
This document has been designed to be a reference to help
you get started in your white-hat hacking journey. There are a
few basic techniques and attacks that are important to know

 about when getting started with security testing.

Start

Hacking!

Once

you’re

logged

in,

click

the

Launch

Panel

button

at

the

top

which launches InstaFriends Social Media Web site.

Each player has their own instance so no need to worry about your play effecting others - or vice versa. A

Virtual

Machine

is

set

up

just

for

you,

but

that

takes

about

2

minutes,

so

be

patient.

Techniques
 Security

Testing

is

a

conversation.

There

is

no

one

way

to

conduct

a

conversation,

and

likewise

there

is

no

one

way

to

conduct

a

security

assessment.

Think

of

things

you’d

like

to

discover

about

the

application,

then

think

of

questions

that

you

can

ask

to

find

out

the

answers.

A

good

security

tester

is

both

observant

and

has

a

good

memory.

Be

sure

to

see

everything

you

can

and

remember

as

much

as

possible.

You’ll

never

know

when

something

you

saw

hours

or

days

ago

will

come

up

later.

You

must

also

have

a

good

imagination.

Think

about

how

the

application

was developed,

what

assumptionswere

made,

and

how

those

assumptions

can

be

exploited.
Observation

The

application

discloses

an

enormous

amount

of

information

in

everyday

operation.

Create

a

complete

picture

of

the

application,

then

use

that

knowledge

to

attack

it.

Here

are

a

few

things

that

you’ll

want

to

discover

about

the

site

you’re

testing:
• Web

Server

type

and

version

number

-

Google

for

known
vulnerabilities,

default

settings,

and

more.
• Error

Messages

-

Where

did

the

error

message

come

from
(Database,

web

server,

404

page,

javascript,

input

validation
routine)?

What

can

you

learn

from

the

error

message
(software,

configuration,

attack

vectors)?
• Source

Code

-

Can

you

find

the

source

code

of

the
application

somewhere?

This

can

give

you

a

significant
inside

track.

Can

you

use

other

vulnerabilities

to

download
the

source?

Can

you

discover

a

jar

or

war

file

and

decompile
it

with

a

tool

such

as

JAD?
• Client

Side

Code

-

HTML,

HTML

Comments,

JavaScript,
and

CSS

can

all

give

you

critical

information

about

the
application.

Right

click

and

view

source!
• Input

Validation

-

Input

validation

may

be

possible

to
bypass

if

it

is

done

client

side

only.

• Cookies

-

What

do

the

cookies

look

like?

Are

all

of

those
cookies

standard?

Are

they

set

secure

or

httponly?
• UI

-

Observe

any

time

a

UI

element

is

out

of

place,

this

could
be

an

indication

of

new

(or

old)

or

buggy

added

functionality.

The

Conversation

Each

time

you

learn

something

new

about

the

application

think

about

what

doors

that

new

answer

opened

for

you.

If

you

discover

what

OS

it’s

using,

you

can

now

google

for

known

vulnerabilities,

configurations,

directory

structures,

or

other

information

that

you

can

use.If

you

start

learning

about

the

application,

what

does

that

tell

you

about

the

assumptions

that

the

developer

made?
• Does

validation

always

occur

on

the

client?
• Is

the

validation

different

on

the

server?
• Was

an

ORM

used?

Was

it

used

consistently?
• Are

there

comments

in

HTML?

What

do

they

say?
Once

you

discover

one

thing

about

the

application,

think

about
what

the

next

question

can

be

to

learn

more.

Vulnerability

Chaining

Frequently

it

isn’t

possible

to

get

what

you

want

in

a

single

vulnerability,

so

we

have

to

chain

multiple

vulnerabilities

together.
A

Cross

Site

Scripting

(XSS)

vulnerability

may

allow

you

to

bypass

the

Cross

Site

Request

Forgery

(CSRF)

protection,

which

allows

you

to

trick

a

user

into

clicking

a

link

to

transfer

money.
Once

you’ve

found

a

few

vulnerabilities

think

about

how

you

can

chain

multiple

issues

together

to

accomplish

something

greater!

Attacks

Cross

Site

Scripting

(XSS)
XSS

allows

an

attacker

to

inject

client

side

code

(HTML,

JavaScript,

etc.)

into

the

page

such

that

it

is

rendered

on

the

client.

• Reflected

-

script

is

provided

by

the

caller

and

executed

in
the

browser,

e.g.

an

error

message

that

is

rendered

in

the
body

of

the

page

which

has

been

provided

as

a

url
parameter

that

is

not

properly

encoded

on

the

server.
• Stored

-

script

is

stored

in

a

datastore

and

added

to

the

body
of

the

page

as

it

is

rendered,

e.g.

a

forum

that

allows

users
to

leave

comments

for

one

another.
Things

to

look

out

for

Any

time

data

or

text

that

you

have

provided

is

reflected

back

to

you,

there

is

a

possibility

for

XSS.

