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Abstract

Accurate predictions of the direction of the returns on stock/index are of paramount interest to market
dealers and investors. Researchers have shown significant interest in developing different techniques to
help generate high forecasting accuracy of stock returns or prices movement. In this essay, five different
techniques are considered and applied to predict the movement of the daily returns on the Standard and
Poor 500 stock index (S&P 500). These techniques are Artificial Neural Network (ANN), Logit model,
Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and K-Nearest Neighbour-
hood classification (KNN). Results show that ANN performed relatively better in the classifications of
the up and down movements of the returns than the other techniques. Specifically, ANN achieved
approximately 61 percent in predicting the returns using opening prices of stocks/indices.
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1. Introduction

The financial sector has become one of the most important subjects of human life in recent years.
Investors desire to invest their assets in the most viable manner. However, they want to achieve this at
the lowest risk of loss. Information on the trend and behaviour of the market is therefore relevant. This
essay seeks to predict the direction of the daily returns on Standard and Poor 500 (S&P 500) index,
which is a New York Stock Market index and develop trading strategies based on the results.

Many efforts have been made by researchers to forecast the S&P 500 index which is regarded as one
of the most influential stock indices in the financial world (Chan, 2009). Some uses linear forecasting
techniques with the assumption that there exist a linear relationship between return and the factors
affecting it.They resort to this approach due to its simplicity in terms of computation. However, the
usefulness of a model does not only depend on its simplicity, but also on how accurate it can predict
the underlying phenomenon. Other researchers however hold the view that financial data is noisy and
nonlinear and as such, nonlinear forecasting techniques are the most appropriate [Bensäıda (2014),
Kantz and Schreiber (2004)]. Notwithstanding, both techniques assume that past information has
the ability of predicting the future return on stocks or indices (Enke and Thawornwong, 2005). This
assumption of predicting the market with past information is not achievable according to Malkiel and
Fama (1970) in the Efficient Market Hypothesis (EMH); with the argument that current stock prices
“fully reflect” available information and as such, there is no chance of earning excess returns with the
given information. Amidst all these different views on the the prediction of stocks/indices trend, studies
have shown that, there has been numerous successes in predicting the market with different approaches.

Kutsurelis (1998) achieved 93.3 percent accuracy in predicting a market rise, and an 88.07 percent in
predicting a market drop in S&P 500 using Artificial Neural Networks. Desai and Bharati (1998a), Desai
and Bharati (1998b), Thawornwong et al. (2003), and many other researchers made predictions of the
financial market using different approaches. The various analysis used by the various researchers are
classified into “technical” and “fundamental”. Agrawal et al. (2013) explained technical analysis as the
predictions made using data generated by “market activity, past prices, and volume” whiles fundamental
analysis involves an “in-depth” analysis with variables which are not only dependent on market activities.
ANN is very efficient in predicting the stock market using any of the fundamental or technical approach
[Maciel and Ballini (2010),Hanias et al. (2012)].

This study seeks to use ANN to make predictions of the direction of the daily returns on standard and
Poor (S&P 500) index using the ‘technical analysis’ approach and compare its performance with other
algorithms for classification in terms of accuracy. The choice of ANN is motivated by the fact that
financial time series are noisy, chaotic and nonlinear in nature and hence, predicting its future behaviour
requires a nonlinear approach of which ANN is. Specifically, this essay will assess the performance of
ANN in classifying the movement or direction (up or down) of the return on the S&P 500 index by
comparing its hit rate with other techniques which are: linear discriminant analysis, quadratic discrim-
inant analysis, logistic regression and the k-nearest neighbourhood algorithm. Researchers have taken
different dimensions on predicting the returns on stocks with different approaches. Masoud (2014) used
neural network to predict the direction of stock prices index movement and assessed the accuracy with
the various error measurement techniques. Ou and Wang (2009) in an attempt to predict the changes
in the daily closing prices of the Hand Seng index, using open price, low price, high prices, the S&P 500
index, US dollar- Hong Kong dollar exchange rate; reported various level of successes using different
techniques, with all techniques achieving more than 80 percent hit-rate. Amin et al. (2014) achieved
as high as above 89 percent accuracy in predicting the direction of stock price index in Tehran stocks.
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With this background, the results from this essay will be compared with the claims of other researches
to observe how well our models are performing. Results from this essay would be useful for risk-averse
investors, since it will help them to know when to invest and when to hold their resources.

The rest of this essay is structured as follows: chapter two talks about an introduction to the various
classification techniques used in this essay, chapter three describes the various methods used, chapter
four presents the results and discussions and conclusion based on our findings comes in chapter five.



2. Machine Learning Algorithms

This Chapter presents an introduction to the various classification techniques used in this essay. These
techniques ranges from linear to nonlinear. This essay uses different techniques with the motive that, it
can determine the one that relatively performs better. The chapter starts by giving a brief introduction
to Artificial Neural Networks and later introduces the other classification algorithms considered.

Let the set {(x1, y1), (x2, y2), · · · , (xn, yn)} be the set of training data, where X = (x1, x2, · · · , xn) ∈ R
is input vector and Y ∈ {0, 1, · · · , j} where j is the number of classes, i.e Y is a categorical variable.
The idea of classification then, is to build a classifier C(x) to predict Y using X as the bases (Ou
and Wang, 2009). That is, to build a model that will help dissociate between the various classes of Y
based on X. Suppose Y has exactly two classes (binary), i.e. Y ∈ {0, 1}, then the decision boundary
separating the two classes is a hyperplane in the feature space. According to Ou and Wang (2009), for
a q-dimensional input space, the hyperplane is the set:

{x : α0 +

q∑
k=1

αkxk = 0}. (2.0.1)

Also, the hyperplane separating the two regions is given by the sets: {x : α0 +
∑q

k=1 αkxk < 0} and
{x : α0 +

∑q
k=1 αkxk > 0}. Below, we explain the various classification algorithms used in this essay.

2.1 Artificial Neural Networks

Artificial neural network is a computational model which was first developed by McCulloch and Pitts
in 1943 (Clarence N. W, 2001). This principle has natured to a great extent over the past years and
especially with the era of high performance computing. Its development was inspired by the activities
of the human brain. Researchers thought of how to make a computer mimic the large amount of
interconnections and networking that exist between all the nerve cells of the human brain. It mimics
the brain in the sense that, it acquires knowledge by learning from an input data, and transforms the
data into knowledge, just as the brain does. Neural networks are used for a wide range of purposes, but
they all fall under pattern recognition. By recognising both linear and nonlinear patterns, ANN helps
in building predictive models which are used for predicting a future phenomenon. Predictive models
built by ANN fall into two categories: classification (with categorical outcome) and regression (with a
continuous outcome). Artificial Neural Networks can be classified into two broad categories: feedforward
and recurrent networks. An artificial neural network is classified as recurrent if the connections between
units (neurons) form a direct cycle. On the contrary, a feedforward NN is a class of NN which considers
the transfer of information/messages only in the forward direction (i.e not in a cycle). That is to say;
input signals travel in one direction, which in a sense implies that the output in a particular layer has
no effect on the same layer.

