# CCLRC DARESBURY LABORATORY EPSRC NATIONAL CHEMICAL DATABASE SERVICE

# **APPENDICES TO ANNUAL REPORT DOCUMENTS 2006/7**

- 1. Management Advisory Panel
- 2. Usage Statistics
- 3. CDS Use and RAE Grade for Chemistry Departments
- 4. Components Available during Report Period
- 5. Agreed Service Levels
- 6. Literature References Citing the Service

### **Management Advisory Panel**

Prof. R.E. Hubbard, University of York & Vernalis (Chair)

Dr. N. Greeves, University of Liverpool

Dr. J.G. Frey, University of Southampton

Dr. W.G. Town, Kilmorie Consultants

Dr. M.J. Biggs University of Edinburgh

Prof. C.C. Wilson University of Glasgow

1. The Management Advisory Panel (MAP) exists to assist the Service Director in the effective operation of the National Service by:

*a)* Ensuring Service is fully utilised in supporting the highest quality science.

*b)* Advising on the special and changing research needs of the communities using the Service and how the Service might be developed to meet these needs.

c) Advising on how the Service is perceived both scientifically and organisationally by its user communities so that timely action may be taken to build on strengths and address weaknesses.
d) Assisting in the promotion of the Service to ensure that as many as possible of the researchers who might benefit from it are aware of its existence and technical capabilities.

2. The full MAP will normally meet twice a year, and members may be asked to participate in additional meetings involving users or EPSRC as necessary.

3. Members of the MAP should declare any personal interests and not participate in discussions where there would be a conflict of interest.

4. Membership of the Management Advisory Panel should ensure that the MAP has representatives from each main user community and should be reviewed on an annual basis to reflect changes in the user base.

5. The composition of the MAP will be based on the following criteria:

*a)* MAP membership should be for a fixed three year term.

b) New MAP members to be chosen in consultation with EPSRC.

c) MAP to have at least one member from industry.

*d)* MAP to have at least one member who coordinates chemical information provision at a major UK university.

e) MAP to include no more than one member from any single institution.

