
CIM 461.10/July 1996 

Land Warfare and Complexity, 
Part I: Mathematical 
Background and Technical 
Sourcebook (U) 

Andrew llachinski 

DISTRIBUTION STATEMENT A 
Approved for Public Release 

Distribution Unlimited 

Center for Naval Analyses 
4401 Ford Avenue • Alexandria, Virginia 22302-1498 

OTIC QUAUTYOISEEOTE01 



Approved for distribution: 

-Jw k^W:<" '< 
Dr. IgorMikolic-Torreira 
Director, Systems and Tactics Team 
Operating Force Divsion 

This document represents the best opinion of CN A at the time of issue. 
It does not necessari k repre^nt ^OPinkM JJl/^itffitfjPgfe of tne NavV- 

For copies of this document call:   CNA Document Control and Distribution Section at 703-824-2943. 

Copyright © 1996 The CNA Corporation 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503  

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
July  1996 

3. REPORT TYPE AND DATES COVERED 
Final 

4. TITLE AND SUBTITLE 
Land Warfare and Complexity, Part I: Mathematical Background and Technical 
Sourcebook 

6. AUTHOR(S) 
A Ilachinski 

5. FUNDING NUMBERS 
C -       N00014-96-D-0001 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Center for Naval Analyses 
4401 Ford Avenue 
Alexandria, Virginia 22302-1498 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

CIM 461.10 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Distribution unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 Words) 

The purpose of this paper is to provide the theoretical framework and mathematical background necessary to understand and discuss 
the various ideas of nonlinear dynamics and complex system theory to plant seeds for a later, more detailed discussion (provided in 
Part n of this report) of how these ideas might apply to land warfare issues. This paper is also intended to be a general technical 
sourcebook of information. The main idea put forth in this paper is that significant new insights into the fundamental processes of 
land warfare can be obtained by viewing land warfare as a complex adaptive system. That is to say, by viewing a military "conflict" as 
a nonlinear dynamical system composed of many interacting semi-autonomous and hierarchically organized agents continuously 
adapting to a changing environment 

14. SUBJECT TERMS 
chaos, data links, dynamics, Landchester equations, land warfare, mathematical models, 
mathematics, military science, models, neural networks 

15. NUMBER OF PAGES 
253 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed bv ANSI SU. Z39-18 



"So a military force has no constant formation, water has no 
constant shape: the ability to gain victory by changing and 

adapting according to the opponent is called genius." 

- The Art of War, Sun Tzu (4th century B. C.) 

"Strategy is a system of expedients. It is more than a science: it is 
the application of knowledge to practical life, the development of 

thought capable of modifying the original guiding idea in the 
light of ever-changing situations; it is the art of acting under the 

pressure of the most difficult conditions." 

- Helmuth von Moltke (1800-1891) 

"Everything is very simple in war, but the simplest thing is 
difficult. These difficulties accumulate and produce a friction, 
which no man can imagine exactly who has not seen war...This 

enormous friction, which is not concentrated, as in mechanics, at 
a few points, is therefore everywhere brought into contact with 

chance, and thus facts take place upon which it was impossible to 
calculate, their chief origin being chance." 

- Carl von Clausewitz (1780-1831) 

"Like friction and uncertainty, fluidity is an integral attribute of 
the nature of war. Each episode in war is the temporary result of 
a unique combination of circumstances, requiring an original 

solution. But no episode can be viewed in isolation. Rather, each 
merges with those that precede and follow it - shaped by the 
former and shaping the conditions of the latter - creating a 
continuous, fluctuating fabric of activity replete with fleeting 

opportunities and unforeseen events. Success depends in large 
part on the ability to adapt to a constandy changing situation." 

"The occurrences of war will not unfold like clockwork. Thus, we 
cannot hope to impose precise, positive control over events. The 
best we can hope for is to impose a general framework of order 
on the disorder, to prescribe the general flow of action rather 

than to try to control each event." 

- Warfighting, FMFM-1 
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Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook 

Overview 
The purpose of this paper is to provide the theoretical framework and 
mathematical background necessary to understand and discuss the 
various ideas of nonlinear dynamics and complex systems theory and 
to plant seeds for a later, more detailed discussion (that will be 
provided in Part II of this report1) of how these ideas might apply to 
land warfare issues. This paper is also intended to be a general 
technical sourcebook of information. 

Two Intriguing Questions 

Question 1: What does the behavior of the human brain have in common with 
what happens on a battlefield'? 

The human brain is composed of about ten billion neurons, each of 
which, on average, is connected to about a thousand other neurons. 
What each neuron does is a complicated function of what it did before 
and what its thousand or so neighbors were doing. Somehow, 
mysteriously, for reasons that are still not quite clear and perhaps 
never will be fully, this cauldron of ceaseless neuro-chemical activity 
spawns something called "consciousness" that emerges on a much 
higher level than the one on which any of the brain's constituent parts 
themselves live. 

Nowhere is there a prescription for an "awareness of self." Nowhere is 
there a hard-wired rule that says this arrangement of neurons will 
prefer football to boxing and that arrangement will prefer soccer to 
both. Nowhere on the neuronal level is there a rule that assigns the 
personality that is uniquely mine. These are all emergent, higher-level 
phenomena that, while owing their existence to the myriad 
interactions of ten billion neurons, cannot be deduced directly from them. 
As such, the human brain is the prototypical example of a complex 
system, or a system composed of many nonlinearly interacting parts. 
Now, what happens on a battlefield? 

While no battlefield can possibly consist of as many combatants as 
there are neurons in a human brain, the analogy between what makes 
the human brain "interesting" and what makes that which happens on 
a battlefield "complicated" is not such a poor one. Both consist of a 
large number of nonlinearly interacting parts whose individual 
behavior depends on the action and pattern of behavior of other 
(nearby and not-so-nearby) parts, both obey a decentralized control, 
both appear to be locally "chaotic" but harbor long-range order, both 
tend not to dwell for long times near equilibrium, preferring instead to 

1 Land Warfare and Complexity, Part II: An Assessment of the Applicability of 
Nonlinear Dynamics and Complex Systems Theory to the Representation of Land 
Warfare is scheduled to be delivered to sponsor for review 1 July, 1996. 

1 
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exist almost exclusively in a nonequilibrium state, and both must 
continually adapt to internal and external pressures and to the 
environment. On paper, at least, the human brain and the battlefield 
appear to have much in common. 

Question 2: Might there be higher-level processes that emerge on the battlefield, 
in the way consciousness emerges in a human brain ? 

Both of these enormously difficult, yet intriguing, questions are clearly 
meant to be taken rhetorically (at least for the moment). However, the 
motivation behind asking these two questions is what lies at the heart 
of this report and the overall project of which it is a part. The goal of 
this paper is to provide the reader with a basic set of tools and concepts 
out of which a tentative real answer to this question might conceivably 
(some day) emerge. A hint that these questions are neither ill-posed 
nor simply foolish is provided by an emerging new field of research 
that can loosely be called complex systems theory. 

In recent years there has been a rapid growth in what has come to be 
popularly known as the New Sciences of Complexity. Despite being 
somewhat of a misnomer, because the "science" is arguably more a 
philosophy of looking at behaviors of complex systems than a rigorous 
well-defined methodology, this emerging field nonetheless has many 
potentially important new insights to offer into the understanding of 
the behaviors of complex systems. 

A complex system can be thought of, generically, as any dynamical 
system composed of many simple, and typically nonlinearly, interacting 
parts. A complex adaptive system is a complex system whose parts can 
evolve and adapt to a changing environment. Complex systems theory is 
then the study of the behavior of such systems, and is rooted in the 
fundamental belief that much of the overall behavior of diverse 
complex systems - such as natural ecologies, fluid flow, the human 
brain, the Internet, perhaps even on the battlefield, etc - in fact stems 
from the same basic set of underlying principles. 

While research in this still-developing field has yet to produce an 
all-encompassing "theory of complexity," it has already introduced 
promising new analytical methodologies and has uncovered many 
provocative and useful organizing principles. The fundamental 
challenge of this study is to assess what insights into the understanding 
of land warfare can be gained by using the tools and methodologies 
developed for the general study of nonlinear dynamics and complex 
systems. 
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Two Words of Caution 

Before we begin the discussion in earnest, two important words of 
caution are in order. The two words are infancy and buzzwords. 

Infancy 

Remember that, at the present time, complexity cannot be regarded as 
anything but an infant science! The Santa Fe Institute in New Mexico, for 
example, which is widely recognized as being a leading research center 
for complex systems, was founded just a decade ago in 1984. Moreover, 
many of the analytical tools and models developed for the study of 
complex systems, such as genetic algorithms and agent-based 
simulations, have been either developed or refined as part of the 
artificial-life research effort that itself sprang up only in 1987. 
Consequendy, it would be premature - and unfair to complex systems 
theory - to expect to find a mature set of tools and methodologies at 
such an early stage of this burgeoning field's development. 

Indeed, it is fair to say that it is as difficult to predict the potentially 
deep and lasting implications of research in complex systems theory as 
it is understood and practiced today as it would have been difficult to 
predict the implications of the state-of-the-art in, say, thermodynamics 
as it was understood circa 1820. As was true of thermodynamics then, 
60 or so years prior to its full maturation, it is true to say of complex 
systems theory now, that the "killer application" (as it is often called in 
commercial software circles) or the "killer insight" (as it is sometimes 
called in physics) has not yet been born. We stress that all speculations 
about possible applications of complex systems theory, whether they 
appear in this report or elsewhere, must be interpreted in this light 

Buzzwords 

Many buzzwords have appeared in the popular literature in recent 
years, not all of which have been described accurately. Terms and 
concepts such as new sciences, chaos, complexity, complex systems theory, 
complex adaptive systems, and so on, are commonly used to denote the 
ostensibly same fundamental core of principles. 

In fact, there is no universally agreed upon definition of complex 
systems theory. Complex systems theory is a catch-all phrase that 
embodies a remarkably wide variety of disciplines ranging from 
biology, chemistry, and physics to anthropology to sociology to 
economics. Its many subfields include (but are not limited to) 
nonlinear dynamics, artificial life, evolutionary and genetic 
programming, cellular automata cellular games, agent-based 
modeling, among many others. 
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Table 1. A small sampling of research areas, concepts and tools all 
falling under the broad rubric of "new sciences" 

Research Areas Concepts Tools 

agent-based simulations adaptation agent-based simulations 
artificial life autonomous agents backpropagation 

catastrophe theory autopoiesis cellular automata 
cellular automata complexity cellular games 

cellular games computational irreducibility chaotic control 
chaos computational universality entropy 

chaotic control theory criticality evolutionary programming 
complex adaptive systems dissipative structures fuzzy logic 

coupled-map lattices edge-of-chaos genetic algorithms 
discrete dynamical systems emergence inductive learning 
evolutionary programming fractals information theory 

genetic algorithms intermittency Kolmogorov entropy 

lattice-gas models phase space lattice-gas models 
neural networks phase transitions Lyapunov exponents 

nonlinear dynamical systems prisoner's dilemma maximum entropy 
percolation theory punctuated equilibrium neural networks 

petri nets self-organization Poincare maps 
relativistic information theory self-organized criticality power spectrum 

self-organized criticality strange attractors symbolic dynamics 
time-series analysis synergetics time-series analysis 

etc. etc. etc. 

Table 1 partitions many of the more common terms that one often 
hears in connection to "complex system theory" into three categories: 

• Research areas, representing large (often interdisciplinary) fields 
of current research. This means, in particular, that a great deal 
remains to be learned about almost all of the areas listed in table 
1. For example, while genetic algorithms are undoubtedly useful 
and powerful tools, there are also a large number of difficult 
open-ended problems that researchers are trying to solve about 
some of their most basic behaviors. 

• Concepts, denoting the set of ideas, conjectures, hypotheses, 
organizing principles, and so on, that complex systems theory 
has so far spawned. It represents a sampling of the vocabulary of 
"The New Sciences" and appears in table 1 to remind the reader 
that these terms are often misunderstood, misused, or 
incorrectiy defined altogether. 

• Tools, representing the practical set of working methodologies, 
qualitative and quantitative measures, and mathematical 
descriptions that researchers have found to be useful in 
describing the properties and behaviors of complex systems. 
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Note that there is some overlap among the three categories appearing 
in table 1, particularly between the listings appearing under Research 
Areas and Tools. This underscores the fact that while nonlinear 
dynamics and complex systems theory have both amassed an 
impressive arsenal of practical and theoretical tools, these sets of tools 
are still evolving and are the subject of ongoing research. Notice also 
that there is an important, and ironic, feedback lurking here. The very 
tools that can, and should, be used to explore as large a variety of 
complex systems as possible - including, as suggested by this report, 
the processes that take place on a real battlefield - are themselves 
continuously refined and redefined in the process of studying those 
systems. Agent-based simulations, for example, virtually define much of 
what makes up artificial life studies - so that they are undeniably 
powerful tools with many important insights to offer - yet there is 
much that is still not understood about their basic design and how to 
make the best use of them. Similarly, while neural net technology has 
been around long enough that many powerful products have become 
available on the commercial market, one should not lose sight of the 
fact that researchers are still exploring the best way to make use of this 
new technology. 

The point of this cautionary discussion is simply to dispel any prior 
notions that complex systems theory is nothing but a "canned set of 
software routines" sitting on a shelf somewhere, ready to be installed 
on a PC or MAC and used on whatever "complex problem" happens to 
strike one's fancy. The reality is that complex systems theory is, at the 
present time, a not terribly-well-defined and very much evolving set of ideas 
and tools with which the many complex systems appearing in nature can be 
studied. What makes complex systems theory an interesting prospect to 
mine for ideas about what may or not really be happening on the 
batdefield, is that in its short life it has already managed to produce an 
impressive list of useful insights into the understanding of the general 
behavior of complex systems. The goal of this project is to explore 
whether this list of insights also extends to the military realm, and 
particularly to land combat. 

Organization of Paper 

The paper begins with a general heuristic discussion of what is meant 
by a complex system and why it represents a fundamentally new 
approach to land warfare. 

The discussion in the next section is more formal and is a 
mathematical introduction to nonlinear dynamics and deterministic 
chaos. This discussion summarizes the pertinent vocabulary, and uses 
simple examples to illustrate the basic ideas. Overviews of both 
qualitative and quantitative characterizations of chaos, as well as a 
discussion of relatively recent advances in chaotic control theory and 
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attractor-reconstruction from experimental time-series are also 
included. This section concludes with some important lessons learned 
from nonlinearity and chaos and explains how these lessons can be 
used by the decision maker. 

The next section focuses on complex systems, beginning with a short 
history and simple examples of the central concept of emergence. 
Some of the more important tools of complex systems theory - 
including cellular automata, genetic algorithms, neural networks, and 
agent-based simulations - are discussed next. Attention is also given to 
an important idea called self-organized criticality, which is arguably the 
only existing holistic mathematical theory of self-organization in 
complex systems. The section concludes with some general lessons 
learned from complex systems theory. 

The next section provides some preliminary musings on the possible 
applicability of nonlinear dynamics and complex systems theory to the 
understanding and/or representation of land warfare. The discussion 
in this section is intended to be a brief overview of the in-depth analysis 
and discussion of ideas that will be provided in Part II of this report. 

The main points of this paper are summarized in the conclusion. 

The two appendices and References provide additional reference 
material and may be consulted as information sourcebooks. Appendix 
A provides both a brief subject-sorted listing of information sources 
currently available on the World Wide Web - consisting of 91 URL 
links sorted into 16 categories - and an unsorted but much more 
extensive alphabetized listing of approximately 700 URL links. 
Appendix B provides a glossary of 100 terms commonly used in 
nonlinear dynamics and complex systems theory. An extensive 
reference list consisting of 330 journal articles, conference 
proceedings, monographs, texts and popularizations appears at the 
end of the paper. 
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Introduction 
"...war is not an exercise of the will directed at inanimate matter, as in the case 
with the mechanical arts, or at matter which is animate but passive and 
yielding as in the case with the human mind and emotion in the fine arts. In 
war, the will is directed at an animate object that reacts." 

- Carl von Clausewitz, On War 

Is it time for a fresh new look at land warfare modeling? 

In 1914, F. W. Lanchester [183] introduced a set of coupled ordinary 
differential equations as models of attrition in modern warfare. Similar 
ideas were proposed around that time by Chase [51] and Osipov [236]. 

While Lanchester's equations capture some important elements of 
combat, they are applicable only under a strict set of assumptions. 
These include having homogeneous forces that are continually 
engaged in combat, firing rates that are independent of opposing 
force levels and are constant in time, and units that are always aware of 
the position and condition of all opposing units, among many others. 
Lanchester's equations also suffer from a number of significant 
shortcomings, including modeling combat as a deterministic process, 
requiring knowledge of "attrition-rate coefficients" (the values of which 
are, in practice, very difficult if not impossible to obtain), an inability 
to account for any suppressive effects of weapons, an inability to 
account for terrain effects, and the inability to account for any spatial 
variation of forces. Generally speaking, Lanchester's equations simply 
lack the spatial degrees-of-freedom to model real-world combat. More 
importantly, they also leave out the all-important human factor - that 
is, the psychological and/or decision-making capability of the human 
operator. 

While there have been many extensions to and generalizations of 
Lanchester's equations over the years (see discussion on page 139), 
very little has really changed in the way we fundamentally view and 
model combat attrition. It is a bit ironic that in this modem age of 
distributed interactive simulation and gigabyte-sized code driving 
networked 3D virtual-reality systems with embedded artificial 
intelligence, the underlying principles of combat attrition calculations 
in land warfare models are still largely the same as they were in 
Lanchester's time; this, despite the acknowledged deficiencies of 
Lanchester's equations. The question is, "Is there anything better?" Is 
there a better way - perhaps a way that bucks convention - of modeling 
land combat? 

Recent developments in nonlinear dynamics and complex systems 
theory provide a potentially powerful new set of theoretical and 
practical tools to address many of the deficiencies mentioned above. 
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These developments also potentially represent a fundamentally new 
way of looking at land combat. 

It is not an accident that the Lanchester equations have essentially the 
same mathematical form as the equations used for studying predator 
prey relationships in natural ecologies of competing species. They both 
describe systems that evolve according to more or less the same basic 
driving forces of attrition. But while biologists have long known that 
there are universal patterns of behavior in the evolution of ecologies 
that transcend the closed-form equations that are typically used to 
model their behavior, the same thinking has not yet strongly 
influenced ground warfare modeling. We propose that there are also 
universal patterns of behavior underlying and driving the evolution of 
military combat that transcend the grossly simplified form of the 
Lanchester equations and the approximations and assumptions that 
they embody. 

A Proposal 

The main idea put forth in this paper is that significant new insights 
into the fundamental processes of land warfare can be obtained by 
viewing land warfare as a complex adaptive system (CAS). That is to say, by 
viewing a military "conflict" as a nonlinear dynamical system composed 
of many interacting semi-autonomous and hierarchically organized 
agents continuously adapting to a changing environment. 

Compared to most conventional modeling philosophies, this approach 
represents a fundamental shift in focus 

from.... 

"Hard-wiring" into a model a sufficient number of (both low- and high-level) 
details of a system to yield a desired set of "realistic" behaviors - the rallying 
cry of such models being "more detail, more detail, we need more 
detail!" 

to.... 

Looking for universal patterns of high-level behavior that naturally and 
spontaneously emerge from an underlying set of low-level interactions and 
constraints - the rallying cry in this case being "allow evolving global 
patterns to emerge from the local rules!" 

We should emphasize from the start what this study is and what it is 
not. This study is not a wholesale attempt to replace all Lanchester 
equation-based modeling of combat attrition. Just as the Lotka-Volterra 
equations for predator-prey dynamics capture some of the essence of 
population dynamics in natural ecologies, the Lanchester equations, or 
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one of their countless generalizations, may well describe combat 
attrition under an appropriate set of combat conditions. This study 
instead proceeds on the much broader charter of identifying the tools 
and methodologies that have been developed for the general study of 
nonlinear dynamics and complex systems and adapting them - along 
with whatever insights they might provide - to the modeling of land 
warfare. 

To be more specific, two relatively new mathematical modeling 
techniques are applied to the modeling of land warfare as a complex 
adaptive system: 

• local-rule-based   dynamics   patterned   after   cellular   automata 
models 

• parameters of the local decision space and the formulation of 
strategy and/or tactics patterned after genetic algorithms 

Cellular automata and genetic algorithms are both common tools in 
the repertoire of tools used to describe and study complex systems. A 
self-contained discussion of what they are and how they are applied 
appears in the main text of this paper. The proposed methodology also 
makes fundamental use of game theory and neural networks. 

Before discussing how land combat may be viewed as a complex 
adaptive system, it is prudent to first introduce the general notion of 
complex system. 

Complex Systems 

Consider some familiar examples of dynamics in complex systems: 

• the predator-prey relationships of natural ecologies 

• the economic dynamics of world markets 

• the chaotic dynamics of global weather patterns 

• the firing patterns of neurons in a human brain 

• the information flow on the Internet 

• the apparently goal-directed behavior of an ant colony 

• the competing strategies of a nation's political infrastructure 
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• many, many others  

Now consider what these systems all have in common. Apart from 
obviously evolving according to very complex dynamics, almost all 
complex systems also share these fundamental properties: 

• Complex systems consist of- and their overall behavior stems from - a 
large assemblage of interconnected (and typically nonlinearly) 
interacting parts 

° each of the systems listed above, as well as countless other 
examples of complex systems that one can write down, owe 
their apparent complexity to the fact that they consist not 
just of parts, but of parts whose states continually change as 
a function of the continual changes undergone by other 
parts to which they are connected. 

• Complex systems tend to be organized hierarchically, with complex 
behavior arising from the interaction among elements at different levels 
of the hierarchy 

° whether we consider galactic systems, living organisms, or 
social or military organizations, the various structures 
making up all such systems are almost always organized in a 
hierarchy 

• individual parts of systems (usually called agents) form 
higher-level groups that act as agents that can then 
interact with other agents; these groups, in turn, form 
super-groups that also act as agents, interacting with 
other agents (though perhaps on a different timescale); 
and so on. 

° moreover, every part of the hierarchy is driven by two 
opposite tendencies: 

• an integrative tendency, compelling it to function as a part 
of the larger whole (on higher levels of the hierarchy) 

• a self-assertive tendency, compelling it to preserve its 
individual autonomy 

• The overall behavior of complex systems is self-organized under a 
decentralized control 

° there is no God-like "oracle" dictating what each and every 
part ought to be doing, no master "neuron" telling each 
neuron when and how to "fire" 
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° parts act locally on local information and global order 
emerges without any need for external control 

0 According to Stuart Kauffman, who is one of the leading 
researchers of complex systems theory, "contrary to our 
deepest intuitions, massively disordered systems can 
spontaneously 'crystallize' a very high degree of order." 
[171] 

0 self-organization takes place as a system reacts and adapts to 
its external environment 

• Overall behavior is emergent 

0 the properties of the "whole" are not possessed by, nor are 
they directly derivable from, any of the "parts" 

o examples: a line of computer code cannot calculate a 
spreadsheet, an air molecule is not a tornado and a neuron 
is not conscious 

° emergent behaviors are typically novel and completely 
unanticipated 

° elements of emergent behaviors may be universal, in the 
sense that more than one local rule set may induce more or 
the less same global behavior 

• Long-term behavior typically consists of a nonequüibrium order 

° nonequüibrium order refers to organized states (sometimes 
called dissipative structures) that remain stable for long 
periods of time despite matter and energy continually 
flowing through them 

0 a vivid example of nonequilibrium order is the Great Red 
Spot on Jupiter (see figure 1). This gigantic whirlpool of 
gases in Jupiter's upper atmosphere has persisted for a much 
longer time (on the order of centuries) than the average 
amount of time any one gas molecule has spent within it 

• Parts consist more of niches that need to be filled rather than of distinct 
labeled entities that carry an importance all their own 

° the importance of a given "part" is dictated more by how 
that part interacts with the whole - and the "meaning" that 
particular interaction or set of interactions has in context of 
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the whole - than by what that part represents apart from the 
whole 

0 as an example, consider how human beings now support 
themselves by driving cars, typing away at computer 
keyboards, sending faxes cross-country... activities that were 
nonexistent at the tum-of-the-century; moreover, it does not 
matter who repairs a malfunctioning computer, but only 
that the computer repair service exists 

Figure 1. The Great Red Spot on Jupiter 

Behavior cannot be described by reductionist methods atone 

0 The traditional Western scientific method is predicated on a 
reductionist philosophy, in which the properties of a system 
are deduced by decomposing the system into progressively 
smaller and smaller pieces. However, in so doing, the 
emergent properties of a system are lost. In the act of 
exploring properties reductionism loses sight of the dynamics. 
The analysis of complex systems instead requires a holistic, 
or constructionist, approach. 

° the properties of entities occupying "niches" on high-levels 
of the hierarchy influence, in a nonlinear fashion, entities 
occupying "niches" on the lower levels of the hierarchy; 
properties of these low-level entities in turn feed back up to 
influence the behavior of the high-level entities - the 
lifeblood of all complex adaptive systems is this continuous 
cycling of information from top to bottom to top to 
bottom... 

0 the complex systems theory "approach" is sometimes 
concisely referred to as coüectivist, a term designed to 
distinguish it from more traditional - and uni-directional - 
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topdown (or purely reductionist) or bottom-up (or purely 
synthesist) approaches 

• Structure-  and process-driven  dynamics  vice  simple  aggregate  of 
individual parts of a structure 

° the essence of a complex system is its continual adaptive 
evolution; no static picture - such as is obtained, say, by 
simply listing a system's parts and how they interact - can 
adequately capture the often latent and otherwise subtle 
patterns that such systems tend to exhibit over long times 

° complex systems theory research consists not so much of 
observing what state a system happens to be in at what time 
as observing what kinds of patterns of behavior systems 
exhibit over the course of their entire evolution 

One of the basic questions begging to be asked of all complex systems 
is, "What are the universal patterns of behavior?" According to 
thermodynamics and statistical mechanics, the critical exponents 
describing the divergence of certain physical measurables (ex: specific 
heat, magnetization, correlation length, etc.) are universal at a phase 
transition in that they are essentially independent of the physical 
substance undergoing the phase transition and depend only on a few 
fundamental parameters (such as the dimension of the space and the 
symmetry of the underlying order parameter). In like manner, an 
important driver fueling the fervor behind the emerging new "sciences 
of complexity" is the growing belief that "high-level" behavior of all 
complex systems can be traced back to essentially the same 
fundamental set of universal principles. Much of the study of complex 
systems consists of looking for the "low-level" underpinnings of 
universal patterns of "high-level" behavior. 

Turning our attention now more to the subject of this study, the 
italicized question at the beginning of the previous paragraph can be 
rephrased as "What can we learn from how complex adaptive systems 
behave in general - as well as from the techniques and methodologies 
that have been developed for the theoretical analysis of real physical 
systems - that offers an alternative approach to land warfare 
modeling?" 

The study of complex adaptive systems is predicated on the belief that 
while individual systems may differ in the details of their composition 
and internal dynamics, they nonetheless all share a general set of 
fundamental principles underlying their overall patterns of behavior. 
It is interesting to point out that one of the main reasons why complex 
adaptive systems are so attractive to study happens to also be one of 
the main reasons why it is very difficult to abstract a unifying theory for 
their behavior. Because complex adaptive systems typically involve 
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their behavior. Because complex adaptive systems typically involve 
nonlinear interactions, their overall behavior is usually more than just 
a simple sum of the behaviors of their parts. Nonetheless, while 
research in this still-developing field has yet to produce anything that 
comes close to being an all-encompassing "theory of complex systems," 
it has already uncovered many provocative and useful organizing 
principles. 

General references include Bale [15], Cowan, et. al. [60], Holland 
[144], Kauffman [172], Lewin [196], Mainzer [205], Nadel 
[227]-[230], and Waldrop [311]. 

What Complex Systems Theory Is 

Terms and concepts such as new sciences, chaos, complexity, complex systems 
theory, complex adaptive systems, and so on, are commonly used to denote 
the ostensibly same fundamental core of principles. While there is 
considerable overlap in meaning among the terms on this list, it is a 
mistake to believe that all of these terms can be used interchangeably. 

Figure 2 shows a sketch of a loose but defensible definition of complex 
system theory (CST). The reader is urged to keep this image in mind 
throughout the ensuing discussion in this paper. 

Figure 2. What is complexity? 

patkP 

c 
initial 

conventional:    Sfma]= f [Sjnitia|] 

complex: Sf,nal = f initial'P] 

The study of the behavior of collections of simple (and typically nonlinearfy) 
interacting parts that can evolve and adapt to a changing environment 

The simplest way to define complex systems theory is to contrast it with 
a conventional "classical physics" approach to the dynamics of simple 
systems. Ignoring the inherent complexities of individual problems, 
most of classical physics rests on the basic assumption that if only the 
initial state of a physical system - say S^^ - is known, then the final 
state of the system - say, S^ - can be obtained by a suitable function f. 
That is to say, classical physics essentially reduces to searching for a 
function f, such that Sfmal = f(Sinitia]). Classical physics also assumes that 
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both the initial and final states of the system - Sinidal and S^, 
respectively - can be specified exactly by some finite set of variables. 

If the physical system is simple enough, of course, these simplifying 
assumptions and description is entirely adequate. For example, if one 
holds an object at some height off the ground, the initial state of this 
"system" is completely specified by the parameters (m, v0=0, h), where 
m is the object's mass, v0 is its initial velocity and h is its height from the 
ground. After the object is released, its final state, as it hits the ground, 

is easily found to be (m, v = Jlgh , h=0), where g is the gravitational 
constant (g=9.8 m/s2). 

In contrast, CST is concerned with more complicated systems, where 
"complicated" typically means that a system consists of a large number 
of mutually interrelated parts. In dealing with such systems, CST 
generalizes the conventional approach in two fundamental ways: (1) 
the final state, Sfina], is no longer assumed to be a function of the initial 
state alone, but can depend strongly on the path, P, that the system 
follows in evolving from its initial to final states, and (2) the initial state 
is endowed with both an internal and external structure. CST can be 
described as the study of the behavior of collections of simple (and typically 
nonlineariy) interacting parts that can evolve. 

Generally speaking, complex systems theory... 

• is a general approach to understanding the overall behavior of a 
system composed of many nonlineariy interacting parts that is 
predicated on the premise that the system's behavior owes at 
least as much to how the system's parts all interact as to what those 
parts are 

• teaches us that "complex behavior" is usually an emergent 
self-organized phenomenon built upon the aggregate behavior 
of very many nonlineariy interacting "simple" components. 

• is an approach that tries to construct the minimal underlying 
rule set from which desired behaviors naturally emerge rather 
than hard-wiring in desired properties and/or behaviors from 
the start 

Complex adaptive system theory also assumes that systems are 
composed of interacting agents that continually adapt by changing 
their internal rules as the environment and their experience of that 
environment both evolve over time. Since a major component of an 
agent's environment consists of other agents, agents spend a great deal 
of their time adapting to the adaptation patterns of other agents. 
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What Complex Systems Theory Is Not 

While it is important to understand what complex systems theory is, it 
is equally as important to understand what it is not. Complex systems 
theory is neither a "canned" algorithm that sits ready-and-able 
somewhere on a shelf, nor is it even a well-defined methodology: 

each problem must be approached on its own terms 

what is usually common to most approaches is what is 
borrowed from dynamical systems theory, computer science, 
information theory, biological/chemical pattern formation 

CST and CASs are best described as qualitative - not 
quantitative - interdisciplinary sciences; consequently, they 
are probably a poor modeling choice if numerical 
predictability is desired 

Table 2. Land combat as a complex adaptive system 
nonlinear interaction «■» combat forces composed of a large 

number of nonlinearly interacting parts 

hierarchical structure «■» combat forces organized in a command 
and control hierarchy 

decentralized control 
«* 

there is no master "oracle" dictating the 
actions of each and every combatant 

self-organization 
**> 

local action, which often appears 
"chaotic" induces long-range order 

nonequilibrium order 
** 

military conflicts, by their nature, 
proceed far from equilibrium 

adaptation «■» combat forces must continually adapt to 
an amorphous environment 

coUectivist dynamics 

~ 

there is a continual feedback between 
the behavior of (low-level) combatants 

and the (high-level) command structure 

Land Combat as a Complex Adaptive System? 

Military conflicts, particularly land combat, have almost all of the key 
features of complex adaptive systems (see table 2): 

• Nonlinear interaction 

0   friendly and enemy forces are composed of a large number 
of nonlinearly interacting "parts" 
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0 combat is not just an aggregate of many smaller-scale 
conflicts, but is a complex system composed of parts whose 
action and pattern of behavior depends on the action and 
pattern of behavior of other (nearby and not-so-nearby) 
parts 

°   "parts" interact in part... 

• locally - according to default combat "doctrine," to what 
"neighboring" parts are themselves doing, and to explicit 
orders issued by local commanders 

and, in part 

• globally - according to the orders issued by global 
commanders 

0   sources of nonlinearity include: 

• feedback loops in C2 hierarchy 

• interpretation of, and adaptation to, enemy actions; i.e. 
nonlinear feedback among enemy combatants (measure 
-> counter-measure -> counter- countermeasure ->...) and 
between combatants and environment 

• elements of chance ("fog of war") 

• decision making process (in which a sequence of not 
necessarily optimal or desired events is often put into 
motion because of other seemingly insignificant events) 

0 combat timelines and partial outcomes are often 
determined by (often unanticipated) local effects 
(exponential divergence of trajectories) 

• Hierarchical structure 

0   parts are organized in a (command and control) hierarchy 

• Decentralized control 

0 despite the presence of "global commanders," who have a 
(global, albeit imprecise) view of the overall combat arena, 
there is no master "voice" that dictates the actions of each 
and every combatant 

• Self-organization 
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° local action, which often appears "chaotic," induces 
long-range order 

° command and control tends to organize what is otherwise 
disorganized action 

• Nonequilibrium order 

o military conflicts, by their very nature, typically proceed far 
from equilibrium 

0 there is no unique "solution" - no stable state - towards 
which a battle evolves 

o the lifeblood of complex adaptive systems is novelty and 
nonequilibrium. Military campaigns likewise depend on the 
creative leadership of their commanders, success or failure 
often hinging on the brilliant tactics conceived of in the 
heat of combat or the mediocre one that is issued in its 
place. 

• Adaptation 

° their parts, in order to survive, must continually adapt to a 
changing combat environment (new strategies and tactics 
must be conceived of and implemented on-the-spot and in 
immediate response to changes in the environment) 

° each combatant comes into a conflict armed with a set of 
default rules ("doctrine"), a goal (or goals) and hardware 
designed to facilitate the implementation of doctrine. The 
success or failure of a campaign depends on how well each 
combatant adapts to the continually changing combat 
environment, which includes the functioning and 
adaptation of both friendly and enemy combatants. 

° actions and outcomes of actions are as much a function of 
the internal "human element" (reasoning capacity, 
unpredictability, inspiration, accident, etc.) as they are of 
the hardware 

• Parts are more like "niches" than "parts" 

° their parts, particularly those represented by the lowest level 
combatant and as long as the warfighting skills of 
combatants exceed some threshold warfighting skill level, 
are essentially interchangeable 
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*  Collectivism 

there  is  continual  feedback between  the  behavior 
(low-level) combatants and the (high-level) C2 hierarchy 

of 

The central thesis of this paper is that these largely conceptual 
connections between properties of land warfare and properties of 
complex systems in general can be extended to forge a set of practical 
connections as well. That is to say, that land warfare does not just look 
like a complex system on paper, but can be well characterized in 
practice using the same basic principles that are used for discovering 
and identifying behaviors in complex systems. 

Redefined Conventions 

Looking at land warfare through CAS-colored glasses naturally 
requires us to redefine the conventions by which military conflicts 
have traditionally been viewed: 

• where conventional wisdom sees combat as essentially a head on 
collision between two massive (and perhaps slightly malleable) 
billiards, obeying a Newtonian-physics-like 
calculus-of-interaction, the CAS approach sees a self-organized 
hierarchy of evolving activity of two interacting fluids, in which 
global patterns of combat emerge out of an evolving substrate of 
low-level local interaction rules 

• where conventional wisdom focuses on losses and attrition, the 
CAS approach highlights the evolving struggle to survive and 
emerging global patterns of (locally unanticipated) behavior 

• where conventional wisdom asks "What are the consequences of 
this strategy?" the CAS approach tries instead to objectively map 
out the entire space of possible strategies. 

Looking at land warfare through CAS-colored glasses also naturally 
alters the types of questions that are asked of "models of reality." The 
typical kinds of CAS questions one might ask of combat models 
include: 

• What elements of combat are universal? That is, what elements of 
combat transcend the details of the individual components of 
which they are composed? 

• What kinds of self-organized behaviors emerge out of a system obeying a 
well-defined combat-doctrine? To what extent is a military force 
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greater than the simple sum of its parts? To what extent does 
military doctrine enhance force synergy? 

• What does the global "decision space" look like? That is, how do the 
various doctrinal, tactical and/or strategic elements all correlate 
with one another? Map out the entire possibility phase space of 
options available for all local and global combat units. 
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Nonlinear dynamics and Chaos 

Introduction 

Short History 

"Not only in research, but also in the everyday world of politics and 
economics, we would all be better off if more people realized that simple 
dynamical systems do not necessarily lead to simple dynamical behavior." 

- R. M. May 

So concludes Robert May in his well-known 1976 Nature review article 
[208] of what was then known about the behavior of first-order 
difference equations of the form xn+1=F(xn). What was articulated by a 
relatively few then, is now generally regarded as being the central 
philosophical tenet of chaos theory: complex behavior need not stem from a 
complex underlying dynamics. 

In this section we introduce the basic theory and concepts of nonlinear 
dynamics and chaos. The discussion begins with a definition of a 
deterministic dynamical system, which for our purposes we define 
simply as any physical system for which there exists a well-defined 
prescription, either in terms of differential or difference equations, for 
calculating the future behavior given only the system's initial state. 
Given that such systems evolve deterministically in time, one might 
reasonably expect them to behave regularly at all times. After all, each 
successive state is a uniquely prescribed function of the preceding 
state. Chaos theory shows, however, that this naive intuition is wrong, 
and that perfectly well-defined, deterministic, but nonlinear dynamics, 
often leads to erratic and apparently random motion. Moreover, the 
dynamics itself need not be at all complicated. 

Table 3 shows a brief chronology of some of the milestone events in 
the study of nonlinear dynamics and chaos. 

Chaos was arguably born, at least in concept, at the turn of the last 
century with Henri Poincare's discovery in 1892 that certain orbits of 
three or more interacting celestial bodies can exhibit unstable and 
unpredictable behavior. A full proof that Poincare's unstable orbits are 
chaotic, due to Smale, appeared only 70 years later. E. N. Lorenz' 
well-known paper in which he showed that a simple set of three 
coupled, first order, nonlinear differential equations describing a 
simplified model of the atmosphere can lead to completely chaotic 
trajectories was published a year after Smale's proof, in 1963. As in 
Poincare's case, the general significance of Lorenz 's paper was not 
appreciated until many years after its publication. The formal rigorous 
study   of   deterministic   chaos   began   in   earnest   with   Mitchell 
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Feigenbaum's discovery in 1978 of the universal properties in the way 
nonlinear dynamical systems approach chaos. 

Table 3. Some historical developments in the study of nonlinear 
dynamics and chaos 

Year Researchers Discovery 
1875 Weiers trass constructed everywhere continuous and nowhere 

differentiable function 
1890 King Oscar II of 

Sweden 
offered prize for 1st person to solve the n-body 
problem to determine the orbits on n-celestial 
bodies and thus prove the stability of the solar 
system; this problem remains unsolved in 1995 

1892 Poincare in the course of studying celestial motion, 
discovered that the ("homoclinic") orbit of three 
or more interacting bodies can exhibit unstable 
and unpredictable behavior (chaos is bom!) 

1932 Birkhoff observed what he called "remarkable curves" in 
the dynamics of the plane with itself 

1954 Kolmogorov discovered that motion in phase space of classical 
mechanics is neither completely regular nor 
completely irregular, but that trajectory depends 
on the initial conditions; KAM theorem 

1962 Smale mathematical proof that Poincare's homoclinic 
orbits are chaotic 

1963 Lorenz first systematic analysis of chaotic attractors in 
simplified model of atmospheric air currents; 
coined the "Butterfly effect" 

1970 Mandelbrot coined the term "fractal" and suggested 
applicability to a wide variety of natural 
phenomena 

1971 Ruelle, Takens suggest new mechanism for turbulence: strange 
attractors 

1975 Li, Yorke use "chaos" to denote random output of 
deterministic mappings 

1976 May wrote important review article in Nature on 
complicated dynamics of population dynamics 
models 

1978 Feigenbaum discovered universal properties in the way 
nonlinear systems approach chaos 

1990 Ott, Grebogi, 
Yorke 

beginning of chaos control theory 

1990 Pecora beginning of synchronization of chaotic systems 

The term "chaos" was first coined by Li and Yorke in 1975 to denote 
random output of deterministic mappings. More recently, in 1990, 
Ott, Grebogi and Yorke suggested that certain properties of chaotic 
systems can be exploited to control chaos; that is, to redirect the 
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chaotic system into another desired orbit. Ironically, chaos can be 
"controlled" precisely because of its inherent instabilities, and there is 
no counterpart "control theory" for nonchaotic systems (see page 59). 

Experimentally, deterministic chaos has by now been observed in just 
about every conceivable physical system that harbors some embedded 
nonlinearity:2 arms races, biological models for population dynamics, 
chemical reactions, fluids near the onset of turbulence, heart beat 
rhythms, josephson junctions, lasers, neural networks, nonlinear 
optical devices, planetary orbits, etc. 

Fractals - that is, self-similar objects that harbor an effectively infinite 
number of layers of detail - were (formally) born in 1875, when the 
mathematician Weierstrass had constructed an everywhere continuous 
but nowhere differentiable function, though Weierstrass neither 
coined the term nor was, in his time, able to fully appreciate the 
complexity of his own creation. A fuller understanding of fractals had 
to await the arrival of the speed and graphics capability of the modern 
computer. The term "fractal" was introduced by Mandelbrot about a 
hundred years after Weierstrass' original construction. 

Dynamical Systems 

A dynamical system - as it is typically understood by physicists - is any 
physical system that evolves in time according to some well-defined 
rule. Its state is completely defined at all times by the values of N 
variables, x,(t), Xc,(t),...xN(t), where X;(t) represent any physical 
quantity of interest (position, velocity, temperature, etc.). The abstract 
space in which these variables "live" is called the phase space T. Its 
temporal evolution is specified by an autonomous system of N, possibly 
coupled, ordinary first-order differential equations: 

dx 
—r - f l(*l5*2, —,XN',«1,Cl2,...,CLM), 

— = F2(X\,X2,..~XN\Cti,Ct2, ...CCM). 

— = FN(XI,X2, ..-*:#; CXI, ci2, ...CLM), 

2 Note that nonlinearity is a necessary, but not sufficient condition for 
deterministic chaos. Linear differential of difference equations can be solved 
exactly and do not lead to chaos. 
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where a,, a2,..., aM are a set of M control parameters, representing any 
external parameters by which the evolution may be modified or driven. 
The temporal evolution of apointx(t) = (X](t), X2(t),...xN(t)) traces out 
a trajectory (or orbit) of the system in T. The system is said to linear or 
nonlinear depending on whether F = (F,, F2, ..., FN) is linear or 
nonlinear.3 Nonlinear systems generally have no explicit solutions. 

Once the initial state x(t=0) of the system is specified, future states, 
x(t), are uniquely defined for all times t. Moreover, the uniqueness 
theorem of the solutions of ordinary differential equations guarantees 
that trajectories originating from different initial points never 
intersect. 

In studying deterministic chaos, one must make a distinction between 
chaos in dissipative systems (such as a forced pendulum with friction) 
and conservative systems (such as planetary motion); see below. 

Discrete-time Poincare maps 

A convenient method for visualizing continuous trajectories is to 
construct an equivalent discrete-time mapping by a periodic 
"stroboscopic" sampling of points along an orbit. One way of 
accomplishing this is by the so-called Poincare map (or 
surface-of-section) method. In general, an (N-l)-dimensional 
surface-of-section S in the phase space T is chosen, and we consider the 
sequence of successive intersections - I,, I2, ..., In, ... - of the flow x(t) 
with S. Introducing a system of coordinates, y,, y2, ..., yN], on S and 
representing the intersections I; by coordinates yn, yi2, ..., yiN_,, the 
system of differential equations is replaced by the discrete-time 
Poincare mapping (see figure 3): 

yiA =Gi(ytf,yi,2,...,yitN-i;ai,a2,...,aM), 

y'i2 = G2(y,\i ,y,-,2. -,yijf-i; «i, ct2,..., aM), 

3\yv-i ~^N-iCyJ,I»>
;
 1,2,—.>'«w-i;ai,a2,...,aM). 

3 If f is a nonlinear function or an operator, and x is a system input 
(either a function or variable), then the effect of adding two inputs, x, and Xj, 
first and then operating on their sum is, in general, not equivalent to 
operating on two inputs separately and then adding the outputs together; i.e. 
f(x+y) is, in general, not equal to f(x) + f(y). 
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Figure 3. Poincare Map 

>*7 

Phase Space Volumes 

Consider a small rectangular volume element AV around the point x„. 
For discrete-time Poincare maps of the form xn+1=G(xn), the rate of 
change of AV - say, A - is given by the absolute value of the Jacobian of 
G: 

A=|J| = det (f) 
Since the motion in phase space is typically bounded, we know that 
volumes do not, on average, expand; i.e. A, and therefore the Jacobian 
J, are not positive. On the other hand, the behavior of systems for 
which A<0 (called dissipative systems) is very different from the behavior 
of systems that have A=0 (called conservative systems). 

Dissipative Dynamical Systems 

Dissipative systems - whether described as continuous flows or 
Poincare maps - are characterized by the presence of some sort of 
"internal friction" that tends to contract phase space volume elements. 
Contraction in phase space allows such systems to approach a subset of 
the phase space called an attractor, A a T, as / —> oo. Although there is 
no universally accepted definition of an attractor, it is intuitively 
reasonable to demand that it satisfy the following three properties: 

• Invariance: A is invariant under the map F - i.e. FA = A 
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• Attraction: there is an open neighborhood B containing A such 
that all points x(t) in B approach A as t —> oo; the set of initial 
points Xj(t=0) such that x;(t) approaches A is called the basin of 
attraction of A 

• Irreducibility: A cannot be partitioned into two nonoverlapping 
invariant and attracting pieces; a more technical demand is that 
of topological transitivity - there must exist a point x* in A such 
that for all x in A there exists a positive time T such that x*(T) is 
arbitrarily close to x 

The simplest possible attractor is a fixed point, for which all trajectories 
starting from the appropriate basin-of-attraction eventually converge 
onto a single point. For linear dissipative dynamical systems, fixed 
point attractors are in fact the only possible type of attractor. 
Nonlinear systems, on the other hand, harbor a much richer spectrum 
of attractor-types. For example, in addition to fixed-points, there may 
exist periodic attractors such as limit cycles for two-dimensional flows or 
doubly periodic orbits for three-dimensional flows. There is also an 
intriguing class of attractors that have a very complicated geometric 
structure called strange attractors. 

Strange Attractors 

The motion on strange attractors exhibits many of the properties 
normally associated with completely random or chaotic behavior, 
despite being well-defined at all times and fully deterministic. More 
formally, a strange attractor Aj is an attractor (meaning that it satisfies 
the three properties of attractors given above) that also displays 
sensitivity to initial conditions. In the case of a one-dimensional map, 
xn+,= f(xj, for example, this means that there exists a 8 > 0 such that 
for all x in Aj and any open neighborhood U of x, there exists x* in U 
such that If^x) - f"(x*)l > 8. The basic idea is that initially close points 
become exponentially separated for sufficiently long times. This has 
the important consequence that while the behavior of each initial 
point may be accurately followed for short times, prediction of long 
time behavior of trajectories lying on strange attractors becomes 
effectively impossible. Strange attractors also frequently exhibit a 
self-similar or fractal structure. 

Deterministic Chaos 

"Chaos is a name for any order that produces confusion in our minds." 
- G. Santayana 

What is  deterministic chaos?  Despite  the  over three  decades of 
research and countless books and papers that have been written on the 
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subject of deterministic chaos, there is still no generally accepted 
definition. Intuitively, deterministic chaos is the irregular or random 
appearing motion in nonlinear dynamical systems whose dynamical 
laws uniquely determine the time evolution of the state of the system 
from a knowledge of its past history. It is not due to either external 
noise, the system having an infinite number of degrees-of-freedom or 
any quantum-mechanical uncertainty. The source of the observed 
irregularity in deterministic chaos is an intrinsic sensitivity to initial 
conditions. 

A more mathematically rigorous definition of chaos, that holds for 
both continuous and discrete systems, is due to Devaney [72]. Let V be 
a set. A map f: V -> V is said to be chaotic on V if (1) f has sensitive 
dependence on initial conditions, (2) f is topologically transitive, and 
(3) periodic points are dense in V. Devaney states: 

"To summarize, a chaotic map must possesses three 
ingredients: unpredictability, indecomposability, and the 
element of regularity. A chaotic system is unpredictable 
because of sensitive dependence on initial conditions. It 
cannot be broken down or decomposed into two subsystems 
(two invariant open subsets) which do not interact under f 
because of topological transitivity.4 And, in the midst of this 
random behavior, we nevertheless have an element of 
regularity, namely the periodic points which are dense5." 

Several examples of deterministic chaos are discussed below. 

Conservative Dynamical Systems 

In contrast to dissipative dynamical systems, conservative systems 
preserve phase-space volumes and hence cannot display any attracting 
regions in phase space. Consequently, there can be no fixed points, no 
limit cycles and no strange attractors. However, there can still be 
chaotic motion in the sense that points along particular trajectories 
may show sensitivity to initial conditions. A familiar example of a 
conservative system from classical mechanics is that of a HamiUonian 
system. Although the chaos exhibited by conservative systems often 
involves fractal-like phase-structures, the fractal character is of an 
altogether different kind from that arising in dissipative systems. 

4 A topologically transitive orbit is an orbit such that, for all pairs of 
regions in the phase space, the orbit at some point visits each region of the 
pair. That is to say, it is always possible to eventually get from one area around 
a state to an area around any other area by following the orbit. 
5 A set of points X is dense in another set Y if an arbitrarily small area 
around any point in Y contains a point in X. 
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Example #1: The Bernoulli Shift Map 

Despite bearing no direct relation to any physical dynamical system, 
the one-dimensional discrete-time piecewise linear Bernoulli Shift map 
nonetheless displays many of the key mechanisms leading to 
deterministic chaos. The map is defined by 

x„+\ =A*n) = 2x« mod 1, 0 <x0 < 1, 

where X mod 1 = x - Integer(x), and Integer{\) is the "integer part of x. 

We are interested in the properties of the sequence of values x0, 
x,=f(x0), X2 = f(x,) = f^x,,),... - or the orbit of x„ - generated by 
successive applications of the Bernoulli shift to the initial point, x„. 

