60$ Sine component of sixth harmonic
$61 \rightarrow 70$ Cosine component of sixth harmonic
Third Card (include only if $\mathrm{NHH} \geq 7$ )
Sine and cosine components for seventh, eighth and ninth harmonics; same format as second card

Fourth Card (include only if NHH $\geq 10$ )
Sine and cosine components for $t \in n t h$, eleventh and twelfth harmonics; same format as second card

Fifth Card (include only if $\mathrm{NHH} \geq 13$ )
Sin and cosine components for thirteenth, fourteenth and fifteenth harmonics; same format as second card

Sixth Card (include only if NHN = 16)

Col	$1 \rightarrow 10$	(Not used)
Col	$11 \rightarrow 20$	Sinecomponent of sixteenth harmonic   Col   $21 \rightarrow 30$
Cosine component of sixteenth harmonic		
Col	$31 \rightarrow 70$	(Not used)

Array name for corresponding
value of $\mu, \lambda$, and $x$ (WKMU(I), WKLM(J), and WKRS(K), respectively)


Length of Card Sets Not to Scale

Figure 2-2. Schematic Diagram of Card Deck for RIVD Table.
2.3.3.2 Tail Rotor Table (include only if $\operatorname{IPL}(5)=2$ or 3 )

Format for this table is the same as for the Main Rotor Table.
CARD 19 Tail Rotor RIVD Table Identification Card
CARD 19/A Title and Control Card
CARD 19/B1 Advance ratio inputs
19/B2
CARD 19/C Inflow ratio inputs
Sets of Coefficients
NMU*NLM*NRS sets required; maximum of 6 cards per set

### 2.3.4 Tablos [ur Rotor-Induced Velocity Acting at Aerodynamic Surfaces

If IPl(37) $\neq 0$, a xaclly $\operatorname{IPL}(37)$ lables must be input. The format fur each table is identical lo each other and similar to the RIVD tables discussed in Section 2.3.3. The rormat for an example table follows:

```
First Card: Table Identification Card
Sccond Card: Title and Control Card (8A4, 8X, 3I3 format)
 Col 1-32 Alphanumeric title for table
 4l->43 NMU, Number of advance ratios (}1\leq\mathrm{ iNMU < 10)
 44.46 NLM, Number of inflow ratios (i < NLM < 5)
 4'->4? NHH, Order of highest harmonic (}\overline{0}\leqNH\overline{N}\leq7
Nevt Card(s): Advance ratio inputs; 7Fl0.0 format; include if and
 only if NMU > 2; use one card if 2\leqNMU\leq7; con-
 tinue on a second card if NMJ \geq8.
Next Curd: Inflow ratio inputs; 5Fl0.0 format: include if and
 only if NLM \geq2.
Next Cards: Set of cocfficients; NM|*NLM stts required; one to
 three cards for cach set; same forma, as for sets
 uf cocfficients in RIVD Tablcs (see Section 2.3.3.1.3);
 see Figure 2-3 for input sequence of the sets.
```

Array name for corresponding value of $\mu$ and $\lambda$ (WKMU(I) and WKLM(J) respectively)


## Lensch of Card Sets Not to Scale

Figure 2-3. Schematic Diagram of Card Deck for a Set of RWAS Tables.

### 2.4 FUSELAGE GROUP (include only if $\operatorname{IPL}(1)=0$ )

CARD 20 Fuselage Group Identification Card

### 2.4.1 Basic Inputs

CARD 21
XFS (1) Gross weight
(1b)
(2) Stationline
(3) Buttline
(4) Waterline
(5) Stationline

Location of fuselage (in.)
(6) Buttline $\}$ Location of center (in)
(7) Waterline of gravity (in.)
 (in.) data reference point (in.)

CAKD 22
XFS (8) Aircraft rolling inertia, $\mathrm{I}_{\mathrm{XX}}$
(9) Aircraft pitching inertia, $I_{y y}$
(10) Aircraft yawing inertia, $\mathrm{I}_{2 \mathrm{Z}}$
(11) Aircraft product of inertia, $I_{x z}$
(12) Force and moment equation use indicator, LGF
(13) Phasing Angle (Nominal/Phasing)
(14) Phasing Angle (High/Phasing) (deg)

### 2.4.2 Aerodynamic Inputs (Wind Axis)

Cards 23 through $2 E$ contain the coefficients for the High Angle and Nominal Angle Equations. The asterisk (\%) indicates the input is considered a necessary one; see Section 3.4.

### 2.4.2.1 Coefficients [or Lift Equations

CARD 23
XFS *(15) L/q at $\psi_{w}=\theta_{W}=0^{\circ}$ (Fwd. F1t.)
(16) L/q at $\psi_{W}=180^{\circ}, \forall_{w}=0^{\circ}$ (Rwd. Flt.)
(17) Approx. peak $L / q$ for $0^{\circ} \leq \theta_{W} \leq 90^{\circ}$, $\psi_{W}=0^{\circ}$
(18) Value of $\theta_{w}$ for $\operatorname{XFS}(17)$ (ft ${ }^{2}$ )
(19) $\mathrm{L} / \mathrm{q}$ at $\psi_{\mathrm{w}}=0^{\circ}, \theta_{\mathrm{w}}=90^{\circ}$ (Vert. Flt.) (deg)
(20) $\mathrm{L} / \mathrm{q}$ at $\psi_{\mathrm{w}}=90^{\circ}, \theta_{\mathrm{w}}=0^{\circ}$ (Sideward Flt.)
(21) $\delta(L / q) / \partial \psi_{w}$

```
(deg)
(slug-ft2
(slug-[t2)
(slug-ft2)
(slug-ft2)
 (deg)
```

CARD 24
XFS (22) $\partial(L / q) / \partial\left(\psi_{w}{ }^{2}\right)$

$$
\begin{gathered}
\left(\mathrm{ft}^{2} / \mathrm{deg}^{2}\right) \\
\left(\mathrm{ft}^{2} / \mathrm{deg}^{2}\right) \\
\left(\mathrm{ft}^{2} / \mathrm{deg}^{2}\right) \\
\left(\mathrm{ft}^{2} / \mathrm{deg}^{3}\right) \\
\left(\mathrm{ft}^{2} / \mathrm{deg}^{2}\right) \\
\left(\mathrm{ft}^{2} / \mathrm{deg}^{3}\right) \\
\left(\mathrm{ft}^{2} / \mathrm{deg}^{3}\right)
\end{gathered}
$$

*(23) $\partial\left(L_{\prime}^{\prime} q\right) / \partial e_{w} ;$ lift curve slope at $\psi_{w}=0^{\circ}$
(24) $\partial\left(\partial(i / q) / \partial \psi_{w}\right) \partial \theta_{w}$
(25) $\left.\partial\left(\partial(L / q) / \partial\left({\underset{w}{w}}_{2}^{2}\right)\right) / \partial \theta_{w}^{w}\right)$
(26) $\partial(L / q) / \partial\left(\theta_{w}{ }^{2}\right)$
(2i) $\partial\left(\partial(L / q) / \partial \psi_{w}\right) / \partial\left(\theta_{w}^{2}\right)$
(28) $\partial(\mathrm{L} / \mathrm{q}) / 0 \cdot \theta_{\mathrm{w}}^{3}$ )

### 2.4.2.2 Coefficients ior Drag Equations

CARD 25

$$
\begin{align*}
& \mathrm{XrS} *(29) \mathrm{D} / \mathrm{q} \text { at } \psi_{\mathrm{w}}=\theta_{\mathrm{w}}=0^{\circ} \text { (Fwd. F1t) } \\
& \text { ( } i t^{2} \text { ) } \\
& \text { (30) D/q at } \psi_{w}=180^{\circ}, \theta_{w}=0^{\circ} \text { (Rwd. Flt.) } \\
& \text { ( } \mathrm{ft}{ }^{2} \text { ) } \\
& \text { (31) } \mathrm{D} / \mathrm{q} \text { at } \psi_{\mathrm{w}}=90^{\circ}, \theta_{\mathrm{w}}=0^{\circ} \text { (Sideward Flt) } \\
& \text { (ft }{ }^{2} \text { ) } \\
& \text { (32) } \mathrm{D} / \mathrm{q} \text { at } \theta_{\mathrm{w}}=-90^{\circ} \text { (Ascending Vertical Flt) } \\
& \text { (33) D/q at } \theta_{\mathrm{w}}=+90^{\circ} \text { (Descending Vertical Flt) }  \tag{34}\\
& \text { (35) } \partial(D / q) / \partial \psi_{w}
\end{align*}
$$

CARD 26
XFS $*(36) \quad \partial(D / q) / O\left(\psi_{W}^{2}\right)$; variation of drag with $\psi_{w}^{2}$ at $\theta_{w}=0^{\circ}$
$\left(\mathrm{ft}^{2} / \mathrm{deg}^{2}\right)$
$\%(37) \quad 0(D / 0) / \partial \theta_{w}$; variation of drag with $\theta_{w}$ at $\psi_{w}=0^{\circ}$
( $\mathrm{ft}^{2} / \mathrm{deg}$ )
(38) $\partial\left(\partial(D / q) / \partial \psi_{W}\right) / \partial \theta_{w}$
$\left(f t^{2} / \mathrm{deg}^{2}\right)$
(39) $\partial\left(\partial(D / q) / \partial\left({ }_{\sim}^{\psi}{ }^{2}\right)\right) / \partial \theta_{w}$
(ft ${ }^{2} / \mathrm{deg}^{3}$ )
*(40) $O(D / q) / \partial\left(\epsilon_{w}{ }^{2}\right)$; variation of drag with $\theta_{w}{ }^{2}$ at $\rangle_{w}=0^{\circ}$
( $\mathrm{ft}^{2} / \mathrm{deg}^{2}$ )
(41) $\partial\left(\partial(D / q) / \partial \psi_{w}^{w}\right) / \partial\left(\theta_{w}^{2}\right)$ $\left(\mathrm{ft}^{2} / \mathrm{deg}^{3}\right)$
(42) $\partial(D / q) / \partial\left(\theta_{w}^{W}\right)$

### 2.4.2.3 Coefficients for Pitching Moment Equations

CARD 27

```
XFS *(43) M/q at \(\psi_{w}=\theta_{w}=0^{\circ}\) (Fwd F1t)
```

(44) $\mathrm{M} / \mathrm{q}$ at ${ }_{w}=180^{\circ}$, $\mathrm{E}_{\mathrm{w}}=0^{\circ}$ (Rwd. Flt)
$\left(\left[t^{3}\right)\right.$
$\left(f t^{3}\right)$
(45) Approx. peak $\mathrm{M} / \mathrm{q}$ for $0^{\circ} \leq \theta_{\mathrm{w}} \leq 90^{\circ}$, $\psi_{\mathrm{w}}=0^{\circ}$
$\left(f t^{3}\right)$
(46) Value of $\epsilon_{W}$ for $\operatorname{XFS}(45)$
(47) $\mathrm{M} / \mathrm{q}^{\text {at }}{ }_{\mathrm{w}}=0^{\circ}, \theta_{w}=90^{\circ}$ (Vertical Flt)
(deg)
$\left(f t^{3}\right)$
(48) M/q at $W_{W}=90^{\circ}, \theta_{W}=0^{\circ}$ (Sideward Flt)
$\left(f t^{3}\right)$
(49) $\partial(M / q) / 0_{w}$
( $\mathrm{it}^{3} / \mathrm{deg}$ )

CARD 25
XFS (50) $\partial(M / q) / \partial\left(\psi_{w}{ }^{2}\right)$

$$
\%(51) \partial(M / q) / \partial \theta_{w} ; \text { static longitudinal stability }
$$

$$
\text { (52) } \partial\left(\partial(M / q) / \partial \psi_{w}\right) \Delta \theta_{w}
$$

$$
\text { (53) } \partial\left(\partial(M / q) / \partial\left(\psi_{2}^{w}\right)\right) / \partial \theta_{w}
$$

$$
(54) \quad \partial(M / q) / \partial\left(\theta_{w}^{2}\right)
$$

$$
(55) \quad \partial\left(\partial(\mathrm{M} / \mathrm{q}) / \mathrm{O}_{\mathrm{W}}\right) / \mathrm{L}\left(\mathrm{t}_{\mathrm{w}}^{2}\right)
$$

$$
\text { (56) } O(M / q) / O\left(\theta_{w}^{3}\right)
$$

$$
\begin{aligned}
& \left(\mathrm{ft}^{3} / \mathrm{deg}^{2}\right) \\
& \left(\mathrm{ft}^{3} / \mathrm{deg}^{2}\right) \\
& \left(\mathrm{ft}^{3} / \mathrm{deg}^{2}\right) \\
& \left(\mathrm{ft}^{3} / \mathrm{deg}^{3}\right) \\
& \left(\mathrm{ft}^{3} / \mathrm{deg}^{2}\right) \\
& \left(\mathrm{ft}^{3} / \mathrm{deg}^{3}\right) \\
& \left(\mathrm{ft}^{3} / \mathrm{deg}^{3}\right)
\end{aligned}
$$

### 2.4.2.4 Coefficients foi Side Force Equations

CARD 29
XFS (57) Y/q at $\psi_{w}=70^{\circ}, \theta_{w}=0^{\circ}$ (Sideward F1t)

$$
\begin{equation*}
\left(f t^{2}\right) \tag{2}
\end{equation*}
$$

(58) Approx. peak $Y / q$ for $0 \leq \dagger_{W} \leq 90^{\circ}, \theta_{W}=0^{\circ}$
(59) Value of ${ }_{w}$ for XFS (58)
(60) Y/q at ${ }_{W}=\theta_{W}=0^{\circ}$ (Fwd Flt)
(deg)
( $\mathrm{ft}^{2}$ )
(61) $\partial(Y / q) / \partial \theta_{W}$
(ft ${ }^{2} / \mathrm{deg}$ )
(62) $\partial(Y / q) / \partial\left(\theta_{W_{3}}{ }^{2}\right)$
$\left(\mathrm{ft}^{2} / \mathrm{deg}^{2}\right)$
(63) $\partial(Y / q) / \partial\left(\theta_{W}^{3}\right)$

CARD 2A

$$
\begin{aligned}
& \text { XI:S } *(64) \quad \partial(Y / q) / \partial\rangle_{W} \text {; slope of } Y \text { vs. } \|_{w} \text { at } \theta_{W}=0^{\circ} \\
& \text { (65) } \partial\left(\partial(Y / q) / \partial \theta_{w}\right) / \partial 中_{W} \\
& \text { (66) } \partial\left(\partial(Y / q) / \partial\left(\theta_{W}^{2}\right)\right) / \partial Y_{w} \\
& \text { ( } 67 \text { ) } \partial(Y / q) / \partial\left(\psi_{w}^{2}\right) \\
& \text { (68) } \partial\left(\partial(Y / q) / \partial{\underset{W}{W}}_{w}^{w}\right) / \partial\left(\psi_{w}{ }^{2}\right) \\
& \text { (69) } \partial(Y / q) / \partial\left(\psi_{W}^{3}\right) \\
& \text { (70) } \partial\left(\partial(Y / q) / \partial \theta_{W}\right) / \partial\left(\psi_{W}{ }^{3}\right)
\end{aligned}
$$

(ft ${ }^{2} / \mathrm{deg}$ ) ( $\mathrm{ft}^{2} / \mathrm{deg}^{2}$ ) $\left(\mathrm{ft}^{2} / \mathrm{deg}^{3}\right)$ $\left(f t^{2} / \mathrm{deg}^{2}\right)$ $\left(\mathrm{ft}^{2} / \mathrm{deg}^{3}\right.$ )
$\left(\mathrm{ft}^{2} / \mathrm{deg}^{3}\right)$
$\left(f t^{2} / \mathrm{deg}^{4}\right)$

## 2.4 .2 .5 Coefficients for Rolling Moment Equations

CARD 2B
XFS (71) $1 / q$ at ${ }_{w}=90^{\circ}, \theta_{w}=0^{\circ}$ (Sideward F1t)
(72) Approx. peak $1 / q$ โor $0 \leq \psi_{w} \leq 90^{\circ}, \theta_{w}=0^{\circ} \quad$ (ft ${ }^{3}$ )
(73) Value of ${ }_{w}$ for XFS(72) (deg)
(74) $1 / q$ at $\psi_{w}=\epsilon_{w}=0^{\circ}$ (Fwd F1t)
(75) $0(1 / q) / \Delta \theta_{w}$
(76) $\partial(1 / q) / \partial\left(\theta_{w_{3}}^{2}\right)$
(77) $\partial(1 / q) / \partial\left(\theta_{w}\right)$

CARD 2C
XFS *(78) $\quad \partial(1 / q) / \partial \psi_{w}$; slope of RM curve for $\psi_{w}$ at $\theta_{w}=0^{0}$
(79) $\partial\left(\partial(1 / q) / \Delta \theta_{w}\right) / \partial \phi_{w}$
(80) $\partial\left(\partial(1 / q) / \partial\left(\theta_{w}^{2}\right) / \partial \psi_{w}\right.$
(81) $\partial(1 / q) / \partial\left(\psi_{w}^{2}\right)$
( $\mathrm{ft}^{3} / \mathrm{deg}$ )
(82) $\quad \partial\left(\partial(1 / q) / \partial \theta_{k}^{w}\right) / \partial\left(\psi_{w}^{2}\right)$
(83) $\partial(1 / q) / \partial\left(\dagger_{w}^{3}\right)$
(84) $\partial\left(\partial(1 / q) / \partial G_{W}^{W}\right) / \partial\left(\left.\right|_{W} ^{3}\right)$
$\left(\mathrm{ft}^{3} / \mathrm{deg}{ }^{2}\right.$ )
$\left(\mathrm{ft}^{3} / \mathrm{deg}^{3}\right)$
$\left(\mathrm{ft}^{3} / d \in \mathrm{~g}^{2}\right)$
( $\mathrm{ft}^{3} / \mathrm{deg}^{3}$ )
$\left(\mathrm{ft}^{3} / \mathrm{deg}^{3}\right)$
$\left(\mathrm{ft}^{3} / \mathrm{deg}^{4}\right)$

### 2.4.2.6 Coefficients for Yawing Moment Equations

## CARD 2D

```
XFS (85) \(N / q\) at \(\psi_{W}=90^{\circ}, \theta_{w}=0^{\circ}\) (Sideward Flt.)
 \(\left(f t^{3}\right)\)
(86) Approx. peak \(N / q\) for \(0 \leq 中_{w} \leq 90^{\circ}, \theta_{w}=0^{\circ} \quad\) (ft \({ }^{3}\))
(87) Value of \(\psi_{w}\) for \(\operatorname{XFS}(86)\)
(88) N/q at \(\|_{w}=\theta_{w}=0^{\circ}\) (Fwd Flt) (ft \(^{3}\))
(89) \(0(N / q) / \partial \theta\)
(90) \(\partial(N / q) / \partial\left(\theta_{w}^{2}\right)\)
(91) \(\partial(N / q) / \partial\left(\theta_{W}{ }^{3}\right)\)
(deg)
(\(\mathrm{ft}^{3} / \mathrm{deg}\))
\(\left(\mathrm{ft}^{3} / \mathrm{deg}^{2}\right.\))
(ft \({ }^{3} / \mathrm{deg}^{3}\))
```

CARD 2E
XFS $*(92) \quad O(N / q) / O \phi_{w}$; Slope of YM curve for $\psi_{w}$ at

$$
\theta_{w}=0^{0}
$$

$$
\left(\mathrm{ft}^{3} / \mathrm{deg}\right)
$$

(93) $\partial\left(\partial(N / q) / \partial \theta_{w}\right) / \partial \psi_{w}$
(94) $\partial\left(\partial(N / q) / \Delta\left(\theta_{\mathrm{w}}{ }^{2}\right)\right) / \Delta \psi_{w}$
( $\mathrm{ft}^{3} / \mathrm{deg}^{2}$ )
(95) $\delta(\mathrm{N} / \mathrm{q}) / O\left(\mathrm{v}_{\mathrm{w}}{ }^{\mathrm{W}}\right)$
( $\mathrm{ft}^{3} / \mathrm{deg}^{3}$ )
(96) $O\left(\theta(N / q) / \Delta \theta_{W}\right) / \theta\left(\psi_{W}{ }^{2}\right)$
( $\mathrm{ft}^{3} / \mathrm{deg}^{2}$ )
(97) $0(N / q) / D\left({ }_{w}{ }^{3}\right)$
( $\mathrm{ft}^{3} / \mathrm{deg}^{3}$ )
(98) $\theta\left(\theta(N / q) / B \theta_{w}^{W}\right) / \theta\left(\phi_{w}{ }^{3}\right)$
2.5 ROTOR AERODYNAMIC GROUP (omit only if $\operatorname{IPL}(6)=0$ and $\operatorname{IPL}(7)=3$ )

CARD 30 Rotor Aerodynamic Group Identification Card

### 2.5.1 Rotor Airfoil Aerodynamic (RAA) Subgroup No. 1

CARD 31A
YRR
(1,1) Drag divergence Mach number for $\alpha=0$
$(2,1)$ Mach number for lower boundary of
$(3,1)$ supersonic region
$(4,1) \quad$ Maximum $C_{L}$, normal flow, $M=0$
$(5,1) \quad$ Cocficients of Mach number in
$(6,1) \quad$ flow $C_{L}$ equation, normal
$(7,1)$ Maximum $C_{L}$, reversed flow, $M=0$

CARD 31B
YRR (8,1) Slope of lif: curve for $M=0 \quad$ (/deg)
$(9,1) \quad$ Coefficients of $M$ for
$(10,1)$ lift curve slope in sub-
(11,1) sonic region
(/deg)
(12,1) $C_{D}$ for $\alpha=0, M=0$
$(13,1) \quad\}^{D}$ Coefficients of $\alpha$ in non- (/deg)
(14,1) divergent drag equation (/deg ${ }^{2}$ )
CARD 31C
YRR (15,1) Coefficient in supersonic drag equation
( 16,1 ) Maximum nondivergent $C_{D}$
(17,1) Thickness/chord ratio
$(18,1)$ Control variable for using data table
$(19,1)$ Drag rise coefficient
(20,1) Coefficient of yaw angle in Mach number equation
$(21,1)$ Exponent in Mach number equation for yawed flow

CARD 31D
YRR

$(22,1)$	Coefficients of a for Mach	( $/ \mathrm{deg}^{2}$ )
$(23,1)$	\} Critical in steady $C_{M}$	(/deg)
$(24,1)$	equation M	
$(25,1)$	$C_{M}$ for $\alpha=0, M=0$	
$(26,1)$		
$\begin{aligned} & (27,1) \\ & (28,1) \end{aligned}$	Maximum value of yawed flow angle	(deg)

## CARD 31E

```
YRR (29,1) Zero lifl line orientation at M = 0, (deg)
 normal flow
 (30,1) \Coefficients for zero lift line orientation (deg)
 (31,1) as a function of Mach number (deg)
 (32,1)
 (deg)
 (33,1) Switch for UNSAN yawed flow effects (0 = off)
 (34, 1)
 (35,1)
```

2.5.2 RAA Subgroup No. 2 (include only if $\operatorname{IPL}(6) \geq 2$ )

$\left.\begin{array}{l}\text { CARD } \\ \left.\begin{array}{l}\text { CARD } \\ \text { 32A } \\ \operatorname{CARD} \\ \text { 32C } \\ \text { CARD } \\ \text { 32D } \\ \text { CARD }\end{array}\right\} \quad \operatorname{~32E}\end{array}\right\} \quad \operatorname{YRR}(1,2) \rightarrow \operatorname{YRR}(35,2)$

2.5.3 RAA Subgroup No. 3 (include only if $\operatorname{IPL}(6) \geq 3$ )
CADD 33A
CARD 33B
CARD 33C $\} \operatorname{YRR}(1,3) \rightarrow \operatorname{YRR}(35,3)$
CARD 33D
CARD 33E
2.5.4 RAA Subgroup No. 4 (include only if $\operatorname{IPL}(6) \geq 4$ )
CARD 34A
$\left.\begin{array}{l}\text { CARD } \\ \text { CARD } \\ \text { 34C } \\ \text { CARD } \\ \text { 34D } \\ \text { CARD 34E }\end{array}\right\} \quad \operatorname{YRR}(1,4) \rightarrow \operatorname{YRR}(35,4)$.
2.5.5 RAA Subgroup No. 5 (include only if $\operatorname{IPL}(6)=5$ )
CARD 35A
CARD 35B
CARD 35C
CARD 35D
CARD 35E
2.6 MAIN ROTOR GROUP (omit if $\operatorname{IPL}(7)=1$ or 3 )

CARD 40 Main Rotor Group Identification Card
CARD 41
XMR (1) Number of blades
(2) Undersling (in.)
(3)
(4) Radius
(ft)
(5) Chord (oNLY if constant) (in.)
(6) Total twist (ONLY if linear) (deg)
(7) Flapping stop location

CARD 42
XMR

CARD 43
XMR (15) Station number for blade moments ( $0.0=$ hub)
(16) Hub-type indicator ( $0.0=$ gimbaled)
(17) Flapping stop spring rate (ft-1b/deg)
(18) Flapping spring rate (ft-1b/deg)
(19) Reduced rotor frequency for UNSAN option
(20) Lead-lag damper
(/rev)
(21) Hub extent
(lb-sec/ft)

CARD 44
XMR (22) Precone
(deg)
(23) Pitch change axis location ( $0.0=25 \%$ chord)
(chords)
(24) Pitch-flap coupling angle, 83
(deg)
(25) Drag coefficient for hub
(26)
(27) Coefficient for tip-vortex effect ( $0.0=$ off)
(28)

```
(29) Tip sweep angle (+ aft)
```

(deg)
(in.)
(30) Shift in ac at tip (+ aft)
(31) Moment arm of pitch-link attach point (+ fwd) (in.)
(32) Distance from hub to pitch-horn attach point (in.)
(33)
(34)
(35)

CARD 46
XMR (36) Rotor nacelle weight
(39) Waterline
(40) Rotor nacelle differential flat plate drag area (ft ${ }^{2}$ )
(41) Distance from mast pivot point to rotor nacelle

CARD 47
XMR (43) Control phasing (deg)
(44) F/A mast tilt ( +fwd ) (deg)
(45) Lateral mast tilt (+ right) (deg)
(46) Mast length (+ up)
(ft)
(47) Incremental torsional inertia of mast
(slug-ft ${ }^{2}$ )
(48) Torsional spring constant of mast
(ft-lb/deg)
(49) Torsional damping ratio for mast

CARD 48 Fore-and-Aft Dynamic Pylon (include only if IPL(8) $=1$ or 3 )
(1) Pylon inertia
(slug-ft ${ }^{2}$ )
(2) Pylon damping
(ft-1b-sec/deg)
(3) Pylon spring rate
(ft-lb/deg)
(4) Effective length of focused pylon
(5) F/A cyclic coupling ratio
(deg/deg)
(6) Lateral cyclic coupling ratio (deg/deg)
(7) Collective coupling ratio
(deg/deg)
CARD 49 Lateral Dynamic Pylon (include only if $\operatorname{IPL}(8)=1$ or 3 )
XMP (8) Pylon inertia
(slug-ft ${ }^{2}$ )
(9) Pylon damping
(10) Pylon spring rate
(11) Effective length of focused pylon
(ft)
(12) F/A cyclic coupling ratio
(deg/deg)
(13) Lateral cyclic coupling ratio
(deg/deg)
(14) Collective coupling ratio
(deg/deg)

```
CARDS 4A, 4B, 4C (include only if \(X M R(5)=0.0)\)
 XMC(1) \(\rightarrow\) XMC(20) Blade chord distribution; Blade Stations
 No. 1 to 20 (root to tip)
 XMC(21) Not used (in.)
CARDS 4D, 4E, 4 F (include only if \(\operatorname{XMR}(6) \geq 100.0\))
 XMT(1) \(\rightarrow\) XMT(20) Blade twist distribution; Blade Stations
 No. 1 to 20 (root to tip)
 XMT(21) Not used (acs)
CARD 4G (include only if \(\operatorname{IPL}(18)<0\))
IDTABM(1) \(\rightarrow\) IDTABM(20) Blade airfoil distribution; Blade
 Stations No. 1 to 20 (root to tip);
 20Il format
```

2.7 TAIL ROTOR GROUP (omit if $\operatorname{IPL}(1) \neq 0$ or if $\operatorname{IPL}(7)=2$ or 3 )

CARD 50 Tail Rotor Group Identification Card
CARD 51
XTR (1) Number of blades
(2) Undersling (in.)
(3)
(4) Radius
(5) Chord (ONLY if constant)
(6) Total twist (ONLY if linear)
(7) Flapping stop location

CARD 52

XTR
(8) Stationline $)$ Location of mast pivot (in.)
(9) Buttline point for mast tilt and (in.)
(10) Waterline conversion maneuvers (in.)
(11) Blade weight (ignored if $\operatorname{IPL}(4) \neq 0$ ) (1b)
(12) Blade inertia (ignored if IPL(4) $\neq 0$ ) (slug-ft ${ }^{2}$ )
(13) Rotor to engine gear ratio (Rotor RPM/Engine RPM)
(14)

CARD 53
XTR (15) Station Number for blade moments ( $0.0=$ hub)
(16) Hub-type indicator ( $0.0=$ gimbaled)
(17) Flapping stop spring rate (ft-lb/deg)
(18) Flapping spring rate (ft-lb/deg)
(19) Reduced rotor frequency for UNSAN option (/rev)
(20) Lead-lag damper (lb-sec/ft)
(21) Hub extent

CARD 54
XTR (22) Precone (deg)
(23) Pitch change axis location ( $0.0=25 \%$ chord) (chords)
(24) Pitch-flap coupling angle, $\delta_{3}$ (deg)
(25) Drag coefficient for hub
(26)
(27) Coefficient for tip vortex effect ( $0.0=$ off)
(28) Sidewash coefficient (deg/deg)
XTR (29) Tip sweep angle (t aft) (deg)
(30) Shift in aerodynamic center at tip (t aft) (in.)
(31) Moment arm of pitch-link attach point (t fwd) (in.)
(32) Distance from hub to pitch-horn attach point (in.)
(33)
(34)
(35)

CARD 56
XTR (36) Rotor nacelle weight
$\left.\begin{array}{l}\text { (37) Stationline } \\ \text { (38) Buttline }\end{array}\right\} \begin{aligned} & \text { Location of rotor nacelle } \\ & \text { center of gravity }\end{aligned}$
$\left.\begin{array}{l}\text { (38) Buttline } \\ \text { (39) Waterline }\end{array}\right\}$ center of gravity
(40) Rotor nacelle differential flat plate drag area
(41) Distance from mast pivot point to rotor nacelle (ft)
(42)

CARD 57
XTR (43) Control phasing (deg)
(44) F/A mast tilt ( + fwd) (deg)
(45) Lateral mast tilt (= $\pm 90$ for tail roter) (deg)
(46) Mast length
(ft)
(47) Incremental torsional inertia of mast (slug-ft ${ }^{2}$ )
(48) Torsional spring rate of mast (ft-1b/deg)
(49) Torsional damping ratio of mast

CARD 58 Fore-and-Aft Dynamic Pylon (include only if IPL(8) $=2$ or 3 )
XTP (1) Pylon inertia
(slug-ft ${ }^{2}$ )
(2) Pylon damping (ft-1b-sec/deg)
(3) Pylon spring rate
(ft-lb/deg)
(4) Effective length of focused pylon
(5) F/A cyclic coupling ratio
(deg/deg)
(6) Lateral cyclic coupling ratio
(deg/deg)
(7) Collective coupling ratio
(deg/deg)
CARD 59 Lateral Dynamic Pylon (include only if $\operatorname{IPL}(8)=2$ or 3 )
XTP
(8) Pylon inertia
$\left(\mathrm{slug}-\mathrm{ft}{ }^{2}\right)$
$(\mathrm{it}-1 \mathrm{~b}-\mathrm{sec} / \mathrm{deg})$
$(\mathrm{it}-1 \mathrm{~b} / \mathrm{deg})$
$(\mathrm{ft})$
$(\mathrm{deg} / \mathrm{deg})$
$(\mathrm{deg} / \mathrm{deg})$
$(\mathrm{deg} / \mathrm{deg})$

CARDS 5A, 5B, 5C (include only if $\operatorname{XTR}(5)=0.0$ )
YTC(1) $\rightarrow \mathrm{XTC}(20)$ Blade chord (root to tip)
CARDS 5 万, $5 \mathrm{E}, 5 \mathrm{~F}$ (include only if $\operatorname{XTR}(6) \geq 100.0$ )
XTT(1) $\rightarrow$ XTT(20) Blade twist (root to tip)
CARD 5G (include only if $\operatorname{IPL}(19)<0$ )
IDTABT(1) $\rightarrow$ IDTABT(20) Blade airfoil distribution (root to tip); 2011 format
2.8 WING GROUP (omit if $\operatorname{IPL}(9)=0$ or $\operatorname{IPL}(1) \neq 0$ )

CARD 60 Wing Group Identification Card

### 2.8.1 Basic Inputs

CARD 61
XWG (1) Wing Area (including carry-through)
(2) Stationline $\quad$ Location of center of (in.)
(3) Buttline pressure for right (in.)
(4) Waterline wing panel (1n.)
(5) Incidence angle (deg)
(6) Effective dihedral angle (+ up) (deg)
(7) Sweep angle of quarter chord line (+ aft) (deg)

CARD 62
XWG (8) Gcometric aspect ratio
(9) Spanwise efficiency factor
(10) Taper ratio of wing
(11) Cocfficient in equation for dynamic pressure reduction at stabilizers due to wing
(12) Dynamic pressure reduction at wing due to fuselage
(13) Coefficient in equation for wing wake centerline deflection
(14) Control surface (flap) deflection (deg)

CARD 63
XWG (15) | Coefficients for change in lift coefficient (/deg) (16) | as a function of control surface deflection (/deg ${ }^{2}$ )
(17) | Coefficients for change in maximum lift coef- (/deg)
(18) Ificient as a function of control surface (/deg ${ }^{2}$ ) deflection
(19) Coefficients for change in profile drag coef- (/deg)
(20) Ificient as a function of control surface (/deg ${ }^{2}$ ) deflection
(21)

CARD 64
XWG (22) Coefficients for change in wing
(23) pitching moment as a function of contrul surface deflection
(24) Coefficicits for downwash at
(25) (the right wing panel due
(26) to the ruselage
(27) Coefficients for sidewash at
(28) the right wing panel due to fuselage

CARD 65
XWG (29) Effect of Rotor 1 wake on R/H wi panel
(30) Effect of Rotor 1 wake on $L / H^{\text {w }}$ o panel
(31) Effect of Rotor 2 wake on $L / H$ wing panel
(32) Effect of Rotor 2 wake on $R / H$ wing panel
(33) Coefficient of sideslip in roll moment equation
(34) Coefficient of sideslip and $C_{L}$ in roll moment equation
(35) Coefficient of yaw rate and $C_{L}$ in roll moment equation

CARD 66
XWG (36) Cocfficient of roll rate in roll moment equation
(37) Coefficient of sideslip in yaw moment equation
(38) Coefficient of sideslip and $C_{L}{ }^{2}$ in yaw moment equation
(39) Coefficient of yaw rate and $C_{L}{ }^{2}$ in yaw moment equation
(40) Ccefficient of yaw rate and $C_{D_{0}}$
i•1 yaw moment equation
(41) Loefficient of roll rate and $C_{L}$ in yaw moment equation
(42) Coefficient of roll rate and $\mathrm{dC}_{\mathrm{D}} / \mathrm{d} \alpha$ in (deg) yaw moment equation

### 2.8.2 Aerodynamic Inputs

CARD 67
YWG (1) Drag divergence Mach number for $\alpha=0$
(2) Mach number for lower boundary of supersonic region
(3) Maximum $C_{L}$ normal flow, $M$ (Mach number) $=0$
(4) Coefficients of Mach number
(5) in maximum $C_{L}$ equation, normal
(6) flow
(7) Maximum $C_{L}$, reversed flow, $M=0$

CARD 68
YWG (8) Slope of lift curve for $M=0$
(9) Coefficients of $M$ for lift
(10) curve slope in subsonic
(11) region
(/deg)
(/deg)
(/deg)
(12) $C_{D}$ for $\alpha=0, M=0$
(13) Coefficients of $\alpha$ in a non-
(14) divergent drag equation

CARD 69
YWG (15) Coefficient in supersonic drag equation
(16) Maximum nondivergent $C_{D}$
(17) Thickness/chord ratio $D$
(18) Control variable for using of data table
(19) Drag rise coefficient (/deg)
(20)
(21)

CARD 6A
YWG (22) Coefficients for $\alpha$ for
(/ $\mathrm{deg}^{2}$ )
(24) $\} \begin{aligned} & \text { Mach Critical in steady } C_{M} \\ & \text { equation }\end{aligned}$
(25) $C_{M}$ for $\alpha=0, M=0$
(26)
(27)
(28)

NOTE: The descriptions for the aerodynamic inputs for the stabilizing surfaces (YSTB1, YSTB2, YSTB3, and YSTB4 arrays) are identical to that for the YWG array.

### 2.8.3 Control Linkage Inputs (include only if $\operatorname{IPL}(9)>0$ )

## CARD 6B

XCWG (1) Coefficients for rigging wing angle to
(deg/in.) (deg/in. ${ }^{2}$ )
(\%)
(3) Breakpoint for collective rigging
(4) Coefficients for rigging wing to
(deg/in.)
(5) \}F/A cyclic stick position
(deg/in. ${ }^{2}$ )
(6) Breakpoint for $F / A$ cyclic rigging
(\%)
(7) Linkage switch ( 0.0 for incidence)

CARD 6C
XCWG (8) Coefficients for rigging right wing panel to (deg/in;)
(9) lateral cyclic stick position (deg/in. ${ }^{2}$ )
(10) Breakpoint for lateral stick rigging
(11) Coefficients for rigging right wing panel
(ceg/in.)
(12) $\}$ to pedal position (deg/in. 2) (\%)
(13) Breakpoint for pedal rigging
(deg/deg)
2.9 STABILIZING SURFACE GROUPS (omit all four groups if IPL(10) = or IPL(1) 10 )
2.9.1 Stabilizing Surface Group No. 1 (include only if $|\operatorname{IPL}(10)| \geq 1$ )

CARD 70 Stabilizing Surface Group No. 1 Identification Card

### 2.9.1.1 Basic Inputs

CARD 71
XSTBL (1) Stabilizing Surface Area
(2) Stationline Location of center
(3) Buttline of pressure for the
(4) Waterline stabilizing surface
(in.)
(5) Incidence angle (in.) (in.)
(6) Effective dihedral angle (+ up)
(deg)
(7) Sweep angle of quarter chord line (t aft) (deg)

CARD 72
XSTBI (8) Geometric aspect ratio of surface
(9) Spanwise efficiency factor
(10) Taper ratio
(11) Tail-boom bending coefficient
(12) Dynamic pressure reduction at surface due to fuselage
(13) Downwash at surface due to wing (deg)
(14) Control surface deflection (deg)

CARD 73
XSTBl (15) Coefficients for a change in lift
(16) lcoefficient as a function of control surface deflection
(17) |Coefficients for change in maximum
(/deg)
(18) |lift coefficient as a function of control surface deflection
(/deg ${ }^{2}$ )
(19) | Coefficients for change in profile
(20) |drag as a function of control surface deflection

## CARD

74
XSTB1 (22) | Coefficients for change in surface
(23) I pitching moment coefficient as a (/deg ${ }^{2}$ )
function of control surface deflection
(24) Coefficients for downash at
(25) surface due to the fuselage
(26)
(27) Coefficients for sidewash at the
(28) i surface due to the fuselage (deg/deg ${ }^{2}$ )

## CARD 7

XSTB1 (29) Effect of Rotor 1 wake on the surface
(30) Fie: ixfity at which surface starts to enter Rotor 1 wake
(31) Velocity at which surface is completely in the Rotor 1 wake
(32) Effect of Rotor 2 wake on the surface
(33) Velocity at which surface starts to enter Rotor 2 wake
(34) Velocity at which surface is completely in the Rotor 2 wake

### 2.9.1.2 Aerodynamic Inputs

CARD 76
CARD 77
CARD 78
CARD 79
2.9.1.3 Control Linkage Inputs (include only if $\operatorname{IPL}(10) \geq 1$ )

CARD 7A
XCSI (1) Coefficients for rigging stabilizer angle (deg/in.)
(2) I position to collective position
(3) Breakpoint for collective rigging
(4) Coefficients for rigging stabilizer angle
(5) Iposition to $\mathrm{F} / \mathrm{A}$ cyclic stick position
(6) Breakpoint for $\mathrm{F} / \mathrm{A}$ cyclic rigging
(\%)
(7) Linkage switch ( 0.0 for incidence)

CARD 7B
$\begin{array}{ll}\text { XCSI } & \left.\begin{array}{l}\text { (8) } \\ \\ (9)\end{array}\right\} \begin{array}{l}\text { Coefficient for rigging stabilizer angle } \\ \text { position to lateral cyclic position }\end{array} \\ (\mathrm{deg} / \mathrm{in}, \text { ) }\end{array}$
(9) position to lateral cyclic position
(10) Breakpoint for lateral cyclic rigging (deg/in.2)
(11) Coefficients for rigging stabilizer angle (deg/ing)
(12) to pedal position
(13) Breakpoint for pedal rigging
(\%)
(14) Coefficient for rigging stabilizer to (deg/deg) F/A mast tilt
2.9.2 Stabilizing Surface No. 2 (include only if $|\operatorname{IPL}(10)| \geq 2$ )

CARD 80 Stabilizing Surface No. 2 Identification Card
2.9.2.1 Basic Inputs
$\left.\begin{array}{l}\text { CARD } 81 \\ \text { CARD } 82 \\ \text { CARD } 83 \\ \text { CARD } 84 \\ \text { CARD } 85\end{array}\right\} X X S T B 2(1) \rightarrow X S T B 2(35)$
2.9.2.2 Aerodynamic Inputs

CARD 86
CARD 87
CARD 88
CARD 89
2.9.2.3 Control Linkage Inputs (include only if $\operatorname{IPL}(10) \geq 2$ )
$\left.\begin{array}{l}\text { CARD 8A } \\ \text { CARD 8B }\end{array}\right\} \operatorname{XCS} 2(1) \rightarrow X C S 2(14)$
2.9.3 Stabilizing Surface No. 3 (include only if $|\operatorname{IPL}(10)| \geq 3$ )

CARD 90 Stabilizing Surface No. 3 Identification Card
2.9.3.1 Basic Inputs

CARD 91
CARD 92
CARD 93
CARD 94
CARD 95

### 2.9.3.2 Aercodnamic Inputs


2.9.3.3 Control Linkage Inputs (include only if $\operatorname{IPL}(10) \geq 3$ )

2.9.4 Stabilizing Surface No. 4 (include only if $|\operatorname{IPL}(10)|=4$ )

IARD 100 Stabilizing Surface No. 4 Identification Card
2.9.4.1 Basic Inputs
$\left.\begin{array}{l}\text { CARD } 101 \\ \text { CARD } 102 \\ \text { CARD } 103 \\ \text { CARD } 104 \\ \text { CARD } 105\end{array}\right\} \operatorname{XSTB4}(1) \rightarrow \operatorname{XSTB4(35)}$
2.9.4.2 Aerodynamic Inpuis
$\left.\begin{array}{l}\text { CARD } 106 \\ \text { CARD } 107 \\ \text { CARD } 108 \\ \text { CARD } 109\end{array}\right\} \operatorname{YSTB4}(1) \rightarrow \operatorname{YSTB4}(28)$
2.9.4.3 Control Linkage Inputs (include only if $\operatorname{IPL}(10)=4$ )
$\left.\begin{array}{l}\text { CARD 10A } \\ \text { CARD 10B }\end{array}\right\} \operatorname{xCS4(1)\rightarrow XSC4(14)}$
2.10 JET GROUP (omit if IPL(11) $=0$ or $\operatorname{IPL}(1) \neq 0$ )

CARD 110 Jet Group Identification Card

## CARD 111

XJET (1) Number of controllable jets
(2) Thrust of right, or iirst, jet
(lb)
(3) Thrust of left, or second, jet (lb)
(4) Stationline Location of right (in.)
(5) Buttline (first) jet thrust
(6) Waterline (in.)
(7)

CARD 112
XJET (8) Yaw angle, body to right (first) jet
(9) Pitch angle, body to right (first) jet
(10)
(11)
(12)
(13)
(14)
2.11 EXTERNAL STORE/AERODYNAMIC BRAKE GROUP (omit entire group if $\operatorname{IPL}(12)=0$ or $\operatorname{IPL}(1) \neq 0)$

CARD 120 Store/Brake Group Identification Card
2.11.1 Store/Brake No. 1 (include only if $\operatorname{IPL}(12) \geq$ J.)

CARD 121A

XSTl (1) Weight of store (< 0 for aerodynamic brake)
(1b) (in.) (in.) (in.)
(4) Waterline $\int$ gravity
(5) Distance from cg to center of pressure at $\alpha_{s c}=0(+$ aft) (in.)
(6) Distance from $c p$ at $\alpha_{\text {sc }}=0$ to
$\mathbf{c p}$ at $\alpha_{s c}= \pm 90^{\circ}(+$ aft $)$
(in.)
(7) Dynamic pressure loss at store

CARD 121B
XST 1
(8) Store rolling inertia
(9) Store pitching inertia
(10) Store yawing inertia
(11) Store product of inertia
(12) Induced velocity factor from main rotor
(13) Induced velocity factor from tail rotor
(14) Aerodynamic brake deployment

CARD 121C
XST 1
$\left.\begin{array}{ll}(15) & L_{0} / q \\ (16) & L_{1} / q \\ (17) & D_{0} / q \\ (18) & D_{S I D E} / q \\ (19) & D_{T O P} / q \\ (20) & Y_{0} / q \\ (21) & Y_{1} / q\end{array}\right\}$

$$
\left(\mathrm{ft}^{2}\right)
$$

$$
\left(f t^{2}\right)
$$

Coeificients for store/
red (tt)
brake lift, drag, and side
(ft ${ }^{2}$ )
rorce equations (ft?
(ft ${ }^{2}$.
(ft ${ }^{2}$ )


### 2.12 ROTOR CONTROLS GROUP

## CARD 130 Controls Group Identification Card

### 2.12.1 Basic Controls Subgroup

CARD 131
XCON

(1)	Range of collective stick	(in.)
(2)	Collective pitch for Rotor 1 with stick full down ( $\beta_{M}=0$ )	(deg)
(3)	Range of collective pitch for Rotor $1\left(\beta_{M}=0\right)$	(deg)
(4)	Rotor 1 collective pitch lock indicator ( $\ddagger 0$ for locked)	
(5)	Rotor 1 root collective pitch if $\mathrm{XCON}(4) \neq 0$	(deg)
(6)	Change in Jet Thrust with collective stick position	(lb/in.)
(7)		

CARD 132
XCON (8) Range of $F / A$ cyclic stick
(in.)
(9) Rotor 1 F/A cyclic pitch with stick full aft
(10) Range of $\mathrm{F} / \mathrm{A}$ cyclic pitch for Rotor 1
(deg)
(11) Rotor $1 \mathrm{~F} / \mathrm{A}$ cyclic pitch lock indicator
( $\neq 0$ for locked)
(12) Rotor $1 \mathrm{~F} / \mathrm{A}$ cyclic pitch if $\operatorname{XCON}(11) \neq 0$
(13) Change in Jet Thrust with F/A cyclic stick position
(14)

CARD 133
XCON (15) Range of lateral cyclic stick
(16) Rotor 1 lateral cyclic pitch with stick
full left
(17) Range of lateral cyclic pitch for Rotor 1
(deg)
(18) Rotor 1 lateral cyclic pitch lock indicator ( $\neq 0$ for locked)
(19) Rotor 1 lateral cyclic pitch if $\operatorname{XCON}(18) \neq 0$
(20) Change in Jet Thrust with lateral cyclic stick position
(21)

XCON (22) Range of pedals
(23) Rotor 2 collective pitch with pedals full (deg) right
(24) Range of collective pitch for Rotor 2 (deg)
(25) Rotor 2 collective pitch lock indicator ( $\neq 0$ for locked)
(26) Rotor 2 collective pitch if $\operatorname{XCON}(25) \neq 0$
(27) Change in Jet Thrust with pedal position

### 2.12.2 Supplemental Rotor Controls Subgroup (omit if $\operatorname{IPL}(13)=0$ )

CARD 135
XCRT (1) Change in Rotor 2 collective pitch angle due to change in intermediate collective angle (deg/deg)
(2) Change in Rotor 1 collective pitch angle due to change in intermediate $F / A$ cyclic control angle
(3) Change in Rotor 2 collective pitch angle due to change in intermediate $\mathrm{F} / \mathrm{i}$ cyclic control angle
(4) Change in Rotor $2 \mathrm{~F} / \mathrm{A}$ cyclic pitch angle due to change in intermediate $\mathrm{F} / \mathrm{A}$ cyclic control angle
(5) Change in Rotor 1 collective pitch angle due to change in intermediate lateral cyclic control angle
(deg/deg)
(6) Change in Rotor 2 collective pitch angle due to change in intermediate lateral cyclic control angle
(deg/deg)
(7) Change in Rotor $1 \mathrm{~F} / \mathrm{A}$ cyclic pitch due to change in intermediate lateral cyclic control angle

CARD 130
XCRT (8) Change in Rotor $2 \mathrm{~F} / \mathrm{A}$ cyclic piich duc to change in iateral cyclic control angle
(deg/deg)
(9) Change in Rotor 2 lateral cyclic pitch due to change in lateral cyclic control angle (deg/deg)
(10) Change in Rutor 1 collective pitch angle due to change in pedal control angle
(deg/deg)
(11) Change in Rotor 1 F/A c"clic pitch due to change in pedal contro angle
(deg/deg)
(12) Change in Rolor $2 \mathrm{~F} / \mathrm{A}$ cyclic pitch due to change in pedal control angle
(deg/deg)
(13) Change in Rotor 1 iateral cyclic pitch due lo change in pedal control angle
(deg/dcg)
(14) Charige in Rotor 2 lateral caclic pitch due to hange it: pedal control angle
( $\mathrm{deg} / \mathrm{deg}$ )
CARD $13^{-}$

XCRT (15) Switch to change rotor control linkages with F/A mast till ( $0.0=$ no change)
(16) Cosfficients for changing $X \operatorname{CON}(2)$ as a
( $1^{-}$) function of $\mathrm{F} / \mathrm{A}$ mast Lilt
(19) Range of collective pitch for Rulor 1 ut $\mathrm{F} / \mathrm{A}$ mast tilt $=90^{\circ}$
(19) Cocfficienl for modifying XCRT(5) and XCRT(6) as a function of $\mathrm{F} / \mathrm{A}$ mast lill
(20) $\}$ Cocfficicnts for modifying XCRT(10) us
(deg/deg)
(21) a functiol of $F / A$ mast $t i l t$
(dcg/deg) ( $\operatorname{deg} / \operatorname{lig}_{6}$ )
(de.g)
(deg/deg) (deg)

CARD 139

XCRT (22) Cocfficient for nonlincar rigging of
(23) Cocfficients for nonisnear rigging of
(24) Rotor 1 F/A cyctic pisch
(25) $\quad$ Coefficients for non'incar rigging of
(20) f Rotor 1 lateral cyclic pitch
(2`) Cocfficicnts for nonlincar rigging of
(29) I Rotor 2 collective piich
(deg/in. 2)
(des/in.)
(dcg/in.?)
(deg/ing) (dcg/in. ${ }^{2}$ )
(deg/ing)
(ueg/in. ${ }^{2}$ )

### 2.13 ITERATION LOGIC GROUP

CARD 140 Iteration Logic Group Identification Card
CARD 141
XIT (1) Iteration limit for TKIM
(2) $\Delta Y$ of rotor(s) for time-variant trim
(deg)
(3) Limiter for change in average rotor-induced velocity
(4) Partial derivative increment for STAR
(5)
(6)
(7)

CARD 142
XIT (8) Minimum value for main rotor flapping angle correction limit
(deg)
(9) Minimum value for tail rotor flapping angle correction limit
(aces)
(10) Maximum value for use of variable damper for main rotor
(11) Maximum value for use of variable damper for tail rotor
(12) Starting value for TRIM correction limit
(dcg)
(13) Minimum value for TRIM correction limit (deg)
(14) Maximum value for use of variable damper in TRIM
(lb or (t-lb)
CARD 143
XIT (15) Allowable error in F/A force balance
(16) Allowable error in lateral force balance
(1.) Allowable crror in vertical force balance
(18) Allowable error in pitching and yawing moment balance
(19) Allowable crror in rolling moment bulance
(20) Allowable crror in main rotur flapping moment balance
(21) Allowable error in tail rotor rlapping moment balance

### 2.14 FLIGHT CONSTANTS GROUP

## NOTE: There is no CARD 150 because there is no Group Identification Card for Flight Constants Group.

CARD 151
XFC (1) Forward velocity (ground reference)
(2) Lateral velocity (ground reference)
(3) Rate of climb (ground reference)
(kt)
(kt)
(4) Altitude (geometric)
(5) Euler angle yaw (heading angle)
(6) Euler angle pitch (deg)
(6) Euler angle pitch (deg)
(7) Euler angle roll

CARD 152
XFC (8) Collective stick position (\%)
(9) F/A cyclic stick position
(10) Lateral cyclic stick position
(11) Pedal position
(12) g level
(13)
(14)

CARD 153
XFC (15) Main rotor F/A rlapping anglc
(16) Main rotor lateral flapping angle
(deg)
(17) Tail rotor F/A rlapping angle
(deg)
(18) Tail rotor Lateral flapping angle (deg)
(19) Main rotor thrust (1b)
(20) Tail rotor thrust
(lb)
(21)
(ARI) 154
XFC (22)
(23)
(24) Maximum engine horsepower available (hp)
(25) Engine RPM (rpm)
(26) Atmospheric logic switch (0,0 $=$ Std. Day)
(27) Pressure altitude
(28) Ambient temperature

NOTE: END OF TRIM OR TRIM-STAB DECK.

### 2.15 BOBWELGHT GROUP (include cnly if NPART $=2$ or 4 and $\operatorname{IPL}(14) \neq 0$ )

CARD 200 Bobweight Groc? Identification Card
CARD 201
XBW (1) Effectivity coefficient
(deg/in.)
(2) Spring constant (lb/in.)
(3) Damping coefficient
(4) Weight of bobweight (lb)
(5)
(6)
(7) g prcload
2.10 WEAPONS GROUP (include only if NPART $=2$ or 4 and $\operatorname{IPL}(14) \neq 0$ )

CARD 210 Weapons Group Identification Card
CARD 211
XGN
(1) Stationline
(2) Buttline Location of weapon
(3) Waterline
(4) Azimuth (+ right)
(5) Elevation (+ up)
(b)
(7)
(in.)
(in.)
(in.)
(deg)
2.17 SCAS GROUP (include only if NPART $=2$ or 4 and $\operatorname{IPL}(14) \neq 0)$

CARD 220 SCAS Group Identification Card
CARD 221
XSCAS


CARD 222
XSCAS (8) $\mathrm{K}_{\mathrm{H}}$, Pitch response feedback gain
$\frac{\text { (in. of stick-sec) }}{(\mathrm{deg})_{(\mathrm{sec})}}$
(sec)
$\left.\begin{array}{rr}(9) & \tau_{1} \\ (10) & \tau_{2} \\ (11) & \tau_{3} \\ (12) & \tau_{4} \\ (13) & \tau_{5}\end{array}\right\}$
(sec)
(sec)
(sec)
(14) $\mathrm{K}_{\mathrm{G}}$, Pitch pilot 「eedforward gain
$\frac{(i n . \text { of stick-sec) }}{(\text { in. of stick })}$
CARD 223
XSCAS (15) $K_{H}$, Yaw response fcedback gain

(in. of pedal-sec)
$(\mathrm{sec})$
(in. of pedal sec$)$

XSCAS (22) Maximum Authority in Roll
(23) Maximum Authority in Pitch
(\%)
(24) Maximum Authority in Yaw
(\%)
(25) Dead band for $\mathrm{d} / \mathrm{dt}$ (Roll Moment) (ft-lb/sec)
(26) Dead band for $d / d t$ (Pitch Moment) (ft-lb/sec)
(27) Dead band for d/dt (Yaw Moment) (ft-lb/sec)
(28)
2.18 STABILITY ANALYSIS TIMES GROUP (include only if NPART $=2$, 4 , or 5 and $\operatorname{IPL}(14) \neq 0$ )

CARD 230 Stability Analysis Times Group Identification Card
CARD 231
TSTAB (1) Time or azimuth angle for first analysis
(2) Time or azimuth angle for second analysis
(3) Time or $\quad$ zimuth angle for third analysis
(4) Time or azimuth angle for fourth analysis
(5) Time or azimuth angle for fifth analysis
(6) Time or azimuth angle for sixth analysis
(7) Time or azimuth angle for seventh analysis

```
(sec or deg)
```

(sec or deg)

CARD 232
TSTAB (8) Time or azimuth angle for eighth analysis (sec or deg)
(9) Time or azimuth angle for ninth analysis (sec or deg)
(10) Time or azimuth angle for tenth analysis (sec or deg)
(11) Time or azimuth angle for eleventh analysis (sec or deg)
(12) Time or azimuth angle for twelfth analysis (sec or deg)
(13) Time or azimuth angle for thirteenth analysis (sec or deg)
(14) Time or azimuth angle for fourteenth analysis (sec or deg)

NOTE: If no stability analyses are to be performed, TSTAB(1) must refer to time or rotor azimuth angle after the end of the maneuver. A value of 9999. (seconds) is a suggested input for this case.
2. 19 BLADE ELEMENT DATA PRINTOUT GROUP (include only if NPART $=2,4$, or 5 and $\operatorname{IPL}(14) \neq 0$ )

CARn 240 Blade Element Data Printout Group Identification Card
CARD 241
TAIR (1) Time or azimuth angle for first printout
(2) Time or azimuth angle for second printout
(3) Time or azimuth angle for third printout
(4) Time or azimuth angle for fourth printout
(5) Time or azimuth angle for fifth printout
(6) Time or azimuth angle for sixth printout
(7) Time or azimuth angle for seventh printout

```
(sec or deg)
```

CARD 242
TAIR
(8) Time or azimuth angle fr: eighth printout
(9) Time or azimuth angle cor ninth printout
(10) Time or azimuth angle for tenth printout
(11) Time or azimuth angle for eleventh printout
(12) Time or azimuth angle for twelfth printout
(13) Time or azimuth angle for thirteenth printout
(14) Time or azimuth angle for fourteenth printout

```
(sec or deg)
```

NOTE: If no printouts are to be made, $T A I R(L)$ must refer to a time or rotor azimuth angle after the end of the maneuver. A value of 9999. (seconds) is a suggested input for this case.