## Appendix 2 CDS Usage Statistics







Appendix 2 (cont.) CDS Usage Statistics





## Appendix 3 CDS Usage and RAE Grade for Chemistry Departments (April 2006 - March 2007)

| Institution CHEMISTRY             | RAE      | Acesses | Registered | Active A | ccesses per | Accesses per | %Active    |
|-----------------------------------|----------|---------|------------|----------|-------------|--------------|------------|
| University of Combridge           | Grade    | 147     | Users      | Users    | Reg User    | Active User  | vs eg.User |
| University of Californiage        | 5*       | 14/     | 74         | 2477     | 24          | 49           | 51.00/     |
| Imperial Callege London           | 5.<br>5* | 100     | 55         | 34//     | 33<br>16    | 05           | 20.00/     |
| Imperial College, London          | 5.<br>5* | 138     | 20         | 1516     | 10          | 41           | 59.9%      |
| University College London         | 5*<br>5* | 08      | 38<br>49   | 1210     | 22          | 40           | 33.9%      |
| University of Durnam              | )*<br>∠* | 130     | 48         | 1201     | 9           | 25           | 36.9%      |
| University of Bristol             | <u>ک</u> | 11/     | 30         | 228      | 5           | 19           | 25.6%      |
| University of St Andrews          | 5        | 64      | 45         | 2892     | 45          | 64           | /0.3%      |
| University of Southampton         | 5        | 170     | 75         | 2713     | 16          | 36           | 44.1%      |
| University of Liverpool           | 5        | 104     | 58         | 2291     | 22          | 40           | 55.8%      |
| University of Manchester          | 5        | 192     | 74         | 2214     | 12          | 30           | 38.5%      |
| University of Nottingham          | 5        | 244     | 71         | 1736     | 7           | 24           | 29.1%      |
| University of Edinburgh           | 5        | 78      | 32         | 1202     | 15          | 38           | 41.0%      |
| University of Birmingham          | 5        | 71      | 43         | 1160     | 16          | 27           | 60.6%      |
| University of Warwick             | 5        | 76      | 39         | 1052     | 14          | 27           | 51.3%      |
| University of Leeds               | 5        | 127     | 44         | 1016     | 8           | 23           | 34.6%      |
| University of Sussex              | 5        | 31      | 11         | 986      | 32          | 90           | 35.5%      |
| University of York                | 5        | 76      | 35         | 977      | 13          | 28           | 46.1%      |
| University of Sheffield           | 5        | 98      | 30         | 781      | 8           | 26           | 30.6%      |
| University of East Anglia         | 5        | 48      | 17         | 414      | 9           | 24           | 35.4%      |
| Heriot-Watt University            | 4        | 54      | 31         | 2537     | 47          | 82           | 57.4%      |
| University of Wales, Cardiff      | 4        | 96      | 42         | 1518     | 16          | 36           | 43.8%      |
| University of Reading             | 4        | 140     | 58         | 1415     | 10          | 24           | 41.4%      |
| University of Bath                | 4        | 69      | 38         | 1401     | 20          | 37           | 55.1%      |
| University of Strathclyde         | 4        | 72      | 40         | 1261     | 18          | 32           | 55.6%      |
| University of Exeter              | 4        | 31      | 10         | 1133     | 37          | 113          | 32.3%      |
| University of Glasgow             | 4        | 51      | 20         | 840      | 16          | 42           | 39.2%      |
| University of Hull                | 4        | 55      | 25         | 599      | 11          | 24           | 45.5%      |
| Loughborough University           | 4        | 59      | 30         | 438      | 7           | 15           | 50.8%      |
| The Queen's University of Belfast | 4        | 44      | 20         | 364      | 8           | 18           | 45.5%      |
| University of Newcastle upon Tyne | 4        | 38      | 11         | 238      | 6           | 22           | 28.9%      |
| University of Leicester           | 4        | 11      | 3          | 140      | 13          | 47           | 27.3%      |
| Kings (London)                    | 4        | 8       | 4          | 78       | 10          | 20           | 50.0%      |
| University of Wales, Swansea      | 4        | 11      | 5          | 19       | 2           | 4            | 45.5%      |



### **Components Available during Report Period**

#### CRYSTALLOGRAPHY

- CSD Cambridge Structural Database. Crystal structure data for over 403,000 organic and organo-metallic compounds. 3D geometric search capabilities are available for this data. Accessed via Quest, ConQuest and CSSR.
- ICSD Inorganic Crystal Structure Data File. Over 97,000 inorganic structures, searchable via a web interface. Available via the ICSD-WWW web browser interface.
- CRYSTMET Crystal structure data for over 105,000 metals, alloys and intermetallics.
- CDIF The NIST Crystal class and unit cell data for over 237,600 structures.

All crystallographic databases are also accessible via the CrystalWeb interface.

#### SPECTROSCOPY

SPEC SpecInfo is a multi-technique spectroscopic database system designed to aid the chemist in interpretation and structure elucidation problems. The associated database currently contains over 146,000 <sup>13</sup>C, <sup>15</sup>N, <sup>17</sup>O, <sup>19</sup>F and <sup>31</sup>P NMR spectra, 117,000 <sup>1</sup>H NMR spectra, 21,000 Infra-Red spectra and 138,000 Mass Spectra.

Accessed via SpecSurf, a web browser based interface.

#### PHYSICAL CHEMISTRY

DETHERM One of the world's largest collections of thermophysical properties databases of pure components and compound mixtures. It contains around 5 Million datasets for over 122,000 systems (25,166 pure substances and 97,046 mixtures) covering more than 500 property fields.