In turns out that the most convenient representation for the initial 
point, x„, is as a binary decimal. That is, we write 

- = y + -4- +... = 0.aia2a3..., 

where a, is equal to either 0 or 1 for all i. 

For example, the binary expansion of 1/3 = 0/2 + l/22+ 0/23 + 1/24 + 
... = 0.0101, where OJ. means that the sequence "01" is repeated 
ad-infinitum. Expansions for arbitrary rationals r = p/ q, where p and q 
are integers, are relatively easy to calculate. Expansions for irrational 
numbers may be obtained by first finding a suitably close rational 
approximation. For example, n - 3 ~ 4703/33215 = 0.001001000011, 
which is correct to 12 binary decimal places. 

This binary decimal representation of x0 makes clear why this map is 
named the Bernoulli "shift." If x,, < 1/2, then a,=0; if x„ > 1/2, then 
aj=l. Thus 

„   x    ,    2xoifai=0 _   .    „ 
xx =/*>) ={2xo_l tf ai = !   =>A*o) = 0.a2a3a4... 

In other words, a single application of the map f to the point x„ 
discards the first digit and shifts to the left all of the remaining digits in 
the binary decimal expansion of x(). In this way, the nth iterate is given 

byXn=an+]
an+2an+S- 

What are the properties of the actual orbit ofx0? Since f effectively reads off 
the digits in the binary expansion of x„, the properties of the orbit 
depend on whether x,, is rational or irrational. For rational x0, orbits 
are both periodic and dense in the unit interval; for irrational x0, orbits 
are nonperiodic, with the attractor being equal to the entire unit 
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interval. Moreover, the Bernoulli shift is ergodic. That is to say, because 
any finite sequence of digits appears infinitely many times within the 
binary decimal representation of almost all irrational numbers in [0,1] 
(except for a set of measure zero), the orbit of almost all irrationals 
approaches any x in the unit interval to within an arbitrarily small 
distance an infinite number of times. 

We now use the Bernoulli shift to illustrate four fundamental concepts 
that play an important role in deterministic chaos theory: 

• stability 

• predictability 

• deterministic randomness 

computability 

Stability 

Chaotic attractors may be distinguished from regular, or nonchaotic, 
attractors by being unstable with respect to small perturbations to the 
initial conditions; this property is frequently referred to as simply a 
sensitivity to initial conditions. However, while all Bernoulli shift orbits 
are generally unstable in this sense, only those originating from 
irrational xO are chaotic. Suppose that two points, XQ and XQ', differ 
only in the nth place of their respective binary decimal expansions. By 
the nth iterate, the difference between their evolved values, 
lfn(x0)-f

n(x0'))l, will be expressed in the first digit; i.e., arbitrarily small 
initial differences - or "errors" - are exponentially magnified in time. 
If IXQ - XQ'I ~ lO'31, for example, their respective orbits would differ by 
order ~1 by the 100th iterate. Physically, we know that any 
measurement will have an arbitrarily small, but inevitably finite, error 
associated with it In systematically magnifying these errors, nonlinear 
maps such as the Bernoulli shift effectively transform the information 
originating on microscopic length scales to a form that is 
macroscopically observable. 

Predictability 

Exponential divergence of orbits places a severe restriction on the 
predictability of the system. If the initial point Xg is known only to 
within an error SXQ, for example, we know that this error will grow to 
8xn= exp(n In 2) 5xo (mod 1) by the n* iteration. The relaxation time, 
t, to a statistical equilibrium - which is defined as the number of 
iterations required before we reach a state of total ignorance as to the 
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minimum n such that 5xn ~ 1 - is therefore given by x ~ -lnlöxj/ln 2. 
For all times t > T, the initial and final states of the system will be 
causally disconnected. 

Deterministic Randomness 

On the one hand, the Bernoulli shift is a linear difference equation 
that can be trivially solved for each initial point x0: xn = 2"x0 (mod 1). 
Once an initial point is chosen, the future iterates are determined 
uniquely. As such, this simple system is an intrinsically deterministic 
one. On the other hand, look again at the binary decimal expansion of 
a randomly selected x„. This expansion can also be thought of as a 
particular semi-infinite sequence of coin tosses, 

xo = 0.011010011010001... <=> xo = O.THHTHTTHTHHHT... 

in which each 1 represents heads and each 0 represents tails. In this 
way, the set of all binary decimal expansions of 0 < x0 < 1 can be seen as 
being identical to the set of all possible sequences of random coin 
tosses. Put another way, if we are merely reading off a string of digits 
coming out of some "black-box," there is no way of telling whether this 
block-box is generating the outcome by flipping a non-biased coin or is 
in fact implementing the Bernoulli shift for some precisely known 
initial point. Arbitrarily selected x() will therefore generate, in a strictly 
deterministic manner, a random sequence of iterates, x0, x,, x2, ... 
Notice, however, that the Bernoulli shift generated "randomness" is of 
an altogether different character from that exhibited by the temporal 
sequence of center-site values in some cellular automaton systems (see 
page 81). While a cellular automaton system generates random 
sequences from manifestly nonrandom simple initial seeds, the 
Bernoulli shift effectively unravels the randomness that is already 
present in the initial state. Moreover, it is important to point out that 
while one is always assured of randomly selecting an irrational x„ (with 
probability one) - by virtue of the fact that rationals only occupy a 
space of measure zero - one is at the same time limited in a practical 
computational sense to working with finite, and therefore rational, 
approximations of x0. The consequences of this fact are discussed 
below. 

Computability 

While one can formally represent an arbitrary point x by the infinite 
binary-decimal expansion x = O.ctjOC^..., in practice one works only 
with the finite expansion, x = 0.a1a2a3...an. Conversely, any sequence 
of coin tossings is also necessarily finite in duration and therefore 
defines only a rational number. 
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Given this restriction, in what sense are chaotic orbits computable? 
When implemented on a computer, for example, a single iteration of 
the Bernoulli map is realized by a left shift of one bit followed by an 
insertion of a zero as the rightmost bit. Since any x„ is stored as a 
finite-bit computer word, the result is that all x0 are eventually mapped 
to the (stable fixed point) x„*: 

xo = 0 on <x2 cc3 ... a„_i a„ 
xi = 0 0C2 0C3 <X4  ...   a„ 0 

x„ = 0 0   0   0   0    0 0 

All of the points of a finite length orbit, x„, x,,...^, may therefore be 
assured of having at least m-bit accuracy by computing x„ to n+m bits. 
A number x is said to be computable if its expansion coefficients (X; 
may be algorithmically generated to arbitrarily high order. Thus, so 
long as the initial point x,, is itself a computable irrational number, its 
orbit will be chaotic and computable. One can show, however, that 
there are many more noncomputable irrationals than computable 
ones. 

Example #2: The Logistic Map 

Just as the Bernoulli shift map provides important insights into some of 
the fundamental properties of dynamical chaos, the logistic map is 
arguably the simplest (continuous and differentiable) nonlinear system 
that captures most of the key mechanisms responsible for producing 
dynamical chaos. Indeed, the logistic map appears to capture much of 
the essence of a whole class of real-world phenomena, including that of 
the transition to turbulence in fluid flows. 

Although the basic properties of the logistic map have been studied for 
at least forty years, the most profound revelations are due to Mitchell 
Feigenbaum's analyses in the mid 1970s, culminating in his universality 
theory. Feigenbaum observed that the "route to chaos" as found in the 
logistic map in fact occurs (apart from a few mild technical 
restrictions) in all first-order difference equations xn+, = f(xj, where 
the function f(x) (after a suitable rescaling) has a single maximum on 
the unit interval [0,1]. Moreover, the transition to chaos is 
characterized by a scaling behavior governed by universal constants 
whose value depends only on the order of the maximum of f(x). 
Because the properties of the logistic map underlie so much of what 
generally goes under the rubric of "chaos theory," we provide a short 
overview of the behavior of this simple dynamical system. 
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It is ironic that such an intensely computational mathematical 
science as chaos theory owes much of its modern origin to 
calculations that were performed not on a large mainframe 
computer but on a simple programmable pocket calculator, a 
Hewlett-Packard HP-65. Feigenbaum likes to point out that had 
he not had time to observe each and every step of the evolution of 
the logistic map, it is unlikely that he would have been able to see 
enough of the embedded "patterns" from which he ultimately 
induced his universality theory. An important lesson to be taken 
away from this is that minimalist modeling does not necessarily lead 
only to trivial observations. 

Figure 4. xn versus n for the logistic map using four different values of a 
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Definition 

The logistic map is a one-dimensional nonlinear discrete difference 
equation with a single control parameter, a: 

x^i=flx„) = ajcn(l-xn), 0<x0<l, 0<a<4. 
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p 

As long as the single control parameter, a, is positive and less than or 
equal to four, the orbit of any point x0 remains bounded on the unit 
interval. Notice that there are two antecedents, xn and x'n, for each 
point xn+1, so that, like the Bernoulli map, this map is also 
noninvertible. 

Now consider the behavior of the orbits of the logistic map as a 
function of the parameter a. Figure 4 illustrates the fact that the 
behavior of this map is strongly dependent on the value of a. 

Fixed Point Solutions 

We begin by asking whether there are any values of a for which the 
system has fixed points. Solving the fixed-point equation 

x*=fix*) = auc*(l-x*), 

we find two such points: x* = x*(0)= 0 and x* = x*(1) = (<x-l)/(X. In order 
for x*(1) to be in the unit interval, we must have that a > 1. What of the 
stability of these two points? As we have already seen in the case of the 
Bernoulli map, the divergence of initially close by points is a crucial 
issue in the analysis of the dynamical behavior. 

Given a fixed point, x*, the subsequent evolution of a nearby point, x*' 
= x*+ s, where s « 1, may be determined by substituting x„ = x* + sn 

and x^j = x* + sn+1 into the fixed-point equation f(x*) = x* and leaving 
only the terms that are linear in en and Sn+1: 

e«+i=a(l-2x*)e„ + 0(s2), 

where 0(sn
2) represents terms of order 8n

2 and smaller. We find that, 
regardless of the initial point x„, the deviations from the fixed point 
x*(0) decrease exponentially fast for all a < 1. That is to say, all points 
xo e [0,1] are attracted to the fixed point x* = 0. 

At the critical value a = Otj = 1, x*{0) becomes unstable and the 
a-dependent fixed point x*(1) becomes stable. This exchange of 
stability between two fixed points of a map is known as a transcritical 
bifurcation. By using the same linear-stability analysis as above, we see 
that x*m remains stable if-1 < a (1 - x*(1)) < 1, or for all a such that 1 < 
a<3. 

For a > 3, neither x* = 0 nor x* = 1 - a"1 is stable. Instead, the stable 
orbit is a period-2 limit cycle consisting of two points - {Xj*^*} - where 
Xj* and %2* are each fixed points of the doubly iterated map f*(x) = 
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f[f(x)]. At a + Jß « 3.44949the period-2 attractor loses stability and is 
replaced by a stable period-4 orbit. 

As a increases still further, the system undergoes an infinite sequence 
of successive period doubling "bifurcations": 

• a stable period-2n! orbit exists for all a such that ccn_, < a < Ctn 

• at the nth critical value of a - i.e. at Ctn - all points of the 2""1 

cycle simultaneously become unstable, and the system becomes 
attracted to a new stable period-2n cycle for an < a < an+] 

• While the period of the limit-cycles approaches infinity as n -> oo 
, the distance between successive critical a's rapidly decreases: 
0^=3.0, a2=3.44949..., a3=3.54409..., a4=3.56441..., a5=3.56876..., 
..., a«, = 3.5699456... 

Figure 5. Schematic representation of first few bifurcations in the 
logistic map 

► a 

Universality 

Feigenbaum's important discovery consisted of the following two 
quantitative observations (see figure 5): 

1.    Critical   Parameter   Convergence:   Feigenbaum    found    that   the 
convergence rate of the critical parameters, an, is geometric; i.e. that 
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an scale as a„ = a» — c8 ", where N » 1 and 'c' and '8' are constants. 
In fact, 

5 = lim (Xn-Ctn-] = 4.6692016091... 

This value of 8, known as the Feigenbaum constant, is the same for all 
one-dimensional maps f(x), where f(x) has a single quadratic 
maximum on the unit interval. For example, while the absolute values 
of the set of critical a's - a/, a2',..., an',... - as calculated for the system 
x^j = a' sin^x,,) will be different from the set of a's computed for the 
logistic map, their geometric convergence proceeds according to the 
same rate 8. 

2. Scaling of Brach Splittings: Define a supercycle to be a cycle, {X;*}, 
such that Tli:.lf(pc*') = 0. In particular, since fa(x) = 0 only when x = 
1/2, we know that the point x = 1/2 must always be an element of a 
supercycle. Define dn to be the smallest distance between x = 1/2 and 
the nearest other point on the same 2n-supercycle. Let a„ define the 
new nth critical value of a, a„ < a„ < a„+\ at which x = 1/2 becomes 
an element of the 2n-cycle. 

Feigenbaum's second observation was that the relative scale of 
successive splittings of ai,a2,53,...approaches another universal 
constant, A: 

A = lim» dn 

dn+1 
= 2.5029078750. 

The   convergence   rate   of a follows   the   same   form   as   for  an 

a„ — a» = c'S^where 8 is the same as above and a»=a«. 

Behavior for a >a0 

What happens for a > a»? An overview is provided in figure 6, which 
shows the numerically determined attractor sets for all a in the range 
2.9 - 4.0. Note the insert in the lower left corner, which shows a blowup 
view of the windowed region within the broad white band in the main 
figure. 
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Figure 6. Bifurcation plot for the logistic map 

Kt-l 4.fl 

The general behavior of the logistic map for a > a«> is summarized as 
follows: 

• the attracting sets for many - but not all - a > a«, are aperiodic 
and chaotic on various intervals of the unit interval [0,1]. 

• As a increases, the chaotic intervals merge together by inverse 
bifurcations obeying the same 8 and A scalings as in the a < a«, 
region, until the attracting set becomes distributed over the 
entire unit interval at a = 4. 

• There are a large number of "windows" of finite width within 
which the attracting set reverts back to being a stable periodic 
cycle. Within these windows chaotic and periodic regions are 
densely interwoven. The largest such window - a snapshot of 
which is shown in the smaller boxed region in the lower left of 
figure 6 - corresponds to a stable period-3 cycle and spans the 
width 3.8284 ... < a < 3.8415. 

• The periodic windows also harbor period-m cycles, where m =3, 
5, 6,... that undergo period doubling bifurcations, m -> 2m -> 
4m -> ... at a set of critical parameters ai,ct2,— that again scale as 
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d« = doo — cd ", with the same universal 5 as in the a < a» 
region. 

Other periodic windows harbor period triplings, quadruplings, 
etc., occurring at different sets of {d,}, but all of which scale in 
the familiar fashion (albeit with different universal constants 

8*8. 

Two-Dimensional Strange Attractors 

"I have not spoken of the aesthetic appeal of strange attractors. These systems of curves, 
these clouds of points suggest sometimes fireworks or galaxies, sometimes strange and 
disquieting vegetal proliferations. A realm lies here to explore and harmonies to 
discover."      - D. Ruelle 

David Ruelle concludes his 1980 The Mathematical Intelligencer [270] 
review of strange attractors with this eloquent passage on the often 
strikingly beautiful patterns weaved by strange attractors. 

Herum Map 

One the simplest two-dimensional systems is an analogue of the logistic 
equation, introduced by Henon in 1976. It is defined by the equations 

{ 
xn+l = l-axl+yn, 

v„+i = ßr„, 

* 

where a and ß are constants; a controls the extent of the nonlinearity, 
while ß controls the degree of dissipation. Note that, unlike the logistic 
map, the Henon map is invertible. While noninvertibility is necessary 
for chaos in one-dimensional maps, it is not required in 
higher-dimensions. 

Generally, the sequence of points, (x^y,,), (xj,y,), ..., (Xj,y.), ... either 
diverges to infinity (for x,, large) or setdes onto an attractor (for (x^y,) 
near the origin). A fixed-point analysis similar to the one performed 
earlier for the logistic equation may be carried out here to determine 
the behavior of the map as a function of a and ß. For example, the 

fixed points are easily found to be *J = ^j-(l-ß)± 1/(l-ß)2+4a j, 

and y± = ßxj, where the point (xl, ßx!) is always unstable and (JC+, ßxt) 
becomes unstable for a > |(1 - ß)2  . For ß = 3/10, both fixed points 

become unstable for a = a, = 0.3675 and a two-cycle is bom. At a = a2 = 
0.9125 the two-cycle attractor becomes unstable and a four-cycle is 
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born. As a is increased further, the system undergoes 
period-bifurcations obeying the same Feigenbaum constants 8 and A 
that describe the period doublings in the logistic equation. 

Figure 7 shows four snapshot views of the structure of the Henon 
strange attractor for a = 1.4 and ß = 0.3. In the figure, the second, 
third and fourth plots (counted clockwise starting from the upper left 
plot) provide enlargements of the small window regions shown in the 
immediately preceding plots. The attractor possesses two noteworthy 
properties: 

Figure 7. The Henon Attractor (upper left-hand-side). Each 
succeeding image is an enlargement of the boxed segment of the 
immediately preceding image. 

1. Exponential divergence of nearby trajectories: Just as global 
space-time CA patterns (see page 75) must be allowed to slowly 
emerge over many iteration steps before becoming 
recognizable and have a characteristic appearance that is often 
difficult if not impossible to predict beforehand from a 
knowledge of the CA rule alone, so too do strange attractors 
slowly, and in a highly irregular manner, form on a computer 
screen. While individual points jump around in an apparently 
haphazard fashion, it is only after several hundred have been 
plotted that the outline of the underlying attractor becomes 
clear. Numerical experiments confirm that the dynamics on 
this attractor are indeed chaotic. 
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2. Self-Similarity: What is most obvious from comparing the 
sequence of magnifications of an isolated section of the Henon 
attractor as shown figure 7, is its transverse self-similarity, or its 
Cantor-set-like structure. Since the map is area-contracting, the 
attracting set must have zero area (just as the classical 
Cantor-set has zero length); its Hausdorff dimension is 
nonintegral, however, which is a characteristic feature of 
fractals, see page 50). Moreover, although this may not be clear 
from the figure, the Henon attractor has an inhomogeneous 
structure. That is to say, the probabilities, p;, for a point of the 
attractor to be in the i* band in each of the "blown-up" images, 
are all different. 

Qualitative Characterization of Chaos 

What are the criteria by which dynamical systems can be judged to be 
chaotic? Suppose you are given a dynamical system, S, or a set of 
time-series data of S's behavior of the form 

C(0 = ^),C('iU('2), ...,;('*), 

where tfai) represents the state of S at time t; and S's state is sampled 
every t1+] = t, + At time steps for some fixed At. How can you tell from this 
time series of values whether S is chaotic? In this section we give four 
qualitative criteria: 

• the time series "looks chaotic" 

• the Poincare map is space-filling 

• the power spectrum exhibits broadband noise 

• the autocorrelation function decays rapidly 

Time Dependence 

Using the time series method is both intuitive and easy. The gross 
behavior of a system can often be learned merely by studying the 
temporal behavior of each of its variables. The system is likely to be 
chaotic if such temporal plots are nonrecurrent and appear jagged and 
irregular. Moreover, sensitivity to initial conditions can be easily tested 
by simultaneously plotting two trajectories of the same system but 
starting from slightly different initial states. Figure 8, for example, 
shows the divergence of two trajectories for the logistic map with a = 4 
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whose initial points -x0 = 0.12345 and x0' = 0.12346 - differ only in the 
5th decimal place. 

Figure 8. Divergence of trajectories for two nearby initial points 
(differing by x0 - x0' = KT*) for the logistic equation for a = 4.0. 

Kn) 

Poincare Maps 

Recall that the Poincare map is a method for visualizing continuous 
trajectories by constructing an equivalent discrete-time mapping by a 
periodic "stroboscopic" sampling of points along an orbit. Consider a 
two-dimensional trajectory in three-dimensional space. The structure 
of such a trajectory can be readily identified by plotting its 
intersections with a two-dimensional slice through the 
three-dimensional space in which it lives. The system is likely to be 
chaotic if the discrete point set on the resulting Poincare plot is fractal 
or space-filling. 

Autocorrelation Function 

The autocorrelation function, C(l), of a time series measures the 
degree to which one part of the trajectory is correlated with itself at 
another part. If a series is completely random in time, then different 
parts of the trajectory are completely uncorrelated and the 
autocorrelation function approaches zero. Put another way, no part of 
the trajectory harbors any useful information for predicting any later 
part of the trajectory. As the correlation between parts of a trajectory 
increases,  parts of a trajectory contain  an increasing amount of 
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information that can be used to predict later parts and the value of the 
autocorrelation function thus increases. 

For continuous signals, the autocorrelation function C(x) is defined by 

i 1 
C(x) = limr^oo j \c(t)c(t+x) dt,   where c(t) = C£t) - lim?-.*» ± j£(0 dt. 

For discrete systems, C(T) is defined by 

C(x) = lim,v_*oo j; S c(ti)c(ti + x),   where c(tf) = Cfai) - lim*^ £ I Q^tj) 
" i=\ " j=l 

A rapid decay (say, with an exponential dropoff) of C(x) is a criterion 
for the presence of chaos. 

Power Spectrum 

If a system is chaotic that means its signal is irregular and aperiodic in 
time. A measure that is often used to distinguish between multiply 
periodic behavior (that can also appear irregular and complicated) 
and chaos is the power spectrum of the signal, P(co). For continuous 
systems it is defined by 

P(co)= |«(D|
2

, 

where £,((£>) is the Fourier-transform of the signal ^(t): 

;(ö)) = ümr^00JaOe,'<0/^. 
o 

For discrete systems, the Fourier-transform of the signal £(t) is defined 

by 

k=4^1«de2"*w. 

In either case, for multiply periodic motion the power spectrum 
consists only of discrete lines of the corresponding frequencies. 
Chaotic motion, on the other hand, induces broadband noise in P((0), 
that is mostly concentrated in the lower frequencies. 
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Quantitative Characterization of Chaos 

The previous section introduced several qualitative criteria for the 
presence of chaos in a dynamical system. In this section we define a set 
of quantitative measures of chaos: 

• Lyapunov exponents 

• generalized fractal dimensions 

• Kolmogorov-Sinai entropy 

Lyapunov Exponents 

As has been repeatedly stressed, a fundamental property of chaotic 
motion is sensitivity to small changes to initial conditions. Initially 
closely separated starting conditions evolving along regular dynamical 
trajectories diverge only linearly in time. A chaotic evolution, on the 
other hand, leads to an exponential divergence in time. Lyapunov 
exponents quantify this divergence by measuring the mean rate of 
exponential divergence of initially neighboring trajectories. 

Consider two initial points of a one-dimensional trajectory - x0 and x,,' 
= XQ + s - separated by some small quantity 8. Suppose each of these 
points evolves according to the map xn+] = f(xn), for some function f. 
Figure 9 shows that after N steps, the Lyapunov exponent ^(x,,) 
measures the exponential separation between the Nth iterates of x,, 
and Xo', or between f^x,,) and fixg+z), respectively. 

Figure 9. Schematic definition of Lyapunov exponent 

\  eeNX(x0) 

• f^x0 +S) 
x0 

From figure 9, we see that 
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which, in the limit as e -» 0 and N-> ooyields the following expression 
for^(x„): 

f(x0+syf(x0) I 
X(x0) = limiv->oo)S->o j} log 

= lim^ £log lll^1 f(Xi)\ = lim^^oo ^io1 log \f(Xi)\, 

where f (x„) is the derivative of the function f evaluated at the point x„. 
Thus g^*o) is the average factor by which the distance between initially 
closely separated points becomes stretched after one iteration. If X < 0, 
nearby trajectories tend to converge rather than diverge and the 
motion is regular, if X > 0, nearby trajectories tend to diverge from one 
another and the motion is chaotic. 

Figure 10. Lyapunov exponent vs. control parameter a for the logistic 
equation 

z.s 4.6 

As an example, consider the logistic map, defined by 
xn+i =OLXn(l—Xn). A straightforward calculation shows that 
X = lim//-*» ^Slog 11 -2xj|. Figure 10 shows a plot of X vs. a for a in 
the range 2.9 - 4.0. Consistent with our earlier observations of the 
behavior of this map (see figure 6), we see that (1) X < 0 for all a < a» 
, (2) X > 0 for most a > a», and (3) that there are multiple windows in 
the chaotic regime for which X dips down below zero and the attractor 
thus becomes periodic. 
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An n-dimensional system has n one-dimensional Lyapunov exponents, 
A,j, A.2, ..., Xn. Each \ measures the rate of divergence in the i* 
direction. 

Information Theoretic Interpretation 

As defined above, the Lyapunov exponents effectively determine the 
degree of chaos that exists in a dynamical system by measuring the 
rate of the exponential divergence of initially closely neighboring 
trajectories. A suggestive alternative interpretation is an 
information-theoretic one. It is, in fact, not hard to see that Lyapunov 
exponents are very closely related to the rate of information loss in a 
dynamical system. 

Consider, for example, a one-dimensional interval [0,1], that is 
partitioned into N equal sized bins. Assuming that a point x0 is equally 
likely to fall into any one of these bins, learning which bin in fact 
contains x„ therefore constitutes an information gain 

N 
'o = -j£log2i = log2Ar 

where log2 is the logarithm to the base 2. Now consider a simple linear 
one-dimensional map f(x) = a x, where x is in the interval [0,1] and a 
> 1. By changing the length of the interval, and thereby decreasing the 
effective resolution, by a factor a = I f (0)1, a single application of the 
map f(x) results in an effective information loss 

8/ = /1-/0 = -YglQg22+2ilog2J = -log2|/'(P)|. 

Generalizing to the case when lf(x)l depends on position, and 
averaging over a large number of iterations, we obtain the following 
expression for the mean information loss: 

, AM 
hlave = -lim^-^o - 2 log2[f (x,-)| = X/log102, 

where A. is the Lyapunov exponent. We thus see that, in one 
dimension, A. measures the average loss of information about the 
position of a point in [0,1] after one iteration. 

Numerical Computation 

There are several useful methods for computing the Lyapunov 
exponents from experimental time series data, including the so-called 
"pullback-technique" by Benettin, et. al. [22], a method proposed by 
Eckman and Ruelle [85] and an algorithm that is particularly well 
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suited for the analysis of experimental data suggested by Wolf and 
Vastano [320]. To illustrate the general methodology we briefly discuss 
the latter algorithm. 

The first step is to construct an attractor from the experimental data 
using the embedding technique. That is, construct from a time series {^f} 
a set of points of the form 

xi = (%(fi), %{tt - x),..., %{tt - (m - l)x)), 

where x is a fixed time delay. This time-delayed embedding 
reconstruction assumes that if the embedding dimension m is large 
enough, the behavior of whatever system is responsible for generating 
the particular series of measurements can be described by a finite 
dimensional attractor. In principle, the choice of x is arbitrary, though 
criteria for its selection exist. 

Figure 11 shows a schematic illustration of the Wolf algorithm to 
compute the largest Lyapunov exponent, A,max. 

The Wolf algorithm follows a pair of initially nearby points on the 
attractor. Begin with a data point y(t,)) and its nearest neighbor z0(t„), 
which are a distance d0 = I z0(t0) - y(t„) I apart. These two points are 
evolved by time increments At until the distance d0' between them 
exceeds some threshold value e. When that occurs, the first 
incremental data point y(t,) is retained and a new neighbor Zj(tj) is 
sought such that the distance dx = I y(t,) - Zj(tj) I is again less than e 
and such that z^tj) lies as closely as possible in the same direction 
fromy(t,)asz0(t,). 

Figure 11. Schematic illustration of the Wolf algorithm for computing 
the largest Lyapunov exponent 
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This procedure is continued until the fiducial trajectory y has been 
followed to the end of the time series. The largest Lyapunov exponent 
of the attractor, Kmax, is then estimated as 

j   Af-l d'i 

where M is the number of replacements and N is the total number of 
time steps for which the fiducial trajectory y has been followed. The 
presence of chaos in a time series can now be confirmed by finding 
that X,max > 0. In practice, a few thousand attractor points suffice to 
estimate Xmax to within 10% of the true value when the attractor is less 
than three dimensional [320]. 

Fractal Dimensions 

While Lyapunov exponents, as discussed in the last section, confirm 
the presence of chaos by quantifying the magnitude of the exponential 
divergence of initially neighboring trajectories, they do not provide 
any useful structural or statistical information about a strange attractor. 
Such information is instead provided by various fractal dimensions. 

Recall that fractals are geometric objects characterized by some form 
of self-similarity; that is, parts of a fractal, when magnified to an 
appropriate scale, appear similar to the whole. Fractals are thus objects 
that harbor an effectively infinite amount of detail on all levels. 
Coasdines of islands and continents and terrain features are 
approximate fractals. A magnified image of a part of a leaf is similar to 
an image of the entire leaf. Strange attractors also typically have a 
fractal structure. 

Loosely speaking, a fractal dimension specifies the minimum number 
of variables that are needed to specify the fractal. For a 
one-dimensional line, for example, say the x-axis, one piece of 
information, the x-variable, is needed to specify any position on the 
line. The fractal dimension of the x-axis is said to be equal to 1. 
Similarly, two coordinates are needed to specify a position on a 
two-dimensional plane, so that the fractal dimension of a plane is equal 
to 2. Genuine (i.e. interesting) fractals are objects whose fractal 
dimension is noninteger. 

Box Dimension 

Consider the simplest example of a fractal dimension, sometimes 
called the box dimension, Dbox. Suppose we want to compute the box 
dimension for a set of points in a d-dimensional space. Define N(s) to 
be the minimum number of d-dimensional cubes of volume sd that are 
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necessary to completely cover the set. The box dimension is then 
defined as 

Dbox = linie-j.0 
logics)] 
l0g(l/6) • 

Dbox essentially tells us how much information is needed to specify the 
set to within an accuracy s. In practice, one obtains values of N(s) for a 
variety of s's and estimates D,^ from the slope of a plot of log[N(s)] 
versus log (1/s). 

This expression for Dbox gives the expected result for simple sets. If the 
set in question consists of a single point, for example, we know that 
one box of any size s > 0 suffices to cover the set, so that D^ = 
log(l)/log(l/s) = 0, as expected. Similarly, if the set in question is a 
line segment of length L=l, then we can take N(e) = 1/e so that Dbox = 
log (1/s)/log (1/s) = 1. In fact, for the usual d-dimensional Euclidean 
sets, the box dimension equals the topological dimension. One of the 
simplest examples of a set for which the two measures differ is the 
so-called Cantor fractal. 

Figure 12 shows the first four steps in the construction. The first step 
consists of a line of length L=l. Call this set Sr At the next step, set S2 is 
obtained by deleting from S, its middle third. At the third step, the set 
S3 is obtained from S2 by deleting the middle third segments from each 
of the two disjoint pieces making up S2. Continue in this fashion, at 
each step n deleting the middle third segments from each of the 
disjoint pieces making up the set obtained on the previous step, n-1. 
The Cantor fractal is the set that remains in the limit as n —> oo. 

Figure 12. First four steps of the construction of the Cantor fractal 

Despite the fact that the length of the Cantor fractal is zero ■ 

r_i_I_2_± 1-iyfeY-o 
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- its box dimension is greater than zero. Since at the n* step of the 
construction N(e) = 2" balls of size 8 = (l/3)n are needed to cover the 
set, we see that 

Dfcox(Cantor) = lim«-*» j^g * 0.6309. 

As another example, consider the Feigenbaum attractor of the logistic 
equation (see page 34) for a = a» « 3.56994... One can show that the 
trajectory of points at this value of a is a fractal with box dimension 
D^* 0.5388. 

Note that while D^ clearly depends on the metric properties of the 
space in which the attractor is embedded - and thus provides some 
structural information about the attractor - it does not take into 
account any structural inhomogeneities in the attractor. In particular, 
since the box bookkeeping only keeps track of whether or not an 
overlap exists between a given box and the attractor, the individual 
frequencies with which each box is visited are ignored. The 
inhomogeneities of the Henon attractor, for example (see page 41), 
and the information that such inhomogeneities might convey about 
the attractor, are completely ignored by Dbox. This oversight is 
corrected for by the so-called information dimension, which depends on 
the visitation frequencies of points on the attractor. 

Information Dimension 

Just as for the box dimension, first partition the d-dimensional space 
into boxes of volume sd. The probability of finding a point of an 
attractor in box number i, where i = 1, 2, ..., N(e), is p;(s) = N;(s)/N, 
where N;(e) is the number of points in the ith box and N is the total 
number of points. pj(s) is thus the relative frequency with which the i* 
box is visited, and ranges from zero (when N;(E)=0) to one (when 
N,(e)=N). 

The amount of information required to specify the state of the system 
to within an accuracy e (or, equivalentiy, the information gain in 
making a measurement that is uncertain by an amount s) is given by 

Me) 
1(e) = - I pi(e)logpi(e). 

The information dimension, D,, is then defined as 

7(8) 
Dj = lirrie^o log(l/s)- 

Notice that if the set is contained entirely in a single box - say, the 13* 
box - then p13(s) = 1, and p;(£) = 0 for all i * 13. Thus D, = 0. On the 

48 



Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook 

other hand, if each box is visited equally often - that is, if p;(e) = 
1/N(s) for all i - than I(s) = log[N(e)] and D, = D^. For unequal 

probabilities, 1(e) < log[N(s)], so that, in general, Dj < DD0X. 

Correlation Dimension 

Another important measure is based on the correlation integral C(s) 
introduced by Grassberger and Procaccia in 1983. C(e) measures the 
probability of finding two points of an attractor in a box of size s: 

i=0 
p\ = the probability that two points lie within the box za 

= the probability that two points are separated by a distance smaller than s 

= liniAr-x» \ {number of pairs ij whose distance is less than 8} 

= liniAr-xxAsefe- |*,--x,- 

= C(e) = correlation integral, 

where I...I denotes the Euclidean distance, and 6(x) is defined by 
0(x)=l for x > 0 and 6(x)=0 otherwise. C(s) essentially counts the 
number of pairs of points falling within a hypersphere of radius E that 
is centered on each point (and normalizes by a factor 1/N2). The 
correlation dimension, Dcorr, is then defined as 

n i;m        log[C(e)] _ 1;„        log[Ip^] 
log(l/e) log(l/e) 

It can be shown that 0 < Dcorr <Dj< Dbox ■ 

The correlation integral and correlation dimension can be used to 
determine two additional properties from experimental time series 
data: 

• the embedding dimension dE: the dimension dE in the time series 

*(*•) = K&i). COi + *)> •••> t&i + (dE - 1)T)} above which Dcorr 

no longer changes is the (minimal) embedding dimension of the 
attractor. 

• distinction between deterministic chaos and random noise: suppose 
there is a strange attractor embedded in d-dimensional space 
and an external random noise is added. Each point on the 
attractor  becomes  surrounded  by a uniform  d-dimensional 
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cluster of points. Suppose the radius of this cluster is snoise. Then 
for 8 » enoise, the correlation integral C(s) counts these clusters 
as points and the slope of the log [C(e))] versus log(s) plot 
yields the correlation dimension of the attractor. For 8 < snoise, 
most of the points counted by C(e) fall within the uniformly 
filled d-dimensional clusters and the slope of the log [C(e))] 
versus log(e) plot crosses over to d. 

Hierarchy of Generalized Fractal Dimensions 

The three fractal dimensions discussed in the previous section - the 
box dimension, D,^, the information dimension D,, and the 
correlation dimension, DcorT - are actually three members of an infinite 
hierarchy of generalized fractal dimensions, D , that characterize an 
attractor: 

2MB) 
10g[ t   P?(E)] 

D? = Üm~°W     log(l/s)      ' 

where P;(£) is, as before, the probability of finding a point of an 
attractor in the i* box of size s, where i = 1, 2,..., B(s). 

It can be shown that Dq=0 corresponds to the box dimension, D , to the 
information dimension, and Dq=2 to the correlation dimension. It can 
also be shown that Dq is a non-decreasing function of q; i.e. that 
Dq < D i for all q, q' such that q>q. 

Lyapunov Dimension 

An attempt to link a purely static property of an attractor - as 
embodied by its box dimension, Dbox - to a dynamic property, as 
expressed by its set of Lyapunov exponents, {A.J, was first made by 
Kaplan and Yorke [168]. Defining the Lyapunov dimension, DL, to be 

ih 
DL=J+K 7+1 I 

where j denotes the largest 1 such that E^j A,,- > 0, the Kaplan-Yorke 
conjecture is that DboJ( = DL. Although this equality seems to be satisfied 
exactly only for completely homogeneous attractors, it is often 
approximately satisfied by inhomogeneous attractors as well. Because 
the calculation of the Lyapunov exponents li is relatively easy, this 
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4 

simple relation has proven to be useful for obtaining quick 
characterizations of strange attractors. 

Kolmogorov-Sinai Entropy 

The discussion has so far focused exclusively on the amount of 
information gained from a single "snap-shot* view of an attractor. A 
useful alternative viewpoint is provided by asking about the rate of 
information gain per unit time achieved in observing the system over a 
period of time. If the dynamics are simple, the asymptotic information 
gain is zero since new measurements provide no new information; if 
the system is behaving chaotically, on the other hand, new 
measurements are constantly needed in order to update our 
knowledge of the system. The Kolmogorov-Sinai entropy (or metric 
entropy), K, gives an upper bound on this information acquisition rate. 

To define K, partition a drdimensional phase space into boxes of 
volume sd, {bj, b2,..., bN}. Assuming that the state of the system is 
measured in intervals At = x units, define p(bi; b2,..., bN) to be the joint 

probability that x(t = 0) is in box bp x(t = x) is in box b2,..., and 
x(t = Nx) is in box bN. The Shannon information, IN, stored in this 
string is proportional to the information needed to locate the system 
on a trajectory (ba, b2 bN) with precision 8 (if one knows a priori 
only the probabilities p(bp b2,..., bN)), and is given by 

IN = -     2     p(bi,b2,...,bN)logp(bl,b2,...,bN). 
b\,b2,—,bpi 

The additional information needed to predict which box 
x(t = (N+ l)x) will be in, given IN, is given by IN+1 - IN, which is 
therefore a measure of our information gain about the state of the 
system from time t = Nx to t = (N+l)t. The Kolmogorov-Sinai entropy 
is the average rate of this information gain: 

K = limT_>o Hnie-^o limM-*» — S (IN+I - IN), MT AM) 

1 
K = lim-t-^o lime_»o ]imM-^ Mri     - £      p(bub2,...,bM-i)logp(bi,b2,.:,bM-i) 

The limit 8 —► 0 (which must be taken after the M —> oolimit) makes K 
independent of a particular partitioning of the phase space. For 
discrete maps with discrete time steps x = 1, the limit X —> Ois omitted. 
It is easy to see that K = 0 for regular trajectories, while completely 
random motion yields K=<x>. Deterministic chaotic motion, on the 
other hand, results in K being both finite and positive. A method for 
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deriving K of strange attractors from scalar time series is given by 
Fräser [100]. 

Time-Series Forecasting and Predictability 

As has been repeatedly stressed throughout this discussion, chaos 
theory tells us that a chaotic dynamical system is sensitive to initial 
conditions. This, in turn, implies that chaos precludes long-term 
predictability of the behavior of the system. The essence of chaos, after 
all, is the unpredictability of individual orbits; thinks of the random 
sequence of heads and tails from tosses of an unbiased coin or the 
dripping of a faucet. On the other hand, suppose a system's orbit lies 
on a strange attractor. If we know something about this attractor - its 
general shape, for example, perhaps along with an estimate of the 
visitation frequencies to its different parts - this clearly provides some 
information about what the deterministic (albeit chaotic) system is 
doing. This added information, in turn, may be sufficient to allow us to 
make predictions about certain short-term (and long-term) behavioral 
trends of the system. 

Chaotic dynamics is often misinterpreted to mean random dynamics. 
Strictly speaking, since chaos is spawned from a deterministic process, 
its apparent irregularity stems from an intrinsic magnification of an 
external uncertainty, such as that due to a measurement of initial 
conditions. Sensitivity to initial conditions amplifies an initially small 
uncertainty into an exponentially large one; or, in other words, 
short-term determinism evolves into long-term randomness. Thus, as 
Eubank and Farmer6 point out, the important distinction is not 
between chaos and randomness, but between chaotic dynamical 
systems that have low-dimensional attractors and those that have 
high-dimensional attractors. For example, if a time series of evolving 
states of a system is generated by a very high dimensional attractor (or 
if the dynamics is modeled in a state space whose dimension is less 
than that of the attractor), then it will be essentially impossible to 
gather enough information from the time series to exploit the 
underlying determinism. In this case, the apparent randomness will in 
fact have become a very real randomness, at least from a predictability 
standpoint. On the other hand, if the time series is generated by a 
relatively low dimensional attractor, it is possible to exploit the 
underlying determinism to predict certain aspects of the overall 
behavior. A powerful technique to make the underlying determinism 
of a chaotic time series stand out is the so-called embedding technique. 

6 S.   Eubank   and   D.   Farmer,   "An   introduction   to   chaos   and 
randomness," pages 75-190 in [159]. 
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State-Space Reconstruction via Embedding 

Consider   some   real-world   data,    tabulated   as   a   time   series, 

% ~ {^(tO^ih)) —>£(*N)} • The data may represent observations of the 
closing prices of the Dow Jones Industrials, annual defense 
expenditures, or combat losses on the battlefield. 

The embedding technique is a method of reconstructing a state space 
from the time series. It assumes that if the embedding dimension is 
large enough, the behavior of whatever system is responsible for 
generating the particular series of measurements can be described by a 
finite dimensional attractor. Its main strength lies in providing detailed 
information about the behavior of degrees-of-freedom of a system 
other than the ones that are directly observed. Estimates of the error 
introduced by extrapolating the data can also be made. 

The embedding technique consists of creating the state vectors *,- from 

4 according to 

x, = (Ü(ti), Z,(ti + x), ..., Zfci + (m- l)x)) 

where x is a fixed time delay. In principle, the choice of x is arbitrary, 
though criteria for its selection exist. If the dynamics takes place on an 
attractor of dimension d, then a necessary condition for "uncovering" 
the underlying determinism is m>d. It can be shown that if r is the 
dimension of a manifold containing the attractor, than almost any 
embedding in d = 2r + 1 dimensions will preserve the topological 
properties of the attractor. Of course, the embedding technique does 
not work for all time series, and the amount of information it uncovers 
about the underlying determinism for a given time series may be 
sufficient only to yield very short-term predictions. Nonetheless, the 
technique has proven to be very powerful in uncovering patterns in 
data that are not otherwise (obviously) visible. A detailed discussion is 
given in reference [54]. 

Figure 13 shows an example of the kind of predictions that are possible 
with the embedding technique. Given 1000 data points (not shown) of 
the chaotic fluctuations in a far-infrared laser (approximately 
described by three coupled nonlinear ordinary differential equations) 
from which to learn the underlying system's dynamics, Sauer [275] 
uses a modified embedding technique to predict the continuation of 
the time series for 200 additional time steps. Figure 13 (a-d) shows four 
continuations of length 200, each with a different initial point. In each 
of the plots, the solid curve represents the predicted continuation, and 
the dashed curve represents the true continuation. 
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Figure 13. Four continuations of a chaotic time series using the 
embedding technique; solid lines represent predicted values, dashed 
lines represent the actual data 
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Chaotic Control 

Suppose you have a physical system that exhibits chaos. Is there a way 
to still use the system - that is, to allow the system to evolve naturally 
according to its prescribed dynamics - but in such a way as to eliminate 
that system's chaotic behavior? One way, of course, might be to 
physically alter the system in some (possibly cosdy) way. But what if 
such a restructuring is not an option? What if the only available option 
is to slighdy "tweak" one of the system's control parameters? 

It has recendy been shown by Ott, et. al. [237] and Romeiras, et. al. 
[268] that the extreme sensitivity of chaotic systems to small 
perturbations to initial conditions (the so-called "butterfly effect") can 
be exploited to stabilize regular dynamic behaviors and to effectively 
"direct" chaotic trajectories to a desired state. The critical idea is that 
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chaotic attractors typically have embedded within them a dense set of 
unstable periodic orbits. That is to say, an infinite number of unstable 
periodic orbits typically co-exist with the chaotic motion. By a periodic 
orbit, we mean an orbit that repeats itself after some finite time. If the 
system were precisely on an unstable periodic orbit, it would remain 
there forever. Such orbits are unstable because the smallest 
perturbation from the periodic orbit (as might, for example, be due to 
external random noise) is magnified exponentially in time and the 
system orbit moves rapidly away from the periodic orbit. The result is 
that while these unstable periodic orbits are always present, they are 
not usually seen in practice. Instead, one sees a chaotic orbit that 
bounces around in an apparently random fashion. Ironically, chaotic 
control is a capability that has no counterpart in nonchaotic systems 
The reason is that the trajectories in nonchaotic systems are stable and 
thus relatively impervious to desired control. 

The basic strategy consists of three steps: 

• find some unstable periodic orbits embedded within the chaotic 
motion 

• examine these orbits to find an orbit that yields an improved 
system performance 

• apply small controlling perturbations to direct the orbit to the 
desired periodic (or steady state) motion 

Once a desired unstable periodic orbit has been selected, the nature of 
a chaotic orbit assures us that eventually the random-appearing 
wanderings of the chaotic orbit will bring it close to the selected 
unstable periodic orbit. When this happens the controlling 
perturbations can be applied. Moreover, if there is any noise present, 
these controlling perturbations can be applied repeatedly to keep the 
trajectory on the desired orbit. 

We make a few general comments: 

1. Chaotic control is applicable to both continuous and discrete 
dynamical systems. 

2. Chaos can be controlled using information from previously 
observed system behavior. Thus it can be applied to 
experimental (i.e. real-world) situations in which no model need 
be available to define the underlying dynamics. 

3. While chaotic control applies strictly to systems that are 
described   with   a   relatively   few   variables,   it   should   be 
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remembered that the behavior of many high (and even 
infinite) dimensional systems is often described by a low 
dimensional attractor. 

4. Before setüing into a desired controlled orbit the trajectory 
goes through a chaotic transient whose duration diverges as the 
maximum allowed size of the control perturbations approaches 
zero 

5. Small noise can result in occasional bursts in which the orbit 
strays far from the desired orbit 

6. Any number of different orbits can be stabilized, where the 
switching from one to another orbit is regulated by 
corresponding control perturbations 

A recent survey article [284] lists applications for communications (in 
which chaotic fluctuations can be put to use to send controlled, 
pre-planned signals), for physiology (in which chaos is controlled in 
heart rhythms), for fluid mechanics (in which chaotic convection 
currents can be controlled) and chemical reactions. As another recent 
example, a few years ago NASA used small amounts of residual 
hydrazine fuel to steer the ISEE-3/ICE spacecraft to its rendezvous 
with a comet 50 million miles away. This was possible because of the 
sensitivity of the three-body problem of celestial mechanics to small 
perturbations. 

Brief Overview of Method 

Consider a discrete d-dimensional dynamical system, Zrt+i = F(Zn,p), 
—» 

, where Zn is a d-dimensional vector describing the state of the system 
at time-step "n" and p is a control parameter (which will be used for 
inducing "control perturbations"). This control parameter is adjustable 
but is restricted to within a range p* - 8 < p < p* + 8, where p* is the 
nominal value for which the system has a chaotic attractor, and 8 is 
some small number. The problem is now to vary p in such a way that 
for almost all initial conditions in the basin of the chaotic attractor, the 
system will converge onto the desired periodic orbit embedded within 
the attractor. For simplicity, we focus attention on stabilizing fixed 
point (i.e. period one) orbits; generalization to higher period orbits is 
straightforward [268]. 

The first step is to approximate the dynamics near the fixed point, 

labeled Z* (so that Z* = F(Z*,p*)). For values of p close to p\ this 
approximation is given by the linear map 
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where  A = 8F/dZ  is  a  d-by-d  dimensional jacobian  matrix  and 

B = dFldp is a d-dimensional column vector. Both A and B are 
evaluated at Z = Z* and p = p*. 

Assuming that we can tweak the parameter p on each iteration, we 
replace p by pn according to the following linear prescription: 

p->pn=p*-KT-(zn-r), 
where K is a constant d-dimensional column vector, and KT is its 
transpose. The 1-by-d matrix KT must be determined so that the fixed 
point Z*(p*) becomes stable. Substituting this value of pn into the 

above expression for (Z„+i — Z*) we find 

where hZn =Zn—Z*. It is clear that the fixed point will be stable if 
the matrix A — B- K only has eigenvalues whose modulus is less than 
one. The "pole placement solution" to this problem is well known in 
the literature, and is summarized by Romeiras, et. al. [268]. 

Lessons of Nonlinear Dynamics and Chaos 

The major lesson of nonlinear dynamics is that a dynamical system 
does not have to be "complex" or to be described a large set of 
equations, in order for the system to exhibit chaos - all that is needed 
is three or more variables and some embedded nonlinearity. 

Basic lessons of nonlinear dynamics and deterministic chaos include: 

• chaos is pervasive - apparently random behavior in some 
nonlinear systems can in fact be described by deterministic 
(non-random) chaos 

• nonlinear dynamics teaches us to appreciate the wide range of 
qualitatively different dynamical behaviors that can be generated 
by feedback in real systems 

• nonlinear systems generally tend to exhibit bifurcations - small 
changes in parameters can lead to qualitative transitions to new 
types of behaviors 
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• small perturbations can induce large changes 

• typical nonlinear systems have multiple basins of attraction, and 
the boundaries between different basins can have very 
complicated fractal forms 

• dynamical behavior depends on location in phase space 

• an appreciation of what transitions to expect when one adds 
feedback to a system 

• suggest ways in which to selectively adjust feedback 

• an understanding that while individual trajectories behave in an 
apparently erratic manner, the attractors themselves offer 
information about the long-term trends of a system 

• techniques such as time-delayed embedding allow short-term 
prediction even without any prior knowledge of an underlying 
model or set of equations 

• attractors embody information about certain recurrent aspects of 
the long-term behavior of a system 

• the relative time that an orbit spends visiting various parts of an 
attractor yields useful visitation probabilities 

• the presence of multiple attractors may be exploited for strategic 
purposes 

• the information dimension can be used to estimate the minimal 
number of variables that are needed to describe the system 

• that there are dense paths of trajectories on a chaotic attractor 
implies that chaos can be exploited to control dynamics that are 
otherwise erratic and unpredictable 

• chaos often results when a dynamical system is not allowed to 
relax between events 

• the universality of certain nonlinear phenomena implies that we 
may be able to understand many disparate systems in terms of a 
few simple paradigms and models 

Mayer-Kress [38] points out that a failure to learn the lessons of chaos 
theory could lead to: 
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• the illusory belief that successful short-term management allows 
total control of a system 

• difficulty, or even impossibility, of making a diagnosis from 
available short-term data 

• application   of  inappropriate   control   mechanisms   that   can 
actually produce the opposite of a desired effect 

Tools for the Decision Maker? 

Nonlinear dynamics makes clear that chaotic dynamics ought not be 
misinterpreted to mean random dynamics. The most important lesson 
of deterministic chaos is that dynamical behavior that appears to be 
chaotic or random often contains an embedded regularity. If this 
embedded regularity can be uncovered and identified, it can 
potentially be exploited by the decsions maker: 

• Short Term Predictions. Given sufficient data, time series analysis 
permits one to make short-term predictions about a system's 
behavior, even if the system is chaotic. Moreover, these 
prediction can be made even when the underlying dynamics is 
not known. 