### 2.20 MANEUVER TIME CARD (include only if NPART $=2,4,0.5$ )

## CARD 301

TCI (1) Start time of maneuver
(2) First time or azimuth increment
(sec)
(3) Time to stop using first increment
(sec or deg)
(4) Second time or azimuth increment
(sec or deg)
(5) Time to stop using second increment and return to first increment
(6) Time to stop the maneuver (sec)
(7)

## 2. $21 \frac{\text { VARLATIONS FROM TRIMMED FLIGHT }}{\text { only if } \operatorname{NPART~}=2,4 \text {, or } 5 \text { ) }}$ (This card type may be included

 CARD 311Col. 1
Col. 2 - 5 Col. 11 - 20
Col. 21 - 30
Col. 31-40
Col. 41-50
Col. 51-60
Col. 61 - 70 )
CARD 312 Same as CARD 311
CARD 313 Same as CARD 311
CARD 314 Same as CARD $31:$
$\vdots$
CARD 329
CARD 330
CARD 331

NEXTJ ( $=0$ for last card in group)
$J$, variation selector
Inputs whici define the variations for each value of $J$ in $6 F 10.0$ format
2.22 PLOTTING OF MANEUVER TIME HISTORY DATA (This group may be included only if NPART $=2,4$, or 5 ; otherwise it must be excluded)

CARD 401

$$
\begin{array}{ll}
\operatorname{Col} . & 2 \\
4-6
\end{array}
$$

CARDS 402A, 402B, ...

Col. 3 - 5
8-10
13-15
20
25
31-40
41-50
51-60

NOP (Must equal 3 for plotting) NPRINT Print Control
(One for each set of plots desired 30 maximum)

KV1, Code of variable 1
KV2, Code of variable 2
KV3, Code of variable 3
KEY (1 = plot on Printer only)
KEYS ( $0=$ last 402-type card)
SCl, Minimum scale for KVl
SC2, Minimum scale for KV2
SC3, Minimum scale for KV3

See Section 6 for the code numbers to be used for KV1, KV2, and KV3.

### 2.23 HARMONIC ANALYSIS OF MANEUVER TIME HISTORY DATA (These cards may

 be included only if NPART $=2,4,5$, or 8 )CARD 501

```
Col. 2 NOP (must equal 9 for harmonic
analysis)
11-15 NVARA, Number of variables to be
frequency analyzed
21-25 AL(l), Start time for interval
to be analyzed
(sec)
26 - 30 AH(1), Stop time for interval
to be analyzed (sec)
NVARB, Print control for ampli-
tude function (0 = print only)
AL(2), Base frequency for analysis
(0.0 = M/R l/rev)
(cps)
```

CARDS 502A, 502B, etc.
Code numbers of variables to be analyzed (see Section 6 for code numbers). Format is up to 14 code numbers per card in 5 column fields (1415 format).
2.24 VECTOR ANALYSIS OF MANEUVEK TIME HISTORY DATA (These cards may be included only if NPART $=2,4,5$, or 8 )

## CARD 601

```
Col. 1- 2 NOP (must equal ll for curve fitting)
 11-15 NVARA, Total number of curves to be
 fit in Step l
 26-30 AL(1), Baseline frequency for Step 1 (cps)
 31-35 NVARB, Total number of reference
 curves for Step 2
 41-45 AL(2), Total number of curve fits
 in Step 3
 51-55 NVARC, Number of time points to
 be skipped before step l curve
 fit begins
```

CARD 602A, 602B, etc.
Code number of curves to be fit in Step 1 (NVARA inputs, 14 I 5 (ormat)

CARD 603A, 603B, etc. (NViRB sets of these cards, 1415 for each card)
Col. 1-5 NX, Quantity of variables to be compared to reference variables
6-10 Code number of reference variables
11-15
16-20
21-25
NX zode numbers of variables to be
.
.
CARDS 604A, 604B, etc. (AL(2) cards of this type)
Col. 1-5 Code number for variabl: C
6-10 Code number for varial le D
11-15 Code number for vari ble E
See Secti n 6 for the code numbers of the variables.
$2.25 \frac{\text { STORING MANEUVER TIME HISTORY DATA ON TAPE (This card may be }}{\text { included only if } \operatorname{NPART}=2,4 \text {, or } 5 \text { ) }}$
CARD 701

$$
\begin{array}{cl}
\text { Col. } & \begin{array}{c}
\text { NOP (must equal } 8 \text { for tape file operations) } \\
11 \rightarrow 15
\end{array} \\
& \text { NOPI (must be blank or all zeros } \\
& \text { to store data) }
\end{array}
$$

NOTE: Maneuver time history data which has been stored on tape can be retrieved with NPART $=8$ (see CARD 01).

## 3. USER'S GUIDE TO INPUT FORMAT

This section of the report presents a discussion of the inputs defined in Section 2. It is primarily intended for the inexperienced user of the program and for reference purposes. To simplify cross reference between the two sections, the numbers of the subsections of this section correspond to those in Section 2; e.g., the inputs for the Main Rotor given in Section 2.6 are discussed in Section 3.6.

The units for each dimensional input are given at the right side of the page throughout Section 2. Whenever possible, inputs which are normally classified as nondimensional are given units to help explain them. For example, the units for the pylon control coupling ratios on CARDS $48,49,58$, and 59 are given as deg/deg, indicating that the ratios are degrees of control input per degree of pylon motion, rather than being left blank to indicate a nondimensional input.

Most inputs are read into arrays. The first character in each array name and most individual variables is a code for the general classification of the array or variable. This relationship of first character and data type is given below.
X

$\mathrm{Y} \quad$| For the most part, inputs which can be physically |
| :--- |
| measured, analytically determined, or defined and |
| which relate directly to the rotorcraft configura- |
| tion. |


$\mathrm{I} \quad$| Inputs related to aerodynamic characteristics of |
| :--- |
| the airfoil sections or surfaces. |
| T |$\quad$| Integer inputs which control program logic. |
| :--- |

### 3.1 GENERAL

### 3.1.1 Composition of a Data Deck and Card Format

An input data deck must be set up to perform one and only one of the following primary program operations:
(1) Determination of trimmed flight condition only
(2) Trim followed by maneuver without stability analysis
(3) Trim followed by maneuver with stability analysis during maneuver.
(4) Trim followed by maneuver where maneuver time point data are stored for a subsequent restart of the maneuver.
(5) Maneuver restart
(6) Trim followered by stability analysis; no maneuver.
(7) Retrieval of maneuver data stored on tape.
(8) Sweeps of trim conditions with or without stability analysis.

These cight operations are shown in Figures $1-1$ through 1-8 respectively. The implication of the statement "one and only one" above is that data decks which perform different primary operations must not be stacked; they must be submitted as separate runs. For example, suppose the user wants data on a particular configuration for (1) a trim and a stability analysis at 100 knots and (2) a maneuver which starts from a 120-knot trim condition. The two cases must be submitted separately. However, in the first case the user may set it up as a parameter sweep so that the l00-knot trim with stability analysis is followed by a trim at l20-knots. The data from the $120-k n o t$ trim can then be used as inputs to the second case to shorten the time required for the 120 -knot trim prior to the maneuver. It is not possible to follow a parameters sweep case with a maneuver.

The AGAJ73 input deck is subdivided into input groups where each group contains a set of related data (e.g., rotor, fuselage, and wing parameters; program and iteration logic specification; and data tables or data blocks). The complete list of all possible input groups in the order in which they must be input is presented in Table 2-1.

It is very rare that the user will need to use every group to define the configuration which is to be simulated. Hence, as a user convenience, the first data card of the first group of input data (the Program Logic Group) contains fourteen switches which specify the groups and/or arrays that must or must not be included in the data deck. This feature eliminates the necessity of including sets of blank cards or dummy inputs for groups which are not needed. During the reading of the data deck and initialization of input data, many checks are performed to assure that the specifications of the Program Logic Group and the groups which follow are compatible, complete, and not contradictory. Obviously, the checking procedure cannot correct or diagnose every possible input error, and the user must exercise the normal amount of care in following the instructions of this input guide.

In Section 2 each card of input data is identified by a sequence number. Within an individual group the numbers are consecutive. However, the capability of adding and deleting entire groups from the deck precludes consecutive numbering between groups. Considering the large number of cards which can be included in a deck, it is strongly recommended that all cards be numbered according to the sequence number given in section 2 and used in this section. Doing so will greatly simplify locatin: specific inputs and reconstructing a dropped or shuffled deck.

### 3.1.2 Group Identification Cards and Data Library

The majority of the AGAJ73 input groups are headed by a Group Identification (ID) Card. The use of this card is discussed in this section and is not repeated for each group with an ID card.

The primary purpose of the ID cards is to provide a means for using the Data library Option discussed below. Hence, groups which cannot be called from the data library (i.e., deck identification cards; Data Table Group; Flight Constants Group; and the maneuver time specification and data analysis cards) do not have ID cards. A secondary purpose of the ID cards is to provide a convenient means of identifying the start of a new group and including comments pertaining to individua! groups in the deck.

The Data Library Option (and its MODEL Option subset) is included in the master version of AGAJ73. The local programmer should be consulted to see if the option is available with the installed version of the program; if it is not (or the option is not to be used), the first eight columns of each ID card must be blank, and the following discussion may be bypassed.

In terms of computer equipment, the data library is a magnetic disk storage device. The stored data may consist of two types:
(1) The input data for a specific input group of a particular rotorcraft (Group Data Sets)
(2) The set of input groups which constitute all the groups needed for a particular rotorcraft (Model Data Sets)

The number of cards in a Group Data Set is equal to the maximum number of cards which may be required for the appropriate input group. The number of cards in a Model Data Set is forty, where each card corresponds to a particular input group and one element of the MODEL array in the program. Setup and maintenance of the data library are generally assigned to a programmer. Consequently, the technical details relating the establishment of a data library are not presented in this volume.

Each Group and Model Data Set on library is assigned a unique eight character alphanumeric name. These names are then used to identify the data sets and as the data on the cards in a Model Data Set. The characters used in the name of a Group Data Set are arbitrary, but the first four characters in the name of any Model Data Set must be MODL.

Once data are stored on library, IDEN on the ID cards may be used to call a data set from the library. When the first eight columns of an ID card are blank, it is assumed that the library is not to be used, and all cards for the appropriate input groups must follow the ID card. If these columns are not blank, they are assumed to contain the name of a data set which is on library, and the program searches the library for the data set with the corresponding name. If the name is not found, a message to that effect is printed and execution of the program is terminated.

When the name is a group name (i.e., does not start with four characters MODL) and is found, the corresponding data set is used as the input data for that group. In this case, all remaining cards for that group must be omitted from the card deck. The reading of each group ID card is completely independent of the reading of each other ID card. Hence, a card
deck may contain any combination of groups called from library and groups input on cards which suits the user's purpose.

When a Model Data Set is to be used, the library name must be input on CARD 05 (the Program Logic Group ID Card). If the first four columns on CARD 05 contain the characters MODL, the program will search the data library for the Model Data Set with the corresponding eight-character name. If the name is not found, execution terminates. When the data set is found, the program then'uses the library groups whose names are in the Model Data Set as the source of input data for all input groups. In this case, the cards for all groups included in the data set must be omitted from the card deck. The four cards for the Flight Constants Group then follow CARD 05.

### 3.1.3 Procedures for Changing Input Data

Frequently, it is desirable or necessary to change the values of a few individual inputs in groups called from library andor to replace certain groups in a Model Data Set with other groups. Also, it is necessary to have a means of changing inputs when performing parameter sweeps. The \&CHANGE and \&GROUPS program features are provided to accomplish these tasks.

The cards which are used to exercise these features must conform to a special format:
(1) Column 1 of all cards must be blank.
(2) Columns 2 through 8 of the first card must contain the seven characters \&CHANGE or \&GROUPS, as apiropriate.
(3) Column 9 of the first card must be blank.
(4) Change items (defined below) can start in or after Column 10 of the first card and in or after Column 2 of any subsequent card (s); items must be separated by commas.
(5) After the last character of the last change items there must be a comma or a blank column followed by the four characters \&END.

### 3.1.3.1 Change Items for \&CHANGE Cards

The change items for dCHANGE cards must be in one of two forms:
Symbolic Name $=$ Constant
or
Array Name $=$ Set of Constants (separated by commas)

The set of characters to be used for Symbolic Name is the array name and element number of the variable to be changed. Only those arrays and elements listed in Table 2-2 can be changed. Constant is the new value of the variable indicated. The set of characters for Array Name must be one of the array names included in Table 2-2. The Set of Constants is then the new values for the array. The number of constants in the set must be less than or equal to the dimension of the array as given in Table 2-2. In the Set of Constants the successive occurrences of the same constant can be represented by the form

## k* constant

where $k$ is a nonzero integer specifying the number of times the constant is to occur.

Blank columns are permitted before and after the equal sign in a change item and after the comma which separates change items. However, blank columns are not permitted within a name or a constant, and trailing blanks after an integer or exponent are treated as zeros.

Although a set of change items can be continued onto as many cards as needed, a single change item must not be split between cards and only the data on the first card of a continued set will be printed in the output data.

An example of the data for the \&CHANGE operation is as follows:

```
 Column 1
 \downarrow
First Card: b&CHANGEbXFS(1)=9500.0, XMR(44)=5.0,
Second Card: bIPL(20)=0, TAIR=7*9999., &END
```

where $b$ indicates a mandatory blank column; other blank columns shown are optional. This example will change gross weight to 9500 pounds, the main rotor $F / A$ mast tilt angle to 5 degrees, the rotor aerodynamic option to steady-state only, and the first seven times for blade element data print-* out to 9999.0 seconds.

It is not necessary that change items be in any sfecified order. For example, the first change item can be for $\operatorname{XFS}(10)$, the second for XFS(8), the third for XFS(1), the fourth for IPL(17), etc.

As noted above, only the first card of a set of \&CHANGE cards like the example is printed in the output data. To get data from both cards included in the printout, use the following form:

```
 Column 1
 l
First Card: b&CHANGEbXFS(1)=9500., XMR(44)=5.0, &END
 \downarrow
Second Card: b&CHANGEbIPL(20)=0, TAIR=7*9999., &END
```

Like the continued card set, this form can also consist of as many cards as needed; each will be included in the printout.

### 3.1.3.2 Change Items for \&GROUPS Cards

The change items for \&GROUPS Cards must be in the following form:

$$
\operatorname{MODEL}(x x)=\text { 'yyyyyyyy' }
$$

The blanks on either side of the equal sign are optional. MODEL is an array in the program (dimensioned to 27); the data for the elements of the array are the Model Data Sets stored on library. The symbol xx must be the one- or two-digit element number of the group to be replaced (element numbers are defined in Table 2-1). The symbol yyyyyyyy is the eightcharacter name for the data library group which is to replace the xx element. The apostrophes at either end of the library name are mandatory.

An example of the data for the \&GROUPS operation is as follows:

```
Column 1
 \downarrow
 b&GROUPSbMODEL(3)='CLCD0098', &END
```

This example will cause the second airfoil data table (MODEL array element number 3) to be replaced by the CLCD0098 data table.

To replace the entire $x x$ element of a Model Data Set with a group which is not on library, leave the eight columns for the MODEL element name (yyyyyyyy) completely blank. The required location in the deck for the externally supplied group(s) is discussed in the next subsection. The rules for the form of the \&GROUPS change items are the same as for the \&CHANGE change items.

### 3.1.3.3 Location of \&CHANGE and \&GROUPS Cards

When \&CHANGE Cards are used to update individual data library groups, the set of cards is to be placed immediately after the Group ID card of the group being changed. When used to make changes for parameter sweeps, the cards are placed imediately after the sweep card (the second CARD 01, or NPART card, with NPART=10) which follows the last card of the Flight Constants Groups (Card 154).

The location of the \&GROUPS and \&CJANGE cards in a deck which uses the MODEL Option is shown in the sample deck listed in Figure 2-1. In the example, the first airfoil data table (element 2) is to be replaced by
the CLCD0090 table from library while the Iteration Logic Group (element 35) and the Blade Element Data Printout Times Group (element 40) are to be replaced with data included in the deck. The \&CHANGE card shown updates the gross weight and the Stability Analysis Times Group.

The general rules for including the cards for groups with blank names in the \&GROUPS card are:
(1) groups which precede the Flight Constants Group in a normal data deck (elements 1 through 35) also precede the Flight Constants Groups in the MODEL Option deck.
(2) groups which follow the Flight Constants Group (elements 36 through 40) also follow the group in the MODEL Option,
(3) the order of input of the change items on the \&GROUP card is optional, but the added groups must be included in the deck in the same sequence as their MODEL array element number, and
(4) the ID card of the included group must not be included in the dect:.

Although it is possible in some cases to change the values on the first card of the Program Logic Group (IPL( $1 \rightarrow 14$ ), which spec!fy the groups that must be in the deck), the procedure is complex, not recommended, and not discussed in this report. If a Model Data Set needs to be changed that drastically, the user should be entering data by individual groups, not MODEL Option.

### 3.2 IDENTIFICATION AND PROGRAM LOGIC GROUP

CARD 00 Message Card
The alphameric inputs on this card are printed six times on the first page of printed output. The comments are intended to instruct the control section about the disposition of the input card deck and printed output.

## CARD 01 NPART Card

This card includes the primary program control variable, NPART, and is reierred to as the NPART card. Permissible values of NPART on this second card of the data deck are $1,2,4,5,7$, and 8 . The value of NPART specifies the type of operation to be performed.

```
l = Trim only
2 = Trim followed by maneuver (maneuver not to be restarted)
4 = Trim followed by maneuver (maneuver to be restarted)
5 = Maneuver restart
7 = Trim followed by stability analysis
8 = Retrieve maneuver data from tape for analysis
```

Within a single computer run, only one of the above operations may be specifled. That is, only the second card of the data deck may be an NPAPT card with NPART $=1,2,4,5,7$, or 8 ; data decks must not be stacked together into a single run. However, following the last card (CARD 154) of decks with NPART $=1$ or 7 , an NPART $=10$ card may be included to initiate a parameter sweep, and additional NPART = 10 data sets may follow to continue the sweep. A more complete explanation of each NPART value is given below.

NPART $=1$	Compute a trimmed flight condition only. ree Figure l-1. The NPRINT, NVARA, NVARB, and NVARC inputs are not used. Subject to the IPL values, a data set of CARDS 02 through and including 154 must follow. Only an NPART $=10$ card may follow CARD 154.
NPART $=2$	Compute a trimmed flight condition followed by a maneuver. See Figures 1-2 and 1-3. Subject to the IPL values, a data set of CARDS 02 through 301 (the time card) plus at least one 3ll-type card (J-card) must follow. The maneuver start time on CARD 301 is set to zero regardless of the input value.
	Cards which follow the last J-Card specify the operation(s) to be performed on the maneuver data computed. The options are plotting, harmonic analysis, vector analysis, and storing the maneuver data on tape; they are activated by sets of $400-$, $500-, 600-$, and 700 - series cards respectively. Since each operation is an option, the

appropriate card set must be input to perform the desired operation; if a card set is omitted, the corresponding operation is omitted. The card sets may be input in any sequence desired. If none of these card sets is included, the last $J$-Card is the final card of the deck; otherwise the last card of the last card set is the final card of the deck.

The NVARA input is not used. The interpretations of NPRINT, NVARB, and NVARC follow.

NPRINT

NVARB Controls use of Wagner function for time delay of lift buildup on wing (see Section 5-7 of Reference 6).
$=0$ function is inactive
$=1$ function active only for first value of time increment on CARD 301
$=2$ function active only for second value of time increment on CARD 301

NVARC Controls printout of blade element air-load data at the times specified by $\operatorname{TAIR}(1-14)$
$=0$ printusit for main rotor only
$=1$ printout for both rotors
$=2$ printout for tall rotor only
NPART $=4 \quad$ Same as NPART $=2$, except that the maneuver data will be stored so that it can be recalled at a later date for a maneuver restart (NPART $=5$ ). See Figure $1-4$. The use of this option will require the assistance of the local programmer to set up the restart tape.

NPART $=5 \quad$ This is maneuver restart case following the initial NPART = 4 case. See Figure l-5. The local programmer should be consulted at least for the first case of this type. The complete data set for maneuver restart is as follows:

CARD 00
CARD 01
CARD 02, 03, 04
CARD 230

CARD 240

CARD 301

CARD 311, etc.

Message Card
NPART Card: enter 5 in Column 2.
IPSN and Comments
Stability Times Group: if the TSTAB group is not called from library, CARDS 231 and 232 must also be included.
bea Data Printout Times Group: if the TAIR group is not called from library, CARDS 241 and 242 must also be included.

Time Card: start time is the time at which the maneuver is to be restarted; it must be greater than zero or less than the last time point of maneuver being restarted. The time for restart need not be identically equal to a previous time point.
At least one maneuver command (J-Card) is required. It may be followed by plot cards, etc., as with any maneuver.

All program and iteration logic specified in the initial NPART $=4$ run remains unchanged except that the two groups (TSTAB and TAIR) or at least their identification cards must be included regardless of the value of IPL(14) on the initial run. No \&CHANGE cards are permitted.

NPART $=7 \quad$ Compute a trimmed flight condition followed by a stability analysis. See Figure 1-6. The cards required are the same as for NPART $=1$. An NPART $=10$ card may follow CARD 154. Note that if the time-variant rotor analysis is activated for either rotor, a stability analysis cannot be performed.

NPART $=8 \quad$ This value of NPART causes data stored on tape to be loaded on the plot disk. See Figure 1-7. The local programmer should be consulted prior to its use. The value of NVARA on this card must be not equal to zero. Once the data has been placed on the plot disk, $400-$, 500 -, and 600 -series cards may be used for plotting, harmonic analysis, or vector analysis of the data. CARD 701 is used to store on tape the data which the NPART $=8$ card retrieves.

Following a data set for trim only or trim and stability analysis (NPART $=1$ or 7 ), the parameter sweep option may be exercised by including an NPART $=10$ card after CARD 154.

NPART $=10 \quad$ This value of NPART permits the changing of user-selected inputs and retrimming the configuration. See Figure 1-8.

NVARA
If NVARA $=0$, the program will attempt only to iterate to a new trim condition (equivalent to NPART = 1); if NVARA $\neq 0$, the program will attempt to trim and, if successiul, will also perform a stability analysis (equivalent to NPART = 7) 。

The data set for NPART $=10$ consists of the following cards:

First Card: CARD 01 NPART card with NPART $=10$

Subsequent \&CHANGE Cha'iges to input data using Card(s): $\operatorname{CARD}(S) \quad$ NAMELIST input as described brelow.

An NPART $=10$ data set may be followed on': by another NPART $=10$ data set.

The \&CHANGE cards can be used to change the value of any input or inputs on CARDS 06 through 154 except for some of the program logic inputs, the rotor mode shapes, and the inputs to the airfoil data and rotor-induced velocity distribution tables.

Program logic inputs $\operatorname{IPL}(1 \rightarrow 2)$ and IPL $(G \rightarrow 14)$ must not be changed. These inputs control the initial reading of data groups or blocks, and NAMELIST input is not capable of reading additional groups or blocks.

The number of rotor mode shapes, IPI(3) and IPL(4), may be decreased, which will simply reduce the number of mode shapes used in the computations by ignoring the higher order ones. However, IPL(3) and IPL(4) must not be increased.

If the switch for reading the rotor-induced velocity, IPL(5), is zero, it must not be changed. If it is not zero, it may be changed to any permissible value, i.e., $0,1,2$, or 3 . All other IPL values may be changed as desired.

When using NPART = 10 the changes made should be reasonable, e.g., less than 20 to 30 knots in airspeed, 10 to 20 feet per second in rate of climb, less than 3 to 5 degrees in aerodynamic surface incidence, etc. The larger the number of simultaneous changes made, the smaller the individual changes should be. The program assumes the last trim point is a good starting point for the next trim case. If the changes are too large
and $\operatorname{XFC}(5-11)$ and $\operatorname{XFC}(11-20)$ are not updated by the user, the chances of nchieving a new trim are slim.

CARD 02 (Comment Card No. 1)
IPSN is a numeric title to the data set for identification purposes. It is printed in the output heading. The remainder of the card contains alphanumeric identifying comments which are printed in output headings as data set identification. Include it only when NPART $=1,2,4,5$, or 7 .

CARD 03 (Comment Card No. 2)
This card also contains alphanumeric comments which are included in the output headings. Include it only when NPART $=1,2,4,5$, or 7 .

CARD 04 (Comment Card No. 3)

The card also contains alphanumeric comments. Include it only when NPART $=1,2,4,5$, or 7 .

CARD 05 is the identification (ID) card for the Program Logic Group. If the data library option is available, the ID card may call one $u f$ several standard sets of program logic from library, and CARDS 06,07 , and 08 mu-t then be omitted.

Cards 06,07 , and 08 contain the bulk of the program logic. All the IPL inputs are integers (14I5 format). The logic inputs control the data groups which must be included in the input data and the program options to be used, such as unsteady aerodynamics, time-variant rotor analysis, etc. The logic has been chosen so that for the simplest cases most inputs are zero. In general, nonzero inputs activate the options and/ or necessitate inputs of additional data.

For the options related to the rotors, a 0-1-2-3 type logic switch is used wherever possible. This type of switch operates in the following manner:

0 turns the option off for both rotors;
l turns the option on for the main rotor only;
2 turns the option on for the tail rotor only;
3 turns the option on for both rotors.

IPL'1) can be used to reduce the number of input data groups to only tho ie normally required for a wind tunnel simulation. If $\operatorname{IPL}(1)=0$, the required number of groups is not affected by IPL(1). If IPL(1) $\neq$ 0 , the data deck may include only the following groups:

```
CARDS 00 through 08 (Identification and Program Logic)
Data tables specified by IPL(2), (3), (4), and (5)
Rotor Aerodynamic Group (with IPL(6) subgroups)
Main Rotor Group
Rotor Controls Group
Iteration Logic Group
Flight Constants Group
Five Maneuver-Only Groups (i.e., Bobweight, Weapons, SCAS,
 STAB Times, and Blade Element Data Times Groups)
```

If NPART $=1$ or 7 , the $f i v e$ maneuver only groups must be omitted; if NPART $=2$ or 4 , IPL(14) controls the reading of these five groups. IPL(1) $\neq 0$ overrides the inputs for IPL(7) and (9) through (12).

IPL(2) specifies the total number of airfoil data tables included in the Data Table Group. Permissible inputs are $0,1,2,3,4$, or 5 . Note that if a rotor aerodynamic subgroup specifies that it uses an airfoil data table from the Data Table Group, the corresponding table must be input. (See the Data Table Group, Section 3.3.1, and the Rotor Aerodynamic Group, Section 3.5). Also note that if $\operatorname{IPL}(2)=\operatorname{IPL}(3)=$ $\operatorname{IPL}(4)=\operatorname{IPL}(5)=0$, the Data Table Group has no data in it.

IPL(3) and (4) control the reading of the aeroclastic blade data sets included in the Data Table Group for the main rotor and tail rotor respectively. If $\operatorname{IPL}(3)=0$, all main rotor aeroelastic blade data (weight, inertia, and mode shape distributions on CARDS $16,16 A$, etc.) must be omitted from the Data Table Group. Similarly, if IPL(4) = 0, all tail rotor aeroelastic blade data (CARDS $17,17 \mathrm{~A}$, etc.) must be omitted. For positive, nonzero inputs, the values of IPL(3) and IPL(4) specify the number of mode shapes which must be included in the Data Tabie Group for the main and tail rotor respectively. Up to six modes may be input for each rotor. If aeroelastic blade data are included, the blade weight and inertia inputs, e.g., $\operatorname{XMR}(11)$ and $X M R(12)$, in the corresponding rotor group(s) are ignored.

IPL(5) controls the reading and use of the Rotor-Induced Velocity Distribution (RIVD) tables which are described in Section 3.3.3. It is a 0-1-2-3 type switch. That is, if $\operatorname{IPL}(5)=0$, both the main rotor and tail rotor RIVD tables must be omitted; if IPL(5) $=1$, the main rotor table must be input and tail rotor table omitted; if $I P L(5)=2$, the tail rotor table must be input and the main rotor table omitted; if IPL(5) = 3, both tables must be input. If a table is not input for a particular rotor, an empirically derived equation is used to compute the distribution for that rotor. This default equation is given in Section 3.26.2.

IPL(6) specifies the total number of rotor airfoil aerodynamic subgroups included in the Rotor Aerodynamic Group. Permissible inputs are 0 to 5 inclusive. As long as the input data includes at least one rotor group, an input of 0 is reset to 1 and one subgroup must be input. If both rotors are deleted $(\operatorname{IPL}(7)=3)$, $\operatorname{IPL}(6)$ may be input as zero to delete the reading of the Rotor Airfoil Aerodynamic Group in its entirety.

IPL(7) deletes the reading of specified rotor groups. It is a 0-1-2-3 type switch; e.g., 0 requires input of both rotor groups (none deleted) and 3 requires deletion of both groups. When a group is deleted, its ID card must also be deleted.

IPL(8) controls the reading of the rotor pylon cards (XMP(1-i4) on CARDS 48 and 49 for the main rotor and $\operatorname{XTP}(1-14)$ on CARDS 58 and 59 for the tail rotor). It is a $0-1-2-3$ type switch; e.g., 0 requires both sets of cards be omitted and 3 requires both sets be included.

IPL(9) controls the reading of the basic and aerodynamic inputs to the Wing Group (CARDS 60 through 6A) and the Wing Control Linkages Subgroup (CARDS 6B and 6C). If IPL(9) $=0$, both the Group and Linkages Subgroup must be omitted; if $\operatorname{IPL}(9)>0$, both must be included. If $\operatorname{IPL}(9)<0$, the CARDS 60 through 6A must be included and CARDS $6 B$ and $6 C$ omitted, i.e., the wing incidence and control surface deflection are independent of the flight controls.

IPL(10) controls the reading of the basic and aerodynamic inputs to the Stabilizing Surface Groups (CARDS 70 through 79, 80 through 89, 90 through 99, and 100 through 109) and the Stabilizing Surface Control Linkages Subgroups (CARDS 7A, 7B, 8A, 8B, 9A, 9B, 10A, and 10B). If IPL(10) $=0$, all Surface Groups including ID cards and Linkages Subgroups must be omitted. If IPL(10) >0, exactly IPL(10) Surface Groups with their corresponding Linkages Subgroup must be iricluded. If IPL(10) $<0$, exactly the magnitude of IPL(10) Surface Groups must be included, but all Linkages Subgroups must be omitted; i.c., both incidence angle and control surface deflection of each stabilizing surface are independent of the flight controls. When a surface is omitted, its ID card must also be omitted.

IPL(11) controls the reading of the Jet Group. If $\mathrm{IPL}(11)=0$, the entire Jet Group including ID card must ie omitted; otherwise it must be included.

IPL(12) controls the reading of the External Store/Aerodynamic Brake Group and Subgroups (CARDS 120 through 12C) and is equivalent to the number of store/brake subgroups which are to be included. If IPL(12) $=0$, the entire group, including the identification card, must be omitted. If IPL(12) $>0$, the group must include the identification card and the specified number of subgroups; e.g., if $\operatorname{IPL}(12)=3$, the group must consist of ten cards (one identification card plus three subgroups of three cards each).

IPL(13) controls reading of the Supplemental Rotor Control Subgroups (CARDS 135 through 138). If IPL(13) $=0$, the subgroup must be omitted; otherwise it must be included.

IPL(14) controls the reading of the Bobweight, Weapons, SCAS, Stability Times, and Blade Element Printout Groups when NPART $=2$ or 4 . If $\operatorname{IPL}(14)=0$, all five groups must be omitted; if $\neq 0$, all five must be included. If NPART does not equal 2 or 4 , all five groups must be omitted. This input does not affect the reading of the last two groups when NPART $=5$.

CARD 07
IPL(15) defines the flight condition to be trimmed in conjunction with the specified g-level, XFC(12), and the input Euler roll angle, XFC(7), as described below.

IPL(15)	XFC(12)	Flight Condition
$=0$	$=0.0$	Unaccelerated Flight
	$\neq 0.0$	Coordinated turn at g-level of XFC(12)
$\neq 0$	$\geq 1.0$	Zero turn rate pullup at g-level of XFC(12)
	$<1.0$	Zero turn rate pushover at g-level of XFC(12)

In addition, the following applies to coordinated turns:
(1) Regardless of the TRIM procedure specified by IPL(16), the program will iterate on pitch and yaw.
(2) The "fixed" roll angle for each iteration is determined from the previous iteration by solving the following relationship for roll angle:
$n \cos \Phi=\cos \Theta \cos ^{2} \Phi+\left(\cos \Theta \sin ^{2} \Phi+\tan \beta \sin \phi \sin \theta\right) / K$
where

$$
\begin{aligned}
& K=1+(\tan \Theta \tan \alpha) / \cos \Phi \\
& \theta=\text { Euler pitch angle } \\
& \Phi=\text { Euler roll angle } \\
& n=g \text { level, XFC(12) } \\
& \alpha=\text { angle of attack } \\
& \beta=\text { angle of sideslip }
\end{aligned}
$$

(3) The turn direction is selected by use of the sign on the input roll angle, XFC(7). A positive or zero value gives a right turn, a negative value a left turn.

IPL(16) controls the Euler angle held constant during the TRIM procedure. If IPL(16) $=0$, the TRIM procedure holds the yaw angle constant. It is necessary to hold yaw for low speed or hover cases, since the force and moment derivatives with yaw angle all go to zero in hover. If IPL(16) 0 , the TRIM procedure holds the Euler roll angle constant and iterates on pitch and yaw. This tends to give the most realistic TRIM conditions at high speeds, since a pilot has a more sensitive feeling for a roll angle than a yaw angle. If IPL(15), the TRIM type indicator, specifies a coordinated turn, the TRIM procedure iterates on pitch and yaw regardless of the value of IPL(16).

IPL(17) controls the computation of the partial derivative matrix during trim. Permissible values are $0,1,2,3,4$, and 5 . If $\operatorname{IPL}(17)=0$, the matrix is computed every fifth iteration, i.e., iterations $1,6,11$, ... etc., and uses the most recently computed matrix for iterations in which the matrix is not computed. If IPL(17) $\neq 0$, the matrix is computed every IPLill)th iteration. Computing the matrix for every iteration rather than every fifth iteration will increase the run time for trim by a factor of approximately three. Computation at every iteration is normally nec ssary only when there is difficulty getting a case to trim with LPL(17) $=0$.

IPL(18) controls the steady-state aerodynamics used for the main rotor. If $\operatorname{IPL}(18)=1,2,3,4$ or 5 , the $\operatorname{IPL}(18)$ th Rotor Airfoil Aerodynamic (RAA) subgroup is used to compute the main rotor aerodynamic coefficients at all blade stations, i.e., the blade has a constant airfoil section root to tip. If IPL(18) $=0$, it is reset to 1 . If $\operatorname{IPL}(18)<0$, the main rotor blade airfoil distribution card, CARD 4G, is read and used to assign the RAA subgroups to Blade Stations No. 1 through No. 20. CARD 4 G must be omitted if $\mathrm{IPL}(18) \geq 0$ and must be included if IPL(18) $<0$.

IPL(19) controls the steady-state aerorynamics used for the tail rotor in the same manner as IPL(18) controls the main rotor aerodynamics. However, the sign of IPL(19) controls the reading of only the tail rotor airtoil distribution, CARD 5G, and has no effect on CARD 4G, just as IPL(18) has no effect on reading CARD 5G. Note that both IPL(18) and (19) must be less than or equal to IPL(6), the number of RAN subgroups.

IPL(20) controls which option is to be used for rotor unsteady aerodynamics. It is a 0-1-2-3 type switch with the added feature that positive values activate the UNSAN unsteady aerodynamic model for the specified rotor(s) while negative values activate the BUNS unsteady aerodynamic model. See Volume I for discussion of these two models. If $\operatorname{IPL}(20)=0$, unsteady aerodynamics are ignored in the rotor computations. If an option is activated, it is activated for all blade segments not included in the rotor hub. Even if activated, neither option will affect computation unless the time-variant rotor analysis discussed below is used.

The program includes the option for two basic types of rotor analyses where each type has two possible blade configurations:

Type I:	Quasi-static with (A) rigid blades or (B) aeroelastic   blades
Type II: $\quad$Time-variant with (A) rigid blades or (B) aeroelastic   blades	

IPL(21) specifies the rotor(s) for which the time-variant rotor analysis can be used and operates as a 0-1-2-3 type switch. If IPL(21) = 0, the time-variant analysis (Types IIA and IIB) cannot be used in any part of the program and the value of IPL(22) will be ignored. In this case, both rotors will use the quasi-static analysis (Type IA or IB) for both trim and maneuver. Type IA will be used when no aeroelastic blade data are input (IPL(3) or $(4)=0$ ) and Type IB will be used for a rotor if the blade data are input. If IPL(21) $=1$ or 2 , the Type II analysis will be used for the specified rotor and Type $I$ will be used for the other rotor. If $\operatorname{IPL}(21)=3$, the Type II analysis will be used for both rotors. As with $\operatorname{IPL}(21)=0$, the choice between Type $I_{i}$, and $I B$ and between Type IIA and IIB depends on the availability of aeroelastic blade data. Note that if $\operatorname{IPL}(21) \neq 0$, the stability analysis cannot be performed. That is, NPART mist not equal 7, and either the TSTAB group must be omitted or the TSTAB(1) input must be greater than the duration of the maneuver. The TSTAB group is discussed in Section 3.18; also see IPL(14).

If IPL(21) $\neq 0$, then $\operatorname{IPL}(22)$ controls the portion of the program in which the time-variant analysis is to be used for the rotor(s; specified by the IPL(21). Table 3-1 shows the type of rotor analysis used for each rotor as a function of the values of IPL(21) and (22). The azimuth increment to be used in the time-variant portion of a trim is input on CARD 141, XIT(2). See Section 3.13. The azimuth increment for the quasi-static portion of a trim is fixed at 30 degrees. The azimuth (or time) increment used in maneuver is input on CARD 301, TCI(2). See Section 3.20.

The time-variant portion of a quasi-static trim followed by a time-variant $\operatorname{trim}(a \operatorname{QS}-T V \operatorname{trim} ; \operatorname{IPL}(22)=1$ ) is in essence a time history of five rotor revolutions with the fuselage and control position locked. For each rotor which is time-variant, the additional run time for the time-variant trim after the quasi-static trim will be about the same as the time for a five-rotor-revolution maneuver.

For a fully time-variant trim $(\operatorname{IPL}(22)=2$ ), each trim iteration will require about 3 to 6 times the run time of an equivalent quasi-static iteration depending on azimuth increment and whether one or both rotors are time-variant. Additional run time must be allocated accordingly for a fully time-variant trim. However, it cannot be predetermined whether a fully time-variant trim will require more or less iterations than a corresponding quasi-static trim.

TABLE 3-1. ROTOR ANALYSIS USED dURING TRIM AND MANEUVER				
Inputs		Rotor	Analysis Used	
IPL(21)	IPL(22)		In Trim	In Maneuver
0	(ignored)	$\begin{aligned} & 1 \text { (Main) } \\ & 2 \text { (Tail) } \end{aligned}$	$\begin{aligned} & \text { QS } \\ & \text { QS } \end{aligned}$	$\begin{aligned} & \mathrm{QS} \\ & \mathrm{QS} \end{aligned}$
1	0	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \text { QS-TV } \\ \text { QS } \end{gathered}$	$\begin{aligned} & \text { TV } \\ & \text { QS } \end{aligned}$
	1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{QS} \\ & \mathrm{QS} \end{aligned}$	$\begin{aligned} & \text { TV } \\ & \text { QS } \end{aligned}$
	2	1	$\begin{aligned} & \text { TV } \\ & \text { QS } \end{aligned}$	$\begin{aligned} & \text { TV } \\ & \text { QS } \end{aligned}$
2	0	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \text { QS } \\ \text { QS-TV } \end{gathered}$	$\begin{aligned} & \mathrm{QS} \\ & \mathrm{TV} \end{aligned}$
	1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { QS } \\ & \text { QS } \end{aligned}$	$\begin{aligned} & \text { QS } \\ & \text { QS } \end{aligned}$
	2	1	QS	QS
3	0	1	$\begin{aligned} & \text { QS-TV } \\ & \text { OS-TV } \end{aligned}$	$\begin{aligned} & \mathrm{TV} \\ & \mathrm{TV} \end{aligned}$
	1	1	$\begin{aligned} & \text { QS } \\ & \text { QS } \end{aligned}$	$\begin{aligned} & \mathrm{TV} \\ & \mathrm{TV} \end{aligned}$
	2	1	TV	TV
QS = Quasi-static rotor analysis   TV = Time-variant rotor analysis   QS-TV = Quasi-static trim followed by a time-variant trim. During the time-variant portion of this type trim only the flapping, pylon, and mast windup angles of the time-variant rotor are allowed to vary; the fuselage and control positions are held fixed at the values determined by the quasi-static trim. If both rotors are time-variant, they are trimed independently of each other.				

IPL(23) and IPL(24) control the moment balancing procedures used for the main and tail rotor respectively during each individual trim iteration. Although virtually identical in operation, the two inputs are completely independent of each other. If IPL(23) and IPL(24) =0, the fully coupled $10 \times 10$ system of trim equations is used for each trim iteration. For the quasi-static rotor analysis (IPL(21) - 0) this means that the F/A and lateral flapping moments of each rotor are computed only once during a single trim iteration using the current values of cyclic pitch and flapping angles. That is, the rotor moments as calculated are used, and no attempt is made to reduce any moment imbalance during a trim iteration. For the time-variant rotor analysis, IPL(23) and IPL(24) must both be zero. IPL(23) $=\operatorname{IPL}(24)=0$ is considered the standard procedure for iterating to a trimmed flight condition regardless of the rotor analysis being used.

If the quasi-static rotor analysis is being used, nonzero values of IPL(23) and JPL(24) can be used to decouple sets of rotor flapping moment equations from the standard $10 \times 10$ system and to activate one of two alternate procedures for reducing the flapping moment imbalances in the uncoupled set(s) of rotor equations. The systems of equations to be used in each trim iteration are given in Table 3-2.


When IPL(23) or IPL(24) is not equal to zero, the sign of the input determines which of the moment balancing procedures is to be used. If the input is greater than zero, flapping angles are locked and cyclic pitch angles are changed to trim the appropriate set(s) of decoupled rotor equations. If the input is less than zero, the cyclic pitch angles are locked and the flapping angles are changed to trim the appropriate set(s) of decoupled rotor equations. The magnitude of the input specifies the maximum number of subiterations, i.e., rotor iterations within the trim iteration, which are permitted to trim the appropriate rotor. A system of decoupled rotor equations is defined to be trimmed when the magnitude of the moment imbalance is less than the allowable error (XIT(20) for the main rotor, XIT(21) for the tail
rotor). Note that IPL(23) and (24) control only rotor moment balancing procedures. The allowable errors for the force and moment summary, XIT(15) through XIT(19), do not affect rotor moment balancing during a single trim iteration.

IPL(25) controls the printout of the trim iterations. If $\operatorname{IPL}(25)=0$, only the last force and moment summary and the last partial derivatives matrix computed before trim are printed. If $\operatorname{IPL}(25)=1$, the summary and matrix are printed out for each trim iteration. Since each trim iteration uses one page of computer paper, IPL(25) = 0 can significantly reduce the volume of printed output when many trim cases are being run.

IPL(26) controls the printout of the optional trim page. It is a 0-1-23 type switch; e.g., 0 omits the optional page for both rotors and 3 prints one of the optional trim pages for each rotor.

IPL(27) controls printout of blade element aerodynamic (BEA) data for both rotors as follows:
$\operatorname{IPL}(27)=0$ or 1 No BEA data is printed
$=2$ BEA data is printed along with bending moment data at the maneuver time points specified in the Blade Element Data Printout Group. (See Section 3.19.) If no maneuver is computed, $\operatorname{IPL}(27)=2$ has no effect.
$=3 \quad$ BEA data is printed after trim and along with bending moment data at the maneuver time points specified in the Blade Element Data Printout Group.

WAKNING: IPL(27) should never be set larger than 3 for a normal run. IPL(27) inputs of 4 and 5 are intended only for very detailed diagnostic checks by the programmer; these values will generate huge stacks of output containing data which is not needed for normal runs. For reference only, the effects of values of 4 and 5 are as follows:

$\operatorname{IPL}(27)=4$	BEA data is printed after trim and at every time point in a maneuver regardless of the value of NPRINT on CARD 01 and the values in the Blade Element Data Printout Group.
$=5$	BEA data is printed every trim iteration and every time point in a maneuver. You'll need a wheelbarrow to haul away the output generated by this value of IPL(27).

IPL(28) controls the fuselage degrees of freedom in maneuvers. If $\operatorname{IPL}(28)=0$, the fuselage has the conventional six degrees of freedom. If IPL (28) $\neq 0$, all fuselage degrees of freedom are suppressed (locked
out) during maneuvers. Although this input is independent of all other logic inputs, it is normally used only for wind tunnei simulations, e.g., IPL(1), IPL(23), or IPL(24) $\neq 0$.

CARD 08 Stability Analysis and Miscellaneous Logic
IPL(29), (30), (31), and (32) provide the user with control over the coupling in the stability analysis subroutine, STAB. Some graphical examples of the effect of IPL(29), (30), and (31) on the matrix used in STAB are shown in Figure 3-1. These three switches are completely independent of each other. IPL(29) controls the coupling between the three longitudinal fuselage equations and the three lateral fuselage equations. If $\operatorname{IPL}(29)=0$, the fuselage is represented by two $3 \times 3$ matrices. If $\operatorname{IPL}(29) \neq 0$, the fuselage is represented by a $6 \times 6$ matrix.

IPL(30) controls the rotor dynamic pylon degrees of freedom in STAB. It is a 0-1-2-3 type switch; e.g., zero locks the pylon (F/A and lateral both) of each rotor and three frees both rotor pylons (F/A and lateral). IPL(30) must be compatible with the pylon data read in by IPL(8); i.e., do not attempt to unlock a pylon for which there is no data. As a safeguard, the program resets $\operatorname{IPL}(30)$ to zero if $\operatorname{IPL}(8) \neq 3$ and IPL(30) $\neq$ IPL(8).

IPL(31) controls the rotor flapping degrees of freedom in STAB. It is a 0-1-2-3 !.-e switch; e.g., zero locks both rotors and three frees both rotors.

If, for a teetering or gimbaled rotor (XMR(16) or $\operatorname{XTR}(16)=0)$, the flapping degrees of freedom are locked out by IPL(31), these degrees of freedom can be included in the stability derivatives by changing the flapping angles to rebalance the rotors. If IPL(32) $=0$, the rotor(s) will be rebalanced; if IPL(32) $\# 0$, no rebalancing takes place. For rigid or articulated rotor (XR(16) or XTR(16) $\ddagger 0$ ), no rebalancing takes place when the flapping degrees of freedom are locked out and the value of IPL(32) is ignored.

IPL(33) controls the option to print or punch on cards the mass, damping, and stiffness matrices used in the stability analysis. The punch option is useful when the user plans to input these matrices to another computer program.

```
IPL(33) = 0 to print only
 l to punch only
 2 to print and punch
 3 to suppress print and punch
```

The form of the punched output is explained in Section 4.11.4.
IPL(34) should always be zero. It is intended for diagnostic use by the programer only and is discussed in detail only in Vo:ume III.

(a) Basic Stability Analysis Matrix


Note:
Cross-hatched area represents Degrees of Freedom used in each case.


Figure 3-1. Schematic of Matrices Used in the Stability Analysis.

(d) Coupled Fuselage - Main Rotor

(e) Coupled Fuselage - Tail Rotor


IPL (29) $\neq 0$
IPL (30) $=0$
IPL (31) $=3$
(f) Coupled Fuselage - Both Rotors

Figure 3-1. Continued.


IPL (29) $\neq 0$
$\operatorname{IPL}(30)=2$
IPL (31) $=3$
(h) Coupled Fuselage - Both Rotors - Tail Pylon


IPL (29) $\neq 0$
$\operatorname{IPL}(30)=3$
IPL (31) $=3$
(i) Coupled Fuselage - Both Rotors - Both Pylons

Figure 3-1. Concluded.

IPL(35) is currently inactive.
IPL(36) controls the formal printout of input data which normally precedes the start of the first TRIM iteration. Increased values of IPL(36) progressively suppress more and more data as indicated below:

$$
\text { Value of } \operatorname{IPL}(36)
$$

$=0$	None
$\geq 1$	All data tables (airfoil, aeroelastic blade,   RIVD, and RWAS tables)
$\geq 2$	All group ID cards (except Program Logic   Group) and all input groups (printout of   \&CHANGE Cards is not suppressed)
$\geq 3$	Problem heading and identifying comments   (from CARDS 02, 03, and 04) when NPART = 10;   CCHANGE Card (s) and input data for maneuvers   in all cases

Printout Suppressed
None
All data tables (airfoil, aeroelastic blade, RIVD, and RWAS tables)

All group ID cards (except Program Logic \&CHANGE Cards is not suppressed)

Problem heading and identifying comments (from CARDS 02, 03, and 04) when NPART $=10$; \&CHANGE Card(s) and input data for maneuvers in all cases

Printout of the problem heading, identifying comments, and Program Logic. Group ID cannot be suppressed on the first cases in a run because these data are printed before the IPL group is read in. The data deck listing printout at the start of each run is never suppressed. Note that in the second and subsequent cases in a parameter sweep (i.e., when NPART = 10), printout of all data tables is automatically suppressed. To printout the tables in these cases, $\operatorname{IPL}(36)$ musi be reset to zero in the \&CHANGE Card of each case for which the printout is desired.

IPL(37) specifies the number of RWAS (Rotor Wake at Aerodynamic Surfaces) Tables which must be included in the deck. The permissible number of tables is 0 to 12 inclusive. Note that tie tables are numbered sequentially on infut, and that these sequence numbers are later used to call specific tables. The format for each table is given in Section 3.3.4, and their use is discussed in Section 3.8.1 for the wing and Section 3.9.1.1 for the stabilizing surfaces.

IPL(38), (39), and (40) are currently inactive.
IPL(41) controls the position of the rotor blades for side-by-side folding rotor configurations. It should be input as zero for all other rotor configuratioris. If $\operatorname{IPL}(41)=0$, both rotors are defined to be unfolded and turning at the rpm determined by XMR(i3) and XFC(25) for Rotor 1 and $X \operatorname{TR}(13)$ and $\operatorname{XFC}(25)$ for Rotor 2 . If $\operatorname{IPL}(41) \neq 0$, the rotors are defined to be stopped and folded; in this case, the data should be set up as if the rotors wexe unfolded and at normal RPM except that:
(1) IPL(41) $\neq 0.0$
(2) Controls are locked by setting $X \operatorname{CON}(4), X \operatorname{CON}(11), X C O N(18)$, and $\operatorname{SCON}(25) \neq 0.0$
(3) Maneuver input cards for $J=18$ and $J=27$ have a time of 0.0 , i.e., for $\mathrm{J}=18, \Omega_{\mathrm{B}}>0$

IPL(42) controls the cg shift with rotor folding. If $\operatorname{IPL}(42)=0$, no shift is computed; $\neq 0$, cg shift is computed. This single switch applies to both rotors.

### 3.3 DATA TABLE GROUP

The Data Table Group does not have a group identification card of its own, i.e., no CARD 10. Rather, each data set included in the group has its own identification card. The data sets which may be included in this group are the Airfoil Data Tables, the Rotor Aeroelastic Blade Data Blocks, the Rotor-Induced Velocity Distribution Data Tables, and Rotor-Induced Velocity Acting at the Aerodyaamic Surface Tables.

### 3.3.1 Airfoil Data Table Sets

The number of airfoil data table sets to be included is specified by IPL(2). IPL(2) may equal $0,1,2,3,4$, or 5. A set of tables for an NACA 0012 airfoil section is compiled within the program and stored in the space allocated for the fifth table. If IPL(2) specifies that five tables are to be read in, the fifth external table will overlay the internal 0012 data.

This internal 0012 table may be used any time four or less airfoil data tables are read in, i.e., $\operatorname{IPL}(2)=0,1,2,3$, or 4. If not overlaid, the 0012 table or any table which is input can be assigned to any one of the five rotor airfoil aerodynamic subgroups or the five aerodynamic surfaces by use of the 18 th aerodynamic input, e.g., $\operatorname{YRR}(18,1), \operatorname{YRR}(18,3)$, YWG(18), YSTB1(18). Note, however, that data tables for the rotor must be airfoil section (two-dimensional) data while tables for the aerodynamic surfaces must be surface (three-dimensional) data. See Sections 3.5.2 and 3.8.2 for further details on assigning data tables to the rotor and aerodynamic surfaces respectively.

The contents of each data table set are the same:
(1) Identification Card
(2) Title and Control Card
(3) Lift Coefficient Table (at least 3 cards)
(4) Drag Coefficient Table (at least 3 cards)
(5) Pitching Moment Coefficient Table (at least 3 cards)

The specific format for the first two cards of each set is identical while the general format for each of the three tables in any set is the same. Note that angle of attack is the only parameter which ever appears in the first seven-column field on any card in any table.

The Mach number entries in each table must start at zero and be in increasing order of magnitude. Note that if the computed Mach number exceeds the highest Mach number in the table, the table routine extrapolates the data to the computed Mach number.

The card set for the first angle of attack in each table must be for -180 degrees and the last for +180 degrees. Each card set for an angle of attack starts on a new card. In between the card sets for these two angles, the card sets for other angles must be in increasing value of
angle of attack. It is not necessary to have uniform increments between values of angle of attack or Mach number in a table or to have the same angles or Mach numbers in each table. It is assumed that the angle of attack entries in all airfoil data tables are the angles of attack of the chord line of the airfoil section or surface. This assumption should be remembered when developing the inputs for the control system rigging of cambered surfaces.

The minimum value for each of the six integer inputs on the control card (NXL through NZM) is 2 . The maximum values of these inputs are defined by the maximum permissible number of entries in a table, i.e.,

Lift Table:	NXL*NZL + NXL + NZL $\leq 500$
Drag Table:	NXD*NZD + NXD + NZD $\leq 1100$
Pitching Moment Table $:$	NXM*NZM + NXM + NZM $\leq 575$

For example, if the lift table is to have 10 Mach number entries ( $N Z L=10$ ), then the number of angles of attack must be less than or equal to $44(44 * 10+44+10=494)$. The minimum size table ( 2 by 2 ) is frequently used to enter a dummy pitching moment coefficient table ( $C_{M}=0$ at all Mach numbers). Such a table would require $N X M=2$ and $N Z M=2$ on the Title and Control Card plus the following three cards for the table:

First Card:

Col. $11 \rightarrow 20$
$21 \rightarrow 30$
0.0 (lowest Mach number)
1.5 (or any Mach number greater than the expected maximum)

Second Card:
Col. $1 \rightarrow 10$
-180.0 (minimum angle of attack)
$11 \rightarrow 20$
$21 \rightarrow 30$
0.0 ( $C_{M}$ at $\alpha=-180^{\circ}, M=0$ )
$0.0\left(C_{M}^{M}\right.$ at $\left.\alpha=-180^{\circ}, M=1.5\right)$
Third Card:

$$
\text { Col. } \begin{array}{rr}
l \rightarrow 10 & 180.0 \text { (maximum angle of attack) } \\
1 \rightarrow 20 & 0.0\left(\mathrm{C}_{\mathrm{M}} \text { at } \alpha=180^{\circ}, \mathrm{M}=0\right) \\
21 \rightarrow 30 & 0.0\left(\mathrm{C}_{\mathrm{M}} \text { at } \alpha=180^{\circ}, \mathrm{M}=1.5\right)
\end{array}
$$

### 3.3.2 Rotor Aeroelastic Blade Data Block

This data block consists of two data sets: one for the main rotor aeroelastic blade and one for ce tail sotor aeroelastic blade. If IPL(3) $=0$, the main rotor set must be cen ited; if $I P L(4)=0$, the tail rotor set must be omitted. If IPL(3) or IPL( $4, \neq 0$, the corresponding data set must be input. Each data set consists of sour distributions for the blade: weight, beamwise inertias, chordrist inertias and mode shapes. The distributions are for a blade of twenty equal-length segments, and all distributions are root to tip. All blades of the same rotor are assumed to have identical properties.

The main rotor data set is described below. The tail rotor set is identical in format, differing only in the nomenclature of the arrays, e.g., XTW instead of XMW and XTRMS instead of XMRMS, and the number of mode shapes to be read in, i.e., IPL(4) instead of IPL(3).

The first card of the data set is the identification card. If the data library option is available, the ID card can call a data set from library and the remaining cards must be omitted. If the data library is not used, the ID card must be followed by the four distributions.

CARDS 16/A1, 16/A2, 16/A3
The blade weight distribution inputs, XMW(1) -XMW(20), are defined to be the average values in pounds per inch across each of the twenty equallength blade segments. The tip weight, $X M W(21)$, is concentrated at the tip of the blade $(x / R=1.0)$.