Accessed via Client/server interface

#### SYNTHETIC ORGANIC CHEMISTRY

ISIS Chemical reaction information management system allowing search, retrieval and display of molecules, reactions and their associated data. Currently ISIS can access nearly 1.6M searchable reactions from the following databases:

REFLIB (Reference Library of established literature) DERWENT-JSM (Journal of Synthetic Methods) CHEMINFORM (Current awareness database - updated every 6 months) ORGSYN (Organic Synthesis) SPG (Synopsys Protecting Groups) SPS (Solid Phase Synthesis) BioCatalysis (Biomolecules as catalysts) ChirBase (Chiral Separations by Chromatography) NCI (National Cancer Institute Database.

ISIS also allows access to ACD (Available Chemicals Directory), which is a database of suppliers of chemicals that contains around 0.7M unique compounds from 719 different suppliers and SCD (Screening Compounds Database) that contains over 5.6 Million compounds from 24 suppliers.

Both client/server and web browser interfaces are available for all ISIS components.

## **CDS Service Levels**

Any service levels which involve people do not apply during a holiday period such as Christmas - New Year. The computers are left running over this period and can be accessed by users. Any serious faults reported will be investigated, with staff being called out if necessary.

### 1. Database Services

1. New database releases available to users within one working week of reception 95% of the time. Any failures to meet this service level will be recorded as a cumulative total number of days and reported (with full details) to the Management Advisory Panel.

2. Advice on use of chemical information systems, not available in the database service, to be given within two working days with 95% availability in a calendar month.

### 2. Support

1. Chemist available to answer queries during office hours with 95% availability in any calendar month.

2. General computing queries (high priority) responded to within two working hours during office hours with 97% availability in any calendar month.

3. All other computing queries responded to within two working days with 95% availability in any calendar month.

4. Registration of new users complete within one working week with 95% availability within a calendar month.

5. Bugs and errors in online documentation to be corrected within 2 working days of notification 95% of the time.

#### **3. System Performance**

1. Service availability 99% in any calendar month excluding scheduled down time.

- 2. Scheduled down time less than 4 hours per quarter.
- 3. At least two working days warning of scheduled down time via login messages.
- 4. a) Daily incremental back up of user discs on main machine with 99% successful completion.
  - b) Weekly full disc back up on main machine with 99% successful completion.

#### 4. Network Access

1. 99% Availability of Daresbury campus network (JANET packet switched exchange (JPSE) and campus packet switched exchange (CPSE) and associated on site network) excluding the JNT specified 'at risk' periods (when scheduled maintenance may occur) which are confined to Tuesdays from 8 am to 10 am.

2. We can not guarantee the availability of the academic network (JANET) but will give assistance in tracing network access difficulties within one working day during office hours with 95% availability in any calendar month.

# Papers Citing the Chemical Database Service JCICS review paper in 2006/2007 (data retrieved from the ISIS Web of Science)

