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Improving deep neural network
generalization and robustness to
background bias via layer-wise relevance
propagation optimization

Pedro R. A. S. Bassi 1,2 , Sergio S. J. Dertkigil3 & Andrea Cavalli1,4

Features in images’ backgrounds can spuriously correlate with the images’
classes, representing background bias. They can influence the classifier’s
decisions, causing shortcut learning (Clever Hans effect). The phenomenon
generates deep neural networks (DNNs) that perform well on standard eva-
luation datasets but generalize poorly to real-world data. Layer-wise Relevance
Propagation (LRP) explains DNNs’ decisions. Here, we show that the optimi-
zation of LRP heatmaps can minimize the background bias influence on deep
classifiers, hindering shortcut learning. By not increasing run-time computa-
tional cost, the approach is light and fast. Furthermore, it applies to virtually
any classification architecture. After injecting synthetic bias in images’ back-
grounds, we compared our approach (dubbed ISNet) to eight state-of-the-art
DNNs, quantitatively demonstrating its superior robustness to background
bias. Mixed datasets are common for COVID-19 and tuberculosis classification
with chest X-rays, fostering background bias. By focusing on the lungs, the
ISNet reduced shortcut learning. Thus, its generalization performance on
external (out-of-distribution) test databases significantly surpassed all imple-
mented benchmark models.

Deep neural networks (DNNs) revolutionized image classification.
Counting on millions of trainable parameters, the models proved
capable of analyzing entire images, becoming a new standard in many
different fields. However, the features contained in images’ back-
groundsmay have a strong and detrimental effect on the classification
process. Background features can unintentionally correlate with the
images’ classes, thus representing background bias, also called spur-
ious correlations. Trained in such environments, a DNN can learn to
base its decisions not only on relevant image regions, but also on
background features. The influence of background bias over the
classifier deteriorates its capacity to analyze the images’ relevant fea-
tures and reduces the trustworthiness of its decisions. The biased

model will perform artificially well on the training dataset, and on
evaluation databases that contain the same background biases. This is
a common condition for test datasets that are independent and
identically distributed (i.i.d.) in relation to the training data (e.g., eva-
luation databases created by randomly slipping a dataset into a train-
ing and a testing partition). Nevertheless, theDNNwill not be adequate
for a practical application, which may not portray the same back-
ground biases. This scenario favors shortcut learning (or Clever Hans
effect)1, a condition where deep neural networks learn decision rules
that perform well on standard benchmarks, but poorly on real-world
applications. Unlike an overfitted DNN, with shortcut learning the
model will perform well on an i.i.d. test dataset, but it will fail to
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generalize and be accurate on out-of-distribution (o.o.d.) databases.
Furthermore, the image features that cause shortcut learning can be
difficult for a person to identify1. This study presents a DNN archi-
tecture and training strategy to more efficiently deal with one of the
main causes of shortcut learning: background bias.

Layer-wise relevance propagation (LRP)2 is an explanation tech-
nique designed to create heatmaps for deep classifiers. LRP heatmaps
are graphics that explain the model’s behavior by making explicit how
each part of an input image influenced the DNN output. We can create
a heatmap for an input image, explaining the classifier score for a given
class. Positive and negative heatmap values (dubbed relevance) indi-
cate image areas that increasedor decreased the classifier’s confidence
in the class, respectively. Areas with relevance closer to zero were less
important for the classifier’s decision. Thus, high relevancemagnitude
in the image background indicates strong background bias influence
over the classifier’s output.

This study proposes producing differentiable LRP heatmaps
during training andoptimizing themwith a loss function. The function,
named heatmap loss, employs ground-truth semantic segmentation
masks to identify heatmap regions that correspond to the input ima-
ge’s background, andminimizes the LRP relevancemagnitude in these
regions. We called the minimization of the heatmap loss, alongside a
classification loss, Background Relevance Minimization (BRM). BRM
hinders classifier’s decision rules based on background features. Since
the training technique uses segmentation masks and LRP heatmaps to
teach the classifier which image regions it must focus on, it can be
regarded as an explanation- and segmentation-based spatial attention
mechanism. A DNN trained with BRM can implicitly distinguish the
input image’s foreground and background features (i.e., implicitly
segmenting a figure), and make decisions based only on the fore-
ground. Accordingly, we named a classifier trained with BRM an
Implicit Segmentation Neural Network (ISNet).