CARDS 16/B1, 16/B2, 16/B3, 16/Cl, 16/C2, 16/C3

The beamwise mass moments of inertia, XMW(22) -XMW(41), are about the chord line of the airfoil section while the chordwise mass moments of inertia, XMW(43) $\rightarrow$ XMW(62), are about a line perpendicular to the chord line and located at the half chord of the segment. Normally, the chordwise inertias are much larger than the corresponding beamwise inertias. The units on both are in.-1b-sec ${ }^{2} /$ in.

CARD SETS 16/D, 16/E, 16/F, 16/G, 16/H, 16/I
These ,ards contain the coupled blade mode shapes. Exactly IPL(3) sets of mode shape data must be input. Each mode shape (card set) requires twelve cards. The first eleven cards contain 66 numbers with ten columns per number and six values per card ( 6 F10.0 format). These inputs are the out-of-plane, inplane, and torsional components of the normalized mode shape at each of the twenty-one blade stations which are equally spaced from the root to the tip of the blade. (Station No. 0 is the blade root; Station No. 20 is the blade tip.)

The twelfth card contains the data which change the blade natural frequencies as a function of rotor rpm and pitch angle. There are 8 inputs on this card. The first 6 are in 10 column fialds, and the last 2 are in 5 column fields ( 6 F10.0, $2 F 5.0$ format). If this card is blank, the natural frequency remains constant at the value input on the eleventh card. As used here pitch angle refers to the pitch angle at zero radius; this is the reference point for all blade pitch angles in C81. The set of data for Mode 1 (CARDS 16/D1 through 16/D12) is detailed in Section 2.3.2.1.4. The sets of data for additional modes use the same input sequence and format as Mode 1. Note that neither mode shape array (XMRMS or XTRMS) is included in the NAMELIST specification statement. Hence, mode shape parameters cannot be changed either when called from the data library or during a sweep case (NPART = 10).

The mode type indicator, XMRMS (65) for Mode 1 , is used for gimbaled or teetering rotors to characterize the monent transfer across the rotor hub. See Volume I for a discussion of the four mode types.

Input Value	Mode Type
-2	Independent
-1	Cyclic
0	Scissor
1	Collective

An independent mode responds to all forcing frequencies. The independent mode type is intended to be used for torsional modes primarily. For an articulated or rigid rotor, $\operatorname{XMR}(16) \neq 0$, the mode type indicator is not used, and any value may be input without effect.

The modal damping ratio is the ratio of the damping to the critical damping. Good data for this input are difficult to find, but the range is generally accepted to be around 0.005 to 0.02 .

The input data on the twelfth card of each mode, which changes the natural frequency as a function of blade pitch angle and rpm, is based on plus and minus increments of each variable about some central reference point. The central or reference rpm and pitch angle should be those at which the basic mode shape and frequency were calculated. The high and low values of pitch must be equidistant from the reference value. The same is true of the rpm.

NOTE: It is imperative that the first mode entered be the primary beamwise (flapping) mode characterized by a natural frequency close to one-per-rev. This is necessary for the rotor elastic trim to work properly. Other than the first mode, the order in which the modes are entered is entirely a user option.

### 3.3.3 Rotor-Induced Velocity Distribution Tables

The induced velocity distribution over each rotor can be computed from either the equation given in Section 3.26 .2 or a Rotor-Induced Velocity Distribution (RIVD) table. IPL(5) controls the read-in of RIVD tables and the option of using a table or the equation.

Value of IPL(5)

0
1 Main rotor table only
Tail rotor table only

Both main rotor and tail rotor table

Effect

```
Both rotors use equation
Main rotor uses table; tail
rotor uses equation
Main rotor uses equation;
tail rotor uses table
Each rotor uses its respective
table
```

When a table is used, the local induced velocity is computed from the following summation:

$$
v_{i}(\mu, \lambda, r / R, \psi)=\bar{V}_{i}\left[a(1)+\sum_{n=1}^{N H H}\{a(2 n) * \sin (n \psi)+a(2 n+1) * \cos (n \psi)\}\right]
$$

where

$$
\begin{aligned}
& v_{1}=\text { local induced velocity, ft/sec } \\
& \bar{V}_{i}= \text { average induced velocity over the rotor disc, ft/sec } \\
& \mu= \text { advanced ratio (velocity in plane perpendicular to rotor } \\
& \text { shaft/flight path velocity) } \\
& \lambda= \text { average inflow ratio (based on } \bar{V}_{i} \text {, parallel to rotor shaft) } \\
& r / R=\text { radial blade station (nondimensional) } \\
& \psi= \text { blade azimuth angle } \\
& a(i)= \text { coefficients of the harmonics (nondimensional) } \\
& N H H= \text { order of the highest harmonic } \\
& n= \text { summation variable }
\end{aligned}
$$

The coefficients $a(i)$ are computed fron the table as functions of $\mu, \lambda$, and $r / R$ of the appropriate rotor. Note that these coefficients are in effect velocities which have been normalized by $\bar{V}_{i}$, and that $\mu$ and $\lambda$ are defined in shaft reference.

An RIVD table itself consists of sets of Fourier coefficients which are derived from a curve fit of the above equation to data generated by a rotor wake analysis of the user's choosing. It is emphasized that in preparing a RIVD table the coefficients must be normalized by value of $\overline{\mathbf{V}}_{i}$ which is computed in this program. See Section 3.3.1 of Volume $I$ of this report for the programmed definition of $\bar{V}_{i}$. The programmer is
referenced tc Subroutine VIND in the main program where this parameter is computed. Also note that each table must be defined in terms of the $\mu, \lambda$, and $\bar{v}_{i}$ of its associated rotor.

Each set of coefficients in the table corresponds to data at specific values of $\mu, \lambda$, and $r / R$. The number of sets of coefficients in a table and the number of coefficients in a set are defined by the inputs on the Title and Control Card (CARD 18/A or 19/A). The permissible values of the integer inputs on these cards are:

```
Number of advance ratios: \(\quad 1 \leq N M U \leq 10\)
Number of inflow ratios: \(\quad 1 \leq\) NLM \(\leq 5\)
Number of radial stations(NRS): \(=4,5,10\), or 20
Number of harmonics:
\(0 \leq \mathrm{NHH} \leq 16\)
```

If NMU or NLM is input as zero, it is reset to unity. If NRS is input as zero, it is reset to 20. Inputs other than zero which are outside these ranges will terminate execution of the program.

The number of coefficients in a set (NCA) is then
$\mathrm{NCA}=2 \pi \mathrm{NHH}+1$
which implies

$$
1 \leq N C A \leq 33
$$

Hence, one RIVD table may then consist of 4 to 1000 sets of 1 to 33 coefficients each (4 to 33,000 total entries).

As indicated above, the number of radial stations (NRS) must be 4, 5, 10 , or 20 . The radial stations which correspond to these values of NRS are defined in Table 3-3. No other distribution of stations is provided. The program interpolates or extrapolates the input data as required to obtain data at 20 equally spaced radial stations (r $/ R=$ 0.05 to 1.0 ). There are no restrictions on the values or increments
between values which are input to either the advance ratio (WKMU) or inflow ratio (WKLM) array.

TABLE 3-3. RADIAL STATIONS FOR INDUCED VELOCITY DISTRIBUTION T/BLE	
NRS	Radial Stations: WKRS(1) $\rightarrow$ WKRS(NRS)   $0.0=$ root   $1.0=$ tip
4	$.25, .50, .75,1.0$
5	$.20, .40, .60, .80,1.0$
10	$.10, .20, .30, \ldots .80, .90,1.0$
20	$.05, .10, .15, .20, \ldots, .80, .85, .90, .95,1.0$

Once an RIVD table is read into the program and the radial station initiation is performed, the table can be considered to be 20 independent tables where each table is bivariant in $\mu$ and $\lambda_{\text {, }}$ and corresponds to a particular radial station.

During the rotor computations, a table look-up procedure is then used to obtain the set of coefficients a(i) from the appropriate radial station table. This table look-up procedure performs bivariant interpolation using the computed values of $\beta$ and $\lambda$ whenever both values are within the range of their respective inputs. If a computed value is outside the range of its input, the procedure uses the input value which is closest to the computed value (i.e., the nearest boundary of the table); it does not extrapolate to a computed value. Note that the boundaries of a table can be pictured in a $\mu$ - $\lambda$ plane $e s$ a rectangle (when joth NMU and NLM are greater than unity), a line (when either NMU or NLM is unity, but the other is not), or a point (when both NMU and NLM are unity). Hence, in the trivial case ( $N M=N L M=1$ ), the coefficients are dependent on radial station but independent of $\mu$ and $\lambda$. If only one of these control variables is unity, the coefficient will be independent of the associated ratio, but dependent on the other ratio as well as radial station.

With regard to the input format of the sets of coefficients, it should be emphasized that only the constant coefficient is ever input in the first ten-column field on a card; each set must start on a new card. Inputs following the constant are in pairs (the sine and cosine components of the appropriate harmonic). When used, the fourth, seventh, eleventh, thirteenth and sixteenth pairs of harmonic components start on a new card in the second ten-column field (columns 11 through 20 for the sine component). Only the cards necessary to input NHH harmonics are to be included in the sets of cards. For example, if $N H H=8$, the fourth through sixth cards described in Section 2.3.3.1.3 must be omitted.

### 3.3.4 Tables for Rotor Wake at Aerodynamic Surfaces

The wake from each rotor which acts at each aerodynamic surface can be computed from either individual inputs or Rotor Wake at Aerodynamic Surface (RWAS) Tables. Exactly IPL(37) RWAS Tables must be input where $0 \leq \operatorname{IPL}(37) \leq 12$. However, RWAS Tables are used only when inputs in the wing and/or stabilizing surface groups specify their use. For the wing these controlling inputs are XWG(29) through XWG(32); for the $i$ th stabilizing input the controlling inputs are XSTBi(29) and XSTBi(32). See Sections 3.8.1 and 3.9.2 for details.

When a table is used, the velocity superimposed on the flow field at an aerodynamic surface due to rotor-induced velocity is computed from the following summation:

$$
\left(v_{i}\right)_{j k}=\left(\bar{v}_{i}\right)_{k}\left[a(1)+\sum_{n=1}^{N H H} a(2 n) * \sin \left(n \psi_{k}\right)+a(2 n+1) * \cos \left(n \psi_{k}\right)\right]
$$

where

$$
\begin{aligned}
\left(v_{i}\right)_{j k}= & \text { superimposed velocity on the } j^{\text {th }} \text { surface due to the } \\
& k^{\text {th }} \text { rotor, ft/sec } \\
\left(\bar{v}_{i}\right)_{k}= & \text { average induced velocity across the disk of the } k^{\text {th }} \\
& \text { rotor, ft/sec } \\
a(i)= & \text { coefficients of the harmonics (nondimensional } \\
& \text { functions of } \mu \text { and } \lambda \text { of the } k \text { th rotor) } \\
V_{k}= & \text { azimuth angle of Blade } 1 \text { of the } k^{\text {th rotor }} \\
N H H= & \text { order of the highest harmonic } \\
n= & \text { summation variable }
\end{aligned}
$$

Note that if the $k^{\text {th }}$ rotor uses quasi-static rotor analysis, only the constant term, $a(1)$, is included in the equation (i.e., the value of the summation of the harmonics during a complete rotor revolution is assumed to be zero). The above statement applies to each rotor, independent of the analysis being used on the other rotor.

As implied by the $j$ an: $k$ subscripts above, each table is assumed to correspond to the effect a particular rotor has on a particular surface, e.g., the effect of the main rotor on the left wing panel, the tail rotor on Stabilizing Surface No. 3. The twelve possible tables allow input of a separate table for each combination of the two rotors and the six surfaces (two wing panels and four stabilizing surfaces).

It is emphasized that in preparing an RWAS Table the input coefficients must be normalized by the value of $\vec{V}$, which is computed in this program for the appropriate rotor. Since inputs to the aerodynamic surface groups noted above can assign any one of the RWAS Tables to simulate the defined effect of that input, care must be exercised to assure that the table used is based on the correct rotor-induced velocity and surface location. For example, XSTB2(32) can be used to specify the table which gives the effect of the tail-rotor-induced velocity on Stabilizing Surface No. 3; the referenced table must then have been normalized by the $\bar{V}_{i}$ of the tail rotor, and the $\mu$ and $\lambda$ inputs must be for the tail rotor.

The composition of an RViA; Table is essentially the same as an RIVD Table except that the velocity computed from an RWAS Table is not dependent on blade radial station. Hence, each set of coefficients in an RWAS Table corresponds to the wake velocity at specified values of $\mu$ and $\lambda$ and at a specific location with respect to the appropriate rotor. The number of sets of coefficients in a table and the number of coefficients in a set are defined by the inputs on the Title and Control Card. The permissible values of the integer inputs on this card are

| Number of advance ratios: | $1 \leq N M U \leq 10$ |
| :--- | :--- | :--- |
| Number of inflow ratios: | $1 \leq N L M<5$ |
| Number of harmonics: | $0 \leq N H H \leq 7$ |

If NMU or NLM is input as zero, it is reset to unity. Hence, each RWAS Table may consist of 1 to 50 sets of 1 to 15 coefficients ( 1 to 350 entries). In all other ways, the format and use of the RWAS Tables are identical to the RIVD Tables.

### 3.4 FUSELAGE GROUP (include this group only if IPL(1) $=0$ )

### 3.4.1 Basic Inputs

CARD 21
Gross weight, XFS(1), is the total weight of the baseline configuration being simulated, i.e., includes the fuselage, pylons, empennage, rotors, fuel, crew, etc. However, this number must not include the weight of external stores included in the Store/Brake Group. Store weight is added to $\mathrm{XFS}(1)$ prior to commencing the TRIM procedure.

The Fuselage Data Reference point defines the point of application of body lift, drag, and side force. When the inputs on CARDS 23 through 2E are based on wind tunnel data, the data reference point is the point on the wind tunnel model (in terms of full-scale inches) about which the force and moment data were resolved in data reduction.

CG location is for the total weight of the baseline configuration to be simulated, i.e., XFS(1), with 0 degrees mast tilt, stores off, and rotors unfolded. The cg location is internally recalculated prior to commencing the TRIM procedure for nonzero mast tilt with nonzero rotor nacelle weight, store weights greater than zero, and rotor folding. Note that the longitudinal centerline of the airframe must be buttline zero to be compatible with the aerodynamic surface and jet thrust models. Hence, lateral cg location must be with respect to this line.

CARD 22
Inertias are for the gross weight and cg location input on CARD 21, i.e., the total aircraft less stores. They are internally recalculated when external stores are added by the input data and when they are dropped during a maneuver.

The program contains two models for the fuselage aerodynamic forces and moments:
(1) the Nominai Angle Equation (NAE) model and
(2) the High Angle Equation (HAE) model.

The NAE model provides very precise simulation of wind tunnel data over a limited range of aerodynamic angles while the HAE model is less precise, but provides simulation at all possible aerodynamic angles.

With the equation-use-indicator, $\mathrm{XFS}(12)$, and low and high phasing angles, XFS (13) and XFS(14) respectively, the user can specify the flight regime on which the inputs to the NAE model are based and the aerodynamic angles where the program transitions from the NAE model to the phasing region to the HAE model. This option allows the user to obtain the more precise simulation provided by the NAE model in the flight regime for which the most accurate data is available.

The program calculates a complex angle of attack, $\alpha_{c}$, which includes both angle of attack and sideslip. In forward flight it is defined as

$$
\alpha_{c}=\cos ^{-1}(u / v)
$$

where
$u=$ the body axis $X$ velocity
$v=$ the free-stream (flight path) velocity

This angle determines which model is to be used.
For the normal situation when flight test or analytical data are input to the NAE model, the simplest procedure is to set $\operatorname{XFS}(12)$, (13), and (14) all to zero. For these inputs, the NAE model will be used only when $\alpha_{c}$ is less than 15 degrees; the HAE model will be used only when $\alpha_{c}$ is greater than 35 degrees; and the two models will be phased together when $\alpha_{c}$ is between 15 and 35 degrees.

When both XFS(13) and (14) are input as zero, the program resets them to 15 and 35 degrees respectively as indicated above. For the case of forw. .d flight inputs to the NAE model, it is only necessary that XFS(12) $=$ 0.0 and $\operatorname{XFS}(13)$ be less than XFS(14), not that all three be zero. If the test data input to the NAE model indicates that 15 and 35 are not the best phasing angles, the user should input better ones.

If test or analytical data is available for rearward or sideward flight, it is possible to specify that the NAE model inputs are from one of these flight regimes and that the model should be used in that flight regime.

To specify that the NAE model inputs are in a particular flight regime and are to be used there, use the following guidelines:

| Forward Flight: | $\operatorname{XFS}(12)=0.0$, | $\|\operatorname{XFS}(13)\|<\|\operatorname{XFS}(14)\|$ |
| :--- | :--- | :--- | :--- |
| Rearward Flight: | $\operatorname{XFS}(12)=0.0$, | $\|\operatorname{XFS}(13)\| \geq\|X F S(14)\|$ |
| Left Sideward Flight: | $\operatorname{XFS}(12) \neq 0.0$, | $\|\operatorname{XFS}(13)\|<\|X F S(14)\|$ |
| Right Sideward Flight: | $\operatorname{XFS}(12) \neq 0.0$, | $\|\operatorname{XFS}(13)\| \geq\|X F S(14)\|$ |

When $\operatorname{XFS}(12)=0.0$, the definition of $\alpha_{c}$ is as above:

$$
\alpha_{c}=\cos ^{-1}(u / v)
$$

However, when $\operatorname{XFS}(12) \neq 0.0$, the definition is

$$
\alpha_{c}=\cos ^{-1}(-v / v)
$$

where $V$ is the body axis $Y$ velocity.

In other words, for $\operatorname{XFS}(12)=0.0$ (forward or rearward flight), $\alpha_{c}$ is with respect to the positive body $X$ axis while for $\operatorname{XFS}(12) \neq 0.0$ (sideward flight), $\alpha_{c}$ is with respect to the negative body $Y$ axis.

The regions where the NAE and HAE models are active and the region where they are phased together are then a function only of the relative magnitudes of XFS(13) and XFS(14).

If $|\operatorname{XFS}(13)|<|\operatorname{XFS}(14)|$, then only the NAE model is active when

$$
0 \leq \alpha_{c} \geq|\operatorname{XFS}(13)|
$$

while only the HAE model is active when

$$
|\operatorname{XFS}(14)| \leq \alpha_{c} \because 180
$$

and the models are phased together when

$$
|\operatorname{XFS}(13)|<\alpha_{c}<|\operatorname{XFS}(14)|
$$

If $\operatorname{XFS}(13) \geq \operatorname{XFS}(14)$, then only the NAE model is active when

$$
180 \geq \alpha_{c} \geq|\operatorname{XFS}(13)|
$$

while only the HAE model is active when

$$
|\operatorname{XFS}(14)| \geq \alpha_{c} \geq 0
$$

and the models are phased together when

$$
|\operatorname{XFS}(13)|>\alpha_{c}>|\operatorname{XFS}(14)|
$$

The Nominal Angle Equation (NAE) and High Angle Equation (HAE) for a specific force or moment are phased together in the appropriate region by the following relationship:
(Force or moment) $=($ NAE $) * \cos ^{2}\left(\alpha_{\mathrm{ph}}\right)+($ HAE $) * \sin ^{2}\left(\alpha_{\mathrm{ph}}\right)$
where $\alpha_{\mathrm{ph}}=0.5 \pi\left[\alpha_{\mathrm{c}}-\mathrm{XFS}(13)\right] /[\operatorname{XFS}(14)-\operatorname{XFS}(13)]$

### 3.4.2 Aerodynamic Forces and Moments

CARDS 23 through 2E contain the coefficients of the High Angle and Nominal Angle Equations. As shown in the input guide (Section 2.4.2), the coefficients for each force and moment are grouped together on sets of two cards each. Most inputs are described as partial derivatives of the force or moment divided by dynamic pressure with respect to $\theta_{w}$ and/or $\psi_{w}$. The remaining inputs are angles and semidimensional forces and moments. Since rotorcraft do not have a generally accepted reference area and volume for completely nondimensionalizing fuselage force and moment data, the coefficients are left in units of square feet of force and cubic feet of
moment per degree to a specifiod power. The per-degree units are used only to give as much physical meaning to the inputs as possibie. All inputs with per-degree units are actually coefficients of a sinusoid and are converted to per-radian units by the prigram. The angles $\theta_{w}$ and $\psi_{w}$ are the fuselage acrodynamic pitch and yaw angies respectively and are defined as

$$
\begin{aligned}
& \theta_{w}=\tan ^{-1}(w / u) \\
& \phi_{w}=-\sin ^{-1}(v / v)
\end{aligned}
$$

where $u, v$, and $w$ are respectiv $v$ the $x, y$, and $z$ body axis components of the free-stream (flight path) veacity $V$. These are the angles normally recorded from a pyrimidal balance during a wind tunnel test. Note that *w is not sideslip angle. The parameter $q$ in the coefficient descriptions is dynamic pressure

$$
q=0.5 \rho v^{2}
$$

where $\rho$ is the air density.

Tables 3-4 through 3-9 contain the equations for the HAE and NAE models. Each table contains the equations for one of the forces or moments.

These equations were developed to provide very accurate simulation of wind tunnel data. The user is not expected to be able to define all 83 inputs without such test data. In particular, a complete set of inputs for the Nominal Angle Equations requires tesit data. If wind tunnel data are available, the digital computer program AS812A described in Section 3.26.3 can be used to reduce the test data to coefficients which can be input directly to the program. If such data are not available, the eleven inputs with an asterisk beside them in Section 2.4 .2 are considered the minimum necessary inputs. These inputs are XFS(15), (23), (2!), (36), (37), (40), (43), (51), (64), (78), and (92). Each is a coefficient in one of the Nominal Angle Equations. By using only these eleven inputs, the user has in effect assumed that all aerodynamic angles in the simulation will be small, i.e., less than 10 to 15 degrees, and that aerodynamic crosscoupling is negligible. Each Nominal Angle Equation which results from using only these eleven inputs is included in the appropriate table with the complete HAE and NAE models (Tables 3-4 through 3-9). The resulting equation is labeled as the Small Angle/Uncoupled Equation. These six equations are basically the same equations used in the AGAJ7l and earlier versions of C81.

When using the Small Angle/Uncouplec Equation, all other inputs to the Nominal Angle Equations may be zero, and XFS (13) should be about 10 to 15 degrees, i.e., ?e accuracy limit of the input data. If the user is quite certain that $\alpha_{c}$ will not exceed XFS(13) during any simulation, the inputs to the HAE model may also be zero.



table 3-6. fuselage pitching moment equations	
	High Angle Equation
Nominal Angle Equation $\begin{aligned} M & =q\left\{\left[M_{0} / q+X F S(49) * R T D * \sin _{\psi_{W}}+X F S(50) * \operatorname{RTD}^{2} * \sin ^{2} \psi_{w}\right]\right. \\ & +0.5 *\left[\operatorname{XFS}(51) * \operatorname{RTD}+\operatorname{XFS}(52) * \operatorname{RTD}^{2} * \sin _{\psi_{W}}+X F S(53) * \operatorname{RTD}^{3} * \sin ^{2} \psi_{w}\right] * \sin \left(2 \epsilon_{W}\right) \\ & +0.25 *\left[\operatorname{XFS}(54) * \operatorname{RTD}^{2}+\operatorname{XFS}(55) * \operatorname{RTD}^{3} * \sin _{\psi_{w}}\right] * \sin ^{2}\left(2 \epsilon_{w}\right) \\ & \left.+0.125 * \operatorname{XFS}(56) * \operatorname{RTD}^{3} * \sin ^{3}\left(2 \epsilon_{w}\right)\right\} \end{aligned}$   where $\quad M_{0} / q= \begin{cases}\operatorname{XFS}(43) & \text { if } \operatorname{XFS}(12)=0 \text { and } \operatorname{XFS}(13)<\operatorname{XFS}(14) \\ \operatorname{XFS}(44) & \text { if } \operatorname{XFS}(12)=0 \text { and } \operatorname{XFS}(13) \geq \operatorname{XFS}(14) \\ \operatorname{XFS}(48) & \text { if } \operatorname{XFS}(12) \neq 0\end{cases}$	
Small Angle/Uncoupled Equation $M=q\left(M_{0} / q+\operatorname{XFS}(51) * \epsilon_{w}\right)$   where $\quad f_{w}$ is in degrees and $M_{0} / q$ is defined above	
```M = Pitching Moment in foot-pounds XFS(43) through XFS(56) are the inputs on CARDS 27 and 28 RTD = 57.296 (radians to degrees conversion) , q= dynamic pressure```	


TABLE 3-9. FUSELAGE YAWING MOMENT EQUATIONS

High Angle Equation $N=q\left[N_{1} * \cos ^{2} \theta_{W}-X F S(48) * \sin ^{2} \epsilon_{W}\right]$ where $\begin{aligned} & N_{1}=X F S(85) * \sin \psi_{W}+N_{2} * \sin \left(2 \psi_{W}\right) \\ & N_{2}=\frac{[X F S(86)-X F S(85) * \sin (X F S(87) / R T D)]}{\sin (2 * X F S(87) / R T D)} \end{aligned}$
Nominal Angle Equation
Small Angle/Uncoupled Equation $N=q\left(\operatorname{XFS}(92) *_{\psi_{w}}\right)$ where $\quad \psi_{w}$ is in degrees
```N = Yawing Mollent in foot-pounds XFS(85) through XFS(98) are the inputs on CARDS 2D and 2E RTD = 57.296 (radians to degrees conversion) q = dynamic pressure```

When the HAE model is needed, the inputs should be based on wind axis test data where the model was yawed to $\psi_{w}= \pm 180$ degrees at $\theta_{w}=0$ and pitched to $\theta_{w}=\$ 90$ degrees at $\psi_{w}=0$. If such data are not available, most of the inputs can be determined by estimating the fuselage drag and aerodynamic center location for sidewitd and vertical flight. The drag times the moment arms of the aerodynamic center about the data reference point will provide reasonable values for most of the moment inputs to the HAE model. Extrapolation of any available, test data for a similar configuration could also be used.

### 3.5 ROTOR AERODYNAMIC GROUP

This group is composed of not more than five Rotor Airfoil Aerodynamic (RAA) subgroups, which are numbered sequentially on input. IPL(6) in the Program Logic Group specifies the number of subgroups to be input. If both rotor groups all deleted ( $\operatorname{IPL}(7)=3)$, it is not necessary to read any RAA subgroups ( $\operatorname{IPL}(6)=0)$; however, if $\operatorname{IPL}(7) \neq 3$, at least one subgroup is required and a zero input for IPL(6) will be reset to one.

Each subgroup consists of five cards which contain the YRR inputs. In the YRR( $\mathrm{I}, \mathrm{J}$ ) array, I is the sequence number of the inputs for one subgroup ( $I=1$ through 35) and $J$ is the sequence number of the subgroup ( $J=1$ through 5). The data sequence for Subgroup No. 1 is given in Section 2.5.1. Inputs for other subgroups are in the identical sequence and format as for Subgroup No. 1. Each subgroups represents one airfoil section and is independent of all other RAA subgroups.

Normally, only one or two subgroups are needed: one for the main rotor and possibly a different one for the tail rotor. The additional subgroups are included so that blades which have a variable airfoil section along their span can be modeled. IPL(18) and (19) in the Program Logic Group control the option for variable airfoil sections along the blades for the main rotor and tail rotor respectively. If the option is activated, an airfoil section distribution for the appropriate rotor is read. This distribution specifies which RAA subgroup is to be used at Blade Stations No. 1 through No. 20. See the discussion of IPL(18) and (19) on CARD 07 and IDTABM(1-20) on CARD 4G for additional details.

In the following discussion, $Y(I)$ refers to the Ith input of a subgroup, e.g., $Y(18)$ is $\operatorname{YRR}(18, K)$, where $K$ indicates the sequence number of the subgroup. In addition, $X(J)$ refers to the Jth input of the Main or Tail Rotor Group, e.g., $X(29)$ is $\operatorname{XMR}(29)$ or $\operatorname{XTR}(29)$, depending on which rotor contains the blade segment of interest.

### 3.5.1 Aerodynamic Options

The inputs to the RAA subgroups are used by the CDCL subroutine to compute the steady-state coefficients of airfoil section lift, drag, and pitching moment at Blade Stations No. 1 through No. 20 as functions of the local angle of attack, $\alpha$, and Mach number, $M$. The program also includes two independent models for computing the effects of yawed flow. Each model is associated with one of the two models for unsteady aerodynamics: BUNS and UNSAN. The BUNS yawed flow model is controlled by $\mathrm{Y}(28)$ and the UNSAN by Y(33).
$\mathrm{Y}(28)$ is the maximum value for the yawed flow angle in the BUNS model. The angle is in degrees, and an input of zero effecively deactivates the model. The value of this input does not affect $Y(33)$.
$\mathrm{Y}(33)$ acts as a switch for the UNSAN model only and is interpreted as follows:

$$
\begin{aligned}
& 0=\text { off } \\
& 1=\text { active for lift only } \\
& 2=\text { active for drag only } \\
& 3=\text { active for both }
\end{aligned}
$$

The program includes logic which prevents both yawed flow models being activated simultaneously when the unsteady aerodynamic options are off $(\operatorname{IPL}(20)=0)$. When one of the unsteady options is on, the logic also assumes that only the yawed flow associated with the unsteady model activated by IPL(20) can be used. See Table 3-10.

Unsteady Model	Value of IPL(20)	Effect of Unsteady Model on Yawed Flow Model		
		$\begin{aligned} & \text { BUNS Model } \\ & Y(28) \end{aligned}$	$\begin{aligned} & \text { UNSAN Model } \\ & \mathrm{Y}(33) \end{aligned}$	Description of the Effect
BUNS	< 0	None	Y(33) reset to zero	UNSAN model turned off; BUNS model may be on or off
None	$=0$	$\mathrm{Y}(28)$ reset to zero if $\mathrm{Y}(33)>0$	None	Either model may be used; BUNS model turned off if UNSAN model turned on
UNSAN	$>0$	$Y(28)$ reset to zero	None	BUNS model turned off; UNSAN model may be on or off

The BUNS and UNSAN unsteady aerodynamic models and the UNSAN yawed flow model are discussed in Section 3.3.5 of Volume I. In essence, both unsteady models are very similar in that each computes increments to the aerodynamic coefficients which are added to the steady-state values. The following section describes how the CDCL computes the steady-state coefficients using the BUNS yawed flow model.

### 3.5.2 Steady-State Aerodynamic Coefficiente

The steady-state aerodynamic coefficients may be either computed from equations which use the YRR inputs or interpolated from data tables. The control variable $Y(18)$ specifies which method is to be used. The basic independent variables used by both the equations and the table look-up procedure are angle of attack and Mach number. A complete discussion of
$Y(18)$ is found at the end of this section. It is mentioned here primarily to caution the user that even though a table look-up procedure is used, many of the data for the equations must be entered as realistic values if either unsteady aerodynamic option is used. The variables which fall into this category are $Y(1)$ through $Y(11), Y(17), Y(20)$, $Y(21)$, and $Y(29)$ through $Y(32)$.

The calculation of the steady state aerodynamic coefficients is the same at all blade stations with two exceptions. Near the blade root the computations are modified for hub extent as discussed in the Main Rotor Group. At the blade tip, sweep and shift of the aerodynamic center are accounted for in the following manner.

The tip sweep angle input, $X(29)$, is used to modify the radial and tangential velocity components impinging on the outermost $5 \%$ of the rotor blade. The sweep angle is the amount the leading edge is swept back with respect to the blade pitch-change axis. Tip sweep may cause the blade aerodynamic center to be shifted aft by an amount $X(30)$. The pitching moment caused by lift force is then modified by the revised moment arm. A more complete explanation of the tip sweep equations is given in Section 3.3.4.3 of Volume I of this report.

The equations and logic checks used for all other blade segments are given below. The initial step is to determine the effective Mach number and angle of attack.

Let the local velocity components $U_{T}, U_{P}$, and $U_{R}$ be the tangential, perpendicular, and radial velocities, respectively. Then the yawed flow angle is

$$
\Lambda=\left[\operatorname{Min}\left\{Y(28),\left|\tan ^{-1}\left(U_{R} / U_{T}\right)\right|\right\}\right] * \operatorname{sign}\left[\tan ^{-1}\left(U_{R} / U_{T}\right)\right]
$$

and an effective Mach number is defined as

$$
M=\left(V / V_{\text {sound }}\right)[\cos Y(20) A]^{Y(21)}
$$

where

$$
V=\left[U_{R}^{2}+U_{T}^{2}+U_{P}^{2}\right]^{1 / 2}
$$

and

$$
V_{\text {sound }}=\text { Speed of sound as computed from XFC(26), (27), and (28) }
$$

This form of the Mach number expression is developed in Volume $I$ of this report. Suggested values for $Y(20)$ and $Y(21)$ are 0.2 and 1.0 (or 1.0 and 0.5 ) respectively as discussed in Section 3.3.4.1 of Volume $I_{\text {. }}$

The angle of attack of the plade segment, $\alpha$, is defined by

$$
\alpha=\theta+\alpha_{0}+\emptyset
$$

and it is assumed that

$$
-180^{\circ}>\alpha \geq 180^{\circ}
$$

In the equation for $\alpha, \theta$ is the local pitch, or feathering, of the chord line of the appropriate blade station. It is determined from control system geometry, blade geometry, and elastic blade deflections, from the equation given in the discussion of CARD 47.

The term $a_{0}$ is the angle between the chord line and the zero lift line of the segment. When equations are used to compute the aerodynamic coefficients,

$$
a_{0}=Y(29)+Y(30) M+Y(31) M^{2}+Y(32) M^{3}
$$

When data tables are used, $\alpha_{0}$ is defined as zero since the data tables are assumed to be a function of chord line angle of attack. However, if the UNSAN unsteady aerodynamic option is activated (IPL (20) >0) and data tables are used, the values of $Y(29)$ through $Y(32)$ must be realistic inputs since they are used in the UNSAN analysis and are not computed from the tables.

The term $\varnothing$ is the local inflow angle, and is normally negative.

$$
\phi=\tan ^{-1}\left(\mathrm{U}_{\mathrm{P}} / \mathrm{U}_{\mathrm{T}}\right)
$$

Hence, when equations are used, $\alpha$ is the angle of attack of the zero lift line and when data tables are used, it is the angle of attack of the airfoil section chord line.

For rotors with cambered airfoils where the chord line and zero lift line are not coincident, it is advisable to use data tables rather than equations to compute the aerodynamic coefficients. The mathematical model described by the equations was originally developed for symmetric airfoils exclusively. In most cases it is only marginally adequate for modeling the asymmetric stall characteristics about the zero lift line, the shift in zero lift line orientation in reversed flow, and the variations of coefficients with Mach number associated with cambered
rotor airfoil sections. Hence, if the user wishes to model cambered airfoil sections $r$ rith equations, the flight conditions should be restricted to those where rotor stall is not significant and the reversed flow region is small, e.g., low blade loading coefficient ( $t_{c}$ ) and low advance ratio ( $\mu$ ).

A modified angle of attack is then computed from

$$
\alpha_{1}= \begin{cases}\alpha \cos \Lambda \text { if }|\alpha|<90^{\circ} \\ \alpha & \text { if }|\alpha|>90^{\circ}\end{cases}
$$

If $\mathrm{Y}(18)$ indicates that the table look-up procedure is to be used, the procedure is entered at this point with the above values of $\alpha_{1}$ and $M$, and returns the interpolated values of the aerodynamic coefficients. The lift coefficient is then divided by $\cos \Lambda$ and all three coefficients are returned to the subroutine which called CDCL.

If $\mathrm{Y}(18)$ indicates that equations are to be used, the $n$. step is to determine the lift curve slope of the airfoil at the rent Mach number.

The input value of tie Mech number at the lower boundury of the supersonic region, $Y(2)$, is checked against a calculated value, $M_{S c}$, to determine the value of the lower boundary to be used, $M_{s}$.

$$
M_{s}=\operatorname{Max}\left\{Y(2), M_{S C}\right\}
$$

The expression for $M_{s c}$ is obtained by assuming that the slope of the lift curve at the critical Mach number, $Y(1)$, is equal to the slope of the lift curve at $M_{S C}$.

The equation for the slope of the lift curve takes one of three forms, depending on whether the Mach number is subs' lic, transonic, or supersonic.

$$
\begin{array}{ll}
a_{1}=Y(8)+Y(9) M+Y(10) M^{2}+Y(11) M^{3} & \text { (subsonic) } \\
a_{2}=B_{0}+B_{1} M+B_{2} M^{2} & \text { (transonic) } \\
a_{3}=4 /\left(57.3 \sqrt{M^{2}-1}\right. & \text { (supersonic) }
\end{array}
$$

Since the critical Mach number is subsonic, the slope of the lift curve at $M=Y(1)$ is

$$
\left(a_{1}\right)_{C R}=Y(8)+Y(9) * Y(1)+Y(10) * Y(1)^{2}+Y(11) * Y(1)^{3}
$$

If $M=M_{s c}$ in the equation for the supersonic lift curve slope, $a_{3}$, and $a_{3}=\left(a_{1}\right)_{C R}$, then

$$
M_{s c}=\sqrt{1+\left(0.0698 /\left(a_{1}\right)_{C R}\right)^{2}}
$$

Then the final selection for the slope of the lift curve, $a$, is made:

$$
a= \begin{cases}a_{1} & \text { if } M<Y(1) \\ a_{2} & \text { if } Y(1) \leq M<M \\ a_{3} & \text { if } M_{S} \leq M\end{cases}
$$

The cocfficients $B_{0}, B_{1}$, and $B_{2}$ in the equation for $a_{2}$ are computed Internally by matching end points with $a_{1}$ and $a_{3}$ and the slope of $a_{3}$.

$$
\left.\begin{array}{rl}
a_{2}=a_{1} & \text { at } M=Y(1) \\
a_{2}=a_{3} \\
\frac{d a_{2}}{d M}=\frac{d a_{3}}{d M}
\end{array}\right\} \quad \text { at } M=M_{s}
$$

Next a test is made on $\alpha$ to see if the airfoil is in normal or reversed flow. Several intermediate variables in the calculation of lift coefficient are set according to the results. The angle of attack, $\alpha$, is further resolved to be between plus and minus ninety degrees in either case.

$$
\text { If } \begin{aligned}
&\left|\alpha_{1}\right| \leq 90^{\circ} \\
& \alpha=\left|\alpha_{1}\right| \\
& C_{L_{0}}=Y(3) \\
& K_{L}=Y(4) M+Y(5) M^{2}+Y(6) M^{3} \\
& \alpha_{B}=\left[\left(C_{L_{0}}+K_{L}\right) / a\right]+5^{\circ}
\end{aligned}
$$

$$
\text { If } \begin{aligned}
&\left|\alpha_{1}\right|>90^{\circ} \\
& \alpha=180^{\circ}-\left|\alpha_{1}\right| \\
& C_{L_{0}}=Y(7) \\
& K_{L}=0 \\
& \alpha_{B}=\left[C_{L_{0}} / \mathrm{a}\right]+5^{\circ}
\end{aligned}
$$

The $C_{L}$ versus $\alpha$ curve has the form shown in Figure 3-2. At the point $P_{1}$ in Figure 3-2,

$$
\begin{aligned}
C_{L} & =C_{L_{0}}+K_{L} \\
\alpha & =C_{L} / a=\alpha_{S}
\end{aligned}
$$

At $P_{2}$ in Figure 3-2,

$$
\alpha=\alpha_{B}
$$

Linear interpolation is used to evaluate $C_{L}$ for points between $P_{1}$ and $P_{2}$.
For $\alpha_{B} \leq \alpha \leq 90^{\circ}$,

$$
C_{L}=[\{1.876 \sin \alpha-(.581)\} K+0.81] \cos \alpha
$$

where

$$
K= \begin{cases}1+0.25 M^{4} & \text { if } M \leq 1 \\ 0.85+0.082 /[M-0.8] & \text { if } M>1\end{cases}
$$

The form of the $C_{D}$ versus $x$ curve is shown in Figure 3-3. At the point $P_{3}$ in Figure $3-3, \alpha=\alpha_{X}$ and $C_{D}=C_{D_{X}}$, where either $\alpha_{X}=\alpha_{s}$ and $C_{D_{X}}<$ $Y(16)$, or $\alpha_{X}<\alpha_{S}$ and $C_{D_{X}}=Y(16)$.

For $M<Y(2)$, ie., below the supersonic region, the drag coefficient expression used depends on the value of $\alpha$.


Figure 3-: General Lift Coefficient Versus Angle of Attack Curve.


Figure 3-3. General Drag Coefficient Versis Angle of Attack Curve.

$$
\begin{aligned}
& \text { For } 0 \leq x \leq{ }_{H}, \\
& C_{D}=\operatorname{Min}\left\{\begin{array}{l}
Y(16),\left(Y(12)+Y(13) \alpha+Y(14) \alpha^{2}\right. \\
\quad+\operatorname{Max}\{0, Y(19) \alpha-I(1)+\operatorname{Max}[M, 0.35]\})
\end{array}\right\}
\end{aligned}
$$

NOTE: In this drag equation, $\alpha$ is the angle of at tack with respect to the airfoil section zero lift line. Hence, for cambered airfoil sections where chord line and zero lift line are not coincident, care should be taken that the coefficients $Y(12)$, (13), and (14) are referenced to the zero lift line rather than the chord line.

The drag rise coefficient, $Y(19)$, was formerly included in the computer program with a constant value, 0.0332 per degree. If $Y(19)$ is input as zero, it is reset to 0.0332 .

For $\alpha_{\mathrm{X}} \leq a \leq 90^{\circ}$ or $\mathrm{C}_{\mathrm{D}} \leq \mathrm{C}_{\mathrm{D}_{\mathrm{X}}}$,

$$
C_{D}=K_{4} \sin ^{2} \alpha+\left(C_{D_{X}}-K_{4} \sin ^{2} \alpha_{X}\right) \cos \alpha / \cos \alpha_{X}
$$

where $K_{4}=2.1 \mathrm{~K}$.
In the supersonic region, $M \geq M_{s}$

$$
C_{D}=\operatorname{Min}\left\{Y(16),\left(Y(12)+4\left[(\alpha / 57.3)^{2}+Y(15)\right] / \sqrt{M^{2}-1}\right) \mid\right.
$$

The calculation of steady-state pitching moment coefficients is best understood by following the logic flow chart in Figure 3-4, which is repeated from Volume $I$. The procedure was developed in order to curve fit $C_{M}$ versus $\alpha$ curves at various Mach numbers such as those sketched in Figure 3-5. The symbols used in the flow chart are defined in terms of the inputs below. Reasonable values of the inputs for ar NACA 0012 airfoil section are listed in brackets.

$$
\begin{array}{ll}
A_{1}=Y(22) & {[-.002488]} \\
A_{2}=Y(23) & {[-.009456]} \\
A_{3}=Y(24) & {[.82]} \\
A_{4}=Y(25) & {[0.0]}
\end{array}
$$

The inputs $Y(22), Y(23)$, and $Y(24)$ are cofficients for a quadratic function of a determining the corresponding value of Mach number at which the $C_{M}$ curve breaks sharply away from the input constant value, $Y(25)$.


Figure 3-4. Flow Chart for Steady-State Pitching Moment Calculation.


Figure 3-5. Typical Curves of Pitching Moment Coefficient Versus Angle of Attack at Various Mach Numbers.

For $|\alpha|<90^{\circ}$, the first series of calculations and tests is to determine the relative sizes of $|\alpha|$, the angle of attack, $\alpha_{B}$, corresponding to $M_{\text {eff }}=M$ on the "break" curve mentioned previously, and $A_{5}$, the critical value of the $\alpha$ defined by the "break" curve for $M=0$. The evaluation of $C_{M}$ is different for $0 \leq \alpha \leq \alpha_{B}, \alpha_{B}<\alpha \leq A_{5}$, and $A_{5}<\alpha<90^{\circ}$.

For $\alpha$ less than $\alpha_{B}$,

$$
C_{M}=Y(25)
$$

For $\alpha$ between $\alpha_{B}$ and $A_{5}$, a slope, $\bar{d}$, is computed for the $C_{M}$ line between $\alpha_{B}$ and $A_{5}$. This slope depends on $M_{e f f}$ and an input critical value, $\mathrm{Y}(24)$, which is the point on the "break" curve for $\alpha=0$. The pitching moment coefficient is calculated fron:

$$
C_{M}=\left(|\alpha|-\alpha_{B}\right) \bar{d} \operatorname{sign}(\alpha)+Y(25)
$$

If $|\alpha|$ is greater than $A_{5}$, a second slope included in the program is used.

$$
C_{M}=\left(A_{5}-\alpha_{B}\right) \bar{d}-0.00646\left(|\alpha|-A_{5}\right) \operatorname{sign}(\alpha)+Y(25)
$$

For $|\alpha| \geq 90^{\circ}$, the aerodynamic center is assumed to be located at the 0.75 chord rather than at the 0.25 chord. The pitching moment about the blade neutral axis (assumed to be at the 0.25 chord) is in this case mainly due to lift and drag forces. Hence,

$$
C_{M}=-0.5\left(C_{L} \cos \alpha+C_{D} \sin \alpha\right)+Y(25)
$$

As shown in the flow diagram (Figure 3-4), the absolute value of $C_{M}$ is limited not to exceed 0.5 in all cases.

NOTE: The control variable for use of $C_{L}, C_{D}$, and $C_{M}$ tables, $Y(18)$, operates as follows:
(1) If $Y(18)=0$, the aerodynamic coefficients are computed from the above equations using the YRR inputs.
(2) If $Y(18)>0$, the $Y(18)$ th Airfoil Data Table included in the Data Table Group will be used to compute the steady-state aerodynamic coefficients. Note that a set of data tables for the NACA 0012 airfoil is stored permanently in Airfoil Data Table No. 5. These tables are shown in Figure 3-6. See Data Table Group for additional details.



$\circ$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$

ono--Tioioiipipipio000000000000-ーTiio

O o o o o


育



3000000

 
 
 
 


  タiogoioio 
 


 





  
\& Bio 

 




### 3.6 MAIN ROTOR GROUP

This entire group must be omitted if $\operatorname{IPL}(7)=1$ or 3. This rotor always rotates counterclockwise when viewed from above, i.e., the standard direction of rotation for main rotors of American-made helicopters.

CARD 41
The number of blades, $\operatorname{XMR}(1)$, must be in the range from 2 to 7 inclusive. The geometric and physical properties of each blade are assumed to be identical to those of all other blades.

Tine rotor undersling, $\operatorname{XMR}(2)$, may be a nonzero quantity only for a teetering or gimbaled rotor. It is the vertical distance between the flapping axis/axes and the pitch-change axis at the center of the hub $(r=0)$. It is positive if the pitch-change axis is below the flapping axis/axes. See Section $\mathbf{3 . 2 6 . 4}$ for additional details.

If the chord is constant over the blade radius, this single value may be entered as XMR(5), and the chord distribution on CARDS 4A, 4B, and 4 C must be omitted. If $\mathrm{XMR}(5)=0$, the chord distribution must be input.

If the blade twist is linear and less than 100 degrees from root to tip, the total twist may be input as $\operatorname{XMR}(6)$, and the program will compute the distribution. In this case, CARDS $4 \mathrm{D}, 4 \mathrm{E}$, and 4 F must be omitted. If $\mathrm{XMR}(6) \geq 100$, these twist distribution cards must be included. Positive twist is in the direction of positive blade pitch. The normal rotor blade with washout will have negative twist.

The flapping stop location is the maximum amount the hub can flap without hitting the flapping stop spring. The normal input is positive. See also XMR(17), CARD 43.

CARD 42
The location of the shaft pivot point as specified by XMR(8), (9), and (10) is primarily intended for use with tilt-rotor configurations. These inputs in conjunction with the mast tilt angles and length (XMR(44), (45), and (46), respectively, on CARD 47) are used to determine the stationline, buttline, and waterline of the rotor hub, the point at which the summation of the rotor forces acts. For other than tilt rutor aircraft, the shaft pivot point is normally located at the rotor hub, and the mast length, $\operatorname{XMR}(46)$, is set to 0.0

Blade weight, $\operatorname{XMR}(11)$, is the weight of a single blade in pounds. Each of the $\operatorname{XMR}(1)$ blades is assumed to weigh the same.

Blade inertia is the inertia of a single blade about the line which passes through the centerline of the rotor shaft and is perpendicular to the blade feathering axis and the shaft. For a teetering or gimbaled rotor with no pitch-flap coupling (XMR $(24)=0.0)$, this line is equivalent
to the flapping axis. These two inputs are used only for the case of rigid blade (ipl(3) $=0$ ). If the main rotor aeroelastic blade data set is input ( $\operatorname{IPL}(3) \neq 0$ ), the blade weight and inertia are internally computed from the blade weight distribution, XMN(1) through XMW(21), in the aeroelastic blade data set; in this case, the input values of $\mathrm{XMR}(11)$ and (12) are ignored.

CARD 43
$\operatorname{XMR}(15)$ is used to select the blade station at which the beamwise, chordwise, and torsional moments are calculated at each time point in a maneuver for an elastic rotor. There are 21 blade stations located at $5 \%$ intervals and numbered sequentially from 0 at the hub (zero radius) to 20 at the blade tip.
$\operatorname{XMR}(16)$, the hub-type indicator, $=0.0$ for gimbaled or teetering rotor; $\neq 0.0$ for rigid or articulated rotor. The distinguishing characteristic of a gimbaled or teetering rotor is that the response of any blade depends on the loading on all of the blades because of the moments transmitted across the rotor hub. On a rigid or articulated rotor, each blade acts independently, with the difference between these two being in the mode shape characteristics.

The flapping stop spring rate, $\mathrm{XMR}(17)$, is used in the dynamic model of the flapping stops. When flapping exceeds $\mathrm{XMR}(7)$, a restoring moment proportional to the displacement relative to the stop is applied.

The flapping spring rate, $\operatorname{XMR}(18)$, generates a restoring moment whenever there is any flapping.

In the explanation of $\operatorname{XMR}(17)$ and XMR (18), flapping is defined as the slope of the blade at the hub including displacements from all modes, but not including precone.

The reduced rotor frequency, $\operatorname{XMR}(19)$, is used only when the UNSAN unsteady aerodynamic option is activated for the rotor. Otherwise, the input is ignored. If the input is less than or equal to zero, it is reset to unity (one per rev). See the discussion of UNSAN in Volume I to aid in determining this input.

The lead-lag damper, $\operatorname{XMR}(20)$, is included primarily for simulation of articulated rotors. It applies a concentrated force, at 10 percent radius, proportional to the inplane velocity at that point. A zero input indicates no damper.

If a blade segment is completely inboard of the hub extent, $\operatorname{XMR}(21)$, the segment produces no lift or pitching moment and has a drag coefficient of $\operatorname{XMR}$ (25) based on the planform area of the segment. If a blade segment is partially or completely outboard of the hub extent, the airfoil aerodynamics specified by IPL(18) or CARD 4 G are used for the segment.

The location of the pitch change axis, $\operatorname{XMR}(23)$, is the distance from the quarter ( $25 \%$ ) chord of the blade to the blade feathering axis in units of chord lengths. Positive $\operatorname{XMR}(23)$ is toward the trailing edge of the blade. For example, if the pitch change axis is $30 \%$ chord aft of the leading edge, $\operatorname{XMR}(23)$ should equal 0.05 ( $5 \%$ aft of the $25 \%$ chord line). Similarly, if the axis is at $17 \%$ chord, $\operatorname{XMR}(23)$ should equal -0.08 ( $8 \%$ forward of $25 \%$ chord line). A value of 0.0 (equivalent to $25 \%$ chord) is the normal input. An accurate value for this input is particularly important when either of the unsteady aerodynamic options is activated, i.e., $\operatorname{IPL}(20) \neq 0$. Also, see Section 3.26 .4 .

Positive pitch flap coupling angle, XMR(24), acts to reduce blade pitch with positive flapping. The tangent of the angle should be considered as having units of degrees of blade pitch change per degree of blade flapping. Also, see Section 3.26.4.

Drag coefficient for hub, $\mathrm{XMR}(25)$, is discussed with hub extent in CARD 43.

The coefficient for tip vortex effect, XMR(27), modifies the induced velocity distribution on the outboard 30 percent of the rotor blade to simulate the effect of shed tip vortices. The simulation gives improved airload calculations in the low speed range. However, power and other performance values are not affected significantly. Rotor bending moments computed by another version of this program showed improved correlation with test data when a value of 10 was used for this coefficient. If the input is zero, the effect is removed.

CARD 45
Tip sweep angle and shift in the aerodynamic center at the tip, XMR(29) and $X M R(30)$, are described in Section 3.5 .2 as $X(29)$ and $X(30)$, respectively. See Section 3.26 .4 for definition of XMR(31) and XMR(32).

CARD 46
The intended use of the rotor nacelle inputs on this card is to simulate changes in aerodynamic forces and the cg location of a tilt-rotor aircraft during conversion. Each rotor has its own nacelle, although for a tilt-rotor aircraft all nacelle inputs are normally identical except that the buttlines of the aerodynamic centers, XMR(38) and XTR (38), are opposite in sign. For configurations other than tilt-rotor aircraft, the nacelle weight should be set to zero. However, even with zero nacelle weight, the nacelle drag inputs can still be used to simulate such effects as drag of a fairing around the mast, additional hub drag, etc.

Rotor nacelle weight is the total weight of the nacelle, dynamic pylon, rotor hub, blades, etc., which contribute to a shift of the aircraft cg with $F / A$ mast tilt angle. If the $F / A$ mast tilt angle is to remain
constant at the input value of $X M R(44)$ during the run, and the aircraft cg input on CARD 21 is the aircraft cg for the input mast tilt angles of both rotors, then nacelle weight should be input as zero. Otherwise, a shift from the cg input on CARD 21 will be calculated as explained below.

Nacelle cg inputs are intended to locate the cg of the moveable weight (pylon, rotor, etc.) for zero dagrees $F / A$ mast tilt and XMR(45) degrees lateral mast tilt. Since only the F/A tilt angle is variable during a maneuver and $F / A$ tilt is in the body $X-Z$ plane, only shifts in $c g$ stationline and waterline are calculated. The shifts of cg station, $\triangle$ STA, and waterline, $\Delta W L$, due to $F / A$ mast tiit angle, $\beta_{m}$, are given by the following equations:

$$
\begin{aligned}
& \Delta S T A=2 \sin \beta_{m}+X\left(1-\cos \beta_{m}\right) \\
& \Delta W L=2\left(1-\cos \beta_{m}\right)-X \sin \beta_{m}
\end{aligned}
$$

where

$$
\begin{aligned}
& X=[\operatorname{XMR}(36) / \operatorname{XFS}(1)] *[\operatorname{XMR}(8)-\operatorname{XMR}(37)] \\
& Z=[\operatorname{XMR}(36) / \operatorname{XFS}(1)] *[\operatorname{XMR}(10) \cdot \operatorname{XMR}(39)]
\end{aligned}
$$

The rotor nacelle differential flat plate drag area, $X M R(40)$, is defined as the increase in the total flat plate drag of the aircraft (without rotors and at zero angles of attack and sideslip) as the F/A mast tilt angle is changed from 90 degrees (horizontal) to 0 degrees (vertical). Note that the main rotor and tail rotor nacelle are modeled separately; hence, this differential flat plate drag area is for one nacelle only. From XMR(40), the nacelle drag area, $D_{N}$, is computed by the following equation:

$$
\mathrm{D}_{\mathrm{N}}=\mathrm{XMR}(40) * \cos ^{3}\left(\alpha_{\mathrm{N}}\right)
$$

where $\alpha_{N}$ is the angle between the free-stream velocity vector and its projection on the plane perpendicular to the rotor mast. This drag is then applied at the nacelle aerodynamic center which is assumed to be on the centerline of the mast at a distance XMR (41) feet from the mast pivot point. The direction for positive $X M R(41)$ is defined as up the mast when the mast is vertical.

## CARD 47

Let $\gamma$ be the control phasing angle, $\operatorname{XMR}(43)$. Then the equation for rotor feathering is as given below:

$$
\begin{aligned}
& \theta(\psi)=\theta_{0}+\theta_{\text {TWIST }}-\beta(\psi) * \tan \delta_{3} \\
&-\tan ^{-1}\left(\left[\tan \left(B_{1}\right)+\tan \left(A_{1}\right) * \tan \left(\delta_{3}-\gamma\right)\right] * \sin \psi\right. \\
&\left.+\left[\tan \left(A_{1}\right)-\tan \left(B_{1}\right) * \tan \left(\delta_{3}-\gamma\right)\right] * \cos \psi\right)
\end{aligned}
$$

where

```
* = rotor azimuth location
G = blade geometric pitch
O
G}\mp@subsup{\mp@code{TWIST }}{= change in blade pitch from root to blade segment}{
 dur to built-in and elastic twist
B
Al = control input from lateral cyclic stick
\delta 3 = pitch-flap coupling, XMR(24)
\beta = blade flapping
```

The $F / A$ and lateral mast tilt angles, $\operatorname{XMR}(44)$ and $\operatorname{XMR}(45)$ respectively, are both zero for a mast which is vertical, i.e., parallel to the body Z-axis. For nonzero mast angles, the angles are treated as Euler angles where the $F / A$ mast tilt angle is the first rotation (positive forward) and the lateral tilt mast angle is the second rotation (positive $r$ ight). The mast length $\operatorname{XMR}(46)$ is the distance from the mast pivot point (XMR(8), (9), and (10) on CARD 42) to the rotor hub. The direction for positive $\operatorname{XMR}(46)$ is defined as up the mast when the mast is vertical. The mast length may be zero if the location of the hub is given by $\operatorname{XMR}(8)$, (9), and (10).

The incremental torsional inertia of the mast is that inertia which is not included in the blade weight distribution. This variable is also used as a control switch on mast windup where a zero indicates a mast which is rigid in torsion. The torsional spring constant of the mast may be input as zero if $\operatorname{XMR}(47)=0.0$.