• Long-term Trends. If the attractors of a system are known or can be 
approximated (say, from available historical time series data), 
long-term trends can be predicted. Knowledge about visitation 
frequencies of points on an attractor provides insight into the 
probabilities of various possible outcomes. Lyapunov exponents 
quantify the limits of predictability. 

• Qualitative Understanding of the Battlefield. The information 
dimension can be used to estimate the minimum number of 
variables needed to describe a system. Moreover, if a system can 
be shown to have a small non-integer dimension, it is probable 
that the underlying dynamics are due to nonlinearities and are 
not random [231]. 
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Complex systems 

Introduction 

"Time is a river which sweeps me along, but I am the river; it is a tiger which 
destroys me, but I am the tiger; it is a fire which consumes me, but I am the 

fire." -Jorge Luis Borges 

What are complex systems? There are examples of complex systems 
just about everywhere we look in nature, from the turbulence in fluids 
to global weather patterns to beautifully intricate galactic structures to 
the complexity of living organisms. All such systems share at least this 
one property: they all consist of a large assemblage of interconnected, 
mutually (and typically nonlinearly) interacting parts. Moreover, their 
aggregate behavior is emergent. That is to say, the properties of the 
"whole" are not possessed by, nor are they directly derivable from, any 
of the "parts" - a water molecule is not a vortex, and a neuron is not 
conscious. A complex system must therefore be understood not just in 
terms of the set of components out of which it is constructed, but the 
topology of the interconnections and interactions among those 
components. 

Gases, fluids, crystals, and lasers are all familiar examples of complex 
systems from physics. Chemical reactions, in which a large number of 
molecules conspire to produce new molecules, are also good 
examples. In biology, there are DNA molecules built up from amino 
acids, cells built from molecules, and organisms built from cells. On a 
larger scale, the national and global economies and human culture as 
a whole are also complex systems, exhibiting their own brand of global 
cooperative behavior. One of the most far-reaching ideas of this sort is 
James Lovelock's controversial "Gaia" hypothesis, which asserts that the 
entire earth - molten core, biological ecosystems, atmospheric weather 
patterns and all - is essentially one huge, complex organism, delicately 
balanced on the edge-ofahaos. 

Perhaps the quintessential example of a complex system is the human 
brain, which, consisting of something on the order of 1010 neurons 
with 10s -104 connections per neuron, is arguably the most "complex" 
complex system on this planet. Somehow, the cooperative dynamics of 
this vast web of "interconnected and mutually interacting parts" 
manages to produce a coherent and complex enough structure for the 
brain to be able to investigate its own behavior. 

The emerging new sciences of complexity and complex adaptive 
systems explore the important question of whether, or to what extent, 
does the behavior of the many seemingly disparate complex systems 
found in nature - from the very small to the very large - stem from the 
same fundamental core set of universal principles. 
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References include monographs (Kauffman [171], Holland [144], 
Mainzer [205], Weisbuch [316]), popularizations (Lewin [196], 
Waldrop [311], and Gell-Mann [109]), conference proceedings 
(Cowan, et. al. [60], Varela [307], Yates [326]) and a series of lecture 
notes from the Santa Fe Institute ([159], [227]-[230]). 

Short History 

Table 4 shows a brief chronology of some of the milestone events in 
the study of complex systems. 

Whenever a new field emerges, many different individuals contribute 
to its development. This is of course also true of complex systems 
theory, yet four persons stand out as originating and shaping much of 
the field: Alan Turing, John von Neumann, Stephen Wolfram and 
Chris Langton. 

Turing, in 1936, published a landmark proof of what has come to be 
known as the Halting Theorem. Turing's theorem fundamentally limits 
what one is able to know about the running of a program on a 
computer by asserting that there is in general no way to know in 
advance if an arbitrary program will ever stop running. In other words, 
there is, in general, no quick and dirty short-cut way of predicting an 
arbitrary program's outcome; this is an example of what is called 
computational irreducibility. About five decades later, Wolfram suggested 
that computational irreducibility is actually a property not just of 
computers, but of many real physical systems as well. 

Cellular automata were conceived in 1948 by John von Neumann, 
whose motivation was in finding a reductionist model for biological 
evolution. His ambitious scheme was to abstract the set of primitive 
logical interactions necessary for the evolution of the complex forms of 
organization essential for life. In a seminal work, completed by Burks, 
von Neumann followed a suggestion by Ulam to use discrete rather 
than continuous dynamics and constructed a two-dimensional 
automaton capable of self-reproduction. Although it obeyed a 
complicated dynamics and had a rather large state space, this was the 
first discrete parallel computational model formally shown to be a 
universal computer (which implies, in turn, that it is also computationally 
irreducible). Twenty years later, the mathematician John Conway 
introduced his well-known Life game, which remains among the 
simplest known models proven to be computational universal. 

Other important historical landmarks include the founding, in 1984, 
of the Santa Fe Institute, which is one of the leading interdisciplinary 
centers for complex systems theory research; the first conference 
devoted solely to research in cellular automata (which is a prototypical 
mathematical model of complex systems), organized by Wolfram and 
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Toffoli at MIT in 1986; and the first artificial life conference, organized 
by Chris Langten at Los Alamos National Laboratory, in 1987. 

Table 4. Some historical developments in the study of complex 
systems 

Year Researcher Discovery 
1936 Turing formalized concept of computability; universal 

turing machine 
1948 von Neumann wanted to abstract the logical structure of life; 

introduced self-reproducing automata as a means 
towards developing a reductionist biology 

1950 Ulam proposed need for having more realistic models 
for the behavior of complex extended systems 

1966 Burks completed and described von Neumann's work 
1969 Zuse introduced concept of "computing spaces," or 

digital models of mechanics 

1970 Conway introduced two-dimensional cellular automaton 
Life rule 

1977 Toffoli applied cellular automata directly to modeling 
physical laws 

1983 Wolfram wrote a landmark review article on properties of 
cellular automata that effectively legitimized the 
field as research endeavor for physicists 

1984 Santa Fe Institute founded, serving as a 
pre-eminent center for the interdisciplinary study 
of complex systems 

1986 Toffoli, Wolfram first cellular automata conference held at MIT, 
Boston 

1987 Langton first artificial life conference held at the Santa Fe 
Institute 

Ants and brains ... and combat forces? 

Achilles: Familiar to me? What do you mean? I have never looked 
at an ant colony on anything but the ant level. 

Anteater: Maybe not, but ant colonies are no different from brains 
in many respects... 
- Douglas Hofstadter, Godel, Esher, Bach 

Much has been written about how insect "societies" - with their 
complex hierarchies of function and responsibility - often exhibit 
intelligent-like behavior. Consider the massive mounds built by the 
termite Macrotermes. The heat generated within these mound is carried 
upwards via a central air duct where it then travels back down along 
narrow channels lying close to the surface and where it is cooled and 
oxygen and carbon dioxide are exchanged, just as in a lung. Such 
mounds, as whole, act as air-conditioning system. Although these 
mounds can be likened to human buildings, in that they are clearly 
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constructed for the well-being and comfort of its occupants, they are 
fundamentally different in that they are not engineered. That is to say, 
no one of their builders ever has any global conception of the 
structure before it is completed. The mounds emerge from the 
local-rule governed behavior of tens of thousands of interacting worker 
termites. The "swarm intelligence" responsible for the structure is itself 
an emergent collective property of the termite society as a whole, and 
is a property clearly not possessed by any of the society's non-intelligent 
constituents. 

Just as ant and termite colonies and brains share many nontrivial 
collective properties, it can also be argued that there are strong 
analogies between these "social mind" systems and the self-organizing 
dynamics of combat forces: 

• the behavior of individual elements (whether they be ants, 
neurons or infantrymen) yields little information about the 
properties or progress of the "collective" 

• the global dynamics of each type of system stems from the 
cooperative nonlinear interaction of individual elements with 
the environment 

the global behavior of each system is relatively insensitive to the 
removal of a small number of its individual elements 

each system appears collectively to be "driven," at times, by forces 
non existent and/or non-acting at their constituent levels (think 
of the military historian's use of phrases like 
"shifting-momentum" and "tempo-of-battle" to describe 
predominantly "high-level" activity on the battlefield) 

Collectivism 

The study of complex systems is not so much a well-developed 
methodology that comes armed with ready-made IMSL-like algorithms 
and software routines, as much as a new philosophy, or a new way of 
looking at some (sometimes very old) problems. The term collectivism 
has sometimes been used to distinguish this philosophy from the more 
traditional "top down" and "bottom up" philosophies that it embodies. 

Collectivism embodies the belief that in order to properly understand 
complex systems, such systems must be viewed as coherent wholes 
whose open-ended evolution is continuously fueled by nonlinear 
feedback between their macroscopic states and microscopic 
constituents. It is neither completely reductionist (which seeks only to 
decompose a system into its primitive components), nor completely 
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synthesist (which seeks to synthesize the system out of its constituent 
parts but neglects the feedback between emerging levels). 

Figure 14. Feedback between local and global levels = Collectivism 

locally interacting agents 

As an example of the importance of collectivism, consider a natural 
ecology. Each species that makes up an ecology composed of a large 
number of diverse species, co-evolves with other members of the 
ecology according to a fitness function that is, in part, itself a function 
of the emerging ecology. Individual members of each species 
collectively define a (part of the) co-evolving ecology; the ecology, in 
turn, determines the fitness-function according to which its constituent 
parts evolve (see figure 14). It is this nonlinear feedback between the 
information describing individual species (or the system's microscopic 
level) and the global ecology (or the system's macroscopic level) that 
those species collectively define that determines the temporal 
evolution - and identity - of the entire system. 

Collectivism is thus distinct from both the top-down reductionist 
approach traditionally favored by most physicists (system as a simple 
edifice of its microscopic parts), and the more recent neural-net-like 
bottom-up approach favored by connectionists (system as a synthesis of 
its constituent parts). The nonlinear inter-level feedback loop that 
makes up the collective is what makes a traditional linear analysis of 
such systems difficult, if not impossible. "Analysis" proceeds from the 
assumption that in order to understand a system one must first break it 
up into its constituent parts. Understanding then comes from the 
knowledge gained by reconstructing the system. But for systems whose 
dynamics depend critically on interaction between parts, analysis often 
misses the essential characteristics of the whole system. "Synthesis" is 
the complementary act of putting the individual pieces together in 
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order to understand what they do collectively. Understanding complex 
synthesis requires that both analysis and synthesis be done. 

Self-Organization 

Self-organization is a fundamental characteristic of complex systems. It 
refers to the emergence of macroscopic nonequilibrium organized 
structures, and is due to the collective interactions of the constituents 
of a complex system as they react and adapts to their environment. 
There is no God-like "oracle" dictating what each and every part ought 
to be doing; parts act locally on local information and global order 
emerges without any need for external control. 

At first sight, self-organization appears to violate the Second Law of 
Thermodynamics, which asserts that the entropy S of an isolated 
system never decreases (or, more formally, dS/dt> 0); see figure 15-a. 
Since entropy is essentially a measure of the degree of disorder in a 
system, the Second Law is usually interpreted to mean that an isolated 
system will become increasingly more disordered with time. How, then, 
can structure emerge aflera. system has had a chance to evolve? 

Figure 15. Schematic of Isolated and Nonisolated Systems 

Environment 

(b) 

Upon closer examination, we see that self-organization in complex 
system does not really violate the Second Law. The reason is that the 
Second Law requires a system to be isolated; that is, it must not 
exchange energy or matter with its environment. For nemisolated 
systems consisting of noninteracting or only weakly interacting 
particles (see figure 15-b), the entropy S consists of two components: 
(1) an internal component, Si; due to the processes taking place within 
the system itself, and (2) an external component, Se, due to the 
exchange of energy and matter between the system and the 
environment. The rate of change of S with time, dS/dt, now becomes 
dS/dt = dS/dt + dSe/dt. As for an isolated system, dSi/dt>0. But 
there are no constraints on dSe/dt. If dSe/dt is sufficiently less than 
zero, the overall entropy of the system can itself decrease. Thus, the 
entropy of a nonisolated system of noninteracting or only weakly 
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Emergence 

interacting particles can decrease due to the exchange of energy 
and/or matter between the system and its environment. 

The situation is more complicated for nonisolated systems consisting 
of strongly interacting particles and when the system is no longer in 
equilibrium with the environment. Kauffman [171] notes that the 
"second law really state that any system will tend to the maximum 
disorder possible, within the constraints due to the dynamics of the 
system." 

Central to the general science of complexity is the concept of 
emergence. Emergence refers to the appearance of higher-level 
properties and behaviors of a system that - while obviously originating 
from the collective dynamics of that system's components - are neither 
to be found in nor are directly deducible from the lower-level 
properties of that system. Emergent properties are properties of the 
"whole" that are not possessed by any of the individual parts making up 
that whole. 

One of the simplest, and ubiquitous, examples of emergence is 
"temperature," as read by a conventional thermometer. While 
temperature is a perfectly well-defined physical quantity on the 
macro-scale, it is a meaningless concept on the level of a single atom or 
molecule. At the other extreme, we have one of the most complex 
(and still controversial) examples of emergence of human 
consciousness, which mysteriously emerges out of a caldron of 
interacting neurons. Consciousness cannot be found in any individual 
neuron, but is the collective property of the whole brain. 

Example #1: Reynold's Boids 

One of the most breathtakingly beautiful displays of nature is the 
synchronous fluid-like flocking of birds. It is also an excellent example 
of emergence in complex systems. Large or small, the magic of flocks is 
the very strong impression they convey of some intentional centralized 
control directing the overall traffic. Though ornithologists still do not 
have a complete explanation for this phenomenon, evidence strongly 
suggests that flocking is a decentralized activity, where each bird acts 
according to its local perceptions of what nearby birds are doing. 
Flocking is therefore a group behavior that emerges from collective 
action. 

Craig Reynolds [264] programmed a set of artificial birds - which he 
called boids - so that each boid followed three simple local rules: 
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• Rule   1:   maintain   minimum   distance   from   other   objects 
(including other boids) 

• Rule 2: match velocity of nearby boids 

• Rule 3: move toward the perceived center of nearby boids 

Each boid thus "sees" only what its neighbors are doing and acts 
accordingly. Reynolds found that the collective motion of all the boids 
was remarkably close to real flocking, despite the fact that there is 
nothing explicitly describing the flock as a whole. The boids initially 
move rapidly together to form a flock. The boids at the edges either 
slow down or speed up to maintain the flock's integrity. If the path 
bends or zigzags in any way, the boids all make whatever minute 
adjustments need to be made to maintain the group structure. If the 
path is strewn with obstacles, the boids flock around whatever is in 
their way naturally, sometimes temporarily splitting up to pass a an 
obstacle before reassembling beyond it. There is no central command 
that dictates this action. 

The point of this example is not that the boids' behavior is a perfect 
replica of natural flocking - although it is a close enough match that 
Reynold's model has attracted the attention of professional 
ornithologists - but that much of the boids' collective behavior is 
entirely unanticipated, and cannot be easily derived from the rules 
defining what each individual boid does. 

Example #2: Collective Decentralized Sorting 

Deneubourg, et. al. [213], have introduced a simple distributed sorting 
algorithm that is inspired by the self-organized way in which 
ant-colonies sort their brood. 

Implemented by robot teams, their algorithm has the robots move 
about a fenced-in environment that is randomly littered with objects 
that can be scooped up. These robots (1) move randomly, (2) do not 
communicate with each other, (3) can perceive only those objects 
direcüy in front of them (but can distinguish between two or more 
types of objects with some degree of error), and (4) do not obey any 
centralized control. The probability that a robot picks up or puts down 
an object is a function of the number of the same objects that it has 
encountered in the past. 

Coordinated by the positive feedback these simple rules induce 
between robots and their environment, the result, over time, is a 
seemingly intelligent, coordinated sorting activity. Clusters of 
randomly   distributed   objects   spontaneously   and   quite   naturally 
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emerge out a simple set of autonomous local actions having nothing 
at all to do with clustering per se; see figure 16. 

The authors suggest that this system's simplicity, flexibility, error 
tolerance and reliability compensate for their lower efficiency. One 
can argue, for example, that this collective sorting algorithm is much 
less efficient than a hierarchical one. The cost of having a hierarchy, 
though, is that the sorting would no longer be ant-like but would 
require a god-like oracle analyzing how many objects of what type are 
where, deciding how best to communicate strategy to the ants. 
Furthermore, the ants would require some sort of internal map, a 
rudimentary intelligence to deal with fluctuations and surprises in the 
environment (what if an object was not where the oracle said it would 
be?), and so on. In short, a hierarchy, while potentially more efficient, 
would of necessity have to be considerably more complex as well. The 
point Deneubourg, eL al. are making is that a much simpler collective 
decentralized system can lead to seemingly intelligent behavior while 
being more flexible, more tolerant of errors and more reliable that a 
hierarchical system. 

Figure 16. Collective sorting by ant-like robots 
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Other examples of emergence include 

• the characteristic spirals of the Belousov-Zhabotinski chemical 
reaction; see page 89 

• the Navier-Stokes-like macroscopic behavior of a lattice gas that 
consists, on the micro-scale, of simple unit-bit billiards moving 
back and forth between discrete nodes along discrete links; see 
page 90 

• globally ordered collective behavior in high-dimensional cellular 
automata systems that is locally featureless; see page 91 

The macroscopic behavior in each of these examples is unexpected 
despite the fact that the details of the microscopic dynamics is well 
defined. 
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Edge-of-Chaos 

One often hears the phrase edge-of-chaos in discussions of complex 
systems, as in "such and such a system appears poised at the 
edge-of-chaos." As this important concept is still a topic of some debate, 
we make a few comments regarding it. 

Chris Langten [187] opens his "Life at the Edge of Chaos" paper at the 
Artificial Life II conference with the following intriguing question: 
"Under what conditions can we expect a dynamics of information to 
emerge spontaneously and come to dominate the behavior of a 
physical system?" While his question was, in that paper, motivated 
chiefly by an understanding that living organisms may be distinguished 
from inanimate matter by the fact that their behavior is clearly based 
on a complex dynamics of information, its roots extend considerably 
deeper. 

Langton was able to provide a tentative answer to his question by 
examining the behavior of the entire rule space of elementary 
one-dimensional cellular automata rules (see discussion beginning on 
page 81) as parameterized by a single parameter X.1 He found that as X 
is increased from its minimal to maximal values, a path is effectively 
traced in the rule space that progresses from fixed point behavior to 
simple periodicity to evolutions with longer and longer periods with 
increasing transients, passes through an intermediate transition region 
at a critical value Xc, crosses over into a chaotic regime of steadily 
diminishing complexity until, eventually, the behavior is again 
completely predictable at the maximal value of X and complexity falls 
back to zero. Because the transition region represents the region of 
greatest complexity and lies between regions in which the behavior is 
either ordered or chaotic, Langten christened the transition region as 
the edge-of-chaos. 

Langton's tentative answer to the question above is therefore: "We 
expect that information processing can emerge spontaneously and 
come to dominate the dynamics of a physical system in the vicinity of a 
critical phase transition." Langten speculates that the dynamics of 
phase transitions is fundamentally equivalent to the dynamics of 
information processing. 

7 Elementary cellular automata are discrete dynamical systems. They 
consist of automata that live on sites of a one-dimensional lattice and that take 
on one of only two values - 0 or 1. Their dynamics is completely prescribed by 
a rule, f, that explicitly maps a state consisting of an automaton's state and the 
states of the automaton's left and right neighbors to either the value 0 or 1. 
Given a cellular automata rule f, Langton's parameter X is defined to be the 
fraction of entries in the rule table for f that get mapped to a non-zero value. For a more 
complete discussion of cellular automata, see page 81. 
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Figure 17. A Schematic illustration of the edge-of-chaos metaphor 

Ordered Regime 
perturbations die out 

Complex Regime 
poised to adapt and evolve 
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' effects of perturbations 
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Phase Transition 

Strictly speaking, Langton's edge-of-chaos idea holds true only for the 
specific system in which it was discovered. Nonetheless, the idea has 
frequendy been used as a general metaphor for the region in 
"complexity space" toward which complex adaptive systems appear to 
naturally evolve (see figure 17). Kauffman ([71], [172]), in particular, 
is a staunch advocate of the idea that systems poised at the 
edge-of-chaos are optimized, in some sense, to evolve, adapt and 
process information about their environment 

Effective computation, such as that required by life processes and the 
maintenance of evolvability and adaptability in complex systems, 
requires both the storage and transmission of information. If 
correlations between separated sites (or agents) of a system are too 
small - as they are in the ordered regime shown in figure 17 - the sites 
evolve essentially independendy of one another and litde or no 
transmission takes place. On the other hand, if the correlations are too 
strong - as they are the chaotic regime - distant sites may cooperate so 
strongly so as to effectively mimic each other's behavior, or worse yet, 
whatever ordered behavior is present may be overwhelmed by random 
noise; this, too, is not conducive to effective computation. It is only 
within the phase transition region - in the complex regime poised at the 
edge-of-chaos - that information can propagate freely over long distances 
without appreciable decay. However loosely defined, the behavior of a 
system in this region is best described as complex; i.e. it neither locks 
into an ordered pattern nor does it dissolve into an apparent 
randomness. Systems existing in this region are both stable enough to 
store information and dynamically amorphous enough to be able to 
successfully transmit it. 

However intuitive the edge-of-chaos idea appears to be, one should be 
aware that it has received a fair amount of criticism in recent years. It is 
not clear, for example, how to even define complexity in more 
complicated systems like coevolutionary systems, much less imagine a 
phase transition between different complexity regimes. Even Langton's 
suggestion that effective computation within the limited domain of 
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cellular automata can take place only in the transition region has been 
challenged.8 

Complexity as a Measure? 

Related to the concept of the edge-of-chaos is the problem of 
determining what is meant by complexity, 05 a measure. That is to say, 
the problem of finding an objective measure by which an object X can 
be said to be more or less "complex" than object Y. 

To set up the problem and in order to appreciate more fully the 
difficulty in quantifying complexity, consider figure 18. The figure 
shows three patterns: (1) an area of a regular two-dimensional 
Euclidean lattice, (2) a space-time view of the evolution of an 
elementary one-dimensional cellular automaton (see page 81 for 
discussion), and (3) a completely random collection of dots. These 
patterns illustrate the incongruity that exists between mathematically 
precise notions of entropy, or the amount of disorder in a system, and 
intuitive notions of complexity. Whereas pattern (2) is intuitively the 
most complex of the three patterns, it has neither the highest entropy 
(which belongs to pattern (3)) or the lowest (which belongs to pattern 
(1)). Indeed, were we to plot our intuitive sense of complexity as a 
function of the amount of order or disorder in a system, it would 
probably look something like that shown in figure 19 (compare this 
figure to figure 17). The problem is to find an objective measure of the 
complexity of a system that matches this intuition. 

Figure 18. Three patterns of varying "complexity" 

pattern 1 pattern 2 

We all have an intuitive feel for complexity. An oil painting by Picasso 
is obviously more "complex" than the random finger-paint doodles of a 
three-year-old. The works of Shakespeare are more "complex" than 
the rambling prose banged out on a typewriter by the proverbial band 

8 Mitchell, M., P.T.Hraber and J.P.Crutchfield, "Revisiting the edge of 
chaos: evolving cellular automata to perform computations," Complex Systems, 
Volume 7,1993, 89-130. 
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of monkeys. Our intuition tells us that complexity is usually greatest in 
systems whose components are arranged in some intricate 
difficult-to-understand pattern or, in the case of a dynamical system, 
when the outcome of some process is difficult to predict from its initial 
state. 

Figure 19. Complexity versus degree of order in a system 

Order Disorder 

The problem is to articulate this intuition formally; to define a 
measure that not only captures our intuitive feel for what distinguishes 
the complex from the simple but also provides an objective basis for 
formulating conjectures and theories about complexity. While a 
universally accepted measure has yet to be defined (over 30 measures 
of complexity have been proposed in the research literature; see 
[86]),all such measures of complexity fall into two general classes: 

• Static Complexity, which addresses the question of how an object 
or system is put together (i.e. only purely structural 
informational aspects of an object, or the patterns and/or 
strengths of interactions among its constituent parts), and is 
independent of the processes by which information is encoded 
and decoded. 

• Dynamic complexity, which addresses the question of how much 
dynamical or computational effort is required to describe the 
information content of an object or state of a system. 

Note that while a system's static complexity certainly influences its 
dynamical complexity, the two measures are clearly not equivalent. A 
system may be structurally rather simple (i.e. have a low static 
complexity), but have a complex dynamical behavior. (Think of the 
chaotic behavior of Feigenbaum's logistic equation, for example; see 
page 34). 

73 



Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook 

What is the Difference Between Chaos and Complexity? 

Very loosely speaking, it can be said that where chaos is the study of 
how simple systems can generate complicated behavior, complexity is 
the study of how complicated systems can generate simple behavior. 
Since both chaos and complex systems theory attempt to describe the 
behavior of dynamical systems, it should not be surprising to learn that 
both share many of the same tools, although, properly speaking, 
complex systems theory ought to be regarded as the superset of the 
two methodologies. 

Table 5 lists behavioral characteristics of four basic kinds of dynamics: 
ordered, random, chaotic and complex. 

Table 5. A comparison among different types of dynamics 
Ordered Random Chaotic Complex 

Examples planetary 
orbits 

static noise 
on radio 

weather 
patterns 

human brain 

Predictability very high none 
(statistical) 

short times 
only 

continually 
evolving 

Effects of 
Small 

Perturbations 
very small none 

exponential 
growth of 

initial errors 
adaptation 

Dimensionality 
(degrees of 
freedom) 

finite infinite typically low very high 

Attractors 
limit-points 

and 
limit-cycles 

none strange 
attractors 

emergence 
vice 

attractors 

Control easy hard 
difficult (but 

ripe for 
exploitation) 

self-adaptive 

Cellular Automata 

Cellular automata (CA) are a class of spatially and temporally discrete, 
deterministic mathematical systems characterized by local interaction 
and an inherently parallel form of evolution. First introduced by von 
Neumann in the early 1950s to act as simple models of biological 
self-reproduction, CA are prototypical models for complex systems and 
processes consisting of a large number of identical, simple, locally 
interacting components. The study of these systems has generated 
great interest over the years because of their ability to generate a rich 
spectrum of very complex patterns of behavior out of sets of relatively 
simple underlying rules. Moreover, they appear to capture many 
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essential features of complex self-organizing cooperative behavior 
observed in real systems. 

Although much of the theoretical work with CA has been confined to 
mathematics and computer science, there have been numerous 
applications to physics, biology, chemistry, biochemistry, and geology, 
among other disciplines. Some specific examples of phenomena that 
have been modeled by CA include fluid and chemical turbulence, 
plant growth and the dendritic growth of crystals, ecological theory, 
DNA evolution, the propagation of infectious diseases, urban social 
dynamics, forest fires, and patterns of electrical activity in neural 
networks. CA have also been used as discrete versions of partial 
differential equations in one or more spatial variables. They have most 
recently been used to simulate some aspects of military combat [323]. 

The best sources of information on CA are conference proceedings 
and collections of papers, such as the one's edited by Boccara [29], 
Gutowitz [120], Preston [254] and Wolfram [321]-[322]. An excellent 
review of how CA can be used to model physical systems is given by 
Toffoli and Margolus [304]. 

While there is an enormous variety of particular CA models - each 
carefully tailored to fit the requirements of a specific system - most CA 
models usually possesses these five generic characteristics: 

• discrete lattice of cells: the system substrate consists of a one-, two- 
or three-dimensional lattice of cells 

• homogeneity: all cells are equivalent 

• discrete states: each cell takes on one of a finite number of possible 
discrete states 

• local interactions: each cell interacts only with cells that are in its 
local neighborhood (figure 23 shows some common 
neighborhoods in two dimensions) 

• discrete dynamics: at each discrete unit time, each cell updates its 
current state according to a transition rule taking into account 
the states of cells in its neighborhood 

Example #/: One-dimensional CA 

For a one-dimensional CA, the value of the ith cell at time t - denoted 
by C;(t) - evolves in time according to a "rule" F that is a function of 
Cj(t) and other cells that are within a range r (on the left and right) of 
q(t): 
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Ci(f) = F\Ci-r(t- \),Ci-r+x(t- 1), ...,Ci+r-l(t- l),Ci+r(t- 1)]. 

Since each cell takes on one of k possible values - that is, 
Cj(t) e {0,1,2, ...,&} - the rule F is completely defined by specifying 
the value assigned to each of the k2r+1 possible (2r+l)-tuple 
configurations for a given range-r neighborhood: 

Ci-r(t-l) ... d(t-X) ... Ci+r(t- 1) cm 
0 0 0 F(0,0,...,0) 
0 0 1 F(0,0,.-.,1) 
• ■ ' " 

k k k F(k,k,...,k) 

Since F itself assigns any of k values to each of the k2r+1 possible 
(2r+l)-tuples, the total number of possible rules is an exponentially 
increasing function of both k and r. For the simplest case of nearest 
neighbors (range r=l) and k=2 (q = 0 or 1), for example, there are 
28=256 possible rules. Increasing the number of values each cell can 
take on to k=3 (but keeping the radius at r=l) increases the rule-space 
sizeto333«7»1012. 

Figure 20 shows the time evolution of a nearest-neighbor (radius r=l) 
rule where c is equal to either 0 or 1. The row of eight boxes at the top 
of the figure shows the explicit rule-set, where - for visual clarity - a 
box has been arbitrarily colored "black" if the value c=l and "white" if 
c=0. For each combination of three adjacent cells in generation 0, the 
rule F assigns a particular value to the next-generation center cell of 
the triplet. Beginning from an initial state (at time=0) consisting of the 
value zero everywhere except the center site, that is assigned the value 
1, F is applied synchronously at each successive time step to each cell of 
the lattice. Each generation is represented by a row of cells and time is 
oriented downwards. The first image shows a blowup of the first five 
generations of the evolution. The second shows 300 generations. The 
figure illustrates the fact that simple rules can generate considerable 
complexity. 

The space-time pattern generated from a single nonzero cell by this 
particular rule has a number of interesting properties. For example, it 
consists of a curious mixture of ordered behavior along the 
left-hand-side and what appears to be disordered behavior along the 
right-hand-side, separated by a corrugated boundary moving towards 
the left at a "speed" of about 1/4 cells per "clock" tick. In fact, it can be 
shown that, despite starting from an obviously non-random initial state 
and evolving according to a fixed deterministic rule, the temporal 
sequence of vertical values is completely random. Systems having the 
ability to deterministically generate randomness from non-random 
input are called autoplectic systems. 
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* 

Figure 20. Example of a one-dimensional CA 
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As another example, consider the rule shown at the top of figure 21. 
Its space-time evolution, starting from a random initial state, is shown 
at the bottom of the figure. Note that this space-time pattern can be 
described on two different levels: either on the cell-level, by explicitly 
reading off the values of the individual cells, or on a higher-level by 
describing it as a sea of particle-like structures superimposed on a 
periodic background. In fact, following a small initial transient period, 
temporal sections of this space-time pattern are always of the form 
"...BBBBPBB...BB...BBBP'BB...BBBP"BBB...", where "B" is a state of 
the periodic background consisting of repetitions of the sequence 
"10011011111000" (with spatial period 14 and temporal period 7), and 
the P's represent "particles." The particle pattern P = "11111000", for 
example, repeats every four steps while being displaced two cells to the 
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left; the particle P = "11101011000" repeats every ten steps while being 
displaced two cells to the right. 

Figure 21. Evolution of a one-dimensional CA starting from a random 
initial state 
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Although the underlying dynamics describing this system is very 
simple, and entirely deterministic, there is an enormous variety, and 
complexity, of emergent particle-particle interactions. Such simple 
systems are powerful reminders that complex higher-level dynamics 
need not have a complex underlying origin. Indeed, suppose that we 
had been shown such a space-time pattern but were told nothing 
whatsoever about its origin. How would we make sense of its dynamics? 
Perhaps the only reasonable course of action would be to follow the 
lead of any good experimental particle-physicist and begin cataloging 
the various possible particle states and interactions: there are N particles 
of size s moving to the left with speed v, when a particle p of type P collides with 
q of type Q, the result is the set of particles (p,, ..., pj; and so on. It would 
take a tremendous leap of intuition to fathom the utter simplicity of 
the real dynamics. 

In general, the behavior of CA is strongly reminiscent of the kinds of 
behavior observed in continuum dynamical systems, with simple rules 
yielding steady-state behaviors consisting of fixed points or limit cycles, 
and complex rules giving rise to behaviors that are analogous to 
deterministic chaos. In fact, there is extensive empirical evidence 
suggesting   that  patterns   generated   by   all   (one-dimensional)   CA 
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evolving from disordered initial states fall into one of only four basic 
behavioral classes: 

• Class 1: evolution leads to a homogenous state, in which all cells 
eventually attain the same value 

• Class 2: evolution leads to either simple stable states or periodic 
and separated structures 

• Class 3: evolution leads to chaotic nonperiodic patterns 

• Class  4: evolution  leads  to  complex,  localized  propagating 
structures 

All CA within a given class yield qualitatively similar behavior. While 
the behaviors of rules belonging to the first three rule classes bear a 
strong resemblance to those observed in continuous systems - the 
homogenous states of class 1 rules, for example, are analogous to 
fixed-point attracting states in continuous systems, the asymptotically 
periodic states of class 2 rules are analogous to continuous limit cycles 
and the chaotic states of class 3 rules are analogous to strange 
attractors - the more complicated localized structures emerging from 
class 4 rules do not appear to have any obvious continuous analogues 
(although such structures are well characterized as being soliton-like in 
their appearance). 

Figure 22 shows a few examples of the kinds of space-time patterns 
generated by binary (k=2) nearest-neighbor (r=l) in one dimension 
and starting from random initial states. 

Figure 23 shows examples of some commonly used neighborhood 
structures in two dimensions. These include (1) the von Neumann 
neighborhood, which consists of the four cells that are horizontally 
and vertically adjacent to the center cell, (2) the Moore neighborhood, 
that consists of all eight nearest-neighbor cells on a two-dimensional 
Euclidean lattice, and (3) the Hexagonal neighborhood, that consists 
of all nearest-neighbor cells on a hexagonal lattice. 
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Figure 22. Space-time evolution of nine different nearest neighbor 
one-dimensional CA starting from random initial states 

time 

Figure 23. Examples of CA neighborhoods in two dimensions 

von Neumann Moore Hexagonal 

Example #2: Conway's Life 

"Its probable, given a large enough Life space, initially in a random state, that 
after a long time, intelligent self-reproducing animals will emerge and 
populate some parts of the space."  -John H. Conway 

Perhaps the most widely known CA is the game of Life, invented by 
John H. Conway, and popularized extensively by Martin Gardner in his 
"Mathematical Games" department in Scientific American in the early 
1970s. 

Life is "played" using the 9-neighbor Moore neighborhood (see figure 
23), and consists of (1) seeding a lattice with some pattern of "live" and 
"dead" cells, and (2) simultaneously (and repeatedly) applying the 
following three rules to each cell of the lattice at discrete time steps: 
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• Birth: replace a previously dead cell with a live one if exacdy 3 of 
its neighbors are alive 

• Death: replace a previously live cell with a dead one if either (1) 
the living cell has no more than one live neighbor (i.e. it dies of 
isolation), or (2) the living cell has more than three neighbors 
(i.e. it dies of overcrowding) 

• Survival: retain living cells if they have either 2 or 3 neighbors 

One of the most intriguing patterns in Life is an oscillatory 
propagating pattern known as the "glider." Shown on the left-hand-side 
of figure 24, it consists of 5 "live" cells and reproduces itself in a 
diagonally displaced position once every four iterations. When the 
states of Life are projected onto a screen in quick succession by a fast 
computer, the glider gives the appearance of "walking" across the 
screen. The propagation of this pseudo-stable structure can also be 
seen as a self-organized emergent property of the system. The 
right-hand-side of figure 24 shows a still-frame in the evolution of a 
pattern known as a "glider-gun," which shoots-out a glider once every 
30 iteration steps. 

What is remarkable about this very simple appearing rule is that one 
can show that it is capable of universal computation. This means that 
with a proper selection of initial conditions (i.e. the initial distribution 
of "live" and "dead" cells), Life can be turned into a general purpose 
computer. This fact fundamentally limits the overall predictability of 
Life's behavior. 

Figure 24. Glider patterns in Conway's Life 
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The well known Halting Theorem, for example, asserts that there 
cannot exist a general algorithm for predicting when a computer will 
halt its execution of a given program [107]. Given that Life is a 
universal computer - so that the Halting Theorem applies - this means 
that one cannot, in general, predict whether a particular starting 
configuration of live and dead cells will eventually die out No shortcut 
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is possible, even in principle. The best one can do is to sit back and 
patiently await Life's own final outcome. 

Put another way, this means that if you want to predict Life's long-term 
behavior with another "model" or by using, say, a partial differential 
equation, you are doomed to fail from the outset because its long-term 
behavior is effectively unpredictable. Life - like all computationally 
universal systems - defines the most efficient simulation of its own 
behavior. 

Example #3: Belousov-Zhabotinski Reaction 

The Belousov-Zhabotinski (BZ) reaction is a chemical reaction 
consisting of simple organic molecules that is characterized by 
spectacular oscillating temporal and spatial patterns. One variant of 
the BZ reaction involves the reaction of bromate ions with an organic 
substrate (typically malonic acid) in a sulfuric acid solution with 
cerium (or some other metal-ion catalyst). When this mixture is 
allowed to react exothermally at room temperature, interesting 
temporal and spatial oscillations (i.e. chemical waves) result The 
system oscillates, changing from yellow to colorless and back to yellow 
about twice a minute, with the oscillations typically lasting for over an 
hour (until the organic substrate is exhausted). 

These patterns are an example of what are sometimes called dissipative 
structures, which arise in many complex systems. Dissipative structures 
are dynamical patterns that retain their organized state by persistently 
dissipating matter and energy into an otherwise thermodynamically 
open environment 

Figure 25. Example of self-organization in a two-dimensional CA 

Figure 25 shows a sample evolution of a CA model of this reaction, in 
which cells are identified with the reacting molecules, and are colored 
"black" if they are "active" and "white" if they are "inactive," according 
to the reaction rules. The spatial and temporal patterns that emerge 
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from the initially random mixture of states are also a good general 
example of how CA can be used to model self-organization. 

Example #4: Lattice Gases 

Lattice gases are micro-level rule-based simulations of macro-level fluid 
behavior. Lattice-gas models provide a powerful new tool in modeling 
real fluid behavior. The idea is to reproduce the desired macroscopic 
behavior of a fluid by modeling the underlying microscopic dynamics. 

It can be shown that three basic ingredients are required to achieve an 
emergence of a suitable macrodynamics out of a discrete microscopic 
substrate: (1) local thermodynamic equilibrium, (2) conservation laws, 
and (3) a "scale separation" between the levels at which the 
microscopic dynamics takes place (among kinetic variables living on a 
micro-lattice) and the collective motion itself appears (defined by 
hydrodynamical variable on a macro-lattice). Another critical feature is 
the symmetry of the underlying lattice. 

While there are many variants of the basic model, one can show that 
there is a well-defined minimal set of rules that define a lattice-gas 
system whose macroscopic behavior reproduces that predicted by the 
Navier-Stokes equations9 exactly. In other words, there is critical 
"threshold" of rule size and type that must be met before the 
continuum fluid behavior is matched, and once that threshold is 
reached the efficacy of the rule-set is no longer appreciably altered by 
additional rules respecting the required conservation laws and 
symmetries. 

Figure 26. Two-dimensional lattice-gas simulation of a fluid 

time = 0 time =200 time = 500 

Figure 26 shows a few snapshots of the evolution of a two-dimensional 
lattice gas starting from an initial condition in which there is a tightly 
packed region of particles at the center of the lattice. Notice how this 
central region expands rapidly outward, and is very reminiscent of the 
9 The Navier-Stokes equations are a set of analytically intractable 
coupled nonlinear partial differential equations describing fluid flow. 
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effect a dropped stone has on an initially stagnant pool of water. The 
most striking feature is the circular sound wave, which is circular 
despite the fact that the microscopic dynamics takes place on a square 
lattice. The lattice gas "rules" thus force a symmetry that is not present 
in the microscopic dynamics to emerge on the macro-scale. 

Example #5: Collective Behavior in Higher Dimensions 

Chate and Manneville10 have examined a wide variety of cellular 
automata that live in dimensions four, five and higher. They found 
many interesting rules that while being essentially featureless locally, 
nonetheless show a remarkably ordered global behavior. 

Figure 27, for example, plots the probability that a cell has value 1 at 
time t+1 - labeled Pt+1 - versus the probability that a cell had value 1 at 
time t - labeled Pt - four a particular four dimensional cellular 
automaton rule. The rule itself is unimportant, as there are many rules 
that display essentially the same kind of behavior. The point is that 
while the behavior of this rule is locally featureless - its space-time 
diagram would look like static on a television screen - the global 
density of cells with value 1 jumps around in quasi-periodic fashion. 
We emphasize that this quasi-periodicity is a global property of the 
system, and that no evidence for this kind of behavior is apparent in 
the local dynamics. 

Figure 27. Collective behavior of a four dimensional CA 

H. Chate and P. Manneville, Europhysc Letters, Volume 14,1991, 409. 
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Here again we see a pristine example of the three basic elements of 
emergence: (1) the global phenomenon (in this case the cell-value 
density) emerges out of an interaction of a large number of simple 
components (lattice cells of a cellular automaton), (2) there is no 
evidence of the global phenomenon on the local level, and (3) the 
global phenomenon obeys a separate dynamics (in this case, 
quasi-periodicity). 

Other Variants 

There are as many different variants of the basic CA algorithm as there 
are ways of generalizing the five fundamental characteristics of what 
makes up a CA system. Here are a few: 

• Probabilistic CA (PCA). Probabilistic CA are cellular automata in 
which the deterministic state-transitions are replaced with 
specifications of the probabilities of the cell-value assignments. 
Since such systems have much in common with certain statistical 
mechanical models, analysis tools from physics are often 
borrowed for their study. 

• Non-homogeneous CA. These are CA in which the state-transition 
rules are allowed to vary from cell to cell. The simplest such 
example is one where there are only two different rules 
randomly distributed throughout the lattice. Kauflman [171] has 
studied the other extreme in which the lattice is randomly 
populated with all 22 possible Boolean functions of k inputs. 

• Coupled-map Lattices. These are models in which continuity is 
restored to the state space. That is to say, the cell values are no 
longer constrained to take on only the values 0 and 1 as in the 
examples discussed above, but can now take on arbitrary real 
values. First introduced by Kaneko [167], such systems are 
simpler than partial differential equations but more complex 
than generic CA. 

Genetic Algorithms 

Genetic algorithms (GAs) are a class of heuristic search methods and 
computational models of adaptation and evolution based on natural 
selection. 

In nature, the search for beneficial adaptations to a continually 
changing environment (i.e. evolution) is fostered by the cumulative 
evolutionary knowledge that each species possesses of its forebears. 
This knowledge, which is encoded in the chromosomes of each 
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member of a species, is passed from one generation to the next by a 
mating process in which the chromosomes of "parents" produce 
"offspring" chromosomes. 

GAs mimic and exploit the genetic dynamics underlying natural 
evolution to search for optimal solutions of general combinatorial 
optimization problems. They have been applied to the Traveling 
Salesman Problem, VLSI circuit layout, gas pipeline control, the 
parametric design of aircraft, neural net architecture, models of 
international security, and strategy formulation. 

While their modern form is derived mainly from John Holland's work 
in the 1960s [142], many key ideas such as using "selection of the 
fittest" like population-based selection schemes and using binary 
strings as computational analogs of biological chromosomes, actually 
date back to the late 1950s. More recent work is discussed by Goldberg 
[113], Davis [65] and Michalewicz [215] and in conference 
proceedings edited by Forrest [99]. A comprehensive review of the 
current state-of-the-art in genetic algorithms is given by Mitchell [220]. 

The basic idea behind GAs is very simple. Given a "problem" - which 
can be as well-defined as maximizing a function over some specified 
interval or as seemingly ill-defined and open-ended as evolution itself, 
where there is no a-priori discernible or fixed function to either 
maximize or minimize - GAs provide a mechanism by which the 
solution space to that problem is searched for "good solutions." 
Possible solutions are encoded as chromosomes (or, sometimes, as sets 
of chromosomes), and the GA evolves one population of chromosomes 
into another according to their fitness by using some combination 
(and/ or variation) of the genetic operators of crossover and mutation. 
A solution search space together with a fitness function is called a 
fitness landscape. Eventually, after many generations, the population 
will, in theory, be composed only of those chromosomes whose fitness 
values are clustered around the global maximum of the fitness 
landscape. 

Genetic Operators 

Each chromosome is usually defined to be a bit-string, where each bit 
position (or "locus") takes on one of two possible values (or "alleles"), 
and can be imagined as representing a single point in the "solution 
space." The fitness of a chromosome effectively measures how "good" a 
solution that chromosome represents to the given problem. Aside 
from its intentional biological roots and flavoring, GAs can be thought 
of as parallel equivalents of more conventional serial optimization 
techniques: rather than testing one possible solution after another, or 
moving from point to point in the solution phase-space, GAs move 
from entire populations of points to new populations. 
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Figure 28 shows examples of the three basic genetic operations of 
reproduction, crossover and mutation, as applied to a population of 8-bit 
chromosomes. Reproduction makes a set of identical copies of a given 
chromosome, where the number of copies depends on the 
chromosome's fitness. The crossover operator exchanges subparts of 
two chromosomes, where the position of the crossover is randomly 
selected, and is thus a crude facsimile of biological sexual 
recombination between two single-chromosome organisms. The 
mutation operator randomly flips one or more bits in the 
chromosome, where the bit positions are randomly chosen. The 
mutation rate is usually chosen to be small. 

While reproduction generally rewards high fitness, and crossover 
generates new chromosomes whose parts, at least, come from 
chromosomes with relatively high fitness (this does not guarantee, of 
course, that the crossover-formed chromosomes will also have high 
fitness; see below), mutation seems necessary to prevent the loss of 
diversity at a given bit-position. For example, were it not for mutation, 
a population might evolve to a state where the first bit-position of each 
chromosome contains the value 1, with there being no chance of 
reproduction or crossover ever replacing it with a 0. 

Figure 28. Schematic representation of the basic GA operators 
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The Basic GA Recipe 

Although GAs, like CA, come in many different flavors, and are usually 
fine-tuned in some way to reflect the nuances of a particular problem, 
they are all more or less variations of the following basic steps (see 
figure 29): 
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• Step 1: begin with a randomly generated population of 
chromosome-encoded "solutions" to a given problem 

• Step 2: calculate the fitness of each chromosome, where fitness is 
a measure of how well a member of the population performs at 
solving the problem 

• Step 3: retain only the fittest members and discard the least fit 
members 

• Step 4: generate a new population of chromosomes from the 
remaining members of the old population by applying the 
operations reproduction, crossover, and mutation (see figure 28) 

• Step 5: calculate the fitness of these new members of the 
population, retain the fittest, discard the least fit, and re-iterate 
the process 

Figure 29. Basic steps of the genetic algorithm 

population   Y decoded strings 
.(chromosomes), 

selection 
mates chosen\  (mating pool) J*   reproduction 

Example #/; Function Maximization 

As a concrete example, suppose our problem is to maximize the fitness 
function f(x) = x2, using six 6-bit chromosomes of the form 
C=(Cj,c2,...,c6), where each C; is equal to either 0 or 1. C's fitness, f(C), is 
determined by first converting its binary representation into a base-10 
equivalent value and squaring: f(C)=(c,+2c2+22c3+2sc4+24c5-H-25c6)

2. 

The first step is to construct six random bit-strings representing the 
initial population: 
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Cj = (101101) C2= (010110) C3= (111001) 

C4= (101011) C5= (010001) C6= (011101) 

These chromosomes have fitness values of 2025, 484, 3249, 1849, 289 
and 841, respectively. The average fitness is 1456. By luck of the 
fitness-scaled draw, where the number of copies of a given 
chromosome is determined according to its fitness, scaled by the 
average fitness of the entire population, three copies of C3 are made 
for the next population (owing to its relatively high fitness), one copy 
each for chromosomes C,, C4 and C6 and none for the remaining 
chromosomes. These copies form the mating population. 

Next, we randomly pair up the new chromosomes, and perform the 
genetic crossover operation at randomly selected bit-positions - 
chromosomes C,and C4 exchange their last three bits, C2 and C6 

exchange their last four bits, and C3 and C5 exchange their last bit 

Cj exchange with C4 at bit 3: (101.101) x (111.001)  ». (101001) 
C2 exchange with C6 at bit 2: (11.1001) x (01.1101) (111101) 
Ca exchange with C5 at bit 5: (11100.1) x (10101.1) (111001) 
C4 exchange with C: at bit 3: (111.001) x (101.101) (111101) 
C5 exchange with C3 at bit 5: (10101.1) x (11100.1) (101011) 
C6 exchange with Cj at bit 2: (01.1101) x (11.1001) (011001) 

Finally, we mutate each bit of the resulting chromosomes with some 
small probability - say pmutation=0.05. In our example we find that values 
of the 5th bit in C4 and 6th bit in C5 are flipped. The resulting strings 
make up our 2nd generation chromosome population. By chance, the 
first loop through the algorithm has successfully turned up the most-fit 
chromosome - C4=(llllll) -> f(C4) = 632 = 3969 - but in general the 
entire procedure would have to be repeated many times to approach 
the "desired" solution. 

The table below summarizes the above steps: 

Initial 
Population 

Initial 
Fitness 

Expected 
Copies 

Actual 
Copies 

Mating 
Population 

Crossover 
Operation1 

Mutation 
Operation 

New 
Fitness 

(101101) 2025 1.4 1 (101101) (134)->(101001) (101001) 1681 

(010110) 484 0.3 0 (111001) (226)->(111101) (111101) 3481 

(111001) 3249 2.2 3 (111001) (355)->(l 11001) (111001) 3249 

(101011) 1849 1.3 1 (111001) (43.1)->(111101) (111111) 3969 

(010001) 289 0.2 0 (101011) (5S3)->(101011) (101010) 1764 

(011101) 841 0.6 1 (011101) (622)->(011001) (011001) 625 

The crossover operator (xyz) means that chromosomes Cx and Cz 

exchange bits at the y* bit. 
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Example #2: Local Forecasting of High-Dimensional Chaotic 
Dynamics 

The first example of using a genetic algorithm to maximize the value 
of the function f(x) = x2, discussed above, is deliberately simple and 
was chosen mainly for its pedagogical value The second example, 
discussed below, shows more of the real power of genetic algorithms. 

Meyer and Packard11 use a genetic algorithm to learn patterns in data 
produced by a high-dimensional chaotic attractor. The patterns are 
relationships between a region of the attractor and the future behavior 
of chaotic orbits that pass through this region. They find that a genetic 
algorithm gives accurate local profiles of the attractor that provide 
forecasts of behavior. 