When

you

discover

a

potential

injection

point

look

at

the

context.

Different

attacks

may

be

possible

if

your

attack

string

is

in

HTML,

JavaScript,

a

header,

a

link

or

somewhere

else.

Getting Started

• URL - The URL is a veritable font of information . Look at the parameters , domain , directory , and other clues to discover how the application does what it is doing.

Example
Consider you attempt a login with username “testAccount” and
you see an error message
“Sorry there is no account called testAccount in the system.”
This tells us a few things about the system.
1. It is performing user and password checks separately
2. It is leaking information about valid users (Information

Disclosure Vulnerability)
3. It is reflecting the username provided back to you which

may be an injection point. Attempt the test cases below.
test cases - Discovery
• <marquee> or <plaintext> - Frequently an opening

marquee or plaintext tag can be very useful in flushing out
potential areas for XSS injection. The attack string is very
obvious when not properly validated or encoded.

• '';!--"<XSS>=&{()} - This XSS locator string includes a
large number of potentially dangerous characters that should
always be encoded. Insert this string into the page and
search for “XSS” in the page, validate that each of the
characters have been properly validated for context.

test cases - Exploitation
• <script>alert(1)</script> - this is the most basic

attack string. It will simply pop up an alert box if executed.
Frequently this will not work because of basic blacklist
filtering on the <script> tag.

• - This
uses the image tag to execute javascript
which can bypass simple script tag checks.

• <BODY ONLOAD=alert('XSS')> - Many other tags can be
used along with javascript events to execute an attack string.

• https://www.owasp.org/index.php/
XSS_Filter_Evasion_Cheat_Sheet - There are far more
ways to execute JavaScript on a website than we have
space for here. Go to the URL above for more examples.

Information Disclosure
Information disclosure can help you learn about the application
quickly. It can also be a security vulnerability in and of itself.
Stack traces, information about the server, data quality
responses, and any other information that could be useful to
the attacker should be removed from production.
Things to look out for
• Server Headers - Search google for any server information

you can find.
• Error messages - Think about what this error message tells

you about the application and where the error message
came from.

• Stack Traces - These allow you to learn more about the
application and how it works.

Test Cases
Information Disclosure issues are usually discovered during the
course of other testing. Every other test case in this document
may provide you information.

SQL Injection (SQLi)
SQL injection vulnerabilities allow an attacker to execute
arbitrary SQL commands on the server. This is due to the
server failing to properly separate user supplied data from SQL
code.

Frequently simply typing a ' (single quote) into text boxes will
cause SQL error messages (Information Disclosure) to occur
which can give you more information about the system and
how to attack it. Look out for these types of error messages to
know you’re on the right track. Also think about what the SQL
code may look like on the server.
Logging in may be performed by executing the following SQL
code:
SELECT * FROM Users
WHERE Username = '[userprovided]'
AND Password = '[userprovided]';
Typing in a single quote into the username field will cause this
SQL command to be invalid, which will cause an error
message. You may be able to bypass the authentication of this
system by adding the right SQL command.
Test Cases - Special Characters and Commands
• ' - a simple single quote is the first test case to use to

discover SQL injection
• # - the # is a SQL comment and tells the sql interpreter to

stop executing the rest of the line
• ; - the semicolon is the end of a command. This may be

used to string multiple SQL commands together if supported
by the database.

• OR, AND - SQL supports logical operators such as or and and
• <, = - SQL supports comparison operators
Test Cases - Exploitation
• # OR 1=1 -- - this statement closes a string and 1=1

always resolves to true. Any statement or’d with true is
always true. This means the rest of the statement will be
true. Good for bypassing authentication and logins.

Parameter/URL Tampering
Parameters when passed in the URL bar or provided by the
client may be tampered with. Often times these parameters are
assumed to be immutable and are not validated on the server.
Things to look out for: Hidden values, Dropdown values,
Checkboxes, Radio Buttons URL parameters
Test Cases
Look at the source code to discover parameters, then use the
Firebug plugin to manipulate the parameters before submitting
any forms.
File Upload
Uploading arbitrary files can be problematic depending on the
context in which they can be accessed. Uploading an image
may be relatively benign, but if the attacker can upload script or
executable files they may be able to execute arbitrary code on
the server or use the server as a malware repository.
Things to look out for
Anywhere a file can be uploaded could be vulnerable.
Test Cases
Attempt tampering with file names, encoding, path, extension,
or contents may cause the server to interpret the file differently.
Attempt uploading a JSP file to the server then browse to that
file. Does the upload succeed and does the file execute?

SI172