CARD 48 (include this card only if $\operatorname{IPL}(8)=1$ or 3 )
Fore-rind-aft dynamic pylon motion is ooverned by the following differential equition:

$$
I_{F} \ddot{a}_{F}+c_{F} \dot{a}_{F}+k_{F} a_{F}=1_{F} S_{X}-P M O M
$$

where
$I_{F}$ is the total pylon inertia about the $F / A$ pylon focal point which equals the inertia of the blade being translated along its radial axis plus XMP(1), which is the inertia of the pylon with the rotor off. NOTE: XMP(1) as well as IPL(8) acts as a switch for F/A pylon motion. If $\operatorname{XMP}(1)=0.0$, there is no $F / A$ pylor motion. If $\operatorname{XMP}(1) \neq 0.0$, the pylon equation will be used even if a zero spring rate is input.
$c_{F}$ is the pylon damping, $\operatorname{XMP}(2)$.
$\mathrm{k}_{\mathrm{F}}$ is the pylon spring rate, $\operatorname{XMP}(3)$.
$l_{F}$ is the effective length of pylon, $\operatorname{XMP}(4)$; positive for focal point below rotor hub.
$a_{F}, \dot{a}_{F}$, and $\ddot{a}_{F}$ are the pylon angular deflection, velocity, and acceleration, respectively; positive forward.
$S_{x}$ is the net rotor shear force in the shaft reference $x$ direction.
PMOM is the net pitching moment tiansmitted from the rotor to the top of the mast.

The coupling ratios define the degree change of the specified swashplate angle or blade angle per degree change of $F / A$ pylon angle.

Sign Conventions: Positive pylon motion for both main and tail rotors is in the same direction as positive mast tilt. The hub moves forward and down. Positive coupling ratios will give the following inputs with positive fore-and-aft pylon motion:
(1) Forward cyclic (both rotors)
(2) Right cyclic (main rotor); left cyclic (tail rotor)
(3) Up collective (both rotors)

CARD 49 (include this card only if $\operatorname{IPL}(8)=1$ or 3 )
Lateral pylon motion is governed by the following differential equation:

$$
I_{L} \ddot{a}_{L}+c_{L} \dot{a}_{L}+k_{L} a_{L}=L_{L} S_{y}+R M O M
$$

where
$I_{L}$ is the total pylon inertia about the lateral pylon focal point. XMP (8) is the inertia of the pylon with the rotor of $f$. (If $\operatorname{XMP}(8)=0.0$, there is no lateral pylon motion.)
$c_{L}$ is the pylon damping, $\operatorname{XMP}(9)$.
$k_{L}$ is the pylon spring rate, $\operatorname{XMP}(10)$.
${ }^{1}$ L is the effective length of pylon, $\operatorname{XMP}(11)$; positive for focal point below rotor hub.
${ }^{a}{ }_{L}, \dot{a}_{L}$, and $\ddot{a}_{L}$ are the pylon angular deflection, velocity, and acceleration, respectively.
$S_{y}$ is the net rotor shear force in the shaft reference $y$ direction.
RMOM is the net rolling moment transmitted from the rotor to the top of the mast.

The coupling ratios define the degree change of the specified swashplate angle per degree change of lateral pylon angle.

Sign Conventions: Positive lateral pylon motion moves the hub to the pilot's right and down for the main rotor but left and down for the tail rotor. Positive coupling ratios will give the following inputs:
(1) Forward cyclic (both rotors)
(2) Right cyclic (main rotor); left cyclic (tail rotor)
(3) Up collective (both rotors)

CARDS $4 \mathrm{~A}, 4 \mathrm{~B}, 4 \mathrm{C}$
These three cards may be used to input a nonuniform chord distribution for the blade. The cards must be omitted if $\operatorname{XMR}(5) \neq 0$ and must be included if $\operatorname{ZMR}(5)=0$. The subscript of each entry in the XMC array corresponds to the Blade Station Number of the entry; e.g., XMC(6) is the chord at Blade Station No. 6. The chord at Blade Station No. 0 is not input; it is assumed equal to the chord at Blade Station No. 1. The distribution must be root to tip.

CARDS 4D, 4F., 4F
These three cards may be used to input a nonlinear twist distribution for the blade. The cards must be omitted if $\operatorname{XMR}(6) \leq 100$. The subscript of each entry in the XMT array corresponds to the Blade Station Number of the entry; e.g., XMT(1l) is the twist at Blade Station No. 11. The twist angle at Blade Station No. 0 is not input; it is defined to be zero and the twist distribution is then the set of angles of the chord line at the appropriate Blade Station with respect to the root collective pitch angle. Pusitive twist, like positive collective pitch, is defined as leading edge up. The distribution must be root to tip.

CARD 4G
This card may be used to input a nonuniform airfoil section distribution for the blade. The card must be omitted if IPL(18) $\geq 0$ and must be included if IPL $(18)<0$. The format for the IDTABM array is 20Il starting in column 1. These integer inputs correspond to the sequence number of the Rotor Airfoil Aerodynamic (RAA) Subgroup which is to be used at the specified Plade Station. The subscript of each entry in the IDTABM array specifics the Blade Station Number of the entry. For example, if IDTABM (13) $=4$, RAA Subgroup No. 4 is used at Blade Station No. 13. Each value of IDTABM must be less than or equal to IPL(6), the total number of RAA subgroups inpu. The airfoil section at Blade Station No. 0, the blade theoretical root, is not input; it is assumed to be part of the hub and capable of producing only drag based on the hub drag coefficient, $\operatorname{XMR}(25)$.

### 3.7 TAIL ROTOR GROUP

The Main Rotor and Tail Rotor models are identical except that the Tail Rotor always rotates clockwise with respect to its mast as viewed from the top. Note that for zero mast tilt angles the tail rotor mast as well as the main rotor mast is vertical. The inputs required and input sequence are sdentical for the two groups with the following exceptions:
(1) XTR(28), the sidewash coefficient, does not have a counterpart XMR(28) in the Main Rotor Group.
(2) The effect of program logic inputs: 1Pl.(1), (4), and (19) affect the tail rotor but not the main rolor; different values of IPL(7) and (8) are used for the tall rotc. IPL(3) and IPL(18) do not affect the tail rotor.

Hence, see the Main Rotor Group for all except:
CARD 50

If $\operatorname{IPL}(1) \neq 0$ or if $\operatorname{IPL}(7)=2$ or 3 , omit the entire tall rotor group.
CARD 52
The blade weight and inertia inputs, $X T R(11)$ and (12), are ignored if $\operatorname{IPL}(4) \neq 0$; i.e., when a tail rotor aeroelastic blade data set is input.

CARD 54

Tail rotor sidewash coefi ient, $K$, is used to simulate the effect of the fuselage on the wind vector at the tail rotor as follows:

$$
V_{T}=V_{F}(1 .-K)
$$

where $V_{F}$ and $V_{T}$ are the lateral components of the wind vector, in body reference, felt by the fuselage and the tail rotor, respectively.

CARD 57

For the tail rotor to act as an antitorque rotor, the mast must be tilted from the vertical to its proper orientation, e.g., $\operatorname{XTR}(44)=0.0$ and $\operatorname{XTR}(45)= \pm 90$. If $\operatorname{XTR}(45)=+90$ (tilted to the right), the advaning blade is at the top of the rotor disc (clockwise rotation when viewec from the right side of the aircraft). If XTR (45) $=-90$ (tilted to the left), the advancing blade is at the bottom of the rotor disc (counterclockwise rotation when viewed from the right side of the aircraft).

CARDS 58 and 59

These cards, the pylon inputs, are to be included only if $\operatorname{IPL}(8)=2$ or 3 .

CARD 5G
IPL(19) rather than IPL(18) specifies tail rotor steady-state aerodynamics and causes read-in of CARD $5 G$ if less than zero.

### 3.8 WING GROUP (omit entire group if $\operatorname{IPL}(9)=0$ )

### 3.8.1 Basic Model

CARD 61
Wing area should include carry-through area if any. The program divides the area equally between the left and right wing panels.

The center of pressure and dihedral angle inputs (XWG(2), (3), (4), and (6)) are for the right wing panel. The left panel is assumed to be symmetrical to the right panel about the zero butcline plane. XWG(5) is the incidence angle of each panel when all primary flight controls are at 50 percent and the control surface deflection is zero. It is positive for leading edge up. Positive dihedral angle, XWG(6), means the outboard tip of each panel is up. See Figure 3-7.

The sweepback angle, $X W G(7)$, is positive aft.
CARD 62
The geometric aspect ratio, XWG(8), is to be defined by the planform area in the plane of the sweepback angle and the span in the body $\mathrm{Y}-\mathrm{Z}$ plane.

The spanwise efficiency factor, XWG(9), relates the geometric aspect ratio to the effective aspect ratio. See Section 3.8.2 for further detalls.

The taper ratio of the surface, XWG(10), is equal to the surface tip chord divided by the root chord; e.g., 1.0 is a parallelogram, 0.0 is a triangle.

XWG(11) and XWG(13) are used in calculating dynamic pressure loss at the stabilizing surfaces due to the wing, as discussed at the end of this section. The Wing Group does not have a counterpart to XSTB1(11), the tail bending coefficient. Although similar in use, XWG(13) and XSTBI(13) are not necessarily equal.

Control surface deflection, XWG(14), is positive for trailing edge down.
CARD 63
The model for changing surface lift coefficient, maximum lift coefficient, drag coefficicat and pitching moment coefficient with control surface, or flap, deflection is based on analysis and data from Reference 8 and Chapter 6 of Reference 9. The change in lift coefficient due to flap deflection, ${ }^{6} f$, is

$$
\left(\Delta C_{L}\right)_{f}=X W G(15) * \delta_{f}+X W G(16) * \delta_{f} *\left|\delta_{f}\right|
$$


(a) Rear View of Wing or Symmetrical Horizontal Stabilizer With Positive Dihedral.

(b) Three View of Swept Vertical Stabilizer With Center of Pressure on and to the Right of the Fuselage Plane of Symmetry.

Figure 3-7. Aerodynamic Surface Dihedral and Incidence Angles.
and the change in maximum lift coefficient is

$$
\left(\Delta C_{L}\right)_{\max }=X W G(17) * \delta_{f}+X W G(18) * \delta_{f}^{2}+\left(\Delta C_{L}\right)_{f}
$$

The input XWG(17) and XWG(18) account for the situation where the maximum lift coefficient is increased more or less than the change in lift coefficient.

The change in profile drag coefficient due to flap deflection is

$$
\left(\Delta C_{D}\right)_{f}=X W G(19) * \delta_{f}+X W G(20) * \delta_{f}^{2}
$$

CARD 64
The change in pitching moment coefficient due to flap deflection is

$$
\left(\Delta C_{M}\right)_{f}=X W G(22) * \delta_{f}+X W G(23) * \delta_{f} *\left|\delta_{f}\right|
$$

CARD 65
XWG(29) through (32) control the effect of the wake from each rotor on the flow field at each wing panel. These effects are represented by superimposing two velocity vectors (one from each rotor) on the flow Eield at each panel. Each velocity vector is a function of the induced velocity at specific rotor disc. The function may be either a constant or a value obtained from a Rotor Wake at Aerodynamic Surface (RWAS) Table. It is necessary that the four functions all be constants or all be from RWAS tables; combinations of constants and tables are not permitted.

The magnitude of these wake effect inputs controls which function will be used. If the inputs are less than or equal to 100 , a four velocity vector will be computed using the input value as a constant factor:

$$
\begin{aligned}
& (\Delta \vec{V})_{1 R}=\operatorname{XWG}(29) *\left(\bar{v}_{i}\right)_{1} \\
& (\Delta \vec{V})_{1 L}=\operatorname{XNG}(30) *\left(\bar{V}_{i}\right)_{1} \\
& (\overrightarrow{\Delta V})_{2 L}=\operatorname{XWG}(31) *\left(\bar{V}_{i}\right)_{2} \\
& (\overrightarrow{\Delta V})_{2 R}=\operatorname{XWG}(32) *\left(\bar{V}_{i}\right)_{2}
\end{aligned}
$$

where $\Delta \vec{V}$ is the velocity to be superimposed,
$\bar{v}_{1}$ is the average induced velocity at the rotor disc.

The numerical subscripts refer to the rotor ( $1=$ main, $2=$ tail), and the alphabetical subscripts to the wing panel ( $R=r i g h t, L=l e f t$ ). The velocities are defined to be parallel to their associated rotor shaft.

If the four inputs are greater than 100,100 is subtracted from each input, and the RMAS table with the corresponding input sequence number is then used to supply a number which replaces the appropriate XWG input in the above equations. For example, if $X W G(30)=104.0$, the fourth RWAS table will be used to compute the velocity vector at the left wing panel due to the main rotor wake.

It is emphasized that if one effect is to be represented by a constant, all four effects must be represented by a constant; similarly, if one effect is to be repreatated by a table, all must be represented by a table. When using tables, care should be exercised to assure that the proper table is used. See Section 3.3 .4 for a discussion of the RWAS tables. However, these restrictions on tables or constants apply only to a single aerodynamic surface; $i . e .$, the type of representation used by the wing or any one of the four stabilizing surfaces does not affect the representation used by any other aerodynamic surface.

CARD 65-66
Inputs XWG(33) through XWG(42) are determined from Etkin (Reference 2, pp 480-495). They are used to calculate the wing contribution to static and dynamic stabilitv. The static derivatives (those which are coefficients of $B$ ) may be included in the fuselage group aerodynamics or simulated with appropriate values of wing sweep and/or dihedral. If this is done, XWG(33), (34), (37) and (38) should be set to zero. It is not possible to simulate the dynamic derivatives (those which are coefficients of $p$ and $r$ ) with any other section of the program. In the Force and Moment Summary of the program output, one-half of the increments to the rolling and yawing moments calculated from the equations below is added to each wing panel.

$$
\Delta L_{W}=F\left[\beta\left[X W G(33)+X W G(34) C_{L}\right]+\operatorname{ts}\left[X W G(35) r C_{L}+X W G(36) p\right]\right]
$$

and

$$
\begin{aligned}
\Delta N_{W}= & F\left[\beta\left[\operatorname{XWG}(37)+X W G(38) C_{L}^{2}\right]\right. \\
& +\operatorname{ts}\left[r\left\{X W G(39) C_{L}^{2}+X W G(40) C_{D_{o}} \cos \beta\right\}\right. \\
& \left.\left.+p\left\{X W G(41) C_{L}+X W G(42)\left(d C_{D} / d \alpha\right) \cos \beta\right\}\right]\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& F=0.5 \rho S V^{2} B \\
& t s=0.5 \mathrm{~B} / \mathrm{V} \\
& V=\text { airspeed } \\
& B=\text { wing span } \\
& S=\text { wing Area } \\
& \rho=\text { sideslip angle } \\
& \alpha=\text { wing angle of attack } \\
& P=\text { roll rate of fuselage in the stability axis system } \\
& r=\text { yaw rate of fuselage in the stability axis system } \\
& L=\text { roll moment of wings due to rates and sideslip } \\
& N=\text { yaw moment of wings due to rates and sideslip }
\end{aligned}
$$

$\Delta L_{w}$ and $\Delta N_{w}$ are computed in the stability axis system and are resolved into the body axis system.

### 3.8.2 Aerodynamic Inputs for Stabilizinz Surfaces and Wing

The last four cards of each aerodynamic surface input group are termed the aerodynamic inputs: YWG(1-28), YSTB1(1-28), YSTB2(1-28), YSTB3(1-28), and YSTB4(1-28). These inputs are used in conjunction with inputs from the corresponding XWG or XSTBi ( $1=1$ to 4) arrays to compute the lift, drag, and pitching moment coefficients of each surface. The user has the option of specifying that the coefficients be computed from equations or obtained from data tables. In the following discussion, $Y(I)$ refers to the $I^{\text {th }}$ aerodynamic input, YWG(I) or YSTBi(I), for the appropriate aerodynamic surface and $X(J)$ refers to the $J$ th input in the corresponding XWG or XSTBi array.

If the control variable $Y(18)=0$, subroutine CLCD computes the aerodynamic coefficients from equations as functions of the angle of attack $\alpha$; angle of sideslip, $\beta$; Mach number, $M$; surface planform geometry; and the spanwise efficiency factor, e. If $Y(18)>0$, data tables are used to compute the coefficients as described at the end of this section and in the discussion of the Data Table Group.

When $Y(18)=0$, the aerodynamic inputs are coefficients of equations which describe the infinite aspect ratio, or two-dimensional, aerodynamic coefficients of the airfoil section of the surface. It is assumed that the section is constant along the span and parallel to the longitudinal centerline of the aircraft. Subroutine CLCD then corrects the input data for finite aspect ratio, $A$; sweepback of the quarter chord line, $\Lambda_{1 / 4}$; sideslip angle between the airfoil section and local
flow, $\beta$; change in maximum lift coefficient due to control surface deflection; and change in lift, drag, and pitching moment coefficients due to control surface deflection. Note that all angles of attack used in this model are zero lift line angles of attack. The model was developed to simulate the characteristics of the symmetrical airfoils. If cambered airfoils are to be modeled and the angle between the chord line and zero lift line of the section is more than a few degrees, it is suggested that data tables rather than equations be used.

The geometry and effectiveness of the surface are defined from the following inputs.

$$
\begin{aligned}
& \bar{y}=\text { buttline of surface center of pressure }=X(3) \\
& \Lambda_{1 / 4}=\text { sweepback of quarter chord }=X(7) \\
& A=\text { geometric aspect ratio }=X(8) \\
& e=\text { spanwise efficiency factor }=X(9) \\
& \lambda=\text { taper ratio of surface }=X(10)
\end{aligned}
$$

The spanwise efficiency factor, $e$, should be unity for the ideal case where the surface has an elliptical lift distribution and uniform downwash. However, the ideal case is the exception, not the rule, and the value of $e$ is rarely unity. Factors which affect the value of are the geometry of the surface (including aspect ratio, taper, and sweep) and the degree of end plating caused by adjacent structure.

Analytical prediction of $e$ is difficult at best. A surface which has a large end plate, e.g., a T-tail, may have a value of as high as 1.5 or more. A straight untapered, unswept surface may have a value of $e$ as low as 0.6 or less. A typical value of $e$ for un-end-plated aerodynamic surfaces on helicopters is about 0.7 . The user should consult such text reference books as Etkin, DATCOM, Perkins and Hage, or Dommasch (References 2, 3, 4, and 5) to obtain a more intuitive feel for the value which should be chosen for this spanwise efficiency factor.

Using the above parameters, the sweepback of the half chord, $\Lambda_{1 / 2}$, is

$$
\Lambda_{1 / 2}=\tan ^{-1}\left[\tan \Lambda_{1 / 4}-(1-\lambda) /(A(1+\lambda))\right]
$$

and the effective sweepback angle, $\Lambda^{\star}$, and effective aspect ratio, $\Lambda^{\star}$, are

$$
\begin{aligned}
& \Lambda^{*}=\Lambda_{1 / 2}-(\operatorname{sign} \bar{y}) \beta \\
& A^{*}=e A \cos ^{2}\left(\Lambda^{*}\right) / \cos ^{2}\left(\Lambda_{1 / 2}\right)
\end{aligned}
$$

Let $\alpha_{1}$ be the angle of attack input to CLCD and assume that

$$
-180^{\circ}<\alpha_{1} \leq 180^{\circ}
$$

Then for unstalled flow the two-dimensional siscunic lift curve slope, $a_{o}$, is defined as

$$
a_{0}=Y(8)+Y(9) M+Y(10) M^{2}+Y(11) M^{3}
$$

and the three-dimensional subsonic lift curve slope, $a_{1}$, as

$$
a_{1}=\left(2 \pi A^{*} / 57.3\right) /\left[2+\sqrt{\left(2 \pi A^{*} / a_{0}\right)^{2}\left[1+\left\{\tan ^{2} \Lambda^{*} /\left(1-M^{2}\right)\right\}\right]+4}\right]
$$

and the transonic lift curve slope, $a_{2}$, as

$$
a_{2}=B_{0}+B_{1} M+B_{2} M^{2}
$$

and the supersonic lift curve slope, $a_{3}$, as

$$
a_{3}=(4 / 57.3) / \sqrt{M^{2}-1}
$$

The input value for the lower boundary of the supersonic region, $Y(2)$, is checked against a calculated value $M_{s c}$ :

$$
M_{s}=\operatorname{Max}\left\{Y(2), M_{s c}\right\}
$$

where

$$
M_{s C}=\sqrt{1+\left[(4 / 57.3) /\left(a_{1}\right)_{C R}\right]^{2}}
$$

and $\left(a_{1}\right)_{C R}$ is $a_{1}$ evaluated at the drag divergence Mach number, $Y(1)$. The coefficients $B_{0}, B_{1}$, and $B_{2}$ are computed internally by equating $a_{1}$ and $a_{3}$, and the slopes of $a_{2}$ and $a_{3}$ as follows:

$$
\begin{aligned}
a_{2}=a_{1} & \text { at } M=Y(1), \beta=0 \\
a_{2}=a_{3} & \text { at } M=M_{S} \\
\frac{d a_{2}}{d M}=\frac{d a_{3}}{d M} & \text { at } M=M_{S}
\end{aligned}
$$

Then the lift curve slope of the surface for unstalled flow, a, is defined as

$$
a=\left\{\begin{array}{l}
a_{1} \text { if } M<Y(1) \\
a_{2} \text { if } Y(1) \leq M<M_{S} \\
a_{3} \text { if } M_{s} \leq M
\end{array}\right.
$$

Having determined the installed lift curve slope, subroutine CLCD establishes the curve of $C_{L}$ versus $\alpha$ for all angles of attack.

If $\quad\left|\alpha_{1}\right| \leq 90^{\circ}$, i.e., forward flight,

$$
\begin{aligned}
\alpha & =\left|\alpha_{1}\right| \\
S G & =\alpha_{1}| | \alpha_{1} \mid \\
C_{L_{0}} & =Y(3)+S G\left(\Delta C_{L}\right)_{\max } \\
K_{L} & =Y(4) M+Y(5) M^{2}+Y(6) M^{3} \\
\alpha_{S} & =\left(C_{L_{0}}+K_{L}\right) / a \\
\alpha_{B} & =\alpha_{S}+5^{\circ}
\end{aligned}
$$

where $\left(\Delta C_{L}\right)_{\text {max }}$ is the increment to the maximum lifo coefficient due to control surface deflection, as calculated in the aerodynamic surface section.

If $\left|\alpha_{1}\right|>90^{\circ}$, Le., rearward flight or reversed flow,

$$
\alpha=180 \cdot\left|\alpha_{1}\right|
$$

$$
s c=-\alpha_{1} /\left|\alpha_{1}\right|
$$

$$
C_{L_{0}}=Y(7)+. G\left(\Delta C_{L}\right)_{\max }
$$

$$
K_{L}=0
$$

$$
\alpha_{S}=C_{L_{0}} / a
$$

$$
\alpha_{B}=\alpha_{S}+5^{\circ}
$$

$$
\begin{aligned}
\text { For } 0 & \leq \alpha \leq \alpha_{B} \\
C_{L}^{\prime} & =a \alpha \\
\text { If } \quad C_{L}^{\prime} & \leq C_{L_{0}} \text { then } \\
C_{L} & =C_{L}^{\prime}+\operatorname{SG}\left(\Delta C_{L}\right)_{f}
\end{aligned}
$$

where $\left(\Delta C_{L}\right)_{f}$ is the increment to $C_{L}$ due to flap deflection as calculated in the aerodynamic surface section.

If $C_{L}^{\prime}>C_{L_{0}}$, then $C_{L}$ is determined by linear interpolation in the following manner.

$$
\begin{aligned}
& C_{L_{\max }}=C_{L_{0}}+K_{L}+S G\left(\Delta C_{L}\right)_{f} \\
& C_{L_{B}}=C_{L} \text { at } \alpha=\alpha_{B} \text { as discussed below. }
\end{aligned}
$$

Then

$$
C_{L}=C_{L_{\max }}+\left(c_{L_{\max }}-c_{L_{B}}\right)\left(\alpha-\alpha_{S}\right) / 5^{\circ}
$$

In either case, the induced angle of attack, $\alpha_{i}$, is

$$
\alpha_{i}=C_{L} / \pi A *
$$

For $\alpha_{B} \leq \alpha \leq 90^{\circ}$, the lift coefficient is calculated from the following empirical expression for $C_{L}$ as a function of the equivalent two-dimensional angle of attack, $\alpha_{2}$,

$$
C_{L}=\left[\left\{2 C_{L_{0}} \sin \alpha_{2}-.81\right\} K_{3}+0.81\right] \cos \alpha_{2}+S G\left(\Delta C_{L}\right)_{f}
$$

$$
K_{3}=\left\{\begin{array}{l}
1+0.25 M^{4} \text { if } M \leq 1 \\
0.84+0.082 /(M-0.8) \text { if } M>1
\end{array}\right.
$$

The value of $C_{L_{0}}$ is based on the magnil:ude of $\alpha_{1}$ as described above, and $\Delta C_{L}$ is the increment due to control surface deflection.

The angle $\alpha_{2}$ is related to the angle $\alpha$ by the induced angle of attack, $\alpha_{i}$.

$$
\alpha_{2}=\alpha-\alpha_{i}
$$

where, as above, $\alpha_{i}=C_{L} / \pi A^{*}$

The angle $\alpha_{2}$ represents the angle of attack needed on an infinite aspect ratio surface to provide the same lift as the aerodynamic surface in question.

Hence, $C_{L}$ and $\alpha_{i}$ are functions of each other. Consequently, a small angle assumption is used for $\alpha_{i}$ and the above expressions for $C_{L}, \alpha_{2}$, and $\alpha_{i}$ are rearranged to defit ${ }^{\circ} \alpha_{i}$ as a function of $C_{L_{0}}, \alpha$, and $K_{3}$.

Then

$$
C_{L}=\pi\left(A^{*}\right) \alpha_{i}
$$

The form of the $C_{L}$ vs. $\alpha$ curve is shown in Figure 3-2 for zero control surface deflection. At point $P_{1}$ in the figure

$$
\begin{aligned}
& C_{L}=C_{L_{0}}+K_{L} \\
& \alpha=\alpha_{S}=c_{L} / a
\end{aligned}
$$

At point $P_{2}$ in Figure $3-2$

$$
\alpha=\alpha_{B}
$$

and $C_{L}$ is defined by the procedure discussed for $\alpha_{B} \leq \alpha \leq 90^{\circ}$. Control surface deflection shifts the curve vertically and may change the difference between $C_{L}$ at $\alpha=0$ and $C_{L}$ at $\alpha=\alpha_{S}$.

The form of the $C_{D}$ vs. $\alpha$ curve is shown in Figure 3-3. At point $P_{3}$ in Figure 3-3, $\alpha^{2}=\alpha_{x}$ and $C_{D}=C_{D_{x}}$. The values of $\alpha_{x}$ and $C_{D}{ }_{x}$ are defined irom the maximum value for nondivergent drag, $Y(16)$; the stall angle, ${ }^{2} S$; and the equation ior nondivergent drag, $\left(C_{D}{ }^{\prime} N_{D}\right.$.

$$
\begin{aligned}
\left(C_{D}\right)_{N D} & =Y(12)+Y(13) \alpha_{2}+Y(14) \alpha_{2}^{2}+\left(\Delta C_{D}\right)_{f} \\
& +\operatorname{Max}\left\{0, Y(19) \alpha_{2}-Y(1)+\operatorname{Max}[M, 0.35]\right\}
\end{aligned}
$$

where $\alpha_{2}=\alpha-\alpha_{i}$, as in the model for lift coefficient,
$\left(\Delta C_{D}\right)_{r}=$ increment to profile drag duc $l$ a control surface (flap) defleclion and

If $C_{D_{S}} \leq Y(16)$

$$
\alpha_{X}=\alpha_{S}-\left(\alpha_{i}\right)_{S}
$$

$$
C_{D}=C_{D}
$$

I: $C_{D_{S}}>Y(16)$

$$
C_{D_{X}}=Y(16)
$$

$$
{ }^{\alpha} X=\alpha_{2} \text { for }\left(C_{D}\right)_{N D}=Y(16)
$$

Then, for $0 \leq a \leq a_{x}$

$$
C_{D}=\left(C_{D}\right)_{N D}
$$

and for $\alpha_{X}<\alpha \leq 90^{\circ}$

$$
C_{D}=2 .+\left(\alpha_{2}-90^{\circ}\right)^{2}\left(C_{D_{X}}-2 .\right) /\left(\alpha_{X}-90^{\circ}\right)^{2}
$$

In the supersonic region, $M>M_{S}$

$$
C_{D}=\operatorname{Min}\left\{Y(16),\left(Y(12)+4\left[\left(\alpha_{2} / 57.3\right)^{2}+Y(15)\right] / \sqrt{M^{2}-1}\right)\right\}
$$

The value usually used for $Y(15)$ is 0.04 . The supersonic lift and drag for the wing and stabilizing surfaces is deemphasized because this computer program was never ittended to simulate such high speed flight. The supersonic functions are included primarily because the $C_{L}$ and $C_{D}$ calculations were originally developed for the rotors and later applied to the other aerodynamic surfaces. A secondary reason for this inclusion is to maintain the similarity between the input and mathematical models used for the aerodynamic surfaces (CLCD subroutinc) and the rotors (CDCL subroutine).

Once determined, the $C_{L}$ and $C_{D}$ coefficients are assumed to act in an axis system which is pitched up $\alpha_{i}$ degrees with respect to the wind vector. Consequently, before returning the value of $C_{L}$ and $C_{D}$ to the aerodynamic surface section of the program, they are resolved back to wind axis:

$$
\begin{aligned}
& C_{L_{\text {wind }}}=C_{L} \cos \alpha_{i}-C_{D} \sin \alpha_{i} * S G \\
& C_{D_{\text {wind }}}=C_{D} \cos \alpha_{i}+C_{L} \sin \alpha_{i} * S G
\end{aligned}
$$

The calculation of the acrodynamic oitching moment is performed in the same manner as for the rotor cxcept that the section pitching moment cocfficicnt, $Y(25)$, is modified for sweep and aspect ratio effects. That is, susstitute the following expression for $Y(25)$ in the rotor discussion:

$$
Y(25) A^{*} \cos ^{2}\left(\Lambda_{1 / 4}\right) /\left(A^{*}+2 \cos \left(i_{1 / 4}\right)\right)+\left(\Delta C_{M}\right)_{f}
$$

where $\left(\Delta C_{M}\right)_{f}$ is the increment to pitching moment due to control surface (flap) deflection.

It is possible to use sets of data tables for determining the aerodynamic coefficients as a function of $\alpha$ and $M$. The tables available for use are those input to the Data Table Group.

If $\mathrm{Y}(18)>0$, the $\mathrm{Y}(18)$ th airfoil data table is used to determine the cocfficients as functions of $\alpha_{1}$ and $M$.

## CAUTION:

Coefficients obtained from tables are not corrected for aspect ratio or sweep effects. Hence, the data in tables to be used by aerodynamic suriaces must be for the specific surface which is being simulated, i.e., three-dimensional test data at zero sideslip. Data from tables are currected for yawed $f$ low and control surface deflection as follows:

$$
\begin{aligned}
& C_{L}=\left[\left(C_{L}\right)_{T a b l e}+\left(\Delta C_{L}\right)_{f}\right] \cos ^{2}\left(\Lambda^{*}\right) / \cos \left(\Lambda_{1 / 2}\right) \\
& C_{D}=\left[\left(C_{D}\right)_{T a b l e}+\left(\Delta C_{D}\right)_{f}\right] \\
& C_{M}=\left[\left(C_{M}\right)_{T a b l e}+\left(\Delta C_{M}\right)_{f}\right] \cos ^{2}\left(\Lambda^{*}\right) / \cos \left(\Lambda_{1 / 2}\right)
\end{aligned}
$$

NOTE:

If tables arc used by the wing, the wing aerodynamic inputs should still be input to provide a realistic value for the stall angle, $\alpha_{S}{ }^{\text {e }}$
This angle is used in computing the effect of the wing on the flow ficld at the stabilizing surfaces.

### 3.8.2.1 Flow Field at Stabilizing Surfaces due to Wing

As mentioned in the discussion of Stabilizing Surface No. 1 , the wing can affect the flow field at the stabilizing surfaces. It does so in the following manner.

A dynamic pressure reduction at each surface due to the wing is calculated using XWG(11) and (13). The equations used were iaken from NACA Report Number 648, Reference 7. The general situition is shown in Figure 3-8.

The deflection of the centerline of the wing wake from the free-stream direction, $\varepsilon_{\text {wake }}$, is calculated from XWG(13).

$$
c_{\text {wake }}=X W G(13) C_{L_{\text {wing }}}
$$

The dynamic pressure loss, $\eta_{q}$, is represented as a fractional part of the free-stream value such that ${ }^{\prime}$

$$
q_{\text {reduced }}=q_{\text {free stream }}\left(1-\eta_{q}\right)
$$

The maximum value of $T_{n}$ occurs at the center of the wing wake and at the trailing edge of the wing. The input $X W G(11)$ is used to determine this maximum reduction, $\eta_{q_{\max }}$.

$$
\tau_{i_{q_{\max }}}=\operatorname{XWG}(11)\left[C_{D_{\text {wing }}}\right]^{1 / 2}
$$

Then the dynamic pressure loss may be calculated at any point inside the wing wake.

$$
T_{\mathrm{q}}=\frac{\eta_{q_{\max }} \cos ^{2}(\pi \mathrm{D} / 2 \mathrm{~h})}{(5+0.3)}
$$

where
D is the vertical distance from the centerline of the wake to the elevator (as shown in Figure 3-8),
$h$ is the half width of the wing wake at the elevator station, and
5 is the distance of the elevator behind the wing trailing edge normalized by the wing mean aerodynamic chord (as shown in figure 3-8).


Figure 3-3. Wing Wake Model.

D, h, and $f$ are internally calculated based on wing/stabilizing surface geometry and aerodynamics.

In addition, a downwash angle at each surface due to 'he wing is computed using the l3th input of the appropriate stabilizing surface, e.g., XSTBl(13) for Surface No. 1. The angle for Surface No. 1 is then

$$
\varepsilon_{\text {wash }}=\operatorname{XSTBl}(13) C_{L_{\text {wing }}}
$$

Note that although XWG(13) and XSTBl(13) are used in similar looking equations, they are different inputs and in most cases have different values.

Using $\varepsilon_{\text {wash }}$ and $\eta_{q}$, the flow field is then modified at the stabilizing surface in the same manner as was done for the wash and dynamic pressure reduction at the surface due to the fuselage.

See Section 3.1 .2 for the discussion of the wing aerodynamic computations.

### 3.8.3 Control Linkage Inputs

Because of the similarity of the control linkage models for the wing and the stabilizing surfaces, the control linkage inputs for both are discussed in this section. The wing controls subgroup is XCWG, while the corresponding subgroups for the stabilizing surfaces are XCS1, XCS2, XCS3, and XCS4 for the first, second, third and fourth surfaces, respoctively. In the following discussion, the term XCSj(I) refers to the $I^{\text {th }}$ input of the $j$ th stabilizing surface linkage subgroup. The wing linkage subgroup can be considered equivalent to the zeroth surface subgroup, i.e., XCSO(I) is synonymous with XCSW(I). Similarly, XSTBj(K) refers to the $K^{\text {th }}$ input of $j^{t h}$ basic surface group with $\operatorname{XSTBO}(K)$ and XWG(K) being equivalent.

The inputs to each subgroup define the control linkages from the primary flight controls and the F/A mast tilt angle of Rotor 1 to the incidence or control surface deflection angles of the corresponding aerodynamic surface. The linkages can be either linear or parabolic.

The reading of XCWG is controlled by $\operatorname{IPL}(9)$. If $\operatorname{IPL}(9)>0$, the XCWG inputs (CARDS 6B and 6C) must be included; if $\operatorname{IPL}(9) \leq 0$, the two cards must be omitted.

The read-in of the linkage subgroup for the stabilizing surfaces is controlled by IPL(10). If $\operatorname{IPL}(10)>0$, then each of the IPL(10) surface groups input must include a linkage subgroup; if $\operatorname{IPL}(10) \leq 0$, all linkage subgroups must be omitted.

Each subgroup uses the identical input format and the same mathematical modcl for calculating the increments to be added to the incidence or control surface deflection angle of the surface. However, the wing is divided into left and right panels with the inputs controlling the right panel. For collective or $F / A$ cyclic stick litkages, the increments are added to each wing panel symmetrically; for lateral cyclic stick or pedal position linkages, the increments for the left panel are the negative of those on the right, i.e., asymmetric deflection.

The primary flight controls cannot be linked to incidence and control surface deflection simultaneously. If $\operatorname{XCS}(7)=0$, control linkages will change only the incidence angle, XSTBj(5), of the surface. If XCSj(7) $\neq 0$, the linkage will change only the control surface deflection, XSTBj(14). During maneuvers, incidence and/or control surface deflection may be changed independently of the control linkages described in this section (see Section 3.21.2.27). Either or both angles can be changed in maneuver regardless of the value of $\operatorname{XSC}(7)$.

XCSj(3), (6), (10), and (13) define breakpoints in the curves of the control linkages. These breakpoints permit control linkages which provide a zero increment to the appropriate angle of the surface if the control is to one side of the breakpoint and a nonzero value when the control is to the opposite side.

If $\operatorname{XCS} j(3)=0.0$, the increment for the $j^{\text {th }}$ surface due to collective stick displacement is

$$
\left(\Delta i_{1}\right)_{j}=\operatorname{XCSj}(1) * K_{1}+\operatorname{XCS} j(2) * K_{1}^{2}
$$

If $\operatorname{XCSj}(6)=0.0$, the increment for the $\mathrm{j}^{\text {th }}$ surface due to $F / A$ cyclic stick displacement is

$$
\left(C i_{2}\right) j=X \operatorname{CSj}(4) * K_{2}+\operatorname{XCSj}(5) * K_{2}^{2}
$$

If $\operatorname{XCS} j(10)=0.0$, the increment for the $j^{\text {th }}$ surface due to lateral cyclic stick displacement is

$$
\left(\Delta i_{3}\right)_{j}=\operatorname{xCS} j(8) * K_{3}+\operatorname{XCS} j(9) * K_{3}^{2}
$$

If $\operatorname{XCS}(13)=0,0$, the increment for the $\mathrm{j}^{\text {th }}$ surface due to pedal displacement is

$$
\left(\angle i_{4}\right)_{j}=X \operatorname{CSj}(11) * K_{4}+X \operatorname{CSj}(12) * K_{4}^{2}
$$

where $K_{1}, K_{2}, K_{3}$, and $K_{4}$ are the control deflections in inches from the 50 percent control position. The total increment to the appropriate angle of the $j$ th surface due to the primary flight controls is then

$$
\Delta i_{j}=\left(\Delta i_{1}\right)_{j}+\left(\Delta i_{2}\right)_{j}+\left(\Delta i_{3}\right)_{j}+\left(\Delta i_{4}\right)_{j}
$$

The effect of a nonzero breakpoint for the collective stick linkage, $\operatorname{XCS} j(3) \neq 0$, is discussed below. The effect of nonzero XCSj(6), (10), and (13) is identical.

If $\operatorname{XCSj}(3)>0$, then the control linkage is active only when the magnitude of the stick position is greater than the breakpoint, i.e.,

$$
\begin{aligned}
\left(\Delta i_{1}\right)_{j} & =0, \text { if } \delta_{\operatorname{COLL}} \leq \operatorname{XCSj}(3) \\
& =\operatorname{XCSj}(1) * k_{1}+\operatorname{XCSj}(2) * k_{1}^{2}, \text { if } \delta_{\operatorname{COLL}}>\operatorname{XCSj}(3)
\end{aligned}
$$

and if $\operatorname{XCSj}(3)<0$, then the control linkage is active only when the magnitude of the stick position is less than the magnitude of the breakpoint, i.e.,

$$
\begin{aligned}
\left(\Delta i_{1}\right)_{j} & =0, \text { if } \delta_{\operatorname{COLL}} \geq|\operatorname{xCsj}(3)| \\
& =\operatorname{xCSj}(1) * k_{1}+\operatorname{xCSj}(2) * k_{1}{ }^{2}, \text { if } \delta_{\operatorname{COLL}}<|\operatorname{XCSj}(3)|
\end{aligned}
$$

where $\mathrm{k}_{1}=\left(\varepsilon_{\text {COLL }}-|\operatorname{XCS} \mathrm{j}(3)|\right) \% \operatorname{xCON}(1) / 100$.
For constant values of $\operatorname{XCS} \mathrm{j}(1)$ and (2), the effect of the breakpoint on the increment is shown in Figure 3-9.

Similarly, the increment due to $\mathrm{F} / \mathrm{A}$ cyclic with $\operatorname{XCSj}(6) \neq 0$ is as follows:
if $\operatorname{XCSj}(6)>0$,

$$
\begin{aligned}
& \left(\Delta i_{2}\right)_{j}=0 \text { if } E_{F / A} \leq x C S
\end{aligned}
$$

and if $\mathrm{XCSj}(6)<0$,

$$
\begin{aligned}
\left(\Delta i_{2}\right)_{j} & \left.=0 \text { if } \delta_{F / A} \geq \mid x \operatorname{CS}\right)(t) \mid \\
& =\operatorname{XCSj}(4) * k_{2}+\operatorname{xCSj}(5) * k_{2}^{2} \text { if } \delta_{F / A}<|\operatorname{XCSj}(6)|
\end{aligned}
$$

where $k_{2}=\left(\delta_{F / A}-|X \operatorname{CSj}(6)|\right) * x \cos (7) / 100$
For the stabilizing surfaces, the increments due to lateral cyclic, $\left(\Delta \mathrm{i}_{3}\right)_{j}$, are computed similarly by replacing $\operatorname{XCS} \mathrm{j}(4)$, (5), and (6) with $X C S j(8)$, (9), and (10) plus replacing $\delta_{F / A}$ and $X \operatorname{CON}(7)$ with $\delta_{\text {LAT }}$ and

(a) Linear and parabolic linkages, no breakpoint.
(c) Linear and parabolic linkages, negative breakpoint.


(b) Linear and parabolic linkages, positive breakpoint.

(d) Parabolic linkages from pedals or lateral cyclic to wing, nonzero breakpoint.
$\delta_{c}=$ Control position, percent of full throw
$\delta_{B}=$ Control position for breakpoint, percent
$i_{0}=$ Basic (input) incidence angle for surface, degrees

Figure 3-9. Aerodynamic Surface Control Linkages.
$\operatorname{XCON}(15)$. For the increment due to pedal, $\left(\Delta i_{4}\right), \operatorname{XCS} j(11)$, (12), (13), ${ }^{\delta}$ PED' and $X C O N(22)$ are substituted.

For the lateral cyclic and pedal linkages to the wing angles, nonzero breakpoints, XCWG(10) or (13), operate in a slightly different manner from that discussed above. As shown in Figure 3-9 the linkage is asymmetrical about the $50 \%$ control position. In equation form, the increment added to the right panel is

$$
\left(\Delta i_{3}\right)_{0}=\operatorname{XCWG}(8) * k_{3}+\operatorname{XCWG}(9) * k_{3}^{2}
$$

where

$$
k_{3}=\left\{\begin{array}{l}
\left(\delta_{\text {LAT }}-\varepsilon_{2}\right) * \operatorname{XCON}(17) / 100, \text { iff } \varepsilon_{\text {LAT }}>\delta_{2} \\
\left(\delta_{\text {LAT }}-\varepsilon_{1}\right) * \operatorname{XCON}(17) / 100, \text { if } \delta_{\text {LAT }}<\delta_{1} \\
0, \\
\text { if } \delta_{1} \leq \delta_{\text {LAT }} \leq \delta_{2}
\end{array}\right.
$$

and $\delta_{1}=50-\operatorname{XCWG}(10)$

$$
\left.\delta_{2}=50+X \operatorname{XCWG}(10)\right\} \operatorname{XCWG}(10)>0
$$

The increment added to the left wing panel is the negative of the increment added to the right panel. The inc ement to each panel due to pedal position is handled in the identical manner.

An increment, $L i_{m}$, can be added to the appropriate surface angle as a function of the $F / A$ mast tiit of Rotor 1 .

$$
\left(L i_{m}\right)_{j}=X \operatorname{CSj}(14) *(F / A \text { mast tilt angle })
$$

The total increment to the appropriate angle of the $j^{\text {th }}$ surface is then

$$
L i j=\left(\Delta i_{1}\right)_{j}+\left(\Delta i_{2}\right) j+\left(\Delta i_{3}\right) j+\left(\Delta i_{4}\right) j+\left(L i_{m}\right)_{j}
$$

If $\operatorname{XCS}(7)=0$, the geometric angle of incidence for the $j^{\text {th }}$ surface is then

$$
i_{j}=i i_{j}+\operatorname{XSTBj}(5)
$$

and the control surface angle is

$$
\varepsilon_{j}=\operatorname{XSTB} j(14)
$$

If $\operatorname{XCSj}(7) \neq 0$,

$$
i_{j}=\operatorname{XSTB} j(5)
$$

and

$$
\delta_{j}=\Delta i_{j}+\operatorname{XSTBj}(14)
$$

Increments due to $J$ Cards $(J=36)$ are then added to the above values.

### 3.9 STABILIZING SURFACE GROUPS

3.9.1 Surface No. 1 (inciude only if $|\operatorname{IPL}(10)| \geq 1$ )

CARD 71
Stabilizing surface area should include carry-through area if any.
Location of the center of pressure is the point of application of lift and drag forces used to determine moments about the aircraft center of gravity due to these forces.

XSTBl(5) is the incidence angle of the surface when all primary flight controls are at 50 percent and the control surface deflection is zero. If equations are being used, this angle should be the zero lift line angle; if tables are used, it should be the chord-line incidence. Positive incidence is a right-handed rotation about the positive axis of incidence change; e.g., for a horizontal surface, positive incidence is leading edge up.

The axis of incidence change is assumed to lie in the body $\mathrm{Y}-2$ plane which contains the center of pressure of the surface, i.e., the plane at stationline XSTB1(2). The dihedral angle, $\operatorname{XSTBI}(6)$, is the angle in this $\mathrm{Y}-\mathrm{Z}$ plane between the Y -axis (horizontal) and the axis of incidence change. At $\operatorname{XSTBI}(6)=0$, the positive axis of incidence change is parallel to the positive body Y -axis. If the surface is on the right side of the aircraft, the ditedral angle is positive for the right hand, or outboard, tip up (i.e., if the cp buttline, XSTB1(3), is greiter than zero, positive dihedral, $\operatorname{XSTBI}(6)$, is a left-handed rotation about an axis parallel to the positive body X -axis). If the surface is on the centerline or left side of the aircraft, the dihedral angle is positive for the left hand, or outboard, tip up (i.e., if the cp buttline is equal to or less than zero, positive dihedral is a right-handed rotation about an axis parallel to the positive body X -axis). See Figure 3-7.

The sweepback angle of the quarter chord, XSTBI(7), is positive aft and lies in the plane formed by the axis of incidence change and the zero lift line.

CARD 72
Aspect ratio, spanwise efficiency factor, and taper ratio (XSTBl(8), (9), and (10) respectively) are identical to the corresponding wing inputs (XWG(8), (9), and (10) respectively).

The tail-boom bending coefficient, XSTBl(11), reduces the lift coefficient on the surface by the formula

$$
\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{L}} /\left[1+\operatorname{xstB1}(11) * \mathrm{q}_{\mathrm{s}} * \mathrm{~S}_{\mathrm{s}} * \mathrm{C}_{\mathrm{L}} / \alpha\right]
$$

```
where \(C_{L}=\) lift coefficient from subroutine CLCD
\(q_{s}=\) dynamic pressure at the surface
\(S_{s}=\) area of the surface
 \(\alpha=\) angle of attack of the surface (in radians)
\(C_{L}=\) lift coefficient used for the surface
```

XSTBl(12) and XSTBl(13) are discussed in Section 3.9.1.1.
Positive control surface deflection, XSTBI(14), is defined in the same direction as positive zero lift line incidence, i.e., a right-handed rotation about the positive axis of incidence change. For a horizontal surface this corresponds to trailing edge down.

CARDS 73 and 74
The inputs for changing the lift, drag, and pitching moment of a stabilizing surface with control deflection are identical to those for the wing. See CARDS 63 and 64 in Section 3.8.1, and substitute XSTBl for XWG. See the following section for a discussion of XSTBl(24) through (28) which are on CARD 74.

### 3.9.1.1 Flow Field at the Stabilizers

Inputs XSTBl(12), (13), and (24) through (34) define the flow field at the surface in the following manner.

The downwash angles at the surface due to the fuselage are defined according to the type of fuselage equation which is being used, i.e., Nominal Angle, High Angle, or Phased.

If the Nominal Angle fuselage equations are being used,

$$
\begin{aligned}
\epsilon_{\mathrm{f}}=c_{\mathrm{L}}= & {\left[\operatorname{XSTBl}(24) * \operatorname{DTR}+0.5 * \operatorname{xSTBl}(25) * \sin \left(2 \theta_{\mathrm{w}}\right)\right] * } \\
& {\left[1+0.25 * \operatorname{RTD} * \operatorname{xSTBI}(26) * \sin ^{2}\left(2 \psi_{\mathrm{w}}\right)\right] } \\
\sigma_{\mathrm{f}}=\sigma_{\mathrm{L}}= & {\left[\operatorname{xSTBl}(27)+0.25 * \operatorname{RTD}^{2} * \operatorname{xSTBl}(28) * \sin ^{2}\left(2 \theta_{\mathrm{w}}\right)\right] * 0.5 * \sin \left(2 \psi_{\mathrm{w}}\right) }
\end{aligned}
$$

where $\theta_{w}$ and $\psi_{w}$ are the fuselage acrocynamic pitch and yaw angles respectively, and $\mathbf{c}_{\mathrm{f}}$ and $\sigma_{\mathrm{f}}$ are in radians.

Note that the above equation can be approximated for small angles as

$$
\begin{aligned}
\varepsilon_{L}^{\prime} & \left.\approx(\operatorname{xSTB1} 124)+\operatorname{xSTB1}(25) * \theta_{W}\right)\left(1+\operatorname{xSTB1}(26) * \psi_{W}^{2}\right) \\
\sigma_{L}^{\prime} & \approx\left(\operatorname{xSTB} 1(27)+\operatorname{xSTB1}(28) * \theta_{W}^{2}\right) * \psi_{W}
\end{aligned}
$$

$$
3-95
$$

where $\theta_{w}, \psi_{w}, \varepsilon_{L}^{\prime}$, and $\sigma_{L}^{\prime}$ are all in degrees.

In the phasing region

$$
\begin{aligned}
& \varepsilon_{f}=\varepsilon_{L} * \cos ^{2}\left(\alpha_{\mathrm{ph}}\right) \\
& \sigma_{\mathrm{f}}=\sigma_{\mathrm{L}} * \cos ^{2}\left(\alpha_{\mathrm{ph}}\right)
\end{aligned}
$$

where $\alpha_{p h}$ is the phasing angle defined in the fuselage discussion (Section
$3.4 .2)$.

If the High Angle fusclage equations are being used,

$$
\varepsilon_{\mathrm{f}}=\sigma_{\mathrm{f}}=0
$$

The body axis components of the free-stream velocity are assumed to be acting in an axis system which is yawed $\sigma_{f}$ and pitched $\epsilon_{f}$ with respect to the body axis. These velocitics are resolved back to body axis and multiplied by the dynamic pressure ratio factor $\sqrt{1-\operatorname{XSTBl(12)}}$.

If the wing group is included, downwash and dynamic pressure loss at the surface due to the wing will be computed as discussed in the Wing Group section. If the wing is excluded, these calculations will be bypassed, and the value of $\operatorname{XSTBl(13)}$ will be ignored.

Inputs XSTBl(29) through (34) control the effect of the rotor wake on the flow ficld at the surface. If XSTBl(29) and (32) are greater than 100, RWAS tables will be used to compute the effect in the same manner as is done for the wing (see CARD 65 in Section 3.8.1). In this case, XSTBl(30), (31), (33), and (34) are ignored. If both inputs are less than or equal to 100 , the effect will be computed in a manner similar to that for the wing. The difference is that the two inputs following XSTR1(29) and (32) define the body axis $X$ velocities at which the surface starts to enter the wake and is completely within the wake. See Figure 3-10. As with the wing, both effects must be represented by constants or both by tables.

### 3.9.1.2 Aerodynamic Inputs

See Section 3.8.2 for discussion of the aerodynamic computations.

### 3.9.1.3 Control Linkage Inputs (include only if $\operatorname{IPL}(10) \geq 1$ )

The stabilizing surfaces use the identical mathematical model and input format as the wing for linking the surface incidence or control surface deflection to the primary flight controls. See Section 3.8.3, and replace XCWG with XCSI in the discussion.

(a) Computation of $\Delta \vec{v}_{s}$

(b) Local Flow with Downwash
$\vec{v}_{L}=$ local velocity vector at stabilizer excluding rotor downwash
$\left\langle\vec{V}_{S}=\right.$ change in $\vec{v}_{L}$ due to rotor wake
$\vec{v}_{s}=\vec{v}_{L}+\Delta \vec{v}_{s}$
$\bar{v}_{i}=$ average induced velocity across the rotor disc, parallel to the rotor shaft
$u=$ body $X$ axis component of flight path velocity $V$
$K_{s}=\operatorname{XSTB1}(29)$, main rotor induced velocity factor
$v_{1}=\operatorname{XSTBl}(30)$, the $u$ velocity at which the stabilizer enters the rotor downwash
$V_{2}=X S T B 1(31)$, the $u$ velocity at which!, the stabilizer is completely immersed in rotor downwash
NOTE: $V_{1}$ must not be greater than $V_{2}$. Although it is permissible for $V_{1}$ to equal $V_{2}$, this is actually a contradiction: the surface can't start to enter and be completely immersed in the downwash at the same velocity. Hence, if $V_{1}=V_{2}$, the following definition applies:

$$
\left|\overrightarrow{\Delta v_{s}}\right|=\left\{\begin{array}{l}
0.0 \text { if } u \leq v_{2} \\
k_{s} \bar{v}_{i} \text { if } u>v_{2}
\end{array}\right.
$$

Figure 3-10. Effect of Rotor Downwash on the Flow Field at the Stabilizing Surfaces.

### 3.9.2 Surface No. 2 (include only if $|\operatorname{IPL}(10)| \geq 2$ )

The mathematical model for Stabilizing Surface No. 2 is identical to that for Stabilizing Surface No. 1. Refer to the section on Surface No. 1, and substitute XSTB2 for XSTB1 ini the discussion. Include the control linkage inputs (XCS2) only if $\operatorname{IPL}(10) \geq 2$.
3.9.3 Surface No. 3 (include only if $|\operatorname{IPL}(10)| \geq 3$ )

The mathematical model for Stabilizing Surface No. 3 is identical to that for Stabilizing Surface No. 1. Refer to the section on Surface No. 1, and substitute XSTB3 for XSTB1 in the discussion. Include the control linkage inputs (XCS3) only if $\operatorname{IPL}(10) \geq 3$.
3.9.4 Surface No. 4 (include only if $|\operatorname{IPL}(10)|=4$ )

The mathematical model for Stabilizing Surface No. 4 is identical to that for Stabilizing Surface No. 1. Refer to the section on Surface No. 1, and substitute XSTB4 for XSTB1 in the discussion. Include the control linkage inputs (XCS4) only if IPL(10) $=4$.

CARD 111
The number of controllable jets, XJET(1), defines which of the two jet thrusts can be linked to the flight controls. If $\operatorname{XJET}(1)=0.0$, neither jet can be controlled. In this case all four jet control linkages in the Controls Group (i.e., XCON(6), XCON(13), XCON(20), and XCON(27) described in Section 3.12.1) must be zero. If they are not, program execution will terminate during initialization.

If $\operatorname{XJET}(1)=1.0$, only the right (first) jet thrust, XJET(2), can be changed by control motion. If XJET(1) $=2.0$, both jet thrusts can be changed by control motion. During maneuvers, either jet thrust may be changed independently of the value of XJET(1) and the control linkages, as discussed in Section 3.21.2.8. The location of the right jet is the point of application of its thrust. The left (second) jet is located at the same stationline and waterline as the right jet, but at Buttline $-X \operatorname{JET}(5)$. It is not necessary that the right (first) jet be located on the right side of the rotorcraft. However, it will be labeled in the output as the right jet regardless of its location. Similarly, the left (second) jet buttline location is always -XJET(5) and will always be labeled as the left jet.

CARD $1: 2$
The jet thrust vectors are oriented with respect to the body reference system by a set of ordered rotations: yaw, then pitch. For the right jet, the rotations are right-handed while for the left jet they are left-handed. Hence, both the location and orientation of the two thrust vectors are symmetrical about the body X-2 plane.

For $\operatorname{XJET}(2)$ and $\operatorname{XJET}(3)$ positive and $\operatorname{XJET}(8)=\operatorname{XJET}(9)=0.0$, both vectors are parallel to the body $X$-axis and cause positive (forward) forces in the body reference system. A positive yaw angle will then cause a right (positive) body $Y$-force from the right jet and a left (negative) body Y-force from the left jet. Positive pitch angle will cause an upward (negative) body 2 -force from both jets.