3

https://www.researchgate.net/publication/41892312_Prediction_of_Stock_Market_Index_Movement_by_Ten_Data_Mining_Techniques?el=1_x_8&enrichId=rgreq-26123e825c69a8e038d3956bd7bb18a2-XXX&enrichSource=Y292ZXJQYWdlOzMwMzg3NTYxMztBUzozNzExNDg2MTg1MTg1MjhAMTQ2NTUwMDEzNDIxOQ==
https://www.researchgate.net/publication/41892312_Prediction_of_Stock_Market_Index_Movement_by_Ten_Data_Mining_Techniques?el=1_x_8&enrichId=rgreq-26123e825c69a8e038d3956bd7bb18a2-XXX&enrichSource=Y292ZXJQYWdlOzMwMzg3NTYxMztBUzozNzExNDg2MTg1MTg1MjhAMTQ2NTUwMDEzNDIxOQ==
https://www.researchgate.net/publication/41892312_Prediction_of_Stock_Market_Index_Movement_by_Ten_Data_Mining_Techniques?el=1_x_8&enrichId=rgreq-26123e825c69a8e038d3956bd7bb18a2-XXX&enrichSource=Y292ZXJQYWdlOzMwMzg3NTYxMztBUzozNzExNDg2MTg1MTg1MjhAMTQ2NTUwMDEzNDIxOQ==


Section 2.1. Artificial Neural Networks Page 4

The figure below relates the biological neuron to an artificial neuron:

(a) structure of a neuron

Source: (Nastos et al., 2011)

(b) Artificial Neuron

Figure 2.1a depicts the structure of the biological neuron which processes information. Upon receiving
information from another neuron through the dendrites, a neuron transfers the information received
to another neuron with the aid of an axon. Figure 2.1b also gives a mathematical model for the
neuron. This model, just as the biological neuron, receives an input data, processes it and produce
an output. Thus, the formulation of the artificial neuron was with the motive of making it mimic the
interconnections that exist in the biological neuron.

2.1.1 Multilayer Perceptrons (MLP). A perceptron model without a hidden layer is only efficient
when dealing with a linearly separable problem (Clarence N. W, 2001). To overcome this limitation
(handle nonlinear problems), MLP is used. A multilayer differs from a perceptron model in the sense
that, it takes into account additional layer(s) known as hidden layer(s). A multilayer perceptron is also
known as a multilayer feedforward network. For a continuous function defined on a compact domain,
a single hidden layer feedforward can approximate; irrespective of the underlying activation function
(Hornik et al., 1989). A Multilayer perceptron has the property that, it takes only one input layer
and one output layer. However, MLP can take more than one hidden layer, depending on the learning
algorithm or the underlying phenomenon to be modelled. With the exception of the input layer, each
neuron within each layer computes the sum of a received input information, and gives a scaled real value
(which may be within the interval [0,1] or [-1,1], depending on the activation function) as the output.
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The figure below is a MLP with an input layer, one hidden layer and an output layer.

Figure 2.2: Multilayer neural network architecture

In figure 2.2, wkin represents the weight of the dendrite from the ith neuron of the k − 1 layer to the
nth neuron of layer k; bki is the bias of the ith neuron within the layer k.

Mathematically,

output
(l)
(n) = ϕ(l)

(∑
k

output
(l−1)
k w

(l)
(in) + b

(l)
(n)

)
. (2.1.1)

Each neuron n in the lth layer receives activations output
(l−1)
k w

(l)
kn from the previous layer, activates

it, and passes the activated output
(l)
(n) to the neurons of the layer that follows it. For simplicity, let

output
(l)
(n) be yln and (output

(l−1)
k w

(l)
(in)) be xlk. It follows then that, the output from the perceptron yn

can be written in the form:
yk(xi) = ϕ(zk), (2.1.2)

where zk =
∑

n x
(l)
k w

(l)
kn+ b

(l)
k , ϕ() is an activation function. For a sigmoid activation function given by:

ϕ(z) = [1 + e−z]−1, (2.1.3)

the derivative has the following property:

ϕ′(z) = −(1 + e−z)−2(−e−z)
= e−z(1 + e−z)−2

=
1

1 + e−z

(
1− 1

1 + e−z

)
.
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Hence, the derivative of the sigmoid function is given by:

ϕ′(z) = ϕ(z)[1− ϕ(z)]. (2.1.4)

2.1.2 Terminologies used in neural network architecture.

a) Input Layer: the first layer in the interconnections of the NN architecture which distributes input
signals to the hidden layer. That is, the layer that receives the set of inputs (vector of inputs;
which are real values) which are passed through the network to produce an output. Alternatively,
the input layer can be thought of as the layer from which input data is fed into the network.

b) Weights: In NN, weights are real-valued numbers assigned as coefficients to the input variables
to describe the contributions (thus, the strength) that the input makes to the output.

c) Hidden Layer: the hidden layer contains neurons which communicate with other neurons of
the next hidden layer if any or the output layer otherwise (Nastos et al., 2011). Using activa-
tion/transfer functions, each neuron in the hidden layer sums and processes inputs received and
sends the resultant to the output layer.

d) Transfer/Activation function: this is a function which may be linear or non-linear and its role
in the NN is to provide a non-linear decision boundary with the computed combinations of the
weighted inputs. Below are the most commonly used activation functions and their properties:

Table 2.1: functions

Function Equation Range of values

Logistic ϕ(y) = 1
1+e−y (0, 1)

Hyperbolic tangent ϕ(y) = ey−e−y

ey+e−y (−1, 1)

e) Output Layer: this layer is made up of neurons, known as output neurons with the sole task
of returning the network’s output and comparing it with the target output. It takes only one
neuron when dealing with a regression model; and takes one or more neuron(s) when dealing with
classifications.