Meyer and Packard first form a finite set of N data points - 
{cji,^2.•••>£#} _ from a continuous variable representing the 
evolution of a high-dimensional chaotic system. From this set of points, 
they construct a sequence of points in a corresponding d-dimensional 
space X - {xj, Xrffi, ...,*N} - where each xt = (£,t-<b-i, —>£<) is a set of 
past values in the time series. The problem is to determine a map from 
the past values (£t-rffi»—>4<) to the future value at time t', 4«.('» 

or> 
equivalendy, to find a map from xt to yt = ^m>. 

Meyer and Packard search for specific patterns of the form 

(a, < 4,- < ßi) A (a, < 4j; < ßj) A • • • A (ak < %k < ßA), 

where "A" means AND. In other words, they seek intervals that each of 
the past values of the set must be in to predict the future value of the 
trajectory at a given later point to some arbitrarily selected threshold 
error. The genetic algorithm is used to search for the optimal patterns 
of this form, mutations adding or deleting conditions to an existing 
"candidate" conjunction, crossover taking two existing candidates and 
exchanging roughly half of the constraints of one with the other. 

Figure 30 shows the four best predictive patterns for the chaotic system 
chosen for this analysis. In the figure, the set X, appearing on the left 
hand side, represents a set of 30 points from which the value of y*, 
shown at the right, is to be predicted. The intervening 150 points, 
shown in grey, represent intermediate times during which the chaotic 
system is allowed to evolve; no information is extracted from the data 
during this interval. The value of y* is to be predicted solely from the 
30 values contained in the set X. 

11 Thomas   P.   Meyer   and   N.   H.   Packard,   "Local   forecasting   of 
high-dimensional chaotic dynamics," pages 249-263 in reference [44]. 
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Notice the intermediate divergence of each of the trajectories and how 
they all subsequently collapse to a narrow range of values around the 
desired y*. In order to fully appreciate how impressive a find the 
predictive patterns shown in figure 30 really are, keep in mind the 
extraordinarily vast space of possible patterns that the genetic 
algorithm is asked to search through. Even if the each of 30 x values 
are allowed to take on one of only two values - remember that, in fact, 

they can take on a continuum of values -   there are still 230 Ä 

possible conjunctive patterns to search through! 
109 

Figure 30. The four best patterns in X yielding the value y*, as found 
by a genetic algorithm 

a) 

b) 

c) 

d) 

Other Variants 

There are several different variants of the basic genetic algorithm as 
oudined above: 

• Classifier Systems. Classifier systems were introduced by John 
Holland as an attempt to apply genetic algorithms to cognitive 
tasks. They are similar to production systems of the "if...then" 
variety in artificial intelligence. A classifier system typically 
consists of (1) a set of detectors (or input devices) that provide 
information to the system about the state of the external 
environment, (2) a set of effectors (or output devices) that 
transmit the classifier's conclusions to the external environment, 
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(3) a set of rules (or classifiers), consisting of a condition and 
action, and (4) a list of messages. Learning is supervised as in 
multilayered neural networks (see page 116). 

• 

• 

Evolutionary Programming. Evolutionary programming is an early 
variant of genetic algorithms and is mainly distinguished from 
the conventional genetic algorithm by not incorporating 
crossover as an operator. 

Genetic Programming. Genetic programming is essentially an 
application of genetic algorithms to computer programs. 
Typically the genome is represented by a LISP expression, so 
that what evolves is a population of programs, rather than 
bit-strings as in the case of a usual genetic algorithm. For 
references see Koza [179] and the WWW sources listed in the 
appendix. 

Self-Organized Criticality 

Self-organized criticality (SOC) describes a large body of both 
phenomenological and theoretical work having to do with a particular 
class of time-scale invariant and spatial-scale invariant phenomena. As 
with many of the terms and concepts associated with nonlinear 
dynamics and complex systems, its meaning has been somewhat 
diluted and made imprecise since its introduction a few years ago, in 
large part due to the veritable explosion of articles on complex systems 
appearing in the popular literature. Fundamentally, SOC embodies the 
idea that dynamical systems with many degrees of freedom naturally 
self-organize into a critical state in which the same events that brought 
that critical state into being can occur in all sizes, with the sizes being 
distributed according to a power-law. 

"Criticality" here refers to a concept borrowed from thermodynamics. 
Thermodynamic systems generally get more ordered as the 
temperature is lowered, with more and more structure emerging as 
cohesion wins over thermal motion. Thermodynamic systems can exist 
in a variety of phases - gas, liquid, solid, crystal, plasma, etc. - and are 
said to be critical if poised at a phase transition. Many phase transitions 
have a critical point associated with them, that separates one or more 
phases. As a thermodynamic system approaches a critical point, large 
structural fluctuations appear despite the fact the system is driven only 
by local interactions. The disappearance of a characteristic length scale 
in a system at its critical point, induced by these structural fluctuations, 
is a characteristic feature of thermodynamic critical phenomena and is 
universal in the sense that it is independent of the details of the 
system's dynamics. 
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The kinds of structures SOC seeks to describe the underlying 
mechanisms for look like equilibrium systems near critical points but 
are not near equilibrium; instead, they continue interacting with their 
environment, "tuning themselves" to a point at which critical-like 
behavior appears. In contrast, thermodynamic phase transitions usually 
take place under conditions of thermal equilibrium, where an external 
control parameter such as temperature is used to tune the system into 
a critical state. 

Introduced in 1988 by Bak, Chen and Wiesenfeld [15], SOC is 
arguably the only existing holistic mathematical theory of 
self-organization in complex systems, describing the behavior of many 
real systems in physics, biology and economics. It is also a universal 
theory in that it predicts that the global properties of complex systems 
are independent of the microscopic details of their structure, and is 
therefore consistent with the "the whole is greater than the sum of its 
parts" approach to complex systems. Put in the simplest possible terms, 
SOC asserts that complexity is criticality. That is to say, that SOC is 
nature's way of driving everything towards a state of maximum 
complexity. 

In general, SOC appears to be prevalent in systems that have the 
following properties: 

• they have many degrees of freedom 

• their parts undergo strong local interactions 

• the number of parts is usually conserved 

• they are driven by being slowly supplied with "energy" from an 
exogenous source 

• energy is rapidly dissipated within the system 

In systems that have these properties, SOC itself is characterized by 

• a self-organized drive towards the critical state 

• intermittently triggered ("avalanche"-style) release of energy in 
the critical state 

• sensitivity to initial conditions  (i.e.  the trigger can be very 
small)12 

12 Sensitivity to initial conditions is usually a trademark of chaos in 
dynamical systems. Unlike fully chaotic systems, however, in which nearby 
trajectories diverge exponentially, the distance between two trajectories in 
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• the critical state is maintained without any external "tuning" 

These ideas will be explained more fully in the example that follows. 

Example: Sandpiles 

To better illustrate the concept of SOC, consider a "toy model" of 
avalanches: A mechanical arm holds a large quantity of sand and sits 
securely in place some distance above a flat circular table. Slowly - 
individual grain by individual grain - the arm releases its store of sand. 
The sand thus begins forming a pile beneath the arm. 

At first, the grains all stay relatively close together near where they all 
fall onto the pile. Then they begin piling up on top of one another, 
creating a pile with a small slope. Every once and a while the slope 
becomes too steep somewhere, and a few grains slide down in a small 
avalanche. As the mechanical arm continues dispensing grains of sand, 
the average slope of the pile of sand beneath it steepens, and the 
average size of the resulting avalanches increases. The size of the pile 
stops growing when the amount of sand added to the pile is balanced 
by the amount of sand that falls off the circular table. This state is the 
critical state. 

What is special about the critical state is that when a grain of sand is 
added to a sandpile in this state, it can spawn an avalanche of any size, 
from the smallest avalanche consisting of only a few grains to a major 
"catastrophe" involving very many grains to no avalanche at all. 
Moreover, the size of an avalanche does not depend on the grain of 
sand that triggers it. However, the frequency f of avalanches of a size 
greater than or equal to a given size s is related to s by a power-law: 
fee \ls~*, for some ß > 0; a relationship that, according to Bak, et. al., 
is the signature characteristic of SOC (see figure 31). There is thus no 
such thing as an avalanche of average size. An estimate only gets larger 
as more and more avalanches are averaged together. The critical state 
is also stable: because even the largest avalanches involve only a small 
fraction of the total number of grains in the sandpile, once a pile has 
evolved to its critical state, it stays poised close to that state forever. 

There is strong evidence to suggest that just as sandpiles self-organize 
into a critical state, so do many real complex systems naturally evolve, 
or "tune themselves," to a critical state, in which a minor event can, via 

systems undergoing SOC grows at a much slower (power-law) rate. Systems 
undergoing SOC are therefore only "weakly chaotic." There is an important 
difference between fully developed chaos and weak chaos: fully developed 
chaotic systems have a characteristic time scale beyond which it is impossible 
to make predictions about their behavior; no such time scale exists for weakly 
chaotic systems, so that long-time predictions may be possible. 
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a cascading series of chain-reactions, involve any number of elements 
of the system. 

Figure 31. Power-law distribution from a computer simulation of a 
two-dimensional sandpile cellular automaton13 
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The critical state is an attractor for the dynamics: systems are 
inexorably driven toward it for a wide variety of initial conditions. 
Frequently cited examples of SOC include the distribution of 
earthquake sizes, the magnitude of river flooding, and the distribution 
of solar flare xray bursts, among others. Conway's Life-game CA-rule 
(see page 87), which is a crude model of social interaction, appears to 
self-organize to a critical state when driven by random mutations. 
Another vivid example of SOC is the extinction of species in natural 
ecologies. In the critical state, individual species interact to form a 
coherent whole, poised in a state far out of equilibrium. Even the 
smallest disturbances in the ecology can thus cause species to become 
extinct. Real data show that there are typically many small extinction 
events and few large ones, though the relationship does not quite 
follow the same linear power-law as it does for avalanches. Bak and 
Chen [15] have also speculated that "throughout history, wars and 
peaceful interactions might have left the world in a critical state in 
which conflicts and social unrest spread like avalanches." 

13 "Phase transitions and complex systems," R. V. Sole, et. al., Complexity, 
Volume 1, No. 4,1995,13-26. 
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Fractals 

Another characteristic feature of many complex systems is some form 
of a fractal structure. Just as structural fluctuations near phase 
transitions have no characteristic scales, self-similar fractal structures 
appear the same on all size scales and thus possess no characteristic 
length scales. Familiar examples of fractals include fractal coastlines, 
mountain landscapes and cloud formations. While fractals may be 
ubiquitous in nature, however, the underlying dynamical mechanisms 
are far from clear. It is reasonable to speculate that a common 
mechanism may be found using notions of thermodynamic criticality. 
Bak, et. al., suggest that fractal structures are the "spatial fingerprints" 
ofSOC. 

Consider a fractal time series. One of its key features is that it cannot 
be reduced to a series of periodic signals plus a noise term of the form 
x(f) = xosin(ft) + Noise(t). If a fractal time series could be expressed in 
this form, the contribution due to the noise term would average out as 
t —> oo and the signal would have a well-defined average value for its 
frequency. Instead, a fractal time series is characterized by a 
distribution of frequencies, Dif) <x \/f,so that there is no characteristic 
frequency (just as there is no characteristic length scale for spatial 
fractals). 

1/f-Noise 

Whenever the power spectral density, S(f), scales as 1/f, the system is 
said to exhibit 1/f-noise (or flicker-noise). Despite being found almost 
everywhere in nature - 1/f-noise has been observed in the current 
fluctuations in a resistor, in highway traffic patterns, in the price 
fluctuations on the stock exchange, in fluctuations in the water level of 
rivers, to name just a few instances - there is currently no fundamental 
theory that adequately explains why this same kind of noise should 
appear in so many diverse kinds of systems. What is clear is that since 
the underlying dynamical processes of these systems are so different, 
the common bond cannot be dynamical in nature, but can only be a 
kind of "logical dynamics" describing how a system's 
degrees-of-freedom all interact. SOC may be a fundamental link 
between temporal scale invariant phenomena and phenomena 
exhibiting a spatial scale invariance. Bak, et. al., argue that 1/f noise is 
actually not noise at all, but is instead a manifestation of the intrinsic 
dynamics of self-organized critical systems. 

A Possible Connection with Land Combat? 

A simple way to test for SOC is to look for the appearance of any 
characteristic   power-law   distributions   in    a   system's   properties. 

96 



Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook 

Richardson [266] and Dockery and Woodcock [77] have both 
reported linear SOC-like power-law scaling in land combat. Richardson 
examined the relationship between the frequency of "deadly quarrels" 
versus fatalities per deadly quarrel using data from wars ranging from 
1820 to 1945. Dockery and Woodcock used casualty data for military 
operations on the western front after Normandy in World War II and 
found that the log of the number of battles with casualties greater than 
a given number C also scales linearly with log(C); see figure 32. 

Figure 32. Analysis of WWII casualty data on the western front after 
Normandy (Dockery and Woodcock, [77]) 

tOAOO 

The paucity of historical data, however, coupled with the still 
controversial notions of SOC itself, makes it difficult to say whether 
these suggestive findings are indeed pointing to something deep that 
underlies all combat or are merely "interesting" but capture little real 
substance. Even if the results quoted above do capture something 
fundamental, they apply only to a set of many batdes. The problems of 
determining whether, or to what extent, a power-law scaling applies to 
an individual batde or to a small series of batdes, and - perhaps most 
importandy - what tactically useful information can de derived from 
the fact that power-law scaling exists at all, remain open. 

Complex Adaptive Systems 

In simplest terms, complex adaptive systems (CASs) are complex 
systems (meaning that they consist of many nonlinearly interacting 
parts) whose parts can adapt to changing environments. Moreover, 
each "part" typically exists within a nested hierarchy of parts within 
parts; see figure 33. 
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Figure 33. Schematic of a Complex Adaptive System 

Traditionally, simulations of complex systems have consisted of 
mathematical or stochastic models, typically involving differential 
equations, that relate one set of global parameters to another set and 
describe the system's overall dynamics. The behavior of a system is 
then "understood" by looking at the relationship between the input 
and output variables of the simulation. While such an approach is 
adequate for systems with parts that possess little or no internal 
structure, it is largely incapable of describing groups, or societies, in 
which the internal dynamics of the constituent members of the system 
represent a vital part of the underlying dynamics. 

Additional drawbacks of traditional simulation methods include: 

• a failure to distinguish among different levels of activity within real 
complex systems; that is to say, a failure to appreciate that global 
parameters, such as the population size of an ecology, are often 
profoundly related to local parameters, such as the 
decision-making processes of individuals within the ecology - 
traditional simulation methods, particularly those relying on a 
differential equation approach, seldom take into account this 
local-global dichotomy; 

an inability to analytically account (such as in a differential 
equation form) for individual actions and /or strategies of the 
constituent elements of a complex system; 

an inability to realistically account for the qualitative information 
that individuals may use in formulating their strategies and upon 
which they may base their local decisions 

An alternative agent-based approach, described below, is to respect the 
nested hierarchy of dynamics and dynamical "decisions" that are made 

98 



Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook 

•* 

in these complex systems, and to include a model of the 
decision-making ability and adaptability of the constituent agents. 

This section provides a brief introduction to complex adaptive systems 
and agent-based simulations. The recent monograph on complex 
adaptive systems by Holland [144] is an excellent overall source of 
reference. Additional source material can be found in conference 
proceedings edited by Hillebrand and Stender [137], Meyer and 
Wilson [213], and Varela [307], and in a collection of papers edited by 
Maes [202] (the latter reference provides both theory and practical 
descriptions of the design of autonomous agents). A recent overview of 
adaptive autonomous agents, including a discussion of open problems, 
is also given by Maes [204]. 

Characteristics 

Most complex adaptive systems share seven basic characteristics (see 
Holland, [144]): 

• Four properties: 

0   aggregation 

• type I - reduction of pertinent variables by aggregating 
"similar" things into categories; identifying details that 
are unimportant for the problem at hand, categories 
consist of things that differ only in those irrelevant 
properties 

• type II - emergence of complex large-scale behaviors 
from the aggregate interactions of less complex agents 
(example: Hofstadter's "Ant Fugue"); agents —> 
meta-agents -> meta-meta-agents —> etc. 

° nonlinearity - if f is a function or an operator, and x is a 
system input (either a function or variable), then the effect 
of adding two inputs, x, and Xj first and then operating on 
their sum is, in general, not equivalent to operating on two 
inputs separately and then adding the outputs together; 

° information flows - defined by nodes, connections and 
resources, any of which can change over time 

0 diversity - diversity is neither accidental nor random; the 
persistence of any individual agent depends on the context 
provided by the other agents; roughly, each agent fills a 
niche defined by the interactions centering on that agent; if 
you remove one agent from the system - creating a "hole" - 
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the system typically responds with a cascade of adaptations 
resulting in a new agent that fills that hole 

• Three mechanisms: 

• tagging - a mechanism that facilitates aggregation; used 
to manipulate symmetries - enabling CASs to ignore 
certain details while directing their attention to certain 
others; tags allow agents to select among other agents or 
objects that would otherwise be indistinguishable 

• internal models - used by agents to "anticipate" and 
"predict" events in their environment 

• building blocks - primitives used in building internal 
models 

Agent-Based Simulations 

Agent-based simulations of complex adaptive systems are predicated 
on the idea that the global behavior of a complex system derives 
entirely from the low-level interactions among its constituent agents. 
By relating an individual constituent of a complex adaptive system to 
an agent, one can simulate a real system by an artificial world 
populated by interacting processes. Agent-based simulations are 
particularly adept at representing real-world systems composed of 
individuals that have a large space of complex decisions and/or 
behaviors to choose from. 

Lessons about the real-world system that an agent-based simulation is 
designed to model can be learned by looking at the emergent 
structures induced by the interaction processes taking place within the 
simulation. 

The purpose behind building such simulations is twofold: it is to learn 
both the quantitative and qualitative properties of the real system. 
Agent-based simulations are well suited for testing hypotheses about 
the origin of observed emergent properties in a system. This can be 
done simply by experimenting with sets of initial conditions at the 
micro-level necessary to yield a set of desired behaviors at the 
macro-level. On the other hand, they also provide a powerful 
framework within which to integrate ostensibly "disjointed" theories 
from various related disciplines. For example, while basic agent-agent 
interactions may be described by simple physics and sociology, the 
internal decision-making capability of a single agent may be derived, in 
part, from an understanding of cognitive psychology. 
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Adaptive Autonomous Agents 

The fundamental building block of most models of complex adaptive 
systems is the so-called adaptive autonomous agent. Adaptive 
autonomous agents are parts of a complex adaptive system that try to 
satisfy a set of goals (which may be either fixed or time-dependent) in 
an unpredictable and changing environment. They are "adaptive" in 
the sense that they can use their experience to continually improve 
their ability to deal with shifting goals and motivations. They are 
"autonomous" in that they operate completely autonomously, and do 
not need to obey instructions issued by a God-like oracle. 

Depending on the system being modeled and the environment that an 
agent populates, an adaptive autonomous agent can take on many 
different forms. In Deneubourg, et. al.'s [213] study of decentralized 
collective sorting, for example, which was used earlier as an example of 
emergence (see page 91), the agents of the system are simple 
(nonadaptive) robots that move about their physical environment and 
make elementary decisions about whether to pick up or drop an 
object. Examples of adaptive agents populating "cyberspace" are the 
so-called "software agents" (or "knobots") that are entities that navigate 
computer networks or cruise the World-Wide-Web searching for 
relevant bits of data. 

In general, an adaptive autonomous agent is characterized by the 
following properties: 

• it is an entity that, by sensing and acting upon its environment, 
tries to fulfill a set of goals in a complex, dynamic environment 

• it can sense the environment through its sensors and act on the 
environment through its actuators 

• it has an internal information processing and decision making 
capability 

• its anticipation of future states and possibilities, based on 
internal models (which are often incomplete and/or incorrect), 
often significantly alters the aggregate behavior of the system of 
which an agent is part 

• an agent's goals can take on diverse forms: 

0   desired local states 

0   desired end goals 
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°   selective rewards to be maximized 

°   internal needs (or motivations) that need to be kept within 
desired bounds 

The adaptive mechanism of an adaptive autonomous agent is typically 
based on a genetic algorithm (see page 93). 

What Distinguishes the Study of Adaptive Autonomous Agents 
from Traditional AI? 

At first sight, the kinds of problems best suited for agent-based 
simulations appear to be similar to the kinds of problems for which 
traditional artificial intelligence (AI) techniques have been developed. 
How is an agent-based simulation different from a traditional artificial 
intelligence approach? Maes [204] lists these key point that distinguish 
traditional AI from the study of adaptive autonomous agents: 

1. traditional AI focuses on systems exhibiting isolated "high-level" 
competencies, such as medical diagnoses, chess playing, and so 
on; in contrast, agent-based system target lower-level 
competencies, with high-level competencies emerging 
naturally, and collectively, of their own accord 

2. traditional AI has focused on "close systems" in which the 
interaction between the problem domain and the external 
environment is kept to a minimum; in contrast, agent-based 
systems are "open systems," and agents are directly coupled 
with their environment 

3. most traditional Ai systems deal with problems in a piecemeal 
fashion, one at a time; in contrast, the individual agents in an 
agent-based system must deal with many conflicting goals 
simultaneously 

4. traditional AI focuses on "knowledge structures" that model 
aspects of their domain of expertise; in contrast, an agent-based 
system is more concerned with dynamic "behavior producing" 
modules. It is less important for an agent to be able to address 
a specific question within its problem domain (as it is for 
traditional AI systems) than it is to be flexible enough to adapt 
to shifting domains 
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What Distinguishes Traditional Modeling Approaches from 
Agent-Based Simulations? 

Fundamentally, an agent-based approach to modeling complex systems 
differs from more traditional differential-equation based approaches in 
that it represents a shift from force-on-force attrition calculations to 
considering how high-level properties and behaviors of a systems 
emerge out of low level rules. The conceptual focus of agent-based 
models shifts from finding a mathematical description of an entire 
system to a low-level rule-based specification of the behavior of the 
individual agents making up that system. 

Table 6 compares the traditional reductionist approach to modeling 
complex systems with complex adaptive system/agent-based 
simulations. 

Table 6. Comparison between traditional and agent-based 
approaches to complex systems modeling 

Traditional (Reductionist) 
Approach 

Agent-Based Simulation 

degrees-of-freedom relatively few typically many 

interactions typically weak and linear; need 
to be hard-wired into model 

usually strong and nonlinear, 
low-level agents continually 

adapt to a changing 
environment 

characteristic length and 
time scales 

«1 >>1 

specification of 
complex boundary 

conditions 

can be difficult to specify 
analytically (say, as part of a 
partial differential equation 

model) 

very easy to implement 

model of individual 
combatant? 

necessarily crude; assumes that 
all combatants are the same 

more realistic; each combatant 
has its own unique history and 
therefore its own unique way of 

respondiong to the world 

aggregation of variables simpleminded aggregation of 
low-level variables 

sets of high-level variables are 
self-organized and emergent; 

aggregate behavior is 
fundamentally nonlinear and 

synergistic 

long term behavior solve for steady-state 
equilibrium solution 

nonequilibrium behavior is 
more descriptive of long-term 

dynamics 

sought-for behavior is either accounted for 
explicitly or is typically absent; 

focuses on force-on-force 
attrition ratios 

high-level behavior (that is not 
acounted for direcdy) emerges 
naturally from low-level rules; 
focuses more on the overall 

attrition process 

103 



Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook 

Swarmu 

Swarm is a multi-agent simulation platform for the study of complex 
adaptive systems. It is currently under development at the Santa Fe 
Institute.15 

The goal of the Swarm project is to provide the complex systems 
theory research community with a fully general-purpose artificial-life 
simulator. The system comes with a variety of generic artificial worlds 
populated with generic agents, a large library of design and analysis 
tools and a "kernel" to drive the actual simulation. These artificial 
worlds can vary widely, from simple 2D worlds in which elementary 
agents move back and forth to complex multi-dimensional "graphs" 
representing multidimensional telecommunication networks in which 
agents can trade messages and commodities, to models of real-world 
ecologies. 

Swarm has been intentionally designed to include as few ad-hoc 
assumptions about the design of a complex system as possible, so as to 
provide a convenient, reliable and standardized set of software tools 
that can be tailored by researchers to specific systems. 

Though the prototype has been written using the C programming 
language, it is object-oriented in style. Future versions of Swarm will be 
implemented using the Objective-C language. Objective-C is an 
object-oriented extension of the C language that is widely available as 
part of the GNU C compiler, and is available on the World-Wide-Web. 

Everything in Swarm is an object with three main characteristics: Name, 
Data and Rules. An object's Name consists of an ID that is used to send 
messages to the object, a type and a module name. An object's Data 
consists of whatever local data (i.e. internal state variables) the user 
wants an agent to possess. The Rules are functions to handle any 
messages that are sent to the object. The basic unit of Swarm is a 
"swarm": a collection of objects with a schedule of event over those 
objects. Swarm also supplies the user with an interface and analysis 
tools. 

The most important objects in Swarm, from the standpoint of the user, 
are agents, which are objects that are written by the user. Agents 
represent the individual entities making up the model; they may be 
ants, plants, stock brokers, or combatants on a battlefield. Adlons 
consist of a message to send, an agent or a collection of agents to send 
the message, and a time to send that message. Upon receiving a 
14 This section is based on the papers "An Overview of the Swarm 
simulation systen," by '94 Swarm Team, Santa Fe Institute and "The SWARM 
simulation system and individual-based modeling," by D. Hiebler. 
15 World-Wide-Web URL link = 
http://www.santafe.edu/projects/swarm/. 
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message, agents are free to do whatever they wish in response to the 
message. A typical response will consist of the execution of whatever 
code the user has written to capture the low-level behavior of the 
system he is interested in. Agents can also insert other actions into the 
schedule. 

Three other properties of Swarm are noteworthy: 

1. Hierarchy. In order to be better able to simulate the hierarchical 
nature of many real-world complex systems, in which agent 
behavior can itself be best described as being the result of the 
collective behavior of some swarm of constituent agents, Swarm 
is designed so that agents themselves can be swarms of other 
agents. Moreover, Swarm is designed around a time hierarchy. 
Thus, Swarm is both a nested hierarchy of swarms and a nested 
hierarchy of schedules. 

2. Parallelism. Swarm has been designed to run efficiently on 
parallel machine architectures. While messages within one 
swarm schedule execute sequentially, different swarms can 
execute their schedules in parallel. 

3. Internal Agent Models. One can argue that agents in a real 
complex adaptive system (such as the economy) behave and 
adapt according to some internal model they have constructed 
for themselves of what they believe their environment is really 
like. Sometimes, if the environment is simple, such models are 
fixed and simple; sometimes, if the environment is complex, 
agents need to actively construct hypothetical models and 
testing them against a wide variety of assumptions about initial 
states and rules and so forth. Swarm allows the user to use 
nested swarms to allow agents to essentially create and manage 
entire swarm structures which are themselves simulations of the 
world in which the agents live. Thus, agents can base their 
behavior on their simulated picture of the world. 

The many kinds of problems that Swarm is well suited for include 
economic models (with economic agents interacting with each other 
through a market), the dynamics of social insects, traffic simulation, 
ecological modeling, simulation games such as SimCity and SimLife, 
and general studies of complex systems, cellular automata, and 
artificial life. 

Neural Networks 

One might facetiously ask, "How can a three year old baby put a CRAY 
X-MP supercomputer to shame?"' The very serious answer is that "She can 
recognize uncle Seymour's face infinitely faster!" No matter how 
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powerful a computer one has, no matter how powerful an imaging 
system and image recognition software one is using, it is a fact that a 
young child will be infinitely better at recognizing certain patterns 
than the state-of-the-art hardware/software combination. Aside from 
the obvious fundamental question "Why?," an equally important 
question is whether or not a child's internal processing is something 
that can itself be mimicked or even directly simulated. 

Part of the answer may lie in what the question itself tacidy assumes: 
how a child processes information is distincdy different from the way 
traditional computers process information. One is obviously parallel, 
the other is serial; one is algorithmic, diligentiy following a specific set 
of instructions one instruction at a time, the other is essentially "free 
form,'" organizing information and defining computational route' 
seemingly on-the-fly; etc. The full answer depends on how well we are 
able to navigate our way on an emerging paradigm shift in the way 
computation is itself understood. 

Neural nets (NNs) represent a radical new approach to computational 
problem solving. The methodology they represent can be contrasted 
with the traditional approach to artificial intelligence (AI). Whereas 
the origins of AI lay in applying conventional serial processing 
techniques to high-level cognitive processing like concept-formation, 
semantics, symbolic processing, etc. - or in a top-down approach - 
neural nets are designed to take the opposite - or bottom-up - 
approach. The idea is to have a human-like reasoning emerge on the 
macro-scale. The approach itself is inspired by such basic skills of the 
human brain as its ability to continue functioning with noisy and/or 
incomplete information, its robustness or fault tolerance, its 
adaptability to changing environments by learning, etc. Neural nets 
attempt to mimic and exploit the parallel processing capability of the 
human brain in order to deal with precisely the kinds of problems that 
the human brain itself is well adapted for. 

There is a strong connection between cellular automata (see page 81) 
and neural networks. Fundamentally, CA represent a paradigm 
whereby the conventional emphasis of looking for the origins of 
complex behaviors in sets of "complex" building blocks is shifted to 
an entirely different mode-of-thought in which complexity itself is 
viewed as an emergent phenomenon built upon an assemblage of 
possibly very "simple" parts. From a purely philosophical point of view, 
it could also be argued that there is no better known example of a truly 
emergent phenomenon than that of the emergence of consciousness 
out of the large network of functionally "simple" (and certainly 
unconscious) neuronal components that make up the human brain. 
Now, while we have been inexcusably cavalier in our usage of terms 
like "complex" and "simple" - no respectable neurophysiologist would 
ever call a neuron simple! - it is safe to say that neural nets arguably 
represent the prototypical complex system. 
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Reduced to their essentials, CA are dynamical systems consisting of a 
discrete cellular state space, the nodes of which contain one of a finite 
number of discrete values, and evolve synchronously in time according 
to local update rules. Very crudely speaking, a biological neural 
network likewise consists of a large space of interconnected nodes 
whose dynamical behavior is a local function of other nodes to which it 
is connected. Artificial neural nets can be loosely thought of as being 
nothing more than a set of biologically inspired CA rules. 

There exist many excellent books and collections of papers on this 
broad and rapidly growing subject. A recent book by Jubak [163] 
provides a good nontechnical introduction. The collections edited by 
Anderson and Rosenfeld [5] and Shaw and Palm [284] contain most of 
the important early landmark papers. Some of the better texts are 
those by Hecht-Nielson [130], Hertz, Krogh and Palmer [135], and 
Peretto [247]. There are also journals that specialize in neural nets 
such as Neural Computation, published by MIT and Neural Networks, 
published by Pergammon. 

A Short History 

Table 7 lists some developments in neural net research. This list is by 
no means exhaustive and is intended only to highlight some of the key 
events. There are four main points to be taken from this table: 

Table 7. A few key historical developments in neural net research 
Year Developers Development 

1943 McCulloch-Pitts first neuron model 

1949 synaptic learning rule Hebb 

1958 simple perceptron model Rosenblatt 

1960 least-mean-sqaure (LMS) /Delta-rule Widrow and Hoff 

1969 Perceptrons (a critical look at what 
neural nets can and cannot do) 

Minsky and Papert 

1982 autoassociation Hopfield 

1982 parallel distributed processing Feldman, et. al. 

1983 Boltzman machine Hinton 

1985 back-propagation learning rule Rumelhart, et. al. 

1990 i80170NX neural chip Intel Corporation 

1. The first serious work on neural nets dates back to 1943, so that 
while neural nets have been getting increasingly more press in 
recent years, it cannot be said that they are of "recent origin." 
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2. There is a thirteen year gap between the publication of Minsky 
and Papert's enormously influential book called Perceptrons in 
1969 and the publication of a mainstream neural net physics 
paper by Hopfield in 1982, emphasizing the idea of memories 
as dynamically stable attractor states. This is not necessarily 
meant to imply that neural net research had not been going on 
in the intervening years, but it is certainly true to say that 
Minsky and Papert's powerful critique discouraged more than a 
few researchers from entering the (at that time) fledgling field. 

3. Long stretches of time sometimes pass between the 
introduction of a basic design and when that design gains a 
more practical utility with a concomitant learning rule. For 
example, while it was known fairly early on that some of the 
limitations of Rosenblatt's simple perceptron could be 
overcome by adding "hidden" neurons, it was not until 
Rumelhart,rf.a/.'s backpropagation rule was introduced in 1985 
that an appropriate learning rule was finally found. 

4. Just as for the study of cellular automata in general, for which 
software is nice to have for prototyping and preliminary study 
but are clearly inadequate for any large-scale simulation (lattice 
gases, for example, would have remained nothing more than 
an interesting theoretical exercise had it not been for 
dedicated hardware simulators like RAP1 and CAM-6), neural 
nets do not really come into their own as problem solvers unless 
their designs are hard wired into silicon. The Intel chip listed 
in table 7 is but one example of a growing number of 
increasingly more powerful and fully programmable chips 
appearing on the commercial market. 

An Heuristic Discussion 

Neural nets are designed to exploit the most powerful computational 
characteristics of the human brain, most notably its efficiency at 
pattern recognition. As mentioned earlier, for example, a 
three-year-old child is considerably more adept at recognizing objects 
and faces than even the most advanced artificial intelligence system 
running on a top-of-the-line supercomputer. Moreover, the brain is 
robust and fault-tolerant, easily deals with probabilistic, fuzzy or even 
inconsistent information, and rapidly adapts to a changing 
environment by "learning," and does so without having to be 
continuously "re-programmed." Although the analogy between brains 
and NNs is crude at best (for example, the nodes and interconnections 
between the nodes of a neural network are gross oversimplifications of 
the brain's actual structure), it is close enough that NNs are capable of 
closely mimicking some of the brain's own functionality. In this 
section we discuss a class of NNs known as multi-layer, feed-forward NNs 
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that use the backpropagation learning rule. Such NNs are particularly 
adept at solving general pattern recognition problems. 

Consider the "simple" problem of correctly identifying a sequence of 
handwritten characters (i.e. digits and letters). From a conventional 
programming perspective, the task is more than a little bit daunting. 
Although each character typically has a large set of unequal (and 
possibly widely varying) representations, each of these representations 
is valid. Some characters may appear darker than others, for example; 
others may be hurriedly written so that some detail is washed out; still 
others may be written in script rather than block-printed. Unless the 
character-recognition software explicitly accounts for all possible 
variations (or all possible 'templates") of the representation of each 
character, it is doomed to be imperfect from its inception. Even if a 
massive look-up table is constructed, consisting of very many variations 
of each character, some decision module must nonetheless also be 
constructed to deal with samples that do not match any of the 
pre-computed entries of the look-up table. The character-recognition 
software can only be as good as its decision module. How is a character 
to be identified if the sample is smudged, for example? While we may 
take for granted the fact that our brain can easily ignore any "dirt" or 
"smudges" that appear on an input to correctly identify the underlying 
character, a smudged character can also easily be different enough 
such that the smudged character will remain effectively unrecognizable 
to the software.16 

Traditional software's basic problem - namely, how to reliably deal with 
noisy and/or imprecise input - is the typical neural-net's strength. While 
most software-based recognition schemes depend on pre-defined sets 
of contingency rules to provide specific responses to inputs that do not 
match any elements of the basic look-up table, neural-nets learn to 
generalize from a basic set of input data, and thus require no special 
programming to process noisy input. Just as traditional software can 
only be as good as the algorithm that it implements, a neural-net can 
only be as good as the data set on which it trains. 

Defining and Training a Neural Network 

A typical net consists of three layers: an input layer, an output layer and 
one or more hidden layers (see figure 34). The input layer is chosen to 
correspond in some way to the set of input data. For example, if the 
input is to consist of images of handwritten characters, one might use a 

16 The   difference  between  two  patterns  is  typically  measured  by 
computing the Hamming Distance. The Hamming Distance between two binary 
strings Sj = 001001110 and S2 = 010010111 is defined to be the number of 
string-entries in which the digits are different. The Hamming distance 
between Sj and S2 is therefore 5. The Hamming distance between two 
handwritten characters, for example, may be defined as the number of on/off 
pixels by which their two respective black-and-white digitized images differ. 
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10x10 grid of neurons, with each neuron having either value 1 or 0 
depending on whether or not a portion of the character overlays that 
neuron. Similarly, the output layer is chosen to correspond to the set 
of output data. If the output is to consist of the 26 letters of the 
alphabet and the 10 numerical digits, a natural choice would be to 
have a layer with 36 neurons corresponding to each possible character 
or digit output. Unfortunately, choosing the size and number of 
hidden layers involves a little bit of black-magic: aside from what are 
essentially heuristic aids, there are no formal theorems specifying an 
optimal design. It can be shown that (1) for the net to be able to solve 
nontrivial problems there should be at least one hidden layer, and (2) 
any net with more than two hidden layers is functionally equivalent to 
a net with two hidden layers. The total number of neurons within the 
hidden layers should (usually) be between 1/2 to 2 -1/2 times the 
number of input neurons. In practice, it is best to remember that a net 
with too few hidden neurons will be unable to learn what is required of 
it; a net with too many hidden neurons will tend to overgeneralize 
what it has learned. 

Figure 34. Schematic representation of a multi-layer feed-forward 
neural network 

hidden hidden output 
layer 1 layer 2 

Each of the nodes in the first hidden layer is connected to each input 
node; their values depend on the weights assigned to each of these 
connections. Likewise, each node of the second hidden layer (if one 
exists) is connected to each node of the first hidden layer, and so on 
until the last, or output, layer is reached (all of whose nodes are 
connected to each node of the last hidden layer). Learning is the 
process whereby the net adjusts the set of its internal weights so that 
for each input fact the output state corresponds to the desired output. 
The net is typically first run with a set of random weights so that its 
initial output bares little relation to the input. As it "re-looks" at the 
same set of input/output fact pairs many times, the net continuously 
readjusts the weights so as to bring its processed output closer and 
closer to the desired output. After some transient learning period that 
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depends on the size of the network and number of input facts, a final 
weight set is achieved such that the output to each fact is what it is 
required to be. 

Using a Trained Net 

Once learning is completed, and for the same set of facts with which it 
was trained, the net may be used as a simple data-retrieval program: for 
each fact in the training set, it will correctly reproduce the desired output. The 
net's real strength, however, lies in its ability to abstract and generalize 
from this training set and thereby deal with inputs that do not match 
any of the training facts. Having been trained on a particular set of 36 
characters and digits, for example, corresponding to one trainer's 
unique handwriting, the net will then be able to correctly identify the 
characters input from a digitized sample of someone else's 
handwriting. Each input/output fact pair will have been generalized so 
that a much larger set of similar but unequal input handwriting 
samples can be recognized as corresponding to the same ouqaut. 

While the choice for the input space in the character-recognition 
example may have been "obvious" - since we know that the output 
depends only on the input image, our only problem is to find some 
natural correspondence between a set of neurons and an arbitrary 
input image - another strength of NN technology is that a net will 
(using slightly anthropomorphic language) use whatever subset of input 

facts that it decides is really important for predicting the desired output. Even if 
the trainer is himself unsure of exactly what set of input facts are really 
important (we will outline an example in a moment), as long as he 
uses a list that is a super set of the list of facts that truly matter, the 
neural net will experience no particular difficulty with training. In 
other words, the net effectively learns to parse out and use only those 
facts that are relevant to reach the desired conclusions. Other facts, 
having nothing to do with the desired output, are acknowledged only 
by being given essentially zero weight. The net will recognize them to 
be unimportant and train itself to ignore them. By the same reasoning, 
a net can also suggest that certain facts that the trainer considers to be 
unimportant are in fact important in reaching a conclusion and should 
not be ignored. 

Consider a neural net approach to predicting when the NN trainer 
himself will choose to take a coffee break. Obviously, many factors play 
a role, both on a conscious and unconscious level. The amount of time 
that has passed since the last break is clearly an important factor; but 
constraints such as how close his work is to a deadline or how much 
time is left until the analyst must leave for day are also important. 
Perhaps when the height of graph-paper on the left-hand-side of his 
desk exceeds some threshold, the analyst begins considering taking a 
break? On the other hand, the decision to take a break may have 
nothing at all to do with such factors as the day of the week, the 
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temperature in a neighboring office or the color of the analyst's socks. 
The input layer of a net designed to recognize the trainer-state/ 
decision-to-break pattern may consist of as many neurons as 
analyst-state facts the trainer decides play an important role. One 
neuron, for example, could correspond to the time elapsed since the 
last break; another to how much time is left until the end of the day, 
etc. As long as the input space contains the set of facts that do play an 
important role in finally yielding either a yes-break or no-break 
decision from the analyst (a set which may indeed be a-priori 
unknowable), the net will learn to ignore the unimportant part of the 
input space. The output may consist of a single neuron, which takes 
the value 1 when the decision is to take a break, and value 0 when the 
decision is to keep working. 

General Model Development: A Short Primer 

While the details of designing a neural net solution to a particular 
problem can be quite involved, the basic strategy is fairly simple. The 
important point to remember is that designing a net is almost an 
antithesis of conventional programming. There are no rules or 
algorithms to write (except for the underlying code defining the 
learning algorithm, of course). Instead, the effort that is 
conventionally put into the programming end of a solution is replaced 
by the effort that must be put into constructing a sample solution set, 
one that must often be put together without an explicit or an a-priori 
knowledge of the method of solution. For example, using the example 
of image recognition ("Uncle Seymor's face"), while most of us are 
instandy able to recognize the faces of even the most casual of our 
acquaintances, very few of us are able to describe exacdy how we are 
able to accomplish this task. 

Fundamentally, all feed-forward nets follow the same basic steps of a 
model development cycle: 

1. define the problem 

2. define the input-output fact set 

3. define the neural net structure 

4. train 

5. test 

It cannot be stressed strongly enough that the first step, defining the 
problem, is far from being a simple task. Great care must be taken to 
identify precisely what one wishes for the net to "learn." 
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There is a telling story about how the army recently went about 
teaching a NN to identify tanks set against a variety of environmental 
backdrops. The programmers correcdy fed their multi-layer net 
photograph after photograph of tanks in grasslands, of tanks in 
swamps, of tanks surrounded by trees, of hills without tanks, and so on. 
The idea was for the net to get a broad enough sampling of scenes with 
tanks both present and absent so as to be able to tell, in general, 
whether a tank was or was not present in an arbitrary image. After 
many trials and many thousands of iterations, the NN finally learned 
all of the images in the carefully prepared database. When the 
presumably trained net was tested on other images that were not part 
of the original training set, it failed to do any better than what would 
be expected by chance alone. The problem was that the input/training 
fact set was inadvertendy statistically corrupt. The database consisted 
mosdy of images that showed a tank only if there were heavy clouds, or 
the tank itself was immersed in shadow or there was no sun at all. The 
Army's neural net had indeed identified a latent pattern, but it 
unfortunately had nothing to do with tanks: it had effectively learned to 
distinguish bright from not-so-bright scenes. 

The obvious lesson to be taken away from this amusing example is that 
how well a net "learns" the desired associations depends almost entirely 
on how well the database of facts is defined. 

Once the input-output fact pair has been put together, the next 
challenge is to find an appropriate net design; i.e. to determine how 
many input and output neurons should be used and how many hidden 
layers should be placed between them. Typically, the form of the 
input-output facts in the database determine the number (and type) of 
input and output neurons. In the handwriting recognition example we 
used earlier in which a net is to learn the 26 letters of the alphabet, for 
example, a natural choice was to use N x M input neurons to encode 
an input image and 26 output neurons, each of which corresponds to a 
given letter. If, instead, the problem is to construct a financial 
predictor, where the input data consists of such facts as the consumer 
price index, the price of crude oil, the unemployment rate, and so on, 
and the desired output is an estimate of the Dowjones stock average, it 
is natural to design a net that has as many input neurons as there are 
available input facts and one output neuron whose value is equal to the 
predicted Dowjones average. Coundess other examples could of 
course also be imagined. The point is that once the problem has been 
carefully defined and the available information structured in some 
form, the number of input and output neurons is essentially 
determined. 

Backpropagation Algorithm 

The backpropagation learning rule (also called the generalized delta 
rule) is credited to Rumelhart and McClelland [271]; refer to figure 34 

113 



Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook 

for a schematic of a multi-layered neural net's structure. Notice that 
the design shown, and the only kind we will consider in this section, is 
strictly feed forward. That is to say, information always flows from the 
input layer to each hidden layer, in turn, and out into the output layer. 
There are no feedback loops anywhere in the system. 

One or more hidden layers are sandwiched between the input and 
output layers and, for the moment, consist of an arbitrary number of 
neurons. While there are, unfortunately, no rigorous theorems 
specifying what number should be used for a given problem, useful 
heuristics do exist. 

The backpropagation learning rule gives a prescription for adjusting 
the initially randomized set of synaptic weights (existing between all 
pairs of neurons in each successive layer) so as to minimize the 
difference between the neural net's output for each input fact and the 
output with which the given input is known (or desired) to be 
associated. The backpropagation rule takes its name from the way in 
which the calculated error at the output layer is propagated backwards 
from the output layer to the N* hidden layer to the (N-l)* hidden 
layer, and so on. Because the learning process requires us to "know" 
the correct pairing of input-output facts beforehand, this type of 
weight adjustment is called supervised learning. 

Pseudo-Code 

Without derivation, we now present a seven-step pseudo-code 
implementation of the backpropagation learning rule. It is to be 
applied for each pattern ". Assume that we have a neural net with L 
layers (1 = 1, 2, ..., L). Let h/ represent the output of the i* neuron in 
the 1th layer; h" is therefore equal to the i* input, ov The weight of the 
connection between h^1 and h/ is labeled Wy1: 

• Step 1: Initialize all weights to small random values. 

• Step 2: Set the input layer equal to the input values for the first 
input/output fact pair: i.e. let hk° = CTk

p=l for all values of k. 

• Step 3: Propagate the input signal foward through the various 

layers of the net; i.e. calculate ht =fa(^j Wyhf ) , where fa(x) = 

1/(1 + e"0"1) is a sigmoidal threshold function and a is a 
parameter added to control the steepness of the curve. 

• Step 4: Calculate the differences A's for the output layer: 

Af =fa{h\)Qfi-h\), where fa'(x) is the derivative of fa(x), is 
the net's calculated output and is the actual output of the net, 
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• 

• Step 5: Obtain the differences A's for each of the preceeding 
layers        by       propagating        the        errors        backwards: 

A!"1 =f*(tirl)LjwjfAJ , 1 - L, L-l,.... 2. 

• Step 6: Adjust the weights according to w^ -> w« + 8 ws, where 

8Wy = TjAjA.-    and T) is an adjustable learning constant 

• Step 7: Go back to step 2 and repeat for the next pattern. Stop 
when the difference between the computed and desired output 
is less than some pre-assigned threshold. 

The basic backpropagation algorithms is in practice often very slow to 
converge. Moreover, it can sometimes get stuck in undesired spurious 
attractor states. This is an unfortunate artifact that plagues all 
cost-function minimization schemes. In recent years, however, a 
number of alternative formulations to improve convergence have been 
suggested. Consider the learning constant T|, that effectively 
determines how fast the system moves down a "hill" of the energy 
surface. Although smaller values of r| lend stability, they also tend to 
slow down the convergence to unreasonably slow rates of convergence. 
On the other hand, if is too large, the algorithm tends to oscillate and 
become unstable. Among the methods suggested to alleviate these 
problems are (1) using successively smaller values of the learning 
constant, (2) continuously adapting the value of the learning constant 
to how well the convergence is doing, and (3) adding a so-called 
momentum-term. A fourth method is to add a bit of noise at each step. 
The idea in this last method is to use the noise to knock the system out 
of an undesired local minima. 

Since their introduction, feed-forward backpropagating neural nets 
have been used to "solve" a wide range of interesting problems, 
striking in their diversity. Applications include playing backgammon, 
recognizing hand-written zip-codes, financial bond rating, visual 
pattern recognition, classification of seismic signals, sonar target 
recognition, and navigating a car, among many others. 

Example: NETtalk 

An important and influential application of a multi-layered 
backpropagating neural net is NETtalk, designed by Sejnowski and 
Rosenberg in 1987. NETtalk learns to convert English text into speech 
and displays many of the characteristics of leaning normally ascribed to 
human learning, including a power-law form for its learning curve and 
an increase in its ability to generalize as the size of its training set 
increases. Moreover, NETtalk is robust and fault tolerant Its 
performance degrades gracefully and not catastrophically if its set of 
synaptic weights is damaged. Once trained, NETtalk is also able to 
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relearn a given fact set much faster after some damage has been done 
to it than if it had to start from scratch with the original training. 

Generating speech from written text is a profoundly difficult problem 
to solve using conventional programming techniques. Part of the 
difficulty is due to the fact that words are not always pronounced 
according to how they are spelled. Although we are all taught the 
"rules" when we are young, as our experience grows we learn that each 
rule has its fair share of exceptions. Even a simple sentence like "This 
is a sentence," shows that spelling can be a poor cue for pronunciation. 
The first two s's are pronounced differently, but they both appear at 
the end of words and are both preceded by an i. The third s is 
pronounced the same way as the first but instead appears at the 
beginning of a word. NETtalk deals with this problem by looking at 
groups of letters to provide context sensitivity. 

NETtalk consists of 203 input neurons, one hidden layer composed of 
80 neurons and 26 output neurons. The input consists of a string of 
203 letters, with a 7-site long window that slides over the text to provide 
the necessary context sensitivity for the net to be able to learn to 
pronounce the middle letter. The output consists of 26 elementary 
speech sounds called phonemes. Phonemes are similar to the 
pronunciation guides found in standard dictionaries. Several sets of 
phonemes are available. 

Sejnowski and Rosenberg used two different sets of words for training: 
(1) 1024 words taken from phonetic transcriptions of informal 
continuous speech by children, and (2) a subset of the 1000 most 
commonly used words selected from Miriam Webster's Pocket Dictionary. 

NETtalk managed to learn the informal speech database well enough 
after only a few training cycles (with each cycle being one complete 
pass through the database) to utter intelligible speech. Ten passes were 
sufficient for it to utter fully understandable words, and 50 cycles 
proved enough for NETtalk to attain a 95% accuracy rate. Initially, 
NETtalk was able to learn only gross features such as the difference 
between consonants and vowels. Since it always responded with the 
same vowel whenever any vowel was input and with the same 
consonant whenever a consonant was input, in this early phase 
NETtalk sounded like a babbling child. Gradually, NETtalk learned to 
recognize the boundaries between words and was thus able to begin 
uttering pseudowords. As its learning was further enhanced, NETtalk's 
output steadily improved to the point of intelligibility. 

Perhaps the most striking result is an early demonstration of fault 
tolerance. When Sejnowski and Rosenberg artificially "damaged" the net 
by adding some amount to random noise to the synaptic weights, they 
found that NETtalk's ability to "speak" degraded only gradually and 
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not suddenly, as might be expected of a conventional rule based 
systems from which a subset of rules was suddenly deleted. 