### 3.11 EXTERNAL STORE/AERODYNAMIC BRAKE GROUP (omit entixe group if $\operatorname{IPL}(12)=0)$

This group consists of exactly IPL(12) Store/Brake subgroups. The sequence number of the subgroup is the same as the input sequence. Each subgroup uses the same input format and mathematical model. A single subgroup is intended to represent a single store/brake, and all subgroups are mutually independent.
3.11.1 Store/Brake No. 1 (include only if $\operatorname{IPL}(12) \geq 1$ )

The weight input, XSTl(1), defines how the subgroup is to be used. This weight must not be included in the aircraft gross weight, XFS(1). If XSTI(1) $=0$, all calculations for this subgroup are bypassed. If XSTl(1) $>0$, the subgroup is defined to be an external store.
Prior to starting the TRIM procedure, the store weight and inertias (XST1(!) and XSTI(8) through XST1(11)) are added to the weight and appropriate inertial inputs in the Fuselage Group, XFS(1) and XFS (8 $\rightarrow 11$ ). The aircraft cg and inertias are then recalculated for each external store subgroup. When a store is dropped in the maneuver section, the aircraft weight, cg , and inertias are recalculated to reflect the jettison. Note that when using the sweep option (NPART $=10$ ), the baseline values of aircraft weight, cg, and inertias, XFS(1) and XFS(5) through XFS(11), change only when changed by NAMELIST inputs. The recalculated values are never carried forward to subsequent cases. Consequently, the recalculation procedure is performed at the start of each and every case in the sweep using the current values of baseline and store weight, cg, and inertias, i.e., XFS(1), XFS(5) through XFS(11), XSTl(1) through $\operatorname{XSTL}(4)$, and XST1(8) through XST1(11).

If $\operatorname{XSTl}(1)<0$, the subgroup is defined to be an aerodynamic brake. A brake is assumed to be an integral part of the airframe with its weight and inertias included in the inputs to the Fuselage Group. Aircraft weight, cg , and inertias are not recalculated.

In the mancuver section, only store subgroups can be dropped ( $\mathrm{J}=35$ ), and only brake subgroups can be deployed ( $\mathrm{J}=34$ ). J -Card inputs which command otherwisc, i.e., drop a brake or deploy a store, will terminate execution.

The aerodynamic forces of both stores and brakes act at the center of pressure. The cp is assumed to be at the same buttline and waterline as the store/brake cg. The cp stationline is calculated by

$$
(\mathrm{SL})_{c p}=\operatorname{xstl}(2)+\operatorname{xstl}(5)+\operatorname{xstl}(6) * \sin ^{2} \alpha_{s c}
$$

The dynamic pressure loss ratio, XSTI(7), is the ratio of local dynamic pressure loss at the store/brake to free-stream dynamic pressure neglecting
rotor downwash. An input of zero indicates that the total free-stream dynamic pressure acts at the store/brake.

The inertias are those of the store about its own cg and are not to be included in the inertias in the Fuselage Group.

CARD 121B
Induced velocity factor is the fraction of the induced velocity at the rotor disc which acts at the store/brake c.p. With no interference and a fully developed downwash, this factor would theoretically be 2.0. In practice, it would be less than 2.0 due to interference effects, nonuniform downwash, and the rotor wake not being fully contracted.

The lift, drag and side forces calculated are each multiplied by XST1(14)/ 100 to simulate aerodynamic brake deployment. If XST1(1) indicates that a store is to be simulated, XST1(14) is reset to $100 \%$.

CARD 121 C
The wind axis aerodynamic forces on the store/brake are calculated from the following equations. These forces are separate aerudynamic forces and are not included in the forces generated by any other group (component of the aircraft).

$$
\begin{aligned}
& \text { Lift }=q_{s}\left[\operatorname{XSTl}(15) * \cos \psi_{s}+X S T l(16) * \sin \left(2 \theta_{s}\right) * \cos \psi_{s}\right] \\
& \operatorname{Drag}=q_{s}\left[X S T 1(17) *\left(\cos ^{2} \psi_{s}\right) *\left(\cos ^{2} \theta_{s}\right)+X S T L(18) * \sin ^{2} \psi_{s}\right. \\
& \left.+\operatorname{XSTl}(19) *\left(\cos ^{2} \psi_{s}\right) *\left(\sin ^{2} \theta_{s}\right)\right] \\
& \text { Side Force }=q_{s}\left[X S T 1(20) * \cos ^{2} \theta_{s}+X S T 1(21) * \sin \left(2 \psi_{s}\right) * \cos ^{2} \theta_{s}\right] \\
& \text { where } V_{s}=\sqrt{1-X S T 1(7)} * V_{\text {free stream }}+X S T 1(12) *\left(\bar{V}_{i}\right)_{M / R} \\
& +\operatorname{XSTL}(13) *\left(\bar{V}_{1}\right)_{T / R} \\
& q_{s}=0.5 \rho * V_{s}^{2} * \operatorname{XSTI}(14) / 100 \\
& \theta_{s}=\tan ^{-1}\left(w_{s} / u_{s}\right) \\
& \psi_{s}=-\sin ^{-1}\left(v_{s} / v_{s}\right) \\
& \alpha_{s c}=\sin ^{-1}\left(u_{s} / v_{s}\right)
\end{aligned}
$$

```
us = body axis x component of }\mp@subsup{|}{s}{}\mathrm{ at store/brake
v}=\mp@code{body axis y component of }\mp@subsup{v}{s}{}\mathrm{ at store/brake
\mp@subsup{W}{s}{}}=\mathrm{ body axis z component of }\mp@subsup{V}{S}{}\mathrm{ at store/brake
\mp@subsup{V}{i}{}}=\mathrm{ average induced velocity at disc of specified rotor
```


### 3.11.2 Store/Brake No. 2 (include only if IPL(12) $\geq 2$ )

CARDS 122A, 222 B , and 122 C contain the inputs for Store/Brake No. 2. Refer to the section on Store/Brake No. 1, and substitute XST2(I) for XST1(I).
3.11.3 Store/Brake No. 3 (include only if $\operatorname{IPL}(12) \geq 3$ )

CARDS 123A, 123B, and $123 C$ contain the inputs for Storejbrake No. 3. Refer to the section on Store Brake No. 1, and substitute XST3(I) for XST1(I).
3.11.4 Store/Brake No. 4 (include only if $\operatorname{IPL}(12)=4$ )

CARDS 124A, 124 B , and 124 C contain the inputs for Store/Brake No. 4. Refer to the section on Store/Brake No. l, and substitute XST4(I) for XST1(I).

### 3.12 ROTOR CONTROLS GROUP

The Controls Group is divided into two subgroups: Basic and Supplemental. The Basic Rotor Controls subgroup is a required input. The reading of the Supplemental Rotor Controls subgroup is controlled by IPL(13). This optional subgroup is only necessary input for tandem and side-by-side rotor configurations although it can also be used to simulate very complex contri, systems for single main rotor helicopters. Figure 3-11 is a schematic diagram of the complete AGAJ73 rotor control system. The Controls Group defines the linkages between the pilot controls and rotors for a rigid pylon, no collective bobweight, and SCAS off, i.e., the blocks labelled "BASIC RIGGING", "NONLINEAR RIGGING", and "CONTROL COUPLING/ MIXING BOX" in Figure 3-11. The outputs of the rotor controls mathematical model are the root collective blade angle and swashplate angles of each rotor.

The models for the rotor controls, pylon coupling bobweight, and SCAS are mutually independent. That is, the value of any output of any one model does not affect the value of the outputs of any other model. The outputs of the last three models are treated as increments which are added to the appropriate output of the rotor controls model.

### 3.12.1 Basic Rotor Controls Subgroup

The inputs on CARDS 131 through 134 are termed the Basic Rotor Control, or XCON, inputs. These inputs define the basic linkages between each of the four primary flight controls (collective, $F / A$ cyclic and lateral cyclic sticks, and pedal position) and control angles. All linkages are linear and uncoupled and are normally the only Rotor Controls Group inputs needed for a single-main-rotor helicopter. With these linkages the collective stick controls only the root collective pitch of the main rotor (Rotor 1); the $F / A$ cyclic stick controls only the $F / A$ swashplate and the lateral cyclic only the lateral swashplate of the main rotor; and the pedals control only the root collective pitch of the tail rotor (Rotor 2 ). The cyclic pitch on the tail rotor is defined to be zero.

The equations for the control angles computed from the XCON inputs are given in Table 3-11. Note that the fourth input on each of the four cards can be used to lock the appropriate control angle at the value of the fifth input on the same card.

The sixth input on each card is the linkage between the specified control and jet thrust. The equations for the individual increments to the jet thrust and the total jet thrust are also given in Table 3-11. The jet to which the controls are linked is a function of XJET(1) in the Jet Group. Also, the increment to jet thrust is proportional to the difference between the control position input to the Filght Constants Group and the current control position during the trim iterations or maneuver time history. That is, the change in jet thrust is propertional to a change in control position, not the absolute value of that control position.

## TABLE 3-11. BASIC ROTOR CONTROL RIGGING

$$
\begin{aligned}
& \text { Rotor } 2 \quad\left(\theta_{0}\right)_{2}= \begin{cases}X \operatorname{CON}(23)+X \operatorname{CON}(24) * \delta_{P E D} / 100 \text { if } X C O N(25)=0 \\
X C O N(26) & \text { if } X C O N(25) \neq 0\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& T_{J E T}=\left(T_{J E T}\right)_{\text {INPUT }}+\sum_{i=1}^{4}\left(\Delta T_{J E T}\right)_{i}
\end{aligned}
$$

${ }^{\delta}$ COLL $=$ Collective stick position in percent from full down
$\delta_{F / A}=F / A$ cyclic stick position in percent from full aft
$\delta_{\text {LAT }}=$ Lateral cyclic stick position in percent from full left
$\delta_{\text {ped }}=$ Pedal position in percent from full right
$\mathrm{XFC}(8)=$ Input value of ${ }^{\delta} \mathrm{COLL}$ (\%)
XFC(9) = Input value of $\delta_{F / A}$ (\%)
$\operatorname{XFC}(10)=$ Input value of $\delta_{\text {LAT }}$ (\%)
XFC(12) $=$ Input value of $\delta_{\text {PED }}$ (\%)
(T JET) INPUT $=\begin{aligned} & \text { Thrust of controllable jet(s), XJET(2) and/or } \\ & \text { XJET(3) }\end{aligned}$


Figure 3-11. Schematic Diagram of Rotor Control System.



## Nomenclature

Rotor 1
(Main, Right, or Forward Rotor)

$$
\left(\theta_{p}\right)_{1}
$$

Rotor 2
(Tail,
Left, or Aft Rotor)
$X_{1}, X_{2}, X_{3}$, and $X_{4}$ are respectively the intermediate collective, $F / A$, lateral and pedal control angles.

Q Stability atid Control Augmentation System input points. $\mathrm{P}=$ Pitch SCAS; $\mathrm{R}=$ Roll SCAS; $\mathrm{Y}=$ Yaw SCAS.
$\left(a_{F}\right)_{i}$ and $\left(a_{L}\right)_{i}$ are the angular displacements of the $F / A$ and lateral pylon respectively of the $i{ }^{\text {th }}$ rotor (i = 1 or 2 ).
$\left(\theta_{0}\right)_{i}$ is the root collective pitch angle (in the rotating system) for the $i^{\text {th }}$ rotor.
$\left(B_{1}\right)_{i}$ and $\left(A_{1}\right)_{i}$ are respectively the $F / A$ and lateral swashplate angles (nonrotating system) for the $i^{\text {th }}$ rotor.

The switches $(\rightarrow$ ) near the Cyclic Mixing Block indicate the point at which control angles may be defined directly rather than by the control system.
$\left(\theta_{f}\right)_{i}$ is the feathering angle (in the rotating system) of the blade root as a function of blade azimuth for the $\mathrm{i}^{\text {th }}$ rotor.
$\left(\theta_{t w}\right)_{i}$ is the twist angle (in the rotating system) from the blade root to the appropriate blade station and azimuth for the $i^{\text {th }}$ rotor.
$\left(\theta_{p}\right)_{i}=\left(\theta_{o}\right)_{i}+\left(\theta_{f}\right)_{i}+\left(\theta_{t w}\right)_{i}$ and is the total pitch angle at the appropriate blade station azimuth for the $i^{\text {th }}$ rotor.

The primes (') on the collective pitch and swashplate angles indicate the output of the Control Coupling/ Mixing Box (i.e., the angles before SCAS, bobweight, and pylon inputs are included).

$$
3-105
$$

### 3.12.2 Supplemental Rotor Controls Subgroup: XCRT(1-28), omit if $\operatorname{IPL}(13)=0$

The inputs to this subgroup are primarily intended to provide control linkages used in configurations other than single-main-rotor helicopters, e.g., tandem or side-by-side rotor helicopters and tilt rotor or composite aircraft. If the program decides that the configuration is not a single-main-rotor helicopter (KONFIG $\neq 1$, see Section 3.26 .1 ), an error message will be generated if XCRT inputs are not included.

The linkages defined in the Basic Controls subgroup are a subset of the complete rotor control system model shown in Figure 3-11. To use the complete model, both the Basic and Supplemental Rotor Controls subgroups must be input.

In the Basic Controls subgroup discussed in the previous section, each primary flight control is linked linearly to a single blade or swashplate angle. In the complete model described below, each control is linked to a single intermediate control angle. The linkage may be linear, parabolic, or cubic, and in the case of the collective stick the linkage can be a function of the F/A mast tilt angle of Rotor 1 . Then each intermediate control angle is in turn linked to between 2 and 6 specific blade or swashplate angles. These linkages are linear but can be functions of the $\mathrm{F} / \mathrm{A}$ mast tilt angle of Rotor 1.

If $\operatorname{XCRT}(15)=0$, no control linkages will change with $F / A$ mast tilt angle. If $\operatorname{XCRT}(15) \neq 0$, specified linkages will change with mast tilt. The value of XCRT(15) will determinc the value of certain variables used in the control system model as shown in Table 3-1.2.

The following physical interpretations can be applied to the variables in Table 3-12. DTMIN is the change in the minimum value of Rotor 1 collective pitch, XCON(2), with mast tilt. SBETA, CBETA, C19, and S20 are sinusoidal functions of mast tilt used to phase control linkages in or out.

The control linkages defined by XCRT(1) through XCRT(14) on CARDS 135 and 136 are in units of degrees of blade pitch or swashplate angle per degree of intermediate control angle. The controlled angle, controlling angle and most common use of each linkage are described in Table 3-13.

The program then uses the XCON inputs and XCRT(22) through (28) to compute the intermediate control angles ( $X_{1}, X_{2}, X_{3}$, and $X_{4}$ ) as shown in Table 3-14. The first two terms in each equation correspond to the blocks labeled "BASIC RTCCING" in Figure 3-11. The third term in the equation for $X_{1}$ and the third and fourth terms in the equations for $X_{2}, X_{3}$, and $X_{4}$ correspond to the blocks labeled "NONLINEAR RIGGING" in Figure 3-11.

## Preceding pase llank

table 3-12. DEFINITIONS OF CONTROL SYSTEM VARIABLES

Variable	$\operatorname{XCRT}(15) \neq 0$	if $\operatorname{XCRT}(15)=0$
DTMIN	XCRT $(16) * \beta_{M}+\operatorname{XCRT}(17) * \beta_{M}^{2}$	0.0
DTRNG	$[\operatorname{XCRT}(18)-\mathrm{XCON}(3)] * \beta_{M} /(\pi / 2)$	0.0
SBETA or SB	$\sin _{M}$	1.0
CBETA or CB	$\cos ^{M}$	1.0
C19	$\cos \left[\operatorname{XCRT}(19) \times \beta_{M}\right]$	1.0
S20	$\sin \left[\operatorname{XCRT}(20) * \beta_{M}+\operatorname{XCRT}(21)\right]$	1.0
$\beta_{M}=F / A$ mast tilt of Rotor 1 degrees.		

TABLE 3-13. CONTROL COUPLING LINKAGES

Input   XCRT	Controlled Angle	Controlling Angle   (Intermediate Control Angle)	Primary   Use
$(1)$	Rotor 2 Collective	$\mathrm{X}_{1}$	$\mathrm{~T}, \mathrm{C}$
$(2)$	Rotor 1 Collective	$\mathrm{X}_{2}$	T
$(3)$	Rotor 2 Collective	$\mathrm{X}_{2}$	T
$(4)$	Rotor 2 F/A Cyclic	$\mathrm{X}_{2}$	$\mathrm{~T}, \mathrm{C}$
$(5)$	Rotor 1 Collective	$\mathrm{X}_{3}$	C
$(6)$	Rotor 2 Collective	$\mathrm{X}_{3}$	C
$(7)$	Rotor 1 F/A Cyclic	$\mathrm{X}_{3}$	C
$(8)$	Rotor 2 F/A Cyclic	$\mathrm{X}_{3}$	C
$(9)$	Rotor 2 Lateral Cyclic	$\mathrm{X}_{3}$	$\mathrm{~T}, \mathrm{C}$
$(10)$	Rotor 1 Collective	$\mathrm{X}_{4}$	C
$(11)$	Rotor 1 F/A Cyclic	$\mathrm{X}_{4}$	C
$(12)$	Rotor 2 F/A Cyclic	$\mathrm{X}_{4}$	C
$(13)$	Rotor 1 Lateral Cyclic	$\mathrm{X}_{4}$	T
$(14)$	Rotor 2 Lateral Cyclic	$\mathrm{X}_{4}$	T
	C = composite (tilt-rotur) or co-axial configuration		


Collective	
$x_{1}=[\operatorname{XCON}(2)+\operatorname{DTMIN}]+\left[\operatorname{xCON}(3)+\text { DTRNG }^{2}{ }^{\text {COLL }}{ }^{\prime} 100+X \operatorname{CRT}(22) * \mathrm{~K}_{1}{ }^{2}\right.$	
$x_{2}=X \operatorname{CON}(9)+X \operatorname{CON}(10) * \delta_{F / A} / 100+X \operatorname{CRT}(23) * K_{2}{ }^{2}+X \operatorname{CRT}(24) * K_{2}^{3}$	
$X_{3}=X \operatorname{CON}(16)+X \operatorname{CON}(17) * \delta_{L A T} / 100+X \operatorname{CRT}(25) * K_{3}^{2}+X C R T(26) * K_{3}^{3}$	
$X_{4}=X \operatorname{CON}(23)+X \operatorname{CON}(24) * \delta_{P E D} / 100+X \operatorname{CRT}(27) * K_{4}^{2}+X C R T(28) * K_{4}^{3}$	
$\begin{aligned} & K_{1}=\left(\delta_{C O L L}-50\right) * X \operatorname{CON}(1) / 100 \\ & K_{2}=\left(\delta_{F / A}-50\right) * X \operatorname{CON}(8) / 100 \\ & K_{3}=\left(\delta_{\text {LAT }}-50\right) * X \operatorname{CON}(15) / 100 \\ & K_{4}=\left(\delta_{\text {PED }}-50\right) * X \operatorname{CON}(22) / 100 \end{aligned}$	Control deflections in inches from the 50\% position

The collective pitch and swashplate angles for each rotor are computed from the equations shown in Table 3-15. These equations use the information from Tables 3-11, 3-12, and 3-14 and inputs from bobweight, pylon, and SCAS. The increments to the angles due to bobweight, pylon, and SCAS are represented by $\left(\Delta \theta_{0}\right)_{1},\left(\Delta \theta_{0}\right)_{2},\left(\Delta B_{1}\right)_{1}$, etc., in Table 3-15. Excluding these increments and the control locks, Table 3-15 corresponds to the block labeled "CONTROL COUPLING/MIXING BOX" shown in Figure 3-11 and detailed in Figure 3-12.

If certain XCON inputs and one of the XCRT inputs are input as zero, they are reset by the program during initialization. See Table 3-16 for a list of these inputs and their reset values.


Figure 3-12. Schematic Diagram of Control Coupling/Mixing Box.

## Collective Pitch

F/A Cyclic Pitch

$$
\left.\left(B_{1}\right)_{1}=\left\{\begin{array}{ll}
x_{2} * \operatorname{CBETA}+\mathrm{X}_{3} * \operatorname{XCRT}(7) * \operatorname{SBETA} & \\
+\mathrm{x}_{4} * \operatorname{XCRT}(11) * \operatorname{CBETA}+\left(\Delta B_{1}\right)_{1}
\end{array}\right\} \quad \text { if } \mathrm{XCON}(11)=0\right\}
$$

$$
\left(B_{1}\right)_{2}=\left\{\begin{array}{ll}
x_{2} * \operatorname{XCRT}(4) * \operatorname{CBETA}+\mathrm{X}_{3} * \mathrm{XCRT}(8) * \operatorname{SBETA} \\
\quad+\mathrm{X}_{4} * \operatorname{XCRT}(12) * \operatorname{CBETA}+\left(\Delta \mathrm{B}_{1}\right)_{1}
\end{array}\right\} \quad \text { if } \mathrm{XCON}(11)=0
$$

Lateral Cyclic Pitch
$\left(A_{1}\right)_{1}= \begin{cases}X_{3} * \operatorname{CBETA}+X_{4} * \operatorname{XCRT}(13)+\left(\Delta A_{1}\right)_{2} & \text { if } \operatorname{XCON}(18)=0 \\ X \operatorname{XCON}(19) & \text { if } \operatorname{XCON}(18) \neq 0\end{cases}$
$\left(A_{1}\right)_{2}= \begin{cases}X_{3} * \operatorname{XCRT}(9) * \operatorname{CBETA}+X_{4} * X C R T(14)+\left(\Delta A_{1}\right)_{2} & \text { if } \operatorname{XCON}(18)=0 \\ -X \operatorname{XCON}(19) * T R I N D & \text { if } \operatorname{XCON}(18) \neq 0\end{cases}$
Increments Due to Pylon, SCAS, and Bobweight
$\left(\Delta \epsilon_{0}\right)_{1}=\operatorname{XMP}(7) * a_{F 1}+\operatorname{XMP}(14) * a_{L 1}+\left(\Delta g_{0}\right)_{B W}$
$\left(\Delta \theta_{0}\right)_{2}=\operatorname{XTP}(7) * a_{F 2}+\operatorname{XTP}(14) * a_{L 2}+\operatorname{TRIND*}\left(\Delta \theta_{0}\right)_{B W}+\left(\Delta \theta_{0}\right)_{S C A S}$
$\left(\Delta B_{1}\right)_{1}=\operatorname{XMP}(5) * a_{F 1}+\operatorname{XMP}(12) * a_{L 1}+\left(\Delta B_{1}\right)_{S C A S}$
$\left(\Delta B_{1}\right)_{2}=\operatorname{XTP}(5) * a_{F 2}+\operatorname{XTP}(12) * a_{L 2}$

$$
\begin{aligned}
& \left(\theta_{0}\right)_{1}=\left\{\begin{array}{ll}
x_{1}+x_{2} * \operatorname{XCRT}(2) * \operatorname{CBETA}+x_{3} * X C R T(5) * C 19 \\
& +x_{4} * \operatorname{XCRT}(10) * S 20+\left(\Delta \theta_{0}\right)_{1}
\end{array}\right\} \text { if } \operatorname{XCON(4)=0}
\end{aligned}
$$

Increments Due to Pylon, SCAS, and Bobweight (Cont'd)
$\left(\Delta A_{1}\right)_{1}=\operatorname{XMP}(6) * a_{F 1}+\operatorname{XMP}(13) *_{L 1}+\left(\Delta A_{1}\right)_{S C A S}$
$\left(\Delta A_{1}\right)_{2}=\operatorname{XTP}(6){ }^{\left(a a_{F 2}\right.}+\operatorname{XTP}(13) * a_{L 2}$
$X_{1}, X_{2}, X_{3}$, and $X_{4}$ are the intermediate control angles defined in Table 3-14.
$B_{1}$ is $F / A$ swashplate tilt angle.
$A_{1}$ is lateral swashplate tilt angle.
(...) $)_{1}$ indicates main rotor, i.e., Rotor 1.
(...) $)_{2}$ indicates tail rotor, i.e., Rotor 2.

XMP and XTP are the pylon inputs on CARDS $48,49,58$, and 59.
$a_{F i}$ and $a_{i}$ are the $F / A$ and lateral displacements of the pylon for the
rotor.
$\operatorname{TRIND}=\left\{\begin{array}{ll}0.0 \mathrm{if}|\operatorname{XTR}(45)| \geq 45^{\circ} \\ 1.0 \mathrm{if}|\mathrm{XTR}(45)|<45^{\circ}\end{array} \quad \mathrm{R2L}= \begin{cases}1.0 & \text { if KONFIG }=1 \\ 0.0 & \text { if KONFIG }=2 \\ -\operatorname{XCRT}(1) * S 20 & \text { if KONFIG }=3\end{cases}\right.$

See Section 3.26.1 for discussion of KONFIG.
TABLE 3-16. RESET VALUES FOR CONTROL INPUTS

Input	$\begin{aligned} & \text { Reset } \\ & \text { Value } \end{aligned}$	Input Description	Units
XCON(1)	100.	Collective stick range	(inches)
XCON(3)	100.	Rotor 1 collective range	(degrees)
$\mathrm{XCON}(8)$	100.	F/A cyclic stick range	(inches)
XCON(9)	-50.	Rotor 1 minimum F/A cyclic	(degrees)
$\mathrm{XCON}(10)$	100.	Rotor $1 \mathrm{~F} / \mathrm{A}$ cyclic range	(degrees)
XCON(15)	100.	Lateral cyclic stick range	(inches)
XCON(16)	-50.	Rotor 1 minimum lateral cyclic	(degrees)
XCON(17)	100.	Rotor 1 lateral cyclic range	(degrees)
$\mathrm{x} \cos (22)$	100.	Pedal position range	(inches)
XCON(23)	-50.	Rotor 2 minimum collective pitch	(degrees)
XCON(24)	100.	Rotor 2 collective pitch range	(degrees)
XCRT(18)	100.	Rotor 1 collective pitch range at $\beta_{M}=90$	(degrees)

All other XCON and XCRT parameters are used as input.

### 3.13 ITERATION LOGIC GROUP

CARD 141
The program is permitted up to XIT(1) iterations to converge to a trimmed flight condition. If the force and moment summations are not less than the allowable errors, XIT(15) through XIT(21), execution terminates.

If the time-variant trim option is activated (IPL(21) $\neq 0$ ), the increment between the rotor azimuth angles used in the analysis may be input in XIT(2). If the input is 0.0 , XIT(2) is reset to 15.0 degrees. If the input is not zero, the program examines the natural frequencies of the modes of both rotors. It then checks that the value of XIT(2) will provide at least 10 points for each cycle of the highest frequency present and, if necessary, resets XIT(2) to satisfy this condition. The value of XIT(2) is then checked to see if it is less than 0.5 degree or greater than 30.0 degrees. If it is, $\operatorname{XIT}(2)$ is then reset to the nearer value. If either of the unsteady aerodynamic options is activated ( $\operatorname{IPL}(20) \neq 0$ ), XIT(2) should be less than about 10 degrees for the numerical differentiation to work properly. See Section 3.20 for additional discussion of azimuth increments.

XIT(3) is the induced velocity change limiter. It is equal to thalf the maximum amount the induced velocity is allowed to change within iterations in TRIM and between time points in maneuver. Three thrust-induced velocity iterations are made within each trim iteration in the TRIM portion of the program. The sign of XIT(3) controls the application of the limiter in these thrust-induced velocity iterations, and the absolute value of XIT(3) is the maximum change allowed. If $\operatorname{XIT}(3)>0.0$, the limiter is active only during the first and third passes through this loop. If XIT(3) $<0.0$, the limiter is active during all three passes. If XIT(3) $=0.0$, it is reset to $0.5 \mathrm{ft} / \mathrm{sec}$. Note that the input sign of XIT(3) controls only the manner in which the limit is applied. The sign of the limit applied within the program is determined by the program. This option allows the user to better regulate the numerical bounce problem sometimes encountered when performing a TRIM.

XIT(4) is a nondimensional factor used to compute the increments to the linear and angular velocities to be used in the STAB subroutine. The angular rate increments are 0.10 radian per second times the input, and the linear rate increments are 10 feet per second times the input.

CARD 142
The partial derivative increment for TRIM is computed from the correction limit. XIT(8) through (11) define variable dampers for balancing the rotor flapping moments in the rotor analysis. The starting value for the correction limit is computed from the minimum value input.

XIT(12), (13), and (14) are the inputs for a variable damping procedure in TRIM. At each iteration, a delta is computed for each of the 10 trim
variables. These deltas are then compared to a correction limit. If any of the deltas are larger than the limit, they are ratioed down such that the largest one is equal to the limit. The starting value of the limit is input as XIT(12). If at the start of any iteration the force and moment errors are all less in absolute value than XIT(14), then the limit is halved with the restriction that the limit is never less than XIT(13). If XIT(12) $<0.5$ degrees or $>10$ degrees, the program resets it to 05 degise. If XIT(14) < 40*XIT(15), the program resets it to 40*XIT(15).

CARD 143
XIT(15) through XIT(21), the allowable errors, are the maximum magnitudes of the force and moment imbalances permitted for a trimmed flight condition. That is, the trim iteration procedure continues until XIT(1) iterations are exceeded, or the absolute values of force and moment imbalances are less than the corresponding allowable errors. The smaller the allowable errors, the larger the number of iterations required for trim.

A good method for determining the values to be input to XIT(15) through XIT(21) is as follows. Define the maximum levels of

1) the three linear accelerations at the $c g$ ( $a_{x}, a_{y}, a_{z}$ ),
2) the three angular accelerations about the $c g(p, q, r)$, and
3) the flapping acceleration of each ( $\ddot{\boldsymbol{\beta}}_{M / R}, \ddot{\boldsymbol{\beta}}_{T / R}$ )
at which the particular flight condition can be considered to be trimmed.
With these maximum desirable accelerations in units of $\mathrm{ft} / \mathrm{sec}^{2}$ and deg/sec ${ }^{2}$, reasonable values for the allowable errors are then

$$
\begin{aligned}
& \operatorname{XIT}(15) \leq\left(a_{x}\right) * \operatorname{XFS}(1) / 32.17 \\
& \operatorname{XIT}(16) \leq\left(a_{y}\right) * \operatorname{XFS}(1) / 32.17 \\
& \operatorname{XIT}(17) \leq\left(\mathrm{a}_{\mathrm{z}}\right) * \operatorname{XFS}(1) / 32.17 \\
& \operatorname{XIT}(18) \leq\left(\mathrm{a}_{\mathrm{a}}\right) \star \operatorname{XFS}(9) / 57.3 \text { and } \leq(\mathrm{r}) * \operatorname{XFS}(10) / 57.3 \\
& \operatorname{XIT}(19) \leq(\mathrm{p}) * \operatorname{XFS}(8) / 57.3 \\
& \operatorname{XIT}(20) \leq\left(\ddot{\beta}_{M / R}\right) *(\text { total } M / R \text { flapping inertia }) / 57.3 \\
& \operatorname{XIT}(21) \leq\left(\ddot{\beta}_{T / R}\right) *(\text { total } T / R \text { flapping inertia }) / 57.3
\end{aligned}
$$

For wind tunnel simulations ( $\operatorname{IPL}(1), \operatorname{IPL}(23)$, or $\operatorname{IPL}(24) \neq 0)$, the first five allowable error inputs should be very large, e.g., 100,000 or more, while the last two should be realistic error limits. This action prevents the program from continuing to iterate to forces and moments about the cg which are less than the allowable errors when the only requirement is that the rotor flapping moment imbalance be within the specified error limits.

### 3.14 FLIGHT CONSTANTS GROUP

CARD 151
The input velocities are with respect to the ground. The forward velocity is not necessarily the total velocity.

Altitude is the height above ground. It is used in the calculations for ground effect. If altitude is negative, the program stops. This input has no relationship to the pressure altitude, XFS(27); see CARD 154.

The Euler angles are the angles from the ground coordinate system to the body coordinate system. Yaw is positive nose right; pitch is positive nose up; roll is positive down right.

CARD 152
The collective and cycilc stick and pedal positions are the initial settings on which the program. begins its TRIM iterations.

The g level, XFC(12), is the acceleration in g's along the body Z-axis. (See TRIM type indicator, IPL(15) on CARD 07).

CARD 153

The flapping angles and rotor thrust inputs are used as initial values in TRIM iteration procedure.

CARD 154

If the sum of main rotor and tail rotor power required exceeds 0.9 times the maximum engine horsepower available, XFC(24), when the TRIM page is printed, a message will be printed to that effect, and execution will terminate. It is suggested that during preliminary design analysis with the program this input equal approximately 1.25 to 1.5 times the transmission power limit to avoid being terminated at high power conditions when the data may definitely be valid and of interest. The program does not establish a sink rate once XFC(24) horsepower is attained.

XFC(26), the atmospheric logic switch, is used in conjunction with the pressure altitude, XFC(27), and ambient temperature, XFC(28), to compute the density ratio, $\sigma^{\prime}$; density altitude, $h_{p}$; and speed of sound, $v_{s}$. If XFC(26) $=0$, standard day conditions are assumed, XFC(28) is ignored, and the parameters are calculated from the following equations:

$$
\begin{aligned}
& \theta_{S}=1-\left(.687535 \times 10^{-5}\right) \times \operatorname{XFC}(27) \\
& T_{A}=288.16 \theta_{S}-273.16
\end{aligned}
$$

$$
\begin{aligned}
& \sigma^{\prime}=\left(\theta_{S}\right)^{4.2561} \\
& v_{S}=65.811366 \sqrt{T_{A}+273.16} \\
& h_{D}=\operatorname{XFC}(27)
\end{aligned}
$$

If $\operatorname{XFC}(26) \neq 0$, non-standard-day conditions are assumed. If $\operatorname{XFC}(26)>0$, the ambient temperature is defined to be in degrees Fahrenheit and

$$
T_{A}=5[X F C(28)-32] / 9
$$

If $\mathrm{XFC}(26)<U$, then $\mathrm{XFC}(28)$ is defined to be in degrees Centigrade and

$$
T_{A}=\operatorname{XFC}(28)
$$

then

$$
\begin{aligned}
& \theta=\left(\partial_{S}\right)^{5.2561} \\
& \theta=\left(T_{A}+273.16\right) / 288.16 \\
& \sigma^{\prime}=\delta / \theta \\
& v_{S}=65.811366 \sqrt{T_{A}+273.16} \\
& h_{D}=\left(1-\left(\sigma^{\prime}\right)^{0.23496}\right) /\left(.687535 \times 10^{-5}\right)
\end{aligned}
$$

If the speed of sound and density ratio are the known quantities rather than pressure altitude and temperature, set XFC(26) to a negative number and compute $\operatorname{XFC}(27)$ and (28) from the following equations:

$$
\begin{aligned}
& \operatorname{XFC}(27)=145447.14\left[1-\left(\sigma^{\prime}\left[v_{s} / 65.811366\right]^{2} / 288.16\right)^{0.190255}\right] \\
& \operatorname{XFC}(28)=\left[v_{s} / 65.811366\right]^{2}-273.16
\end{aligned}
$$

NOTE: For TRIM or TRIM-STAS input decks (NPART = 1 or 7), CARD 154 must be the last card of the data set. A card with NPART = 10 is the only card which nay follow CARD 154 of a TRIM or TRIM-STAB data set.
3.15 BOBWEICHT GROUP (include only if NPART $=2$ or 4 and $\operatorname{IPL}(14) \neq 0$ )

CARD 201
For no bobweight, set $\mathrm{XBW}(1)=0$.
If $\operatorname{XBW}(1) \neq 0$, the following bobweight model is used.
The bobweight system acts to reduce collective pitch with increasing load factor during maneuvers. The system is assumed to be mounted so that the weight is free to translate only parallel to the body vertical, or 2 , axis. The equation of motion for the weight in the system is
$\frac{1}{12} m \ddot{\dot{b}}+C \dot{b}+K 6=F_{B W}$
where
$\delta=$ the linear displacement of the bobweight from its position at 1.0 g , positive down (in.)
$\dot{b}=$ linear velocity (in./sec)
ö = linear acceleration (in. $/ \sec ^{2}$ )
$F_{B W}=$ bobweight forcing function described below (1b)
$K=X B W(2)$, the spring constant (lb/in.)
$C=X B W(3)$, the damping coefficient (lb-sec/in.)
$W=X B W(4)$, the weight of the bobweight (Ib)
$m=W / 32.17$, the mass of the bobweight (slugs)
Other symbols used are
$n_{p}=\operatorname{XBW}(7)$, the system preload (g)
n = load factor ( g )
$\Delta \theta_{0}=\begin{aligned} & \text { increment to collective pitch due to bobweight } \\ & \text { displacement (deg) }\end{aligned}$
$\eta=\operatorname{XBW}(1)$, linkage of 6 to $\Delta \theta_{0}(\mathrm{deg} / \mathrm{in})$
The forcing function is defined as function of $W, n$, and $n_{p}$ at each time point during the maneuver. At time $t=0$,

$$
\ddot{\phi}=\dot{\phi}=\delta=0.0
$$

and

$$
F_{B W}=\operatorname{Max}\left[0, W\left(n-n_{p}\right)\right]
$$

NOTE: The bobweight is not active during the trim procedure. Hence, if a maneuver is started from a trim where $n$ is greater than $n_{p}$, collective stick position (and possibly other control positions if control coupling is present) will not be correct. Since maneuvers are normally started from 1.0 g flight and the preload is greater than 1.0 , this should not create a problem.

At the first time point where $n$ exceeds $n_{p}$, whether at or following the start of the maneuver, the forcing function is defined there and at subsequent time points as

$$
F_{B W}=W\left(n-n_{p}\right)
$$

That is, once $n$ exceeds $n_{p}$, the forcing function can be negative if $n$ later drops below $n_{p}$. This definition of $F_{B W}$ applies as long as

$$
\delta>0.0 \text { or } \ddot{\theta} \geq 0.0
$$

at each subsequent time point.
If at any time point the computations yield $\delta \leq 0.0$ and $\ddot{8}<0.0$, the bobweight parameters for the next time point are reinitialized to

$$
\ddot{\theta}=\dot{b}=0=0
$$

and

$$
F_{B W}=\operatorname{Max}\left[0, W\left(n-n_{p}\right)\right]
$$

i.e., the same values as at $t=0$. Subsequent computations proceed as from $t=0$.

The increment added to collective pitch is then

$$
\Delta \theta_{0}=-\eta \delta
$$

i.e., positive bobweight displacement and positive linkage reduces collective pitch. This increment is always added to the main rotor collective. If the tail rotor (Rotor 2) lateral mast tilt angle, XTR(45), is less than 45 degrees, the increment is also added to the Rotor 2 collective pitch.
3.16 WEAPONS GROUP (include only if NPART $=2$ or 4 and IPL(14) 0 )

## CARD 211

Stationline, buttline and waterline are used to locate the point of application of the recoll force of the weapon.

Azimuth and elevation define the orientation of the weapon with respect to the fuselage. Positive azimuth is to the right; positive elevation is up. With both angles zero, the weapon is alined parallel to the body X -axis and is defined to be firing positive X -directional (forward).

The recoil force is prescribed on a 311-type card. See Section 3.21.2.10, $J=16$. For a weapon firing in the direction prescribed by the orientation angles, the sign of the recoil force should normally be negative (i.e., opposite to the direction of firing).

### 3.17 SCAS GROUP (include only if NPART $=2$ or 4 and $\operatorname{IPL}(14) \neq 0$ )

The Stability and Control Augmentation System (SCAS) is programmed to simulate an actual hardware system which provides improved stability and response to pilot inputs. The system block diagram is shown below:

where

$$
\begin{aligned}
& B=\begin{array}{l}
\text { control input (equal to appropriate output of Control Coupling/ } \\
\\
\text { Mixing Box; see Figures 3-11 and 3-12) } \\
B_{G}=\text { SCAS feedforward added to pilot input to offset feedback } \\
B_{H}=\text { SCAS feedback dependent on ship response } \\
S M=B+B_{G}-B_{H}=\text { Total control input } \\
G_{P}=\text { feedforward transfer function } \\
H=\text { feedback transfer function } \\
\theta=\text { ship response variable (roll, pitch, or yaw); dots } \\
\theta=\text { indicate time derivatives }
\end{array}
\end{aligned}
$$

The feedback transfer function has the following form:

$$
H=\frac{B_{H}}{\theta}=\frac{K_{H} s\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)}{\left(\tau_{3} s+1\right)\left(\tau_{4} s+1\right)\left(\tau_{5} s+1\right)}
$$

where

$$
\begin{aligned}
s= & \text { LaPlace Transform Operator } d \text { and the other variables } \\
& \text { are defined in terms of the inputs in Section } 2.17 .
\end{aligned}
$$

The feedforward transfer function has the following form:

$$
G_{P}=\frac{B_{G}}{B}=\frac{K_{G} s}{\left(\tau_{3} s+1\right)\left(\tau_{4} s+1\right)\left(\tau_{5} s+1\right)}
$$

In the program, these equations are written and solved in the form of defferential equations:

$$
\begin{aligned}
& C_{1} \dddot{B}_{H}+C_{2} \ddot{B}_{H}+C_{3} \dot{B}_{H}+B_{H}=C_{4} \ddot{\theta}^{\prime}+C_{5} \ddot{\theta}^{2}+K_{H} \dot{\theta} \\
& C_{1} \dddot{B}_{G}+C_{2} \ddot{B}_{G}+C_{3} \dot{B}_{G}+B_{G}=K_{G} \dot{B}
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{1}=T_{3} T_{4} \tau_{5} \\
& C_{2}=T_{3} T_{4}+T_{4} T_{5}+T_{3} \tau_{5} \\
& C_{3}=T_{3}+T_{4}+T_{5} \\
& C_{4}=T_{1} T_{2} K_{H} \\
& C_{5}=\left(T_{1}+T_{2}\right) K_{H}
\end{aligned}
$$

The variables used in the general equations above are defined in terms of the input variables for the three SCAS channels in the table below.


The SCAS has three independent channels for roll, pitch, and yaw. See Section 3.21, Variations from Trimmed Flight, $J=24,25$, and 26 for procedure to activate the system.

The maximum change which the roll channel of the SCAS may make is $\pm$ XSCAS (22) percent of the full range of the lateral cyclic. The maximum authorities in pitch and yaw are similarly defined.

The dead bands on the moment derivatives are used to nega the numerical noise which may be generated in the numerical differentiation process necesseiy co obtain these quantities. A value of 100 has been satisfactory for those cases run to date.

The inputs to this group (the TSTAB array) specify the points during a maneuver where a stability analysis is to be performed. This stability analysis is the same as that performed after TRIM when NPART $=7$ or when NPART $=10$ and $\operatorname{NVARC}=1$.

The sign of each TSTAB input determines the units assigned to it. If the input is positive, its value is assumed to be time in seconds. If the input is negative, its absolute value is assumed to be the total azimuth angle of Blade 1 of the main rotor in degrees. This total azimuth angle is defined as zero degrees (blade parallel to the tall boom, pointing aft) at maneuver time zero, and increases by 360 degrees for each complete rotor revolution. It is not necessary that the inputs be all positive (seconds) or all negative (degrees). However, it is mandatory that each TSTAB input specify a point in the maneuver which occurs after the point specified by the preceding TSTAB Input. Hence, to avoid input errors, it is suggested that all inputs be in consistent units, particularly if the maneuver involves a change in rotor rpm.

It is emphasized that total azimuth angles are referenced to time zero. Hence, angles in the second rotor revolution are between 360 and 720 (inputs of -360.0 to $\mathbf{- 7 2 0 . 0}$ ); an input of $\mathbf{- 9 0 . 0}$ will only generate a stability analysis luring the first rotor revolution.

```
NOTE: If the time-variant rotor analysis is activated
 (IPL(21) \(\neq 0\)), stability analyses cannot be
 performed, and TSTAB(1) must consequently specify
 a time or azimuth angle which occurs after the
 end of the maneuver. A value of 9999. (seconds)
 for TSTAB(1) is suggested in this case.
```

3.19 BLADE ELPEIENT DATA PRINTOUT GROUP (include only if NPART $=2$ or 4 and $\operatorname{IPL}(14) \neq 0$ or if NPART = 5)

CARDS 241 and 242
The inputs to this group (the TAIR array) specify the points during the maneuver where blade element data are to be printed. TAIR inputs are interpreted in the same manner as TSTAB inputs (i.e., positive inputs are taken as seconds from the start of the maneuver and negative inputs as degrees of total azimuth angle for Blade 1 of the main rotor). See Section 3.18 for a more complete discussion. The output obtained at the specified points may be dynamic loads only, aerodynamic loads only, or both a. discussed below.

If $\operatorname{IPL}(27)=0$ or 1 , the beamwise bending moment, chordwise bending moment, and torsional moment are printed for each of the 20 radial stations on each blade of the rotor(s). These moments have been resolved through the blade pitch angle so they really are beamwise and chordwise.

If $\operatorname{IPL}(27)=2$, detailed aerodynamic data are printed for each radial station on each blade of the rotor(s) in addition to the bending moments.

The value of NVARC on CARD 01 specifies the rotor(s) to be included in the printout for both dynamic and aerodynamic loads.

Note that bending moment data will be printed only when the specified rotor uses the time-variant analysis. If printout of moment data is specified for a rotor which uses the quasi-static analysis, the program ignores the inputs and does not print the data. However, blade element aerodynamic data will be printed at the specified times regardless of the type of rotor analysis which is active.
3.20 MANEUVER TIME CARD (include only if NPART $=2,4$, or 5 )

CARD 301
This card and subsequent cards are to be put into the data deck only when running a maneuver; i.e., NPART $=2,4$, or 5 on CARD 01.

For NPART $=2$ or 4 , the start time, $T C I(1)$, is assumed to be zero, and any other input is ignored. For NPART $=5$, the start time is the time at which the maneuver is restarted; it must be greater than zero and less than the last time point of the maneuver being restarted. See discussion of CARD 01 for further details.

TCI(2) is used to specify the first base value of the time increment ( $\Delta t$ ) between calculation of maneuver time points. The $\Delta t$ computed from TCI(2) will be used during the interval of TCI(1) to TCI(3) seconds of maneuver time. If $\operatorname{TCI}(2)<1.0$, the input is taken to be $\Delta t$ in seconds. If $\operatorname{TCI}(2) \geq 1.0$, the input is taken to be the increment in Rotor 1 azimuth location in degrees between time points; in this case, the time increment to be used is defined as

$$
\Delta t=\operatorname{TCI}(2) /\left(6 \Omega_{1}\right)
$$

where $\Omega_{1}$ is the rotational speed of Rotor 1 in units of rpm and $\Delta t$ is in seconds.

To insure stability of the numerical integration technique during a timevariant maneuver (IPL (21) $\neq 0$ ), the azimuth increment should always be less than or equal to 15 degrees. If aeroelastic blades are included in the simulation, an additional constraint is that at least 10 time points should be computed for each cycle of the highest natural frequency in the rotor mode shape data. For example, if the highest natural frequency is $3.0 / r e v$, one cycle occurs every 120 degrees and the azimuth increment should then be less than or equal to 12 degrees. These requirements on azimuth increment apply to time-variant trims as well as time-variant maneuvers. If either unsteady aerudynamic option is activated (IPL(20) $\nmid 0$ ). the azimuth increment for maneuver should not be greater than about 15 degrees; 10 degrees or less is preferable.

It may be desirable to change the value of $\Delta t$ because of a change in rotor speed. For this case, TCI(4) can be used to specify the value of $\Delta t$ to be used between TCI(3) and TCI(5) seconds of maneuver time. Like TCI(2), TCI(4) may be either a time or azimuth increment. It is not necessary that $\operatorname{TCI}(2)$ and $T C I(4)$ be the same type of increment, e.g., one may be time and the other azimuth.

If $\operatorname{TCI}(6)$, the time to stop the maneuver, is greater than $\operatorname{TCI}(5)$, the program returns to using the $\Delta t$ based on TCI(2) between TCI(5) and TCI(6) seconds of maneuver time. If $\mathrm{TCI}(5)$ is the time to stop the maneuver, as
well as the time to stop using the $\Delta t$ based on TCI(4), the TCI(6) input may be zero or blank. Similarly, if a second time increment is not desired, $\operatorname{TCI}(4), \operatorname{TCI}(5)$, and $\operatorname{TCI}(6)$ may be zero or blank. TCI(3) is then taken as the time to stop the maneuver.

When the time increment is changed during a maneuver, it may be desirable to change the frequency of printout of the time points, i.e., change the value of NPRINT input on CARD 01. This may be done with a $\mathrm{J}=31$ card. See Section 3.21.2.22.
3.21 VARIATIONS FROM TRLMMED FLIGHT (May be included only if NPART $=2$, 4, or 5)

CARD 311
NEXTJ $=0$ This is the last card of the 311 type.
NEXTJ $\neq 0$ Another card of the 311 type follows.
$J \quad$ Type of variation, explained in list below.
If NPART $=2,4$, or 5 , one card of the 311 type must be included and up to 20 may be included. All have the same format (I1, I4, 5X, 6F10.0). It is not necessary to have the $J$ values in numerical order; in fact, there may be several cards with the same value of $J$. It is necessary that NEXTJ $\neq 0$ on all of these cards except the last one which must have NEXTJ $=0$.

### 3.21.1 Summary of Permissible J Values

Permissible values of $J$ are from 1 to 36 . The type of variation which occurs for each value of $J$ is given in the following list.

```
J = 1 is for movement of collective stick
J = 2 is for movement of F/A cyclic stick
J=3 is for movement of lateral cyclic stick
J=4 is for movement of pedal
J=5}\mathrm{ is not currently used
J=6 is for folding rotors aft after tilting forward and stopping
J=7 is for a change in rpm governor setting
J=8 is for converting the tail rotor into a pusher prop., i.e.,
 changing the tail rotor mast tilt angle in the horizontal plane
J = 9 is for a vertical ramp gust; ramp length may be zero
J=10 is for a vertical sine-squared gust
J = ll is for a horizontal ramp gust; ramp length may be zero
J = 12 is for a horizontal sine-squared gust
J = 13 is for a change in engine torque supplied
J = 14 is for a change in auxiliary thrust supplied
J = 15 is for activation of a "yaw pilot"
J = 16 is for weapon fire
J = 17 is for change of F/A mast tilt angle and rpm on both rotors
J = 18 is for rotor brake
J = 19 is for pitch Automatic Stabilization Equipment
J = 20 is for sinusoidal movement of controls or mast
J = 2l is for a flat tracker for the main rotor
J = 22 is for a flat tracker for the tall rotor
J = 23 is for rpm dependent hub springs
J = 24 SCAS roll channel
J = 25 SCAS pitch channel
J = 26 SCAS yaw cham:el
J = 27 is for folding rotors horizontally after stop
```

```
J = 28 is for rpm dependent flapping stops
J = 29 is for connecting and disconnecting helicopter controls
J = 30 is for rotor moment balancing mechanism
J = 31 is for changing NPRINT on CARD 01
J = 32 is for simplified Automatic Pilot simulation
J = 33 is for the G-Tracker option with the Automatic Pilot simula-
 tion
J = 34 is for deployment of aerodynamic brake
J = 35 is for dropping external store
J = 36 is for changing incidence or control surface deflection angles
of aerodynamic surfaces
```


### 3.21.2 Inputs for J-Cards

The input format for each of the currently available J-Cards is given below. Start and stop times refer to the time from the start of maneuver unless otherwise noted.

### 3.21.2.1 $\mathrm{J}=1,2,3,4$ (Control Movements)

```
Col. 11-20 Start time for input rate l
 21-30 Input rate 1
 31-40 Stop time for input rate l
 (in./sec)
 41-50 Start time for input rate 2 (sec)
 (sec)
 51-60 Input rate 2 (in./sec)
 61-70 Stop time for input rate 2 (sec)
```

If the computed control position is greater than $100 \%$ or less than $0 \%$, it is reset to 100 or $0 \%$ respectively. Hence, if a control is put on a stop by rate and time inputs which would normally put the control past its stop, subsequent rate and time inputs should be with respect to the stop, not the imaginary position beyond the stop.

### 3.21.2.2 J $=6$ (Folding Rotors Aft)

Col. $11-20$	Start time (after $\Omega=0$ )	( sec )
21-30	Rate (positive to fold aft)	(deg $/ \mathrm{sec})$
$31-40$	Stop time (after $\Omega=0)$	$(\mathrm{sec})$
$41-50$	Start time (after $\Omega=0)$	$(\mathrm{sec})$
$51-60$	Rate (positive to fold aft)	$(\mathrm{deg} / \mathrm{sec})$
$61-70$	Stop time (after $\Omega=0)$	$(\mathrm{sec})$

### 3.21.2.3 $\mathrm{J}=7$ (Governor RPM Setting)

Same format as for $J=1$, except rates are in rpm/sec.
3.21.2.4 $\mathrm{J}=8$ (Tail Rotor to Pusher Prop)

Same format as for $\mathrm{J}=1$, except rates are in deg/sec.
3.21.2.5 $\mathrm{J}=9$ and 11 (Vertical and Horizontal Ramp Gust, Repsectively)
Col. 11-20 (1) Starting distance (in ground X-Y plane)(ft)
21-30 (2) lst max. ve:ocity (positive down or north) ..... (ft/sec).31-40 (3) lst ramp length(ft)41-50 (4) Distance gust is steady (ft)51-60(5) 2 nd ramp length(ft)61-70 (6) 2nd max. velocity (measured from first max.velocity)

Ramp Gust

### 3.21.2.6 $\mathrm{J}=10$ and $\mathrm{J}=12$ (Vertical and Horizontal Sine-Squared Gust, Respectively)

Col. $11-20$	(1) Starting distance	(ft)
$21-30$	(2) lst max. value (positive down or north)	(ft/sec)
$31-40$	(3) lst gust length	(ft)
$41-50$	(4) Distance between gusts	(ft)
$51-60$	(5) 2nd gust length	(ft)
$61-70$	(6) 2nd max. value	(ft/sec)



### 3.21.2.7 $\mathrm{J}=13$ (Main Encine Torque)

Col. 11-20	Start time for rotor torque supplied   variation	(sec)
21-30	Ratio of torque desired to torque   required at trim point	(ft-1b/ft-1b)
31-40	Start time for rotor torque supplied   recovery to torque required	(sec)
41-50	(Inactive)	
$51-60$	Engine accel. lag, zero to full power	(sec)

### 3.21.2.8 $\mathrm{J}=14$ (Auxiliary Jet Thrust)

Col. 11-20 Start time for jet thrust variation
21-30 Type of variation indicator, TVI
31-40 Rate of change of jet thrust, RJT
41-50 Stop time for variation
51-60 Final value of jet thrust
61-70 Affected jet; $=1.0$ for left jet, $=2.0$ for right jet

Three types of jet thrust variation are possible based on the value of TVI.

If TVI $=0.0$, the rate RJT acts for the specified time, i.e., the stop time minus start time. The input for final value of jet thrust is ignored in this case.

If TVI $=1.0$, the rate RJT acts until the final value of jet thrust specified in columns 51 to 60 is attained. The input for the stop time is ignored in this case.

Following one or more $\mathrm{J}=14$ cards where $\mathrm{TVI}=0.0$ or 1.0 , it may be desirable to change the jet thrust back to its value at the start of the maneuver, the trim value. To do this, set TVI $=2.0$, which will cause the final value of thrust (columns 51 to 60 ) to be reset to the trim value and TVI to be reset to 1.0 . The specified rate will then act until the jet thrust returns to the trim value. The input stop time is ignored in this case. TVI should not equal 2.0 unless a previous $\mathrm{J}=14$ card has changed the jet thrust from the trim value.
3.21.2.9 $\mathrm{J}=15$ (Yaw Reactions by Pilot)


This feature was developed before the automatic pilot feature discussed in Section 3.21.2.23 $(J=32)$ and should not be used in conjunction with it. If this feature is used, the pedals will be moved to minimize sideslip angle and rate during the specified time period. During this period, the "pilot" will be placed on "alert" under the following conditions:

$$
|\beta| \geq \beta_{A} \text { or }|\dot{\beta}| \geq R_{A}\left|\dot{\beta}_{\max }\right|
$$

where
$\dot{\beta}_{\text {max }}=$ the largest sideslip rate experienced while the "pilot"

When the "pilot" is on "alert", the rate of motion is

$$
\delta_{\text {ped }}=\beta x_{4}+\beta x_{5}
$$

If the "pilot" is not on "alert", the rate is zero.
3.21.2.10 $\mathrm{J}=16$ (Machine Gun Fire, Ramp Only)



For the normal case of a weapon firing forward, the reaction force should be negative. See the Weapons Group (Section 3.16) for additional details.

### 3.21.2.11 J $=17$ (F/A Mast Tilt on Both Rotors)

$$
\begin{aligned}
& \text { Col. 11-20 Start time for mast tilt } \\
& \text { activated } \\
& \text { 61-70 } \Omega_{H}-\Omega_{A} \text {, change in rpm in converting from } \\
& \text { airplane mode to helicopter mode } \\
& \Omega=\left\{\begin{array}{l}
\left.\Omega_{A}+\left(\Omega_{H}-\Omega_{A}\right) * \cos \left[90\left(\beta_{m}-\alpha\right) / 90-\alpha\right)\right] \text { if } \beta_{m}>\alpha \\
\Omega_{H} \text { if } \beta_{m} \leq \alpha
\end{array}\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& \beta_{m}=F / A \text { mast tilt angle } \\
& \Omega=\text { current rotor rpm } \\
& \Omega_{H}=\text { rotor } r p m \text { in helicopter mode }\left(\beta_{m}=0^{\circ}\right) \\
& \Omega_{A}=\text { rotor } r p m \text { in airplane mode }\left(\beta_{m}=90^{\circ}\right)
\end{aligned}
$$(rpm)(deg)

41-50 Time to stop applying brake ..... (sec)

```
Col. 11-20 Start time (activate A.S.E.)
 21-30 F/A cjclic stick displacement/pitch displace-
 ment from reference pitch angle, \(X_{2}\)
 31-40 F/A cyclic stick displacement/pitch (in./deg/sec)
 velocity, \(X_{3}\)
 41-50 F/A cyclic stick displacement/pitch
 (in./deg/sec \({ }^{2}\))
 acceleration, \(X_{4}\)
 51-60 Reference pitch angle, \(X_{5}\)
 (deg)
 61-70 Lag factor for mechanism, \(X_{6}\)
 (sec)
```

Let $\delta=$ change in cyclic pitch for one time increment $\Delta t$
$\delta_{1}=$ value of $\delta$ for the previous time increment
© = fuselage Euler angle pitch
$q=$ fuselage pitch rate
then

$$
\delta=\left[x_{2}\left(x_{5}-\Theta\right)+x_{3} q+x_{4} q+\delta_{1} x_{6} / \Delta t\right] *\left[1 /\left(1+x_{6} / \Delta t\right)\right]
$$

3.21.2.14 $\mathrm{J}=20$ (Sinusoidal Movement of Controls or Mast)

Col. 11-20 Start time
21-30 Frequency
(cps)
31-40 Amplitude (in. or deg)
41-50 Stop time
(sec)
51-60 Control to be moved 61-70 (Inactive)

Amplitude is in inches for controls or degrees for mast tilt. The code for the control to be moved is

```
\(1.0=\) Collective stick
\(2.0=F / A\) cyclic stick
\(3.0=\) Lateral cyclic stick
\(4.0=\) Pedal
\(5.0=F / A\) mast tilt
```

Note that if the control code is 5.0 , the $F / A$ mast tilt angle of both rotors is varied.