2.1.3 Learning of NN. Learning involves the process of weight adjustment of the interconnections
between the neurons of an ANN, given an external input. The main goal of the learning process is
to minimize the error summed over all trained cases. Learning of ANN can be classified into two:
supervised and unsupervised. In a supervised learning process, a number of data pairs (input values
- desired output/target values) are used in training the network. An attempt is made by the network
at each training, to compute the desired/target output, using the set of given inputs. The computed
output from the network is compared to the target output. The difference between the computed output
and the target value is the error. Given that such error has occurred, the network attempts to minimize
the error by continuously adjusting the weights of its connections in an iterative manner; until minimum
error is achieved. There are many supervised learning algorithms; but the most commonly used ones are
the delta rule and the generalization of the delta rule which is popularly known as the backpropagation
algorithm (Clarence N. W, 2001). Unlike the supervised learning, in unsupervised learning, there are
no explicit target values. Weight adjustments are made based on some parameters and modification of
network parameters are based on size (Veri and Baba).
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Let y(xi) be the output for input xi and ti be the target output. Then according to Bullinalia (Accessed
April 2016), the least squares error (E) is given by:

Ei(w, b) =
1

2

n∑
i=1

(
ti − y(xi)

)2

(2.1.5)

with the cross entropy function defined as:

Ei(w, b) = − 1

n

∑
p

∑
i

[
tpi log

(
yp(xi)

)
+

(
1− tpi

)
log

(
1− yp(xi)

)]
(2.1.6)

where y(xi) = ϕ(zi) = ϕ
(∑

k wjkxj + bj
)

and ϕ(·) is the sigmoid activation function.

2.1.4 Backpropagation Algorithm. In backpropagation, the focus is on understanding how changes
in the weights and the biases in NN affects the cost function (error). In effect, partial derivatives of the
cost function with respect to the weights and biases are computed.

The backpropagation technique is the generalization of the gradient decent algorithm which is used for
updating the weights of the inputs to the neurons of a single-layer NN. In delta rule, the attempt is
to minimize the error through gradient decent (Delta). Generally, the learning process of an ANN with
error backpropagation takes the following steps (Veri and Baba):

a) Initialize values for weights, learning rate (η) and momentum (α), where the learning rate is a
parameter that determines the amount of adjustments that need to be made to the weights.

b) Compute the actual output of the hidden layer (using the activation function on the neurons of
the layer) with the formula:

i.

yj(l) = ϕ

[ n∑
i=1

wij(l)xij(l) + bj

]
. (2.1.7)

ii. Compute the actual output of the output layer by applying the activation function on the
output from the hidden layer. This is done by using the relation:

yk(l) = ϕ

[ n∑
i=1

wij(l)xjk(l) + bj

]
. (2.1.8)

c) Backpropagate the error and train the weights (update weights) to minimize the error. This
is achieved by:

i. calculating the output layer’s error gradient using the relation:

δk(l) = yk(k)× [1− yk(l)]× εk(l), (2.1.9)

where εk(l) = tk(l)− yk(l), such that tk(l) is the desired/target output and yk(l) is the
computed output. The weight between the hidden layer and the output layer is then
updated, using the formula:

∆wjk(l) = αyj(l)δk(l). (2.1.10)

This adjustment is iterated into the previous value with the new weight value:

wjk(l + 1) = wjk(l) + ∆wjk(l). (2.1.11)
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ii. Calculating the hidden layer’s error gradient. This is done with the relation:

δj(l) = yj(l)× [1− yj(l)]×
n∑
k=1

δk(l)× wjk(l). (2.1.12)

The weights between the input layer and the hidden layer is also computed with the
formula:

wij(l + 1) = wij(l) + ∆wij(l), (2.1.13)

where ∆wij(l) = α× xi(l)× δj(l).

The summary and pictorial view of the learning process is displayed in the figure below:

Figure 2.3: A supervised learning process

In figure 2.3, we observe the various stages of how neural network learns using an error backpropagation
mechanism. Minimum error is achieved when the computed output is identical to the targeted output.

2.2 Linear and Quadratic Discriminant Analysis

The main objective of discriminant analysis given say two classes; is to identify variables which are good
at discriminating between the two distinct classes, develop a function that computes a new variable which
is a measure of the difference between the two classes, and based on the identified function, develop
a rule that classifies future observations into one of the two distinct classes. The idea of discriminant
analysis is based on Bayes theorem. Suppose P (Y = y|X) is a posterior probability of being in class ‘a’
and P (X) is the prior probability. Then according to the Bayes theorem:

P (Y = y|X) =
P (X|Y = y) · P (Y = y)

P (X)
. (2.2.1)

Bayes classification rule is to choose the class where P (Y |X) is maximal. That is, obtaining class
posteriors P (Y = y|X) where classification is optimized.
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Supposed P (X|Y ) ∼ N(µ,Σ), where N(µ,Σ) is a multivariate Gaussian distribution with a mean
vector µ and a covariance matrix Σ. Then the multivariate density associated with this vector x is
defined by:

f(x) =
1√

(2π)m|Σ|
exp

[
− 1

2
(x− µ)TΣ−1(x− µ)

]
, (2.2.2)

where |Σ| is the determinant of Σ and m is the size of x.

For observed sample data with binary response (two classes), say i and k, the multivariate Gaussian
density is defined as:

P (X|Y = i) =
1√

(2π)m|Σi|
exp

[
− 1

2
(x− µi)TΣ−1i (x− µi)

]
. (2.2.3)

Taking the logarithm of this posterior, implies:

log[P (X|Y = i)] = −1

2
(x− µi)TΣ−1µi − 2µTi Σ−1x)− m

2
log(2π)− 1

2
|Σ| (2.2.4)

= −1

2

(
xTΣ−1x+ µTi Σ−1µi − 2µTi Σ−1x

)
− m

2
log(2π)− 1

2
log |Σ|. (2.2.5)

Similarly,

log[P (X|Y = k)] = −1

2

(
xTΣ−1x+ µTk Σ−1µk − 2µTk Σ−1x

)
− m

2
log(2π)− 1

2
log |Σ|. (2.2.6)

Taking the ratios of these posteriors and taking the logarithm of the resultant, implies:

log
[ P (Y = i|X)

P (Y = k|X)

]
= log

[ P (X|Y = i) · P (Y = i)

P (X|Y = k) · P (Y = k)

]
(2.2.7)

= logP (X|Y = i) + logP (Y = i)− logP (X|Y = k)− logP (Y = k). (2.2.8)

Let the prior probabilities; P (Y = i) = ri and P (Y = k) = rk.