Other Designs 

This brief survey has only touched upon one of the more familiar 
neural net designs, chosen mainly for its pedagogical value. There are 
of course a large number of other important models, some of which 
have wide applicability, some of which are optimized for a particular 
kind of problem: 

• Adaptive resonance. One obvious drawback to using a 
backpropagating neural net is the need to retrain the net every 
time a new problem is added to the training set database. While 
the net should, in principle, have no problem in learning a new 
fact, there is the possibility that the newly trained net will forget 
previously stored information. This is sometimes loosely referred 
to as the stability-plasticity problem. One neural net design that 
addresses this concern is called adaptive resonance, and is due to 
Carpenter and Grossberg [41]. A critical feature of adaptive 
resonance is its ability to switch between a learning state in which 
the net's internal parameters can be modified (plasticity) and a 
fixed state wherein previously stored data cannot be damaged 
(stability). 

• Supervised learning. The backpropagation algorithm assumes that 
the output part of a desired input-output set of pairs is known 
a-priori. In practice, of course, one often does not know the 
output. It is certainly reasonable to expect a net to effectively tell 
the trainer what latent patterns and similarities exist within a 
clump of data. For this one needs an entirely different neural net 
design, one that is optimized for finding common features across 
a range of input patterns in an unsupervised fashion. A well 
known exemplar of this class is Kohonen's self-organizing feature 
map [178]. A more general approach to unsupervised learning is 
called competitive learning, described by Rumelhart [271]. There 
are still other schemes, such as Hecht-Nielsen's counterpropagation 
networks, that combine supervised and unsupervised learning in 
one net. 

• Tailoring a design to a specific problem. Algorithms such as 
backpropagation can be viewed as general purpose designs. By 
modifying a net's size, topology, data set, or energy function, 
such nets can be applied to a wide variety of problems. However, 
there are problems for which either such a general-purpose 
design does not suffice or for which a better, optimized, design 
can be constructed. One such example is Fukushima's cognitron 
and larger-scaled neocognitron neural net designs [104], which are 
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specifically tailored to recognize handwritten characters. Both 
the cognitron and neocognitron can learn with or without a 
supervisor and represent an approach based on exploiting the 
anatomy and physiology of the mammalian visual system. 

Lessons of Complex Systems Theory 

The major lesson of complex systems theory is that complex behavior 
is usually an emergent self-organized phenomenon built upon the 
aggregate behavior of very many nonlinearly interacting "simple" 
components. It advocates, in essence, a simplicity breeds complexity 
approach to the study of complex systems. 

The critical points to remember are... 

• Nonlinearity. Without nonlinear interactions there can be no 
deterministic chaos in simple systems and no complex behavior 
in complex systems. Moreover, nonlinear systems appear to be 
much more pervasive than linear systems. By virtue of 
nonlinearity, the behavior of the "whole" is not just a simple 
aggregate of the constituent "parts." 

• Interconnectivity. How the parts of a complex system are 
interconnected is just as important as what those parts are and 
what does parts do. 

• Context/Wholeness. The effect that parts have on the remainder of 
the system - literally, how those parts are defined within the 
complex system - is determined by the context of the whole 
within which those parts exist. In referring to any part P of a 
complex system, one must also point to various other parts with 
which P interacts (or may interact in the future). 

• Process: Simple dynamical systems are characterized by simple 
attractors - fixed points, limit cycles, quasiperiodic and chaotic 
(or strange) attractors. Although one can also try to characterize 
the behavior of complex systems with these attractor "labels," 
such a description would entirely miss the essence of what it 
means to be a complex system. A complex system embodies 
process, a ceaseless search for a better "solution" for an 
ill-defined, amorphous-ever receding "problem." In Zen-like 
fashion, you can say that the harder one tries to pin-down the 
behavior of a complex system with some static measure, the 
further one is from understanding what the complex system is 
really doing. 
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• Adaptability. The essence of a complex adaptive system is that its 
constituent parts are not Newtonian "billiards" that react blindly 
(but in well-defined fashion) to the world around them, but are 
instead endowed with an ability to sense, learn from, and adapt to 
their environment as they and the environment both evolve in 
time. A related lesson is that individual solutions (or evolutionary 
timelines) are essentially non-reproducible; a given system may 
"solve" a given problem in many different ways. 

• Emergence. Perhaps the central concept of complex systems 
theory is that high-level behaviors emerge naturally out a 
brewing soup of low-level interactions. A flock of birds (or 
"Boids," see page 73) does not need a central direction to behave 
in an apparently orchestrated manner. Nowhere on the lattice 
rule-level in Conways Life CA game (see page 87) is there any 
hint of the particle-like glider that spontaneously emerges on a 
higher level, and then apparently obey a dynamics all its own. 
The lesson is that where there is an assemblage of very many 
nonlinearly interacting parts, there is a good possibility of 
emergent behaviors on higher levels than those defining the 
underlying interactions. Moreover, such emergent behavior can 
appear on multiple spatial and temporal levels. 
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Land Warfare and Complexity Theory: 
Preliminary Musings 

In this section we outline a few preliminary musings on the 
applicability of nonlinear dynamics and complex systems theory to the 
understanding and/or representation of land warfare. An in-depth 
analysis and discussion of the ideas oudined below will be provided in 
Part II of this report.17 

The fundamental question that is addressed, at least indirecdy, in this 
report, and more fully in the follow-on paper, is "What does complexity 
theory tell us about land warfare?" 

This question really embodies three separate but interrelated issues 
(see figure 35): 

1. Complexity theory 

2. Land warfare 

3. Modeling/Simulation 

Figure 35. Interrelated issues of addressing land warfare as a 
complex system 

possible connections between 
camplecity theory and land warfare 

are discussed in this section 

/ /\ 

Reality 

I    /     \ 
'. Concepts ^  » Model 

Complexity theory refers to any and all conjectures, hypotheses, theories, 
experiments, mathematical models, etc. having to do with the 
understanding of complex systems exhibiting a complicated (i.e. 
chaotic) behavior. In particular, complexity theory is assumed to 
include both nonlinear dynamics and complex systems theory, the 

17 Land Warfare and Complexity, Part II: An Assessment of the Applicability of 
Nonlinear Dynamics and Complex Systems Theory to the Representation of Land 
Warfare is scheduled to be delivered to sponsor for review 1 July, 1996. 
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latter including a multitude of sub-disciplines such as artificial life, 
cellular automata, genetic programming, neural networks, etc. 

Land warfare embodies all of the myriad problems and issues of land 
warfare,    including    combat    attrition,    command    and    control, * 
coordination, intelligence, tactics and strategy, training, etc. 

Modeling/Simulation is a generic label for the overarching context * 
within   which   possible   interconnections   between   the   tools   and * 
methodologies of complexity theory as well as the issues and problems 
of land warfare can be fully explored. 

In this last category, the most important question to ask is "What do you 
expect to get out of a particular model?" A model that is designed to 
explicitly mimic reality as closely as possible in order to predict the 
outcome of real battles is very different from a simulation designed 
merely to act as a synthetic combat environment within which 
combatants can obtain "realistic" training. Sandwiched in between 
these two extremes of modeling lies another class of pseudo-realistic 
models designed to provide insights only into selected key elements of 
the general pattern of behavior on the battlefield. While complexity 
theory may potentially offer interesting insights into to all three levels 
of modeling and/or simulation, it is likely to provide its strongest 
support to these middle-level models. A more in-depth discussion of 
this very important point will be given in part II of this paper. 

If one main theme runs consistently throughout all of the preceding 
discussion in this report, it is that complexity theory embodies an 
enormously large set of concepts, mathematical tools and 
methodologies. Consequendy, even interpreting the basic question of 
what complexity theory tells us about land warfare is not at all an easy 
task. Instead of asking "What does complexity theory tell us about land 
warfare?" a better question is "How does idea I or methodology M, born of 
complexity theory, help us to understand problem P or issue S in land warfare?" 
Moreover, possible answers to this question should not be confined to 
finding applications on only the tactical level of combat but should 
include the operational and strategic levels of warfare as well. 

It is easy to imagine the most seductive application of complexity 
theory to land warfare, namely some 10-or-20-years down-the-road 
artificial-life-like simulation of battle, complete with impressively 
realistic 3D virtual reality graphics. It is more likely, however, that the r 

real, albeit less immediately seductive, applications will lie in the 
conceptual trenches, out of the way and beneath the surface, altering a 
field commander's frame of reference for seeing what is really 
happening on the battlefield, establishing new criteria for collecting 
data, improving the way information is processed and communicated, 
providing real-time tactical and strategic decision aids, and providing 
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tools for extracting and understanding any subtle and/or otherwise 
"hidden" patterns of behavior on the battlefield. 

It must also be remembered - and appreciated - that complexity 
theory is still very much in its infancy. The Santa Fe Institute in New 
Mexico, for example, which is widely recognized as being a leading 
research center for complex systems, was founded just a decade ago in 
1984. Moreover, many of the analytical tools and models developed for 
the study of complex systems, such as genetic algorithms, genetic 
programming and agent-based simulations, have been either 
developed or refined as part of the artificial-life research effort that 
itself sprang up only in 1987. Consequently, it would be grossly unfair 
to complex systems theory to expect to find a mature set of tools and 
methodologies at such an early stage of this burgeoning field's 
development. 

Table 8. A sampling of tools from nonlinear dynamics and 
complex systems theory 

Nonlinear Dynamics/Chaos Complex Systems Theory 
power spectra cellular automata 

fractal dimensions genetic algorithms 

Kolmogorov-Sinai entropy genetic programming 

Lyapunov exponents neural networks 

attractor reconstruction self-organized criticality 
time-delayed embedding agent-based simulations 

chaotic control SWARM 
etc. etc. 

It is also safe to say that, at its current stage of development, much of 
complex systems theory is concerned primarily with simulations and 
simulation-engines - such as the Santa Fe Institute's SWARM (see page 
114) - that run them. So much so that it is not entirely incorrect to 
think of "complex systems theory" as being synonymous with 
"agent-based simulation." 

Table 8 lists some of the analytical tools of nonlinear dynamics and 
complex systems theory that were discussed in earlier sections of this 
report. 

Framing the Problem 

Figure 36 summarizes the more salient points of the overall discussion 
and is meant to provide a basic framework for forging a connection 
between complexity theory and land warfare. 
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Figure 36. A framework for forging a connection between complexity 
theory and land warfare 
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Figure 36 shows that there are four levels of applicability of complexity 
theory: level-1, consisting of specific analytical and mathematical tools 
such as cellular automata, genetic algorithms, genetic programming, 
and so on; level-2, consisting of general simulation systems such as 
SWARM, within which complex systems can be modeled; level-3, 
consisting of observations of behavior of specific systems; and level-4, 
consisting of sets of universal behaviors, such as the principle of 
self-organized criticality (see page 101). 

Ideally, of course, one would like to take whatever insights complexity 
theory has come up with, or will come with, on the highest level 
(level-4) and apply them directly to the issues and problems of land 
warfare. The fact that this is exceedingly unlikely to happen in the 
foreseeable future is due in no small measure to the fact that, as of this 
writing, there are precious few "universal behaviors" populating level-4. 
Indeed, as alluded to in an earlier section (see page 101), 
self-organized criticality is arguably the only existing holistic 
mathematical theory of self-organization in complex systems! 
Therefore, if there is anything at all that falls under the rubric of 
complexity theory that is generally applicable to the problems of land 
warfare, it will most likely consist of specific sets of tools applied to 
specific problems, along with whatever insights can be gained by using 
general-purpose simulators such as SWARM to act as simulation 
"engines." There remains the possibility that complexity theory might 
shed some light on how battlefields may be configured (or compelled 
to self-organize) to achieve a maximum adaptability to a changing 
environment. 

Figure 36 also shows that there are four levels of land warfare to which 
the tools and methodologies of complexity theory can be applied: (1) 
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tactical, (2) operational, (3) strategic and (4) general strategic, which refers 
to the socio-political strategies that are followed over long periods of 
time and which can therefore span over several conflicts. 

Finally, figure 36 illustrates that there are three levels on which 
complexity theory can be applied to land warfare: 

• Level-1. This is the most basic metaphor level to which most general 
discussions have been heretofore confined. This level consists of 
constructing and elaborating upon similar sounding words and 
images that most strongly suggest a "philosophical resonance" 
between behaviors of complex systems and certain aspects of 
what happens on a battlefield. The Clauswitzian images of "fog of 
war" and "friction" come to mind immediately [24]. There is 
nothing wrong, per se, with confining a discussion to this level, 
but one must always be mindful of the fact that metaphors are 
easily abused and "philosophical resonances" do not imply real 
connections. 

• Level-2. This is the pragmatic and/or experimental level on 
which real-world data is mined to confirm or deny that there is 
more to a possible connection between complexity theory and 
land warfare than mere "philosophical resonance" alone. The 
best work along these lines has so far been conducted by 
Tagarev, et. al. [298] and is discussed briefly below. Tagarev, et. 
al. provide evidence of deterministic chaos in tactical, 
operational and strategic dynamics of a wide class of military 
behavior. 

• Level-3. This is the "workhorse" level on which specific 
methodology borrowed from complexity theory is applied 
directly to specific issues and problems of land warfare. This 
might not be as intellectually provocative or satisfying as making 
a direct, one-to-one mapping between universal patterns of 
behavior of complex systems in general and patterns of combat 
on the battlefield (although this is remotely conceivable in some 
form); however, using genetic algorithms to evolve tactics in 
real-time in the heat-of-battle is impressive nonetheless. Most of 
the ideas and conjectures outlined in the following sections fall 
squarely into this third level of connections. 

Chaos in combat models 

A fundamental lesson of nonlinear dynamics theory is that one can 
almost always expect to find some manifestation of chaos whenever 
nonlinearities are present in the underlying dynamics of a model. This 
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fundamental lesson has potentially significant implications for even the 
simplest combat models. 

Miller and Sulcoski [217], for example, report fractal-like properties 
and a sensitivity-to-initial conditions in the behavior of a discretized 
model of the Lanchester equations (augmented by nonlinear auxiliary 
conditions such as reinforcement and withdrawal/ surrender 
thresholds). 

Non-Monoticities and Chaos 

A 1991 RAND study [73] uncovered chaotic behavior in a certain class 
of very simple combat models in which reinforcement decisions are 
based on the state of the battle. The study looked at non-monoticity 
and chaos in combat models, where "monotonic behavior" is taken to 
mean a behavior in which adding more capabilities to only one side 
leads to at least as favorable an outcome for that side. 

The presence of nonmonoticities has usually been interpreted to mean 
that there is something wrong in the model that needs to be "fixed" 
and has been either treated as an anomaly or simply ignored. The 
main thrust of the RAND report is that, while non-monoticities often 
do arise from questionable programming skills, there is a source of 
considerably more problematic non-monoticities that has its origins in 
deterministic chaos. 

The RAND study found that "a combat model with a single decision 
based on the state of the battle, no matter how precisely computed, 
can produce non-monotonic behavior in the outcomes of the model 
and chaotic behavior in its underlying dynamics." [73] 

The authors of the report draw four basic lessons from their study: 

• models may not be predictive, but are useful for understanding 
changes of outcomes based on incremental adjustments to 
control parameters 

• scripting the addition of battlefield reinforcement (i.e. basing 
their input on time only, and not on the state of the battle) 
generally eliminates chaotic behavior 

• one can identify input parameters figuring most importantly in 
behavior of non-monoticities - these are the size of 
reinforcement blocks and the total number of reinforcements 
available to each side 

• Lyapunov exponents are useful to evaluate a model's sensitivity 
to perturbations 
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In general, the RAND report [73] concludes that 

"In any combat model that depends for its usefulness on 
monotonic behavior in its outcomes, modeling combat decision 
based on the state of the battle must be done very carefully. Such 
modeled decisions can lead to monotonic behavior and chaotic 
behavior and the only sure ways (to date) to deal with that 
behavior are either to remove state dependence of the modeled 
decisions or to validate that the model is monotnonic in the 
region of interest." 

Minimalist Modeling 

Dockery and Woodcock, in their massive treatise The Military Landscape 
[77], provide a detailed discussion of many different "minimalist 
models" from the point of view of catastrophe theory and nonlinear 
dynamics. Minimalist modeling refers to "the simplest possible 
description using the most powerful mathematics available and then" 
adds layers "of complexity as required, permitting structure to emerge 
from the dynamics." Among many other findings, Dockery and 
Woodcock report that chaos appears in the solutions to the Lanchester 
equations when modified by reinforcement. They also discuss how 
many of the tools of nonlinear dynamics (see table 8) can be used to 
describe combat. 

Using generalized predator-prey population models to model 
interactions between military and insurgent forces, Dockery and 
Woodcock illustrate (1) the set of conditions that lead to a periodic 
oscillation of insurgent force sizes, (2) the effects of a limited pool of 
individuals available for recruitment, (3) various conditions leading to 
steady state, stable periodic oscillations and chaotic force-size 
fluctuations, and (4) the sensitivity to small changes in rates of 
recruitment, disaffection and combat attrition of simulated force 
strengths. 

This kind of analysis can sometimes lead to counter-intuitive 
implications for the tactical control of insurgents. In one instance, for 
example, Dockery and Woodcock point out that cyclic oscillations in 
the relative strengths of national and insurgent forces result in 
recurring periods of time during which the government forces are 
weak and the insurgents are at their peak strength. If the government 
decides to add too many resources to strengthen its forces, the chaotic 
model suggests that the cyclic behavior will tend to become unstable 
(because of the possibility that disaffected combatants will join the 
insurgent camp) and thus weaken the government position. The 
model instead suggests that the best strategy for the government to 
follow is to use a moderately low level of military force to contain the 
insurgents at their peak strength, and attempt to destroy the insurgents 
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only when the insurgents are at their weakest force strength level of the 
cycle.18 

Generalizations of Lanchester's equations 

In 1914, Lanchester introduced a set of coupled ordinary differential 
equations as models of attrition in modern warfare. The basic idea 
behind these equations is that the loss rate of forces on one side of a 
battle is proportional to the number of forces on the other. In one 
form of the equations, known as the directed-fire (or square-law) model, 
the lanchester equations are given by the linear equations dR(t)/dt = - 
aB B(t) and dB(t)/dt = - ccR R(t), where R(t) and B(t) represent the 
numerical strengths of the red and blue forces at time t, and aR and <xB 

represent the constant effective firing rates at which one unit of 
strength on one side causes attrition of the other side's forces. An 
encyclopedic discussion of the many different forms of the lanchester 
equations is given by Taylor ([299], [300]). 

While the lanchester equations are particularly relevant for the kind of 
static trench warfare and artillery duels that characterized most of 
World War I, they are too simple and lack the spatial 
degrees-of-freedom needed to realistically model modern combat. The 
fundamental problem is that they idealize combat much in the same 
way as Newton's laws idealize the real chaos and complexity ridden 
physics of the world. Likewise, almost all lanchester equation based 
attrition models of combat suffer from many basic shortcomings: 

• determinism, whereby the outcome of a battle is determined 
solely as a function of the initial conditions, without regard for 
Clausewitz's "fog of war" and "friction" 

• use of effectiveness coefficients that are constant over time 

• static forces 

• homogeneous forces with no spatial variation 

• no combat termination conditions 

• the assumption that target acquisition is independent of force 
levels 

• no consideration of the suppression effects of weapons 

• and so on... 

Reference [77], pages 137-138. 
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Perhaps the most important shortcoming of virtually all lanchester 
equation based models is that such models rarely, if ever, take into 
account the human factor; i.e. the psychological and/or 
decision-making capability of the individual combatant. 

Generalizations of the lanchester equations have included: 

• an analytical extension of Lanchester's equations to allow 
feedback between movement and attrition; this is discussed by 
Epstein [90] 

• a general exploitation of the analogy between the form of the 
lanchester equations and Lottka-Voltera equations describing 
predator-prey interactions in natural ecologies 

• Partial differential equations to include maneuver; primarily 
work done by Protopopescu at the Oak Ridge National 
Laboratory 

• Fuz2y differential equations to allow for imprecise information; 
see Dockery, [74] 

• Stochastic differential equations to describe attrition processes 
under uncertainty 

One can speculate that there might be a way to generalize the 
lanchester equations to include some kind of an internal aesthetic. That 
is to say, to generalize the description of the individual combatants to 
include an internal structure and mechanism with which they can 
adaptively respond to an external environment. A discussion of this 
idea will be given in Part II of this report See, for example, N. Smith's 
"Calculus of ethics," [289], [290]. 

Demonstration of chaos in war using historical data 

An earlier section, describing work by Richardson [266] and Dockery 
and Woodcock [77], has already alluded to the possibility that certain 
gross combat attrition statistics appear to follow a power-law scaling 
very reminiscent of the characteristic fractal-like behavior observed in 
self-organized critical (SOC) systems (see page 101). 

Tagarev, et. al. [298] also provides extensive historical evidence of 
chaos in tactical, operational and strategic levels of military activity. 
Tagarev, et. al. examine (1) US fixed-wing aircraft losses during the 
Vietnam war, (2) US Army casualties in western Europe during World 
War II, and (3) historical trends in US defense spending. 
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Nonlinear dynamics and chaos in arms-race models 

G. Mayer-Kress ([96], [117] and [210]) has written many papers on 
nonlinear dynamics and chaos in arms-race models and has suggested 
approaches to socio-political issues. His approach is to analyze 
computational models of international security problems using 
nonlinear, stochastic dynamical systems with both discrete and 
continuous time evolution. Many of Mayer-Kress' arms-race models are 
based on models of population dynamics first introduced by L. F. 
Richardson after World War I [266]. 

Mayer-Kress finds that, for certain ranges of values of control 
parameters, some of these models exhibit deterministic chaos. In one 
generalization of a discrete version of Richardson's equations that 
models the competition among three nations, for example, 
Mayer-Kress finds that the two weaker nations will form an alliance 
against the stronger nation until the balance of power shifts [210]. The 
alliance formation factor and economical constraints induce 
nonlinearities into the model that result in multiple stable solutions, 
bifurcations between fixed point solutions and time-dependent 
attractors. He has also identified parameter domains for which the 
attractors are chaotic. 

Combat simulation using cellular automata 

If one abstracts the essentials of what happens on a battlefield, 
ignoring the myriad layers of detail that are, of course, required for a 
complete description, one sees that much of the activity appears to 
involve the same kind of simple nearest-neighbor interactions that 
define cellular automata (See page 81). Woodcock, Cobb and Dockery 
[323] in fact show that highly elaborate patterns of military force-like 
behavior can be generated with a small set of cellular automaton-like 
rules. 

In Woodcock, et. aVs, model, each combatant - or automaton - is 
endowed with a set of rules with which it can perform certain tasks. 
Rules are of four basic varieties: 

• Situation Assessment, such as the determination of whether a given 
automaton is surrounded by friendly or enemy forces 

• Movement, to define when and how a given automaton can move; 
certain kinds of movement can only be initiated by threshold 
and/or constraint criteria 

Combat, which governs the nature of the interaction between 
opposing force automata;  a typical  rule might be for one 
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automaton to "aim fire" at another automaton located within 
some specified fight radius 

• Hierarchical Control, in which a three-level command hierarchy is 
established; each lower-level echelon element keys on those in 
the next higher echelon on each time step of the evolution 

These basic rules can then be augmented by additional rules to (1) 
simulate the impact that terrain barriers such as rivers and mountains 
have on the movement of military forces; (2) provide a capability for 
forces to respond to changing combat conditions (for example, a 
reallocation of firepower among three types of weapons: aimed 
firepower, area firepower and smart weapons firepower), and (3) 
replace entities lost through combat attrition. Figure 37 shows a 
schematic of three sample rules. A further extension involves relating 
notional features of battlefield geometry to the structure of real 
battlefields [77]. 

Figure 37. Three sample rules in Woodcock, et. a/.'s CA combat 
model 

"grey" attempts to 
shoot "black" 

a 

three neighbors: 
advance 

one-neighbor: 
retreat 

"black" attempts to 
shoot "grey" 

Woodcock, et. al. stress that the goal of CA-based model of combat is 
not to codify a body of rules that comes as close as possible to the actual 
behavioral rules obeyed by real combatants; rather, the goal lies in 
"finding the simplest body of rules that both can generate nontrivial 
global combat-like phenomena and provide a new understanding of 
the combat process itself by extracting the maximum amount of 
behavioral complexity from the least complicated set of rules." [323] 
Additional details are discussed in chapters 3.1 and 3.2 of reference 
[77]. 

Computer viruses ("computer counter-measures") 

A computer virus can be thought of as an autonomous agent. It is a 
computer program that tries to fulfill a goal or set of goals without the 
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intervention of a human operator. Typically, of course, viruses have 
rather simple and sinister goals of tampering with the normal 
operation of a computer system and/or computer network and then 
reproducing in order to spread copies of themselves to other 
computers. Computer viruses are particularly interesting to artificial 
life researchers because they share many of the properties of biological 
viruses. 

From a military standpoint, computer viruses can be used in two ways: 
(1) as computer countermeasure agents to infiltrate enemy systems, or 
(2) as constructive "cyberspace allies" that, for example, can be 
programmed to maintain the integrity of large databases. 

Intelligent Software Agents 

Anyone who has spent even a small amount of time "surfing" the 
World-Wide-Web for information can attest to how difficult it is to find 
useful information. To be sure, the WWW is filled with untold 
numbers of glossy pages overflowing with all kinds of information. A 
quick use of a web search-engine such as Lycos usually suffices to 
uncover some useful sites. But what happens when one needs to find 
some information about a particularly obscure subject area? And what 
happens when one begins relying on one's web connection for more 
and more of one's daily workload: e-mail, stock quotes, work 
scheduling, selection of books, movies, travel arrangements, video 
conferencing, and so on? 

A powerful emerging idea that helps the human "web-surfer" deal with 
this increasing workload and that is based in part on the 
methodologies of autonomous agents and genetic algorithms, is that of 
Intelligent Software Agents.19 Software agents are programs that essentially 
act as sophisticated personal assistants. They act as intermediaries 
between the interests of the user and the global information pool with 
which the user has traditionally dealt directly. Software agents engage 
the user in a cooperative process whereby the human operator inputs 
interests and preferences and the agent monitors events, performs 
tasks, and collects and collates useful information. Because software 
agents come endowed with an adaptive "intelligence," they become 
gradually more effective at their tasks as they begin learning the 
interests, habits and preferences of the user. 

From a military standpoint, intelligent software agents can be used for 
adaptive information filtering and integration and as tactical picture agents, 
scouring and ordering the amorphous flood of battlefield and 
intelligence data. 

19 See, for example, the collection of articles in Communications of the 
ACM, Volume 37, No. 7, July 1994. 
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Agent-based simulations 

For many obvious reasons, the most natural application of complexity 
theory to land warfare is to provide an agent-based simulation of combat. 
The basic idea is to model land combat as a co-evolving ecology of 
local-rule-based autonomous adaptive agents. 

An Irreducible Semi-Autonomous Adaptive Combat Agent (ISAACA) 
represents a primitive combat unit (infantryman, tank, transport 
vehicle, etc.) that is equipped with the following characteristics (see 
figure 38): 

• a default local rule set specifying how to act in a generic 
environment (i.e. an embedded "doctrine") 

• goals directing behavior ("mission") 

• sensors generating an internal map of environment ("situational 
awareness") 

• an internal adaptive mechanism to alter behavior and/or rules; 
adaptation is genetic-algorithm-based (see page 93) - each ISAACA 
effectively plays out a scenario using a genetically-encoded set of 
possible tactics; where fitness is the expected payoff with respect 
to some internal value system 

An ISAACA collective, represented schematically in figure 39, consists 
of local and global commanders, each with their own command radii, 
and obeys an evolving C2 hierarchy of rules. A global rule set 
determines combat attrition and reinforcement. Nonlinear feedback 
exists among combatants (measure -> countermeasure -> 
«wmtercountermerasure -> ...) and between combatants and the 
environment. 

Note that this approach is similar in spirit to a cellular automaton (CA) 
model (see page 81) but augments the conventional CA framework in 
three ways: (1) evolution proceeds not according to a fixed set of rules, 
but to a set of rules that adaptively evolves over time; (2) individual 
states of cells (or combatants) do not just respond to local information, 
but are capable of non-local information (via an embedded C2 

topology) and command hierarchy; and (3) global rule (i.e. 
command) strategies are evolved via a genetic algorithm (orders 
pumped down echelon are based on evolved strategies played out on 
possible imprecise mental maps of local and/or global commanders). 

Insofar as complex adaptive systems can be regarded as being 
essentially open-ended problem-solvers, their lifeblood consists mostly 
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of novelty. The ability of a complex adaptive system to survive and 
evolve in a constandy changing environment is determined by its 
ability to continually find - either by chance, or experience, or more 
typically both - insightful new strategies to increase its overall "fitness" 
(which is, of course, a constandy changing function in time). 

Figure 38. Field-of-view of a single ISAACA 

■ ESAACA center   Ü - local neighborhood       ED - sensor field 
nonlocal 
commands 
from 
higher 
echelon 

Military campaigns likewise depend on the creative leadership of their 
commanders, success or failure often hinging either on the brilliant 
tactic conceived in the heat of combat or the mediocre one issued in 
its place. 

To be realistic, such novelty must not consist solely of a randomly 
selected option from a main-options list - which is a common 
approach taken by conventional warfare models - but must at least 
have the possibility of being as genuinely unanticipated in the model 
as it often is on a real batdefield. To this end, each command-agent 
(and to a somewhat more limited extent, each ISAACA) must possess 
both a memory and an internal anticipatory mechanism which it uses 
to select the optimal tactic and/or strategy from among a set of 
predicted outcomes. This is an important point: except for doctrine 
and the historical lessons of warfare, the super-set of tactics must not be 
hard-wired in. 

Such local rule-based agent-simulations are well suited for 

• studying the general efficacy of combat doctrine and tactics 

• exploring emergent properties and/or other "novel" behaviors 
arising from low-level rules (even doctrine if it is well encoded20) 

It is an intriguing speculation that doctrine as a whole may contain 
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• capturing universal patterns of combat behavior by focusing on a 
reduced set of critical drivers 

• suggesting likelihood of possible outcomes as a function of initial 
conditions 

• use as training tools along the lines of some commercially 
available agent-based "games" such as SimCity, SimFarm and 
SimLife [325] 

• providing near-real-time tactical decision aids by providing a 
"natural selection" (via genetic algorithms, see page 93) of superior 
tactics and/or strategies for a given combat situation 

• giving an intuitive "feel" for how and/or why unanticipated 
events occur on the battlefield, and to what extent the overall 
process is shaped by such events 

Figure 39. Schematic representation of a ISAACA simulation 

gbbalcommander 
M = ISAACA ~~ 

D = kcal commander 

command 
radius 

Ideally, one would hope to find universal patterns of behavior and/or 
tactics and strategies that are independent of the details of the 
makeup of individual ISAACAs. 

both desirable and undesirable latent patterns that emerge only when allowed 
to "flow" through a system of elementary agents. An agent-based model of 
combat may provide an ideal simulation environment in which to explore such 
possibilities. 

135 



Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook 

Agent-based simulations ought not be used either to predict real 
battlefield outcomes or to provide a realistic simulation of combat. 
While commercial networkable 3D virtual-reality games such as 
DOOM21 are much better suited to providing a virtual combat 
environment for training purposes, agent-based simulations are 
designed to help understand the basic processes that take place on the 
battiefield. It is not realism, for its own sake, that agent-based 
simulations are after, but rather a realistic understanding of the drivers 
(read: interactivity, decision-making capability, adaptability, and so on) 
behind what is really happening. 

Tactics and strategy evolution using genetic algorithms 

Genetic algorithms have been shown to be powerful tools for general 
combinatorial optimization search problems; see page 93. One obvious 
application of genetic algorithms that has immediately found its way 
into the artificial life research community involves their use as sources 
of the "adaptive intelligence" of adaptive autonomous agents in an 
agent-based simulation. A related application that is of particular 
interest to the military strategist and/or battlefield commander, is that 
of direct strategy and/or tactics development. 

Figure 40. Schematic representation of a strategy landscape 
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136 



Land Warfare and Complexity, Part I: Mathematical Background and Technical Sourcebook 

Virr, Fairley and Yates [310], for example, have proposed using a 
genetic algorithm as the foundation of an Automated Decision 
Support System (ADSS). Carter, et. al, [42] suggest using 
genetic-algorithm-derived strategies for "smart tanks." Crowston [61] 
uses genetic algorithms to search for alternative organizational forms, 
which has potential applications for rethinking the optimality of 
military command and control structures. 

Figure 40 shows a schematic representation of what might be called a 
"strategy landscape." The strategy landscape represents the space of all 
possible global strategies that can be followed in a given scenario. 
Generally speaking, a genetic-algorithm-based tactics- or strategy- 
"optimizer" consists of an evolutionary search of this landscape for 
high-pay-off strategies using whatever local information is available to a 
combatant. The shape of the landscape is determined by the fitness 
measure that is assigned to various tactics and/or strategies. It aslo 
changes dynamically in time, as it reponjds to the actual search path 
that is being traversed. 

Time-series analysis 

Time-series analysis deals with the reconstruction of any underlying 
attractors, or regularities, of a system from experimental data 
describing a system's behavior; see page 57. Techniques developed 
from the study of nonlinear dynamical systems and complex systems 
theory provide powerful tools whereby information about any 
underlying regularities and patterns in data can often be uncovered. 
Moreover, these techniques do not require knowledge of the actual 
underlying dynamics; the dynamics can be approximated directly from 
the data. These techniques provide, among other things, the ability to 
make short- (and sometimes long-) term predictions of trends in a 
system's behavior, even in systems that are chaotic. 

Relativistic information 

Relativistic information theory is a concept introduced by Jumarie22 

and has been suggested as a possible formalism for describing certain 
aspects of military command and control processes by Woodcock and 
Dockery [77]. The basic idea is that a generalized entropy is endowed 
with four components, so that it is equivalent to a four-vector and may 
be transformed by a Lorentz transformation (as in relativity theory). 
These four components consists of: (1) the external entropy of the 
environment (H0), (2) the internal entropy of the system (Hj), (3) system 
goals, and (4) the internal transformation potential, which measures the 

22 Jumarie, G., "A relativistic information theory model for general 
systems Lorentz transformation of organizability and structural entropy," 
International Journnal of Systems Science, Volume 6,1975, 865-886. 
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efficiency of the system's internal information transformation. An 
additional factor, called the organizability, plays the role of "velocity." 
Woodcock and Dockery show that it is possible to use relativistic 
information theory to compare the relative command and control 
system response of two command structures to the world around them. 
The quantity of interest is dH/dH0, or the rate of change of the 
internal information environment with respect to changes in the 
surrounding environment. 

Exploitation of Characteristic Time Scales 

A fundamental property of nonlinear systems is that they generally 
react most sensitively to a special class of aperiodic forces. Typically, 
the characteristic time scales of the optimal driving force match at all 
times the characteristic time scales of the system. In some cases the 
optimal driving force as well as the resulting dynamics are similar to 
the transients of the unperturbed system.23 

The information processing in complex adaptive systems and the 
general sensitivity of all nonlinear dynamical systems to certain classes 
of aperiodic driving forces are both potentially exploitable features. 
Recall that one of the distinguishing characteristics of complex systems 
is their information processing capability. Agents in complex adaptive 
systems continually sense and collect information about their 
environment. They then base their response to this information by 
using internal models of the system, possibly encoding and storing data 
about novel situations for use at a later time. According to the 
edge-of-chaos idea (see page 76), the closer a system is to the 
edge-of-chaos - neither too ordered nor too chaotic - the better it is 
able to adapt to changing conditions. In Kauffman's words, "organisms 
sense, classify, and act upon their worlds. In a phrase, organisms have 
internal models of their worlds which compress information and allow 
action...Such action requires that the world be sufficiently stable that 
the organism is able to adapt to it. Were worlds chaotic on the time 
scale of practical action, organisms would be hard pressed to cope."24 

Now compare this state-of-affairs with Retired USAF Colonel John 
Boyd's Observe-Orient-Decide-Act (OODA) loop. In Boyd's model, a 
system responds to an event (or information) by first observing it, then 
considering possible ways in which to act on it, deciding on a particular 
course of action and then acting. From a military standpoint, both 
friendly and enemy forces continuously cycle through this OODA 
process. The objective on either side is to do this more rapidly than the 
enemy; the idea being that if you can beat the enemy to the "punch" 
you can  disrupt the  enemy's ability to maintain  coherence in  a 

23 A. Hubler, "Modeling and control of complex systems: paradigms and 
applications," pages 5-65 in [82]. 
24 Page 232 in reference [171]. 
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changing environment. One can also imagine exploiting the relative 
phase relationship between friendly and enemy positions within the 
OODA loop. For example, by carefully timing certain actions, one can 
effectively slow an enemy's battle-tempo by locking the enemy into a 
perpetual Orient-Orient mode. 
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Summary and Conclusion 
This paper provides the basic theoretical framework and mathematical 
background necessary to intelligently discuss the ideas of nonlinear 
dynamics and complex systems theory and how they might apply to 
land warfare issues. Part II of this study, to be delivered to sponsor for 
review 1 July, 1996, will consist of a detailed assessment of the general 
applicability of complexity theory to the representation of land 
warfare. 

Overall, the paper provides four separate levels of discussion: 

• Basic Concepts. The first level consists of a discussion of the 
basic concepts of nonlinear dynamics and complex systems 
theory, including nonlinearity, chaos, phase space, attractors, 
fractals, predictability, etc., and thus provides a working technical 
vocabulary. 

• Mathematical Tools. The second level consists of a discussion of 
specific mathematical tools that can be applied to the study of 
complex systems in general, such as Poincare plots, Lyapunov 
exponents, genetic algorithms, etc. 

• Basic Lessons Learned. The third level consists of a discussion of 
basic lessons learned from both nonlinear dynamics and 
complex systems theory. 

• Possible Applications. The fourth level consists of an 
introductory survey of possible applications of the tools and 
concepts of complexity theory to land warfare. This last level is 
preliminary and is intended only to "plant a few seeds" for an 
in-depth analysis in part II of this study. 

Basic Concepts 

A quick-reference glossary of all of the terms and basic concepts 
appearing in the main text are given in Appendix B. 

Mathematical Tools 

Below is a partial summary of the mathematical tools discussed in 
earlier sections: 
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• Qualitative Characterization of Chaos. Four qualitative methods 
for verifying the presence of chaos in a system were discussed. 
These included looking at the system's time-dependent behavior, 
using a Poincare plot to reduce the dimensionality, calculating 
the autocorrelation function and observing the power spectrum for 
the system. 

• Quantitative Characterization of Chaos. Three sets of 
quantitative measures of chaos were introduced, including 
Lyapunov exponents (that measure the exponential divergence of 
initially nearby trajectories), generalized fractal dimensions (that, 
roughly speaking, measure the minimum number of variables 
needed to specify a chaotic attractor), and the Kolmogorov-Sinai 
entropy (that measures the rate of information gain per unit 
time in observing a chaotic system). 

• Time-Delayed Embedding. The embedding technique is a 
method for reconstructing a state space from time-series data. It 
assumes that if the embedding dimension is large enough, the 
behavior of whatever system is responsible for generating the 
data can be described by a finite dimensional attractor. Its main 
strength lies in providing detailed information about the 
behavior of degrees-of-freedom other than the ones that are 
directly observed. 

• Chaotic Control. Chaotic control exploits the fact that chaotic 
systems exhibit sensitivity to initial conditions to stabilize regular 
dynamical behaviors and thereby effectively "direct" chaotic 
trajectories to a desired state. 

• Cellular Automata. Cellular automata are a class of spatially and 
temporally discrete, deterministic dynamical systems 
characterized by local interaction and an inherently parallel 
evolution. They serve as prototypical mathematical models of 
complex systems, and appear to capture many essential features 
of complex self-organizing cooperative behavior observed in real 
systems. 

• Genetic Algorithms. Genetic algorithms are a class of heuristic 
search methods and computational models of adaptation and 
evolution based on natural selection. Genetic algorithms mimic 
and exploit the genetic dynamics underlying natural evolution to 
search for optimal solutions of general combinatorial 
optimization problems. This very powerful tool is used frequendy 
as the backbone of many artificial life studies. 

• Agent-Based Simulations. Agent-based simulations of complex 
adaptive systems are predicated on the idea that the global 
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behavior of a complex system derives entirely from the low-level 
interactions among its constituent agents. By relating an 
individual constituent of a complex adaptive system to an agent, 
one can simulate a real system by an artificial world populated by 
interacting processes. Agent-based simulations are particularly 
adept at representing real-world systems composed of 
individuals that have a large space of complex decisions and/or 
behaviors to choose from. 

• Swarm. Swarm (currently under development at the Santa Fe 
Institute) is a multi-agent simulation platform for the study of 
complex adaptive systems. The goal of the Swarm project is to 
provide the complex systems theory research community with a 
fully general-purpose artificial-life simulator. Swarm has been 
intentionally designed to include as few ad-hoc assumptions 
about the design of a complex system as possible, so as to 
provide a convenient, reliable and standardized set of software 
tools that can be tailored by researchers to specific systems. 

• Neural Networks. Neural nets represent a radical new approach 
to computational problem solving. Their bottomsup methodology 
stands in stark contrast to traditional top-down approach to 
artificial intelligence (AI). The approach is inspired by such 
basic skills of the human brain as its ability to continue 
functioning with noisy and/or incomplete information, its 
robustness or fault tolerance, its adaptability to changing 
environments by learning, etc. Neural nets attempt to mimic 
and exploit the parallel processing capability of the human 
brain in order to deal with precisely the kinds of problems that 
the human brain itself is well adapted for; in particular, pattern 
recognition. 

Basic Lessons Learned 

Nonlinear Dynamics 

The fundamental lesson of nonlinear dynamics is that a dynamical 
system does not have to be "complex" or to be described by a large set 
of equations, in order for the system to exhibit chaos - all that is 
needed is three or more variables and some embedded nonlinearity. 

Among the basic lessons of nonlinear dynamics and chaos that are of 
particular relevance to the decision maker are... 
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• Short Term Predictions. Given sufficient data, time series 
analysis permits one to make short-term predictions about a 
system's behavior, even if the system is chaotic. Moreover, these 
prediction can be made even when the underlying dynamics is 
not known. 

• Long-term Trends. If the attractors of a system are known or can 
be approximated (say, from available historical time series data), 
long-term trends can be predicted. Knowledge about visitation 
frequencies of points on an attractor provides insight into the 
probabilities of various possible outcomes. Lyapunov exponents 
quantify the limits of predictability. 

• Qualitative Understanding of the Battlefield. The information 
dimension can be used to estimate the minimum number of 
variables needed to describe a system. Moreover, if a system can 
be shown to have a small non-integer dimension, it is probable 
that the underlying dynamics are due to nonlinearities and are 
not random. 

Complex Systems 

The fundamental lesson of complex systems theory is that complex 
behavior is usually an emergent self-organized phenomenon built 
upon the aggregate behavior of very many nonlinearly interacting 
"simple" components. 

The most important points to remember are... 

• Nonlinearity. Without nonlinear interactions there can be no 
deterministic chaos in simple systems and no complex behavior 
in complex systems. Moreover, nonlinear systems appear to be 
much more pervasive than linear systems. By virtue of 
nonlinearity, the behavior of the "whole" is not just a simple 
aggregate of the constituent "parts." 

• Interconnectivity. How the parts of a complex system are 
interconnected is just as important as what those parts are and 
what does parts do. 

• Context/Wholeness. The effect that parts have on the remainder 
of the system - literally, how those parts are defined within the 
complex system - is determined by the context of the whole 
within which those parts exist. 

• Process. A complex system embodies process, a ceaseless search 
for  a  better  "solution"  for  an   ill-defined,   amorphous   ever 
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receding "problem." In Zen-like fashion, you can say that the 
harder one tries to pin-down the behavior of a complex system 
with some static measure, the further one is from understanding 
what the complex system is really doing. 

Adaptability. The essence of a complex adaptive system is that its 
constituent parts are not Newtonian "billiards" that react blindly 
(but in well-defined fashion) to the world around them, but are 
instead endowed with an ability to sense, learn from, and adapt to 
their environment as they and the environment both evolve in 
time. 

Emergence. Perhaps the central concept of complex systems 
theory is that high-level behaviors emerge naturally out a 
brewing soup of low-level interactions. A flock of birds does not 
need a central direction to behave in an apparently orchestrated 
manner. The lesson is that where there is an assemblage of very 

many nonlinearly interacting parts, there is a good possibility of 
emergent behaviors on higher levels than those defining the 
underlying interactions. Moreover, such emergent behavior can 
appear on multiple spatial and temporal levels. 

Possible Applications of Complexity Theory to Land 
Warfare 

The last section of this paper outlined a few preliminary musings on 
the applicability of nonlinear dynamics and complex systems theory to 
the understanding and/or representation of land warfare. An in-depth 
analysis and discussion of the ideas presented in that section will be 
provided in Part II of this report. 

The fundamental question is "What does complexity theory tell us about 
land warfare?" The last section provided a framework for a possible 
answer to this question by focusing on (1) four levels of applicability of 
complexity theory (ranging from general tools, to specific simulation 
laboratories, to high-level properties of specific systems to universal 
behaviors), (2) four levels of land warfare (tactical, operational, 
strategic and general strategic), and (3) three levels on which 
complexity theory can be applied to land warfare: 

• Metaphor Level. This level consists of constructing and 
elaborating upon similar sounding words and images that most 
strongly suggest a "philosophical resonance" between behaviors 
of complex systems and certain aspects of what happens on a 
battlefield. 
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• Pragmatic and/or Experimental Level. This is the level on which 
real-world data is mined to confirm or deny that there is more to 
a possible connection between complexity theory and land 
warfare than mere "philosophical resonance" alone. 

• Direct Application Level. This is the "workhorse" level on which 
specific methodology borrowed from complexity theory is 
applied directly to specific issues and problems of land warfare. 

There is also the possibility that complexity theory might shed some 
light on how batdefields may be configured (or compelled to 
self-organize) to achieve a maximum adaptability to a changing 
environment. 

The remainder of the last section provided a brief overview of some 
specific applications: 

• Chaos in combat and arms-race models. A fundamental lesson of 
nonlinear dynamics theory is that one can almost always expect 
to find some manifestation of chaos whenever nonlinearities are 
present in the underlying dynamics of a model. This 
fundamental lesson has potentially significant implications for 
even the simplest combat models. Several instances of chaos in 
simple combat models were cited, including work by Miller and 
Sulcoski [217], Dockery and Woodcock [77] and a recent RAND 
study [73]. 

• Generalizations of Lanchester's Equations. Generalizations 
include an analytical extension to allow feedback between 
movement and attrition (Epstein, [90]), an exploitation of the 
analogy between Lanchester's equations and the Lottka-Voltera 
equations describing natural ecologies, and partial, fuzzy and 
stochastic differential equations. 

• Demonstration of chaos in war using historical data. Tagarev, et. 
al.'s work was cited as providing evidence of chaos in tactical, 
operational and strategic levels of military activity. 

• Combat simulation using cellular automata and adaptive 
autonomous agents. Woodcock, Cobb and Dockery's cellular 
automata model of combat is cited [323], as well as a more 
elaborate adaptive autonomous agent model in which individual 
combatants are equipped with (1) a default rule set, (2) goals 
directing behavior, (3) sensors to generate a map of the 
environment, and (4) an internal mechanism to adaptively and 
selectively alter behavior over time. Reasons for studying such 
models are discussed. 
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* Tactics and strategy evolution using genetic algorithms. It is 
suggested that genetic algorithms be used to develop strategy 
and/or tactics. Genetic-algorithm-based tactics- or strategy- 
"optimizers" would consist of an evolutionary search of a 
"strategy landscape" for high-pay-off strategies using whatever 
local information is made available to a combatant. 

• Intelligent software agents. Software agents are essentially 
sophisticated personal assistants. They act as intermediaries 
between the interests of the user and the global information 
pool with which the user has traditionally dealt directly. From a 
military standpoint, intelligent software agents can be used for 
adaptive information filtering and integration and as tactical picture 
agents, scouring and putting order on the amorphous flood of 
battlefield and intelligence data. 

• Time-series analysis. Techniques developed from nonlinear 
dynamics and complex systems theory provide powerful tools 
with which underlying regularities and patterns in data can often 
be uncovered. 

* Exploitation   of  characteristic  time   scales   of  a  combat.   A 
fundamental property of nonlinear systems is that they generally 
react most sensitively to a special class of aperiodic forces. An 
analogy between John Boyd's Observe-Orient-Decide-Act (OODA) 
loop and information processing at the edge-of-chaos in complex 
systems suggests ways of interfering with an enemy's OODA 
"timing" and thereby disrupting the enemy's ability to maintain a 
coherence in a changing environment. 
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Appendix A: World Wide Web Nonlinear 
Dynamics and Complex Systems Theory 
Resources 

Appendix A provides both a brief subject-sorted listing of information 
sources currently available on the World Wide Web (WWW) and an 
unsorted but much more extensive alphabetized listing in 
HTML-format. 