| AUTHOR                                      | JOURNAL                                                    | IMPACT<br>FACTOR 2005 |
|---------------------------------------------|------------------------------------------------------------|-----------------------|
| Blake AJ, Li WS, Lippolis V, et al.         | ACTA. CRYSTALLOGR. B., 63, 81-92, Part 1, FEB 2007         | 1.91                  |
| Pritchard RG, Ali M, Munim A, et al.        | ACTA. CRYSTALLOGR. C, 62, M467-M468, Part 10, OCT 2006     | 0.777                 |
| Coyle JL, Fuller A, Mckee V, et al.         | ACTA. CRYSTALLOGR. C, 62, M472-M476, Part 10, OCT 2006     | 0.777                 |
| Pritchard RG, Ali M, Munim A, et al.        | ACTA. CRYSTALLOGR. C, 62, M507-M509, Part 11, NOV 2006     | 0.777                 |
| McClain JM, Maples DL, Maples RD, et al.    | ACTA. CRYSTALLOGR. C, 62, M553-M555, Part 11, NOV 2006     | 0.777                 |
| Skakle JMS, Wardell JL, Wardell SMSV        | ACTA. CRYSTALLOGR. C, 62, O312-O314, Part 6, JUN 2006      | 0.777                 |
| Skakle JMS, Wardell JL, Wardell SMSV        | ACTA. CRYSTALLOGR. C, 62, O476-O477, Part 8, AUG 2006      | 0.777                 |
| Pritchard RG, Moreland L                    | ACTA. CRYSTALLOGR. C, 62, 0656-0658, Part 11, NOV 2006     | 0.777                 |
| Harding MM                                  | ACTA. CRYSTALLOGR. D, 62, 678-682, Part 6, JUN 2006        | 1.401                 |
| De Vivar MEDA, Baggio S, Baggio R           | ACTA. CRYSTALLOGR. E, 62, M986-M988, Part 5, MAY 2006      | 0.581                 |
| Najafpour MM, McKee V                       | ACTA. CRYSTALLOGR. E, 62, O1365-O1368, Part 4, APR 2006    | 0.581                 |
| Skakle JMS, Wardell JL                      | ACTA. CRYSTALLOGR. E, 62, O1402-O1404, Part 4, APR 2006    | 0.581                 |
| de Oliveira CD, et al.                      | ACTA. CRYSTALLOGR. E, 62, 01492-01493, Part 4, APR 2006    | 0.581                 |
| Costa MS, Boechat N, Ferreira VF, et al.    | ACTA. CRYSTALLOGR. E, 62, O1925-O1927, Part 5, MAY 2006    | 0.581                 |
| Costa MS, Boechat N, Ferreira VF, et al.    | ACTA. CRYSTALLOGR. E, 62, O2048-O2050, Part 5, MAY 2006    | 0.581                 |
| Boechat N, Lages A, Kover WB, et al.        | ACTA. CRYSTALLOGR. E, 62, O2563-O2565, Part 6, JUN 2006    | 0.581                 |
| Mckee V, Grace G, Nelson M, et al.          | ACTA. CRYSTALLOGR. E, 62, 03747-03749, Part 9, SEP 2006    | 0.581                 |
| Silversides JD, Sparke AE, Archibald SJ     | ACTA. CRYSTALLOGR. E, 62, 05944-05946, Part 12, DEC 2006   | 0.581                 |
| James L, Maguire GEM, et al.                | ACTA. CRYSTALLOGR. E, 63, O153-O155, Part 1, JAN 2007      | 0.581                 |
| de Oliveira CD, et al.                      | ACTA. CRYSTALLOGR. E., 62, O1494-O1495, Part 4, APR 2006   | 0.581                 |
| Givaja G, Volpe M, Edwards MA, et al.       | ANGEW. CHEM. INT. ED., 46 (4), 584-586 2007                | 9.596                 |
| Brown LJ, Bouvet DR, Champion S, et al.     | ANGEW. CHEM. INT. ED., 46 (6), 941-944 2007                | 9.596                 |
| Lawrence NJ, Patterson RP, Ooi LL, et al.   | BIOORG. MED. CHEM. LETT., 16 (22), 5844-5848, 15, NOV 2006 | 2.478                 |
| Morley JO, Matthews TP                      | BIOORG. MED. CHEM., 14 (23), 8099-8108, 1, DEC 2006        | 2.286                 |
| Proisy N, Sharp SY, Boxall K, et al.        | CHEM. BIOL., 13 (11), 1203-1215, NOV 2006                  | 6.138                 |
| Morton D, Pearson D, Field RA, et al.       | CHEM. COMMUN., (17), 1833-1835 2006                        | 4.426                 |
| Matharu DS, Morris DJ, Clarkson GJ, et al.  | CHEM. COMMUN., (30), 3232-3234 2006                        | 4,426                 |
| Allan DR, Blake AJ, Huang DG, et al.        | CHEM. COMMUN., (39), 4081-4083 2006                        | 4,426                 |
| O'Leary J, Wallis JD                        | CHEM. EUR. J., 12 (29), 7724-7732, 10, OCT 2006            | 4.907                 |
| Mead RN, Mountjoy G                         | CHEM. MATER., 18 (17), 3956-3964, 22, AUG 2006             | 4.818                 |
| Johnson CD, Mallon AJ, Worrall F            | CLAYS CLAY MINER., 54 (6), 678-688, DEC 2006               | 1.364                 |
| Grossel MC, Dwyer AN, et al.                | CRYSTENGCOMM, 8 (2), 123-128 2006                          | 3.508                 |
| Hillier S, Lumsdon DG, Brydson R, et al.    | ENVIRON. SCI. TECHNOL., 41 (6), 1921-1927, 15, MAR 2007    | 4.054                 |
| Beard CD, Carr L, Davis MF, et al.          | EURO. J. INORG. CHEM. (21), 4399-4406, 6, NOV 2006         | 2.514                 |
| Bigmore HR, Zuideveld MA, et al.            | INORG. CHEM., 45 (16), 6411-6423, 7, AUG 2006              | 3.851                 |
| Ward BD, Risler H, Weitershaus K, et al.    | INORG. CHEM., 45 (19), 7777-7787, 18, SEP 2006             | 3.851                 |
| Griffith GA, Hillier IH, Moralee AC, et al. | J. AMER. CHEM. SOC., 128 (40), 13130-13141, 11, OCT 2006   | 7.419                 |
| Bolton PD, Clot E, Cowley AR, et al.        | J. AMER. CHEM. SOC., 128 (46), 15005-15018, 22, NOV 2006   | 7.419                 |
| Dalby KJ, Ellis D, Erhardt S, et al.        | J. AMER. CHEM. SOC., 129 (11), 3302-3314, 21, MAR 2007     | 7.419                 |
| Pickup DM, Ahmed I, FitzGerald V, et al.    | J. NON-CRYST. SOLIDS, 352 (28-29), 3080-3087, 15, AUG 2006 | 1.264                 |
| Mead RN, Mountjoy G                         | J. CHEM. PHYS., 125 (15), 154501, 21, OCT 2006             | 3.138                 |
| Pierloot K, Vancoillie S                    | J. CHEM. PHYS.,125 (12), 124303, 28, SEP 2006              | 3.138                 |
| Howell JAS                                  | J. CHEM. SOC., DALTON TRANS., (11), 1104-1114 2007         | 3.003                 |
| Foreman MRS, Hudson MJ, et al.              | J. CHEM. SOC., DALTON TRANS., (13), 1645-1653, 7, APR 2006 | 3.003                 |
| Fey N, Howell JAS, Lovatt JD, et al.        | J. CHEM. SOC., DALTON TRANS., (46), 5464-5475 2006         | 3.003                 |
| Burrows AD, Dodds D, Kirk AS, et al.        | J. CHEM. SOC., DALTON TRANS., (5), 570-580 2007            | 3.003                 |
|                                             |                                                            |                       |