Substituting 2.2.4 and 2.2.6 into 2.2.7, implies:

log
[ P (Y = i|X)

P (Y = k|X)

]
= −1

2

(
2µTi Σ−1x− 2µTk Σ−1µi − µTk Σ−1µk

)
+ log ri − log rk. (2.2.9)

Let the constant terms be c0. Then equation 2.2.9 reduces to:

log
[ P (Y = i|X)

P (Y = k|X)

]
= −

(
µTi Σ−1 − µTk Σ−1

)
x+ c0 (2.2.10)

= cTx+ c0, (2.2.11)

where cT is a vector. Observe that 2.2.11 is a linear function. In the derivation of the function, the
assumption was that the two classes i and k had the same covariance matrix Σ. This approach is
referred to as the Linear Discriminant Analysis (LDA). The discriminant rule of this linear function
for future observation is to assign x to class i if cTx + c0 ≥ λ and to class k otherwise, where λ is a
chosen cut-off value.
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Again, suppose the covariances of the two classes are unequal; thus, the covariance of P (X|Y = i) is
Σi and P (X|y = k) is Σk. Then combining 2.2.4, 2.2.6 and 2.2.7, it follows that:

log
[ P (X|Y = i)P (Y = i)

P (X|Y = k)P (Y = k)

]
=− 1

2

(
xT
(
Σ−1i x− xTΣ−1k x− 2µTi Σ−1i x+ 2µTk Σ−1k x+ µTi Σ−1i µi − µTk Σ−1k µk

))
−

log |Σi|+ log |Σk|+ log(ri) + log(rk)

=− 1

2

(
xT
(
Σ−1i − Σ−1k

)
x

)
−
(
µTi Σ−1i − µ

T
k Σ−1k

)
x+ c0

=xT c1x− cT2 x+ c0,

where :

c1 =
1

2

(
Σ−1k − Σ−1i

)
,

c2 = (Σ−1i µi − Σ−1k µk),

c0 =
1

2
log

(
|Σk|
|Σi|

)
+

1

2

(
µTk Σ−1k µk − µTi Σ−1i µi

)
.

The above derivation using an unequal covariance assumption is what is referred to as Quadratic
Discriminant Analysis (QDA). The discriminant rule of this quadratic function for future observation
is: for a chosen cut-off value λ, assign x to the class i if xT c1x − cT2 x + c0 ≥ λ. On the other hand,
assign x to the class k if xT c1x− cT2 x+ c0 < λ.

In general, given a discriminant variable X, with fi(x) and fk(x) as the probability density functions
for the first and second classes respectively, the classification rule is to:

a) assign an observation to class i if:

fi(x)

fk(x)
≥
[C(i/k)

C(k/i)

][Pk
Pi

]
.

b) assign an observation to class k if:

fi(x)

fk(x)
<
[C(i/k)

C(k/i)

][Pk
Pi

]
,

where c(i/j) is the misclassification cost of an observation for class j to i, and pi, pk are the prior
probabilities of an observation belonging to class i and j respectively.

2.3 Logit Model

In regression model, the idea is to describe the relationship between a set of predictors (independent
variables) and the response variable. Logistic regression model is a special type of regression model in
which the response variable is binary in nature (i.e. categorical). The logistic function which models
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the probability of belonging to one of the two classes is given by:

π(x) = P (Y = 1|X = x) =
exp(ψ0 + ψ1x1 + ψ2x2 + · · ·+ ψnxn)

1 + exp(ψ0 + ψ1x1 + ψ2x2 + · · ·+ ψnxn)
(2.3.1)

=
exp(ψ0 +

∑n
k=1)

1 + exp(ψ0 +
∑n

k=1)
(2.3.2)

=
1

1 + exp {−(ψ0 +
∑n

k=1)}
, (2.3.3)

where ψ0 is the intercept and ψk for k = 1, 2, · · · , n are parameters to be estimated. This model tests
the relationship between the classes of the response variable and the independent variables (predictors)
by estimating the parameters of equation 2.3.1. The ratio of the probability of being in one of the
classes to its complement gives what is termed as the odd ratio. Thus π(x)

1−π(x) is referred to as the odd
ratio. Taking the log of this ratio, implies:

log
[P (Y = 1|X = x)

P (Y = 0|X = x)

]
= log

(
π(x)

1− π(x)

)
(2.3.4)

= ψ0 + ψ1x1 + ψ2x2 + · · ·+ ψnxn. (2.3.5)

Equation 2.3.4 is referred to as the logit; which transforms the odd ratio into a linear function as shown
in equation 2.3.5. The decision boundary is based on these posterior class probabilities. The rule for
classifying an observation as belonging to one of the classes is as follows:

assign observations to class 1 if log
[
P (Y=1|X=x)
P (Y=0|X=x) > 0

]
and to class 0 otherwise.

2.4 k-Nearest Neighbourhood (k-NN)

One of the simplest machine learning algorithms is the nearest neighbour technique which classifies
objects based on training examples. Unlike linear and quadratic discriminant analysis, this algorithm
does not rely on prior probabilities. Let X = (x1, x2, · · · , xm) be and m-dimensional vector of an input
data. Let also; y be a categorical dependent variable whose values are dependent on the m observations
in X. Suppose x′ is a point whose class is not known; the task then is to identify the class of x′ using k
closest neighbours (for k positive integer) in training example. The k-NN algorithm follows the following
procedure:

a) Choose a positive integer k.

b) Calculate the distance d(x, x′); where d =
√∑m

j=1(xi − x′i)2.

c) Order the computed distances; starting with the shortest.

d) Take the first k distances from the order and find those k-points that corresponds to these
distances.

e) Suppose kj is the number of points belonging to the jth class such that kj is among the k-points.

f) For classes j = 1, 2, · · · , c, classify x′ as belonging to class j if kj > ki ∀j 6= i.

Shortly put, the k-NN algorithm assigns an object as belonging to a particular class based on the majority
votes of its k-nearest members.



3. Data and Methods

3.1 The Data

This section presents the source of the data for this study, the transformations made on the dataset and
the variable selection techniques used in this study.

3.1.1 Data Collection. As indicated earlier, this study considers the direction of the return on standard
and poor 500 index which is the weighted index of the 500 largest companies in the US stock market.