Byminimizing the influenceof background features over theDNN’s
outputs, the ISNet hinders the shortcut learning caused by background
bias, improving out-of-distribution (o.o.d.) generalization. Despite its
name, the ISNet is a classifier, not a segmenter. It does not produce
segmentation outputs. After the training procedure, the ground-truth
foreground masks and the creation of LRP heatmaps are no longer
needed. Thus, the ISNet introduces no computational cost at run-time.
WeuseBRMto train a classifier, definedby abackbone architecture, and
the resulting ISNet has the same structure as its backbone. The ISNet’s
run-time efficiency is important for deploying DNNs in mobile or less
powerful devices. Furthermore, the ISNet is versatile, because virtually
any classification architecture can be used as its backbone.

A segmentation-classification pipeline is a standard strategy to
avoid the influence of background bias over a classifier’s decisions. It is
a sequence of two networks. The first DNN segments the image’s
foreground. Afterwards, its output is used to erase the background,
creating a segmented image that the second DNN classifies. Running
two large DNNs sequentially leads to heavy memory and time
requirements for the pipeline. We consider it as a benchmark in this
study. Moreover, we also compare the ISNet to DNNs optimizing
alternative explanation heatmaps. Hierarchical Attention Mining3

(HAM, in Supplementary Note 7.2) and Guided Attention Inference
Network4 (GAIN) optimize Grad-CAM5, Right for the Right Reasons6

(RRR) optimizes input gradients7, and the ISNet Grad*Input is an
ablation experiment where we substitute the ISNet’s LRP heatmaps by
Gradient*Input8 explanations. We also contrast the ISNet to a standard
deep classifier, and to other state-of-the-art DNN architectures
designed to minimize shortcut learning or control classifier attention.
They are: Attention Gated Networks9 (AG-Sononet) and the Vision
Transformer10, exemplifying attention mechanisms that do not learn
from semantic segmentation masks; and a multi-task U-Net, which
simultaneously produces classification scores and semantic segmen-
tation outputs.

We present multiple classification experiments, designed to
assess the ISNet’s capacity of hindering the shortcut learning causedby
background bias. Currently, the most popular open databases of
COVID-19 chest X-rays contain either no or few COVID-19 negative/
control cases11,12. Due to this limitation, to this date most studies
resorted to mixed source datasets to train DNNs to differentiate
between COVID-19 patients, healthy people, and patients with other
diseases (e.g., non-COVID-19 pneumonia). In these datasets, different
classes come from different databases assembled in distinct hospitals
and cities. The dissimilar sources may contain different biases, which
may help DNNs to classify the images according to their source data-
set, rather than the disease symptoms. One study13 accurately deter-
mined the source datasets after removing all lung regions from the
images, proving the presence of background bias. A review14 con-
cluded that, if models are allowed to analyze the whole X-ray or a
rectangular bounding box around the lungs, they tend to strongly
focus on areas outside of the lungs. Thus, they fail to generalize or
achieve satisfactory performance on external, o.o.d. datasets, with
dissimilar sources in relation to the training images. Moreover, the
review identified that the problem is a cause of shortcut learning1. A
paper15 utilized external datasets to evaluate traditional COVID-19
detection DNNs, whose reported results had been highly positive, and
it demonstrated a strong drop in their performances. For these rea-
sons, researchers have resorted to testing on o.o.d. datasets to
understand the bias and generalization capability of DNNs trained on
mixed databases. The approach shows reduced and more realistic
performances in relation to the standard (i.i.d.) evaluation14,16,17. A
common conclusion of these works is that using a segmentation-
classification pipeline (segmenting the lungs before classification)
improves generalization capability, reducing the bias induced by
mixed training datasets16,17. The ISNet shall be able to focus only on the
lungs, and we consider that the task of COVID-19 detection using the
usual mixed datasets of chest X-rays will be useful to demonstrate its
benefits.