Silversides JD, Allan CC, Archibald SJ Ok KM, Doran MB, O'Hare D Johnson CD, Worrall F Morris DJ, Hayes AM, Wills M Randell K, Stanford MJ, Clarkson GJ, et al. Morales F, Grandjean D, Mens A, et al. Mead RN, Mountjoy G Grandjean D, Castricum HL, et al. Thomas BWM, Mead RN, Mountjoy G Clark EB. Mead RN. Mountiov G Skinner LB, Barnes AC, Crichton W Guillaume C, Morniroli JP, Frost DJ, et al. Heng JYY, Williams DR Merroun M, Rossberg A, Hennig C, et al. Clark GNI, Haslam AJ, Galindo A, et al. Hussaini SR, Moloney MG Moloney MG, Panchal T, Pike R McErlean CSP, Proisy N, Davis CJ, et al. Cheung FK, Hayes AM, Morris DJ, et al. Linclau B, Jeffery MJ, Josse S, et al. Owen CT, Bolton PD, Cowley AR, et al. Bolton PD, Clot E, Adams N, et al. Mountford AJ. Lancaster SJ et al. Adams N, Arts HJ, Bolton PD, et al. Bolton PD, Adams N, Clot E, et al. Wong DM, Simpson SJ Howell JAS Biswas M, Rosair GM, Pilet G, et al. Yamada K, Honda H, Yamazaki T, et al. Yamada K, Nemoto T, Asanuma M, et al. Tsami A, Grillo F, Bowker M, et al. Nicholson G, Silversides JD, Archibald SJ Morris DJ, Docherty G, Woodward G, et al. Needs PW. Kroon PA Tamanini E, Watkinson M, Todd MH Xu YJ, Docherty GF, Woodward G, et al. Johnson CD, Feldmann J, Macphee DE