In research, the availability and the cost of obtaining data are some of the essential factors to consider
from the onset. The data used for this study was obtained from yahoo finance. It contains historical
information on the opening prices, low prices, high prices, volume traded, closing prices and the adjusted
closing prices. The data taken was from January 1, 1999 to December 31, 2008. Data on the six world
major indices and the five biggest companies in the S&P 500 index which are believed to have significant
impact on return on the index was taken from the same website; for the same time period. Below is the
tabulation of these indices/stocks and the market in which the are traded:

Table 3.1: stocks/indices

Stock/Index Stock Market Traded

Exxol oil (XOM) New York Stock Exchange (NYSE)
General Electricity (GE) NYSE
Microsoft (MSFT) NASDAQ
Procter and Gambler (PG) NYSE
Johnson and Johnson (JNJ) NYSE
Dow Jones Industrial Average (DJI) NYSE
NASDAQ Composite (IXIC) NASDAQ
Hang Seng Index (HIS) Hong Kong Stock Market
CAC 40 index (FCHI) French Stock Exchange
Financial Times Stock Exchange (FTSE) London Stock Exchange
German Stock index (GDAXI) Frankfurt Stock Exchange

3.1.2 Data preprocessing. Data preprocessing is the process of transforming and cleaning a dataset
into a uniformly distributed set, to improve the data quality and hence improve the predictive perfor-
mance (Wang et al., 2005). The predictive performance of a model is highly dependent on the data
preprocessing stage (Wang et al., 2005). After collecting the data on the dependent variables and the
predictors, fitting a model with them directly in their raw form may result in under-performance or
over-performance of the model in predicting the desired output. As this study considers the returns on
the S&P 500, the returns were computed using the adjusted closing prices. The approach used is the
logarithmic approach given by the formula below:

Rt = log(Pt)− log(Pt−1) (3.1.1)

= log
[ Pt
Pt−1

]
, (3.1.2)

where Rt is the log-return on the index at time t and Pt is the adjusted closing price at time t. After
computing the returns, since the study is focused on the direction of the return instead of the actual

12
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returns, a column is created to record the direction (up/down). Within this column, 1 is assigned when
Rt > 0 and 0 otherwise. Thus, we assign 1 when positive return is realized and 0 otherwise. In order
to have the same number of rows within the data, the first rows of the opening prices column of the
various stocks/indices were deleted.

3.1.3 Partitioning of data. For effective and perfect evaluation of the performance of a forecasting
algorithm, it is a common practice to partition the dataset into training and testing distinct sets. Mostly
practised, the largest set which is used to recognize the patterns in the data is the training set, whiles
the testing set serves as a means of evaluating the general ability of the trained algorithm to predict the
underlying phenomenon. In this essay, after preprocessing the data, the number of days (observations)
used was 2471. With this, 75%, representing 1853 days was taken as the training set, whiles the
remaining 25% representing 618 days was taken as the testing set.

3.1.4 Data Normalization. Normalization is the process of data organization with the motive of
eliminating redundant data in the dataset and also to overcome data anomalies. There are many methods
for data normalization; which includes quantile normalization, z−score approach, etc. (Normalization).
This study however, considers the so called min−max normalization approach which linearly transforms
the original data to the range (0, 1). This idea is to scale the data to a common range to avoid the
influence of outliers in the data in the predictions. Mathematically, this approach is applied as follows:
Let X be a data set, Xmin and Xmax be the minimum and maximum values of X respectively. Then
the formula for normalizing (scaling) X is given by Normalization:

X ′ =
X −Xmin

Xmax −Xmin
(3.1.3)

In min − max normalization, the relationships among the values of the original data is preserved after
computing.

3.1.5 Potential Influential Features. The potential features extracted from the various indices/stocks
tabulated in Table 3.1 to considered in predicting the direction of the S&P 500 is tabulated below.

Table 3.2: Potential Features

Feature Explanation

GSPC.Open (t) Open price of the S&P 500 index in day t
GSPC.Volume (t-1) Volume of S&P 500 traded in day t-1
GSPC.Adj. (t-1) Adjusted closing price of S&P 500 for day t-1
JNJ.Open (t) Open price of Johnson and Johnson company in day t
XOM.Open (t) Open price of Exxon mobil stock in day t
GE.Open (t) Open price of General Electric stock in day t
FCHI.Open (t) Open price of CAC 40 index in day t
GDAXI.Open (t) Open price of DAX index in day t
FTSE.Open (t) Open price of FTSE 100 index in day t
IXIC.OPen (t) Open price of NASDAQ composite index company in day t
MSFT.Open (t) Open price of Microsoft stock in day t
DJI.Open (t) Open price of Down Jones index in day t
HIS.Adj. (t-1) Adjusted closing price of Hang Seng index
PG.Open (t) Open price Procter and Gambler stock in day t

In Table 3.2, we observe that, the open prices of the various indices/stocks are considered as predictors
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except the Hang Seng index, where we consider the adjusted closing price. This is as a result of its
market being closed before that of the New York Stock Exchange .

3.1.6 Correlations and Variables selection. In choosing the input predictor variables from the potential
feaures, a Pearson correlation test is perform to determine the relationship between the variables. Two
variables are said to be correlated when a change in the value of one affects the other. This can be in
the positive direction or otherwise. Denoted by r, and always within the range [−1, 1], linear correlation
measures the strength of the linear relationship between different variables. An r-value of 1 implies
perfectly positively correlated, −1 shows perfect negative linear correlation, whiles a value of zero (0)
implies that variables are uncorrelated. Preferably, correlation is deemed significant when its coefficient
is greater than 0.5 in absolute terms (thus, when |r| > 0.5).

Table 3.3: Correlation Matrix

ud SP.V SP.O XO.O GE.O MS.O PG.O JNJ.O DJI.O IX.O H.Adj FC.O FT.O GD.O

ud 1
SP.V 0.00 1
SP.O -0.02 0.10 1
XO.O -0.02 0.33 0.81 1
GE.O -0.01 -0.39 0.43 0.39 1
MS.O -0.04 -0.47 0.22 0.23 0.79 1
PG.O -0.02 -0.34 -0.28 -0.30 0.35 0.40 1
JNJ.O -0.02 -0.25 0.55 0.66 0.68 0.64 0.08 1
DJI.O -0.01 0.36 0.87 0.70 0.09 -0.16 -0.33 0.20 1
IX.O -0.01 -0.12 0.80 0.67 0.68 0.45 -0.08 0.65 0.49 1
H.Adj 0.04 -0.09 0.37 0.25 0.55 0.44 0.16 0.26 0.25 0.27 1
FC.O -0.02 0.02 0.90 0.77 0.37 0.26 -0.33 0.57 0.71 0.81 0.10 1
FT.O -0.02 0.03 0.94 0.84 0.54 0.40 -0.21 0.67 0.75 0.77 0.41 0.91 1
GD.O -0.02 0.30 0.91 0.90 0.31 0.18 -0.33 0.47 0.82 0.74 0.15 0.93 0.90 1