Subject-Sorted WWW link Listing 

In this section, a total of 91 WWW Universal Resource Locator (URL) 
links are sorted into the following 16 categories: 

General Sources 

Artificial Intelligence 

Artificial Life 

Artificial Life Simulation and Research Groups 

Autonomous Agents 

Cellular Automata 

Chaos 

Fractals 

Fuzzy Logic 

Genetic Algorithms 

Genetic Programming 

Intelligent Software Agents 

Neural Nets 

Nonlinear Dynamics 

Software 

Time-Series Analysis 
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General Sources 

• Santa Fe Institute: http: //mm. santaf e. edu/ 

• Complex Systems Research at the Beckman Institute: 
http://www.ccsr.uiuc.edu/ 

• Complex Systems at Australia National University: 
http://life.anu.edu.au:80/complex_systems/ 
complex. html 

• The Chaos Network, applications of chaos theory to the social 
sciences: http://www-cse.ucsd.edu:80/users/rik/ 

• Complex Systems Bibliographies: 
ftp://ftp.cs.umanitoba.ca/pub/bibliographies/index 
• html 

• Bibliography of Measures of Complexity: 
http://www.fmb.mmu.ac.uk/~bruce/combib 

• Complex Adaptive Systems Information: 
http://www.seas.upenn.edu/ale/cplxsys.html 

• Principia Cybemetica: http: //pespmcl. vub. ac.be/ 

• Complex Systems Information Network: 
http://www.csu.edu.au/complex/compsys.html 

• Virtual Library on Complex Systems: 
http://life.csu.edu.au/vl_complex/libraryl.html 

Artificial Intelligence 

• Artificial Intelligence (Stanford): 
http://www-os.Stanford.edu/profile/ai.html 

• Artificial Intelligence (University of Washington): 
http://www.cs.washington.edu/research/projects/ai/ 
www/ ai.html 

• International's Artificial  Intelligence Center: 
http://www.ai.sri.com:80/aic/ 
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• Journal  of Artificial  Intelligence Research: 
http://www.cs.Washington.edu/research/jair/ 
home.html 

• Artificial Intelligence (Georgia Institute of Technology): 
http://www.cc.gatech.edu/cogsci/ai.html 

• Distributed Artificial Intelligence Laboratory (UMass): 
http://dis.cs.umass.edu/ 

Artificial Life 

• Adaptive Systems and Artificial Life: 
http://doradus.einet.net/galaxy/Engineering-and-T 
echnology.html 

• Philosophy of Artificial Life Bibliography: 
http://mugwump.ucsd.edu/bkeeley/work-stuff/Alife_ 
Bib.html 

• Artificial  Life Bibliography: 
ftp://cognet.ucla.edu/pub/alife/papers/ 
alife.bib.gz 

• A Semi-annotated Artificial Life Bibliography: 
http://www. cogs.susx.ac.uk/users/ezeguiel/alife-p 
age/  alife.html 

• Artificial Life Digest: 
http://www.cogs.susx.ac.uk/users/ezeguiel/alife-p 
age/ camplexity.html 

• Fundamental Algorithms of Artificial Life: 
http://alife.santafe.edu/alife/topics/simulators/ 
dret/ dret.html 

Artificial Life Simulation and Research Groups 

• Links to various Artificial Life Groups: 
http://www.krl.caltech.edu/brown/AL-groups.html 

• Autonomous Agents/Alife Group at MIT: 
http://agents.www.media.mit.edu/groups/agents/ 

• Latent Energy Environments Project: 
http://www-cse.ucsd.edu:80/users/fil/ 
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The Avida Artificial Life group: 
http://www.krl.caltech.edu/avida/Avida•html 

• Distributed Intelligent Agents Group: 
http://ai.eecs.umich.edu/diag/homepage.html 

• Autonomous Agents Research Group: 
file://alpha.ces.cwru.edu/pub/agents/home/html 

Autonomous Agents 

• Autonomous Agents Group at MIT: 
http://agents.www.media.mit.edu/groups/agents/ 

• Autonomous Agents Group at Case Western Reserve University: 
http://yuggoth.ces.cwru.edu/ 

• Research on Autonomous Agents at Stanford: 
http://csli-www.stanford.edu/csli/9394reps/agents9 
394-nilsson.html 

• Software Agents Mailing List: 
http://www.smli.com/research/tcl/lists/AGENTS/inde 
x.html#163 

• Autonomous Agents Research at Buffalo: 
http://www.cs.buffalo.edu/~jweber/autoagent.html 

• Distributed Intelligent Agents Group at the University of Michigan: 
http://ai.eecs. umich.edu/diag/homepage.html 

Cellular Automata 

• Cellular Automata Frequently Asked Questions (FAQ): 
http://alife.santafe.edu/alife/topics/cas/ca-faq/c 
a-fag.html 

• The Cellular Automata Simulation System: 
http://www.cs.runet.edu/~dana/ca/cellular.html 

• Cellular Automata Web: 
http://alife.santafe.edu/alife/topics/ca/caweb 
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• Cellular Automata Bibliography Database: 
http://www.ima.umn.edu/bibtex/ca.bib 

• Usenet Cellular Automata Newsgroup: 
news:comp.theory.cell-automata 

• Evolving Cellular Automata: 
http://www.santafe.edu/proj ects/evca/ 

Chaos 

• Applied Chaos Laboratory at Georgia Tech: 
http://acll.physics.gatech.edu/aclhome.html 

• Chaos Bibliography: 
http://www.uni-mainz.de/FB/Physik/Chaos/ 
services. html 

• Chaos e-Print Archive at Los Alamos: 
http://xxx.lanl.gov/archive/chao-dyn/ 

• Chaos Group at the University of Maryland at College Park: 
http://www-chaos.umd.edu/ 

• The Chaosgruppe (München): 
http://www. nonlin.tu-muenchen.de/chaos/chaos_e.htm 
1 

Fractals 

• Exploring Chaos and Fractals (MIT): 
http://www.lib.rmit.edu.au/fractals/exploring.html 

• Fractals FAQ: 
http://www.eis.ohio-state.edu/hypertext/faq/usenet 
/fractal-faq/faq.html 

• Fractal Images: 
http://www.acm.uiuc.edu:80/rml/Gifs/Fractal/ 

• Fractal Pictures and Animations: 
http://www.cnam.fr/fractals.html 
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• Fractal Explorer: 
http://www.vis.colostate.edu/~userl209/fractals/in 
dex.html 

• Fractal Database: http: //spanky. triumf. ca/ 

Fuzzy Logic 

• Fuzzy Logic Archive: 
http://www.quadralay.com/www/Fu2zy/Fuzzy.html 

• Fuzzy Logic FAQ: 
http://www.eis.ohio-state.edu/hypertext/faq/usenet 
/fuzzy-logic/partl/faq.html 

• Fuzzy Logic Repository: 
ftp://ntia.its.bldrdoc.gov/pub/fuzzy 

Genetic Algorithms 

• Illinois Genetic Algorithm Repository: 
http://gal4.ge.uiuc.edu/ 

• Genetic Algorithms FAQ: 
http://www.cs.emu.edu:8001/afs/cs.emu.edu/proj ect/ 
ai-repository/ai/html/faqs/genetic/top.html 

• Interactive Genetic Art: 
http://robocop.modmath.es.emu.edu:8001/htbin/mjwge 
nforml 

• Genetic Music: http: //nmt. edu/~ j ef u/notes/notes. html 

• Genetic Algorithm Digest Archives: 
ftp://ftp.aic.nrl.navy.mil/pub/galist 

• Genetic Algorithms Tutorial: 
ftp://129.82.102.183/pub/TechReports/1993/tr-103.p 
s.Z 
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Genetk Programming 

• Genetic Programming FAQ: 
http://wwwhost.cc.utexas.edu/cc/staff/mccoy/gp/FAQ 
- toe. html 

• Genetic Programming Tutorial: 
http://depul.cs.york.ac.uk:6666/mark/top_ga.html 

• Genetic Programming in C++ FAQ: 
http://www.salford.ac.uk/docs/depts/eee/gpfaq.html 

• Genetic Programming Source at 
UCL:http://www.cs.ucl.ac.uk/intelligent_systems/ge 
netic_programming.html 

• Genetic Programming Bibliography: 
ftp://cs.ucl.ac.uk/genetic/biblio/ 

• Genetic Programming FTP site: 
ftp://ftp.io.com/pub/genetic-programming 

Intelligent Software Agents 

• Software Agents: 
http://hitchhiker.space.lockheed.com/pub/AGENTS/ht 
docs/agent-home.html 

• Intelligent Software Agents Resources: 
http://retriever.cs.umbc.edu:80/agents/ 

• Intelligent Agents Mailing List (by thread): 
http://www.smli.com/research/tcl/lists/A6ENTS/ 
index.html#163 

• MIT Media Lab: http: / /www.media .mit. edu/ 

• IntelligentSoftware Agents (University of Maryland 
Baltimore County):http://www.cs.umbc.edu/agents/ 

Neural Nets 

• A Basic Introduction To Neural Networks: 
http://ice.gis.uiuc.edu/Neural/neural.html 
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• An Introduction to Neural Nets: 
http://www.mindspring.com/~zsol/nnintro.html 

• Neural Networks FAQ: 
http://www.eeb.ele.tue.nl/neural/neural_FAQ.html 

• Collection of Neural Net Bibliographies: 
http://glimpse.cs.arizona.edu:19 94/bib/Neural/ 

• IEEE Neural Networks Council: 
http://www.ieee.org:80/nnc/index.html 

• International Neural Network Society: 
http://sharp.bu.edu/inns/ 

Nonlinear Dynamics 

• Nonlinear Dynamics Archive:  ftp://lyapunov.ucsd.edu/pub 

• Nonlinear Dynamics e-print Archive at Los Alamos: 
http://xyz.lanl.gov/ 

• Nonlinear Dynamics and Topological Time Series: 
http://tl3.lanl.gov/~nxt/intro.html 

• Institute of Nonlinear Science at UC San Diego: 
http://inls.ucsd.edu/ 

• Nonlinear Dynamics at UC Santa Cruz: 
http://noether.ucsc.edu/groups/nonlinear/research. 
html 

• Nonlinear Dynamics Sites: 
http://www.ucl.ac.uk/-ucesjph/resources/uk.html 

Software 

• Artificial Life Software at Santa Fe Institute: 
http://alife.santafe.edu/alife/software/ 

• Artificial Life Software Repository: 
http://www.es.emu.edu/afs/cs/proj ect/ai-repository 
/ai/areas/alife/systems/O.html 
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Cellular Automata Simulator for PC Windows: 
ftp://ftp.Germany.EU.net/pub/research/softcomp/Ali 
fe/rudy-rucker/ 

* • Complex Systems Software Repository at Australian National 
University: ftp: //life.anu. edu. au/pub/complex_systerns 

• WinLife (a PC Windows implementation John Conway's Life rule): 
ftp://ftp.Germany.Eu.net/pub/research/softcomp/Ali 
fe/packages/winlife 

• WinCA (a fast PC Windows simulator): 
ftp://ftp.Germany.EU.net/pub/research/softcomp/Ali 
fe/packages/winca 

• PC Windows implementation of Craig Reynolds "Boids": 
ftp://ftp.Germany.EU.net/pub/research/softcomp/Ali 
fe/packages/boids/ 

Time Series Analysis 

• Nonlinear Dynamics and Topological Time Series Analysis Archive: 
http://tl3.lanl.gov/~nxt/intro.html 
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Alphabetized WWW link Listing in HTML format 

<p> 
<centerxhl>Complex Systems Links</Hlx/center> 

<P> 
<A NAME="aa"> 
</CENTER> 

<P> 
<hr size=7mm> 

<P> 
<CENTERxH2> 
<A HREF="#A">A</A> 
<A HREF="#B">B</A> 
<A HREF="#C">C</A> 
<AHREF="#D">D</A> 
<A HREF="#E">E</A> 
<A HREF="#F">F</A> 
<AHREF="#G">G</A> 
<AHREF="#H">H</A> 
<A HREF=,,#I">I</A> 
<AHREF="#J">J</A> 
<AHREF="#K">K</A> 
<AHREF="#L">L</A> 
<A HREF="#M">M</A> 
<A HREF="#N">N</A> 
<A HREF="#0">0</A> 
<A HREF="#P">P</A> 
<A HREF="#Q">Q</A> 
<AHREF="#R">R</A> 
<A HREF="#S">S</A> 
<A HREF="#T">T</A> 
<A HREF="#U">U</A> 
<A HREF="#V>V</A> 
<A HREF="#W">W</A> 
<A.HREF="#X">X</A> 
<AHREF="#Y">Y</A> 
<A HREF="#Z">Z</Ax/H2> 
</CENTER> 

<P> 
<hr size=7mm> 

<P> 
<DTxDDxHlxA NAME="A">A</Ax/Hl> 
<OL> 
<DTxDDxLIxa href="http://ice.gis.uiuc.edu/Neural/neural.html">A Basic Introduction To Neural 

Networks</a> 
<DTxDDxLIxa href="http://www.cogs.susx.ac.uk/users/ezequiel/alife-page/ alife.html">A Semi-annotated 

Artificial Life Bibliography</a> 
<DTxDDxLIxA HREF="http://www.krl.caltech.edu/~adami/">Chris Adami's Homepage</A> 
<DT><DD><LI><AHREF=''http://www.ens.fr/bioinfo/www/francais/AB.htmr'>Adaptive Behavior Journak/A> 
<DTxDDxLIxa href="http://www-ksl.stanford.edu/people/bhr/ index.html">Adaptive Intelligent Systems</a> 

(Stanford University) 
<DTxDDxLIxA HREF="http://iserv.iki.kfki.hu/adaptlab.html">Adaptive Systems Laboratory</A> 
<DTxDDxLIxA href= "http://doradus.einet.net/galaxy/Engineering-and-Technology.html">Adaptive Systems 

and Artificial Life</A> 
<DTxDDxLIxa href="http://borneo.gmd.de/AS/pages/as.html">Adaptive Systems Research Group</A> 

German National Research Center for Computer Science 
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* 

> 

fr 

<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ 
packages/afarm/">Afarm</A> 

<J)TxDDxLIxAhref="http://yezdi.www.media.mit.edu/people/yezdi/AGEOT 
infobots, knowbots...-Summary</a> (MIT) 

<DTxDDxLIxAHREF=http://ai.iit.nrc.ca/ai_companies.html>AICompanies</A> 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ 

packages/aquarium/">Aquarium</A> (ftp) 
<DTxDDxLIxa href="http://www.public.iastate.edu/~ailab/ homepage.html">Aritificial Intelligence group</a> 

at Iowa State University 
<DTxDDxLIxA href= 

http://www.cs.crnu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/other/repositories.html> 
AI Repositories and Resource Lists</A> 

<DTxDDxLIxa href="http://www.cs.wisc.edu/-shavlik/uwai.html">AI Research and Education in the Computer 
Sciences Department</a> (University of Wisconsin) 

<DTxDDxLIxa href="http://peaplantbiology.yale.edu:8001/ alchemy.html">AlChemy</a> a simulator for 
investigating the origin of distinct organizational grades in the history of life 

<DTxDDxLIxa href="http://www.cwi.nl/cwi/departments/AAl.html">Algorithms and Complexity</a> 
<DTxDDxLIxahref="http://www.cogs.susx.ac.uk/users/ezequiel/alife-page/complexity.html">Alife 

Bibliography on Complexity, Emergence, ..</a> 
<DTxDDxLIxa href="http://www.erg.adbn.ac.uk/prqjects/alife/html.dir/ current-issue.html">ALife Digest</a> 
<DTxDDxLIxA HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ zooland/">ALife Games 

Download</A> in Europe (<I>Germany</I>) 
<DTxDDxLIxa href= "http://www.cs.brandeis.edu/-zippy/aIife-library.html">ALife Library</a> 
<DTxDDxLIxAHREF="http://aIife.santafe.edu/alife/archives.html">Alife papers archive</A> at Alife Online 

(SFI) 
<DTxDDxLIxAHREF="http://www.cs.cmu.edu:8001/afs/cs/project/ai-repository/ 

ai/areas/alife/systems/0.html">ALifeRepository</A> 
<DTxDDxLIxA HREF="http://www.io.com/~spofford/index.html">Alife screen saver</A> Primordial Life 
<DTxDDxLIxA HREF=http://alife.santafe.edu/alife/topics/simulators/dret/ dreLhtmbALife Simulators and 

Their Applications</A> by Howard Gutowitz 
<DTxDDxLIxa href="http://www.fwi.uva.nl/research/neuro/">Amsterdam (UA) Robotics and 

Neurocomputing</A> 
<DTxDDxLIxa href="http://cs-www.uchicago.edu:80/~firby/aap/">The Animate Agent Project</a> 
<DTxDDxLIxA HREF=http://morganmedia.com/m2/shock.html>Animated fish-tank</ A> for Netscape 2.0 
<DTxDDxLIxa href="http://www.mindspring.com/~zsol/nnintro.html">An Introduction To Neural 

Networks</a> 
<DTxDDxLIxA HREF="http://acll.physics.gatech.edu/aclhome.html">Applied Chaos Laboratory at Georgia 

Tech</A> 
<DTxDDxLIxa href="http://pm.zneLcom/apchaos/">Applied Chaos, LLC.</a> 
<DTxDDxLIxa href="http://www.comp.lancs.ac.uk/computing/research/aai-aied/ ">Applied Artificial 

Intelligence/AI in Education</a> 
<DTxDDxLIxA HREF=ftp://ftp.cs.cmu.edu/user/ai/pubs/news/comp.ai.alife/ >Archive of comp.ai.alife</A> 

(<I>Pennsylvania</I>) 
<DTxDDxLIxA HREF="http://www.krl.caltech.edu/~brown/news/ai-games-html/ ">Archive of 

comp.ai.games</A> by thread, by date, by author, or by subject 
<DTxDDxlJx:ahref="http://www<s.stanford.edu/profile/ai.html">Artificial Intelligence</a> 
<DTxDDxLIxa href="http://www-ilg.cs.uiuc.edu/ai.html">Artificial Intelligence (AI) Group</a> 
<DTxDDxLIxa href="http://www.cc.gatech.edu/cogsci/ai.html">Artificial Intelligence</a> (Georgia Insitute of 

Technology) 
<DTxDDxLIxahref="http://www.cs.washington.edu/research/prpjects/ai/www/ ai.html">Artificial 

Intelligence</a> (University of Washington) 
<DTxDDxLIxa href="http://cswww.essex.ac.uk/AI/Welcome.html">Artificial Intelligence</a> (Essex) 
<DTxDDxLIxa href="http://www.ai.sri.com:80/aic/">Artificial Intelligence Center</a> SRI International's 

Artificial Intelligence Center (AIC) 
<DTxDDxLIxA HREF="http://mosaic.echonyc.com/~steven/ ArtificialLife.html">Artificial Life: The Quest for a 

New Creation</A> by Stephen Levy 
<DTxDDxLIxA HREF="http://reality.sgi.com/employees/craig/ alife.html">Artificial Life</A> (Craig 

Reynolds) 
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<DTxDDxLIxa href="http://www.cs.iastate.edu/~honavar/ alife.isu.html">Artificial Life Group</a> (Iowa State 
University) 

<DTxDDxLIxA HREF="http://www.u-aizu.ac.jp/-nehaniv/ALGA.html">Artificial Life Group</A> at the 
University of Aizu, Japan 

<DTxDDxLIxA HREF="http://life.anu.edu.au/" >Australian National University Bioinformatics</A> 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/avida/">Avida</A> 
<DTxDDxLIxA HREF="http://nathan.gmd.de/projects/alf/aIf.html">Artificial Life approaches with Mobile 

Fischertechnik Robots</A> 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ 

packages/aquarium/">Aquarium</A> 
<DTxDDxLIx:ahref="ftp://cognet.ucla.edu/pub/alife/papers/alife.bib.gz">Artificial-lifebibliography</a> 

(huge) 
<DTxDDxLIxahref="http://www.cogs.susx.ac.uk/users/ezequiel/alife-page/ alife.html">A Semi-annotated 

Artificial Life Bibliography</a> 
<DTxDDxLIxA HREF="http://kant.irmkant.rm.cnr.it/u/gral/luigi/ lupa_algames.html">Artificial Life Games 

Homepage</A> 
<DTxDDxLIxa href= "http://www.krl.caltech.edu/~brown/alife/AL-groups.html">Artificial Life Groups</a> 
<DTxDDxLIxa href="http://www-mitpress.mit.edu/jrnls<atalog/artificial.html">Artificial Life Journal</a> 
<DTxDDxLIxahref="http://www.dnai.com/waite/books.new/Artificial_Life_Lab/ html/allcov.html">Artificial 

Life Lab</a> a commercial package (Waite Group) 
<DTxDDxLIxa href="http://www.krl.caltech.edu/-brown/alife/news/ ">Artificial Life Related Newsgroups 

Archive</a> 
<DTxDDxLIxA HREF="http://www.fusebox.com/cb/alife.html">Artificial Life Page</A> 
<DTxDDxLIxA HREF="http://aIife.santafe.edu/">Artificial Life Online</A> 
<DTxDDxLIxA HREF="http://www.wi.leidenuniv.nl/home/mvdweg/ alife.html">Artifical Life Homepages</A> 
<DTxDDxLIxA HREF=http://kant/alife.html>Artificial Life On WWW</A> Italy 
<DTxDDxLIxa href="http://www.cs.brandeis.edu/~zippy/alife.html">Artificial Life resources</a> (by Patrick 

Tufts) 
<DTxDDxLIxa href="http://www.krl.caltech.edu/~brown/aIife/''>Artificial Life resources</a> (by Titus Brown) 
<DTxDDxLIxa href="http://www.yahoo.com/Science/Artificial_Life/ ">Artificial Life resources</a> (Yahoo) 
<DTxDDxLIxA HREF="http://alife.santafe.edu/alife/software/">Artificial Life Software</A> (Santa Fe 

Institute) 
<DTxDDxLIxAHREF="http://www.cs.cmu.edu:8001/afs/cs/project/ai-repository/ 

ai/areas/alife/systems/0.html">Artificial Life Software</A> at CMU 
<DTxDDxLIxa href="http://www.yahoo.com/Science/ArtificiaI_Life/ Online_Examples/">Online ALife 

Examples</a> (Yahoo) 
<DTxDDxLIxa href="http://www.rwcp.or.jp/people/yk/AL-index.html">Arüficial Life and Complex Systems 

Catalogue</a> (by Y. Kanada) 
<DTxDDxLIxa href="http://www-uk.hpl.hp.com/peopIe/jlb/ Aristotle.html">Artificial Life at HPLB</a> 
<DTxDDxLIxahref="http://mugwump.ucsd.edu/bkeeley/work-stuff/Alife_Bib.html">Philosophy of Artificial 

Life Bibliography</a> 
<DTxDDxLIxahref="http://alife.santafe.edu/alife/topics/simulators/dret/ dret.html">Artificial-Life Simulators 

and Their Applications</a> 
<DTxDDxLIxA HREF="http://www.wpi.edu/-dkoelle/alife.html">Dave's A-Life Pages</A> 
<DTxDDxLIxahref="http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/ 

areas/alife/systems/0.html">Artificial Life software packages</a> 
<DTxDDxLIxA HREF="http://anonym.com/getalife.html">Artificial Living Room</ A> a place to discuss 

evolutionary theory 
<DTxDDxLIxa href="http://www.spie.org/web/oer/september/ neural_net.html">Artificial neural networks: a 

developing science</a> 
<DTxDDxLIxA href="http://www.neci.nj.nec.com/homepages/ giles.html">Artificial Neural Network 

Research</A> at NEC Research Institute, Princeton, NJ 
<DTxDDxLIxA HREF="http://wwwl.daimi.aau.dk/-hhl/ap.htmI">Artificial Painter</A> a combination of 

Genetic Algorithms and Neural Networks 
<DTxDDxLIxA HREF="http://www.batnet.com/quist/fha/cr/ index.html">Artificial pets with real brains</A> 

Nick Turner's collection 
<DTxDDxLIxA href= "http://yaksi.eco.saitama-u.ac.jp/~kawagoe/a-soc/a-soc.html">ArtificiaI Society 

Group</A> in Japan 
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<DTxDDxLIxa href="http://www.auai.org/">Association for Uncertainty in Artificial Intelligence</a> 
<DTxDDxLIxa HREF="http://www.physics.auburn.edu/dynamics.html">Auburn NonLinear Dynamics</a> 
<DTxDDxLIxA HREF="http://chaos.ph.utexas.edu:80/home.html">Austin</A> Center for Nonlinear Dynamics 
<DTxDDxLIxA HREF="http://life.anu.edu.au/" >Australian National University Bioinformatics</A> 
<DTxDDxLIxa href="http://www.ai.univie.ac.at/oefai/nn/ nngroup.html">Austrian Research Institute for 

Artificial Intelligence:Neural Net Group</a> (Vienna) 
<DTxDDxLIxa href="http://www.automatrix.com/campc">Automatrix CA Hardware (CAM-PC)</a> 
<DTxDDxLIxA HREF="http://www.cs.buffalo.edu/-jweber/ autoagent.html">Autonomous Agents</A> 

(Buffalo) 
<DTxDDxLIxA HREF="http://agents.www.media.mit.edu/groups/agents/">The Autonomous Agents 

Group</a> (MIT) 
<DTxDDxLIxA HREF="http://yuggoth.ces.cwru.edu/">Autonomous Agents Research</a> (Case Western 

Reserve University) 
<DTxDDxLIxA HREF="file://alpha.ces.cwru.edu/pub/agents/home/ html">Autonomous Agents Research 

Group</A> (homepage at CWRU) 
<DTxDDxLIxa href="http://www.fwi.uva.nl/research/neuro/projects/ ">Autonomous Systems Group</a> 

Robotics and Neurocomputing 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/avida/">Avida</A> 
<DTxDDxLIxA HREF="http://www.krl.caltech.edu/avida/Avida.html">The Avida Artificial Life group</A> 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME="B">B</Ax/Hl> 
</DL> 
<OL> 
<dDTxDDxLIxAHREF="http://ai.iit.nrc.ca/baldwin/cfp.htmr'>BaldwinEffect</A> 
<DTxDDxLIxA HREF="http://ai.iitnrc.ca/baldwin/bibliography.html">Baldwin Effect Bibliography</A> 
<DTxDDxLIxAHREF="http://ic-www.arc.nasa.gov/ic/projects/bayes-group/ index.html">Bayesian 

Model-Based Learning Group</A> at NASA 
<DTxDDxLIxA HREF="http://alife.santafe.edu/alife/software/ bhrevol.html">Behavioral Evolution Simulations 

and Tutorials</A> 
<DTxDDxLIxAHREF="http://glimpse.cs.arizona.edu:1994/bib/Neural/ ">Bibliographies on Neural 

Networks</A> (Arizona) 
<DT><DD><LI><Ahref=''ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ak-dewdney/,'>Biester</A> 
<DTxDDxLIxa href="http://muse.bio.cornell.edu/">Biodiversity and Biological Collections</a> (Cornell) 
<DTxDDxLIxA href="http://web.psych.ualberta.ca/~mike/ mylab.html">Biological Computation Prqject</A> at 

University of Alberta, Canada 
<DTxDDxLIxA HREF="http://chuchi.df.uba.ar/welcome.html">Biological</A> time-series web page from 

Argentina 
<DTxDDxLIxA href= 

"ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ak-dewdney/">Biomorphs</A> 
<DTxDDxLIxa href="ftp://Iife.anu.edu.au/pub/complex_systems/ alife">Biomorphs</a> (2) 
<DTxDDxLIxA HREF="http://www.cs.brandeis.edu/-zippy/alife-library.html">The Alife library</A> 
<DTxDDxLIxA HREF="ftp://alife.santafe.edu/pub/BIBLIO/">BIBLIO</A>The bibliographic collection at 

Alife Online 
<DTxDDxLIxA HREF="http://www-personal.engin.umich.edu/~streak/bib/">A bibliography of readings on 

complex adaptive systems</A> 
<DTxDDxLIxA HREF="http://www.fmb.mmu.ac.uk/-bruce/combib">Bibliography of Measures of 

Complexity</A> 
<DTxDDxLIxAHREF="http://alife.santafe.edu/-liekens/biotopia.html">Biotopia</A> 
<DTxDDxLIxA HREF="http://reality.sgi.com/employees/craig/ boids.html">Boids</A> by Craig Reynolds 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ 

packages/boids/">Boids</A> for Windows 
<DTxDDxLIxA HREF="http://hopeless.mess.cs.cmu.edu:8001/bomb/ index.html">Bomb</A> automatic 

interactive visual simulation based on cellular automata and fractals 
<DTxDDxLIxA HREF="http://math.bu.edu/">Boston</A> University Mathematics Department and Dynamical 

Systems Group 

161 



Appendix A 

<DTxDDxLIxA HREF="http://robotics.stanford.edu/groups/bots/home.html">Bots Research Group</a> 
(Stanford University) 

<DTxDDxLIxA HREF="http://synapse.cs.byu.edu/home.html">Brigham Young University (BYU) Neural 
Networks and Machine Learning Lab</A> 

<DTxDDxLIxA HREF="http://www.ucl.ac.uk/~ucesjph/resources/ uk.html">British</A> Nonlinear Sites 
<DTxDDxlixa href="http://www.ai.mit.edu/people/brooks/brooks.html">Rodney A. Brooks' Homepage</a> 
<DTxDDxLIxa href="http://www.cns.brown.edu/ibns/">Brown University: Institute for Brain and Neural 

Systems </a> 
<DTxDDxLIxA HREF="http://chuchi.df.uba.ar/welcome.html">Buenos Aires (Univ. of BA) Chuchi 

Server:Non-linear time series analysis </A> 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ packages/bugs/">Bugs</A> 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ 

packages/bugworld/">Bugworld</A> 
<DTxDDxLIxa href="ftp://life.anu.edu.au/pub/complex_systems/ alife">Bugworld</a> (2) 
<DTxDDxLIxA HREF="http://prairienet.org/business/ptech/ chaos.html">Business</A> and Chaos 
<DTxDDxLIxa href="http://synapse.cs.byu.edu/home.html">BYU Neural Networks and Machine Learning 

Laboratory</a> 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DL> 
<HRxHlxA NAME="C">C</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxA HREF="http://isl.cps.msu.edu/GA/software/lil-gp">C language Genetic Programming 

System</A> 
<DTxDDxLIxA HREF="http://poum.info.unicaen.fr/scripts/ListRep?arva">C++ Multi-agent simulator</a> for 

Unix System by Renaud Cazoulat (France) 
<DTxDDxLIxA HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/AIife/ rudy-rucker/">Calife</A> a 

ID CA simulator by Rudy Rucker 
<DTxDDxLIxA HREF="http://alife.santafe.edu/alife/software/ calife.html">Calife</a> a 2D CA simulator by 

Rudy Rucker 
<DTxDDxLIxa href="http://noether.ucsc.edu/groups/nonlinear/ research.html">California (UC Santa Cruz): 

Nonlinear Dynamics </a> 
<DTxDDxLIxA HREF="http://inls.ucsd.edu/">California: UC at San Diego, the Institute for Nonlinear 

Science</A> 
<DTxDDxLIxA HREF="http://neuroscience.ucdavis.edu/">California (UC at Davis) Center for 

Neuroscience</A> 
<DTxDDxLIxA HREF="http://carver.pcmp.caltech.edu/">Caltech: Physics of Computation, Computation and 

Neural Systems Program</A> 
<DTxDDxLIxA HREF="http://www.klab.caltech.edu/">Caltech: The Koch Lab</A> 
<DTxDDxLIxA HREF="http://www.cs.jhu.edu/-callahan/ lifepage.html">Callahan's Life page</A> 
<DTxDDxLIxA HREF="http://www.im.lcs.mit.edu/broch/">CAM8</A> (MIT) 
<DTxDDxLIxAHREF="http://www.cs.cmu.edu:8001/afs/cs/project/cnbc/CNBC.html">Carnegie-Mellon 

University: The Center for the Neural Basis of Cognition</A> 
<DTxDDxLIxA HREF="http://www.nbi.dk/CATS/Welcome.html">CATS</A> Chaos and Turbulence Studies 

Center at NBI 
<DTxDDxLIxa href="http://penguin.phy.bnl.gov/www/xtoys/xtoys.html">Michael Creutz's CA simulators for 

Xwindows</a> 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ packages/cat/">CA.T.</A> 

A Cellular Automaton Tool 
<DTxDDxLIxA HREF="http://alife.santafe.edu/alife/topics/ca/caweb">CA Web </ A> 
<DTxDDxLIxA HREF="http://alife.santafe.edu/alife/software/ cellsim.html">Cellsim</a> is a cellular 

automaton simulator by David Hiebeler and Chris Langton 
<DTxDDxLIxA HREF="http://rucs2.sunlab.cs.runetedu/~dana/ca/ca.html" >Cellular Automata</A> 
<DTxDDxLIxa href="http://www.csc.fi/math_topics/Movies/CAhtml">Cellular Automata</a> by Juha Haataja 
<DTxDDxLIxa href="ftp://think.com/mail">Cellular Automata Mailing List Archive</a> 
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<DTxDDxLIxa href="http://www.cs.runet.edu/~dana/ca/cellular.html">The Cellular Automata Simulation 
System</a> 

<DTxDDxLIxa href="http://bitmed.ucsd.edu/text-repository/ carf.html">Cellular Automata and Random 
Fields</a> 

<DTxDDxLIxa href="http://www.ima.umn.edu/bibtex/ca.bib">Cellular Automata Bibliography Database</a> 
<DTxDDxLIxa href="http://www.ce.unipr.it/pardis/CNN/cnn.html">Cellular Neural Networks (CNN)</a> 
<DTxDDxLIxA HREF="http://andante.iss.uw.edu.pl/viso/viso.html">Center for Complex Systems</A> at the 

University of Warsaw 
<DTxDDxLIxA HREF="http://peaplant.biology.yale.edu:8001/">Center for Computational Ecology</A> at the 

Yale Institute, for Biospheric Studies 
«cDTxDDxLIxA HREF="http://chaos.ph.utexas.edu/">Center for Nonlinear Dynamics</A> University of Texas 

at Austin 
<DTxDDxLIxa href="http://ciips.ee.uwa.edu.au/">Centre for Intelligent Information Processing Systems</a> 
<DTxDDxLIxA href="http://physig.ph.kcl.ac.uk/cnn/">Centre for Neural Networks</A> at King's College, 

England 
<DTxDDxLIxa href= "http://www.brunel.ac.uk:8080/depts/AI/sophia/al-vonca.htm">The Central Problem of 

Self-Reproduction</a> 
<DTxDDxLIxAHREF="http://wwwl.cern.ch/NeuralNets/nnwInHep.html">CERN: Neural Networks in High 

Energy Physics Home Page</A> 
<DTxDDxLIxa href="http://www.cevis.uni-bremen.de:80/external/cellular/ ">CeVis CA Page </a> 
<DTxDDxLIxa href="http://www.uni-mainz.de/FB/Physik/Chaos/ services.html">chaos bibliography</a>- 

includes preprints from the University of Mainz 
<DTxDDxLIxa href="http://www-chaos.umd.edu/">Chaos</a> The Chaos Group at the University of Maryland 

at College Park 
<DTxDDxLIxaHREF="http://www.nonlin.tu-muenchen.de/chaos/chaos_e.html">The Chaosgruppe</A> 

(München) 
<DTxDDxLIxa href="http://www.prairienetorg/business/ptech/full/ index.html">The Chaos Network</a> 
<DTxDDxLIxa href="http://xxx.lanl.gov/archive/chao-dyn/">Chaotic Dynamics</ a>Chaos e-print archive at 

Los Alamos 
<DTxDDxLIxA href="http://www.redweb.com/chess/">Chess Space</A> 
<DTxDDxLIxahref="http://www.ccsr.uiuc.edu/People/gmk/Papers/ 

ChuaSndRef.html">ChuaSoundMusic</a> (Music made from a strange attractor) 
<DTxDDxLIxAHREF="http://alife.santafe.edu/alife/topics/simulators/dret/nodel.html">Classifier 

Systems</A> 
<DTxDDxLIxA HREF="http://foner.www.media.mitedu/people/foner/">Clustering/ Information Sharing in 

an Ecology of Agents</a> (MIT) 
<DTxDDxLIxA HREF="http://www.ai.univie.ac.at/oefai/nn/ cognition.html">Cognitive Modeling with Neural 

Networks</A> 
<DTxDDxLIxA href="http://matia.stanford.edu/cogsci/">Cognitive and Psychological Sciences</A> (Stanford) 
<DTxDDxLIxA href="http://tew2.ppsw.rug.nl/">Cognitive Science and Engineering«;/A> (University of 

Groningen, Netherlands) 
<DTxDDxLIxA href="http://www.cog.brown.edu/">Cognitive and Linguistic Sciences</A>(Brown University) 
<DTxDDxLIxA href="http://www.cogsci.ed.ac.uk/ccs/home.html">Cognitive Science</A> (University of 

Edinburgh) 
<DTxDDxLIxAHREF="http://www.miLedu:8001/afs/athena.mit.edu/user/a/y/ 

ayala/www/home.html">Collaborative Genetic Design</A> at MIT 
<DTxDDxLIxA HREF="http://www.harrison.co.nz/alife.htm">Colony of Grebles, Gene Generator, Germ, 

Parallel</A> 
<DTxDDxLIxA HREF="http://weirs.cc.colorado.edu/">Colorado College Nonlinear Physics</A> 
<DTxDDxLIxAHREF="http://www-comp.mpce.mq.edu.au/-tirthank/combesthtmI">Combinding 

Estimators</A> (Generalisers) 
<DTxDDxLIxAHREF="http://www.gamesdomain.co.uk/cgi-bin/ 

wwwwais?kevwords=Artificial+Life">Commercial ALife Games</A> in Europe 
<DTxDDxLIxAHREF=,'http://www.krl.caltech.edu/~brown/alife/">comp.ai.alifeFAQ</A> 
<DTxDDxLIxA HREF="news:comp.ai.alife">comp.ai.alife</A> (Usenet group for the discussion of artificial life) 
<DTxDDxLIxahref="http://life.anu.edu.au/ci/ci.html">ComplexityInternational</a> 
<DTxDDxLIxa href="http://www.csu.edu.au/ci/ci.html">COMPLEXnY INTERNATIONAL ISSN 

132(W)682</a> 
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<DTxDDxLIxa href="http://www.seas.upenn.edu/~ale/cplxsys.html">Complex Adaptive Systems</a> 
(Overview) 

<DTxDDxLIxA HREF="http://life.anu.edu.au:80/complex_systems/ complex.html">Complex Systems</A> 
Australia (ANU) 

<DTxDDxLIxa HREF="ftp://life.anu.edu.au/pub/complex_systems">Complex Systems ftp directory from 
ANU</A> 

<DTxDDxLIxA HREF="http://bambi.ccs.fau.edu/ccs.html" >Complex Systems</A> Boca Raton 
<DTxDDxLIxA HREF="http://www.ccsr.uiuc.edu/" >Complex Systems</A> at Beckman Institute 
<DTxDDxLIxa href="http://pscs.physics.lsa.umich.edu/pscs.html">Complex Systems</a> University of 

Michigan 
<DTxDDxLIxa href="http://wvAv.csu.edu.au/complex/compsys.html">Complex Systems Information 

Network</a> 
<DTxDDxLIxAhref= "http://alife.santafe.edu/alife/topics/cas/ca-faq/ca-faq.htmrVcomp.theory.cell-automata 

FAQ</A> 
<DTxDDxLIxA href= "news:comp.theory.cell-automata">comp.theory.cell-automata</A> (Usenet newsgroup) 
<DTxDDxLIxa href="http://www.cns.caltech.edu/">Computation & Neural Systems Program</a> (CNS) 
<DTxDDxLIxAHREF="http://bcn.boulder.co.us/environment/Global/ EnvTopics.html">Computational 

Biology</A> atat SDSC 
<DTxDDxLIxA HREF="http://golgi.harvard.edu/biopages/">Computational Biology</A> at Harvard 
<DTxDDxLIxA HREF="http://www.pg.gda.pl/biology.html">Computational Biology</A> at Johns Hopkins 
<DTxDDxLIxA HREF="http://www.cse.ucsc.edu/research/compbio/">Computational Biology</A> at UC Santa 

Cruz 
<DTxDDxLIxA href="http://beowulf.uwaterloo.ca/">Computational Epistemology Lab</A> (University of 

Waterloo) 
<DTxDDxLIxa href="http://www.cirl.uoregon.edu/">Computational Intelligence Research Laboratory</a> 

(University of Oregon) 
<DTxDDxLIxA HREF="http://coli.uni-sb.de/info/ cl_in_sb.index.html">Computational Linguistics</A> at 

Saarbrücken 
<DTxDDxLIxA href="http://www.santafe.edu/projects/CompMech/">Computational Mechanics Group at 

Santa Fe</A> 
<DTxDDxLIxa href="http://knicks.ee.ufl.edu/">Computational Neuroengineering Lab</a> 
<DTxDDxLIxAHREF="ftp://ftp.Ge rmany.EU.net/pub/research/softcomp/Alife/ 

gene-spafford/">Computer-Viruses: A Form of Artificial Life?</A> 
<DTxDDxLIxA HREF="http://moneLphysik.unibas.ch:80/thomas/ index.html">Condensed</A> matter 

systems studied at University of Basel (Switzerland) 
<DTxDDxLIxAhref="http://www.cs.cmu.edu/Web/Groups/CNBC/other/ 

connectionists.html">Connectionists</A> 
<DTxDDxLIxa href="http://online.anu.edu.au/ITA/ACAT/contours/ contours.html">Contours of the 

Mind</a> exhibition on Fractals, Feedback and Chaos 
<DTxDDxLIxA HREF="http://cdps.cs.unh.edu/">Cooperative Distributed Problem Solving«;/a> (University of 

New Hampshire) 
<DTx:DDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ 

packages/copycat/">Copycat</A> (ftp) 
<DTxDDxLIxAHREF="ftp://soda.berkeley.edu/pub/corewar">Corewar</A> (Berkeley.ftp) 
<DTxDDxLIxA href= "ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ak-dewdney/">Core Wars</A> 

(ftp) 
<DTxDDxLIxAHREF="http://www.tc.cornell.edu/Research/Articles/MPS/DMS/ 

Durrett/durrett.models.html">Cornell Theory Center Movies</A> 
<DTxDDxLIxAHREF="http://www.batnet.com/quist/fha/cr/">Critters</A> 
<DTxDDxLIxA HREF="http://www.santafe.edu/-jpc/">James Crutchfield's Homepage</A> 
<DTxDDxLIxA HREF="ftp://alife.santafe.edu/pub/CURRICULA/">CURRICULA</A> Syllabus suggestions for 

courses on Artificial Life 
<DTxDDxLIxA HREF="http://pespmcl.vub.ac.be/journals.html" >Cybernetics and Systems Journals«;/A> 
«dDTxDDxLIxA HREF="http://pespmcl.vub.ac.be/CYBSYSTH.html" >Cybernetics and Systems Theory</A> 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
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<HlxA NAME="D">D</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxA HREF="http://alife.santafe.edu/alife/software/ ddlab.html">Discrete Dynamics Lab</a> 
<DTxDDxLIxA HREF="http://euler.mcs.utulsa.edu/-sandip/ sandip.html">Distributed Artificial 

Intelligence</a> (Tulsa University) 
<DTxDDxLIxa href="http://dis.cs.umass.edu/">Distributed Artificial Intelligence Laboratory</a> (UMass) 
<DTxDDxLIxA HREF="http://ai.eecs.umich.edu/diag/homepage.html">Distributed Intelligent Agents 

Group</a> (University of Michigan) 
<DTxDDxLIxA HREF="http://www.iesd.auc.dk/general/DS/index.html" >Distributed Systems</A> 
<DTxDDxLIx:ahref="http://www.wmin.ac.uk/-ccdva/">DynamicalSymmetries</a> 
<DTxDDxLIxA HREF="ftp://parcftp.xerox.com/pub/dynamics/ dynamics.html">Dynamics of 

Computation</a> (Xerox Palo Alto Research Center), ftp 
<DTxDDxLIxa href="ftp://parcftp.xerox.com/pub/dynamics/ multiagent.html">Dynamics of Multiagent 

systems</a> 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME="E">E</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxA HREF="http://alife.santafe.edu/alife/software/echo.html">Echo</ a> is an ecological 

simulation system by Terry Jones and John Holland 
<DTxDDxLIxa href="http://wvw.cs.runet.edu/~dana/ca/cellular.html">Eckart's Cellular Automata Simulator 

</a> 
<DTxDDxlixa href="ftp://alife.santafe.edu/pub/USER-AREA/EC/">EvolutioNary Computation REpository 

network (ECORE)</A> at Santa Fe Institute 
<DTxDDxlixa hrefi="ftp://ftp.Germany.EU.net/pub/research/softcomp/EC/ ">ECORE</A> at EUnet 

Deutschland GmbH 
<DTxDDxlixa href="ftp://ftp.dcs.warwick.ac.uk/pub/mirrors/EC/">ECORE</A> at The University of Warwick, 

UK 
<DTxDDxlixa href="ftp://ftp.krl.caltech.edu/pub/EC/">ECORE</A> at The California Institute of Technology 
<DTxDDxlixa href="ftp://ftp.cs.wayne.edu/pub/EC/">ECORE</A> at Wayne State University, Detroit 
<DTxDDxlixa href="ftp://ftp.cps.msu.edu/pub/EC/">ECORE</A> at The Michigan State University 
<DTxDDxlixA HREF="ftp://ftp.uct.ac.za/pub/mirrors/EC/">ECORE</A> at The University of Capetown, 

South Africa 
<DTxDDxLIxA HREF="http://www.cns.ed.ac.uk/">Edinburgh: University of Edinburgh Centre for Neural 

Systems</A> 
<DTxDDxLIxA HREF="http://kanUrmkant.rm.cnr.it/u/gral/luigi/ lupa_cnrgames.html">Educational & 

Therapeutic ALife Games</A> online review (Italy-Denmark) 
<DTxDDxLIxA HREF="http://research.germany.eu.neu8080/encore/">ENCORE</A> The Electronic 

Appendix to "The Hitchhiker's Guide to Evolutionary Computation" 
<DTxDDxUxahref="ftp://alife.santafe.edu/pub/USER-AREA/EC/">ENCORE</a>(ftp) 
<DTxDDxLIxa href="ftp://ftp.cs.wayne.edu/pub/EC/Welcome.html">HTML version of ENCORE</a> (ftp) 
<DTxDDxLIxA href="ftp://ftp.dcs.warwick.ac.uk/pub/mirrors/EC/ Welcome.html">ENCORE Evolutionary 

Computation Archive</a> (2) 
<DTxDDxLIxA HREF="http://nsgsun.aae.uiuc.edu/">Engineering </A> Nonlinear Systems Group at UIUC 
<DTxDDxLIxa href="ftp://ftp.essex.ac.uk/pub/robots">Essex Robotics FTP Directory</a> 
<DTxDDxLIxA HREF="http://www.cc.duth.gr/~mboudour/nonlin.html">European</ A> nonlinear archive 

and pointer to nonlinear and complex sites 
<DTxDDxLIxa href="http://www.santafe.edu/projects/evca/">Evolving Cellular Automata</a> 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/karl-«ims/">Evolving 

Creatures</A> (9MB) 
<DTxDDxLIxa href="HTTP://www.sepa.tudelftnl/~afd_ba/ evolu.html">Evolution, Complexity and 

Philosophy</a> 
<DTxDDxLIxA HREF="http://lancet.mit.edu/ga/OtherSites.html" Evolutionary Algorithm Sites</A> 
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<DTxDDxLIxA HREF="http://www.dai.ed.ac.uk/groups/evalg/">Evolutionary Algorithms Group</A> at The 
University of Edinburgh, UK 

<DTxDDxLIxA HREF="http://www.cogs.susx.ac.uk/lab/adapt/ index.htmI">Evolutionary and Adaptive Systems 
at COGS</A> 

<DTxDDxLIxA HREF="http://www.cs.wisc.edu/~smucker/EC.html" >Evolutionary Computation and Artificial 
Life</A> 

<DTxDDxLIxahref="http://www-mitpress.mit.edu/jrnls<atalog/ evolution.html">Evolutionary Computation 
Journal</a> 

<DTxDDxLIxa href="http://zen.btc.uwe.ac.uk/evol/index.html">Evolutionary Computing Group at UWE, 
Bristok/a> 

<DTxDDxLIxa href="http://pespmcl.vub.ac.be/EVOLSYS.html">Evolutionary Systems</a> an exploratory 
paper 

<DTxDDxLIxa href="http://www.santafe.edu/projects/evca/ index.html">Evolving Cellular Automata (EVCA) 
Group</a> Santa Fe Institute 

<DTxDDxLIxA HREF="http://www.batnet.com/quist/fha/">Evolving Software (Evolutionary programming), 
Critters, CyberChromes</A> 

<DTxDDxLIxA HREF="http://www.lib.rmit.edu.au/fractals/ exploring.html">Exploring Chaos and 
Fractals</A> 

</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME="F'>F</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxA HREF="http://alife.santafe.edu/alife/topics/cas/ca-faq/ca-faq.html">FAQ: Cellular 

Automata</A> (Santa Fe) 
<DTxDDxLIxA HREF="http://www.cis.ohio-state.edu/hypertext/faq/usenet/fractal-faq/faq.html">FAQ: 

Fractals</A> (Ohio State) 
<DTxDDxLIxA HREF="http://www.salford.ac.uk/docs/depts/eee/ gp2faq.html">FAQ: Genetic 

Programming</A> (University of Salford, UK) 
<DTxDDxLIxA href= "http://wwwhost.cc.utexas.edu/cc/staff/mccoy/gp/FAQ-toc.htmI">FAQ: Genetic 

Programming</A> (University of Texas) 
<DTxDDxLIxA HREF="http://www.salford.ac.uk/docs/depts/eee/gpfaq.html">FAQ: Genetic Programming in 

C+-K/A> (University of Salford, UK) 
<DTxDDxLIxa href="http://www.eeb.ele.tue.nl/neural/neural_FAQ.html">FAQ: Neural Networks</a> 

Findhoven, The Netherlands) 
<DTxDDxLIxA href= "http://wwwipd.ira.uka.de/~prechelt/FAOyneural-net-faq.html">FAQ: Neural 

Networks</a> (2) 
<DTxDDxLIxa href="http://www.cs.indiana.edu/robotics/FAQ/copy.html">FAQ: Robotics</a> (Indiana) 
<DTxDDxLIxA HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ docs/afish.html">Fishes of 

the Silicon Sea</A> 
<DTxDDxLIxA HREF="http://bambi.ccs.fau.edu/ccs.html">Florida Atlantic University: The Center for Complex 

Systems</A> 
<DTxDDxLIxA HREF="http://knicks.ee.ufl.edu/">Florida (UF at Gainesville) Computational Neuroengineering 

Lab (CNEL)</A> 
<DTxDDxlixahref="http://www.cs.unm.edu/Engr_Schl/CS_Dept/subpages/ teachers/forrest.html">Stephanie 

Forrest's Homepage</a> 
<DTxDDxLIxa href="http://www.cup.cam.ac.uk/onlinepubs/Fractals/ fractsl.html">Fractal Concepts in Surface 

Growth</a> 
<DTxDDxLIxa href="http://spanky.triumf.ca/">Fractal Database</a> 
<DTxDDxLIxa href="http://www.vis.colostate.edu/~userl209/fractals/ index.html">Fractal Explorer</a> 
<DTxDDxLIxahref="http://www.acm.uiuc.edu:80/rml/Gifs/Fractal/">FractalGifs</a> 
<DTxDDxLIxA HREF="http://www.batnet.com/quist/fha/fha.html" >Fractal Heart Art</A> 
<DTxDDxLIxa href="http://inls.ucsd.edu/y/ASI/">Fractal Image Encoding and Analysis a NATO Advanced 

Study Institute</a> 
<DTxDDxLIxa href="http://www.ncsa.uiuc.edu/Edu/Fractal/ Fractal_Home.html">The Fractal 

Microscope</a> 
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<DTxDDxLIxa href="http://www.cnam.fr/fractals.html">Fractal pictures & animations</a> 
<DT><DD><LI><ahref=Mhttp://www.ccs.fau.edu/~tomh/fractals/fractals.htmr'>Fractals</a> 
<DTxDDxLIxa href="http://www-pic.ing.uniromaLit/cfpl/cfpl.html">Fractals and chaos in Chemical 

Engineering</a> 
<DTxDDxLIxa href="http://life.csu.edu.au/fractop/">Fractop V1.0</a> computes dimensions of imported 

images 
<DTxDDxLIxAHREF="http://alife.santafe.edu/alife/topics/simulators/dret/dret.html">Fundamental 

Algorithms of Artificial Life</A> 
<DTxDDxLIxA href="http://www.quadralay.com/www/Fuzzy/Fuzzy.html">Fuzzy Logic Archive</A> (Quadralay 

Corporation) 
<DTxDDxLIxA href="ftp://ftp.hiof.no/pub/Fuzzy">Fuzzy Logic Collection</A> at Ostfold Regional College, 

Norway (ftp) 
<DT><DD><LI><Ahref=l'http://www.cis.ohio-state.edu/hypertext/faq/usenet/fuzzy-logic/partl/faq.htmr'>Fuzzy 