We trained the ISNet on a mixed dataset based on one of the
largest open COVID-19 chest X-ray databases12, with the objective of
distinguishing COVID-19 positive cases, normal images, and non-
COVID-19 pneumonia. The two diseases have similar symptoms,
making their differentiation non-trivial, and both produce signs in
chest X-rays. Examples of COVID-19 signs are bilateral radiographic
abnormalities, ground-glass opacity, and interstitial abnormalities18.
Examples of pneumonia signals are poorly defined small centrilobular
nodules, airspace consolidation, and bilateral asymmetric ground-
glass opacity19. We evaluate the optimized DNN in a cross-dataset
approach, using images collected fromexternal locations in relation to
the training samples. Evaluation with an o.o.d. dataset14 shall allow us
to assess whether the ISNet can reliably ignore the image background,
reducing shortcut learning and increasing generalization
performance.

The dataset mixing issue is not exclusive to COVID-19 detection.
Instead, the technique is necessarywhenever researchers need to use a
classification database that does not contain all the required classes.
Sometimes, such databases are the largest ones, a desirable quality for
deep learning. This is the case in COVID-19 detection, and we find
another example in tuberculosis (TB) detection. To the best of our
knowledge, the tuberculosis X-ray dataset from TB Portals20 is the
open-sourcedatabasewith the largest number of tuberculosis-positive
X-rays to date. However, the dataset is composed of TB-positive cases
only. Thus, dataset mixing is required to use the TB Portals data for
training tuberculosis detection DNNs. Moreover, a recent review21

showed that many studies that classify tuberculosis with neural net-
works use dataset mixing. Furthermore, very few works evaluate DNN
generalization to o.o.d. test datasets21, and a study suggested that TB
classification performance may strongly drop when DNNs are tested
with datasets from external sources (o.o.d.)22. Another paper exposed
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strong DNN attention outside of the lungs in TB-detection with mixed
databases and advised the utilization of lung segmentation before
classification23. Although the World Health Organization states that
chest radiography is essential for the early detection of TB, they pro-
vide no recommendation on the use of computer aided detection as of
201624. The reasons for this decision were the small number of studies,
methodological limitations, and limited generalizability of the
findings24. Consequently, we hypothesize that the tuberculosis detec-
tion task is prone to producing background bias and shortcut learning,
especially when mixed datasets are employed. For this reason, we
included the application in this study. We classify X-rays as normal or
tuberculosis-positive. Our training dataset mixes the TB Portals
database20 with healthy X-rays from the CheXPert dataset25. To analyze
the extent of shortcut learning, we evaluate the DNNs on an i.i.d. test
dataset, and on ano.o.d. database26.We utilize the TBdetection task to
demonstrate that background bias and shortcut learning are not
exclusive to COVID-19 detection, and to assess the ISNet’s capacity of
addressing the problem in diverse unfavorable scenarios.

Before showing the aforementioned applications, our “Results”
section begins with a set of experiments using artificial bias. They
consist of training the neural networks in natural and medical image
datasets containing synthetic background bias, defined as a geome-
trical shape whose format (square, triangle or circle) is correlated with
the image’s classification label. The strong artificial background bias
attracts the attention of standard classifiers, making them lose focus
on the image’s true region of interest and causing evident shortcut
learning. The artificial bias is controllable, allowing the creation of
diverse evaluation scenarios. We employ them to quantitatively com-
pare the different neural networks’ capacity of hindering the shortcut
learning induced by backgroundbias.Moreover, LRP heatmaps should
be able to clearly show attention to the geometrical shapes in the
models affected by shortcut learning. We experimented with adding
synthetic background bias to 3 diverse databases. The first is the
aforementioned COVID-19 dataset, also used in experiments without
synthetic bias. The second is a facial attribute estimation dataset,
extracted from CelebA27. Since a study27 indicated that the classifica-
tion ofmore attributes causes the classifiers to naturally focusmore on
the faces,weopted to classify only 3 facial attributes (rosy cheeks, high
cheekbones, and smiling), increasing the difficulty of learning an
adequate attention profile. The third database is a subset of the Stan-
ford Dogs28 dog breed classification dataset, comprising the following
breeds: Pekingese, Tibetan Mastiff, and Pug. Stanford Dogs contains
bounding-boxes, but no ground-truth dog segmentation target28

(necessary for ISNet training). Thus, we converted its bounding-boxes
to foreground masks, employing a pretrained general purpose
semantic segmenter, DeepMAC29. Upon visual inspection, the quality
of themasks was high. The three datasets allow us to assess the ISNet’s
background bias resistance in very diverse scenarios.