In Table 3.3, we observe that the leading diagonal has one in all the entries. This makes sense according
to the interpretation given earlier in this section; because it shows that each variable is perfectly linearly
correlated with itself. The benchmark for taking the correlation between variables as being significant
is 0.5. Even though there exists significant correlation between some of the predictors, the idea of
this technique is to observe the linear correlation between the response variable which is the direction
of the return on S&P 500 (up/down) labelled ’ud’ and the predictor variables. We observe from the
table that no such correlations exist. Different variable reduction technique is then used to reduce the
number of predictors since each variable included in the model comes with a cost (Carvalho, Accessed
May 2016). This reduction is necessitated by the fact that big models stands the risk of over-fitting
and hence models should be built in such a way that they account for the trade-off between the data
fitting and the model uncertainties. The variable selection procedure used in this study is the stepwise
approach which is more useful in the sense that it combines the usefulness of the forward selection
and the backward elimination techniques. In the forward selection, the simplest model is first built and
suitable variables are added one at a time until the best model is achieved. On the other hand, the
backward elimination method starts with a general model and subsequently drops variables one at a
time until the best model is achieved. The stepwise approach which is the combination of the forward
and backward selection methods, starts with an empty set of variables and subsequently adds or drops
a variable at any point during the variable search process. Thus, in stepwise selection, a variable can be
added or dropped. A summary of the stepwise selection process performed in R is as follows:
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Figure 3.1: final stage of stepwise selection procedure

We observe from the output from R, shown in Figure 3.1 that, in the last step of the process, the
Akaike Information Criterion (AIC) which gives a measurement of the relative quality of different models
using different variables is 3385.31. The variables in the model that achieved this AIC are the volume of
S&P 500 traded in day t-1, open prices of S&P 500, MSFT, DJI, FCHI, FTSE and GDAXI. This AIC
is used as a selection criteria and the rule is to choose the model with the lowest AIC. In the Figure,
we observe that, when the opening prices of general electricity (GE) is added to the model, the AIC
increases to 3386.9, which is greater than the previous AIC value of 3385.31, hence not a good model;
likewise the open prices of PG, IXIC, XOM, JNJ and the closing price of HIS which all results in high
AIC when included in the model. On the other hand, we also observe that, when any of the following
variables: the volume of S&P 500 traded in day t-1, open prices of S&P 500, MSFT, DJI, FCHI, FTSE
and GDAXI is excluded from the model, it results to a high AIC. Hence based on the AIC analysis, the
best predictors are the volume of S&P 500 traded in day t-1, open prices of S&P 500, MSFT, DJI,
FCHI, FTSE and GDAXI. Below, we present a summary of the initial model and the final model fitted
based on the achieved AIC’s, together with the analysis of variance table for the rejected variables.

Figure 3.2: Intial and final model fitted in the stepwise procedure
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Table 3.4: Anova table for stepwise process showing eliminated variables

Step Df Deviance Resid. Df Resid. Dev AIC

1 2457.00 3368.51 3396.51
2 - JNJ.Open 1.00 0.01 2458.00 3368.51 3394.51
3 - IXIC.Open 1.00 0.05 2459.00 3368.57 3392.57
4 - XOM.Open 1.00 0.13 2460.00 3368.69 3390.69
5 - HIS.Adj 1.00 0.13 2461.00 3368.82 3388.82
6 - PG.Open 1.00 0.12 2462.00 3368.94 3386.94
7 - GE.Open 1.00 0.37 2463.00 3369.31 3385.31

The stepwise selection processes as presented in figure 3.2 and table 3.4 above started by setting a
model with all the thirteen potential features and analyzed the contributions of each variable to the
model by considering the AIC’s. The procedure dropped six of the variables based on the high level of
AIC’s when those variables included in the model and used the remaining seven; which were eventually
considered as the final predictors in this study. Hence the final input variables used in predicting the
directional movement of the returns on the S&P 500 index were:

• volume of S& P 500 traded in day t-1

• open price of S& P 500 traded in day t

• open price Microsoft stock traded in day t

• open price Dow Jones index traded in day t

• open price CAC 40 index traded in day t

• open price of FTSE 100 index traded in day t

• open price of DAX index traded in day t

3.2 Neural Network training

The package used for training the NN was neuralnet package in R, which was developed by Fritsch
and Günther in 2008. This package has flexible inbuilt functions which help in training feed-forward
neural networks. It has the flexibility of deciding on the number of hidden layers and hidden neurons,
the rate of learning, and the cost function. Another advantage of the neuralnet package is its ability
to give functions which help to visualize the results emanating from the fitted network. This study uses
multi-layer perceptron which to our advantage is the focus of of the neuralnet package. In building
the network, there is a general formula/logic that needs to be followed in order to achieve the desired
results. This is explained below.

a). Data: all variables to be included in the model should be in a dataframe.

b). Hidden: this is where the number of hidden layers and hidden neurons in each layer are specified.
For instance, hidden = c(2, 3, 1) is to say, a network with three hidden layers, with the first,
second and third having two, three and one neurons respectively. In the package, the default is
one hidden layer, with one hidden neuron. This study however, uses one hidden layer with eight
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neurons. There is no specific rule for choosing the number of hidden layers and neurons in each
layer.

c). Threshold:this is a real-valued number which is the stopping criteria for the partial derivatives of
the error functions. It has 0.01 as its default. In this study, upon making different explorations,
the best results in terms of accuracy in prediction was achieved at a threshold of 0.08.

d). Other relevant functions: other important functions to consider are the error function and the
output function. This study uses the Sum of Squared Error (SSE) function which is the default
in the neuralnet package as its error function. In addition, the ’linear.output’ function is set to
false since the interest is not in producing a linear output but a classification output.

3.3 Trainining of other classification algorithms

The training of the logistic model is done in ’R’, using the generalized linear model (glm) function.
Since the focus is on predicting the ups and down movement of the returns, the binomial family of
the glm function with the logit as its link. Also, in training the linear and quadratic analysis models,
lda and qda functions which are found in a package called MASS, is used respectively. On the other
hand, KNN training is done with knn function which is also found in a package called class.