Logic FAQ</A> 
<DTxDDxLIxA href="ftp://ntia.its.bldrdoc.gov/pub/fuzzy">Fuzzy Logic Repository</A> (ftp) 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DL> 
<HRxHlxA NAME="G">G</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxA HREF="http://kal-el.ugr.es/gags.man.html">GAGS</A> a genetic algorithm generator 
<DTxDDxLIxa href="http://www.wi.leidenuniv.nl/CS/SEIS/gain.html">GAiN: Genetic Algorithms, AI and 

Neural Networks</a> 
<DTxDDxLIxA HREF="http://www.anark.com/Galapagos/index.html">Galapagos</A> 3D Alife Game 
<DTxDDxLIxa href="ftp://life.anu.edu.au/pub/complex_systems/alife/ life">Game of Life</a> (ftp) 
<DTxDDxLIxA href= "http://forum.swarthmore.edu/-jay/learn-game/game-links.html">Games and AI</A> 
<DTxDDxLIxA HREF="http://www.cs.vu.nl/-victor/thesis.html">Games & Artificial Intelligence</a> by Victor 

Allis (Netherlands) 
<DTxDDxLIxa href="http://peaplant.biology.yale.edu:8001/gecko.html">Gecko</ a> individual-based simulator 

for modeling ecosystem dynamics (based on John Holland's Echo) 
<DTxDDxLIxA HREF="http://www.iea.com:80/-stevem/">Generator</A> GA package for Excel 
<DTxDDxLIxA HREF="http://www.germany.eu.net/people/joke.html">Generic Classifier System Exploration 

Took/A> 
<DTxDDxLIxA HREF="http://www.scs.carleton.ca/~csgs/resources/ gaal.html">Genetic Algorithms and 

Alife</A> (Carleton University) 
<DTxDDxLIxA HREF="http://www.aic.nrl.navy.mil:80/galist/" >Genetic Algorithms Archive</A> 
<DTxDDxLIxA HREF="ftp://gal4.ge.uiuc.edu/ilIigal.home.html">Genetic Algorithms Archive</A> (Illinois 

Genetic Algorithms Lab) 
<DTxDDxLIxa href="ftp://ftp.aic.nrl.navy.mil/pub/galist" >Genetic Algorithm Digest Archives</a> (ftp) 
<DTxDDxLIxa href="http://www.cs.gmu.edu/research/gag/">Genetic Algorithms Group (GAG)</a> at George 

Mason University 
<DTxDDxLIxa href="http://isl.msu.edu/GA/">Genetic Algorithms Research and Applications Group (MSU 

GARAGe)</a> at Michigan State University 
<DTxDDxLIxA HREF="http://www-personal.engin.umich.edu/~streak/ online.html">Genetic Algorithm 

Research Group Online Resources</A> at University of Michigan 
<DTxDDxLIxA HREF="http://www.dcs.warwick.ac.uk/-martyn/ga.html">GEnetic Algorithms Research 

Students</A> (GEARS) 
<DTxDDxLIxA href= ftp://129.82.102.183/pub/TechReports/1993/tr-103.ps.Z>Genetic Algorithm 

Tutoriak/A> to download (Colorado) 
<DTxDDxLIxA HREF="http://isl.cps.msu.edu/GA/software/lil-gp/">Free GA in C</A> 
<DTxDDxLIxA HREF="http://uxh.cso.uiuc.edu/~carroll/ga.html">Free GA in Fortran</A> David Carroll, 

Illinois 
<DTxDDxLIxa href="http://www.ts.umu.se/~top/travel.html">GA Traveling Salesperson Problem solver</a> 
<DTxDDxLIxA HREF="telnet://genesis@genesis.cns.caltech.edu">Genesis</A> a neural network simulator for 

biological modeling 

167 



Appendix A 

<DTxDDxLIxAHREF="http://robocop.modmath.cs.cmu.edu:8001/htbin/ moviegenform">Genetic 
Movies</A> 

<DTxDDxLIxahref="http://nmt.edu/~jefu/notes/notes.html">Genetic music</a> 
<DTxDDxLIxA HREF="http://www.cs.ucl.ac.uk/intelligent_systems/ genetic_programming.html" >Genetic 

Programming</A> at UCL 
<DTxDDxLIxA HREF="ftp://cs.ucl.ac.uk/genetic/biblio/">Genetic Programming Bibliography</A> (ftp) 
<DTxDDxLIxAHPvEF="http://wwwhost.cc.utexas.edu/cc/staff/mccoy/gp/gp.html">Genetic 

Programming</A> at University of Texas 
<DTxDDxLIxA href="ftp://ftp.io.com/pub/genetic-programming/">Genetic Programming Ftp Site</a> 
<DTxDDxLIxA HREF="http://www.saIford.ac.uk/docs/depts/eee/ genetic.html">Genetic Programming Home 

Page</A> (University of Salford, UK) 
<DTxDDxLIxAHREF="http://www.can.nl/SystemsOverview/General/ mathematica.html">Genetic 

Programming</A> in Mathematica 
<DTxDDxLIxA HREF="ftp://ftp.io.com/pub/genetic-programming/">Genetic Programming</A> mailing list 

archives (ftp) 
<DTxDDxLIxA HREF="ftp://ftp.cc.utexas.edu/pub/genetic-programming/ ">Genetic Programming 

Repository</A> (ftp) 
<DTxDDxLIxA HREF="ftp://cs.ucl.ac.uk/genetic">GP FTP directory</A>Genetic Programming resources 
<DTxDDxLIxA HREF=http://dcpul.cs.york.ac.uk:6666/mark/top_ga.html>Genetic Programming Tutorial</A> 

Online (<I>United Kingdom</I>) 
<DTxDDxLIxA HREF=http://kal-el.ugr.es/pitis.html>GeNeura Team</A> with Mbiti Evolution Game 

(<I>Spain</I>) 
<DTxDDxlixa href="http://www.cs.gmu.edu:80/research/gag/">George Mason University Genetic Algorithms 

Group</a> 
<DTxDDxLIxa HREF="http://acll.physics.gatech.edu/aclhome.html">Georgia Tech Applied Chaos Laboratory 

(ACL)</a> 
<DTxDDxLIxA HREF="http://www.nonlin.tu-muenchen.de/chaos/ chaos_e.html">German</A> chaos group 
<DTxDDxLIxa href="http://www.dfki.uni-sb.de/">German Research Center for Artificial Intelligence </a> 
<DTxDDxLIxA HREF="http://www.cs.vu.nl/-lgonggr/AlifeLinks.html">Gerrie's Artificial Life Sites</A> 
<DTxDDxLIxA HREF="http://www.mech.gla.ac.uk/-nactftp/nact.html">Glasgow: Neural Adaptive Control 

Technology (NACT)</A> 
<DTxDDxLIxa href="http://nathan.gmd.de/">GMD Artificial Intelligence Research Division (FIT.KI)</a> 
<DTxDDxLIxA HREF="http://math.wisc.edu/-griffeat/kitchen.html">David Griffeath's Primordial Soup 

Kitchen</A> a Cellular Automata hot spot 
<DTxDDxLIxA HREF="http://www.santafe.edu:80/~hag/">Howard Gutowitz's Homepage</A> 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DL> 
<HRxHlxA NAME-"H">H</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxA HREF="http://www.cpsc.ucalgary.ca/-hammel/BioSim/ Lsystems">Hammers L-Systems 

site</A> 
<DTxDDxLIxA HREF="http://vAvw.harrison.co.nz/alife.htm"xLI>Harrison's Artificial Life Page</A> 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ 

docs/highlife/">Highlife</A> 
<DT><DDxLIx:ahref=''http://www.cis.ohio-state.edu/hypertext/faq/usenet/ai-faq/genetic/top.html">The 

Hitchhiker's Guide to Evolutionary Computation</a> 
<DTxDDxLIxAHREF="ftp://ftp.Ge rmany.EU.net/pub/research/softcomp/Alife/ 

packages/hodgepodge/">Hodgepodge machine</A> by Jörg Heitkötter 
<DTxDDxLIxA HREF="http://www.trincoll.edu/psyc/ Homeokinetics">Homeokinetics </A> 
<DTxDDxLIxA href="http://ai.iit.nrc.ca/HCI_public/Locator/ world.html">Human-Computer Interaction Lab 

Locator</A> 
<DTxDDxLIxa href="http://reality.sgi.com/employees/rck/hydra/">Hydra</a> an interactive 2D 3D 

Mandelbrot, Julia fractal graphics plotter 
<DTxDDxLIxA HREF="http://www.fmb.mmu.ac.uk/-bruce/combib">Hypertext Bibliography of Complexity 

Measures</A> 
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</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME="I">I</Ax/Hl> 

</DL> 
<OL> 
<DTxDDxLIxA href="http://www.icenet.it/icenet/neurality/links/ home_uk.html">ICE Neural Nets Hot 

List</A> 
<DTxDDxLIxa href="http://www.ieee.org:80/nnc/index.html">IEEE Neural Networks Councik/a> 
<DTxDDxlixa href="http://gal4.ge.uiuc.edu/illigal.home.html">IlliGAL Home Page (Univ. Illinois-Urbana 

Genetic Algorithms Lab)</a> 
<DTxDDxLIxa href="http://www.uic.edu/~fuks/dds.html">Illinois (UI at Chicago): Discrete Dynamical 

Systems</A> 
<DTxDDxLIxA HREF="http://www.ccsr.uiuc.edu/">Illinois: UI at Urbana-Champaign, Center for Complex 

Systems Research</A> 
<DTxDDxLIxA HREF="http://www.beckman.uiuc.edu/">Illinois: UI at Urbana-Champaign, The Beckman 

Institute for Advanced Science and Technology</A> 
<DTxDDxLLxa href="http://www.industrialstreetcom/chaos/">Images of Chaos</ a> 
<DTxDDxLIxa href="http://www.scs.carleton.ca/~csgs/resources/ gaal.html">Index to GA and artificial life 

resources</a> 
<DTxDDxLIxa href="http://life.csu.edu.au/vl_complex/library.html">Index to Complex Systems resources</a> 

(WWW Virtual Library) 
<DTxDDxLIxAHREF="http://www.im.lcs.mit.edu/" information Mechanics (MrT)</A> 
<DTxDDxLIxa href="http://www.idiap.ch/">Institut Dalle Molle d'Intelligence Artificielle Perceptive</a> 
<DTxDDxLIxa href="http://inls.ucsd.edu/inls.html">Institute for Nonlinear Science at UCSD</a> 
<DTxDDxLIxa href="http://itkwww.kub.nl:2080/itk/itkhome.html">Institute for Language Technology and 

Artificial Intelligence</a> 
<DTxDDxLIxa href="http://www.idsia.ch/">Istituto Dalle Molle di Studi sull'Intelligenza Artificiale</a> 
<DTxDDxLIxA HREF="http://www.eecis.udel.edu/~jchu/ homepage.html">Intelligent agents</a> (University 

of Delaware) 
<DTxDDxLIxA HREF="http://boom.cs.ucl.ac.uk/staff/skhebbal/ihs/ '^Intelligent Hybrid Systems</A> 
<DTxDDxLIxa href="http://galahad.elte.hu/">Institute for Solid State Physics and Chaos Group, Budapest</a> 
<DTxDDxLIxA HREF="http://www.cs.umbc.edu/agents/">Intelligent Software Agents</a> (University of 

Maryland Baltimore County) 
<DTxDDxLIxahref="http://www.uivt.cas.cz/">Institute of Computer Science (ICS) of the Academy of Sciences 

of the Czech Republic</a> 
<DTxDDxLIxA HREF="http://retriever.cs.umbc.edu:80/agents/" intelligent Software Agents Resources</A> 
<DTxDDxLIxa href="http://www.elec.qmw.ac.uk/isag/">Intelligent Systems Applications Research Group</a> 
<DTxDDxLIxa href="http://dcs2.cs.york.ac.uk:9876/isg/ home.html">Intelligent Systems Group</a> 
<DTxDDxLIxA HREF="http://mixing.sp.cs.cmu.edu:8001/htbin/ mjwgenform">Interactive Genetic Art</A> 
<DTxDDxLIxA HREF="http://mixing.sp.cs.cmu.edu:8001/htbin/ moviegenform">Interactive Genetic 

Movies</A> 
<DTxDDxLIxA HREF="http://www.cs.bham.ac.uk/~amw/agents/">Interface Agents</ A> 
<DTxDDxLIxa href="http://www.iiasa.ac.at/">IIASA</a>International Institute for Applied Systems Analysis 
<DTxDDxLIxa href="http://robocop.modmath.cs.cmu.edu:8001/">International Interactive Genetic Art</a> 
<DTxDDxLIxAHREF="http://robocop.modmath.cs.cmu.edu:8001/htbin/ mjwgenformII">International 

Interactive Genetic Art II Exhibit</A> 
<DTxDDxLIxA HREF="http://www.iiasa.ac.at/">International Institute for Applied Systems Analysis</A> 
<DTxDDxLIxa href="http://sharp.bu.edu/inns/">International Neural Network Society</a> 
<DTxDDxLIx:ahref="http://phil-preprints.l.chiba-u.ac.jp/IPPE/preprints2.htmr,>International Philosophical 

Preprint Exchange</a> 
<DTxDDxLIxA HREF="http://netq.rowland.org/isab/isab.html">International Society for Adaptive 

Behavior</A> 
<DTxDDxLIxA HREF="http://www.agh.edu.pl/-dimas95k/">International Workshop on Decentralized 

Intelligent and multi-agent systems</A> 
<DTxDDxLIxa href="http://www.hsr.no/~onar/Ess/ Back_to_Basics.html">Introduction to Systems Theory and 

Complexity</a> 
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<DT><DD><LI><^HREF=''http://www.cs.wisc.edu/~smucker/ipd-cr/ipd-cr.htrrir'>Iterated Prisoner's 
Dilemma</A> 

</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME='J">J</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxa HREF="http://jnns-www.okabe.rcast.u-tokyo.ac.jp/jnns/ home.html">Japan Neural Network 

Society (JNNS)</a> 
<DTxDDxLIxA HREF="http://www.phys.titech.ac.jp/-tag/non-linear.html">Japanese</A> Nonlinear Research 

sites 
<DTxDDxLIxa href="http://www.cs.washington.edu/research/jair/ home.html">Journal of Artificial 

Intelligence Research</a> 
<DTxDDxLIxA HREF="http://alife.santafe.edu/alife/software/jvn.html">JVN</ a> An implementation of the 

John von Neumann Universal Constructor 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME="K">K</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxa href="ftp://think.com/users/karl/Welcome.html">Karl Sims' Virtual Creatures</a> 
<DTxDDxLIxA HREF="http://wwwi3s.unice.fr/~om/khep-sim.html">Khepera Simulator</A> public domain 

C/C++ package for writing a controller for a mobile robot 
<DTxDDxLIxA href="http://www.cs.utexas.edu/users/mfkb/ related.html">Knowledge-Base Projects</A> 
<DTxDDxLIxa href="http://www_is.cs.utwente.nl:8080/kbs/ kbsgeneralpage.html">KBS (Knowledge Based 

Systems) group</a> 
<DTxDDxLIxA href="http://www.cs.umbc.edu/kqml/">Knowledge Query and Manipulation Language</A> 

(University of Maryland, Baltimore) 
<DTxDDxLIxA HREF="http://logic.stanford.edu/knowledge.html">Knowledge Sharing</a> (Stanford 

University) 
<DTxDDxLIxA href="ftp://cochlea.hut.fi/pub/">Teuvo Kohonen's Self-Organizing Map and Learning Vector 

Quantization software</a> 
<DTxDDxLIxA HREF="http://www-ncsl.postech.ac.kr/">Korea's</A> Postech Lab in Nonlinear Science 
<DTxDDxLIxa href="http://www<s-faculty.stanford.edu/~koza/">John Koza</a> (Evolutionary Programming) 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME="L">L</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxA href= "ftp://ftp.Germany .EU.net/pub/research/softcomp/AIife/ak-dewdney/">L-Systems</A> 
<DTxDDxLIxAHREF="http://www.cpsc.ucalgary.ca/~hammel/BioSim/Lsystems/software.html/">L-System 

Software</A> 
<DTxDDxLIxA HREF="http://www.santafe.edu/-cgl/">Chris Langton's Homepage</ A> 
<DTxDDxLIxA HREF="http://www-cse.ucsd.edu/users/fil/lee/lee.html">Latent Energy Environments</a> by 

Richard Belew and Filippo Menczer 
<DTxDDxLIxA href= "http://dis.cs.umass.edu/research/agents-learn.html">Learning in multiagent 

systems</A> 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ mitchel-resnik/">LEGO, 

LOGO, and other creatures</A> 
<DTxDDxLIxA HREF="http://www.cs.jhu.edu/~callahan/lifepage.html">Conway's Game of Life page</A> 

GHU) 
<DTxDDxLIxahref="ftp://life.anu.edu.au/pub/complex_systems/alife/ life">Game of Life </a> (AUS) 
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<DTxDDxLIxA HREF="ftp://ftp.cs.jhu.edu/pub/callahan/conways_life/ Hfel6.zip">Lifel6.zip</A> (DOS) 
<DTxDDxLIxA HREF="ftp://redback.cs.uwa.edu.au/Others/AndrewTrevorrow/ lifelab.sea">LifeLab 3.0</A> 
<DT><DD><LI><AHI^F=,Ttp://ftp.Germany.EU.net/pub/research/softcomp/Alife/packages/lifesearch/',>Life 

Search</A> 
<DTxDDxLIxA HREF="ftp://life.anu.edu.au/pub/complex_systems/alife/life/ lifep.zip">Life patterns</A> at 

Australian National University's Alife repository maintained by David Green 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ 

packages/lifesearch/">Lifesearch<a> (ftp) 
<DTxDDxLIxAHREF="http://shakti.trincoll.edu/~bhorling/bryansreallife.html">LindenmayerSystems</A> 
<DTxDDxLIxAHREF="http://liberty.uc.wlu.edu/~hblackme/newhome/ exemplary.html">Lindenmayer 

Systems Tutoriak/A> 
<DTxDDxLIxA HREF="http://www-dsi.ing.unifi.it/neural/w3-sites.html">List of Neural Networks sites</A> 

(Florence, Italy) 
<DTxDDxLIxa href="http://www.cs.ut.ee/-helger/complexity/communication/ papers.html">List of papers on 

Communication complexity</a> 
<DTxDDxLLxA HREF="http://www.fusebox.com/cb/alife.html">Live Artificial Life Page</A> 
<DTxDDxLIxA HREF="http://www.csc.liv.ac.uk/users/biocomp/">Liverpool Biocomputation Group</A> 
<DTxDDxLLxa href="http://hitchhiker.space.lockheed.com/aic/ README.html">Lockheed Artificial 

Intelligence Center</a> 
<DTxDDxLIxa href="http://peaplanLbiology.yale.edu:8001/loki.html">Loki</ a> a stochastic program 

simulating population genetics 
<DTxDDxLIxa HREF="http://cnls-www.lanl.gov/">Los Alamos National Lab, Center for Nonlinear Studies</A> 
<DTxDDxLIxA HREF="http://sextantens-lyon.fr/welcome_english.html">Lyon</ A> Nonlinear Group 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME="M ">M</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxA HREF="http://www.bdt.com/home/brianhill/elsewhere.html">Mac Alife Page</A> 
<DTxDDxLIxa href="http://www.cs.nott.ac.uk/Research/mig/">Machine Intelligence Group</a> 
<DTxDDxLIxA href="http://forum.swarthmore.edu/~jay/learn-game/">Machine Learning in Games</A> 
<DTxDDxLLxA href= "http://www.ai.univie.ac.at/oefai/ml/ml-ressources.html">Machine Learning Information 

Services</A> 
<DTxDDxLIxa href="http://www.cs.huji.ac.il/labs/learning/ lab_page.html">Machine Learning Lab</a> 
<DTxDDxLIxA HREF="http://www.cs.wisc.edu/~shavlik/ml95wl/ procs.html">Machine Learning '95 

workshop</A> 
<DTxDDxLIxA HREF="http://www.bdt.com/home/brianhill/ elsewhere.html">Macintosh alife software</a> 
<DTxDDxLIxA HREF="http://kal-el.ugr.es/macrophylon/ intro.html">Macrophylon</A> investigate 

patterns/dynamics involved in building evolutionary trees 
<DTxDDxLIxA HREF="http://www.uni-mainz.de/FB/Physik/Chaos/ chaos.html">Mainz: Johannes Gutenberg 

University Nonlinear Dynamics Group</A> 
<DTxDDxLIxa href="http://didecsl-f.epfl.ch:80/w3mantra/">MANTRA Home Page</ a> neural network 

theory, hardware accelerators and applications 
<DTxDDxLIxa href="http://www.wi.leidenuniv.nl/horne/mvdweg/ alife.html">Marco's Maddening</a> 

Artificial Life Page (<I>Netherlands</I>) 
<DTxDDxLIxA HREF="http://www.cs.wisc.edu/~smucker/EC.html">Mark Smucker's Evolutionary Computation 

and Artificial Life</A> 
<DTxDDxLIxa href="http://delphi.umd.edu/dynam.html">Maryland (UMD) Dynamical Systems and 

Accelerator Theory</a> 
<DTxDDxLIxa HREF="http://www-chaos.umd.edu/">Maryland (UMD) Chaos Web Home Page</a> 
<DTxDDxLIxa href="http://www.acl.lanl.gov/HPCC/ automata_l.html">Mathematics of One-Dimensional 

Cellular Automata</a> 
<DTxDDxLIxA HREF="http://kal-el.ugr.es/pitis.html">MbitiWorld</a> DOS/ Windows program with 

neural-net carnivorous/herbivorous evolving agents 
<DTxDDxLIxA HREF="http://www.uio.no/-mwatz/memetics/index.html">Memetics</ A> 
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<DTxDDxLIxAHREF="http://www.ens.fr:80/bioinfo/www/francais/perso/meyer/ meyer.html">Jean-Arcady 
Meyer's Homepage</A> 

<DTxDDxlixa href="http://isl.msu.edu/GA/">Michigan State University Genetic Algorithms Research and 
Applications Group</a> 

<DTxDDxLIxa href="http://www.ai.mit.edu/">MIT Artificial Intelligence Laboratory</a> 
<DTxDDxLIxA HREF="http://www.media.mit.edu/">MIT Media-Lab</A> 
<DTxDDxLIxA HREF="http://www.santafe.edu/~mm/">MeIanie Mitchell's Homepage</A> 
<DTxDDxLIxA HREF="http://www.dai.ed.ac.uk/groups/mrg/MRG.html">Mobile Robots Group</A> at the 

University of Edinburgh 
<DTxDDxLIxA HREF="http://www.cpsc.ucalgary.ca/projects/bmv/vmm/ title.html">Visual Models of 

Morphogenesis: A Guided Tour</A> 
<DTxDDxLIxA HREF=http://www.fusebox.com/cb/morphs/docs.html> Morphs</A> Evolution Game 

(<I>Pennsylvania</I>) 
<DTxDDxLIxA HREF="http://www.cogs.susx.ac.uk/users/davec/pe.html">Movies</ A> of evolved 

pursuit/evasion strategies (<I>England</I>) 
<DTxDDxLIxa href="http://http2.brunel.ac.uk:8080/~hssrkng/NNcourse/ entry.html">MSc Intelligent Systems 

Neural Nets</a> course material 
<DTxDDxLIxA href="http://www.cs.utexas.edu/users/mfkb/ index.html">Multifunctional Knowledge Base 

Group</A> (University of Texas at Austin) 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME="N">N</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxahref="http://planchet.rutgers.edu/">NanotechnologyArchive</a> 
<DTxDDxLIxa href="http://www.lucifer.com/~sean/Nano.html">Nanotechnology</ a> Links and Pointers 
<DTxDDxLIxA href="http://fas.sfu.ca/cs/research/groups/NLL/ toc.html">Natural Language Laboratory</A> 

(Simon Fräser University) 
<DTxDDxLIxA href="http://cl-www.dfki.uni-sb.de/cl/registry/ draft.html">Natural Language Software 

Registry</A> (German Research Institute for AI in Saarbruecken) 
<DTxDDxLIxa href="http://hebb.cis.uoguelph.ca/home/ns.html">Natural Selection Research Group</a> 

University of Guelph 
<DTxDDxLIxAhref="http://www.cs.cmu.edu/afs/cs.cmu.edu/project/alv/member/ 

www/navlab_home_page.html">NAVLAB</A> (Carnegie Mellon University) 
<DTxDDxLIxAHREF="ftp://ftp.Ge rmany.EU.net/pub/research/softcomp/Alife/ 

packages/neoterics/">Neoterics</A> A Boids-like Screensaver 
<DTxDDxLIxa href="http://web.mit.edu/-redingtn/www/netadv/">The Net Advance of Physics</a> is a 

journal/encyclopedia covering all areas of physics 
<DTxDDxLIxA HREF="http://alife.santafe.edu/alife/software/ netlife.html">NeÜife</A> Evolving neural nets 

in an environment 
<DTxDDxLIxa href="http://www.d.umn.edu/~cbusch/dist/net-life-htmls/ netlife.html">Netlife page</a> by 

Christopher G. Busch 
<DTxDDxLIxa href="http://www.mech.gla.ac.uk/~nactftp/nacthtml">Neural Adaptive Control 

Technology</a> 
<DTxDDxLIxA href="http://ftp.funet.fi/pub/sci/neural/www/ neural.html">Neural Archive Site</A> (Finnish 

University) 
<DTxDDxLIxahref="http://www.dcs.shef.ac.uk/research/groups/ainn/">Neural Computing</a> 
<DTxDDxLIxA href="http://synap.neuro.sfc.keio.ac.jp/">Neural Computing Center</A> (Keio University, 

Fujisawa, Japan) 
<DTxDDxLIxa href="http://neural-server.aston.ac.uk/">Neural Computing Research Group</a> Neural 

Computing Research Group at Aston University 
<DTxDDxLIxA href= "http://www.emsl.pnl.gov:2080/docs/cie/neural/gateway-alpha.html">Neural Net Sites: A 

Gateway To The World</A> (Pacific Northwest Laboratory) 
<DTxDDxLIxahref="http://www.emsl.pnl.gov:2080/docs/cie/neural/ neural.homepage.html">Neural 

Networks at Pacific Northwest National Laboratory</a> 
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<DTxDDxLIxa href="http://ice.gis.uiuc.edu/Neural/neural.htmI">A Basic Introduction To Neural 
Networks</a> 

<DTxDDxLIxAHREF="http://www.msrc.pnl.gov:2080/docs/cie/neural/ neural.homepage.html">Neural 
Networks</A> at the Molecular Science Research Center 

<DTxDDxLIxAHREF="http://'www.emsl.pnl.gov:2080/docs/cie/neural/ neural.homepage.html">Neural 
Networks </A> at the Pacific Northwest Laboratory 

<DTxDDxLIxA HREF="http://www.scs.unr.edu/~cbmr/research/subject/ neural.html">Neural Networks 
(CBMR): List</A> 

<DTxDDxLIxA HREF="http://laws.lanl.gov/xl_homepage.html">Neural Networks at Los Alamos</A> 
<DTxDDxLIxa href="http://www.ai.univie.ac.at/oefai/nn/neufodi.htmI">Neural Networks in Diagnosis and 

Forecasting Applications</a> 
<DTxDDxLIxa href="http://wwwxs.bgu.ac.il/~omri/NNUGA/">Neural Networks Using Genetic 

Algorithms</a> 
<DTxDDxLIxA href="ftp://me.uta.edu/pub/neural/annsim/">Neural Network Software</A> 
<DTxDDxLIxa href="http://www/globalweb.co.uk/nctt/">Neurocomputing WWW site</a> British Department 

of Trade and Industry 
<DTxDDxLIxAHREF="http://www.neuroneLph.kcl.ac.uk:80/neuronet/">NEuroNet</A> 
<DTxDDxLLxA HREF="ftp://archive.cis.ohio-state.edu/pub/ neuroprose">Neuroprose Archives</A> at Ohio 

State University 
<DTxDDxLIxA HREF="http://http2.sils.umich.edu/Public/nirg/ nirgl.html">Neurosciences Internet Resource 

Guide</A> (Univ. of Michigan) 
<DTxDDxLIxahref="news:comp.theory.cell-automata">Newsgroup: comp.theory.cell-automata</a> 
<DTxDDxLIxa href="http://garfield.fe.up.pt:8001/portugues/niar/ niar.html">NIA&R-Artificial Intelligence & 

Robotics Group</a> 
<DTxDDxLIxA HREF="http://www.nbi.dk/CATS/">Niels Bohr Institute</a> CATS - Center for Chaos and 

Turbulence Studies 
<DTxDDxLIxA HREF="ftp://ftp.uni-mainz.de/pub/chaos/chaosbib">NonIinear Dynamics</A> (University of 

Mainz) 
<DTxDDxLIxA HREF="http://www.cc.duth.gr/~mboudour/nonlin.html">Nonlinear dynamics and 

complexity</A> 
<DTxDDxLIxA HREF="http://rupert.physics.mun.ca/homepage.html">Nonlinear dynamics and patterns</A> 

(Canada) 
<DTxDDxLIxAHREF="http://www.physics.mcgill.ca/physics-services/ physics_complex.html">Nonlinear 

Dynamics Site List</A> (Mcgill) 
<DTxDDxLIxA HREF="http://tl3.1anl.gov/~nxt/intro.html" >Nonlinear Dynamics and Topological Time Series 

Analysis Archive</A> 
<DTxDDxLIxA HREF="ftp://lyapunov.ucsd.edu/pub">Nonlinear Dynamics Archive</ A> UCSD 
<DTxDDxLIxa href="http://xyz.lanl.gov/">Nonlinear Science e-Print Archive</ a> 
<DTxDDxLIxa href="http://www.springer-ny.com/nst">Nonlinear Science Today</ a> (Springer-Verlag) 
<DTxDDxLIxa href="http://www.cc.duth.gr/~mboudour/ nonlin.html">Nonlinearity and Complexity Home 

Page</a> 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME="0">0</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxahref="http://www.hsr.no/-onar/Octonion.html">OctonionFractals</a> 
<DTxDDxLIxa href="http://www.phy.ohiou.edu/research/chaos.html">Ohio University: Nonlinear 

Systems/Chaos Research</a> (Athens, OH) 
<DTxDDxLIxA HREF="http://www.cs.columbia.edu/~evs/gpsym95.html">On-line archive of the AAAI 

Symposium on Genetic Programming</A> 
<DTxDDxLIxA HREF="http://lautaro.fbl0.tu-berlin.de/">Online Introduction to Evolution Strategies</A> 

Germany 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
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<DLxHR> 
<HlxA NAME="P">P</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxaHREF="http://www.emsl.pnl.gov:2080/docs/cie/neural/ neural.homepage.html">Pacific 

Northwest Laboratory: Neural Nets</a> 
<DTxDDxlixa href="http://www.mat.sbg.ac.at/~uhl/GA.htmI">Parallel genetic algorithms</a> 
<DTxDDxLIxA HREF="http://st-www.cs.uiuc.edu/users/patterns/ patterns.html">Patterns Home Page</A> 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ 

packages/pc-life/">PG-life</A> (ftp) 
<DTxDDxLIxA HREF="http://www.math.psu.edu/weiss/ds.html">Penn State Dynamical Systems' group</A> 
<DTxDDxLIxa href="http://mugwump.ucsd.edu/bkeeley/work-stuff/Alife_Bib.html">Philosophy of Artificial 

Life Bibliography</a> 
<DTxDDxLIxA HREF="http://alife.santafe.edu/alife/archives.html">Alife papers archive</A> at Alife Online 

(SFI) 
<DTxDDxLIxa href="http://www.pcmp.caltech.edu">Physics of Computation Group at Caltech</a> 
<DTxDDxLIxAHREF="http://hypatia.ucsc.edu:70/l/JPX">Plane Chaos</A> a hyperbook on discrete dynamics 

in two dimensions 
<DTxDDxLIxA href="ftp://boulder.colorado.edu/pub/generic-sources/">PlaNet</ A> a neural network 

simulator 
<DTxDDxLIxAHREF=''http://www.missouri.edu/~poktab/">NonlinearPolitics</A> 
<DTxDDxLIxA HREF="http://alife.santafe.edu/alife/software/ polyworld.html">Polyworld</a> An 

artificial-world for evolutionary studies 
<DTxDDxLIxa href="http://www.agnld.uni-potsdam.de/Zentrum/d/ d.html">Potsdam University: Center for 

Interdisiplinary Research in Nonlinear Dynamics</A> (Germany) 
<DTxDDxLIxA HREF="http://www.io.com/-spofford/index.html">Primoridal Life</ a> A Windows 95 / NT 

(x86) screen saver that evolves "biots" 
<DTxDDxLIxA HPvEF="http://alife.santafe.edu/alife/software/ psoup.html">Primoridal Soup</a> artificial life 

system that generates self-reproducing organisms from sterile soup 
<DTxDDxLIxa href="http://math.wisc.edu/~griffeat/kitchen.html">Primordial Soup Kitchen</a> (David 

Griffeath) 
<DTxDDxLIxA HREF="http://pespmcl.vub.ac.be/" >Principia Cybernetica</A> 
<DTxDDxLIxA HREF="http://www.krl.caltech.edu/-charles/alife-game/">Project Von Neumann</A> The 

Game Universe 
<DTxDDxLIxa href="ftp://publications.ai.mit.edu">Publications from MIT AI Lab</a> (ftp) 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME="Q">Q</Ax/Hl> 
</DL> 

<OL> 
<DTxDDxLIxA href="http://www.cs.utexas.edu/~qr/">Qualitative Reasoning Research Group</A> (University 

of Texas) 
<DTxDDxLIxa href="http://eve.physics.ox.ac.uk/QChome.html">Quantum Computation Homepage at 

Oxford</a> 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME="R">R</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxAHREF="http://www.cs.cmu.edu:8001/afs/cs.cmu.edu/user/katia/www/ 

katia-home.html">Reactive Agents</a> (Carnegie Mellon University) 
<DTxDDxLIxA HREF="http://www.ee.pdx.edu/-rseymour/">The Reed College Artificial Life Project</A> 
<DTxDDxLIxA HREF="http://kant.irmkantrm.cnr.it/gral.html">Research Group on Artificial Life</A> 

Institute of Psychology, Rome, Italy 
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* 

<DT><DD><LI><ahref=''http://csli-www.stanford.edu/csli/9394reps/agents9394-nilsson.html">Researchon 
Autonomous Agents</a> (Stanford) 

<DTxDDxLIxA href="http://www.seas.upenn.edu/~ale/cplxsys.html">Resource Guide to Complex Systems on 
the Net</A> 

<DTxDDxlixa href="http://reality.sgi.com/employees/craig/">Craig W. Reynolds' Homepage</a> 
<DTxDDxLIxa href="ftp://ftp.csl.uiuc.edu">Robotica Simulation Program</a> (ftp) 
<DTxDDxLIxa href="http://www.cs.indiana.edu/robotics/FAQ/ copy.html">Robotics FAQ,</a> 
<DTxDDxLIxa href="http://piglet.cs.umass.edu:4321/robotics.html">Robotics Internet Resources Page</a> 
<DTxDDxLIxa href="http://robotics.jpl.nasa.gov">Robotic Systems & Advanced Computer Technology 

Section</a> (JPL) 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME="S">S</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxa href="http://www.nada.kth.se/nada/sans/index.html">SANS - Studies of Artificial Neural 

Systems</a> 
<DTxDDxLIxA HREF="http://www.santafe.edu/" >Santa Fe Institute</A> 
<DTxDDxLIxa href="http://arti.vub.ac.be/www/chaos/intro.html">Science at the Edge of Chaos</a> 
<DTxDDxLIxA HREF="http://phenom.physics.wisc.edu/-shalizi/hyper-weird/ complexity.html">Sciences of 

Complexity</A> 
<DTxDDxLIxA HREF="http://www.tiac.net/users/Emergent/">Self-Organizing Emergent Behavior</A> 
<DTxDDxLIxa href="http://www.ezone.com/sos/">Self-Organizing Systems</a> 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ 

packages/self/">Selfreplicating shar archive</A> 
<DTxDDxLIxA HREF="http://gal4.ge.uiuc.edu/illigal.home.html">Simple Classifier System</A> 
<DTxDDxLIxa href="http://www.sri.andrews.edu/">Sirnulation Resources, Inc. (SRI)</a> 
<DTxDDxLIxa href="ftp://funic.funeLfi/pub/sci/neural/SNNS" >SNNS </a> a neural network simulator 

written at the University of Stuttgart, Germany 
<DTxDDxLIxA HREF="http://www-rci.rutgers.edu/~mizrach/SNDE/ snde.html">Society for Nonlinear 

Dynamics and Econometrics</A> (Rutgers) 
<DTxDDxLIxa href="http://www.cogs.susx.ac.uk:80/users/christ/aisb/ ">Society for the study of artificial 

intelligence and simulation of behavior (AISB)</a> 
<DTxDDxLIxA HREF="http://www.cs.washington.edu/homes/etzioni/">Softbots</ a> (University of 

Washington) 
<DTxDDxLIxA HREF="http://www.smli.com/research/tcl/lists/AGENTS/ index.html#163">Software Agents 

Mailing List</A> by thread 
<DTxDDxLIxa href="http://info.latech.edu/-mike/ieee.html">Software Complexity in Rule-Based Systems</a> 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ 

docs/spaceships/">Spaceships</A> in Conway's Game of Life 
<DTxDDxLIxA HREF="http://research.Germany.EU.neL-8080/-joke/rsc/ ships_toc.html">Spaceships</A> in 

Conway's Game of Life (2) 
<DTxDDxLIxA href="http://ai.iiLnrc.ca/subjects/Speech.html">Speech Recognition and Synthesis</A> 
<DTxDDxLIxA HREF="http://el.www.media.mit.edu/groups/el/Projects/ starlogo">Starlogo</a> A simple 

complex systems simulations implemented in logo 
<DTxDDxLIxahref="http://www.cs.monash.edu.au/~lloyd/tildeMML/MDL/SC.html">Stochastic 

Complexity</a> 
<DTxDDxLIxa href="http://www-mitpress.mit.edu/SNDE/WWW/journal/ demo.html">Studies in Nonlinear 

Dynamics and Econometrics</a> 
<DTxDDxLIxA HREF="http://osiris.sund.ac.uk/ahu/sugal/home">SUGAL</A> a genetic algorithm package 
<DTxDDxLIxA HREF="http://envy.cs.umass.edu/People/sutton/ archive.html">Sutton's Reinforcement 

Learning Archive</A> 
<DTxDDxLIxA HREF="http://www.santafe.edu/projects/swarm/">The Swarm Project</A> headed by Chris 

Langton. 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
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</DL> 
<DLxHR> 
<HlxA NAME="T">T</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxa href="http://tl3.1anl.gov/">T-13</a> Complex Systems Group at Los Alamos National 

Laboratory 
<DTxDDxLIxA HREF="http://neuron.tau.ac.il/">Tel-Aviv University Neural Computation Group</A> 
<DTxDDxLIxa HREF="http://www.cs.utexas.edu/">Texas: UTCS Neural Nets Research Group</A> 
<DTxDDxLIxA HREF="http://chaos.ph.utexas.edu:80/home.html">Texas: UT Center of Nonlinear Dynamics 

(CNLD)</A> 
<DTxDDxLIxAHREF="ftp://ftp.Ge rmany.EU.net/pub/research/softcomp/Alife/ 

zooland/online/al96.ps.gz">Theory of Self-reproducing Automata and Life</A> by Hendrik 
Tiedemann and Jörg Heitkötter 

<DTxDDxLIxA HREF="http://alife.santafe.edu/alife/software/ tierra.html">Tierra</a> is a system for studying 
ecological and evolutionary dynamics by Tom Ray 

<DTxDDxLIxA HREF=http://www.hip.atr.co.jp/-ray/tierra/tierra.html>Tierra home page</A> 
<DTxDDxLIxA HREF=ftp://micros.hensa.ac.uk/micros/ibmpc/dos/h/hl44/>Tierra</ A> simulator (DOS) 
<DTxDDxLIxA HREF="http://www.krl.caltech.edu/avida/ NetTierraWG.html">Tierra Working Group 

report</A> from the Tierra Workshop 
<DTxDDxLIxa HREF="http://www.krl.caltech.edu/~brown/complex.html">Titus' Collection of References to 

Complex Systems</A> 
<DTxDDxlixa href="http://www.geom.umn.edu/-trowley/genetic/">Toolkit for Visual Genetic 

Programming</a> 
<DTxDDxLIxA href="http://ai.iitnrc.ca/subjects/Eliza.html">Turing Test, Eliza, Loebner Prize</A> 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DL> 
<HRxHlxA NAME="U">U</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxA HREF="ftp://ics.uci.edu/pub/machine-learning-databases/">UCI Repository of Machine 

Learning Databases-;/A> 
<DTxDDxLIxA HREF="http://www.ucl.ac.uk/-ucesjph/home.html">UCL</A> University College London 

Program in Nonlinear Dynamics 
<DTxDDxLIxa href="ftp://cogneLucla.edu/pub/alife/papers">UCLA Artificial Life ftp site</a> 
<DTxDDxlixa href="http://www.lifesci.ucla.edu/repository/alife/">UCLA Artificial Life Group</a> 
<DTxDDxLIxa href="http://www.amsta.leeds.ac.uk/Applied/news.dir/ index.html">UK nonlinear news</a> 
<DTxDDxLIxa href="http://www-personal.engin.umich.edu/-streak/ garg.html">UMich Genetic Algorithm 

Research Group</a> 
<DTxDDxLIxA HREF="http://einstein.unh.edu: 1905/grad/ PhysicsDept.html#Nonlinear">UNH</A> 

Nonlinear dynamics at the University of New Hampshire 
<DTxDDxLIxA HREF="http://www.ccsr.uiuc.edu/">Urbana</A> Center for Complex Systems 
<DTxDDxLIxA HREF="http://cado.maths.uwa.edu.au">UWA</A> University of Western Australia 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME='V>V</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxA HREF="http://compsci.cas.vanderbilt.edu/ch/ ch.html">Vanderbilt</A> Chaos book 
<DTxDDxLIxa HREF="http://opal.vcu.edu/html/biomede/compdyn.html">Virginia Commonwealth University 

Complex Dynamic Systems Research</A> 
<DTxDDxLIxa href="ftp://think.com/users/karl/Welcome.html">Virtual Creatures</A> by Karl Sims (MPEG 

movie and papers) 

176 



Appendix A 

<DTxDDxLIxA HREF="http://www.cpsc.ucalgary.ca/projects/bmv/vmni/ title.html">Visual Models of 
Morphogenesis: A Guided Tour</A> 

<DTxDDxLIxa href= "http://www.cs.brandeis.edu/-zippy/aIife-library.html">Virtual ALife Library </a> 
<DTxDDxLIxa href="http://life.csu.edu.au/vl_complex/libraryl.html">Virtual Library on Complex 

Systems</a> 
<DTxDDxLIxA HREF="http://web-hou.iapc.net/~koops/vivarium/ vivarium.html">Vivarium</A> is an 

interactive simulation of the evolution of behavior 
<DTxDDxLIxA HREF="http://www.cs.brandeis.edu/dept/index.html">Volen National Center for Complex 

Systems</A> at Brandeis University 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DLxHR> 
<HlxA NAME="W">W</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxA HREF="http://fuzine.mLcs.cmu.edu/mlm/signidr94.html">Web Agent Related Research</a> 

(Carnegie Mellon University) 
<DTxDDxLIxa HREF="http://wissgi.weizmann.ac.il/physics/ phys_nlin.html">Weizmann Institute (Israel) 

non-linear dynamics</a> 
<DTxDDxLIxA HREF="http://aurora.physics.uwo.ca/stockwel/ time_series.html">Western Ontario (UWO at 

London) Time Series Analysis</A> (Canada) 
<DTxDDxLIxa href="http://www.nd.com/welcome/whatisnn.htm">What is an Artificial Neural Network?</a> 
<DTxDDxLTxa href="http://www.nonlin.tu-muenchen.de/chaos/wiw.html">Who Is Who Handbook of 

Nonlinear Dynamics</A> (München) 
<DTxDDxLIxA HREF="http://newciv.org/worldtrans/whole.html" >Whole Systems</ A> 
<DTxDDxLIxA HREF="http://www.seattleantioch.edu/WholeSystem/">Whole Systems Design</A> 
<DTxDDxLIxA HREF="http://netq.rowland.org/sw/swhp.html">Stewart Wilson's Homepage</A> 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ 

packages/winca">WinCA</A> A fast cellular automata simulator with Windows GUI, by Bob Fisch 
and David Griffeath 

<DTxDDxLIxAHREF="ftp://ftp.Germany .EU.net/pub/research/softcomp/Alife/ 
packages/win-ga">WinGA</A> A genetic algorithm simulator with Windows GUI, by Ian Munro 

<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ 
packages/winlife">WinLife</A> A nice implementation of John Conway's "Life Game" 

<DTxDDxLIxA HREF="ftp://ftp.digital.com/pub/games/ winlife.zip">WinLife.zip</A> by John Harper, for 
PC's running MS-Windows 3.1 

<DTxDDxLIxA HREF="ftp://ftp.cs.jhu.edu/pub/callahan/conways_life/ wlife.zip">W-Life</A> (MS-Windows 
3.1portofXLife2.0) 

<DTxDDxLIxa href="http://www.ai.univie.ac.at/oefai/nn/servers.html">WWW Neural Network Home 
Pages</A> (University of Vienna) 

</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DL> 
<HRxHlxA NAME="X">X</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxA HREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/ chris-langton/">Xca</A> A 

self-replicating cellular automaton by Chris Langton 
<DTxDDxLIxA HREF="ftp://ai.toronto.edu/pub/xerion/">Xerion</A> a neural network simulator 
<DTxDDxLIxa href="ftp://parcftp.xerox.com/pub/dynamics">Xerox PARCk/a> some papers on the evolution 

of cooperative behaviour 
<DTxDDxLIxAHREF="ftp://ftp.Germany.EU.net/pub/research/softcomp/Alife/packages/xlife/">Xlife</A> 

The fastest life package (version 3.0) 
<DTxDDxLIxA HREF="http://www.ccsf.caltech.edu/ismap/image.html">Xmorphia</ A> morphogenesis from 

a reaction-diffusion system 
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<DTxDDxLIxA HREF="http://penguin.phy.bnl.gov/www/xtoys">Xtoys</A> programs for X windows that 
self-organized criticality 

<DTxDDxLIxA HREF="htp://www.mindspring.com/~zsol/nnintro.html">ZSolutions</ a> an introduction to 
neural networking 

</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DL> 
<HRxHlxA NAME="Y'>Y</Ax/Hl> 
</DL> 
<OL> 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<DL> 
<HRxHlxA NAME="Z">Z</Ax/Hl> 
</DL> 
<OL> 
<DTxDDxLIxahref="http://alife.santafe.edu:80/~joke/zooland/">Zooland</a> 
<DTxDDxLIxA HREF="http://www.d.umn.edu/~cbusch/toolbox.html">ZooLife</A> an alife application 

written in C++ for UNIX 
</OL> 
<DLxDTxDDxLIxIxA HREF="#aa">Back to top of this page </Ax/I> 
</DL> 
<hr> 
<p> 
<hr size=7mm> 

<P> 
Last Update: 18 March, 1996 
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Appendix B: Glossary of Terms 

Adaptation 

Any change in the structure or function of an entity (say, a biological 
organism) that allows it to survive and reproduce more effectively in its 
environment. 

Algorithmic Complexity 

A measure of the complexity of a problem. Typically defined as the size of the 
smallest program that computes the given problem or that generates a 
complete description of it. 

Animate 

Artificial animals consisting of both software and hardware. Typically designed 
to be able to adapt to their environment over time. 

Artificial Life 

This is not a concept that is yet ready to be rigorously defined. The most 
concise, but still far from rigorous definition, is simply: life as synthesized by 
man rather than by nature. One of the basic tenets of this still-infant field is 
the belief that life is not unique to its biological (and, as yet, only known) 
form, but is a more general property of the organization of matter. Artificial 
life explores life as it could be as opposed to life as we know it to be. 

Attractor 

Dissipative dynamical systems are characterized by the presence of some sort 
of internal "friction" that tends to contract phase-space volume elements. 
Contraction in phase space allows such systems to approach a subset of the 
phase-space called an attractor as the elapsed time grows large. Attractors 
therefore describe the long-term behavior of a dynamical system. Steady state 
(or equilibrium) behavior corresponds to fixed-point attractors, in which all 
trajectories starting from the appropriate basin-of-attraction eventually 
converge onto a single point. For linear dissipative dynamical systems, fixed 
point attractors are the only possible type of attractor. Nonlinear systems, on 
the other hand, harbor a much richer spectrum of attractor types. For 
example, in addition to fixed-points, there may exist periodic attractors such 
as limit cycles. There is also an intriguing class of chaotic attractors called 
strange attractors that have a complicated geometric structure (see Chaos and 
Fractals). 

Autonomous (or Adaptive-) Agent 

An entity that, by sensing and acting upon its environment, tries to fulfill a set 
of goals in a complex, dynamic environment 
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• it can sense the environment through its sensors and act on the 
environment through its actuators 

• it has an internal information processing and decision making 
capability 

• it can anticipate future states and possibilities, based on internal models 
(which are often incomplete and/or incorrect) 

0    this anticipatory ability often significantly alters the aggregate 
behavior of the system of which an agent is part 

• an agent's goals can take on diverse forms: 

°   desired local states 

0    desired end goals 

°    selective rewards to be maximized 

°    internal needs (or motivations) that need to be kept within desired 
bounds 

• since a major component of an agent's environment consists of other 
agents, agents spend a great deal of their time adapting to the 
adaptation patterns of other agents 

Autoplectic Systems 

Consider a dynamical system whose behavior appears random or chaotic. 
There are two ways in which an apparent randomness can occur: (1) external 
noise, so that if the evolution of the system is unstable, external perturbations 
amplify exponentially with time - such systems are called homoplectic; (2) 
internal mechanisms, so that the randomness is generated purely by the 
dynamics itself and does not depend on any external sources or require that 
randomness be present in the initial conditions - such systems are called 
autoplectic systems. An example of an autoplectic system is the 
one-dimensional, two-state, two neighbor Cellular Automaton rule-30, starting 
from a single non-zero site. The temporal sequence of binary values starting 
from that single non-zero initial seed are completely random, despite the fact 
that the evolution is strictly deterministic and the initial state is ordered. 

Autopoiesis 

Autopoiesis literally means "self-reproduction," and expresses a fundamental 
complementarity between structure and function. More precisely, the term 
refers to the dynamics of non-equilibrium structures; that is, organized states 
(sometimes also called dissipative structures) that remain stable for long 
periods of time despite matter and energy continually flowing through them. 
A vivid example of a nonequilibrium structure is the Great Red Spot on 
Jupiter, which is essentially a gigantic whirlpool of gases in Jupiter's upper 
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atmosphere. This vortex has persisted for a much longer time (on the order of 
centuries) than the average amount of time any one gas molecule has spent 
within it. 