3.003 J. CHEM. SOC., DALTON TRANS., (9), 971-978 2007 J. MATER. CHEM., 16 (33), 3366-3368 2006 3.688 J. MATER. CHEM., 17 (5), 476-484 2007 3.688 J. ORG. CHEM., 71 (18), 7035-7044, 1, SEP 2006 3.675 J. ORGANOMET. CHEM., 691 (16), 3411-3415, 1, AUG 2006 2.025 4.033 **J. PHYS. CHEM. B**, 110 (17), 8626-8639, 4, MAY 2006 4.033 J. PHYS. CHEM. B, 110 (29), 14273-14278, 27, JUL 2006 J. PHYS. CHEM. B, 110 (34), 16892-16901, 31, AUG 2006 4.033 2.145 J. PHYS. CONDENS. MATTER, 18 (19), 4697-4708, 17, MAY 2006 J. PHYS. CONDENS. MATTER, 18 (29), 6815-6826, 26, JUL 2006 2.145 J. PHYS. CONDENS. MATTER, 18 (32), L407-L414, 16, AUG 2006 2.145 J. PHYS.: CONDENS. MATTER, 18 (37), 8651-8660, 20, SEP 2006 2.145 LANGMUIR 22 (16), 6905-6909, 1, AUG 2006 3.705 MAT. SCI. ENG. C, 27 (1), 188-192, JAN 2007 1.599 MOL. PHY., 104 (22-24), 3561-3581, NOV-DEC 2006 1.351 ORG. BIOMOL. CHEM., 4 (13), 2600-2615 2006 2.547 2.547 ORG. BIOMOL. CHEM., 4 (21), 3894-3897 2006 2.547 ORG. BIOMOL. CHEM., 5 (3), 531-546 2007 2.547 ORG. BIOMOL. CHEM., 5 (7), 1093-1103 2007 ORGANIC LETTERS 8 (25), 5821-5824, 7, DEC 2006 4.368 ORGANOMETALLICS 26 (1), 83-92, 1, JAN 2007 3.473 3.473 ORGANOMETALLICS, 25 (11), 2806-2825, 22, MAY 2006 **ORGANOMETALLICS**, 25 (16), 3837-3847, 31, JUL 2006 3.473 3.473 ORGANOMETALLICS, 25 (16), 3888-3903, 31, JUL 2006 ORGANOMETALLICS, 25 (23), 5549-5565, 6, NOV 2006 3.473 1.957 **POLYHEDRON,** 25 (11), 2303-2317, 31, JUL 2006 1.957 POLYHEDRON, 25 (15), 2993-3005, 3, NOV 2006 1.957 POLYHEDRON, 26 (1), 123-132, 2, JAN 2007 1.41 SOLID STATE NUCL. MAG. RES., 30 (3-4), 162-170, OCT 2006 1.41 SOLID STATE NUCL. MAG. RES., 30 (3-4), 182-191, OCT 2006 SURFACE SCIENCE, 600 (17), 3403-3418, 1, SEP 2006 1.78 **TET. LETT.**,47 (37), 6541-6544, 11, SEP 2006 2.477 2.477 TET. LETT.,48 (6), 949-953, 5, FEB 2007 2.61 TETRAHEDRON 62 (29), 6862-6868, 17, JUL 2006 2.429 TETRAHEDRON ASYMMETRY, 17 (15), 2235-2239, 11, SEP 2006 TETRAHEDRON ASYMMETRY, 17 (20), 2925-2929, 6, NOV 2006 2.429 1.123 WASTE MANAGE., 27 (3), 375-379 2007

Average Impact Factor = 2.75