### 3.21.2.15 $\mathrm{J}=21$ and 22 (Flat Tracker for Min Rotor and Tail Rotor, Respectively)

Col. $11-20$	Start time	(sec)
$21-30$	Acceptable deviation	$(\mathrm{deg})$
$31-40$	Rate	(deg $/ \mathrm{sec})$
41-50	F/A reference angle	(deg)
$51-60$	Lateral reference angle	(deg)
61-70	Angle selector	

Tine Flat Tracker makes control inputs to maintain the $F / A$ and lateral flapping angles at desired angles. If the Angle Selector $=0.0$, these desired angles are the Reference Angles input in columns $41 \rightarrow 50$ and $51 \rightarrow 60$. If the Angle Selector $=1.0$, the desired angles are the flapping angles at TRIM. If the difference between the reference angles and the current flapping angles is less than the Acceptable Deviation, no control input is made.

### 3.21.2.16 $\mathrm{J}=23$ (RPM Dependent Hub Springs)

```
Col. 11-20 Rotor number (1.0 or 2.0)
 21-30 K K itich spring value in lower rpm range (ft-lb/deg)
 31-40 \Omega}\mp@subsup{\Omega}{1}{}\mathrm{ top of lower rpm range (rpm)
```



```
 51-60 ('70 (Inactive)
```

Let $\Omega$ be the rpm of Rotor 1 , $K_{I}$ be $\operatorname{XMR}(18)$ or $\operatorname{XTR}(18)$, as appropriate, and $K_{h}$ be the rpm dependent value of the appropriate hub spring. Then

$$
K_{H_{1}}= \begin{cases}K_{I} & \text { if } \Omega \geq \Omega_{2} \\ \left(\frac{K_{B}-K_{I}}{\Omega_{T}-\Omega_{2}}\right)\left(\Omega-\Omega_{2}\right)+K_{I} & \text { if } \Omega_{1}<\Omega<\Omega_{2} \\ K_{B} & \text { if } \Omega \leq \Omega_{1}\end{cases}
$$

in oiher viurds, the extreme values for the hub springs are $K_{B}$, and the input in the appropriate rotor group, $K_{I}$. Linear interpolation is used in the transition region.
$3.21 .2 .17 \mathrm{~J}=24,25,26$ (SCAS Channels)

```
Col. 11-20 Time to activate SCAS Channel
 21-30 Time to turn off SCAS Channel
 31-40
 < 41-50
```


### 3.21.2.18 $\mathrm{I}=27$ (Horizontal Fold, for Main Rotor Only)

```
Col. 11-20 Start time (sec after }\Omega=0
 21-30 Rate
 31-40 Stop lime (sec after \Omega=0)
 41-50 Blade number (each blade moves inde-
 pendently)
 51-60
```

3.21.2.19 $\mathrm{J}=28$ (RPM Dependent Flapping Stops)
Same as for $J=23$ except that mechanism affected is flapping stops and
$K_{B}$ is in degrees.
3.21.2.20 J = 29 (Control Changer - to Lock or Unlock Swashplate)
Col. 11-20 Start time (sec)
21-30 Stop time
(sec)
31-40 Indicator: $=0.0$ if start time is in maneuver
seconds, $\neq 0.0$ if start time is in seconds after
$\Omega=0.0$
41-50 Indicator: $=0.0$ if stop time is in maneuver
seconds, $\neq 0.0$ if stop time is in seconds after
$\Omega=0.0$
51-60 Indicates which controls to lock or unlock;
1.0 is for rotor 1 collective; 2.0 is for rotor 1
F/A cyclic; 4.0 is for rotor 1 lat. cyclic; 8.0 is
for rotor 2 collective; for any combination,
add the indicators. 0.0 is equivalent to
15.0 , which affects all controls.
61-70 (Inactive)
If this mechanism is switched off during a maneuver, swashplate
settings will immediately assume the value dictated by the con-
trol positions. Care should be taken to set the controls so
that there are no discontinuities.
3.21.2.21 J = 30 (Mechanism for Balancing Main Rotor Force and
Moments During Horizontal Fold)

Col. 11-20	Start time	(sec after $\Omega=0$ )
21-30	Stop time	(sec after $\Omega_{i=0}$ )
31-40	OZ-force/ Ccollective	( $1 \mathrm{~b} / \mathrm{deg}$ )
41-50	OF/A flapping moment/	
	O F/A cyclic	(ft-lb-deg)
51-60	O Lat [lapping moment/	
	$\bigcirc$ Lat cyclic	(ft-lb-deg)
61-70	Maximum rate of change of controls (collective and cyclic)	(deg/sec)

### 3.21.2.22 J=31 (Changing Printout Frequency)

Col. 11-20 Time to change NPRINT (sec)
21-30 New NPRINT
31-40 Time to change NPRINT (sec)
41-50 New NPRINT
51-60 Time to change NPRINT (sec)
61-70 New NPRINT
NPRTNT must be input as a floating number, i.e., punch a decimal point on the data card. The use of NPRINT is as described fur CARD Ol, NPART = 2.

As an example of the use of this value of $J$, as well as an example of the use of the provision for different time increments on CARD 301, consider the following hypothetical situation.

A maneuver was run in which a pitch divergence occurred. Analysis of the output indicated that the divergence started between 3.5 and 3.75 seconds. The time increment used was . 05 and NPRINT was 5 throughout the run which lasted 7.5 seconds.

A new maneuver was then set up, identical to the first except that the time card, CARD 301, now contained $0.0,0.05,3.5,0.005,3.75,3.75$ as the consecutive inputs instead of $0.0,0.05,7.5$, blank, blank, blank which were used on the previous run. NPRINT on CARD 01 was changed from 5 to 70. An additional CARD 311 was input which had a $J$ of 31 . The number 3.5 was in Columns 11-20, the number 1.0 in Columns 21-30, and the rest of the card blank.

In the output (see Section 4 for a complete explanation of all outputs), the trim page was followed by the maneuver page for maneuver time of 0.0 second. The next time point for which output was given was 3.5 seconds and output was given at every 0.005 second until 3.75 seconds. The result was no output for time points of no interest, but complete coverage of the time interval of interest.
3.21.2.23 $\mathrm{J}=32$ (Automatic Pilot)

Col. 11-20 Time to activate autopilot (sec)
21-30 Maximum rate for cyclic stick motion (\%/sec)
31-40 Maximum rate for collective stick motion (\%/sec)
41-50 Maximum rate for pedal motion (\%/sec)
51-60 Time interval to zero rates
(sec)
61-70 Time interval to zero displacements (sec)
CAUTION: At least one partial derivative matrix must be computed prior to activating the Automatic Pilot. Without such a matrix, execution will terminate when the Automatic Pilot is activated.

The Automatic Pilot control corrections are determined from the simultaneous solution of the three moment equations and the $Z$-force equation with the moment and force imbalances as the coefficient terms. The dependent
variables are the control corrections. If there is a prescribed input from any of the controls ( $J=1,2,3$, or 4 ), the Automatic Pilot will not move that control.

### 3.21.2.24 J = 33 (G-Tracker)

Col. $11-20$	Time to start variation of target g-level	$(\mathrm{sec})$
$21-30$	First rate of change of target g-level	$(\mathrm{g} / \mathrm{sec})$
$31-40$	Time to stop first rate	$(\mathrm{sec})$
$41-50$	Time to start second variation	$(\mathrm{sec})$
$51-60$	Second rate of change of target g-level	$(\mathrm{g} / \mathrm{sec})$
$61-70$	Time to stop second rate	$(\mathrm{sec})$

The G-Tracker is designed to do a cyclic only, symmetrical pull-up or pushover to a specified g-level. In order to use this option, the Automatic Pilot must be turned on, and a $J$ card for the collective stick should be included with zero inputs to lock the collective pitch.
3.21.2.25 J = 34 (Aerodynamic Brake Deployment)

Col. $11-20$	Time to start change in deployment	$(\mathrm{sec})$
$2 i-30$	Rate of deployment change	$(\% / \mathrm{sec})$
$31-40$	Time to stop change in deployment	$(\mathrm{sec})$
$41-50$	Brake Number	
$51-60$	(Inactive)	

The Br : - Number (Col. 41-50) must be 1, 2, 3, or 4, which corresponds to the first, second, third, or fourth subgroup of the External Stores/Aerodynamic Brake Group (CARDS 121A-124C). If the Brake Number specified corresponds to a subgroup which is supposed to be an external store, i.e., weight greater than zero, execution is terminated. Deployment is stopped at 0 or $100 \%$ deployment regardless of the rate and time inputs.

### 3.21.2.26 J = 35 (External Store Drop)

Col. $11-20$	Time to drop store ( $t_{D}$ )	(sec)
$21-30$	Sequence number of store to be dropped	
$31-40$	Duration of jettison reaction forces ( $\Delta t_{\mathrm{JF}}$ )	(sec)
$41-50$	X-Reaction force (+ forward)	(lb)
$51-60$	Y-Reaction force (t right)	(lb)
$61-70$	Z-Reaction force (+ down)	(lb)

The sequence number of the store to be dropped must be $1.0,2.0,3.0$, or 4.0 , i.e., the first, second, third, or fourth store/brake subgroup. if the sequence number corresponds to a subgroup which is not used or is an aerodynamic brake rather than a store (weight $\leq 0$ instead of $>0$ ), execution will terminate. The jettison reaction forces start acting at the drop time ( $t_{D}$ ) and stop at $t_{D}+\Delta t_{J F}$ seconds of maneuver time. The reaction forces are defined in body axis. For example, if a store is
jettisoned straight down, the reaction force will be up and the 2 -direction reaction force (Col. 6l-70) should be negative.
3.21.2.27 J $=36$ (Change of Incidence or Control Surface Angles)

Col. $11-20$	Start time	$(\mathrm{sec})$
$21-30$	Rate of angle change	$(\mathrm{deg} / \mathrm{sec})$
$31-40$	Stop time	
$41-50$	Surface indicator, SI	
$51-60$	Type of change indicator, CI	
$61-70$	(Inactive)	

The surface indicator, SI, specifies which surface is involved.

$$
\text { SI }=\left\{\begin{array}{l}
0 \text { or } 5 \text { for wing } \\
1,2,3 \text { or } 4 \text { for Stabilizing Surface No. } 1, \text { No. } 2, \text { No. } 3, \\
\text { or No. } 4 \text { respectively }
\end{array}\right.
$$

The type of change indicator, $C I$, specifies the angle to be changed.
$C I\left\{\begin{array}{l}=0.0 \text { for change of incidence angle } \\ \neq 0.0 \text { for change of control surface, or flap, angle }\end{array}\right.$
For the wing, the angle change is symmetrical. For all surfaces, positive incidence change is leading edge up; positive control surface deflection is trailing edge down.

### 3.22 PLOTTING OF MANEUVER TIME HISTORY DATA

Whenever maneuver data are available, i.e., following runs with NPART $=2,4$, or 5 , or when data have been called from tape storage by NPART $=8$, the 400 series of cards may be used to plot the data. This procedure is an option. If it is not to be used, simply omit the 400 -series cards. The data may be plotted on the computer printer or put on tape for plotting by the CALCOMP plotter. Consult your local programmer for the proper setup of jobs which write a tape for CALCOMP plotting.

CARD 401
Column 2 must contain the integer 3 to call the plotting routine. NPRINT specifies that the first and every NPRINTth data point following are to be plotted. If NPRINT $=0$, it is reset to unity.

CARDS 402A, 402B, etc.
One 402-type card is required for each plot. A maximum of 30 of these cards is permitted. Each plot may contain one to three variables. The first three inputs on a 402-type card are the code numbers for the variable(s) to be plotted. The code numbers must be integers. If only one variable is to be plotted, the code numbers must be in columns 3-5; if only two are to be plotted, only columns 3-5 and 8-10 are to be used. The code numbers are given in Scction 6.

KEY controls where the ploting is done
$=0$ for CALCOMP only
$=1$ for printer only
$=2$ for both
KFYS controls the reading of additional 402-type cards
$=1$ when another 402 -type card follows
$=0$ for last 402 -type card
The program internally computes its own scales for plotting each varlable based on the maximum and minimum values of the variables during the time history and internally specified minimum scales. The linternal minimum scale may be overridden for each variable with the last three inputs on the 402 -type card. The minimum scale inputs are in units of the appropriate variable per inch for printer plots and units per centimeter for CALCOMP plots.

### 3.23 HARMONLC ANALYSIS OF MANEUVER TIME HISTORY DATA

When maneuver data are available, the 500 -series cards may be used to perform harmonic analysis of specified variables. This procedure is an option. If it is not to be used, simply omit the 500 -series cards. Consult your local programmer for proper setup of jobs which write a tape for CALCOMP plotting. Refer to Section 6 for the code numbers discussed below.

CARD 501
NOP in Column 2 must contain the integer 9 to call the harmonic analysis routine.

AL(1) is the start time and $A H(1)$ is the stop time for the analysis. Both times are measured in seconds from the start time of the maneuver. The difference between the two times is referred to as $\Delta t_{A}$, the time interval for analysis:

$$
\Delta t_{A}=A H(1)-A L(1)
$$

NVARA is the total number of variables which are to be analyzed. NVARA must be less than or equal to 30 and an integer input.

AL(2) specifies the baseline frequency ( $w$ ) for the analysis. If $\operatorname{AL}(2)>$ 0.0 , the input is taken to be $w$ in hertz (cycles per second). If AL(2) $=$ $0.0, w$ is set equal to the main rotor one-per-rev frequency

$$
\omega=\Omega_{1} / 60 \mathrm{hz}
$$

where $\Omega_{1}$ is the rotation speed of Rotor 1 in rpm. If $\operatorname{AL}(2)<0.0$,

$$
\omega=\Omega_{2} / 60 \mathrm{hz}
$$

where $\Omega_{2}$ is the Rotor 2 rpm . If $\operatorname{AL}(2) \leq 0.0$ and the rctor rpm changes during $\Delta t_{A}$, the appropriate one-per-rev frequency at $A L(1)$ seconds maneuver time will be used for the analysis.

If $\operatorname{AL}(2) \leq 0.0$, it is necessary that

$$
\Delta t_{A} \geq 1 / u
$$

If $\mathrm{AL}(2)>0.0$, this condition should also be met; otherwise, the data generated will be meaningless.

That is, the time interval for analysis must be greater than or equal to the time for one complete revolution of the appropriate rotor. However, it is not necessary that $\Delta t_{A}$ be an integer multiple of $1 / w$.

The analysis computes a function of amplitude versus frequency, $A(k w)$, for each of the NVARA variables whose code number is input on the 502type cards discussed below. In the analysis, each variable is assumed to be a function of time, $f(t)$.

$$
f(t)=a_{0}+\sum_{k=1}^{N}\left[a_{k} \cos (2 \pi k \omega t)+b_{k} \sin (2 \pi k \omega t)\right]
$$

The summation variable N is defined as

$$
N=[(n-1) / 2]+1
$$

where $n$ equals the number of time points in the $\Delta t_{A}$ interval or 500 , whichever is smaller. The brackets ([ ]) in the equation for $N$ indicate that the enclosed term is truncated to be an integer. The amplitude function is then

$$
A(k w)=\sqrt{a_{k}^{2}+b_{k}^{2}}
$$

NVARB controls the output of $A(k w)$. If NVARB $=0$, the data are tabulated on the printer only; if NVARB $=1$, the data are stored on magnetic tape for CALCOMP plotting (use 10357, centimeter paper); if NVARB $=2$, the data are both tabulated on the printer and stored on tape.

CARDS 502, 502B, etc.
These cards contain the code numbers of the variables to be analyzed. A total of NVARA code numbers must be included ir 1415 format using as many cards as required. No completely blank cards are permitted.

When maneuver data are available, the 600 -series cards may be used to perform a vector analysis of selected variables. This procedure is an option which uses the technique of least-squared-errors curve fitting. If it is not to be used, simply omit the 600 -series cards. Consult your local programmer for proper setup of jobs which write a tape for CALCOMP ploting. Refer to Section 6 for the code numbers discussed below.

CARD 601
Columns 1 and 2 must contain the integer 11 to call the curve-fitting routine. This procedure has three possible steps to it. The first step must be performed if either the second or third step is to be performed. The second and third steps are independent of each other, and each is optional.

Step 1:
Initially, the time histories, $f(t)$, of the NVARA curves whose code numbers art given on the 602 -type card(s) are curve fit to the equation

$$
f(t)=A+B \sin (\omega t+\emptyset)
$$

where $\omega$ is the baseline frequency, $\mathrm{AL}(1)$, and $\mathrm{A}, \mathrm{B}$, and $\varnothing$ are the constant, amplitude, and phase angle to be computed. This step will yield NVARA sets of $A, B$, and $\varnothing$ values. Permissible values of NVARA are 1 to 100.

Step 2:
Next, the amplitudes and phase angles computed in Step 1 may be compared to each other. The values computed are

$$
\begin{aligned}
& R_{B}=B_{i} / B_{X}=\text { amplitude ratio } \\
& R_{\phi}=\phi_{i}-\psi_{x}=\text { phase angle difference }
\end{aligned}
$$

where the subscript $x$ indicates one of the NVARB reference variables and the subscript $i$ indicates one of the $N X$ variables which is to be compared to that reference value. The code numbers are input on 603 -type cards. Note that only those code numbers used in Step 1 can be used in Step 2 and that the code number of a reference variable must not be included in the corresponding NX code numbers. Step 2 may be bypassed by setting NVARB $=0$ and omitting all 603type cards. Permissible values of NVARB and NX are 0 to 100.

## Step 3:

The curve fits from Step 1 can themselves be fitted to an equation of the following form:

$$
C=K D * D+K E * E+F
$$

where $C, D$, and $E$ are the $f(t)$ corresponding to the 3 code numbers input on 604-type cards. Substituting each $f(t)$ into the above equation, expanding the $\sin (\omega t+\emptyset)$ term to (sinwt cos $\phi+\cos \omega t$ sin $\phi$ ), and equating the coefficients of like harmonics yields three equations in the three unknowns of $K D, K E$, and $F$. The equations are solved, and the three computed constants are output.

Since AL(2) of the 604-type cards must be included, AL(2) curve fits of the coefficients from Step 1 will be made. Note that, as in Step 2, o...y code numbers (variables) used in Step 1 can be used in Step 3. This step may be bypassed by setting $\operatorname{AL}(2)=0.0$ and omitting all 604-type cards. Permissible values of $\operatorname{AL}(2)=0.0$ to 100.

CARDS 602A, 602B, etc.

The 602-type cards contain the NVARA code numbers for the variables to be curve fit by Step 1. Up to 14 code numbers may be input on each card in integer fields of 5 (14I5 format). Blank cards are not permitted.

CARDS 603A, 603B, etc.

NVARB sets of the 603-type card must be included. Each set contains a code number for a reference variable plus the quantity (NX) and code numbers of the other variables to be used in Step 2. Each card is in $14 I 5$ format. No blank cards are permitted.

CARDS 604A, 604B, etc.

AL (2) cards of the 604-type must be included. These cards contain the code numbers of the variables to be used in Step 3.

### 3.25 STORING MANEUVER TIME HISTORY DATA ON TAPE

CARD 701
Following a maneuver (NPART $=2,4$, or 5 ), it may be desirable to store the time history of the maneuver on tape so that the data can be recalled later for additional analysis or plotting. Inputs of 8 and 0 in Columns 2 and 10 respectively will store the data. However, consult your local programmer for the proper setup of the job before attempting to use this option. See NPART $=8$ on CARD 01 for instructions on retrieving the data that a CARD 701 stores.

### 3.26.1 Confipuration Determination

The program examines several inputs to determine the configuration of the rotorcraft which is being simulated. The inputs are

XTR(45), the Tail Rotor lateral mast tilt XFS(5), the stationline of the rotorcraft cg XMR(8), the stationline of the Main Rotor shaft pivot point XTR(8), the stationline of the Tail Rotor shaft pivot point

Using the following definitions

$$
\begin{aligned}
& \left(1_{\mathrm{X}}\right)_{\mathrm{R} 1}=(\operatorname{XMR}(8)-\operatorname{XFS}(5)) / 12 \\
& \left(1_{\mathrm{X}}\right)_{\mathrm{R} 2}=(\operatorname{XTR}(8)-\operatorname{XFS}(5)) / 12
\end{aligned}
$$

and the following logic

```
 TRIND = 0
 TRIND1 = 0
IF | XTR(45)|< <450, TRIND = 1
If TRIND }\not=0\mathrm{ and }|(\mp@subsup{1}{X}{}\mp@subsup{)}{R1}{}-(\mp@subsup{l}{X}{\prime}\mp@subsup{)}{R2}{}|\leq5\mathrm{ feet, TRIND1 = 1
```

The value of the configuration variable KONFIG is then defined as
KONFIG $=1 .+$ TRIND + TRIND1
Based on the value of KONFIG, the program assigns names to the input rotor groups and assumes a type of configuration as shown in Table 3-17.

TABLE 3-17. ROTOR NAMING CONVENTION			
Value of KONFIG	Defined Configuration	Names Assigned by Program	
		$\qquad$	Tail Rotor Group (Rotor 2)
1	Single-main-rotor helicopter	MAIN	TAIL
2	Tandem-rotor helicopter	FORWARD	AFT
3	Side-by-Side*	RIGHT	LEFT
${ }^{*}$ Same as tilt-rotor, composite, or coaxial			

The value of KONFIG is then used as follows:
(1) To determine if the Supplemental Rotor Controls Subgroup should be input, i.e., if KONFIG $\neq 1$ an error message is generated, since the other two configurations cannot be controlled without the XCRT array.
(2) To eliminate numeric "noise" in the partial derivatives for a particular configuration; e.g., if the Supplemental Rotor Controls Subgroup is not input for KONFIG $=1$, the Rotor 1 flapping moments due to pedal displacement and the Rotor 2 flapping moments due to displacement of collective and cyclic sticks are set to zero.
(3) To define the names to be printed in the output heading for each rotor.
(4) To modify control linkages or angles to be compatible with the configuration.

Note that in naming the rotors, the value of KONFIG may not assign the name expected to a particular rotor. For example, consider a tandem-rotor helicopter. In naming the rotors, the program assumes that the front rotor rotates counterclockwise and was input to the Main Rotor Group and that the aft rotor rotates clockwise and was input to the Tail Rotor Group. However, the user may want to reverse the rotation of each rotor, in which case the aft rotor would be input to the Main Rotor Group and the forward rotor to the Tail Rotor Group.

The program does not check to see if the rotor it is calling FORWARD is actually forward of the other rotor. Hence, if the user does swap rotor groups to reverse their rotation, the program will be ignorant of it and will still call the rotor input to the Main Rotor Group the FORWARD rotor. The same situation applies to the RIGHT and LEFT rotors of side-by-side configurations. A coaxial configuration is treated like a side-by-side; its rotors are named RIGHT and LEFT rather than indicating which rotor is on top or bottom.

Note, however, when swapping rotor groups that the sign conventions for positive lateral swashplate angle are not the same for both rotors. Hence, the user should check all control linkages prior to running a deck with swapped rotors.

### 3.26.2 Induced Velocity Distribution

If the Rotor-Induced Velocity Distribution Table is not read in or not used for a particular rotor, the distribution of the average induced velocity over the rotor disk is made by an equation internal to the program. The equation is

$$
\begin{aligned}
v_{i}= & \bar{v}_{i}\left[\frac{4}{3} x\left[1+f_{1}(\mu) * \cos \psi\right]\right. \\
& \left.+f_{2}(x, \psi) * f_{1}(\mu) * K_{27} \sqrt{-0.5 * V_{N}^{2} \sqrt{0.25 * V_{N}^{4}+\left(\bar{v}_{i}\right)_{N}^{2}}}\right]
\end{aligned}
$$

where $v_{i}$ is the local induced velocity
$\bar{v}_{i}$ is the average induced velocity across the rotor disc
$x$ is nondimensional blade station ( $0=$ root, $1=$ tip)

* is the blade azimuth angle
$\mathrm{K}_{27}$ is $\overline{\operatorname{XMR}}(27)$ or $\operatorname{XTR}(27)$ as appropriate
$V_{\mathrm{N}}$ is the flight path airspeed in $\mathrm{ft} / \mathrm{sec}$ divided by $1.0 \mathrm{ft} / \mathrm{sec}$
$\left(\bar{V}_{i}\right)_{N}$ is $\bar{V}_{i}$ in $\mathrm{ft} / \mathrm{sec}$ divided by $1.0 \mathrm{ft} / \mathrm{sec}$

The two functions, $f_{1}$ and $f^{\prime}$, are defined as follows:

$$
\begin{aligned}
& 0.5 \text { if } \Omega<1 \mathrm{rad} / \mathrm{sec} \\
& f(11.25 \mu \text {, if } \Omega \geq 1 \text { and } \mu<0.1067 \\
& \mathrm{f}_{1}(\mu)=\{ \\
& 1.36-1.5 \mu \text {, if } \Omega \geq 1 \text { and } 0.1067 \leq \mu<0.5733 \\
& 0.5 \text {, if } \Omega \geq 1 \text { and } \mu \geq 0.573 \\
& 0.0 \text {, if }(x<.7) \text { or }\left(105^{\circ}<\psi<255^{\circ}\right) \\
& \text { or }\left(315^{\circ}<\psi<360^{\circ}\right) \text { or }\left(0^{\circ}<\psi<45^{\circ}\right) \\
& 1.0 \text {, if }(x \geq 0.7) \text { and if }\left(45^{\circ} \leq \psi \leq 105^{\circ}\right) \text { or } \\
& \left(225^{\circ} \leq \psi \leq 315^{\circ}\right)
\end{aligned}
$$

The $f_{2}$ function is intended to account for tip vortex effect as discussed in Section 3.6. The calculation of $\bar{v}_{i}$ is described in Section 3.3.1 of Volume I of this report.

### 3.26.3 Data for Fuselage Aerodynamic Inputs

When wind tunnel data are avallable, the digital computer program AS812A can be used to reduce the data to the AGAJ73 input format. The program was written in the PL/l computer language. The input formats were chosen so that either fixed or floating point numbers may be input for any numeric data. It is not necessary to right-justify fixed point inpuis.

The input data to the program consists of two cards of identifying comments and program logic variables and up to 300 data points of force and
moment wind tunnel data. Each data point is input on one card and includes data point identification and the values of the pitch and yaw angles and the six force and moment vectors at those angles.

The AS812A is not an integral part of AGAJ73. AS812A only prepares data for input to AGAJ73.

```
3.36.3.1 Input Format for AS812A
Card 1
Col 1 > 70 Alphanumeric identifying comments
Col `l }-80 SC, Scale Correction factor
Card 2
```

Col $1 \rightarrow 70$ Alphanumeric identifying comments
Col $71 \rightarrow 75$ NDTS, Number of cards (data points) in t'ie foll: ag
data set
Col $76 \rightarrow 80$ IO, Output selector switch ( $\neq 1$ print only; $=1$ print
and punch)
Card 3 Through (NPTS +2 )
Col $1 \rightarrow 5$ The test (or run) number, or other numeric identification
Col $6 \rightarrow 11$ Pitch Angle (deg)
Col $12 \rightarrow 17$ Yaw Angle (deg)
Col $18 \rightarrow 25$ Lift/(Dynamic Pressure) (ft2)
Col $26 \rightarrow 33$ Drag/(Dynamic Pressure) (ft2)
Col $34 \rightarrow 41$ Pitching Moment/(Dynamic Pressure) (ft3)
Col $42 \rightarrow 49$ Side Force/(Dynamic Pressure) (ft2)
Col $50 \rightarrow 57$ Rolling Moment/(Dynamic Pressure) (ft ${ }^{3}$ )
Col $58 \rightarrow 65$ Yawing Moment/(Dynamic Pressure) (ft ${ }^{3}$ )
Col $76 \rightarrow 77$ Sequence number of test point in data run, or
other numeric identification

Card NPTS + 3 Col $1 \rightarrow 10$ CODE
3.26.3.2 User's Guide to AS812A Input Format

This pr-ram performs least-squared-erior curve fits of wind tunnel force and momen tata in order to determine the inputs to the Nominal Angle Fuselage Fuice and Moment Equations of the Rotorcraft Flight Simulation Computer Pregram AGAJ73.

## Card 1

The alphanumeric identifying comments are the first line of the printed output and, if punched cutput is selected, the first card of the punched output.

SC is the ratio of the desired scale of the output data to the scale of the infut data; e.g., if full-scale data (scale $=1$ ) is desired and the input data are from a $1 / 8$ scale model where the data are still in model scale, then $S C=1 /(1 / 8)=8$ If the input data has already been converted to fall scale, then $S C=1$. If $S C$ is deleted, or zero, the program sets $S C=1$.

## Card 2

The alphanumeric identifying comments are the second line of the printed output and, if punched output is selected, the second card of the punched output.

NPTS is the number of data points. It is equal to the number of cards in the data set which follow Card 2. The value of NPTS must be less than or equal to 300 .

The value of $I 0$ determines the type of output from the program.
IO $\neq 1$ Only printed (on-line) output is to be provided.
$I 0=1$ In addition to the printed output, the coefficients calculated are punched on cards in the format requir ed for Cards 23 through 2E of AGAJ73, the Rotorcraft Flight Simulation Program.

## Card 3 Through (NPTS + 2)

The input format used is based on the format in which test data on punched cards has generally been provided. If the user finds that his data is generally provided in a different format, the program can be modified to accept another format without too much difficulty. AS812A does not have the capability of resolving data from one coordinate system to another. Hence, input data to AS812A must be in the same system as AGAJ73 inputs (i.e., the wind-axis reference system).

Card NPTS + 3

The input CODE specifies the type data which follows:
CODE $=0$ All new data follows; a new Card 1 follows this card.
$C O D E=1$ Data points are to be added to the data previously computed: a new Card 2 follows (Card 1 is deleted); NPTS on the new Card 2 is only the number of data points (cards) added to the data set, not the new total number of points in the set.

If CODE $\neq 0$ or $\neq 1$, the program assumes all data has been processed, and the run is terminated.

### 3.26.3.3 Output Suide for AS812A

The user may select printed output only or printed and punched output. The printed output includes the cofficients of the fitted equations and comparison of the calcul.ated dils. input data points. If punched output is selected in addition to the pinted output, fourteen cards are punched. The first two cards contain the identifying comments from AS812A Cards 1 and 2. The remaning the lve colds contain all the coefficients for the Nominal Angle Equations in the sequence and formal required for AGAJ73, i.e., Carts 23 through $2 F$ of the Fusclage Group. The data are fitted to the following equations:

Lift (L) and Pitching Moment (M):

$$
\begin{aligned}
L \text { or } M & =C_{00}+C_{10} \sin \psi_{w}+C_{20} \sin ^{2} \psi_{W} \\
& \left.+C_{01}+C_{11} \sin \psi_{w}+C_{21} \sin ^{2} \psi_{W}\right] \sin \left(2 \theta_{w}\right) \\
& \left.+L_{02}+C_{12} \sin \psi_{W}\right] \sin ^{2}\left(2 \theta_{W}\right) \\
& +C_{03} \sin ^{3}\left(2 E_{W}\right)
\end{aligned}
$$

Drag (D):

$$
\begin{aligned}
D & =C_{00}+C_{10} \sin \psi_{w}+C_{20} \sin ^{2} \psi_{w} \\
& +\left[C_{01}+C_{11} \sin \psi_{w}+C_{21} \sin ^{2} \psi_{w}\right] \sin \theta_{w} \\
& +\left[C_{02}+C_{12} \sin \psi_{w}\right] \sin ^{2} G_{w} \\
& +C_{03} \sin ^{3} G_{w}
\end{aligned}
$$

Side Fo:ct (Y), Rolling Moment (1), and Yawing Moment (N):

$$
\begin{aligned}
Y, 1, \text { or } X & =C_{00}+C_{10} \sin \theta_{W}+C_{20} \sin ^{2} \sigma_{W}+C_{30} \sin ^{3} \theta_{W} \\
& +\left[C_{01}+C_{11} \sin \theta_{w}+C_{12} \sin ^{2} \epsilon_{w}\right] \sin \left(2 \psi_{W}\right) \\
& +\left[C_{02}+C_{12} \sin \theta_{w}\right] \sin ^{2}\left(2 \psi_{w}\right) \\
& +\left[C_{03}+C_{13} \sin \theta_{w}\right] \sin ^{3}\left(2 \psi_{w}\right)
\end{aligned}
$$

where $\theta_{w}=$ wind tunnel pitch angle
$\psi_{w}=$ wind tunnel yaw angle
$C_{i j}=$ coefficients of equations

In the output data the coefficients, $C_{i j}$, are identified by the subscript, ij. The coefficients are printed out in "nondimensional" and "dimensionsl" form. "Nondimensional" indicates that the coefficients are in units of $\mathrm{ft}^{2}$ or $\mathrm{ft}^{3}$, which are the units of $\mathrm{C}_{\mathrm{ij}}$ in the above equations. "Dimensional" indicates that the coefficients are in units of $\mathrm{ft}^{2}$ or $\mathrm{ft}^{3}$ per degree to the appropriate power. The "dimensional" coefficients are those that would be used if the above equations were redefined for small angles, e.g., sin $\psi_{w} \approx \psi_{w}, \sin ^{2}\left(2 \theta_{w}\right) \approx 4\left(\theta_{w}\right)^{2}$, and $\theta_{w}$ and $\psi_{w}$ were defined to be in degrees. The "dimensional" coefficients are the inputs to AGAJ73. Initialization routines in AGAJ73 convert the coefficients to their "nondimensional" values prior to using them in calculations. The sequence number of the coefficient in the AGAJ73 XFS array is given at the far right, e.g., for lift data, $C_{00}$ is input to XFS (15).

Following the coefficient data is a tabulation of the input and calculated data. The first five columns are the wind tunnel input data:

RUN $=$ Wind tunnel run number
PT = Number of the data point in the run
PITCH = Pitch angle, deg
YAW = Yaw angle, deg
INPUT = Force or moment (corrected to full scale), $\mathrm{ft}^{2}$ or $\mathrm{ft}^{3}$
The next three columns are calculated data:
CALCULATION $=$ Value of force or moment calculated using the appropriate equation and coefficients
DELTA = Input value minus calculated value (INPUT-CALCULATION)
REL-DEL = Delta divided by input value (DELTA/INPUT)
At the end of these data are two parameters useful in judging the quality o. the curve fit:

SLM OF ABS (ERRORS) $/$ POINTS $=(\Sigma$ DELTA $) /$ NPTS
RYIS ERROR/POIMTS $=\sqrt{\sum(D E I T A)^{2} / N P T S}$
A printout of the inputs to AGAJ73 in the format of AGAJ73 follows the parareters.

Sé Figurc 3-13 for a sample printout from AS812A.
甘ZIESV WViJJMd
CURVE FIT ANALYSIS CF WINU TUlNivLL JATA
USING METHCO OF LEAST-SUUARED ERKURS
TEST 294 FUSFLAGE W/SKID GEAR RUNS 210 THRU 214
DRAG UATA
COEFFICIENTS OF EQUATION
AGAJ73 INPUT

MODEL 206
FINAL CHECK

INPUT DATA AND CALCULATIUNS

Figure 3-13. Sample Output From Program AS812A.
(Data for Runs 211 through 213 omitted).

Figure 3-13. Concluded.

### 3.26.4 Rotor Hub and Control System Geometry

The sketch below is a top and side view of the geometry of the main rotor hub and control system and includes the sign conventions for the XMR inputs that define this geometry. The sketch may also be used for the second (or tall) rotor by interpreting it as a view from the bottom of rotor disk rather than the top. Note that the sketch depicts a leadingedge pitch horn. However, the sign conventions are not a function of the type of pitch horn; hence, to define a trailing-edge pitch horn, simply input a negative length for $l_{P}$ and an angle greater than 90 degrees for $8_{3}$. See Section 8.1 and Figures 8-5, 8-6, and 8-7 in Volume I for additional details.


Point $P$ is the pitch-link attach point on the pitch horn. Point $S$ is the pitch-link attach point on the swashplate. The distance from Point $P$ to Point $S$ is the length of the pitch link.

The lengths $l_{p}$ and $l_{H}$ are used to compute pitch-link loads in the following manner? The ${ }^{H}$ torsional moment at $l_{H}$ inches from the hub is divided by $l_{p}$, the moment arm of the pitch-link attach point. (The torsional moment inboard of $l_{H}$ is set to zero). The resulting force, or pitch-link load (in pounds), $H_{\text {is }}$ printed in the $0 \%$ radius (root) location on the torsional loads page.

## 4. OUTPUT GUIDE

For the purpose of identification, the output available to be printed is divided into several groups. These groups are listed in Table 4-1 with a statement as to when each group can, cannot, or may be printed. The sequence of the groups in the table corresponds to the sequence in which they are printed in the output and discussed in this section. As the table indicates, not all groups will necessarily be printed during a particular run. The printout of most groups depends on the type of run (value of NPART), the type of data included in the input deck (aeroelastic blade data, airfoil data tables, etc.), and the program options activated by the input data (time-variant trim, blade element data, etc.). Following a discussion of the reference systems and sign conventions used for the input and output data, the printout for each of the groups in Table 4-1 is discussed.

### 4.1 REFERENCE SYSTEMS

All of the basic analyses in C81 were developed and programmed in Cartesian coordinate systems. The coordinate systems which are of most importance to the user include the ground, fuselage, body, aerodynamic, surface, rotorshaft, rotor analysis, and wind reference (or axis) systems. Each reference system is oriented with respect to one or more of the other systems by a set of ordered angular rotations. The most common example of this method of orienting reference systems is the method of Euler angles. C8l uses Euler angles to orient the body reference system with respect to the ground reference. See Figure 4-1. Both reference systems are right-handed coordinate systems with positive rotations defined by the right hand rule. Hence, the three rotations in order are:
(1) Psi (y): a positive rotation about the ground reference $\mathbf{Z}$ axis; a yaw rotation,
(2) Theta (e): a positive rotation about the $Y$ axis which has been rotated through $\psi$ previously; a pitch rotation, and
(3) Phi ( $\Phi$ ): a positive rotation about the $X$ axis which has been oriented by the $\Psi$ and © rotations; a roll rotation.

Although all reference systems in C 81 are oriented by ordered rotations, not all the ordered angles and their sign conventions are truly Euler angles. This point will be made clear in the following discussion of the seven reference systems mentioned above.

### 4.1.1 Ground Reference System

The C81 Ground Reference System, a right-handed coordinate system, is fixed to the surface of a flat earth with its 2 axis pointing down through the center of the gravitational field, its $X$ axis pointing due north, and its $Y$ axis pointing due east. The gravitational constarit is defined to be


Figure 4-1. Relationship of Ground, Body, and Fuselage Reference Systems.

TABLE 4-1. OUTPUT GROUPS								
Outpu	put Groups	1	2	$\underset{4}{\mathrm{Value}}$	$\begin{gathered} \text { of } \\ 5 \end{gathered}$	$\mathrm{PART}_{7}$	8	10
Input Data								
Data	Deck Listing	Yes	Yes	Yes	Yes	Yes	Yes	No
Probl	lem Identification	Norm	Nor	Norm	Nor	Nor	Nor	Norm
Basic	c Data Groups	Norm	Norm	Norm	No	Norni	No	Norm
Aeroe	elastic Blade Data	(A)	(A)	(A)	No	(A)	No	No
Check	k of Aerodynamic Inputs	(B)	(B)	(B)	No	(B)	No	(B)
Accel	lerated Flight Conditions	Yes	Yes	Yes	No	Yes	No	Yes
Mane	uver Specification	No	Norm	Norm	Norm	No	No	No
Airfo	oil, RIVD, RWAS Data Tabl	(A)	(A)	(A)	No	(A)	No	No
Trim It	Iteration Page(s)	Norm	Norm	Norm	No	Norm	No	Yes
Standar	rd Trim Page	Yes	Yes	Yes	No	Yes	No	Yes
Optiona	al Trim Page	(c)	(c)	(C)	No	(c)	No	(c)
Time-Va	ariant Trim Data	(C)	(c)	(C)	No	No	No	(C)
Maneuver-Time-Point Printout								
Exter	rnal Store Drop	No	(C)	(C)	(C)	No	No	No
Time	-Point Page(s)	No	Norm	Norm	Norm	No	No	No
Rotor	r Elastic Response	No	(D)	(D)	(D)	No	No	No
Time Hi	istory Plots	No	(C)	(C)	(C)	No	(C)	No
Output Analy	of Vector and Harmonic ysis			(c)	(c)	No	(C)	No
Output	of Stability Analysis		(c)	(c)	(c)	Yes		(c)
Blade A	Aerodynamic Data	(C)	(c)	(c)	(c)	(C)		(c)
Blade B	Bending Moment Data	No	(c)	(C)	(c)	No	No	No
Yes : The group is always printed for specified value of NPART.								
No : The group is never printed for specified value of NPART.								
Norm: The group is normally printed, but can be suppressed by								
( $A$ ) : The group is printed only if the corresponding data block(s)								
table(s) is input; printout can be suppressed.   (B) : The group is printed only if errors are detected in the aero-								
dynamic inputs.								
(C) : The group is printed only if the corresponding operation or option is called for by input data.								
(D) : The group is printed only if aeroelastic blade data are available.								

32.17 feet per second squared in C81. During trim and at time zero of all maneuvers, the ground eference $X$ and $Y$ coordinates of the rotorcraft center of gravity are zero, and the 2 coordinate is the negative of the geometric altitude.

### 4.1.2 Fuselage Reference System

The input format of $\mathrm{C81}$ uses the Fuselage Reference System, a right-handed coordinate system, to define the locations of components or properties on the rotorcraft, e.g., the shaft pivot point, the center of gravity, and centers of pressure for the aerodymamic surfaces. As its name implies, this system is fixed with respect to the structure of the rotorcraft. The system is equivalent to the conventional Stationline-Buttline-Waterline (SBW) coordinate system used in the design of most aircraft. The location of its origin is arbitrary. However, for AGAJ73, it must lie in the vertical plane of symmetry of the fuselage if certaln program features such as locating the jets and orienting aerodynamic surfaces are to work properly. For the SBW (Fuselage) Reference System, the positive stationline (X) axis is pointed toward the rear of the airframe, the positive buttline ( Y ) axis is pointed to the pilot's right, and the positive waterline ( $Z$ ) axis is pointed toward the top of the airframe. Stationlines, buttlines, and waterlines are defined to be in inches from the origin. This reference system is used only for input data.

### 4.1.3 Body Reference System

The Body Reference System, a right-handed coordinate system, is the primary reference system in C81. It serves as the reference system in which total rotorcraft forces and moments are summed during both trim and maneuver and is the system for which the stability analysis equations were derived. The origin of the system is defined to be at the rotorcraft cg , which is located by X, Y, and Z coordinates in the Ground Reference System. The axes of the system are oriented with respect to the Ground Reference System by Euler rotations of $\boldsymbol{\psi}$, © and as discussed previously.

If the Fuselage Reference System is rotated +180 degrees about its $Y$ axis, and $i$ ts origin moved to the rotorcraft cg , the rotated and translated system is defined to be coincident with the Body Reference System. Hence, the $Y$ axes of both the Fuselage and Body Reference Systems point to the pilot's right, while the Body Reference $X$ axis points toward the nose and 2 axis toward the bottom of the rotorcraft.

As with the Fuselage Reference System, the Body Reference System is fixed with respect to the structure of the rigid body rotorcraft. During trim, the system may rotate with respect to the Ground Reference System and during maneuvers it may translate as well. The relationships between the Ground, Fuselage, and Body Reference Systems are shown in Figure 4-1. If the cg location is recomputed prior to trim or during maneuver because of store input or drop(s), the origin of the Body Reference System moves to the new cg location. Moment arms from the cg to the rotor hubs, wing, etc., are recomputed each time the cg moves.

### 4.1.4 Aerodynamic Surface Reference System

Each wing panel and each of the four stabilizing surfaces uses a separate Aerodynamic Surface Reference System to define the orientation of that surface's axis of incidence change and the incidence angle. Each system is a right-handed coordinate system with its origin at the center of pressure of the appropriate surface. The orientation of each system is defined with respect to the body axis by two ordered rotations:
(1) 5 : a positive rotation about the body $X$ axis; a dihedral angle rotation, and
(2) i: a positive rotation about the Y axis which has been rotated through [ previously; an incidence rotation.

Dihedral angle, $\Gamma$, is always defined to be positive in the direction which displaces the outboard tip of a surface upward with respect to a Fuselage Reference X - Y plane. That is, for a surface whose center of pressure is on or to the left of the fuselage plane of symmetry (Buttline $\leq 0$ ), positive dihedral is a right-handed rotation about the body $y$ axis. If the center of pressure is to the right (Buttline $>0$ ), positive diיedral angle is a left-handed rotation. The implications of these definlulons are that horizontal stabilizing surfaces with dihedral or anhedral should be modeled as two separate surfaces and that a vertical fin with sweepback and its center of pressure at or to the left of Buttline 0.0 should be considered to have a +90 -degree dihedral angle.

Positive incidence angle is always defined as a right-handed rotation about the Y axis of the aerodynamic reference system. Hence, the Y axis and the axis of incidence change are coincident. The relationship of the Body and Aerodynamic Surface Reference Systems is shown in Figure 4-2.

The orientation of the $Y$ axis and the origin of each system are fixed with respect to the Body Refezence System during all trims and maneuvers, but the control linkages can rotate each system about its $Y$ axis.

### 4.1.5 Rotor Shaft Reference Systems

The program uses two independent Rotor Shaft Reference Systems: one for Rotor 1 and one for Rotor 2. The origin of each system is at the shaft pivot point of its respective rotor, and, as noted earlier, the Rotor 1 Shaft Reference System is a right-handed coordinate system while the Rotor 2 system is left-handed. Each system is criented with respect to the Body Reference System by the following two ordered rotations: F/A mast tilt angle and lateral mast tilt angle.

The most convenient means of describing the positive directions of the rotations is to say that positive mast tilt angles will tilt the rotor shaft forward and then to the right for both rotors. Hence, if all four mast angles are zero, the $X$ and $Z$ axes of both Shaft Reference Systems and the

SURFACE	WING AND HORIZONTAL   STABILIZERS		VERTICAL AND VENTRAL	
FINS				

Figure 4-2. Relationship of Body and Aerodynamic Surface Reference Systems.

Body Reference System are parallel and point in the same direction. However, the $Y$ axis of the Rotor 2 Shaft Reference System points in the opposite direction of the other two $Y$ axes. The origins of both Shaft Reference Systems are fixed with respect to the Body Reference System during both trim and maneuver. The orientation is fixed during trim, but the $F / A$ mast tilt angle can be changed during the maneuver, which does reorient the system.

Note that if the $F / A$ mast tilt angle changes in maneuver, and the lateral mast tilt is nonzero, the $F / A$ rotation will in effect be about the Body Reference $Y$ axis, not the Shaft Reference $Y$ axis. That is, at each time point the orientation is determined by the two ordered rotations from the Body Reference System, not by one rotation from the initial Shaft Reference orientation. Figure $4-3$ shows the relationship of the two Shaft Reference Systems to tice Body Reference System.

### 4.1.6 Rotor Analysis Reference Systems

The program uses two independent Rotor Analysis Reference Systems: The system for Rotor 1 is oriented with respect to the Rotor 1 Shaft Reference System and the system for Rotor 2 with respect to the Rotor 2 Shaft Reference System. The origin of each system is located at the hub of its respective rotor, i.e., the Rotor Shaft Reference $X$ and $Y$ coordinates of the origin of the Rotor Analysis System are zero and the $Z$ coordinate is the negative of the mast length. The Analysis Reference Systems are oriented with respect to the Shaft Reference System by a single rotation about the Shaft Reference 2 axis. This angle is the rigid body azimuth angle of the blade being analyzed. Hence, the Analysis Reference Systems are rotating reference systems with respect to the Shaft and Body Reference Systems. For Rotor 1 the right-handed rotation vector points up (negative $Z$ direction) and for Rotor 2 the left-handed rotation vector points up (negative 2 direction). Figure $4-4$ shows the relationship of the Rotor Analysis Reference Systems to the Rotor Shaft Reference Systems.

### 4.1.7 Wind Reference Systems

All aerodynamic coefficients are computed in the Wind Reference System. By definition, a Wind Reference System only has a velocity component along its $X$ axis; the $Y$ and $Z$ velocities are identically zero. Since the local flow at each rotorcraft component on which aerodynamic forces arid moment act is normally not parallel to the flight path velocity vector, separate reference systems are defined for each component. The origin of each of the Local Wind Reference Systems is at the center of pressure or aerodynamic data reference point of each component. Each system is oriented with respect to the corresponding component system (e.g., Body, Aerodynamic Surface, and Shaft Reference Systems) by one of two possible sets of two ordered rotations. The first set of possible angles corresponds to angles commonly measured in flight test:


Figure 4-3. Relationshif of Body and Shaft Reference Systems.


Figure 4 4. Reference System for Rotor Analysis.
(1) Negative Beta ( $-\beta$ ): a rotation (equal to the negative of the sideslip angle $\beta$ ) about the component 2 axis, and
(2) Negative Alpha ( $-\alpha$ ): a rotation (equal to the negative of the angle of attack $\alpha$ ) about the component $Y$ axis which has been rotated through $-\beta$ previously, where $\alpha={ }^{*}$ wind ${ }^{*}$

The second set corresponds to angles commonly measured in wind tunnel tests and is a set of inverse Euler angles with roll deleted:
(1) Negative Aerodynamic Pitch Angle $\left(-\theta_{W}\right)$ : a rotation (equal to the negative of $\theta_{W}$ ) about the component $Y$ axis, and
(2) Negative Aerodynanic Yaw Angle ( $-\psi_{W}$ ): a rotation (equal to the negative of $\psi_{W}$ ) about the $Z$ axis which has been rotated through - $\theta_{w}$ previously.

Each of these four angles is defined by trigonometric functions of $X, Y$, and $Z$ velocities in the component reference system. Actually, the definitions of $\alpha_{\text {wind }}$ and $\theta_{w}$ are identical, and the two angles can be used interchangeably. However, $\beta$ and $\psi_{w}$ are not identical. See Figure 4-5 and Section 4.2.3.2 for the definitions of these angles.

Orientation of a Wind Reference System with respect to Ground Reference only is meaningless and cannot be defined. The orientation of the wind vector, and hence the $X$ axis of a Wind Reference System, can be defined by two Euler type angl's, i.e., azimuth (yaw) and elevation (pitch). However, the orientation of the $Y$ and $Z$ axes about the $X$ cannot enefined without referring to one of the rotorcraft component referen. . systems. This situation does not limit any analysis or computation since the point of interest is the action of the air mass on a component, not the ground.

### 4.2 SIGN CONVENTIONS

The sign conventions of the most commonly used rotor related parameters are summarized in Table 4-2. The conventions listed are for the condition where both rotor shafts are vertical (i.e., a tandem or side-byside rotor helicopter) and are stated in terms of pilot reference. For nonvertical shaft(s) the rotor related sign conventions remain unchanged with respect to the Rotor Shaft Reference System. Table 4-3 gives the rotor designation and sign conventions for four standard rotorcraft configurations.

Additional discussion of some of these rotor related parameters and parameters mentioned in Section 4.1 is included below.

### 4.2.1 Rotor Flapping and Elastic Displacements

Rotor flapping can be defined with respect to either the Rotor Analysis or Shaft Reference System of the appropriate rotor. Shaft reference

$$
\begin{aligned}
& B=\text { Body } \\
& W=\text { Wind }
\end{aligned}
$$


(a) Rotations With Wind Tunnel Angles.
(b) Rotations With Flight Test Angles.

(c) Planes in Which Angles Are Measured.

Figure 4-5. Relationship of Wind and Body (Component) Reference Systems.