Backpropagation Algorithm 

The backpropagation algorithm is a learning rule for multi-layered Neural 
Networks, credited to Rumelhart and McClelland. The algorithm gives a 
prescription for adjusting the initially randomized set of synaptic weights 
(existing between all pairs of neurons in each successive layer of the network) 
so as to maximize the difference between the network's output of each input 
fact and the output with which the given input is known (or desired) to be 
associated. The backpropagation rule takes its name from the way in which the 
calculated error at the output layer is propagated backwards from the output 
layer to the N* hidden layer to the (N-1)* hidden layer, and so on. Because 
this learning process requires us to to "know" the correct pairing of 
input-output facts beforehand, this type of weight adjustment is called 
supervised learning. 

Basin of Attraction 

The basin of attraction is the ensemble of points P such that if the trajectory 
starts from P it approaches the Attractor. 

Bifurcation 

The splitting into two modes of behavior of a system that previously displayed 
only one mode. This splitting occurs as a control parameter is continuously 
varied. In the Logistic Equation, for example, a period-doubling bifurcation 
occurs whenever all the points of period-2n cycle simultaneously become 
unstable and the system becomes attracted to a new period-2n+1 cycle. 

Boolean Function 

A function that maps an n-tuple of binary values - (x,, Xj,, ..., xn), where xi = 0 
or 1 for all i - to another binary value (either 0 or 1). There are clearly 2A(2n) 
possible Boolean functions that can defined for a given n-tuple. 

Cantor Set 

A simple example of a Fractal set of points having noninteger Hausdorff 
Dimension. For example, the triadic Cantor set is constructed as follows: take 
the unit interval (= [0,1]) and generate a new set by deleting the open interval 
(1/2, 2/3); that is, by deleting the middle third. Generate a new set by 
deleting the middle thirds (1/9, 2/9) and (7/9, 8/9) from the previous set 
with the middle third removed. The Cantor set is essentially what remains of 
the unit interval in the limit of generating successive "middle third" deleted 
sets from the original set. It can be shown that the Fractal Dimension of this 
set is approximately equal to 0.6309. 
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Catastrophe Theory 

Catastrophe theory, introduced by Thom in the 1960s, is a mathematical 
formalism for modeling nonlinear systems whose behavior is determined by 
the actions of a small number of driving parameters. In particular, it applies to 
systems that undergo either gradual or sudden changes in behavior due to 
gradually changing forces. It has been applied to many problems in 
mathematics, physics and the social sciences. Thom called the sudden changes 
that take place in a system "catastrophes" and developed a theory as a method 
of analyzing and classifying these changes. Thorn's theorem asserts that the 
stationary state behavior of all systems that have up to four control parameters 
(or input variables) and two behavior (or output) variables, and which also 
have an associated potential function, can be described using one of seven 
elementary catastrophes. 

Cellular Automata 

Cellular automata (CA) are a class of spatially and temporally discrete, 
deterministic mathematical systems characterized by local interaction and an 
inherently parallel form of evolution. First introduced by von Neumann in the 
early 1950s to act as simple models of biological self-reproduction, CA are 
prototypical models for complex systems and processes consisting of a large 
number of identical, simple, locally interacting components. The study of 
these systems has generated great interest over the years because of their 
ability to generate a rich spectrum of very complex patterns of behavior out of 
sets of relatively simple underlying rules. Moreover, they appear to capture 
many essential features of complex self-organizing cooperative behavior 
observed in real systems. Although much of the theoretical work with CA has 
been confined to mathematics and computer science, there have been 
numerous applications to physics, biology, chemistry, biochemistry, and 
geology, among other disciplines. Some specific examples of phenomena that 
have been modeled by CA include fluid and chemical turbulence, plant 
growth and the dendritic growth of crystals, ecological theory, DNA evolution, 
the propagation of infectious diseases, urban social dynamics, forest fires, and 
patterns of electrical activity in neural networks. CA have also been used as 
discrete versions of partial differential equations in one or more spatial 
variables. 

Cellular Games 

A cellular game is a dynamical system in which sites of a discrete lattice play a 
"game" with neighboring sites. Strategies may be deterministic or stochastic. 
Success is usually judged according to a universal and fixed criterion. 
Successful strategies persist and spread throughout the lattice; unsuccessful 
strategies disappear. 

Chaos 

Deterministic chaos refers to irregular or chaotic motion that is generated by 
nonlinear systems evolving according to dynamical laws that uniquely 
determine the state of the system at all times from a knowledge of the system's 
previous history. It is important to point out that the chaotic behavior is due 
neither to external sources of noise nor to an infinite number of 
degrees-of-freedom nor to quantum-mechanical-like uncertainty. Instead, the 
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source of irregularity is the exponential divergence of initially close 
trajectories in a bounded region of phase-space. This sensitivity to initial 
conditions is sometimes popularly referred to as the "butterfly effect," alluding 
to the idea that chaotic weather patterns can be altered by a butterfly flapping 
its wings. A practical implication of chaos is that its presence makes it 
essentially impossible to make any long-term predictions about the behavior of 
a dynamical system: while one can in practice only fix the initial conditions of 
a system to a finite accuracy, their errors increase exponentially fast. 

Chaotic Control 

It has recently been suggested that the extreme sensitivity of chaotic systems to 
small perturbations to to initial conditions (the so called "butterfly effect") can 
be exploited to stabilize regular dynamic behaviors and to effective "direct" 
chaotic trajectories to a desired state. This is a capability that has no 
counterpart in nonchaotic systems for the ironic reason that the trajectories in 
nonchaotic systems are stable and thus relatively impervious to desired 
control. A recent survey article (Grebogi, Ott, et. al.) lists applications for 
communications (in which chaotic fluctuations can be put to use to send 
controlled, pre-planned signals), for physiology (controlling chaos in heart 
rhythms), for fluid mechanics and chemical reactions. As another recent 
example, a few years ago NASA used small amounts of residual hydrazine fuel 
to steer the ISEE-3/ICE spacecraft to its rendezvous with a comet 50 million 
miles away. This was possible because of the sensitivity of the three-body 
problem of celestial mechanics to small perturbations. 

Classifier Systems 

Classifier systems were introduced by John Holland as an attempt to apply 
Genetic Algorithms to cognitive tasks. They are similar to production systems 
of the "if...then" variety in artificial intelligence. A classifier system typically 
consists of (1) a set of detectors (or input devices) that provide information to 
the system about the state of the external environment, (2) a set of effectors 
(or output devices) that transmit the classifier's conclusions to the external 
environment, (3) a set of rules (or classifiers), consisting of a condition and 
action, and (4) a list of messages. Learning is supervised as in multilayered 
Neural Networks. 

Class-P Problems 

The Computational Complexity of a problem is defined as the time it takes for 
the fastest program running on a universal computer - as measured in 
number of computing steps, say N - to compute the solution to the problem. 
The complexity is then classified according to how fast N grows as a function 
of the problem size, s. The first non-trivial class of problems - class-P - consists 
of problems for which the computation time increases as some polynomial 
function of s. Problems that can be solved with polynomial-time algorithms are 
called tractable; if they are solvable but are not in the class-P, they are called 
intractable. 

Co-Adaptation/Co-Evolution 

The evolutionary process of a biological species in nature is often described as 
though that species were trying to adapt to a fixed environment. However, 
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such a description only crudely approximates what really happens. In nature, 
the "environment" consists of both a relatively (but not completely) stable 
physical environment as well as other species of organisms that are 
simultaneously trying to adapt to their environment. The actions of each of 
these other species typically affects the actions of all other species that occupy 
the same physical environment. In biology (and hence Artificial Life and 
studies involving Genetic Algorithms), the terms "co-adaptation" and 
"co-evolution" are sometimes used to refer to the fact that all species 
simultaneously co-adapt and co-evolve in a given physical environment. 

Complex Adaptive Systems 

Macroscopic collections of simple (and typically nonlinearly) interacting units 
that are endowed with the ability to evolve and adapt to a changing 
environment. 

Complexity 

An extremely difficult "I know it when I see it" concept to define, largely 
because it requires a quantification of what is more of a qualitative measure. 
Intuitively, complexity is usually greatest in systems whose components are 
arranged in some intricate difficult-to-understand pattern or, in the case of a 
dynamical system, when the outcome of some process is difficult to predict 
from its initial state. In its lowest precisely when a system is either highly 
regular, with many redundant and/or repeating patterns or when a system is 
completely disordered. While over 30 measures of complexity have been 
proposed in the research literature, they all fall into two general classes: 

• Static Complexity - which addresses the question of how an object or 
system is put together (i.e. only purely structural informational aspects 
of an object), and is independent of the processes by which information 
is encoded and decoded 

• Dynamic Complexity - which addresses the question of how much 
dynamical or computational effort is required to describe the 
information content of an object or state of a system 

Note that while a system's static complexity certainly influences its dynamical 
complexity, the two measures are not equivalent. A system may be structurally 
rather simple (i.e. have a low static complexity), but have a complex dynamical 
behavior. 

Computational Complexity 

Computational complexity measures the time and memory resources that a 
computer requires in order to solve a problem. A somewhat more robust 
measure may be defined by invoking the Universal Turing Machine. The 
Computational Complexity of a problem is then defined as the time it takes 
for the fastest program running on a universal computer (as measured in 
number of computing steps) to compute the solution to the problem. 
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Computational Irreducibility 

Much of theoretical physics has traditionally been concerned with trying to 
find "shortcuts" to nature. That is to say, with trying to find methods that are 
able to reproduce a final state of a system by knowing the initial state but 
without having to meticulously trace out each step from the initial to final 
states. The fact that we can write down a simple parabola as a path a thrown 
object makes in a gravitational field is an example of an instance where this 
might be possible. Clearly such shortcuts ought to be possible in principle if 
the calculation is more sophisticated than the computations the physical 
system itself is able to make. But consider a computer. Because a computer is 
itself physical system, it can determine the outcome of its evolution only by 
explicidy following it through. No shortcut is possible. Such computational 
irreducibility occurs whenever a physical system can act as a computer. In such 
cases, no general predictive ability is possible. Computational irreducibility 
implies that there is a highest level at which abstract models of physical 
systems can be made. Above that level, one can model only by explicit 
simulation. 

Computational Universality 

Computational universality is a property of a certain class of computers such 
that changes in input alone allow any computable function to be evaluated 
without any change in internal construction. Universal computers can thus 
simulate the operation of any other computer, given that their input is suitably 
coded. Conway's life Game, for example, has been shown to be a universal 
computer. This means that with a proper selection of initial conditions (i.e. 
the initial distribution of "live" and "dead" cells), Life can be turned into a 
general purpose computer. This fact fundamentally limits the overall 
predictability of Life's behavior. The Halting Theorem, for example, asserts 
that there cannot exist a general algorithm for predicting when a computer 
will halt its execution of a given program. Given that Life is a universal 
computer - so that the Halting theorem applies - this means that one cannot, 
in general, predict whether a particular starting configuration of live and dead 
cells will eventually die out No shortcuts are possible, even in principle. 

Conservative Dynamical Systems 

In contrast to Dissipative Dynamical Systems, conservative systems preserve 
Phase Space volumes and hence cannot display any attracting regions in phase 
space; there can be no fixed points, no limit cycles and no strange attractors. 
There can nonetheless be chaotic motion in the sense that points along 
particular trajectories may show sensitivity to initial conditions. A familiar 
example of a conservative system from classical mechanics is that of a 
Hamiltonian system. 

Cost Function 

In optimization problems, the cost function measures how good a particular 
solution to the problem is; the higher its value the better the solution. Also 
called the fitness function. 
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Coupled-Map Lattices 

Generic Cellular Automata (CA) are dynamical systems in which space, time 
and the local state space are all discretized. Coupled-map lattices are simple 
generalizations of CA in which space and time remain discrete, but in which 
the individual site values are allowed to take on continuous values. 

Criticality 

"Criticality" is a concept borrowed from thermodynamics. Thermodynamic 
systems generally get more ordered as the temperature is lowered, with more 
and more structure emerging as cohesion wins over thermal motion. 
Thermodynamic systems can exist in a variety of phases - gas, liquid, solid, 
crystal, plasma, etc. - and are said to be critical if poised at a phase transition. 
Many phase transitions have a critical point associated with them, that 
separates one or more phases. As a thermodynamic system approaches a 
critical point, large structural fluctuations appear despite the fact the system is 
driven only by local interactions. The disappearance of a characteristic length 
scale in a system at its critical point, induced by these structural fluctuations, is 
a characteristic feature of thermodynamic critical phenomena and is universal 
in the sense that it is independent of the details of the system's dynamics. (See 
Self-Organized Criticality) 

Crossover Operator 

One of three basic genetic operations used in Genetic Algorithms. 
Reproduction makes a set of identical copies of a given chromosome, where 
the number of copies depends on the chromosome's fitness. The crossover 
operator exchanges subparts of two chromosomes, where the position of the 
crossover is randomly selected, and is thus a crude facsimile of biological 
sexual recombination between two single-chromosome organisms. The 
mutation operator randomly flips one or more bits in the chromosome, where 
the bit positions are randomly chosen. 

Dissipative Structure 

An organized state of a physical system whose integrity is maintained while the 
system is far from equilibrium. Example: the great Red-Spot on Jupiter. 
Dissipative Dynamical Systems Dissipative systems are dynamical systems that 
are characterized by some sort of "internal friction" that tends to contract 
phase space volume elements. Phase space contraction, in turn, allows such 
systems to approach a subset of the space called an Attractor (consisting of a 
fixed point, a periodic cycle, or Strange Attractor), as time goes to infinity. 

Edge-of-Chaos 

The phrase "edge-of-chaos" refers to the idea that many complex adaptive 
systems, including life itself, seem to naturally evolve towards a regime that is 
delicately poised between order and chaos. More precisely, it has been used as 
a metaphor to suggest a fundamental equivalence between the dynamics of 
phase transitions and the dynamics of information processing. Water, for 
example, exists in three phases: solid, liquid and gas. Phase-transitions denote 
the boundaries between one phase and another. Universal computation - that 
is, the ability to perform general purpose computations and which is arguably 
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an integral property of life - exists between order and chaos. If the behavior of 
a system is too ordered, there is not enough variability or novelty to carry on 
an interesting calculation; if, on the other hand, the behavior of a system is 
too disordered, there is too much noise to sustain any calculation. Similarly, in 
the context of evolving natural ecologies, "edge-of-chaos" refers to how - in 
order to successfully adapt - evolving species should be neither too methodical 
nor too whimsical or carefree in their adaptive behaviors. The best exploratory 
strategy of an evolutionary "space" appears at a phase transition between order 
and disorder. Despite the intuitive appeal of the basic metaphor, note that 
there is currently some controversy over the veracity of this idea. 

Emergence 

Emergence refers to the appearance of higher-level properties and behaviors 
of a system that - while obviously originating from the collective dynamics of 
that system's components - are neither to be found in nor are directly 
deducable from the lower-level properties of that system. Emergent properties 
are properties of the "whole" that are not possessed by any of the individual 
parts making up that whole. Individual line of computer code, for example, 
cannot calculate a spreadsheet; an air molecule is not a tornado; and a neuron 
is not conscious. Emergent behaviors are typically novel and unanticipated. 

Entropy 

A measure of the degree of randomness or disorder in a system. Determines a 
system's capacity to evolve irreversibly in time. Specific definitions vary 
depending on the type of system considered. Examples: (1) in statistical 
systems, the entropy is proportional to the logarithm of the total number of 
possible states with the same energy as the state under consideration.; (2) in 
classical thermodynamics, the differential change in entropy of a system near 
equilibrium is the differential change in absorbed heat divided by the system 
temperature; (3) in nonlinear deterministic dynamical systems, the 
Kolmogorov-Sanai entropy is often used as a measure. It is defined as the sum 
of the positive Lyapunov Exponents of the system. 

Ergodic System 

An ergodic dynamical system is one whose trajectory eventually "covers" the 
entire phase space. Put another way, given any point P in the phase space, the 
trajectory will approach P arbitrarily closely for sufficiently large times t. 

Ergodic Theory 

A branch of applied mathematics that uses statistical concepts to describe 
average properties of deterministic dynamical systems. The ergodic hypothesis 
(which asserts that a phase-space average of a measurable X is equal to its 
time-average)provides the basis for classical statistical mechanics. Attempts at 
providing a rigorous mathematicalvproof od the ergodic hypothesis include 
Poincare's recurrence theorem (which asserts that a trajectory will return to any 
neighborhood of its initial state if one waits loing enough) and the ergodic 
theorems of Birkhoff and von Neumann. 
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Evolution 

A general term referring to the dynamical unfolding of behavior over time. 
Darwinian evolution refers to the unfolding of higher (i.e. more complex) life 
forms out of lower life forms. 

Evolutionary Programming 

Evolutionary programming is essentially an application of genetic algorithms 
to computer programs. Typically the genome is represented by a LISP 
expression, so that what evolves is a population of programs, rather than 
bit-strings as in the case of a usual genetic algorithm. For references see Koza 
[179] and the WWW sources listed in appendix A. 

Evolutionary Stable Strategy 

A concept from a generalized form of Game Theory. Animals are endowed 
with a finite set of possible strategies that they can use in their interactions 
with other animals. Strategies may be "pure," in which the animal acts 
according to a prescribed set of instructions in all contexts, or "mixed," in 
which the animal adopts different strategies with different probabilities. The 
evolutionary stable strategy (ESS) is a strategy, or set of strategies such that if it 
is adopted by all animals no other strategy can invade the population. 

Finite Automata 

Human languages can, conceptually, be regarded as a set of rules for 
constructing sequences of symbols according to a fixed set of rules of 
composition in order to convey meaning. One can therefore consider using a 
Cellular Automaton as a formalism for studying the abstract properties of 
language. To be more precise, a finite automaton M is defined to consist of a 
finite alphabet A, a finite set of states X, and a state-transition function f: X x A 
-> X that gives the next state given the current state and the current input 
symbol. (There is also a set T in X, which is the set of final or accepting states 
of the automaton.) 

Fitness Landscape 

A name for the landscape representing the fitness measure (or Cost Function) 
of a problem. Examples: Traveling Salesman Problem, survivability of a real or 
virtual creature. 

Flicker- (or 1/f-) Noise 

Whenever the power spectral density, S(f), scales as f\ the system is said to 
exhibit 1/f-noise (or flicker-noise). Despite being found almost everywhere in 
nature - 1/f-noise has been observed in the current fluctuations in a resistor, 
in highway traffic patterns, in the price fluctuations on the stock exchange, in 
fluctuations in the water level of rivers, to name just a few instances - there is 
currently no fundamental theory that adequately explains why this same kind 
of noise should appear in so many diverse kinds of systems. What is clear is 
that since the underlying dynamical processes of these systems are so 
different, the common bond cannot be dynamical in nature, but can only be a 
kind of "logical dynamics" describing how a system's degrees-of-freedom all 
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interact, self-organized criticality may be a fundamental link between temporal 
scale invariant phenomena and phenomena exhibiting a spatial scale 
invariance. Bak, et. al., argue that 1/f noise is actually not noise at all, but is 
instead a manifestation of the intrinsic dynamics of Self-Organized Critical 
systems. 

Fractals 

Fractals are geometric objects characterized by some form of self-similarity; 
that is, parts of a fractal, when magnified to an appropriate scale, appear 
similar to the whole. Coastlines of islands and continents and terrain features 
are approximate fractals. The Strange Attractors of nonlinear dynamical 
systems that exhibit deterministic Chaos typically are fractals. 

Fractal Dimension 

Suppose a set can be covered by a finite number N of segments of length L. 
There is a simple scaling relationship between these two numbers. For a line 
segment, L grows as 1/R; for a square, L grows as 1/R2; for a cube, L grows as 
1/R5, and so on. The fractal dimension D is defined by generalizing this 
intuitive scaling: D = lim^^ In(N)/(In(1/R), where ln(x) is the natural 
logarithm. Sometimes also called the Hausdorff dimension or the Kolmogorov 
capacity. 

Frustration 

In Spin Glasses, a phenomenon in which individual magnetic moments 
receive competing ordering instructions via different routes, because of the 
variation of die interaction between pairs of atomic moments with separation. 

Fuzzy Logic 

Fuzzy set theory provides a formalism in which the conventional binary logic 
based on choices "yes" and "no" is replaced with a continuum of possibilities 
that effectively embody the alternative "maybe". Formally, the characteristic 
function of set X defined by f(x) =1 for all x in X and f (x)=0 for all x not in X 
is replaced by the membership function 0 < m(x) < 1 for all c in X. The 
mathematics of fuzzy set theory was originated by L. A. Zadeh in 1965. 

Genetic Algorithms 

Genetic algorithms are a class of heuristic search methods and computational 
models of adaptation and evolution based on natural selection. In nature, the 
search for beneficial adaptations to a continually changing environment (i.e. 
evolution) is fostered by the cumulative evolutionary knowledge that each 
species possesses of its forebears. This knowledge, which is encoded in the 
chromosomes of each member of a species, is passed from one generation to 
the next by a mating process in which the chromosomes of "parents" produce 
"offspring" chromosomes. Genetic algorithms mimic and exploit the genetic 
dynamics underlying natural evolution to search for optimal solutions of 
general combinatorial optimization problems. They have been applied to the 
travelling salesman problem, VLSI circuit layout, gas pipeline control, the 
parametric design of aircraft, neural net architecture, models of international 
security, and strategy formulation. 
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Genotype 

The genetic instruction code of an individual. 

Hamiltonian System 

A dynamical system that conserves volumes in phase space. Examples include 
mechanical oscillators without friction and the motion of a planet. 

Hausdorff Dimension 

For an operational definition of Hausdorff dimension, proceed as follows: 
Suppose a set can be covered by a finite number N of segments of length L. 
There is a simple scaling relationship between these two numbers. For a line 
segment, L grows as 1/R; for a square, L grows as 1/R2; for a cube, L grows as 
1/R3, and so on. The Hausdorff dimension D is defined by generalizing this 
intuitive scaling: D = limR->0 ln(N)/(ln(l/R), where ln(x) is the natural 
logarithm. Sometimes also called the fractal dimension or the Kolmogorov 
capacity. 

Hierarchy 

Hierarchies consist of levels each of which include all lower levels; i.e. systems 
within systems within systems...within the total system in question. Evolution in 
complex systems leads to differentiation in multilevel hierarchic systems. 

Homoclinic Point 

A point in Phase Space of a nonlinear dynamical system that evolves to a point 
of unstable equilibrium in infinite time. Homoclinic Orbit The ensemble of 
points in the Phase Space of a nonlinear dynamical system that all evolve to a 
point of unstable equilibrium after an infinite time. 

Hopf-Bifurcation 

In the Logistic Map, a fixed point may lose its stability by splitting (or 
bifurcating) into a pair of points that form a period two orbit. Another 
common way in which a point may become unstable is by effectively turning 
into a small circle that then increases in size, deforms and becomes unstable as 
the controlling parameter is increased. This is called the Hopf Bifurcation. 

Hypercycle 

A scenario for the origin of self-replicating molecular systems proposed by 
Manfred Eigen. The scenario involves template-instructed replicating cycles 
consisting of feedback loops in which molecule A generates molecule B, 
molecule B generates molecule C, and molecule C generates molecule A, and 
so on. 

Information Dimension 

Partition a d-dimensional Phase Space into boxes of volume ed. The 
probability of finding a point of an Attractor in box i is p;(e) = Ni(E)/N(e), 
where NL(e) is the number of points in the ith box and N(e) is the total 
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4 

number of non-empty boxes, p^e) is the relative frequency with which the ith 
box is visited. The amount of information required to specify the state of the 
system to within an accuracy "e" (or, equivalendy, the information gain in 
making a measurement that is uncertain by an amount "e"), is given by . The 
information dimension, D,, of an attractor is then defined to be Dj = lim „^ 
I(e)/ln(l/e). 

Information Theory 

like the physically primitive notions of mass and energy of a particle, the 
information content, I, of an arbitrary measurement or message composed of 
particular symbol sequence, is itself a primitive concept. While the roots of 
information theory extend back to the definition of the classical entropy of a 
physical system introduced by Clausius in 1864 and Boltzman's probabilistic 
re-interpretation of classical entropy in 1896, the mathematical formalism for 
measuring I is due largely to a seminal 1948 paper by Claude E. Shannon. 
Within the context of sending and receiving messages in a communication 
system, Shannon was interested in finding a measure of the information 
content of a received message. Shannon's approach was to obtain a measure of 
the reduction of uncertainty given some a-priori knowledge of the symbols 
being sent. Suppose we are given N different and a-priori equally likely 
possible outcomes. A measure of the information gain, I, is obtained by 
required that I be additive for independent events. That is to say, if there are 
two independent sets of outcomes Nt nd N2, so that the total number of 
outcomes is N = N, + N2, it is required that I(N, * N2) = I(N,) + I(N2). This 
requirement is uniquely satisfied by the function 1= c log(N), where "c" is an 
arbitrary constant. 

Intermittency 

A term used in the study of nonlinear dynamical systems describing the 
changes between quiet, regular periods of activity (called the laminar phase) 
and periods of wild, chaotic oscillation (called bursts). Intermittency is a 
common route to chaos in physical systems. 

Kolmogorov Entropy 

The Kolmogorov entropy (or K-entropy) is a useful measure by which to 
characterize chaotic motion in an arbitrary-dimensional phase space. Loosely 
speaking, the K-entropy is proportional to the rate at which information about 
the state of a dynamical system is lost in the course of time. It is related to the 
average Lyapunov Exponent, which measures the exponential rate of 
divergence of nearby trajectories. 

Lattice Gas Models 

Lattice gases are micro-level rule-based simulations of macro-level fluid 
behavior. The Navier-Stokes Equations, the fundamental equations describing 
incompressible fluid flow, are in general analytically intractable. Lattice-gas 
models provide a powerful new tool in modeling real fluid behavior. The idea 
is to reproduce the desired macroscopic behavior of a fluid by modeling the 
underlying microscopic dynamics. In order to achieve an Emergence of a 
suitable macrodynamics out of a discrete microscopic substrate, one must have 
three    basic   ingredients:    (1)    local   thermodynamic    equilibrium,    (2) 

191 



Appendix B 

conservation laws, and (3) a "scale separation" between the levels at which the 
microscopic dynamics takes place (among kinetic variables living on a 
micro-lattice) and the collective motion itself appears (defined by 
hydrodynamical variable on a macro-lattice). Another critical feature is the 
symmetry of the underlying lattice. While there are many basic variants of the 
model, one can show that there is a well-defined minimal set of rules that 
define a lattice-gas system whose macroscopic behavior reproduces that 
predicted by the Navier-Stokes equations exactly. 

Life Game 

Invented by the mathematician John Conway, Life is arguably the most widely 
known Cellular Automaton rule. It was extensively popularized by Martin 
Gardner in his "Mathematical Games" department in Scientific American in 
the early 1970s. Life is "played" using the eight nearest-neighbors on a lattice, 
and consists of (1) seeding the lattice with some pattern of "live" and "dead" 
cells, and (2) simultaneously (and repeatedly) applying the following three 
rules to each cell of the lattice at discrete time steps: 

• Birth: replace a previously dead cell with a live one if exactly 3 of its 
neighbors are alive 

• Death: replace a previously live cell with a dead one if either (1) the 
living cell has no more than one live neighbor (i.e. it dies of isolation), 
or (2) the living cell has more than three neighbors (i.e. it dies of 
overcrowding) 

• Survival: retain living cells if they have either 2 or 3 neighbors 

One of the most intriguing patterns in Life is an oscillatory propagating 
pattern known as the "glider." It consists of 5 "live" cells and reproduces itself 
in a diagonally displaced position once every four iterations. When the states 
of Life are projected onto a screen in quick succession by a fast computer, the 
glider gives the appearance of "walking" across the screen. The propagation of 
this pseudo-stable structure can also be seen as a self-organized emergent 
property of the system. 

Limit-Cycle 

An Attractor describing regular (i.e. periodic or quasi-periodic) temporal 
behavior. 

Lindenmeyer (or L-) Systems 

L-systems were introduced by Aristid Lindenmeyer in 1968 as a model for the 
cellular development of filamentous plants. In simplest terms, L-systems 
consist of production rules for rewriting abstract strings of symbols. They can 
be thought of as generalized Cellular Automata in which the number of sites 
can increase over time. 

Logistic Equation 

The logistic map is one of the simplest (continuous and differentiable) 
nonlinear systems that captures most of the key mechanisms responsible for 
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producing deterministic chaos. It is a one-dimensional nonlinear discrete 
difference equation with a single control parameter, a: xn+1 = axn(l-xn), where 
0 < Xj, < 1 and 0 < a < 4. The logistic equation undergoes a sequence of 
period-doubling Bifurcations followed by regions of deterministic chaos as a is 
varied between the values 0 and 4. Some aspects of this behavior - such as the 
ratio of bifurcation intervals as chaos is approached - are Universal; that is, are 
independent of the details of the system. 

Lotka-Volterra Equations 

In 1926, Volterra proposed a simple model for the predation of one species by 
another to explain the oscillatory level of certain fish in the Atlantic. If N(t) is 
the prey population and P(t) is the predator population at time t then 
Volterras's model is dN/dt = N (a - bP), dP/dt = P (cN - d), where a,b,c, and d 
are positive constants. The model assumes: (1) prey in absence of predation 
grows linearly with N (i.e. in Malthusian fashion); (2) predation reduces prey's 
growth rate by a term proportional to the prey and predation populations; (3) 
the predator's death rate, in the absence of prey, decays exponentially; (4) the 
prey's contribution to the predator's growth rate is proportional to the 
available prey as well as to the size of the predator population. The system of 
equations is known as the Lotka-Volterra equations because Lotka derived the 
same equations in 1920 for a chemical reaction he believed to exhibit periodic 
behavior. 

Lyapunov Exponent 

A fundamental property of chaotic dynamics is sensitivity to small changes to 
initial conditions. Initially closely separated starting conditions evolving along 
regular dynamical trajectories diverge only linearly in time; a chaotic 
evolution, on the other hand, leads to exponential divergence in time. 
Lyapunov exponents quantify this divergence by measuring the mean rate of 
exponential divergence of initially neighboring trajectories. A trajectory of a 
system with a negative Lyapunov exponent is stable and will converge to an 
Attractor exponentially with time. The magnitude of the Lyapunov exponent 
determines how fast the attractor is approached. A trajectory of a system with a 
positive Lyapunov exponent is unstable and will not converge to an attractor. 
The magnitude of the positive Lyapunov exponent determines the rate of 
exponential divergence of the trajectory. 

Markov Process 

A Markov process is a process for which, if the present is given, the future and 
past are independent of each other. More precisely, if tx < ... < tn are 
parameter values, and if 1 < j < n, then the sets of random variables [x(tj),..., 
x(tj.,)] and [x(tj+1), ...,x(tn)] are mutually independent for given x(t). 
Equivalently, the conditional probability distribution of x(tn) for given x(tj), 
..., x(tn.1) depends only on the specified value of x(tn.,) and is in fact the 
conditional probability distribution of x(tn), given x(tn.1). An important and 
simple example is the Markov chain, in which the number of states is finite or 
denumerably infinite. 
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Maximum Entropy 

The principle of maximum entropy states that when one has only partial 
information about the probabilities of possible outcomes of an experiment, 
one should choose the probabilities so as to maximize the uncertainty about 
the missing information. Put another way, since entropy is a measure of 
randomness, one should choose the most random distribution subject to 
whatever constraints are imposed on the problem. 

Mean-Field Theory 

In a mean field approximation a system is assumed to be determined by the 
average properties of the system as a whole. In a mean-field-theoretic 
description of a thermodynamic system, for example, all particles are 
considered to contribute equally to the potential at each site. Therefore, the 
mean field theory essentially assumes the intermolecular interaction to be of 
infinite range at all temperatures. The mean field theories are qualitatively 
quite successful in that they predict the existence of critical points and power 
law dependence of the various thermodynamic quantities near the critical 
point. They generally become more quantitatively successful as the 
dimensionality of the system increases. 

Multifractal 

The simplest fractal sets are characterized by some form of self-similarity, in 
which parts, when magnified by a constant r, appear similar to the original 
whole. The more general class of fractals are really multi-scale fractals, or 
multifractals, which are characterized by multiple subdivisions of the original 
into N objects, each magnified by by a different factor ri; i=l,2,...,N. 

Navier-Stokes Equations 

These are a set of analytically intractable coupled nonlinear partial differential 
equations describing fluid flow. 

Neural Networks 

Neural nets represent a radical new approach to computational problem 
solving. The methodology they represent can be contrasted with the 
traditional approach to artificial intelligence (AI). Whereas the origins of AI 
lay in applying conventional serial processing techniques to high-level 
cognitive processing like concept-formation, semantics, symbolic processing, 
etc. - or in a top-down approach - neural nets are designed to take the 
opposite - or bottom-up - approach. The idea is to have a human-like 
reasoning emerge on the macro-scale. The approach itself is inspired by such 
basic skills of the human brain as its ability to continue functioning with noisy 
and/or incomplete information, its robustness or fault tolerance, its 
adaptability to changing environments by learning, etc. Neural nets attempt to 
mimic and exploit the parallel processing capability of the human brain in 
order to deal with precisely the kinds of problems that the human brain itself 
is well adapted for. 
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Nonlinearity 

If f is a nonlinear function or an operator, and x is a system input (either a 
function or variable), then the effect of adding two inputs, x, and Xj, first and 
then operating on their sum is, in general, not equivalent to operating on two 
inputs separately and then adding the outputs together; i.e. . Popular form: 
the whole is not necessarily equal to the sum of its parts. Dissipative nonlinear 
dynamic systems are capable of exhibiting self-organization and chaos. 

NP-Hard Problems 

A class of problems, known as nondeterministic polynomial time - or class-NP 
- problems, that may not necessarily be solvable in polynomial time, but the 
actual solutions to which may be tested for correctness in polynomial time. 

NP-Complete 

Just as there are universal computers that, given a particular input, can 
simulate any other computer (see Universal Computer), there are 
NP-complete problems that, with the appropriate input, are effectively 
equivalent to any NP-hard problem of a given size. For example, Boolean 
"satisfiability" - i.e. the problem of determining truth values of the variable's of 
a Boolean expression so that the expression is true - is known to be an 
NP-complete problem. 

Order Parameter 

An order parameter is a scalar or vector parameter associated with a 
continuous phase transition that determines the physical nature of the 
transition. It has the value zero in the random state (typically above the 
transition temperature) and takes on a nonzero value in the ordered state 
(typically below the transition). In the case of a fluid, for example, the order 
parameter is a scalar and is the difference in density between the liquid and 
vapor phases. 

Percolation Theory 

Percolation theory represents the simplest model of a disordered system. 
Consider a square lattice, where each site is occupied randomly with 
probability p or empty with probability 1-p. Occupied and empty sites may 
stand for very different physical properties. For simplicity, let us assume that 
the occupied sites are electrical conductors, the empty sites represent 
insulators, and that electrical current can flow between nearest neighbor 
conductor sites. At low concentration p, the conductor sites are either isolated 
or form small clusters of nearest neighbor sites. Two conductor sites belong to 
the same cluster if they are connected by a path of nearest neighbor 
conductor sites, and a current can flow between them. At low p values, the 
mixture is an insulator, since a conducting path connecting opposite edges of 
the lattice does not exist. At large p values, on the other hand, many 
conduction paths between opposite edges exist, where electrical current can 
flow, and the mixture is a conductor. At some concentration in between, 
therefore, a threshold concentration pc must exist where for the first time 
electrical current can percolate from one edge to the other. Below pc, we have 
an insulator; above pc we have a conductor. The threshold concentration is 
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called the percolation threshold, or, since it separates two different phases, 
the critical concentration. 

Petri Nets 

Petri nets are abstract models used to represent parallel systems and processes. 
They are typically described using directed graphs (i.e. graphs whose edges 
are depicted by arrows showing a direction of information flow). More 
precisely, a petri net is a seven-tuple (P, T, V, f, g, N, m), where (1) P is a 
nonempty finite set of nodes, (2) T is a nonempty finite set of transitions, (3) 
V is a valuation space {0,1}, (4) f is a binary function used in determining the 
connections from nodes to transitions (i.e. f: P x T -> V, and if f(p,t)=l then 
node P connects to transition T, otherwise not), (5) g is a binary function used 
in determining the transitions to connect to nodes (i.e. g: T x P -> V and a 
connection is made from t to p if and only if g(t,p)=l), (6) N is a set of 
markings {0,1,2,...}, and (7) m is the initial marking function, m: P-> N. 

Phase Space 

A mathematical space spanned by the dependent variables of a given 
dynamical system. If the system is described by an ordinary differential flow 
the entire phase history is given by a smooth curve in phase space. Each point 
on this curve represents a particular state of the system at a particular time. 
For closed systems, no such curve can cross itself. If a phase history a given 
system returns to its initial condition in phase space, then the system is 
periodic and it will cycle through this closed curve for all time. Example: a 
mechanical oscillator moving in one-dimension has a two-dimensional phase 
space spanned by the position and momentum variables. 

Phase Transition 

An abrupt change in a system's behavior. A common example is the gas-liquid 
phase transition undergone by water. In such a transition, a plot of density 
versus temperature shows a distinct discontinuity at the critical temperature 
marking the transition point. Similar behavior can be seen in systems 
described by ordinary differential flows and discrete mappings. In nonlinear 
dynamical systems, the transition from self-organizing to chaotic behavior is 
sometimes referred to as a phase transition (or, more specifically, as an 
order-disorder transition). 

Phenotype 

The overall attributes of an organism arising from the interaction of its 
Genotype with the environment. 

Poincare Map 

A dynamical system is usually defined as a continuous flow, that is (1) is 
completely defined at all times by the values of N variables - x^t), x^t), ..., 
xN(t), where x,(t) represents any physical quantity of interest, and (2) its 
temporal evolution is specified by an autonomous system of N, possibly 
coupled, ordinary first-order differential equations. Once the initial state is 
specified, all future states are uniquely defined for all times t. A convenient 
method for visualizing continuous trajectories is to construct an equivalent 
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discrete-time mapping by a periodic "stroboscopic" sampling of points along a 
trajectory. One way of accomplishing this is by the so-called Poincare map (or 
surface-of-section) method. Suppose the trajectories of the system are curves 
that live in a three-dimensional Phase Space.The method consists essentially of 
keeping track only of the intersections of this curve with a two-dimensional 
plane placed somewhere within the phase space. 

Prisoner's Dilemma 

The prisoner's dilemma is a two person non-zerosum game that has been 
widely used in experimental and theoretical investigations of cooperative 
behavior. Two persons suspected of a crime are caught, but there is not 
enough evidence to sentence them unless one of them confesses. If they are 
both quiet (or cooperate, C), both will have to be released. If one confesses 
(defects, D) but the other does not, the one who confesses will be released but 
the other will be imprisoned for a long time. Finally, if both confess, both will 
be imprisoned, but for a shorter time. It is assumed that the prisoner's make 
their respective choices separately and independenüy of one another. If the 
game is "played" once, each player find defection to be the optimal behavior, 
regardless of what his opponent chooses to do. Finding the optimal strategy to 
follow over time, however, is considerably more difficult. 

Probabilistic CA 

Cellular Automata for which the deterministic state transitions are replaced 
with specifications of the probabilities of cell-value assignments. For such 
systems, the focus of analysis shifts from studying evolutions of arbitrary initial 
states to studying ensembles of trajectories. 

Punctuated Equilibrium 

A theory introduced in 1972 to account for what the fossil record appears to 
suggest are a series of irregularly spaced periods of chaotic and rapid 
evolutionary change in what are otherwise long periods of evolutionary stasis. 
Some Artificial Life studies suggest that this kind of behavior may be generic 
for evolutionary processes in complex adaptive systems. 

Quasiperiodic 

Characterizes behavior of a dynamical system that is almost, but not quite, 
periodic.Quasiperiodic regions of phase space are frequendy linked together 
to form a Strange Attractor. The transition between such quasiperiodic 
regions is characterized by the crossing of a Homoclinic Point. 
Quasiperiodicity often results when nonlinear dynamical systems are driven by 
periodic driving forces with periods that are incommensurate with (i.e. not a 
rational fraction of) the system response time. 

Random Boolean Networks 

A size N random Boolean network of size k generalizes the basic binary 
Cellular Automata model by evolving each site variable xi = 0 or 1 according to 
a randomly selected Boolean Function of k inputs. Since there are two choices 
for every combination of states of the k inputs at each site, the Boolean 
function is randomly selected from among the 2A(2")   possible Boolean 
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functions of k inputs. This model was first introduced by Kauffman in 1969 in 
a study of cellular differentiation in a biological system (binary sites were 
interpreted as elements of an ensemble of genes switching on and off 
according to some set of random rules). Since its conception, however, related 
models have found wide application in an increasingly large domain of diverse 
problems. Such models of strongly disordered systems exhibit remarkable and 
unexpected order. 

Reaction-Diffusion Models 

Reaction-diffusion systems, the first studies of which date back to the 1950s, 
often exhibit a variety of interesting spatial patterns that evolve in 
self-organized fashion. One of the most famous reaction-diffusion systems - 
widely regarded as the prototypical example of oscillating chemical reactions - 
is the so-called Belousov-Zhabotinskii (or BZ) reaction. The BZ model involves 
the reaction of bromate ions with an organic substrate (typically malonic acid) 
in a sulfuric acid solution with cerium (or some other metal-ion catalyst). 
When this mixture is allowed to react exothermally at room temperature, 
interesting spatial and temporal oscillations (i.e. chemical waves) result. The 
system oscillates, changing from yellow to colorless to back to yellow about 
twice a minute with the oscillations typically lasting for over an hour (until the 
organic substrate is exhausted). A number of Cellular Automata models have 
been found that exhibit BZ-like spatial waves. 

Relativistic Information Theory 

Relativistic information theory is a concept introduced by Jumarie and has 
been suggested as a possible formalism for describing certain aspects of 
military command and control processes by Woodcock and Dockery. The basic 
idea is that a generalized entropy is endowed with four components, so that it 
is equivalent to a four-vector and may be transformed by a Lorentz 
transformation (As in relativity). These four components consists of: (1) the 
external entropy of the environment (H0), (2) the internal entropy of the 
system (Hj), (3) system goals, and (4) the internal transformation potential, 
which measures the efficiency of the system's internal information 
transformation. An additional factor, called the organizability, plays the role of 
"velocity." Woodcock and Dockery show that it is possible to use relativistic 
information theory to compare the relative command and control system 
response of two command structures to the world around them. The quantity 
of interest is dH/dH0, or the rate of change of the internal information 
environment with respect to changes in the surrounding environment. 

Scaling Laws 

Theoretical studies of critical phenomena have focused on predicting the 
value of critical exponents. One of the most important ideas is the scaling 
hypothesis. This hypothesis is model-independent and applicable to all critical 
systems. The underlying assumption is that the long-range correlation of the 
order parameter, such as the density fluctuation in a fluid system near the 
critical temperature, is responsible for all singular behavior. This assumption 
leads to a particular functional form for the equation of state near the critical 
point. 
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Search Space 

The variation of the Cost Function can be imagined to be a landscape of 
potential solutions to a problem where the height of each feature represents 
its cost. This landscape is sometimes referred to as the search space. 

Self-Organization 

The spontaneous emergence of macroscopic nonequilibrium organized 
structure due to the collective interactions among a large assemblage of 
simple microscopic objects. 

Self-Organized Criticality 

Self-organized criticality (SOC) describes a large body of both 
phenomenological and theoretical work having to do with a particular class of 
time-scale invariant and spatial-scale invariant phenomena. Fundamentally, 
SOC embodies the idea that dynamical systems with many degrees of freedom 
naturally self-organize into a critical state in which the same events that 
brought that critical state into being can occur in all sizes, with the sizes being 
distributed according to a power-law. The kinds of structures SOC seeks to 
describe the underlying mechanisms for look like equilibrium systems near 
critical points (see Criticality) but are not near equilibrium; instead, they 
continue interacting with their environment, "tuning themselves" to a point at 
which critical-like behavior appears. Introduced in 1988, SOC is arguably the 
only existing holistic mathematical theory of self-organization in complex 
systems, describing the behavior of many real systems in physics, biology and 
economics. It is also a universal theory in that it predicts that the global 
properties of complex systems are independent of the microscopic details of 
their structure, and is therefore consistent with the "the whole is greater than 
the sum of its parts" approach to complex systems. Put in the simplest possible 
terms, SOC asserts that complexity is criticality. That is to say, that SOC is 
nature's way of driving everything towards a state of maximum complexity. 

Simulated Annealing 

A mathematical technique for general combinatorial optimization 
problems.The name comes from the physical process of annealing, during 
which a material is first heated and then slowly cooled. During annealing, the 
component atoms of a material are allowed to settle into a lower energy state 
so that a more stable arrangement of atoms is maintained throughout the 
cooling process. 

Solitons 

A mathematically appealing model of real particles is that of solitons. It is 
known that in a dispersive medium, a general wave form changes its shape as it 
moves. In a nonlinear system, however, shape-preserving solitary waves exist. 

Spatio-Temporal Chaos 

A large class of spatially extended systems undergoes a sequence of transitions 
leading to dynamical regimes displaying chaos in both space and time. In the 
same way as temporal chaos is characterized by the coexistence of a large 
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number of interacting time scales, spatio-temporal chaos is characterized by 
having a large number of interacting space scales. Examples of systems leading 
to spatio-temporal chaos include the Navier-Stokes Equations and 
reaction-diffusion equations. Coupled-map Lattices have been used for study. 

Spin Glasses 

A magnetic material whose magnetic magnets respond to both ferromagnetic 
and antiferromagnetic interactions causing frustration, so that not all the 
constraints necessary to minimize the system's overall energy can be 
simultaneously satisfied. There are exponentially stable states, but finding the 
global ground state is an NP-Hard optimization problem. 

Strange Attractors 

Describes a form of long-term behavior in dissipative dynamical systems. A 
strange attractor is an attractor (see Attractor) that displays sensitivity to initial 
conditions. That it to say, an attractor such that initially close points become 
exponentially separated in time. This has the important consequence that 
while the behavior for each initial point may be accurately followed for short 
times, prediction of long time behavior of trajectories lying on strange 
attractors becomes effectively impossible. Strange attractors also frequently 
exhibit a self-similar or fractal structure. 

Symbolic Dynamics 

Symbolic dynamics is a tool that is used to obtain a coarse-grained 
representation of dynamical orbits consisting of discrete-symbol sequences. 
This is done by first partitioning the phase space into a finite number of cells 
C,, C2,..., C^ and and focusing on the successive cell-to-cell transitions of the 
trajectory. The states of the cells, S(C,), S(C2) S^), are treated as symbols 
of an N-letter alphabet. Looked at in this way, the continuous dynamics thus 
induces on the partition a symbolic dynamics describing how the letters of the 
alphabet evolve in time. 

Synergetics 

Synergetics refers to what can loosely be called the "European" (vice US) 
approach to the study of complex systems. Consider a complex system (that is, 
a system composed of many individual parts) that is controlled from the 
outside in some manner by a control parameter (say, the system is driven by a 
constant influx of energy and/or matter). As the control parameter is 
changed, the system's state can become unstable and be replaced by a new 
state characterized by particular kinds of spatial, temporal or functional 
structures. Synergetics consists of strategies of describing what happens when 
the macroscopic state of systems undergoes a qualitative change. More 
colloquially, "synergy" is used to refer to how the action of two or more entities 
("parts") can achieve an effect that cannot be achieved by any of the parts 
alone (see Emergence). 

Topological Dimension 

The topological dimension of object X is an integer defining the number of 
coordinates needed to specify a given point of X. A single point therefore a 
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topological dimension equal to zero; a curve has dimension one, a surface has 
dimension two, and so on. 

Universality 

Universal behavior, when used to describe the behavior of a dynamic system, 
refers to behavior that is independent of the details of the system's dynamics. 
It is a term borrowed from thermodynamics. According to thermodynamics 
and statistical mechanics the critical exponents describing the divergence of 
certain physical measurables (such as specific heat, magnetization, or 
correlation length) are universal at a phase transition in that they are 
essentially independent of the physical substance undergoing the phase 
transition and depend only on a few fundamental parameters (such as the 
dimension of the space). 

Unstable Equilibrium 

A stationary state of a dynamical system such that an arbitrarily small 
perturbation can cause a disturbance of arbitrarily large magnitude. Example: 
an egg poised on the vertex of a cone. 
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Appendix C: Recommended Reading 
Listed   below   are   some   recommended   introductory   texts   and 
popularizations of nonlinear dynamics and complex systems theory: 

• Artificial Life: How Computers are Transforming Our Understanding 
of Evolution and the Future of Life, S. Levy, New York: Pantheon 
Books, 1992. An excellent overview of the basic science and 
leading researchers involved in the study of artificial life. 

• At Home in the Universe: The Search far Laws of Self-Organization 
and Complexity, S. Kauffman, Oxford University Press, 1995. An 
empassioned vision of complex systems research by one of the 
field's leading researchers. 

• Cellular Automata Machines: a New Environment for Modeling, T. 
Toffoli and N. Margolus, MTT Press, 1987. A detailed discussion 
of applications of cellular automata modeling by the principal 
designers of MIT's CAM-6 cellular automata machine. The 
discussion is technical in parts. 

• Chaos: Making a New Science, J. Gleick, Viking Penguin, Inc., 
1987. The "classic" of popular science writing. Not to be missed. 

• Complexity: Life at the Edge of Chaos, R. Lewin, Macmillan 
Publishing Company, 1992. Good, solid exposition with an 
emphasis on biology. Overall, however, Lewin's book is neither 
as well-rounded nor as deep as Waldrop's book (see below). 

• Complexity: The Emerging Science at the Edge of Order and Chaos, M. 
Waldrop, New York: Simon and Schuster, 1992. Waldrop's book 
is the best currently available popularization of complex systems 
theory as practiced at the Santa Fe Institute. Particularly strong 
on research personalities. 

• Complexity: Metaphors, Models and Reality, edited by G. A. Cowan, 
D. Pines and D. Meltzer, Addison-Wesley, 1994. This is a 
collection of short, basic research papers by practitioners of 
complex systems theory. Each paper is followed by excerpts of 
comments made during a panel discussion. Although the papers 
are generally presented at a technical level, the collection 
provides an excellent overview of complex systems theory. 

• Fire in the Mind: Science, Faith, and the Search for Order, G. 
Johnson,  Alfred A  Knopf,   1995.  A fun-to-read  non-technical 
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discussion of complex systems theory at the Santa Fe Institute, set 
against the canyonlands and history of northern New Mexico. 

Frontiers of Complexity: The Search for Order in a Chaotic World, P. 
Coveney and R. Highfield, Fawcett Columbine, 1995. A good "9 

Scientific-American-level introduction to nonlinear dynamics and 
complex systems theory. 

The Garden in the Machine: The Emerging Science of Artificial Life, 
Claus    Emmenche,    Princeton    University    Press,    1994.    A 
Scientific-American-level discussion of artificial life. Emmenche's 
book is less focused on personalities than Levy's book, but 
provides a more thorough (and more technical) discussion of 
the science. 

Hidden Order: How Adaptation Builds Complexity, J. H. Holland, 
Addison-Wesley Publishing Company, 1995. A recent 
monograph on using genetic algorithms to model complex 
adaptive systems by one of the founding fathers of the field. 
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