3.4 Model performance evaluations

In evaluating the performance of the models, a package in R, called caret is used to create a confusion
matrix, which assesses the general performance of the models. Suppose a table indicating the various
predictions made by our model is as follows:

Table 3.5: Cross-tabulation of predicted and actual values

Reference

Predicted down up
down α β

up θ ψ

where α, β, θ, ψ ∈ N

Then, the following model evaluation criteria can be produced from the cross-tabulation 3.5 using a
confusion matrix function:

a) accuracy: this measures the percentage of the correct predictions that were made. It is given by
the formula:

α+ ψ

α+ ψ + β + θ
. (3.4.1)

b) sensitivity: this is the measurement of the actual positives which were correctly predicted as
positives. Its computation is made with the formula:

α

α+ θ
. (3.4.2)
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c) specificity: this can be thought of as the reverse of the sensitivity measure in the sense that, it
measures the proportion of the actual negatives which were correctly classified as such. It is also
computed using the formula:

ψ

β + ψ
. (3.4.3)

d) prevalence: it is the measurement of the rate of the “positive” class in the data. That is, the
prevalence of the “positive” class within the data. Mathematically, prevalence rate is calculated
with the formula below.

α+ θ

α+ ψ + β + θ
. (3.4.4)

e) detection rate: this also measures the rate at which the ’postive’ class is correctly identified. Its
computation is done using the formula:

α

α+ ψ + β + θ
. (3.4.5)

f) detection prevalence: it is the measurement of the rate of prevalence of the ’positive’ class
which is given by the formula:

α+ β

α+ ψ + β + θ
. (3.4.6)

g) no information rate: this is the measurement of the largest or dominating class in the data. For
instance, there were more observations in the ’positive’ class than the negative class.

h) positive predicted values: this evaluation criteria measures the number observations in the ’pos-
itive’ class that were correctly predicted expressed as a fraction of the total number of observations
in the class. That is, using the formula below:

α

α+ β
. (3.4.7)

i) negative predicted rate: as the name suggests, it is the opposite of the positive predicted values.
That is, it measures the proportion of the negative observations which were correctly predicted.
It is also computed using the formula below:

θ

θ + ψ
. (3.4.8)

There are other statistics that are produced in the output of the confusion matrix. However, in this
study, not much attention will be given to those since the overall performance of a model would be
measured by the level of accuracy (i.e. the rate of accuracy) in predicting the ups and downs of the
return. A better model is the one that achieves relatively high accuracy.



4. Results and Analysis

In this chapter, we present and discuss the results from the various analysis and make inferences based
on the results.

4.1 Descriptive Statistics

This section provides a statistical description of the behaviour of the various stocks/indices used in this
essay. Below is a brief insight of the behaviour of the adjusted closing prices.

Table 4.1: Quantitative description of the various stocks and stock indices

Variable Mean Variance St. Dev. Min Max

GSPC.Adjusted 1,224.99 32868.22 181.30 752.44 1,565.15
XOM.Adjusted 40.12 256.34 16.01 21.58 76.92
GE.Adjusted 23.73 20.75 4.56 9.74 36.64
MSFT.Adjusted 22.23 20.45 4.52 14.37 41.26
PG.Adjusted 36.59 100.02 10.00 17.59 57.54
JNJ.Adjusted 40.50 54.93 7.41 22.86 56.71
DJI.Adjusted 10,631.87 1,760,187.53 1,326.72 7,286.27 14,164.53
IXIC.Adjusted 2,281.29 455,805.30 675.13 1,114.11 5,048.62
HIS.Adjusted 2.45 2.88 1.70 0.11 9.85
FCHI.Adjusted 4,584.44 1,002,032.79 1,001.02 2,403.04 6,856.76
FTSE.Adjusted 5,421.28 761,959.88 872.90 3,287.00 6,930.20
GDAXI.Adjusted 5,364.33 2,018,997.48 1,420.91 2,202.96 8,105.69

In table 4.1, it can be deduced that, the Dow Jones Industrial index (DJI), which is made up of
the “30 most influential companies in the USA”, recorded the highest mean adjusted closing price,
with the highest variance as well, making it highly volatile. Although the DJI relatively has a high
variance/standard deviation, it has the lowest risk (thus, the ratio of the standard deviation to the
mean). Moreover, in terms of volatility, the Hang Seng index which is a Hong Kong stock market index,
has the lowest due to its low standard deviation. However, it has the highest risk relatively.
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Figure 4.1: Graphical description S&P 500

(a) (b)

Figure 4.1a is a plot of the adjusted closing price S&P 500 with date on the horizontal axis and the
adjusted closing prices on the vertical axis. Figure 4.3 on the other hand is the a pictorial view of the
log-returns on S&P 500 over the time period considered for this essay.
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4.2 ANN results

Figure 4.2: A confusion matrix showing a NN Classification performance

Figure 4.2, displays a confusion matrix showing the overall performance of the Artificial Neural Network.
From the matrix, we observe that, on 163 times, our model predicted ‘down’ and it was actually down
whiles it predicted the upward movements correctly 213 times. The model however, wrongly predicted
the movement 242 times. Summing up, the model’s prediction accuracy is approximately 61 percent.
We are also 95% confident that the accuracy of the model will be in the range (0.5687, 0.6471). Also,
although ANN model doesn’t seem to be doing well as a classifier; with its 61 percent hit rate, but it
achieved approximately 66 percent accuracy in classifying the ‘negative’ cases (thus, instances where
returns truly went up) as shown in the ‘negative predicted value’ of the displayed results. This in effect
gives some level of confidence in the instances when the model will predict that the returns will go up.
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4.3 Logistic results

Figure 4.3: A confusion matrix showing the performance of logistic model

In figure 4.3, we present a summary of the performance of the logistic model. We observe that,
the model was correct in predicting that returns will go down whiles it actually went down on 109
occasions. Also, it correctly predicted the upward movements 207 time. On the negative side, the
model misclassified the direction of the returns on 302 instances. This limits the overall accuracy of the
model in the classification to approximately 51 percent.
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4.4 LDA results

Figure 4.4: A confusion matrix showing the performance of logistic model

Figure 4.4 displays the results from the linear discriminant analysis. The model was successful in
classifying the downward returns on 109 different instances, whereas it correctly classified the up returns
207 times. The model was unsuccessful on 302 occasions in the classification. Just as the logistic
model, LDA approximately had 51 percent overall prediction accuracy.
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4.5 QDA results

Figure 4.5: A confusion matrix showing the performance of quadratic discriminant analysis

In 4.5, we analyse the output of the quadratic discriminant with a confusion matrix. In the matrix,
we deduce that the model performed relatively low in classifying the downward directions, compared to
ANN, logistic and LDA presented earlier. In all, it correctly predicted the the returns on 302 different
instances. The overall hit rate of the QDA is approximately 49 percent which in a sense is low; relative
to the other models presented earlier.
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4.6 k-NN results

Figure 4.6: A confusion matrix showing the performance of KNN

The results and analysis of the k-Nearest Neighbourhood algorithm is presented in figure 4.6. In the
figure, we observe that though the k-NN algorithm seems simple, its overall accuracy in classifying the
directions of the returns is relatively higher comparing to that of QDA. Also, it performed better in
classifying the downward returns than that of logistic model, LDA and QDA. The overall accuracy of
the k-NN algorithm is approximately 49.4 percent.