TABLE 4-2. SIGN CONVENTIONS FOR ROTOR RELATED PARAMETERS

Parameter	POSITIVE DIRECTION ROTOR 1	OF PARAMETER ETTOR 2
Shaft Reference System (origin at shaft pivot point)		
X -Axis	Forward	Forward
Y -Axis	Right	Left
2-Axis	Down	Down
$\begin{gathered} \text { Mast Tilt Angle } \\ \mathrm{F} / \mathrm{A}\left(\beta_{0}\right)^{2} \end{gathered}$	Forward	Forward
Lateral ( $\left.\beta_{\mathrm{m}}\right)_{L}$	Right	Right
Swashplate Angles		
$\mathrm{F} / \mathrm{A}\left(\mathrm{B}_{1}\right)$	Forward	Forward
Lateral ( $\mathrm{A}_{1}$ )	Down right	Down right
Control Phasing Angle ( $\gamma$ ) (measured from the projection on the swashplate of tie pitch link attach point to the pitch horn)	In same direction as blade rotation	In same direction as blade rotation
Pylon Motions		
F/A ( $\mathrm{a}_{\mathrm{F}}$ )	Forward	Forward
Lateral ( $\mathrm{a}_{\mathrm{L}}$ )	Right	Left
Direction of Rotor Rotation (as viewed from above)	Counterclock-   wise (right-   handed rota-   tion vector up)	Clockwise (lefthanded rotation vector up)
```Pitch-Flap Coupling Angle ( }\mp@subsup{\varepsilon}{3}{}\mathrm{ ) (measured from 90 feathering axis)```	Opposite to direction of blade rotation	Opposite to direc-   tion of blade   rotation
Shaft Axi; Flapping		
F/R (I_{1})	Aft	Aft
Lateral (b_{1})	Down right	Down left
B ! (Ricid-Body Displacements		
Twist, Collective Pitch, and Feathering $\left(G_{0}, \theta_{1}\right.$, and θ_{f}	Blade leading edge up	Blade leading edge up
Blade Elastic Displacements		
Inplane	Opposite to	Opposite to
	direction of blade rotation	direction of blade rotation
Torsion	Blade leading edge up	Blade leading edge up

flapping is divided intc an F / A and a lateral component. Analysis reference system flapping (instantaneous value of flapping) is based on the out-of-plane displacement of the blade tip for the first mode (rigid body mode) of the rotor at a particular azimuth angle. If coning is neglected,

$$
\beta(\phi)=-a_{1} \cos \phi-b_{1} \sin
$$

where

$$
\begin{aligned}
& \mathrm{a}_{1}=\mathrm{F} / \mathrm{A} \text { flapping angle (shaft reference) } \\
& \mathrm{b}_{1}=\text { lateral flapping angle (shaft reference) } \\
& \boldsymbol{1}=\mathrm{blade} \text { azimuth location } \\
& \beta=\text { instantaneous value of flapping }
\end{aligned}
$$

The shaft reference flapping angles define the orientation of the rigid body tip path plane. However, they are not ordered rotations. The angles a_{1} and b_{1} are independent positive rotations about the Shaft Reference Y and X axes respectively as shown in Figure 4-6. Note that for Rotor 1 this means right-handed rotations about the right-handed coordinate system, while for Rotor 2 it means lefthanded rotations about a lefthanded system. Based on these definitions for a_{1} and b_{1}, positive β (equivalent to positive out-of-plane displacement) is up the shaft (the negative Z direction).

When using the quasi-static rotor analysis, the rotor equations are solved in terms of a_{1} and b_{1}. From these values, β can be calculated for any azimuth. However, when the time-variant rotor analysis is used, the value of θ, not a_{1} and b_{1}, is solved for at each azimuth location. Hence, with only a single azimuth location, a_{1} and b_{1} cannot be defined. In this case, the values of a_{1} and b_{1} are calculated from value of β at the last two azimuth locations, i.e., solution of two equations in two unknowns.

Positive inplane displacements of a point on a blade indicate the blade is lagging behind the rigid body feathering axis. That is, the usual positive drag force produces a positive inplane displacement.

A positive torsional displacement twists the blade leading edge up with respect to a vertical shaft. This is the same direction as positive geometric twist, collective pitch, and cyclic feathering.

(a) Shaft Axis Flapping for Rotor 1

(b) Elastic Displacements

Figure 4-6. Blade Flapping and Elastic Displa':ement.

4.2.2 Control Positions

4.2.2.1 Position in Percent or Inches
4.2.2.1.1 Collective Stick

Zero percent collective stick is full down. Positive stick motion in percent or inches is upward.

4.2.2.1.2 Fore and Aft Cyclic Stick

Zero percent fore and aft cyclic stick is full aft. Positive stick motion in percent or inches is forward.
4.2.2.1.3 Lateral Cyclic Stick

Zero percent lateral cyclic stick is full left. Positive stick motion in percent or inches is to the right.
4.2.2.1.4 Pedals

Zero percent pedal is full right. Positive pedal motion in percent or inches is to the left. That is, positive pedal tends to make the rotorcraft yaw nose left.

4.2.2.2 Positions in Radians or Degrees

When control positions are expressed in radians or degrees, these values correspond to the control angles computed from the basic rigging equations (see Table 3-11 in Section 3). Hence, they are the control angles without nonlinearities and control mixing. These units appear most frequently in the partial derivative matrix printed during trim iterations.

4.2.3 Miscellaneous Quantities

4.2.3.1 Climb and Heading Angles

The climb angle is the angle of the flight path relative to the $X-Y$ plane in ground reference. It is positive if the rotorcraft is climbing. The heading angle is the direction of the flight path on the compass. Zero heading is due north, along the ground reference X axis. A heading of 90 degrees is due east.

4.2.3.2. Aerodynamic Angles

The local wind reference systems are oriented with respect to the Body, Rotor Shaft, or Aerodynamic Surface Reference Systems by what are referyed to as aerodynamic angles (see Section 4.1.7). These angles are based on the components of velocity including gusts along the X, Y, and 2 axes of the appropriate reference system.

$$
4-16
$$

Pitch Angle of Attack, $\theta_{w}=\alpha_{\text {wind }}=\tan ^{-1}\left(\frac{Z \text { velocity }}{X \text { velocity }}\right)=\tan ^{-1}\left(\frac{w}{u}\right)$
if $u=w=0, \theta_{w}=0$ by definition
Yaw Angle of Attack (or Aerodynamic Yaw Angle) $=\dagger_{W}$
$=\sin ^{-1}\left(\frac{-Y \text { velocity }}{\text { Total velocity }}\right)=\sin ^{-1}\left(\frac{-v}{V}\right)$
if $V=0, \psi_{w}=0$ by definition
Angle of Sideslip $=\beta=\tan ^{-1}\left(\frac{Y \text { velocity }}{X \text { velocity }}\right)=\tan ^{-1}\left(\frac{v}{u}\right)$

4.2.3.3 Gust Velocities

All gusts are defined with respect to the Body Reference System as follows:
(1) The forward component of gust velocity is positive if the gust is moving in the positive X direction.
(2) The lateral component of gust velocity is positive if the gust is moving in the positive Y direction.
(3) The vertical component of gust velocity is positive if the gust is moving in the positive Z direction.

4.2.3.4 Acceleration Levels in G

The acceleration levels in units of g are defined with respect to the Body Reference System as follows:
(1) Forward acceleration is positive in the positive X direction.
(2) Positive lateral g level is to the pilot's left, in the negative Y direction.
(3) Positive vertical g level is upward, in the negative Z direction. For straight and level flight, the vertical g leve! is 1.00 .

4.3 OUTPUT GROUPS FOR INPUT DATA

4.3.1 Data Deck Listing (Figures 4-7 and 4-8)

Following the printout of the computer operating system information (JCL cards, run time, etc.), the message on the first card of the data deck, CARD 00, is printed six times on one page. This message is intended to instruct the computing control section as to the disposition of the printed output and card deck. After printing CARD 00 , the program lists the entire card deck which was submitted. This is strictly a listing of the cards; it is without regard to any illegal characters, input format errors, or program logic. This listing can be useful in locating input data errors which may be fcund in the following output groups.

4.3.2 Input Data Printout

4.3.2.1 Problem Identification (Figure 4-9)

The value of the primary control variable, NPART, the problem identification number, IPSN, and the three cards of comments (CARDS 02, 03, and 04) appear at the beginning of each problem.

4.3.2.2 Basic Input Data Groups

All basic groups of input data except the aeroelastic blade data blocks, airfoil data tables and the rotor-induced velocity distribution table are printed in the same sequence in which they are input. The data for each of these basic groups are printed whether the group is input on cards or called from the data library. If a group is called from library and altered by an \&CHANGE card, the \&CHANGE card is listed and the group is updated with the specified changes. However, during parameter sweeps (NPART $=10$), the inputs in the groups are changed, and the \&CHANGE card is not printed out. The user should refer to the Data Deck Listing to verify which inputs were changed in such sweeps.

4.3.3 Aercelastic Blade Data

If aeroelastic blade data blocks are input, the sets of data within each block are printed in the order of input with the main rotor block followed by the tail rotor block. All distributions are in the sequence of most inboard blade station (No. O or 1) to the tip station (No. 20). The printout of the weight and beamwise and chordwise inertias is followed by the total weight, tip weight, and flapping inertia of each blade.

The printout of the mode shapes is followed by a number of constants, some internally calculated, which are related to the elastic rotor modes. The mode type, damping ratio, and natural frequency for each mode are printed as input. The generalized i ertia and the bending moment and shear coefficients are calculated data based on the input frequencies, mode shapes, and inertial distributions as explained in Volume I of this report.
acast3 00

8
0

8
8
3
8
8
0
$\mathbf{8}$
8
8
8
$\underset{y}{7}$
4
3
3

*** acaj73 ***	Retuan to jowm mo oavis	sce	Gacup 20
*** agast3 ***	return to jown m. oavis	sec	cacup 20
*** AGAJ73 ***	return to satm m. davis	Scc	croup 20
*** agas 73 ***	return to somm M. davis	Scc	GROUP 20
*** AGAJ73 ***	returm to jomm m. davis	scc	gnoup 20
*** A6AJ73 ***	return to jomm m. davis	sce	group 20

m

Figure 4-8. Partial Printout of Data Deck Listing.
sell melicopter company motorcraft flight simlation pregram agajt3 computed 12/00/73

					nP	OATA		
model 209 program logic crea								
1	5	0	0		0	Croup		
0	0	1	2	${ }_{3}$	-		1	3
0	0	0	0	0	0		0	0

mJoEl 209 main rotor group

 M \quad -

$\begin{array}{ll} & \\ 0 & 0 \\ 0 & 0\end{array}$

$\because \dot{0} \quad \dot{0} \dot{0}$

Figure 4-9. Concluded.
main rotiog afriflasitc hladf disiaidiuitons avo data

MODE SMADE FGQ MODE

E

¢iọ

The moment and shear coefficents represent the moments and shear forces which would exist at the center of the hub and the selected radial station for a unit deflection of each modal generalized coordinate. The bending moment coefficients printed here are actually in the local beamwise and chordwise directions.

4.3.4 Check of Aerodynamic Inputs

Several of the inputs to the Rotor Airfoil Aerodynamic Subgroups and the Wing and Stabilizing Surface Aerodynamic Groups are changed if their input values do not satisfy certain criteria or are obvicusly unreasonable. An error message is printed after the printout of any aeroelastic blade data explaining the action taken. The changing of any of these values will not in itself terminate execution.

4.3.5 Trim Condition in Accelerated Flight

If the rotorcraft is to be trimmed in accelerated flight, i.e., a coordinated turn, a pull-up, or pushover, information is printed concerning these conditions following any corrections to aerodynamic inputs. No message is printed for an unaccelerated flight condition.

4.3.6 Maneuver Specification (Figure 4-11)

The program prints the contents of the time card (CARD 301) and all maneuver control cards (all 3ll-type cards, the J-Cards) before starting the trim procedure. A program supplied title for the action caused by each J-Card is included to the left of the numerical inputs of the J-Cards. This serves as a record of the type of maneuver specified as well as a quick way to check the input data.

4.3.7 Airfoil Data Table Printout

The sets of Airfoil Data Tables input in the Data Table Group are printed in their order of input. If the internal NACA 0012 table is used it is prirted last. Each set consists of three independent tables in the following order: lift, drag, pitching moment coefficients. The values of Mach number are listed across the page, and those of angle of attack are listed down the page. The inputs on the title card of each set of tables precede the printout of each set. Each table in each set is identified. See Figure 3-6 for the printout of the 0012 airfoil table.

4.3.8 Rotor-Induced Velocity Distribution (RIVD) Table Printout

The RIVD table is printed only when it is included in the input data. The printout heading is "TABLES USED IN ROTOR WAKE ANALYSIS" and is followed by the table title, and a statement of the number of advance ratios (NMU), inflow ratio, (NLM), radial stations (NRS), and harmonics

(NHH) included in the set of tables. The sets of coefficients are then printed in essentially the same format used for input, i.e., the table for the first set of advance and inflow ratios, followed by the table for the second set, etc. The heading for each table is " $X / R M U=L A M=$ ", where X / R is the radial station (0.05 to 1.0), MU is the advance ratio, and LAM is the inflow ratio. For each table the NRS values of radial station are listed in the far-left column. The first number to the right of the first X / R value is the constant coefficient; the next two are the sine and cosine coefficients respectively for the first harmonic; the next two are for the second harmonic, etc. If more than four harmonics are included, the fifth harmonic palr is printed immediately below the first harmonic pair. The printout of four pairs of coefficients per line continues until all coefficients are printed for the first value of X / R. The succeeding sets of coefficients for each value of X / R are printed in the same format.

4.4 TRIM ITERATION PAGE (Figure 4-12)

If $\operatorname{IPL}(25)=1$, a trim iteration page is printed for each trim iteration computed.

4.4.1 Parameters in Iterations

The VAR(I) array printed across the top of the page gives the current values of the ten variables which are changed during the trim procedure.

```
VAR(1) = Collective Stick Position in Percent
VAR(2) = Fore-and-Aft Cyclic Stick Position in Percent
VAR(3) = Lateral Cyclic Stick Position in Percent
VAR(4) = Pedal Position in Percent
VAR(5) = Fuselage Pitch Angle in Degrees
VAR(6) = Fuselage Roll or Yaw Angle in Degrees (choice of roll or
        yaw is made by user, IPL(16))
VAR(7) = Main, Forward, or Right Rotor Fore-and-Aft Flappin'g Angle
        in Degrees (a_ls)
VAR(8) = Main, Forward, or Right Rotor Lateral Flapping Angle in
    Degrees (bls)
VAR(9) = Tail, Aft, or Left Rotor Fore-and-Aft Flapping Angle in
        Degrees (als)
VAR(10)= Tail, Aft, or Left Rotor Lateral Flapping Angle in
    Degrees (bl_s)
```


0.01260
vaRIII

Figure 4-2. Trim Iteration Page.

4.4.2 Rotor Performance

The two rows below the $\operatorname{VAR}(I)$ array give the following quantities for the two rotors:

- Thrust in shaft reference (1b)
- H-Force in shaft reference (1b)
- Y-Force in shaft reference (lb)
- Torque (Z component) in shaft reference (ft-lb)
- Average induced velocity (ft/sec)

The values of the left and right jet thrusts are also included in this block of data.

4.4.3 Force and Moment Summary

This block of output shows the contribution to the total forces and moments of each component of the rotorcraft which is included in the input data. The X-force, Y-force, 2 -force, roll moment, pitch moment, and yaw moment are in body reference, with the forces in pounds and the moments in foot-pounds.

Each force and moment forms one column of the summary, where each row corresponds to a component of the rotorcraft. Except for the Jets and Guns row, only the components for which an input group was included are printed. If, for example, only two stabilizing surfaces were input, the rows for Stabilizing Surfaces No. 3 and No. 4 will not be printed. The complete list of possible rows in order is as follows:

FUSELAGE
MAIN ROTOR
TAIL ROTOR
RIGHT WING
LEFT WING
STABILIZER \#1
STABILIZER \#2
STABILIZER \#3
STABILIZER \#4
JETS AND GUNS

STORE/BRAKE \#1
STORE/BRAKE \#2
STORE/BRAKE *3
STORE/BRAKE \#4
GROSS WEIGHT
M.R. TORQUE
tOTAL
Note that the rows labeled "M.R. TORQUE" and "T.R. TORQUE" include the moment due to flapping restraint as well as the body axis components of the appropriate shaft axis rotor torque. The rows labeled "MAIN ROTOR" and "TAIL ROTOR" include only the effects of the rotor forces acting at each hub when resolved to the cg.

4.4.4 Partial Derivative Matrix

This matrix gives the partial derivative of each force and moment with respect to each of the iteration variables. The units are pounds per radian on the force derivatives and foot-pounds per radian on the moment derivatives. For the controls, the angles are rotor blade angles. The line labeled "-ERROR" gives the negative of the force and the moment imbalances at this iteration. If input $\operatorname{IPL}(17)=0$ or 5 , this matrix is computed and printed at every fifth iteration; otherwise, it is computed and printed every IPL(17)th iteration.

4.4.5 Correction Array

The line labeled "CORRECTIONS" gives the computed changes in the iteration variables $\operatorname{VAR}(I)$, in radians. They are in the same order as the VAR(I) and the partial derivative rows. It is printed only when one or more of the computed corrections are greater than the maximum allowed by variable damper procedures. If such a case occurs, the computed corrections are multiplied by a ratio which will make all corrections within the allowable range, and this ratio is printed along with the sequence number of the iteration variable which determined it. The ratioed corrections are then added to the iteration variables to determine the values for the next iteration. It should be noted again that the "CORRECTIONS" are in radians and not the same units as the VAR(I) printed. The printing of this array generally indicates that the inputs for the maximum allowable corrections were too small or that the values of $\operatorname{VAR}(I)$ may not be converging to a trim solution. The array is most useful when a case does not trim, since it indicates which $\operatorname{VAR}(I)$ is preventing trim.

4.5 TRIMMED FLIGHT CONDITION PAGES

Two types of printouts are possible for the data computed in the last trim iteration. These printouts are the standard trim page and the optional trim page. The standard trim page is always printed. If the optional trim page is to be printed, it follows the standard trim page.

When performing a quasi-static trim followed by a time-variant trim, the standard trim page will be printed twice with data regarding the timevariant trim printed in between the two. The second trim page will be an update of the first page, reflecting the effects of the time-variant trim. If the switch to print the optional trim page is turned on, the optional page will be printed after each of the standard trim pages. The data printed out during a time-variant trim is discussed in Section 4.6.

4.5.1 Standard Trim Page (Figure 4-13)

This page follows the final trim iteration. The final iteration occurs either when all fories ar] moment imbalances are within their respective allowable errors, XII(15) through XIT(21), or after XIT(1) iterations have been performe. If the pape is printed because XIT(1) iteration were exceeded, the tilm pasf is printed even though the rotorcraft is not actually trimmed. Hown... $\mathrm{f}: \mathrm{ram}$ execution terminates immediately after the printou'. Whe: the pist is printed because the imbalances are within tne prescrited limit; the program continues on to subsequent operations or cases.

The data are printed in blocks as discussed below.

4.5.1.1 Problem Identification

The problem identification consists of a line containing the name of the program and the date the job was computed followed by the alphanumeric comments input on CARDS $02,03,04$.

4.5.1.2 Trim Condition Specification

A one-line nessage is printed stating whether or not the rotorcraft is in a trimmed flight condition, the number of trim iterations used, the computer CPU time used, and the value of NPART. As implied above, the rotorcraft is termed trimmed when the imbalances are less than the allowable errors, and not trimmed when XIT(1) iterations are performed without the imbalances being less than the allowable errors.

4.5.1.3 Atmospheric Parameters

This block of data describes the atmospheric conditions in which the rotorcraft was trimmed. The density altitude, density ratio, and speed of sound are computed from equations which were empirically derived to
bell melicooter company rutorgraft flight simulation priggan agajtz

simulate the athosphere prescribed by the International Civil Aviation Organization (ICAO). This defined atmosphere is the same as the 1962 United States standard.

4.5.1.4 Physical and Power Parameters

Immediately below and at the left end of the atmospheric data, data on the rotorcraft weight and center of gravity location are presented. The data include the weight and cg location without external stores, the total weight of all external stores, and the gross weight and cg location with stores. The stores-on data are those which are used during the trim procedure. The other data are for reference only.

To the right of the weight and cg data and in the center of the page are the power and torque for each rotor and the engine. "ENG" stands for "supplied by engine." Note that while the sum of main rotor and tail rotor horsepower equals the engine power required, the sum of main and tail rotor torques will not equal the engine torque unless the rotational speeds of all three are equal.

To the right of the power and torque data are rotor blade parameters. Tip speed is in feet per second, and advancing blade Mach number is computed at the blade tip. Blade flapping inertia is for a single blede.

To the right of the blade data are the thrusts of the right and left jets in pounds.

4.5.1.5 Body Reference Parameters

Immediately below the physical and power parameter printout, the linear and angular velocities of the rotorcraft in the Body Reference System are printed. The sequence of outputs is X, Y, and Z linear velocities in feet per second followed by the roll, pitch and yaw angular velocities in degrees per second.

4.5.1.6 Flight Path/Aerodynamic Surface Parameters

Below and to the right of the body reference data are the parametera which define and orient the rotorcraft with respect to the flight path. 'rue airspeed is the airspeed along the flight path and is equal to the ground speed only when the rate of climb is zero. (The program assumes that with no gusts the air mass is stationary with respect to the ground.) The climb and heading angles are defined in Section 4.2.3.1. The three aerodynamic angles and accelerations are defined in Sections 4.2.3.2 and 4.2.3.4 respectively. Note that the three accelerations are in the Body Reference System.

To the right of the flight path conditions are the aerodynamic surface parameters. These parameters consist of the angle of incidence; flap or control surface angle; body axis X, Y, and 2 forces; and aerodynamic angles for the right and left panels of the wing and each of the four stabilizing surfaces. The aerodynamic angles are defined like the fuselage angles in Section 4.2.3.2 except that the velocities used in the definition are in the aerodynamic surface reference system rather than the body reference system.

4.5.1.7 Ground Reference Parameters

Below the flight path and aerodynamic surface data are the ground reference parameters. The location and rates of change of the three ground-tobody Euler angles are printed in degrees and degrees per second, respectively.

4.5.1.8 Flight and Rotor Control Parameters

Below and to the left of the ground reference parameters are the positions of the four primary flight controls in percent. To the right of the control positions is a matrix of the contributions of each of these controls plus the pylon and SCAS to each of the swashplate angles of each rotor. The entries in the bottom row of the matrix are simply the summation of the column above them. All entrics are in degrees. The collective pitch contributions are actually angles at the blade root since the swashplate does in truth have a collective pitch angle. The collective pitch of the swashplate would be more properly expressed as a vertical displacement of the swashplate or collective pitch sleeve. However, the control system model is currently not capable of providing this data.

To the right of the control contribution matrix are data for the hub, mast, and pylon plus the values of the pitch-flap-coupling and controlphasing angles. The mast angle and pylon deflections are defined in Table 4-2. The hub-spring moments are in the Rotor Shaft Reference System.

4.5.1.9 Rotor Parameters

Below the controls data are the rotor parameters. This output group consists of the blade feathering, flapping, rotor forces, advance ratio, power and thrust coefficients, and induced velocity for each rotor. All parameters are in the Rotor Shaft Reference System. The blade feathering angles are measured at the theoretical blade root (Station No. 0). The mean blade feathering angle is identical to the collective pitch printed in the controls matrix. The F/A feathering angle (PSI $=0$) and lateral angle (PSI $=90$) will differ from the F / A and LAT swashplate angles when the value of the pitch-flap-coupling angle minus the control-phasing angle ($\delta_{3}-Y$) is nonzero. Sign conventions for the flapping angles are
defined in Section 4.2.1. Thrust is positive up the rotor shaft. Hforce and Y-force are positive in the direction of the positive shaft reference X and Y axes, respectively.

$$
\text { ADVANCE RATIO }=\mu=\frac{\text { Velocity in the Shaft X-Y Plane }}{\text { Rotor Tip Speed }}
$$

and is dimensionless.

The power coefficient is defined as

$$
C P=\text { Power } /\left(\rho \pi R^{2}(\Omega R)^{3}\right)
$$

and the thrust coefficient as

$$
C T=\text { Thrust } /\left(\rho \pi R^{2}(\Omega R)^{2}\right)
$$

where $\rho=$ air density, slug/ft ${ }^{3}$
$R=$ rotor radius, $f t$
$\Omega R=$ rotor tip speed, $\mathrm{ft} / \mathrm{sec}$

Both coefficients are dimensionless. The nondimensionalization factors used here are not the same as those used in the optional trim page.

The induced velocity is the average value over the rotor disc in feet per second.
4.5.2 Optional Trim Page (Figure 4-14)

Printout of this page is controlled by IPL(26). The optional trim page is most useful for presenting data from a wind tunnel simulation.

4.5.2.1 Problem Identification

The standard trim page heading with comment cards is repeated at the top of the optional trim page(s).

4.5.2.2 Parameter Listing

Four blocks of data are printed across the page below the problem identification: rotor controls, rotor parameters, (wind) tunnel parameters, and program oplions. The items printed are generally either self-explanatory or have been explained previously. The dimensions, if any, for all parameters are included in the printout.

sts

Figure 4-14. Optional Trim Page.

If the blade chord is not constant, the average value of chord is printed.
If the blade geometric twist is not linear, the printed twist value is the total angle between the root and the tip.

The solidity parameter, σ, is defined as

$$
0=n \bar{c} / \pi R
$$

where $n=$ number of blades
$\bar{c}=$ average chord
$R=$ rotor radius

4.5.2.3 Forces and Moments

Below the parameter listing, the rotor forces and moments are printed in both the wind reference and shaft reference systems. Rotor power is printed in shaft axis only. Each set of data consists of two nondimenrional coefficients and the dimensional values for each force and moment. The factors which are divided into the dimensional forces, moments, and power to give their nondimensional forms are given below:

Forces Moments Power

Helicopter	$\rho b c R(\Omega R)^{2}$	$\rho b c R(\Omega R)^{2} R$	$\rho b c R(\Omega R)^{3}$
Fixed Wing	$q D^{2} \sigma$	$q D^{3} \sigma$	$q D^{2} \sigma V$

:here

```
\rho = air density (slugs/ft')
b = number of blades
c= chord (ft)
R= rotor radius (ft)
\Omega= rotor speed (rad/sec)
V = wind velocity (ft/sec)
q=1/2\rho v
D = diameter of rotor disk = 2R (ft)
\sigma = rotor solidity = bcR/\piR
```


4.5.2.4 Rotor Loads

A summary of the beam, chord, and torsional rotor loads is printed below the forces and moments. Data are presented for Blade Stations No. 4, $7,11,13$ and $16(20,35,45,65$, and 80 percent of blade radius, respectively). The higher the station number or percent radius, the more outboard the station is. The data for sach of the three loads consists of the mean and oscillatory values plus blade azimuth location for the maximum and minimum loads. The loads are in inch-pounds; the azimuth angles are in degrees.

4.6 TIME-VARIANT TRIM DATA

Using appropriate input values, it is possible to compute the trimmed flight condition using only a quasi-static rotor analysis, or to compute first a trim with the quasi-static analysis and follow it with a timevariant trim (TVT) of the rotor. The output of the TVT following a quasi-static trim is discussed below.

4.6.1 The Time History (Figure 4-15)

Following the quasi-static trim, the program computes a time history of five rotor revolutions for each rotor for which the time-variant analysis is to be used. During the computations, the fuselage and flight control degrees of freedom are locked out, the orientation and control positions being held fixed at the values in the quasi-static trim condition. However, all rotor, pylon, and mast-windup modes which are input are free. The output of a TVT includes the complete time history for each time-variant rotor with one line of output for each blade azimuth location which is computed for Blade No. 1. For a TVT with an azimuth increment of 15 degrees and both rotors time-variant, this is 240 printed lines of double-spaced output, or about eight pages of computer paper.

The time history is printed in columnar form with the variables idetitified only at the beginning. The azimuth location in degrees of Blade No. 1 is the column headed "REF BLADE PSI." If the rotor(s) use the elastic blade representation, up to six modal participation factors are listed under "DEPENDENT PARTICIPATION FACTORS." If a rigid blade is used, only the first factor is nonzero. The pylon motions and mast windup are in degrees. If two elastic rotors are being used, the time history for the second rotor follows immediately after the end of the first. anew set of headings is not printed, so it is necessary to count the rotor revolutions to find the dividing point.

4.6.2 Revised Trim Data

At the end of the time history printout(s), the $\operatorname{VAR}(\mathrm{I})$ values, rotor performance data, and force and moment summary (see Sections 4.4.1, 4.4.2, and 4.4.3 respectively) are printed again for comparison to the
mast yanowe

\bar{l}

quasi-static trim values. Note that the rotor flapping angles are not printed with $\operatorname{VAR}(I)$ since they are not controlled variables. In addition to the normal force and moment summary, the rotor flapping moment about the hub is printed at the end of the summary. As stated previously the standard trim page is then printed again, this time with the rotor parameters reset to the values at the end of the five revolutinns.

4.6.3 Rotor Dynamic Analysis

If the rotor(s) use the elastic blades representation, a harmonic analysis of the time history is performed, and a rotor bending moment summary is printed.

4.6.3.1 Harmonic Analysis of Elastic Rotor Parameters (Figure 4-16)

The results of a harmonic analysis of the nine parameters shown in Figure $4-15$ are printed in tabular form. From left to right, the nine columns of data are the coefficients for the zero (constant) through eighth rotor harmonic. The printout of all cosine components precedes that of the sine components. The rows labeled 1 through 6 are for the first through sixth modal participation factors respectively. Rows 7, 8, and 9 are for the fore-and-aft and lateral pylon displacements and mast windup, respectively.

4.6.3.2 Rotor Bending Moment Summary for Elastic Rotor (Figure 4-17)

Following the harmonic analysis, a four-page summary of rotor bending moments in blade reference is printed for each time-variant rotor. Tables of the beam, chord, and torsional moments for the first eight rotor harmonics and at all twenty radial stations are shown on the first three pages. A reprise of the minimum, maximum, and oscillatory moments, with azimuth locations for the extreme values, is printed on the fourth page. The oscillatory moment is defined as one-half the difference of maximum and minimum, regardless of frequency considerations. All moments are in inch-pounds.

4.7 MANEUVER-TIME-POINT PRINTOUT (Figure 4-18)

It is possible to print out data computed during a maneuver at specified time points. The value of NPRINT on CARD 01 specifies that data is to be printed each NPRINTth time point.

4.7.1 External Store Drop Printout

When an external store is dropped during the maneuver, a message is printed stating which store was dropped. Also, the values for the gross weight, cg location, and inertias of the rotorcraft following the drop are printed. If two or more stores are dropped simultaneously, independent messages are printed for each drop. The printout precedes the printout of the first time point without the store(s).

Pigure 4-16. Harmonic Analysis Following Time-Variant Trim.

Eioioiopioioioioioioidi

eoooo ocoooooooocoooco

statiom / makmontc

Eipoioioipiopioioioio

 Eition 5ioioioioioioioioioioioi

smen-ROMOS

8

$\mathbf{5}^{5}$

Figure 4-17.

0.699 minutes elapseo computimg time
-JET TMRUST-
LBS
RI 2.0
II

afrcornamic
50810°
75 -0.1805 0.0993
0.5112

$\begin{array}{ll}0.0498 & 0.0 \\ 0.0497 & 0.0\end{array}$ $\begin{array}{cc}8.41 \\ 6.40 & 0.00 \\ -0.29\end{array}$

Figure 4-18. Maneuver-Time-Point Printout Page.

4.7.2 Time-Point Page

The format of and data on the maneuver-time-point page are identical to those of the standard trim page with the following exceptions. The problem identification data, trim condition specification, and atmospheric parameters are omitted; some data in the aerodynamic surfaces printout are changed; and some data are added at the top of the page and to the torque/power data, body and ground reference parameters, and rotor parameter printouts. The added data are discussed below.

4.7.1.1 Identification

The first line of the maneuver-time-point page contains the current time in the maneuver and the total elapsed computer CPU time.

4.7.2.2 Physical and Power Parameters

The first data group printed is identical to the physical and power parameter printout of the standard trim page except that the engine power and torque required to drive the rotor at that particular instant are added in the row labeled "REQD." If rotor rpm is variable, a difference between engine rower supplied and required will cause a rate of change of the rotationa: speed of the rotors. If rotor rpm is held constant, a difference detween these two powers indicates that the rotor power required has exceeded the maximum available engine power. Note that the rotor torque is the air-load torque on the appropriate rotor and that the rotor power is that required to drive the rotor at that particular instant in the maneuver.

4.7.2.3 Body Reference Data

In the body reference data printout, the three body lintar accelerations in feet per second squared and the body angular accelerations in degrees per second squared are added to the printout. Also, the velocity and acceleration of the collective bobweight are included. Since the bobweight equation is written in terms of collective pitch angles, the parameters are angular velocity and acceleration in degrees per second and degrees per second squared, respectively.

4.7.2.4 Flight Path/Aerodynamic Surface Parameters

The printout of the flight path and aerodynamic surface parameters is the same as on the standard trim page except that the body axis X, Y, and Z aerodynamic forces acting on the aerodynamic surfaces are changed to nondimensional lift, drag, and pitching moment coefficients in the wind axis reference system. The body axis X, Y, and 2 forces are available from the force and moment summary which immediately follows the time-point page.

4.7.2.5 Ground Reference Parameters

The ground reference parameter printout is the same as on the standard trim page with the following data added: the X, Y, and 2 displacement of the rotorcraft center of gravity from the origin of the ground reference system, the distance of the cg from the origin of the ground reference system as measured in the ground X-Y plane, and geometric altitude of the C_{B} (the negative of the ground reference 2 location). All these added data are in feet. Note that in the ground reference system, all maneuvers start with $\mathrm{X}=\mathrm{Y}=0$ and $\mathrm{Z}=-(\mathrm{geometric}$ altitude).

4.7.2.6 Flight and Rotor Controls Parameters

The printout of the flight and rotor controls parameters is identical to that on the standard trim page.

4.7.2.7 Rotor Parameters

The rotor parameters printout on the time-point page includes all data shown on the standard trim page plus additional rotor and mast data and the values of the gusts at the rotorcraft cg.
"PSI (DEG)" is the azimuth location of Blade No. 1 of each rotor. "BETA" refers to blade flapping at the hub with respect to the shaft reference $X-Y$ plane. "HUB" is the flapping angle at the hub for Blade No. 1 at its present azimuth. This number should correspond to a test measurement of flapping. "LIMIT" is the present location of the flapping stop. The "SHAFT AXIS DATA AT ROTOR HUB" are self-explanatory.

Mast windup and mast windup rate are given in degrees and degrees per second, respectively. Positive mast windup is in the direction of positive rotor rotation.

The forward, lateral, and vertical components of the gust velocities at the center of gravity are in body reference and have the units of feet per second.

4.7.3 Force and Moment Summary

The maneuver-time-point page is followed by a force and moment summary for that time point. The format of the sumary is identical to the summary printed during trim iterations.

4.7.4 Rotor Elastic Response (Figure 4-19)

The azinuth location of each blade is given for reference. The instantaneous values of the generalized coordinates for each blade and each mode are available for detailed study. The three components of blade

óóóóóóóós

tip deflection provide the user with a clear indication of the overall rotor behavior. The out-of-plane and inplane deflections are in feet, and the elastic twist deflection is in degrees.

4.7.4.1 Blade Shear Forces

The out-of-plane components of shear are given for each blade in pounds. This shows how the blades share the total shear forces given above in the rotor variables.

4.7.4.2 Bending Moments at User Selected Location

At one radial station selected by the user, $\operatorname{XMR}(15)$ or $\operatorname{XTR}(15)$, the computer program calculates and prints the beamwise bending moment, the chordwise bending moment, and the torsional moment for each blade in inchpounds. The beam and chord moments have been resolved through the geometric pitch from the out-of-plane and inplane directions so that the values printed should correspond directly to test data.
4.8 TIME HISTORY PLOTS (Figure 4-20)

4.8.1 Problem Identification

The same problem identification used for the trim pages (CARDS 02, 03, and 04) is used as the heading for the time history plots.

4.8.2 Variables Plotted and Their Scales

The plot symbols used are the numbers 1, 2, and 4. The variable corresponding to each symbol and its units are printed as part of the plot heading. If two or all three of the curves intersect at a singie point, the symbol printed is the sum of the individual symbols. For example, the symbol $7(=1+2+4)$ means that all three curves pass through the point where the 7 is printed.

The lower and upper limits on the plot scale are given for each variable plotted. The scale in units per inch is also given.

4.8.3 General Comments

The user is again cautioned that the automatic plot scaling procedure may expand small variations completely out of proportion to their true importance. Be certain to check the scales on all plots.

The maneuver time is printed along the side of the plot to provide an easy reference to the corresponding maneuver-time-point page. If the time increment is changed at some point during a maneuver, there will be a change in the time scale at this point. The resulting compression or
ROVORTAAFT FFLIGHEL SICOPTER CONPANY
 SYMBOL 1 O-DOT
SYMBOL
S
SYMBOL 1- O-DOT ACCEL, BODY AXES, DEG/SEC/SEC SYNBOL 4 ROLL ANGLE, FIXED/BOOY, DEG POS.

\qquad

$$
40
$$

-50.000	70	50.000	1 INCH $=$
-10.000	10	10.000	1 INCH
-20.000	70	0.0	1 INCH $=$

[^0]N
expañion of the time acale may cause apparent discontinuities in the data which are not actually in the data. The user should check the time scale carefully.

Each plot card, Card 402, is Independent of all other plot cerds. Thus, if desired, one variable may be plotted on more than one plot. One example which has proved useful is rotor azimuth position. This variable will help in pointing out any change in time scale.

The dots printed down the page are spaced at 1 -inch intervals to make it easier to read the plot values by eye. They also provide reference lines to help see slower variations on long time histories.

4.8.4 CALCOMP Plots

The names of the variables plotted appear at the top of each CALCOMP page along with their respective plot symbols. The vertical scales and the plots themselves are identified by the plot symbols.
4.9 OUTPUT OF HARMONIC ANALYSIS ROUTINE (Figure 4-21)

This program option gives a harmonic analysis (frequency vs. amplitude function) for selected variables from a set of maneuver data.

4.9.1 Printed Output

4.9.1.1 Variable Identification

At the head of each page of harmonic analysis data, an identifying phrase and units for the variable analyzed are printed.

4.9.1.2 Frequency-Anplitude Table

The frequency and amplitude data are presented in three pairs of columns. The frequency is given in cycles per second, and the amplitude is in the units given in the heading.

4.9.2 CALCOMP Output

An amplitude versus frequency plot generated by the harmonic analysis routine consists of the tabulated points connected by straight-line segments. The zero value or steady component is always plotted as zero. The actual value is then given at the bottom of the page unless it is too big for the CALCOMP to handle. The variable identification with units also is given at the bottom of the page.

สสํํํํํํํํํํ

Routine.
易
PIP DEFL.OUT-UF-plame, motor loblade lofy
AWPLITLINE

TiP Defl. inmamerutior liallade ioft

efan aemo.moment rotor liglade i, intlo frequency Figure 4-21.

This program option gives a vector analysis (least-squared-errors curve fit) of selected variables from a set of maneuver data.
4.10.1 Curve-Fit Analysis

4.10.1.1 Problem Identification

This output is the same as the headings printed for the trim page(s) and time history plots.

4.10.1.2 Curve-Fit Heading

The maneuver time at which the curve fit starts is given. All time points prior to this time are disregarded by the curve-fit procedure. The frequency used in the curve fit, OMEGA, is given in cycles per second. The curve-fit function, $F(T)$, is expressed in general form:

$$
F(T)=\text { AMPLITUDE } * \operatorname{SIN}(O M E G A * T+\text { PHASE ANGLE })+\text { CONSTANT }
$$

(where T is time as measured during the maneuver).
4.10.1.3 V-riable, Amplitude, Phase Angle, and Constant

Below the general equation are five columns as follows:
(1) Variable: In this column the variable being curve fit is identified, and its units are given.
(2) Amplitude: This number may be substituted into the general equation for AMPLITUDE. The units are those given under VARIABLE.
(3) Phase Angle: This number may be substituted into the general equation for PHASE ANGLE. The units are degrees as labeled.
(4) Constant: This quantity may also be substituted directly into the general equation. The units are those given under VARIABLE.
(5) Coef of Corr: This denotes coefficient of correlation and is a measure of how well the variable considered is fit by a sinusoidal variation at the frequency selected. A number greater than 0.95 in this column indicates a reasonably good fit. A number smaller is generally caused by another frequency content or transient condition.

Figure 4-22. Vector Analysis Data.

4.10.2 Amplitude and Phase Anple Comparisons

At the top of the following page the problem identification is repeated.
The magnitudes and phase angles between variable vectors are compared for selected pairs of variables. The variables compared are labeled as VARIABLE NVARIABLE B. The variable identifications used are the same as those used on the previous page and for the plot headings. The amplitude ratio printed is AMPLITUDE A divided by AMPLITUDE 3. The phase angle difference is PHASE ANGLE A minus PHASE ANGLE B.
4.10.3 Variable "A" as a Linear Combiaation of Variables. "B" and "C"

Following the amplitude and phase angle comparisons, the progran skips to the top of the next page and agair prints the problem identification heading.

If all the selected variables are viewed as vectors rotating at the same rotational speed, OMEGA, any one variable may be expressed as a linear combination of two other variables and a constant as long as the phase angle between the two variables is not 0 or 180 degrees. This telationship is given generally in the heading as " $\mathrm{A}=\mathrm{KB} * \mathrm{~B}+\mathrm{KC} * \mathrm{C}+\mathrm{KD} . "$

Here A, B, and C are the variables concerned. The variable identification phrase is printed for each in the output. KB, KC, and KD are constants determined by the program and printed in the column labeled "COEFFICIENT." In this row for variable B, the coefficient is KB; in the row for variable C, the coefinicient is $K C$; and in the unlabeled variable row, which has the word CONSTANT to the right of the row, the coefficient is KD .

4.10.4 Time Used

At the completion of the vector analysis routine, the time used in the vector analysis process is printed along with the total elapsed computing time.

4.11 OUTPUT OF STABILITY ANALYSIS ROUTINE

The operation of the stability analysis routine (STAB) jepends on the numerical evaluation of number of partial derivatives. The partial derivatives appear in the equations of motion for the rotorcraft. A frequency analysis is made on the equations of motion with controls fixed and following step inputs to the controls. As used here, "s" is the Laplace operator.

4.11.1 Control Partial Derivative Matrices (Figure 4-23)

4.11.1.1 Force and Moment Derivatives

The first version of the control partial derivative matrix is printed with units of pounds per inch or foot-pounds per inch. The response to each of the fourteen degrees of freedom available in STAB is evaluated and ratioed to be the response to a l-inch step input from each of the four controls. If the rotor degrees of freedom are not turned on and the rotor hub is not rigid, the rotor flapping angles are changed to reduce the rotor flapping moments to less than the allowable error.

4.11.1.2 Control Derivatives in Terms of Accelerations

The second version of the control partial derivative matrix contains the same information as the first. In this matrix, the force and moment derivatives have been divided by the appropriate masses or inertias to give the units of linear or angular acceleration per inch of control. These numbers may be thought of as the accelerations at the instant immediately after a step input from the controls. The same labels are used for the rows of the second matrix as for the first.

4.11.1.3 Conventional Fixed-Wins Nondimensional Derivatives

If the rotorcraft does not have a wing or the airspeed is less than 1.0 knot, this matrix is not printed. The reader is referred to Etkin, Reference 2, for the nondimensionalizing factors and interpretation of the first six rows of the third matrix. No attempt will be made to interpret or explain the last eight rows of this matrix because conventional fixed-wing concepts do not apply to helicopter rotors and pylons.

4.11.2 Partial Derivatives for Starility Analysis Degrees of Freedom

The next pages of output contain detailed information used for the calculation of the partial derivatives for each degree of freedom which is activated in STAB. The partial derivatives are evaluated in the same order as the variables are listed below. See Figure 4-24.

4.11.2.1 Stability Analysis Degrees of Freedom

At the top of each partial derivative page is a list of the current value of each of the possible degrees of freedom. All "FUS" (fuselage) parameters are in the body reference system and all "M.R." and "T.R." (rotor) parameters are in the appropriate shaft reference system. By a comparison of two successive pages, it is possible to tell which variable is being perturbed and by how much. The 22 variables which may be perturbed are perturbed in the following order:

pounosfinch on foct-pawnosfinch			
CORLECTIVE	fla crelise	lat crelic	-epal
-307.0	410.6	9.400	-21.96
-97.02	41.81	260.6	368.2
-6791.	1055.	205.3	-3.230
17405.	-29360	-3e1.8	-0.1207E 05
-556.6	-2932.	-118.7	$\begin{aligned} & 451.1 \\ & 15000 \end{aligned}$
-6.3001 0.1629 0.6934 $\quad 0.258$			
$\begin{array}{lll}-16.37 \\ 0.3659 & 0.508 \\ 0.7163 \mathrm{E}-02 & 0.7315 \\ -0.3164 E-01-0.1104 E-01 ~\end{array}$			
$0.1322-0.2268$-0.8257E-02 0.3409E-02			
-0.1451	0.7067E-01	0.4631	0.3910

Figure 4-23. Control Partial Derivative Matrix From STAB.

FUS. $U=$ velocity in the X direction (feet per second)
FUS: $W=$ velocity in the 2 direction (feet per second)
FUS. $Q=p i t c h$ rate (degrees per second)
FUS. $V=$ velocity in the Y direction (feet per second)
FUS. $P=$ roll rate (degrees eer second)
FUS. $R=$ yaw rate (degrees per second)
M.R. F/A PYLON RATE = (degrees per second)
M.R. LAT PYLON RATi = (degrees pér second)
T.R. F/A PYLON RATE = (degrees per second)
T.R. LAT PYLON RATE = (degrees per second)
M.R. F/A FLAP. RATE = (degrees per second)
M.R. LAT FLAP. RATE $=$ (degrees per second)
T.R. F/A FLAP. RATE = (degrees per second)
T.R. LAT FLAP. RATE = (degrees per second)
M.R. F/A PYLON DISP = (degrees)
M.R. LAT PYLON DISP = (degrees)
T.R. F/A PYLON DISP = (degrees)
T.R. LAT PYLON DISP = (degrees)
M.R. F/A FLAP. DISP $=$ (degrees)
M.R. LAT FLAP. DISP $=$ (degrees)
T.R. F/A FLAP. DISP $=$ (degrees)
T.R. LAT FLAP. DISP = (degrees)

4.11.2.2 Rotor Per frmance

These two rows are identical to those described in the discussion of the trim iteration page, Section 4.4.2
4.11.2.3 Force and Moment Summary

This block of output is the same as described in Section 4.4.3. The forces and moments printed here are computed after the small increment in the pertinent variable has been made. All data are in the body reference system.

This block of output presents the changes in the force and moment contributions in exactly the same format as the full force and moment sumary. Each number in this block is obtained by taking the corresponding value from the force and moment summary immediately above less the corresponding value at the trim condition or at the current maneuver time point.

4.11.3 Stability Partial Derivative Matrices

4.11.j.1 Rotor Partial Derivative Matrix (Figure 4-25)

On this page is printed a summary of the rotor partial derivatives computed from the data on the previous pages. Each row gives the partial derivatives of some force, moment, or flapping angle as labeled, with respect to the linear and angular velocities U, W, Q, V, P, and R. The units are feet, pounds, radians, and seconds.

4.11.3.2 Total Partial Derivative Matrix (Figure 4-25)

On this page is printed a summary of the partial derivatives computed from the data on the previous pages. Each row gives the partial derivatives of some force or moment, as labeled, with respect to the perturbation variables used.
4.11.4 Mass, Damping, and Stiffness Matrices (Figure 4-26)

The mass, damping, and stiffness matrices which are used to calculate the rotorcraft stability characteristics are printed on the next three pages. The reader is referred to Volume I for the analytical background of these three matrices.

If $\operatorname{IPL}(33)=1$ or 2 , these three matrices will be punched on cards. The punched output is headed by an identification card which consists of the IPSN input from CARD 01, the date, plus rotorcraft gross weight, cg stationline, ground speed, and ambient temperature. Since the matrices are sparse, only the nonzero elements are punched. The format of the matrix element card is:

Column
1 Matrix Indicator (II)
7-8 Row Number of element (i2)
9-10 Column Number of elenent (I2)
12-25 Value of the elemert specified above (E15.8)
27-28 Row
29-30 Column

mass mathix

－${ }_{938}$ 笽

stiffiness mataix
－墑荡
$0^{\circ} 0$
$0^{\circ} 0$
$50^{\circ} 262^{\circ}$
$0^{\circ} 0$
$0^{\circ} 0$
$0^{\circ} 0$
100
suavi ontawvo
v

0.0
0.0
0.0
0.0
0.0
0.0
v

0.0
0.0
0.0
0.0
0.0
0.0

 Et mog

 10
80
80 E

현
열

Mo．
V13M1

\sim
이웅 잉

$*$

Column

$32-45$	Valyie
$47-48$	Row
$49-50$	Column
$52-65$	Value
$66-80$	Date and Ground Speed

Values of the matrix indicator are
$=$ C for stiffness matrix
$=1$ for damping matrix
$=2$ for mass matrix

The matrix indicator and each row and column number are integer inputs (I-format). The values of the elements are in scientific notation (E-format). Each matrix begins on a new card. An end-of-data card (I punched 20 times) follows the last card of the last matrix.

4.11.5 Stick-Fixed Stability Results (Figure 4-26)

The system characteristic equation, with controls fixed, is solved for its complex roots and associated response modes. These results are presented in several ways as discussed below.

4.11.5.1 Roots

The real and imaginary parts of the roots of the characteristic equation are printed under the headings REAL and IMAG. The units are radians per second. If 2 is the response of some mode, the response expression may be written directly in terms of the real and imaginary parts.

$$
z=A e^{(\text {REAL*t })} \cos (\text { IMAG*t })=A(\text { REAL }+ \text { IMAG*J) }
$$

where $\quad t=$ time

$$
A=\text { constant (dependent on initial condition) }
$$

In terms of the damping ratio, ζ, damped natural frequency, ω_{d}, and undamped natural frequency, ω_{n}, the printed roots are

$$
\begin{aligned}
& \text { REAL }=\zeta \omega_{\mathrm{n}} \\
& \text { IMAG }=\omega_{\mathrm{d}}=\omega_{\mathrm{n}} \sqrt{1-\zeta^{2}}
\end{aligned}
$$

The roots may also be used to form the denominator, $d(s)$, of the frequency response polynomial.

$$
d(s)=\prod_{i=1}^{n}\left[\left(s-\operatorname{REAL}_{i}+\operatorname{IMAG}_{i} * j\right)\left(s-\text { REAL }_{i}-\text { MAG }_{i} * j\right)\right]
$$

where s = Laplace operator $\pi=$ continued product notation

$$
j=\sqrt{-1}
$$

$N=$ number of roots printed
$1=$ sequence number of root in printout
Note that in the case of complex conjugate parts of roots, only the root with the positive imaginary part is printed.

4.11.5.2 Terms in Denominator of Laplace Transfer Function

Each root or pair of roots generates the terms in one factor of the denominator of the Laplace transfer function, $D(s)$.

$$
D(s)=\prod_{i=1}^{n}\left(\operatorname{TAU}_{i}{ }^{*} s^{2}+\operatorname{DAMP}_{i} \star s+1\right)
$$

where

$$
\begin{aligned}
\operatorname{TAU}_{i} & =1 /\left(\operatorname{REAL}_{i}{ }^{2}+\operatorname{IMAG}_{i}{ }^{2}\right)=1 / \omega_{n}^{2} \\
\operatorname{DAMP}_{i} & =-2 \text { *REAL }_{i} /\left(\text { REAL }_{i}{ }^{2}+\text { MAG }_{i}{ }^{2}\right)=-26 / \omega_{n}
\end{aligned}
$$

and Π, N, and i are as defined in the previous section.

4.11.5.3 Period

For the oscillatory roots of the characteristic equation, the period of the damped oscillation is given in seconds.

$$
\text { PERIOD }=2 \pi / \text { IMAG }
$$

For the roots with a zero imaginary part, the period is a meaningless concept, sn a zero appears in the output.

4.11.5.4 Rate of Conversence or Diverence

The column headed "TIME TO HALF-DBL" depends only on the value of the real part of the root. If the real part is negative, the time to half amplitude, in seconds, is printed. If the real part is positive, the time to double amplitude, in seconds, is printed.

TIME TO HALF-DBL $=\ln (.5) /$ REAL

The column headed "CYCLES TO HALF-1)BL" contains the number of cycles to half or double amplitude based on ti:e damped natural frequency (IMAG) for the oscillatory roots.

$$
\text { CYCLES TO HALF-DBL }=\text { (TIME TO HALF-DBL)/PERIOD }
$$

For aperiodic roots, a zero is printed.

4.11.5.5 Undamped Natural Frequency and Damping Ratio

The undamped natural frequency, ω_{n}, is based on the absolute value of the complex root.

$$
\omega_{n}=\sqrt{R E A L^{2}+I M A G^{2}}
$$

Thus, ω_{n} is defined even for an aperiodic root. The calculated value of ω_{n} is given both in radians per second and cycles per second. The damping ratio, 6 , in combination with the undamped natural frequency, completely describes the root.

$$
\zeta=R E A L / w_{n}
$$

For a stable aperiodic root, the damping ratio is one. For an unstable aperiodic root, the damping ratio is minus one.
4.11.5.6 Stability Mode Shapes (Figure 4-27)

In the stability mode shape printout, each column represents one mode. The first column on the left is associated with the first root printed, the second with the second, and so forth. Each component of a mode shape has a relative magnitude (MAGN) and a phase angle (PHASE). As implied by the column heading, magnitude is the top number of the pairs printed out and phase angle is the bottom. The normal printout provides for eight columns (mode shapes of roots). If more than eight roots are computed, the additional roots are printed in the same format on additional page(s). Columns after the last root are set to zero.

 Figure 4-27.

The mode shapes associated with the cotorcraft characteristic roots axe first printed as normalized with respect to THETA, then as normalized with respect to PHI , and lastly as normalized with respect to the largest participation factor (variable). In all three sets of normalized mode shapes, the normalizing variable always has a magnitude of 1.000 (nondimensional) and a phase angle of 0.0 degrees. The fuselage degrees of freedom used for the mode shapes are not the same as those used in the rest of the stability analysis. The following variables are used:

$$
\begin{aligned}
\mathrm{U} / \mathrm{VELOCITY}= & \Delta u / V=\text { perturbation velocity in X-direction } \\
& \text { divided by total velocity (nondimensional) }
\end{aligned}
$$

THETA $=\int_{\text {approximately the same as pitch angle }} \mathbf{q} d t=$ the integral (radians);
BETA $=\Delta v / V=$ perturbation velocity in Y-direction divided by total velocity (radians); approximately the same as sideslip angle
PHI $=\int_{\text {the }} \mathrm{p} d t=$ integral of roll rate (2adians); approximately PSI $=\int_{\text {the }} r d t=$ integral of yaw rate (radians); approximately

If activated, the pylon and flapping variables are all given as angular displacements in radians.

4.11.6 Transfer Function Numerator (Figure 4-28)

Following the mode shapes, the numerators of the transfer function for pitch, roll, and yaw as a function of their respective primary controls are printed. In each of the three numerators printed, the value labeled "GAIN" is the constant term in the frequency response polynomial; "STATIC GAIN" is the gain term to be used in the Laplace transfer function.

The complex roots of the frequency response polynomial are printed in two pairs of columns labeled "ROOTS." To the right of the real and imaginary roots are the corresponding values in the numerator of the Laplace transfer function, "TAU" and "DAMP." The numerator of the Laplace transfer function $N(s)$, may be written as follows:

$$
N(s)=\operatorname{STATIC} \text { GAIN } * \prod_{k=1}^{M}\left(\operatorname{TAU}_{k} * s^{2}+\operatorname{DAMP}_{k} * s+1\right)
$$

and the frequency response polynomial as

$$
n(s)=(G A I N) * \prod_{k=1}^{M}\left[\left(s-\operatorname{REAL}_{k}+\operatorname{IMAG}_{k} * j\right)\left(s-\operatorname{REAL}_{k}-\operatorname{IMAG}_{k} * j\right)\right]
$$

where $k=$ sequence number of root
$M=$ total number of roots printed
The complete transfer function, $G(s)$, can then be formed as either

$$
G(s)=N(s) / D(s)
$$

or

$$
G(s)=n(s) / d(s)
$$

where $D(s)$ and $d(s)$ are the denominator of the transfer function and the frequency response polynominal discussed in Section 4.11.5.2.

4.11.7 Frequency Response (Figure 4-29)

Following the transfer function numerator printout, the frequency response of the three transfer functions is tabuiated. The data listed are the frequency in Hertz and radians per second, the gain in the decibel equivalent of a magnitude in degrees per inch of control, and the phase in degrees. The range of frequencies is 0.01 to 100 radians per second. With these data, construction of a Bode plot for each transfer function is greatly simplified.

4.12 BLADE ELEXENT AERODYNMMIC DATA

Blade element aerodynamic data are printed for the rotor(s) specified by NVARC (CARD 01) at the points in the run specified iy the value of IPL(27) in conjunction with the times in the Blade Element Printout Times Group. A set of aerodynamic data is composed of blocks of data where each block presents data at twenty blade radial stations for one blade of one rotor at a single blade azimuth location. The printout of the set of data blocks precedes the maneuver time point page with which it is associated. When NVARC specifies that data for both rotors are to be printed, the data for the main rotor (Rotor 1) precedes that for the tail rotor (Rotor 2).

The number of data blocks included in the printout for one rotor depends on which rotor analysis (time-variant or quasi-static) is active for the rotor in question at the time of printout. When the time-variant rotor analysis is active, the number of blocks also depends on the number of blades on the rotor while the format of each block depends on which, if either, of the unsteady aerodynamic options is active.

If the quasi-static rotor analysis is active for a rotor when aerodynamic data are to be printed, the set of data printed for that rotor consists of a data block for each of twelve azimuth locations (30-degree increments)

's

4

of a representative blade. If the time-variant rotor analysis is active, the set of data for the rotor consists of one data block for each blade at the azimuth angle corresponding to the maneuver time point, i.e., two to seven data blocks.

The data blocks consist of six parameters which are independent of blade radial station and nine or fourteen parameters which can vary with radial station. The printout includes nine parameters when the unsteady aerodynamic options are turned off; when either unsteady option is active, five additional parameters are included. Of these five additional parameters, three are the same regardless of which option is active while the remaining two are a function of the active option. All parameters are defined in Table 4-4.

Figure 4-30 contains examples of blade element aerodynamic data printout. The data are for a two-bladed time-variant rotor with the unsteady aerodynamic option off, the BUNS option on, and the UNSAN option on.

4.13 BLADE ELEMENT BENDING MOMEATT DATA

When the time-variant rotor analysis is active, a tabulation of the instantaneous values of beam, chord, and torsional moments at each radial station on each blade is printed at the times specified in the Blade Element Printout Times Group. NVARC on CARD 01 specifies the rotor(s) to be included in the printout. Data are printed at twenty radial stations with Station 19 (95 percent radius) printed first and Station 0 (the root) last. Station 20 is omitted from the printout since all moments are defined to be zero at the tip. The units for all three moments are inchpounds. Figure $4-31$ is an example of the printout for one rotor. The printout of this data follows rotor elastic response (Figure 4-19) of the time point with which it is associated. If data for both rotors are to be printed, the main rotor (Rotor 1) is pirinted first.

It is emphasized that this bending uoment data is only printed for a rotor which uses time-variant analysis; if NVARC specifies that data be printed for a rotor which uses the quasi-static analysis, the program ignores the input and does not print any moment data.

TABLE 4-4. DEFINITIONS OF BLADE ELEMENT ARNODYMMIC PARAMETERS

Parameters Which are Independent of Radial Station (All six parameters included in each printout)

Name	Description	Units
PSI	Azimuth location of blade	deg
U-HUB	Shaft reference X component of velocity at rotor hub	ft/se
V-HUB	Shaft reference Y component of velocity at rotor hub	$\mathrm{ft} / \mathrm{sec}$
W-HUB	Shaft reference 2 component of velocity at rotor hub	$\mathrm{ft} / \mathrm{sec}$
GEO. PITCH	Geometric blade pitch angle at Station 0 (root) for azimuth location PSI	deg
$\begin{aligned} & \text { BETA } \\ & \text { (HUB) } \end{aligned}$	Flapping angle at the hub (i.e., the angle between the shaft reference $X-Y$ plane and the blade pitch change axis at Station 0) for azimut's location PSI	deg

table 4-4. Continued.			
Name	Printout Code *	Description	Units
CL	A	Total local lift coefficient including unstcady acrodynamics effects if any	-
DCL	B	Increment to local steady-state lift cocfficient from the BUNS option; included in the value of CL	-
CDR	U	Radial component of drag coefficient from the UNSAN option	-
CM	A	Total local pitching moment coefficient including unsteady aerodynamics effects if any	-
DCM	B	Increment to local steady-state pitching moment coefficient from the BUNS unsteady aerodynamic option; included in the value of $C M$	-
HVDD	U	Second time derivative of the vibratory part of the local blade position (h_{y}); equivalent to the first time derivative of the vibratory part of the local heaving velocity	$\mathrm{ft} / \mathrm{sec}$?
ALPHAD	BriU	Alpha dot, the first time derivative of ALPHA	deg/sec
THETAD	B\&U	Theta dot, the first time derivative of THETA (the local blade pitch angle)	deg/sec
THETADD	BdU	Theta double dot, the second time derivative of THETA (derivative of THETAD)	$\mathrm{deg} / \mathrm{sec}^{2}$
* Printout code definition: $\mathrm{A}=$ variable always included in printout $B=$ variable included in printout only when BUNS unsteady aerodynamics option is active $\mathrm{U}=$ variable included in printout only when UNSAN unsteady aerodynamics option is active B $\& U=$ variable included in the printout only when one of the unsteady aerodynamics options is active			

	Pe1	15.	$1-+10$	1AP.31	v-hut $=$	U.1\%	W-NUA $=$	-17.67	C.FO. PITCM	$=14.71$	getafmes	$=2.21$	
-7	117	UP	UR	MACH	ALPMA	$C L$	SCl	Cir	C*	TCM	alPmac	Tmetan	TME TAP.5'
70	741.44	-45.04	-161.27	0.724	2.134	0.36759	0.12580	0.01016	-0.0.3705	-0.6.3769	283.03	$710.6{ }^{\circ}$	92155.44
10	744.45	-4.6. P $^{\text {P }}$	-161.71	r. 601	-5.53.3	0.44714	C.1592P	0.01027	-0.0.0280	-0.06: 0 \%	725.19	775.36	100546.61
10	716.94	-43.71	-101.34	0.658	2.914	(1.57810	6.1A291	0.016127	-0.04877	-0.06F72	3F7.26	P30.099	108E81.PF
17	A79.65	-42.74	-161.37	0.626	$3.27{ }^{\circ}$	C.5c279	0.21010	0.01034		-0.n504?	436.82	903.96	117163.7s
1/	641.0h	-41.73	-161.41	0.593	3.424	G.t5775	c. 240131	C.01042	-0.07136	-0.0713h	464.60	966.85	125376.e?
$1{ }^{10}$	$6 \cap 6.47$	-40.69	-161.44	0.560	3.947	0. 72371	0.27410	0.61050	-0.077f6	-0.67786	530.39	1029.73	133525.74
14	$5 \mathrm{f6.99}$	-39. 60	-161.47	0.52 A	4.258	3.79142	ก. 2127	n. 11059	-0.08501	-0.08591	574.05	1042.67	14160\%.2*
11	$\times 29.52$	-38.44	-161.50	0.496	4.541	0.86209	0.35ak	0.010tF	-0.08424	-0.09924	615.61	1144.06	14464t. 75
12	62.07	-37.23	-161.53	0.464	4.708	0.43697	0.40563	0.01077	-0.0n754	-0.08790	654.21	1215.07	1s7ER1.00
11	454.67	-35.95	-161.57	C. 437	5.022	1.01741	C. 46381	6.01085	-C.nebos	-0.0\%803	091.11	1277.33	1e5630.5n
10	617.19	-34.80	-161.00	0.401	5.203	1.10501	C.6323a	0.01093	-C.0F456	-0.0845t	723.58	1338.46	173554.FP
-	370.77	-33.21	-161.64	0.269	5.394	1.20207	0.61461	0.01101	-G.0F306	-0.0070\%	751.73	1364.70	181498.14
9	342.36	-31.75	-161.tir	0.339	5.397	1.31471	0.71517	0. 01107	-n.0A149	-0.0N14A	774.00	1461.15	1F9467.13
7	306.50	-30.25	-161.71	0.304	5.371	1.404564	6. 04064	0.01111	-0.07cpa	-0.0748A.	7Pf.26	1522.7	197654.:
6	267.9F	-.20.60	-161.75	0.274	5.221	1.60393	1.00174	0.01112	-6.07730	-6.07771	791.08	1584.?	205464.94
-	270.21	-27.C5	-161.79	C.251	4.90 A	1.80371	1.71+16	0.0110%	-0.07410	- 1.017410	777.4	1646.0.7	213457.44
4	102000	-25.56	-161.83	0.274	4.217	2.06421	1.51528	0.01697	-n. 76.8 C	-c.07cer	737-53	17ce -9	221E76.CA
?	155.52	-23.63	-161.87	0.199	3.490	7.44757	1.9月n84	n. 01676	-0.07041	-n.n7n41	$6 \leqslant 1.40$	1771.70	
$?$	119.10	-21.91	-161.91	0.177	2.140	3.07 kc 2	7.68471	$0 . \operatorname{cin} 0$	-0.07011	-n.07011	470.62	1832.19	237876.P1
1	90.87	-27.60	-161.98	0.159	0.0	0.0	2.68571	0.1500	0.0	-0.01711	0.0	1932.14	237E70.f1

BETA(MUS) $=2.20$

14.81

$$
\ln -1+r
$$

option active.

[^1]
 NFEN甘5

Figure 4-31. Blade Element Bending Moment Data.

5. DIAGNOSTIC AND ERROR MESSAGES

5.1 GENERAL

All of the messages generated by the computer program itself rather than the computer operating system and which are considered to be error messages are listed below. The messages are in alphabetical order with the following words ignored: M.R., T.R., COLLECTIVE STICK, F/A CYCLIC STICK, lat CYClic stick, Pedal, main, tail, Wing, STB1, stb2, STB3, STB4, the.

Two or more words or phrases enclosed in brackets, one above the other, indicates that it is possible to have either word or phrase, but only one, in the message when it is printed out. An underline in the message indicates a place for numerical value in the message.

After each message is the name of the subroutine which printed it out. The next statement is about the condition which caused the message to be printed. Next is an indication of the consequences of the condition followed by instructions to the user.

5.2 MESSAGES

5.2.1 Bypass of Wagner Function

ALLEVIATION DEVICE FOR WINGS BYPASSED BECAUSE WING CHORD IS TOO SMALL FOR THIS TIME INCREMENT AND VELOCITY

From WAG
The analysis contained in WAG assumes a minimum number of data points will be sampled in a distance traveled which is calculated from the wing chord. This message indicates that the ratio, $V(\Delta t) /($ wing chord), is too large.

WAG is bypassed for wing. Execution continues.
To eliminate the message make Δt, 2DELTl or ZDELT2, on data card 301, smaller.

5.2.2 Error in Vector Analysis

an attempt was made to manipulate a variable which had not been INCLUDED IN THE GROUP TO BE FITTED. PROCESSING TERMINATED.

From CuRvet
During the amplitude and phase angle comparison of the linearization portion of the curve-fit section of the program, a request was made to use a variable for which no prior request to fit that variable had been made. Thus, the information necessary had not been computed and so the comparison or linearization could not be made.

Compris on and Linearization terminates.
Check input data to curve-fit routine for error indicated.

5.2.3 Apparent Discontinuity During Maneuver

APPARENT DISCONTINUI'TY ENCOUNTERED AT TIME =
 \qquad WITH A TIME STEP OF
 \qquad

From HAMM
In the course of comfuting a maneuver using Hamming's method of numerical integration, an apparent discontinuity was encountered in one of the variables being integrated. The program switches to using Runge-Kutta techniques used to start Hamming's method until the discontinuity is passed.

This is a warning message only. Execution continues.

5.2.4 Error in Jet Control Linkages

CHANGE IN JET THRUST WITH $\left\{\begin{array}{l}\text { COLLECTIVE } \\ \text { F/A CYCLIC } \\ \text { LAT CYCLIC } \\ \text { PEDAL }\end{array}\right\}$ STICK POSITION INPUT IS IN

ERROR

From JFBGIN

The number of controlled jets, XJET(1), was input as zero, but the change in jet thrust with the specified control was not zero.

Problem step terminates.
Check the values of $X J E T(1), X C O N(1), X \operatorname{CON}(6), X C O N(13), X C O N(20)$, and XCON(27) for errors.

5.2.5 Error in Fuselage Inertias

CHECK INPUT FUSELAGE INERTIAS. THE NUMBERS INPUT ARE PHYSICALLY IMPOSSIBLE AND CANNOT BE HANDLED BY THIS PROGRAM.

From MNEM or EXTORS
This message indicates that $I_{X} I_{Z}-I_{X Z}{ }^{2}=0$, which is physically impossible.

Problem step terminates.

Change the input data for I_{X}, I_{Z}, or $I_{X Z}$ for fuselage and stores.

5.2.6 Error in J-Card

CHECK PART 2 DATA CARD \qquad J CODE IS \qquad

From SIVAR or TIVAR
A value for J on 311-type card has been input for which an operation is not defined.

Problem step terminates.
Change the card indicated by the message.

5.2.7 Error in NPART

DATA ERROR • • NPART = \qquad
From MAIN
The control program, MAIN, read an illegal value of NPART on CARD 01, 401, 601, or 701. This error most commonly occurs after another error has interrupted the normal sequence of events by terminating the problem step.

Problem step terminates.
5.2.8 Problem in Numerical Intepration

DIFFERENTIAL EQUATION SOLUTION FAILS TO MEET ACCURACY SPECIFIED

From HPCG
In the course of computing a maneuver using Hamming's method of numerical integration, the solution of the differential equations was not within the prescribed tolerance. The tolerance is doubled, the time step is halved, and the solution is attempted again.

If the equations still fail to meet the prescribed accuracy after six such attempts, the problem step is terminated.

If problem step terminates, reduce the initial maneuver time increment. Otherwise no action is required.
5.2.9 Error in Drag Divergence Mach Number

DRAG DIVERGENCE MACH NUMBER INPUT FOR xxxx IS IN ERROR

IT HAS BEEN RESET TO \qquad -

Where xxxx is SUBGROUP 1, SUBGROUP 2, SUBGROUP 3, SUBGROUP 4, SUBGROUP 5, WING, STB1, STB2, STB3, or STB4

From YSINIT or YRINIT
$Y(1)$ for rotor or surface aerodynamic data was input greater than or equal to 1 . This is a warning message.

5.2.10 Excessive Rotor Blade Ancle of Attack

excessive angle of attack for $N=\left\{\begin{array}{l}1 \\ 2\end{array}\right\}$
From CDCL
The angle of attack of a blade segment on the $\left\{\begin{array}{c}\text { main } \\ \text { tail }\end{array}\right\}$ rotor exceeded 20 radlans.

Problem step terminates.

5.2.11 Excessive Angle of Attack on Aerodynamic Surface

$$
\text { excess ive angle of attack on }=\left\{\begin{array}{c}
\text { STB1 } \\
\text { STB2 } \\
\text { STB3 } \\
\text { STB4 } \\
\text { RWG } \\
\text { LWG }
\end{array}\right\}
$$

From CLCD

Subrouting CLCD was entered with the angle of attack of the
$\left\{\begin{array}{l}\text { Stabilizer No. } 1 \\ \text { Stabilizer No. } 2 \\ \text { Stabilizer No. } 3 \\ \text { Stabilizer No. } 4 \\ \text { Right Wind Panel } \\ \text { Left Wing Panel }\end{array}\right\}$ greater than 20 radians.

Problem step terminates.

5.2.12 Induced Velocity Nonconvergent

INDUCED VELOCITY SET TO O._ CALCULATIONS NONCONVERGENT.

From VIND
The iterative loop which calculates induced velocity for a constant velocity and rotor thrust has not converged in 100 iterations.

Warning message only. Execution continues.

5.2.13 Error in IPSN

IPSN INDICATED NOT ON LIBRARY
From C81L
In an operation with NPART $=8$, NVARA $\neq 0$ on Card 01 , the IPSN input on card 02 does not match any IPSN on the file tape.

Problem step terminates.
Check input IPSN and list of IPSN's on the file tape.
5.2.14 Error in Number of Advance Ratios

INPUT FOR NO. OF ADVANCE RATIOS, \qquad , IS IN ERROR.

From REDRWK
The input for the number of advance ratio entries in the rotor-induced velocity distribution table is greater than 10 , the maximum allowable.

Problem step terminates.
Check for mispunched input or reduce the input to 10 or less.
5.2.15 Error in Number of Inflow Ratios

INPUT FOR NO. OF INFLOW RATIOS, \qquad , IS IN ERROR.

From REDRWR
The input for the number of inflow ratio entries in the rotor-induced velocity distribution table is greater than 5 , the maximum allowable.

Problem step terminates.
Check for mispunched input or reduce the input to 5 or less.

5.2.16 Error in Number of Radial Station

INPUT FOR NO, OF RADIAL STATIONS IS IN ERROR. IT SHOULD BE $4,5,10$, or 20

From REDRWK

The input for the number of radial scation entries in the rotor induced velocity distribution table is not equal to one of the values specified.

Problem step terminates.
Check for mispunched input or change the input to one of the prescribed values.

5.2.17 Error in Number of Harmonics

INPUT FOR THE HIGHEST HARMONICS IS IN ERROR.

From REDRWK

The input for the number of the highest harmonic in the rotor-induced velocity distribution table is greater than 16.

Problem step terminates.
Check for mispunched input or reduce the input to 16 or less.

5.2.18 Error in Program Logic Input

INPUT TO IPL (__) IS IN ERROR
From ERRCHK
IPL input indicated has an illegal value. Problem step terminates.
Check for mispunched input or refer to Section 3 to find the reason the input interpreted as an error.
5.2.19 Error in Reading Controls Group

INPUT TO SWITCH FOR READING ROTOR CONTROL INPUTS IS IN ERROR
From XCONIN
The value of IPL(13) indicates that the rotor supplementary controls group is not to be read. However, other data indicates that the configuration being simulated is not a single-main-rotor helicopter. These situations are not compatible.

Problem step terminates.

Add the specified controls subgroup, using blank cards if the inputs are not to be used.

5.2.20 Error in Store Drop

INPUT TO WEIGHT OR TIME TO DROP EXTERNAL STORE NO. \qquad IS IN ERROR

From SIVAR

The time to drop the referenced store on a 3ll-type card is less than zero or the weight input, XSTi(1), for the referenced store (i) is less than or equal to zero. The weight input of a store/brake group must be greater than zero for a store which is to be dropped.

Problem step terminates.
Check inputs for time to drop store $(J=35)$ and weight of store to be dropped for input errors.

5.2.21 Error When Reading From Library

MEMBER \qquad NOT IN C81LIB

From REDID
An attempt was made to read a data group from the data library, and the group was not on the library. Problem step terminates.

Check data for a misspelled group name; or if the member printed in the message appears to be data, check for extra or missing data cards.

5.2.22 Error in Partial Derivative Matrix

THE PARTIAL DERIVATIVE MATRIX IS SINGULAR. THIS IS PROBABLY CAUSED BY ONE OF THE CONTROLS BEING UNCONNECTED.

From ITRIM

During the TRIM procedure, a singular partial derivative matrix occurred. The usual cause is an error in the input data for one of the controls. Previous matrices, if any, should be examined for a near-zero row or column to help locate the cause.

Problem step terminates.

5.2.23 Error in Fuselape Inputs

PEAK FORCE/MOMENT OR ITS CORRESPONDING ANGLE INPUT FOR FUSELAGE

IT HAS BEEN RESET TO 0.
From FUSINT
According to the inputs to the fuselage High Angle Equations, a nonzero peak force or moment occurs at a zero aerodynamic angle or a zero peak force or moment occurs at a nonzero aerodynamic angle. The peak force or moment and the angle have been reset to zero. Based on the equation indicated, check the following fuselage inputs:

LIFT:	XFS(17) and XFS(18)
PITCH:	XFS(45) and XFS(46)
SIDE FORCE:	XFS(58) and XFS(59)
ROLL:	XFS(72) and XFS(73)
YAW:	XFS(86) and XFS(87)

Warning message only. Execution continues.

5.2.24 Error in Vector Analysis

THE PHASE ANGLE DIFFERENCE BETWEEN AND IS a multiple of 180 degrees. therefore, no variable can be expressed as a linear function of them.

From CURVET
The vector analysis section of the program where the coefficients in the expression $A=K B * B+K C * C+D$ are derived has falled because of the linear dependency of B and C.

Program goes to next set of variables.

5.2.25 Excessive Power

POWER REQD. FOR TRIM COND. EXCEEDS POWER AVAILABLE
From WRTMNV
The power required to maintain constant rpm at the trim condition is greater than 0.9 times the maximum engine power available, XFC(24).

- Problem step terminates.

Check for rotor stall, practicality of flight conditions, or increase engine power.

5.2.26 Error in Flapping Moment Computations

$\left\{\begin{array}{c}\text { MAIN } \\ \text { TAIL }\end{array}\right\}$ kOTOR FLAPPIIVG MOMENT IS NOT IN BALANCE AFTER
\qquad
From ITROT
The iteration loop in the rotor analysis which balances the rotor flapping moments was activated but could not balance the rotor in the number of iterations allowed.

Problem step terminates.
Check configuration, flight regime, and spatial orientation for compatibility.

5.2.27 Error in Flapping Angles Computation

$\left\{\begin{array}{l}\text { MAIN } \\ \text { TAIL }\end{array}\right\}$ ROTOR FLAPPING CORRECTION IS INFINITE.
From ITROT
The iteration loop in, the rotor analysis which balances the rotor flapping moments was activated and could not compute a correction to the flapping angles.

Problem step terminates.
Check configuration, flight regime, and spatial orientation for compatibility.

5.2.28 Ground Contact

SHIP CONTACTS GROUND
From VIND
Altitude has become negative.
Problem step terminates.
Find out why ship lost altitude and correct.
5.2.29 Aerodynamic Surface Stall

From CLCD
The angle of attack of one of the fixed aerodynamic surfaces has just crossed the stall point in the direction indicated.

Warning message only. Execution continues.
5.2.30 Error in Supersonic Mach Number

SUPERSONIC MACH NUMBER FOR xxxx IS IN ERROR. IT HAS
beEn reset to \qquad .

Where xxxx is SUBGROUP 1, SUBGROUP 2, SUBGROUP 3, SUBGROUP 4, SUBGROUP 5, WING. STB1, STB2, STB3, or STB4.

From YR"IT or YSINIT.
$Y(2)$ was input less than or equal to 1 .
This is a warnirg message. Execution continues.

5.2.31 Illegal Use of Time-Variant Rotor Analysis

TIME VARIANT ROTORS CANNOT BE USED IN A STABILITY ANALYSIS

From INSTAB

An attempt was made to enter the stability analysis routines with a timevariant rotor(s). The stability analysis is predicated upon using the quasi-static rotor analysis.

Program execution is terminated,
Either use the quasi-static rotor analysis, or eliminate the request for a stability analysis.
5.2.32 Error in Partial Derivative Computations

WARNING, THE PARTIAL DERIVATIVE MATRIX MAY BE IN ERROR.

From ITROT

In the rotor analysis, the iteration loop which balances the rotor flapping moments and the thrust-induced velocity iteration loop are both activated. While each is able to converge separately, they have not been able to converge together.

Warning message only. Execution continues.

Exercise care in use of the partial derivative matrix immediately following this message.

5.2.33 Deactivation of Wagner Function

WAGNER FUNCTION IS TEMPORARILY TURNED OFF

From LIZE

The Wagner function for the time of lift buildup on the wing is turned off since the function is not compatible with Hamming's method of numerical integration. Hence, it is turned off when using Hamming's method.

Warning message only, Execution continues.
5.2.34 Error in Pitching Moment Inputs

$$
\left\{\begin{array}{l}
Y(22) \\
Y(23) \\
Y(24)
\end{array}\right\} \text { FOR } x x x x \text { HAS BEEN RESET TO }\left\{\begin{array}{c}
-1 . \\
0 . \\
0 .
\end{array}\right\}
$$

Where xXOXX is SUBGROUP 1, SUBGROUP 2, SUBGROUP 3, SUBGROUP 4, SUBGROUP 5, WING, STB1, STB2, STB3, or STB4.

From YRINIT or YSINIT

The data input for the pitching moment coefficient was inconsistent and the adjustment indicated was inade to make the data consistent.

Warning message only. Execution continues.

6. VARIABLES SAVED DURING MANEUVERS

During the computation of the time history of a maneuver, over 1300 variables are saved at each time point. At the end of the maneuver, the program can perform one or more of the following operations on these data:
(1) Plotting (see Section 3.22)
(2) Harmonic Analysis (see Section 3.23)
(3) Vector Analysis (see Section 3.24)

As noted in the referenced sections, code numbers are used to identify the variable(s) to be plotted or analyzed. The code number for each variable saved is given in Table 6-1.

In the table, the first 521 code numbers are defined by the title which is printed as part of the program output. These titles include a description of the variable and its units. The remaining code numbers (522 through 1351) are defined by a single equation and an example of the associated title.

The variables saved can be grouped into the six general classifications given below:

```
Range of Code Numbers Source or Type of Data
    1 - 132 Force and moment summary
133-341 Maneuver time point page
342-446 Elastic response of Rotor 1
447 - 521 Elastic response of Rotor 2
522-971 Blade element moment data for Rotor 1
972-1391 Blade element moment data for Rotor 2
```

Note that in the description of the code numbers for the first two groups, there are a few entries labeled "NOT USED." These code numbers are reserved for future additions to the list of variables saved and do not contain any meaningful data.

```
FORCE AND
MONENT
SUMMARY
```

```
        1 TOTAL X-FRRCE ON C.G.. LiB
            Z X-FIFCE FFIMM NIGHT WINGG, LA
            3 X-FIRCE FRIM LEFT WING, LH
            4 NilT USED
            5 NiCt USED
            6 X-FiRCE FRIOM FUSFLAGY, LB
            7 X-F IRCE FRIM JETS/GUN FIRE.LB
            Q X-FUPCE FRLIA FitOMZ, LP
            7 X-FRRCE FFRIN FITOF2. LD
                                    10 X-FOKCE FROM WEIGHT, LA
                                    11 TITAL Y-FUKCF ON C.G., LB
                                    12 \הा USED
                                    13 Y-FRRCE FRGM FUSELAGE, LB
                                    14 Y-FOQCE FROM JETS/GUN FIRE,L.S
                                    15 Y-FIRCE FRIM RLTGPI, LH
                                    16 Y-FJPCE FRIMM ROTIR2. LH
                                    17 Y-FIJRCF FROM WEIGHT, LA
                                    19 TH:TAL L-FOPCE INN C.GO. LB
                                    l# L-FORCF FROM RIGHT WING, LE
                                    2) L-FORCE FRIMM LEFT wING, LiA
                                    21 NST USED
                                    22 L-FOFCE FROM FUSFLAGE. LE
                                    23 L-F DRCE FKOM JETS/GUN FIRE,LA
```

TABLE 6-1, Continued		
Group	Number	Description
FORCE AND MOMENT SUMRARY (Continued)	2"	1-FidCE FRGM RIJTJFI, Lis
	25	L-FIJRCF FRUM ROTOL 2, LR
	2%	
	27	THTAL PROL 'AOM Di, C.G... FT-LB
	24	dill mem form right wing, lb
	30	NIT USFO
	31	nut usec
	32	Ri, Ll wry frew figetlabto frols
	33	FOLL 13M FRCH JFIS/GUT, FILE,FT-LE
	34	dell mem frim kutorl ferces. fitlod
	35	
	36	
	32	tutal pitch mijm gn coger rt-lí
	34	PITCH MUM FYOM QLGHT WING, fithe
	40	PITCH MOM FPOU LEFT WING, FT-LB
	41	net usco
	42	NCT USEO
	43	PItch mum fict fuselage, ft-lb
		PITCH NON FFiUM JtTS/JUN FIKE,FT-LR
		pitch mun ffum rotioh furces, ft-le

TABLE 6ol. Continued

Group	Number	Description			
FORCE AND	47				
SUMPARY	49				
	4.	Tiltal Yait mine in corio. PT-Lis			
	5	YAN N.JM FREM RIGHT WIMG, FI-LA			
	51	YAw :orim trim Lfft wing, fi-lis			
	5)	SUT lISED			
	53	vil 15 s			
	54	Yion arfe for a fusilage, IT-I.3			
	55				
	50	yan anm fotin rcthill fublers, rt-lis			
		Yain rom friy future furlfs, ft-lb			
	54				
	54	Yat man fara rutipe tekiut, fl-L3			
	$6 i$				
	01				
	62	X-F'IRC.L FRIM STAUILIZFR 3, LA			
	63	X-FJRCE FRUM STAUILILFF 4 , LR			
	04	y-r juct from stibililek lo lb			
	03	y-tighe fria staisilizek 2, L's			
	66	Y-fIREE FHGM STABILILEG 3, Lo			
	67	Y-F MRCE FRTM STABILILIE A, LA			
	68	z-firce focm stabilizer lo lb			
	69	z-Furce from stabililek 2, lb			

TABLE 6-1. Continued

Group

Number
Description

MOMENT
SUMMARY
(Continued)

```
FORCE AND \(70 \quad 2-F O R C E F R U N\) STABILILEF 3.LR
7U Z-FORCE FRIJN STABILILEF 3.LR
71 z-F OfECE FKON STAJILIZLP 4. LA
72 N\capT USED
73 NOT USFD
74 NOQT USED
75 FOLL MCH: FREM STA:A NI: 1.FT-LE
76 PCLL MOM FINNM STAB NC. 2,FT-LB
77 KGLL MrM FHOM STAB NI: 3. FT-IB
7% ROLL MOM FFIM STAB V!. 4,FT-LH
79 PITC.H 'MIM FKGM STAH NU. 1, FT-LB
ga PITCH MDOM FKOM STAX Nu. 2, FT-LH
RI PITCH M!OM FFOM STASNID. 3, FT-LE
82. PITCH MCIFKIM STAZNO. 4,FT-LG
d3 YAK MOM FF.GM STAD NI:. 1, FT-LB
64 YAK. MOY FKCM STAB VU. 2, FT-LB
35 YAW MIIM FQCM STAH NU. 3,FT-LB
86 YAN MOM FRCIM STAENO. 4,FT-LB
87 NCI USRD
88 NOT USEO
89 NOT USFO
90 Y-FJREE FROM RIGHT WINGO LB
91 V-FCRCE FROM LEFT WING, LB
92 NOT USED
```


TABLE 6-1. Continued

TABLE 6-1, Continued						
Group.	Number	Description				
PORCE AND MOMENT SUMMARY (Concluded)	116	ROLL M	mom	Frim	StORE NO. 1	- FT-LB
	117	ROLL M	MOM	from	STIRE ND. 2	- ft-lb
	118	ROLL M	MCM	FRC:M	StIRE INO. 3	, FT-LB
	119	KOLL M	MnM	FRCMM	Store nc. 4	- ft-le
	120	PITCH M	MCM	ffiel	STCRE NE. 1	- Ft-LB
	121	PITCH M	M ${ }^{\text {m }}$	FFC:M	STORF NC. 2	, FT-LB
	122	PITCH:	A! ${ }^{\text {a }}$	fogm	StCRE NE. 3	- FT-LB
	123	PITCH	Mom	FROM	StORE NO. *	- Ft-LB
	124	YAh M	M ${ }^{\text {M }}$ M	FRCM	STORF NC. 1	- Ft-LB
	125	YAW M	MCM	FRIM	STOFE NC. 2	- Ft-Lb
	126	Yab m	MSM	FHCM	StITRF NU. 3	- FT-LB
	127	Yaw M	MCM	FFOM	StCRE NC. 4	- FT-L8
	123	NOT USE				
	129	NOT LUSE				
	130	Nit USE				
	131	Not USE				
	132	NOT USt				
POWLR, TORQUE, CG, AND BLADE DATA	133	ROTAR 1. HOPSEPCIVER				
	134	KOTOK 1, TOFOUE, FT-LB				
	135	POITOR 1. PPM				
	136	ROTAP. 1. TIP SPEEI, FT/SEC				
	137	kOTOF 1. ADV hlade mach numrer				
	133	NOT USED				

TABLE 6-1, Continued		
Group	Number	Description
POWER, TORQUE, CG, AND blade data (Concluded)	139	RIGHT JET, LR
	143	NT.T USED
	41	c.og. Stationn line lucation. in.
	142	C.g. Butt line lication, ine
	143	C.G. WAIER LINE LOCAIICN. IN.
	144	FITOR 2. HOPSEPCwER
	145	hatur ? tognue, ft-tr
	146	ROTJJK L, HPM
	147	POTOR 2. TIP SPFED, FI/SFC
	144	
	144	NOT USED
	150	LFFt JET Thrust, Lb
	151	HUESEPIIWER SUPPLIFO
	152	ENGINF TOROUF SUPPLIED, FT-Ld
	153	engitivf Ruy
	15\%	tiral hirsfalumer kequlrito
	155	Tor jue kfuulfec, fithe
velocities AND ACCELERATIONS	15\%	U velrcitiy, houy axts, fi/SEC
	157	\checkmark VELISCITY, B!IDY AXES, FT/SEC
	158	W Velocily meay axes, +T/SEC
	159	P VELOCITY, HOOY AXES. DEG/SEC
	$1 \in 0$	O velocity, Body axes, dec/sec
	161	f VELOCITY, RUDY AXES, UESISEC

TMPLE 601. Continued		
Group	Number	Description
velocities AND accelerations (Concluded)	162	COLLEC. BOBWT. VELOCITY, DEG/SEC
	163	U-OOT ACCEL., BOOY AXES, FT/SEC/SEC
	104	V-DOT ACCEL., BUDY AXES, FT/SEC/SEC
	165	W-DOT ACCEL. . BODY AXES. FT/SEC/SEC
	166	D-dOT ACCEL, bOOY AXES, DEG/SEC/SEC
	167	Q-DOT ACCEL, BODY AXES, DEG/SEC/SEC
	168	R-DOT ACCEL, BOOY AXES, DEG/SEC/SEC
	169	CHLLEC. BOBWT. ACCEL.. CEG/SEC/SEC
	170	TRUE AIR SPEED, KTS
	171	GROUND SPEED, KTS
	172	RATE OF CLIMB, FT/SEC
AERCDYNAMIC SURFACES	173	StAB NO. 1 Aidgle of InCIDENCE, DEG
	174	Staf no. 1 flap angle, deg
	175	StAB NO. 1 LIFT COEFFICIENT
	176	STAB NO. 1 DRAG COEFFICIENT
	177	StAR NO. 1 PItching moment coef
	178	Stab no. 1 angle of attack. deg
	179	STAB NO. 1 SIDFSLIP ANGLE, DEG
	18)	CLIMB ANGLE, DEG
	181	Stab no. 2 angle of inciuence, deg
	182	Stab No. 2 flap angle, deg
	183	StAB NG. 2 LIft COEFFICIENT
	184	STAA NO. 2 DRAG COEFFICIENT

TNBLE 6-1, Continued		
Group	Number	Description
AERCDYNAMIC SURFACES (Continued)	185	Star no. 2 PItching noment ceef
	186	Stab nc. 2 ANGLE Of ATTACK, deg
	187	Stab NIJ. 2 SIOESLIP ANGLE, oEG
	188	HEADING ANGLE, OEG
	189	angle of attack, deg
	190	Stab no. 3 angle cf incidence, deg
	191	Stab Nil. 3 flap angle, deg
	192	STAB NC. 3 LIFT CDEFFICIENT
	193	StAB ND. 3 DRAG COEFFICIENT
	194	Stab no. 3 PITCHING MOMENT COEF
	195	StAb No. 3 angle of attack, deg
	196	STAB NJ. 3 SIJESLIP ANGLE, DEG
	197	ANGLE OF SIOESLIP, deG
	193	Stab nu. 4 ANGLE OF INCIDENCE, DEG
	199	STAB NO. 4 flap angle, deg
	200	Stab nc. 4 LIFT COEFFICIENT
	201	STAB NO. 4 DRAG COEFFICIFAT
	202	StAB NO. 4 PITCHING MCMENT COEF
	203	StAB NO. 4 ANGLE OF ATtACK, DEG
	204	STAB NO. 4 SIDESLIP ANGLE, DEG
	205	angle of atro yaw, deg
	206	VERTICAL ACC, G
	207	RIGHT WING ANGLE OF INCIDENCE, DEG

TAnIE 6at continued		
Graup	Number	Description
AERCDYMAMIC SURFACES (Concluded)	258	RIGHt wing flap angle, oeg
	209	RIGHT WING LIFT COEFFICIENT
	210	RIGHT WING DRAG COEFFICIENT
	211	RIght wing pitching moment coef
	212	RIGHT WING ANGLE OF ATTACK, DEG
	213	RIGHT WING SIDESLIP ANGLE, DEG
	214	FORWARD ACC, G
	215	left wing angle of. Incidence, deg
	216	LEFT WING FLAP ANGLE, DEG
	217	LEFT WING LIFT COEFFICIENT
	218	LEFT WING DRAG COEFfICIENT
	219	LEFT WING PITCHING MOMENT CCEF
	220	Left wing angle cf attack, deg
	221	LEFT WING SIOESLIP ANGLE, DEG
	222	LATERAL ACC. G
DISPLACBERENTS AND EULER ANGLES AND RATES	223	YAW VELOCITY, FIXED/BOCY, DEG/SEC
	224	PITCH VELOCITY, FIXEG/BCOY, DEG/SEC
	225	ROLL VELOCITY. FIXEC/BODY, OEG/SEC
	226	X-COMP VELOCITY, FIXED AXES, FT/SEC
	227	Y-COMP VELOCITY, fixec axe , fi/SEC
	228	Z-COMP VELOCITY, FIXEC AXES, FT/SEC
	229	total distance flown, ft
	230	YAW ANGLE, FIXFD/BODY, DEG

TABLE 6-1, Continued					
Group	Number	Description			
FLIGHT AND ROTOR CONTROLS AND ROTOR PYLON (Continued)	254	ROTOR	2. COLL	FROM -/A	STICK. CEG
	255	ROTOR	2, F/A	frum f/a	STICK, DEG
	256	ROTJR	2. LAT	FROM F/A	STICK, DEG
	257	ROTOR	1. HUB	SPRING LAT	MOMENT, FT-Lb
	? 58	ROTMR	2. HUB	SPRING LAT	noment, ft-le
	259	LATER	ALL CYCL	IC STICK Pus	SITICN, PCT
	260	RUTUR	1. COLL	FRCM LAT	STICK, DEG
	261	ROTIJR	1. H/A	FROM LAT	STICK, DEG
	262	ROTIR	1. LAT	FRIM LAT	STICK. DEG
	203	kIJTOR	2. COLL	FROM LAT	STICK, DEG
	264	RGTJTR	2. F/A	from lat	STICK, DEG;
	265	ROTIN	2. LAT	FROM LAT	STICK, otG
	266	кптาק	1. F/A	PYLIN OISPL	ACEMENT, DEC
	267	ROITR	2. F/A	PYLON JISPL	ACEMENT, DEC
	268	PEDAL	POSITIO	ON, PCT	
	267	RETITR	1. COLL	from pedal	
	270	ROTI?	1. F/A	FROM PEDAL	
	271	RJTIUR	1. LAT	FKOM PEDAL	
	272	RUTIJR	2. COLL	FROM PEDAL	
	273	ROTOK	2, F/A	FRUM PEOAL	
	274	ROTIR	2. LAT	FROM PEDAL	
	275	ROTOR	1. Lateral	RAL PYLON DI	ISPLACEMENT, DEG
	$27 t$	ROTOR	2. LATER	RAL PY V DI	ISPLACEMENT, DEG

TABLE 6-1, Continued			
Group	Number		Description
FLIGHT AND ROTOR CONTROLS AND ROTOR PYLON (Conc luded)	277	ROTOR 1	1. COLL FROM SCAS + PYLON, DEG
	278	ROTIJR 1	1. F/A FROM SCA'S + PYLEN, DEG
	279	ROTIJR 1	1. LAT FROM SCAS + PYLON, DEG
	280	RUTIR 2	2, COLL from scas + PYLijn, deg
	281	RCTIR 2	2, F/A FROM SCAS + PYLON, DEE
	282	ROTAP ?	?. Lat fron scas + pylon, deg
	283	Rutior	1. f/a mast angle, deg
	234	ROTIJR	2. F/A MAST ANGLE, DEG
	285	RUTIJR	1. total cinllective, ceg
	286	kGitip.	1. total f/a cyclic, deg
	287	Rijuter 1	1. total lateral cyil. ${ }^{\text {, deg }}$
	288	R $\cap T!$ R 2	2. total collective, ceg
	289	PUTOR	2. total f/a cyclic, deg
	290	RUTER 2	2. total lateral cyclic, deg
	291	ROTUR 1	1. LAT MASt angle, DEG
	292	GOTIR 2	2. LAT Mast angle, deg
ROTOR FEATHERING, FLAPPING, AND FORCES, AND GUSTS	293	RGTOR 1	1. blade mean featherimg, deg
	294	potme 1	1. blade feather at psi $=0$, deg
	295	ROTIDR 1	1. BLADE FEATHER AI PSI $=90$, DLG
	296	ROTIR 1	1. F/A FLAPPING, MAST/TPP, DEG
	297	ROTIT 1	1. LATERAL FLAPPING, MAST/TPP, DEG
	293	FDTJR 1	1, thrust, lb
	299	RUTOR 1	1. H-FORCE, LB

TAPLE 6-1, Continued		
Group	Number	Description
ROTOR FEATHERING, FLAPPING, AND FORCES, AND GUSTS (Concluded)	323	POTOR 1. W VELICITY, MAST AXES, FT/SEC
	324	fotor 1. X SHEAR FORCE, LB
	325	ROTOR 1. Y SHEAR FORCE, LB
	326	ROTIIR 1. 2 Shear force, lb
	327	ROTUR 1. MAST WIND-UP, DEG
	323	RJTAR 1. MAST WIND-UP RATE, DEG/SEC
	329	Y-Comp gust vel.. UCCY AXES, FT/SEC
	330	RTJTOR 2. ALIMUTH LOCATION, RLADE 1, DEG
	331	ROTOR 2, FLAPPING,HJB/MAST,BLADE 1,JFG
	332	RIITOR 2, FLAPPING LIMIT, DEG
	333	RUTIIR 2, U VELUCITY, MAST AXES, FT/SEC
	334	ROTUP 2.4 VELICITY, MAST AXES, FT/SEC
	335	RUTOR 2. W VFLOCITY, MAST AXES, FT/SEC
	336	GOtor 2, X Shear force. la
	337	HOTOR 2, Y SHEAP FOKCE, LB
	338	RGITJR 2. 2 Shear force. LB
	339	KDIOR \mathcal{q}, MAST WIND-UP, CEG
	340	ROTIS 2. MAST WIND-UP RATE, CEGISEC
	341	z-COMP GUST VEL.. GחOY AXES, FT/SEL
FIRST ROTOR ELASTIC RESPONSE	342	AIIMUTH. ROTOR 1. BLADE 1. DEG
	343	ALI:MUTH, ROTTR 1. BLADE 2. DEG
	344	ALIMUTH, ROTOR 1, BLADE 3, DEG
	345	ALIMUTH, RUTDR 1. BLACE 4, DEG

TABLE 6-1, Continued				
Group	Number	Description		
FIRST ROTOR ELASTIC RESPONSE (Continued)	340	ALIMUTH, RUITOK 1.	3LAUE 5, DEG	
	347	ALIMUTH. RITOR L.	mlact o, ceg	
	343	AZINUTH, ROTC? 1.	plade 7, des	
	349	ben.congh. putch	1, MUNE 1.HLADF	1
	35.$)$	GEN. C.IMPD. PECTITA	1.mijet 1, BLate.	2
	351		l.rjue lablace	3
	$35 ?$	GFA.COEPn. , kiltor	1,MTOE 1, ?LTAE	4
	353		1.M.JDU L, PLALE	5
	354		1.MUL,F 1,PLADE	c
	355	GFA.C.HTRU. . Fit jo	1,MIUE 1, ALADE	7
	35\%	Gel.eC Cofne oratom	1,mcoe 2,elaje	1
	351		1,MClit 2,alaije	2
	353		1.MrIUE 2,HLAOE	3
	359	GEF - CIJUPD. ANUTUR	1,MUDE 2,BLADE	4
	300		1,NCLE 2, ilaje	5
	361		1,MLIJE 2,flade	t
	$3+2$	GFA. Cillukle kotior	1.mule 2, qlane	7
	383	GFP. (Miznllobitue	1,mont 3,blaije	1
	304		L,MOLT SOHLAJF $=$	2
	jes		1,MIIDE 3.ALADE	3
	36\%	GFR.COIRA)..POTJR	1,NCCE 3, ELAOF	4
	36.7		1,MJE 3, RLADE	5
	3 cs	GFA.COMED.. Patile 1	1.mmilie 3, plade	6

Group	Number	pescr	ciption		
FIRST ROTOR ELASTIC RESPONSE (Contirued)	369		1.M.MUt	Z.JLAOE	7
	370	GEF..CJumnoprotir	10 w!!ut	4.8LAJE	1
	371	GEPT.C MORT. - fitiok	1.ment	4. glace	2
	37?		1.Ma0t	4.tLade	3
	373		1, MOide	4, PLADE	4
	374		1.more	4.BLADE	5
	375	GFN.CRIKD., Figher	1.MJut	4. PLADE	0
	375		L.NOUF.	4.ELADE	7
	3.7	GEF.C.URD. , PIJTIR	1. MOIJE	S.BLADE	1
	37:		1,M:TOE	S.PLA'JE	2
	379	GE.A.C(ITR). DESTUK	1.mCOF	5, el ADE	3
	380	GFF.CCOIKD. ARJTOF	1,mJlif	5, ilate	4
	331	CER.CUISI). DRUTCP	1.mol.f	5.Plaje	5
	362	GEN. C IJAn. DPITMR	1.tagut	5. HLADE	0
	333	(GFN:CDJM	Loricle	5.PLADE	7
	384	GEA.C. TCRD. -KIJTOK	1,MJUE	6.tlaue	1
	285		1. Muilit	6.PLADE	$?$
	385	GER.COMRC. DOUTOR	1.mude	E,PL.SDE	3
	387	GEAL.CORED.gKI:TCM	10V.J;E	6. Blave	4
	3H0	GEt . Chopfighotion	1.MJOE	G.HLAIJE	5
	389	GEN.CIJNRD. orntine	1,MOLE	$t, 2 l \triangle D E$	3
	390		1.MIJOE	C, SLADE	7
	391		lane,fi	TOR 1, BL	AISt 1,FT

TABLE 6-1. Continued
Group

Number Description

ROTOR
ELASTIC RESPONSE (Continued)

FIRST 392. TIF VEFLUUT-OF-DIANEORGTVR L.BLAOE COFT
393 TIF IIEFL.OUT-IF-PLANE,FOTIJR L,BLAOF Z,FT
394 TIF TEFL.DUT-JF-PLANF.RLTBF. LOBLAOE 4,FT

3ワ: TIN JFFL.OUT-RF-PLANE,KIT:R L,HLADE G,FT
347 TIF OFFL.OUT-UF-PI AINEOKLTIR I,BLADE 7,FT
309 TIF ILHL. INPLAVE,RLTLK I,ELAISF I,FI
39G TIP DFFL INPLANE, KUIGR 1,RLAEE 2,FI

400 TIF DFFL. INPLANF, KGTCR 1,I LIAE 3,FT
401 TIF OEFL. INFLANF,RLTLN I.3LADE 4,F1
4?? TIF DEEL. JVDLAME,KLTCK 1 ORLADE $5, F T$
403 TiF JFFL. INFLANF,RLIU: I, ELADE E,FT
404 TIP $1=F L$. INPLANE,RI,TCK 1, सLIDE 7,FT
405 TIF TWIST UFFL.ORLTE 1.ELAUE $1, O F G$
406 TIF TWIST IHEFL.,KETRF 1, ZLAEE 2,DFG
HO7 TIF THIST ISEL..KLTCK 1,HLADE 3,LEF,
408 TIP TVIST DFFL.ODITCR 1,BLAUE 4 OUEG

413 TIP TUIST CEFLOKGICR 1.HLAIS G.OtG
411 TIF TWIST DEFL.RKCTCR I, AL LAUE TOCEG
412 VFFTIGAL HUR SHEAR,WITLR LOPLANE LOLG
413 VFETICAL HIJH SHEAX,OLICF L, RLADE 2,LB
414 VEFIICAL HUF SHEAR,FJICF 2 OPLADF 3.LR

TABLE 6-1. Continued			
Group	Number	Description	
FIRST ROTOR ELASTIC RESPONSE (Continued)	415	VERTICAL HUB SHEAR,KOTUP.	1,PLADE 4.LB
	416	VFFTICAL HUA SHEAR RUUTLR	1.Plade 5.lb
	417	VEFTICAL HUE SHEAR,RJTOR	L,PLADE 6.LB
	413	VFFTICAL HUR SHEAR,KETIOR	1,PLAOE 7.LE
	419	INPLANE HUR SHEAR,RCTOR	
	420	INFLANE HUR SHEAR,RUTUR	1.3LADE 2.Lf
	421	INPLANE HUB ShEAR,RUTOR	1.ilade 3,le
	422	INHLANE HUS SHEAR,RCITIR	1.blade 4,LB
	423	INHLAPE HUR SHFAR,RUTOR	1, HL TDE 5,LR
	424	INPLANE HIJR SHEAR,RCTCR	1, ELADE 6,LG
	425	INFLANE HUR SHEAR,RCTCR	1.hlade 7.lb
	426	REAM BFNO.MOMENT, ROTOR 1	, PLADE 1,In-lk
	427	BFAIA REND.MIJMENT, PRTUK 1	, zlanf 2.IN-LB
	423	BFAM REND. MCIMFNT, POTUR 1	,elade 3.in-la
	429	BEAM TENT, MC MENT, ROTOK 1	- olace 4, in-lb
	430	BFA:A BENO.MIMENT,ROTOP 1	, plade j, In-LB
	431	HEAM BENT.MOMENT,RDTOR 1	, elade o, ińlib
	432	GEAM BENI.MOMENT, ROTOK 1	, plade 7, in-lb
	433	CHCRD BEND.MUMENT, RC,TGR	1.PLADE 1,IN-LB
	434	CHCKO BEND.MOMENT, ROTOR	1, elame 2,1n-l ${ }^{\text {a }}$
	435	CHCRD BEND. MOMENT, RCTCR	1, elade 3,IN-Lb
	436	CHC:RD BEND.MIMEET , ROTOR	1.ELADE 4,IN-LB
	437	CHCRD BEND.M:JMENT,RCTOR	1, elade 5,IN-LA

TAMLE 6ole Continued

Group	Number	Description	
FIRST ROTOR ELASTIC RESPONSE (Concluded)	438	CHORD BEND.MOMENT,RUTCK	1, BLADE G.IN-LB
	439	CHORD BEND.MOMENT, RUTCK	1.blaue 7, in-lb
	44)	IOHSIIONAL MONENT,ROTOR	1, elace 1,IN-Ly
	+41	TCFSICNAL MCMENT,ROIOR I	1.glade 2.in-lb
	442	TOi SIUNAL MIIMENT, FUTOK 1	1.elace 3,IN-Lb
	443	TOHSIONAL MCIMENT, ROTOK	1, elame 4 , IN-Lb
	444	TGRSIDNAL MCMENT, RUTOR 1	1, PLADE 5,IN-LR
	445	TOKSIONAL MGIMENT,RDTOK L	l, elane g,in-lb
	446	TOFSIDNAL MOMENT, ROTCR	1.blaje 7.IN-Lb
SECOND ROTOR ELASTIC RESPONSE	447	ALIMIJTH, RCTER 2, BLAOE	1. DEG
	449	AZIMUTH, PCTOP 2, PLADE	2. DEG
	449	ALIMUTH, ROTOR 2, elaije	3, CEG
	45)	ALIMUTH, RUTTJR 2. BLADEE	4. DEG
	451	AZIMUTH, ROTUR 2, blade	5, CEG
	452	AZIMUTH, RATUR 2. BLADE	6. DEG
	453	ALIMUTH, RCTIR 2. QLADF.	7. CEG
	454	GEN.COORD., RDTOR 2,MODE	1,blade 1
	455	GEN.CGORO.,RUTOR 2,MUDE	1,BLADE 2
	456	GEF.COORO..ROTOR 2,MODE	1,BLADE 3
	457	GFN.CTERD.,RCTIR 2,MODE	1,BLADE 4
	458	GEN.COORD., RECTOR 2,MODE	1,blade 5
	459	GEN.COORD..ROTOR 2,MDUE	1,BLADE 6
	463	GEN.CJORD..ROTOR 2,MUDE	1,BLADE 7

Tunce 6ol, contimud					
Group	Mruber	Description			
SECOND ROTOR ELASTIC response (Continued)	461	GEN.CORRD., ROTOR	2,MODE	2,blade	1
	462	GEN.COORD., ROTOR	$2 \cdot \mathrm{MDDE}$	2.blade	2
	463	GEN.COORD., ROTER	2,MODE	2,BLADE	3
	464	GEN.COORD., ROTOR	$2 . \mathrm{MODE}$	2,BLADE	4
	465	GEN.COORD., POTOR	2 ,MODE	2,BLADE	5
	466	GEN.COORD., RITTOR	2,MODE	2.blade	6
	467	GEN.COORD.. ROTOR	$2 . \mathrm{MODE}$	2.8LADE	7
	468	GEN.COORD., ROTOR	2,mode	3.8LADE	1
	469	GEN.COORD.. POTOR	2,MODE	3.8LADE	2
	470	GEN.COCRD. . ROTOR	$2, \mathrm{MODE}$	3,BLADE	3
	471	GEN.CORRD., ROTOR	$2, \mathrm{MODE}$	3,BLADE	4
	472	GEN.COORD. , ROTIIR	$2, \mathrm{MODE}$	3, elade	5
	473	GEN.COORD. , ROTHR	2,MODE	3,BLADE	6
	474	GEN.COORD.。ROTOR	$2 \cdot \mathrm{MODE}$	3,BLADE	7
	475	GEN. COORD., ROTOR	$2 . \mathrm{moue}$	$4 \cdot 3 \mathrm{LADE}$	1
	476	GEN.COORD. ${ }^{\text {RUTOR }}$	$2, \mathrm{MOUE}$	4, BLADE	2
	477	GEN.COORD.. ROTOR	$2 . \mathrm{mode}$	4, blate	3
	478	GEN.COORD., ROTOR	2,move	4, 8LADE	4
	479	GEN.COORD., ROTUR	2,MODE	4.8 CADE	5
	480	GEN.COORD. ${ }^{\text {P ROTOR }}$	2,MODE	4 ¢ ELADE	6
	481	GEN.CTORD., ROTOR	$2, \mathrm{MODE}$	$4.8 L A D E$	7
	482	GEN.CODRD. ${ }^{\text {, ROTOR }}$	2,MODE	5,blade	1
	483	GEN.CODRD., ROTOR	2.MODE	5.8LADE	2

TMRLE 6oleContinued

Grould
SECOND
ROTOR
ELASTIC
RESPONSE
(Continued)

Number

 Description| 484 | GEN.COORD., ROTUR | 2,MOUE | 5,blade |
| :---: | :---: | :---: | :---: |
| 485 | GEN.COORD. , ROTSR | 2,MDDE | 5.blade |
| 486 | GEN.CCORD. , RUTCR | 2,MODE | 5.blace |
| 487 | GEN.CIORD. ${ }^{\text {P ROTOR }}$ | 2,mode | 5.8LADE |
| 488 | GEN.CUORD., ROTOR | 2,MODE | 5.BLADE |
| 489 | GEN. CH (IORD. . ROTOR | $2, \mathrm{MODE}$ | 6. BLADE |
| 490 | GEA.CUORD. , ROTOR | 2.MCDE | 6, blade |
| 491 | GEN.COORD., ROTOR | 2,MODE | 6,BLADE |
| 492 | GEN.COORD., ROTCR | 2,MODE | 6, blade |
| 493 | GEN.COURD., ROTOR | 2,MOCE | 6, BLADE |
| 494 | GEN.CSORD. ${ }^{\text {P POTAR }}$ | 2,MODE | 6, elade |
| 495 | GEN.CDMRD., ROTOR | 2,mode | 6, BLADE |

496 TIP DEFL.OUT-(IF-PLANE,ROTAR 2,BLADE 1,FT
497 IIf DEFL.OUT-OF-PLANE,KOTRR 2,BLADE 2,FT
498 TIP DEFL. OUT-OF-PLANE,RCTOR 2,BLADE 3,FI
499 TIP DEFL.OUT-OF-PLANE,RGTOR 2,BLADE G,FT
500 TIP DEFL.OUT-UF-PLANE,RCTOR 2,BLADE 5,FT
501 TIP DEFL ©OUT-OF-PLANE,RCTUR 2,BLADE G,FT
502 TIP DEFL OUUT-OF-PLANE,ROTOR 2,BLADE 7,FT
503 TIP DEFL. INPLANE,ROTCR 2, RLADE 1,FT
504 TIP DEFL. INPLANE,ROTCR 2,BLADE 2,FT
505 TIP DEFL. INPLANE,ROTOR 2,BLADE 3,FT
506 TIP DEFL. INPLANE,ROTOR 2,PLADE 4,FT

TABLE 6ol. Continued					
Group	Number	pescription			
SECOND ROTOR ELASTIC RESPONSE (Continued)	507	TIP DFFL.	INPL ANE, EL LTCR	2, elade	5,FT
	508	TIP DEFL. I	INPLANE,ROTCK	2,glade	G,FT
	¢09	TIP DEFL. 1	INPL ANF, RCITIK	?.blaue	7,FT
	510	tif TWIST 10	defl.grutcp 2. ${ }^{\text {a }}$	HLADE 1.	DEf,
	511	THP TWIST 0	OFFL.PROTCR 2,	, PLAUE 2,	DEG
	512	TIP TWIST D	DEFL.gKJTCK ?,	elane 3.	DEC
	513	tip TwISt nef	AEFL. ${ }^{\text {R ROTCR } 20}$, ALADF 4.	urs
	514	IIP TWIST D	DEFL. ${ }^{\text {R R }}$ (TCR 2.	hlact 5.	DEG
	515	TIP TWIST DEF	DEFL.OROTCR 2,	alave 6.	DEG
	510	TIf TiNIST DE	EFL., RCTCK 2.	plade 7,	DEG
	517	VFFTICAL HUB	S SHEAF,RIJTUN	2,plade	1.LB
	518	VEPTICAL	SHEAP,ROTCK	2,PLADE	2.18
	519	VEKTICAL	SHFAR, FATCR	2, PLADE	3.LH
	520	veftical	SHFAR,ROTCR	2, PLADF	4,1\%
	521	vektical	SHEAR, RUTICR	2, PLADE	5.18
	522	VEMTICAL HIJB	A SHEAR,FOTOR	?, elade	6.18
	523	VERTICAL HUB	S SHEAR, KCTER	2,PLADE	7.1
	524	Inflane hub 5	SHEAR,RCTI.R	2,blaje	1, Lts
	525	INPLANF HUB S	SHEAR,RCTIF 2	2, Blade	2.18
	526	INPLANE HUB S	SHEAR,RCTOR	2, ELACE	3,LB
	527	INPLANE HUP S	SHEAR,RCTOR	2,blade	4,18
	528	Inflanf hur s	SHEAR,RUTOK	2, blade 5	5,Le
	529	Inplane hut s	SHEAK, RUTCR 2	2,blade 6	6,Lb

TABLE 6ol Continued

Grous
SECOND
ROTOR
ELASTIC
RESPONSE
(Concluded)

Number
530
531 BFAM HENÓ.MLMENT,ROTIJR 2, PLACE 1,IN-LH 532 HEAM BẼND.MM MENT, HCTOR 2.aLADE 2,IN-LB

E33 BEAM PENO.MUMFNT, ROTUR 2, ELAUE 3,IN-LB
534 BEAM RENU.MOMFNT,ROTOR 2,BLACE 4,IN-LB
535 HEAY HEND. MGMENT,KJTGR 2,QLAUE 5,IN-LB
536 REAN BENU.!iOMENT,KDTDR 2, QLADE 6,IN-LB
537 REAM BENO.MOMENT,ROTOF 2, QLADE 7,IN-LB
538 CHCRD HEND.NUMENT,ROTOR 2,BLADE L,IN-LE
539 CHIRD BEND.MCIMENT,RCTER 2,PLADE 2,IN-LE
¿40 CHEPR BEND.MCMENT,PCTGR 2,PLADE 3,IN-LE

542 ChiQd renil.mgMentgritor 2, elade 5,IN-LE
543 (HCRI) UEAD.MUNENTGRCTCR 2, QLADE 6,IA-LG
544 CHORO HFND. MAMENT,KCTCK 2, PLADE 7.IN-L?
545 TUKSIONAL MOMENT,RCTCR 2, ELALE I,IN-LB
546 TORSIENAL MIMEN:T,ROTCR 2,dLADE 2.IN-LA
547 THFSIOINAL MEMENT,RJTCK 2, QLADE 3,IN-LK
543 TGKSIONAL MGMENT,ROTOR 2, ELADE 4, IN-LG
549 TOFSIONAL MOMENI, POTGK 2 , PLAOE E EIN-LG
தちO TChSIOHAL MCMFNT,POTOR 2,?LAOF E,IN-LB
5らl TOFSIGNAL MOMFNT,ROTGK 2, QLADE T,IN-LB

TABLE 6-1. Cor :luded.

The code numbers for the rotor bending moments (numbers 552 through 1391) can be expressed by the following equation:

Code Number $=4 \angle 0 * x+y+7 *(20-z)+140 * m-16$
where
$\mathbf{x}=$ Rotor number ($=1$ or 2)
$y=$ Blade number $(=1,2, \ldots, 6$, or 7$)$
$z=$ Blade station number $(=0,1, \ldots, 18,19$ where 0 is at the root and 19 is at the 95% radius)
$m=$ Indicator for type of bending moment $(=1$ for beam, $=2$ for chord, $=3$ for torsional)

The printed title for the moments has the general form of
RTR x, BLD y, STA z, mmmm MOM, IN-LB
where x, y, and z are integers as definel above and mmm is BEAM BEND, CHRD BEND, or TURS as appropriate.

For example, the code number for the torsional moment at Station 7 of Blade 3 of Rotor 1 is
$420(1)+3+7(20-7)+140(3)-16=918$
and the title is
RTR 1, BLD 3, STA 7, TORS MOM, IN-LB

7. REFERENCES

1. Livingston, C. L., A STABILITY AND CONTROL PREDICTION METHOD FOR helicopter and stoppable rotor aircraft, Bell Helicopter Company, Technical Report AFFDL-TR-69-123, Volumes I-IV, Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio, 1970.
2. Etkin, Bernard, DYNAMICS OF FLIGHT, New York, John Wiley and Sons, Inc., 1959.
3. USAF STABILITY AND CONTROL DATCOM, Air Force Flight Dynamics Laboratory, Wright-Patters on Air Force Base, Ohio, February 1972.
4. Perkins, C. D., and Hage, R. E., AIRPLANE PERFORMANCE STABILITY aND CONTRCi, 'ohn Wiley and Sons, inc., New York, 1967.
5. Dommasch, D. O., Sherby, S. S., and Conolly, T. F., airpiane aeroDYNAMICS, Pitman Publishing Corporation, New York, 1967.
6. Bisplinghoff, Raymond L., Ashley, Holt, and Halfman, Robert L., aEROELASTICITY, Addison-Wesley, Publishing Company, Reading, Massachusetts, 1955.
7. Silverstein, A., and Katzoff, S., DESIGN CHARTS FOR PREDICTING DOWNWASH ancle and wake characteristics behind plain and flapped wings, naca Report No. 648, 1939.
8. Young, A. D., THE AERODYNAMIC CHARACTERISTICS OF FLAPS, britis/h Aeronautical Research Council RM No. 2622, February 1947 (also printed as R.A.E. Report Aero. 2185, August 1947).
9. McCormick, B. W., Jr., AERODYNamics OF V/STOL FLIGHT, Academic Press, New York, 1967.

[^0]: TIKEIINCHES

[^1]: aerodynamic
 Concluded.
 Figure 4-30.

 NSAN un