4.7 Summary of Results

Table 4.2: Performance summary of the various algorithms

Algorithm Number correctly classified Accuracy

ANN 376 60.8%
Logistic 316 51.1%
LDA 316 51.1%
QDA 301 48.7%
KNN 305 49.4%
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Table 4.6 provides a summary of classification accuracies of the various algorithms, using opening prices
of the selected predictors at day t to predict the direction of the return at the end of the same trading
day t. Which in a sense, is predicting a time-step ahead.

4.8 Further Analysis

In an attempt to predict the movement (direction) of the return on S & P 500 at day t, using the returns
on DJI, FCHI, FTCH, FTSE, GDAXI, GE, IXIC, HIS, JNJ and MSFT at the same day t as the input
variables; that is to say, analysing how much influence the various stocks/indices have on the S&P 500
index, the following results were obtained for the various algorithms.

Table 4.3: Performance assessment using returns as predictors

Algorithm Number correctly classified Accuracy

ANN 592 95.8%
Logistic 585 94.7%
LDA 569 92.1%
QDA 544 88.0%
KNN 618 91.9%

In table 4.3, we observe that ANN performed relatively better than the other algorithms; achieving
95 percent accuracy in the classifications. Although majority of the algorithms achieved more than 90
percent accuracy, using returns on other stocks/indices at a time ‘t’ to predict the returns on the S&P
500 index at the same time ‘t’ tends to be of less relevance to investors. Investors are mostly interested
in knowing the future based on information at hand so as to know how to hedge against possible losses.
Hence achieving high predictive accuracy with a normal regression approach tends to be of less interest
to investors.

4.9 Discussions

• We have presented in this study, ways of predicting the direction of the returns on S&P 500 index.
In an attempt to predict the return on the index at the end of a trading day, given the opening
prices of some stocks/indices, we deduced that the highest accuracy achieved was approximately
61 percent. With this, an investor can be confident that the trained model can predict the returns
with 61 percent accuracy.

• In addition, the results of all the various algorithms considered in this essay show that, the models
performed better in classifying the instances where the returns went ‘up’ than the ‘down’ cases.
To this effect, the investor can have some level of confidence whenever the models predict an
‘upward’ trend of the returns.

• He/she (the investor) can develop a daily trading strategy depending on the prevailing market
conditions. The table below gives a summary of the possible strategies that the investor can
develop under different conditions.
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Table 4.4: Daily trading strategies under different conditions

Day Condition Trading action
t-1 buy a share of stock at the end of the day

(or keep if in ones possession).

t if returns are predicted to be positive hold stock throughout day (thus, hold until
next trading day).

t if returns are predicted to be negative
a) sell at the beginning of the trading day

and buy it back at the end of the day.
b) wait until price reaches the purchased

price and sell; else hold until the end
of the day to prevent possible loss.

Suppose the investor starts with one share of stock which worth $1, 244.78 and invests it over the
period of ten years as considered in this study. Then, analysis of the total returns that the investor
would probably realize based on the strategies developed in Table 4.4 is as tabulated in Table 4.5 below.
It should be noted that, this analysis does not take into account frictional cost which measures both
the direct and indirect costs involved in financial transactions. That is to say, the analysis does not take
into account some costs involved in the sales of the stock such as tax liabilities, brokers commission,
exchange fees and other indirect costs.

Table 4.5: Profit/Loss accounting of the various strategies developed (for the ten- year period)

Purchased price Selling price Return realized Actual value of return ($)
Closing price of day t-1 Open price of day t, for open

price ≥ purchased price
Open price of day t - purchased
price

13, 334.03

Closing price of day t-1 purchased price purchased price - closing price
of day t

940.59

Closing price of day t-1 closing price of day t closing price of day t - closing
price of day t-1

−381.7

Table 4.5 gives the various possibilities of the returns that the investor would realize on the share of
stock over the ten-year period. We observe from the table that, the investor would be making profit,
trading with our developed strategy as shown in the second and third rows of the table, where he/she
trades only when conditions are predicted favourable. On the other hand, the return on the stock over
the ten-year period would be negative if the investor is to trade without any knowledge on what would
happen at the end of the trading day; as shown in the last row of the table.



Section 4.9. Discussions Page 28

Summarizing, the profit/loss accounting of the various trading strategies is as tabulated below:

Table 4.6: Summary of profit/loss accounting

strategy profit/loss ($)
Buying a share for $1244.78 and holding it for the
ten-year period.

-381.7

strategy (a): sell at the beginning of trading day
and buy back at the end of the day; given that
model predicts negative returns.

13,334.03

strategy (b): wait until price reaches the purchased
price and sell; else hold till the end of the day (for
days when returns are predicted negative).

940.59

As demonstrated in Table 4.6, the instance where one buys a share of stock and keeps it for the ten-year
period results in loss on the share (see the second row of Table 4.6). This is a situation that investors
always want to avoid. Hence a worry to an investor. On the other hand, having some knowledge on the
likely behaviour of the market, that is, using the two strategies developed resulted in additional profit
aside holding the share of the stock at the end of the period (see last two rows of Table 4.6). To this
effect, our model becomes useful since it helps to develop a strategy to trade only when conditions are
predicted favourable (i.e. positive returns would be realized). However, it is limited by its inability to
take into account; the cost of transaction involved in the sales of the stock.



5. Conclusion

This study presents different ways of predicting the direction of the returns on the Standard and Poor
stock index using different machine learning techniques and develop a trading strategy based on the
results. It has been observed that Artificial Neural Network performed relatively better than the other
techniques. Although none of the models achieved a 100 percent accuracy, the result from the trained
ANN model suggests that investors can develop a trading strategy with the model with some level of
confidence. Future works should consider predicting the returns on the index for longer periods and
also the actual returns; taking the high and low prices during the day, the volume traded and the other
economic indicators such as exchange rates and consumer index into account.
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