Supplementary Note 5 explains all datasets and their limitations.
Supplementary Note 6 displays implementation details for the diverse
tasks. Moreover, Supplementary Note 7 introduces two additional
applications, CheXPert25 (a large single-source X-ray database dis-
playing multiple conditions) classification, and the facial attribute
estimation task without synthetic bias. Both datasets do not present
strong background bias. Thus, the experiments better delimit the
ISNet use-case scenario.

The ISNet PyTorch code is available at https://github.com/
PedroRASB/ISNet30. Summarizing, in this study, we:

1. Proposed a classifier architecture (ISNet) that, without a seg-
menter at run-time, reliably ignored images’ backgrounds. In
relation to the eight implemented state-of-the-artDNNs, the ISNet
displayed superior capacity of hindering the shortcut learning
caused by background bias, improving generalization. We
justified this empirical result (section “Results”) with an in-depth

theoretical comparison between the DNNs (Supplementary
Note 2). Moreover, the ISNet is flexible (accepting virtually any
classifier backbone) and introduces no extra computational cost
at run-time.

2. Proposed the optimization of LRP heatmaps to improve and
control DNNs, introducing the concept of background relevance
minimization. The technique produced a theoretically founded
(section “ISNet theoretical fundamentals”) explanation-based
spatial attention mechanism that learns from foreground
segmentation masks.

3. Presented an efficient and automatically differentiable PyTorch
implementation of LRP.

Results
Synthetic background bias
In these experiments, training images contained synthetic background
bias designed to cause shortcut learning. We tested the neural net-
works on 3 datasets: a biased set, which contains the same background
geometrical shapes found in training; the standard set, with no syn-
thetic bias; and a deceiving biasdataset, which has geometrical shapes,
but the correlation between them and the classification labels
deceivingly change (e.g., a circle that was correlated with class 1 in
training will be associated to class 2 during testing). Supplementary
Note 5 provides more details. A comparison of a DNN’s performance
on the three testing scenarios provides a quantitative assessment of
shortcut learning. In relation to the biased test performance, the
higher the influence of the geometrical shapes on the classifier’s out-
puts, the larger the F1-Score reduction when they are removed from
the evaluation dataset (standard test) or substituted by deceiving
bias (deceiving bias test). Table 1 presents the test average F1-Scores
for all DNNs in the three testing environments.

Data augmentation in COVID-19 detection and facial attribute
estimation consisted of random rotations, translations, and flipping
(Supplementary Note 6.1). Thus, the applications exemplify standard
data augmentation practices. Meanwhile, we utilized no data aug-
mentation in Stanford Dogs. As the augmentation procedures may
totally or completely remove the synthetic background bias from the
image, this choice makes the Stanford Dogs experiment a scenario of
more extreme background bias. The ISNet is resistant to image flip-
ping, rotations, and translations. These operations did not negatively
affect the training procedure, nor did they worsen the validation error
during preliminary tests with an augmented validation dataset.

The three synthetic bias applications represent very distinct sce-
narios, all of them considering high-resolution images (224x224) and
deep classifiers. COVID-19 detection is a challenging and con-
temporary biomedical classification task, with images’ foregrounds
defined as the lungs. StanfordDogs and CelebA are natural image RGB
datasets, where the foregrounds are thedogsor faces. CelebApresents
challenging in-the-wild pictures, where faces can appear in multiple
poses27. Stanford Dogs represents a difficult fine-grained classification
task, with large intra-class variance, low inter-class variance, high
background variety, and possible occlusion28. Like the CelebA faces,
dogs can appear in multiple poses and distances. Thus, in the two
datasets, foregrounds strongly vary throughout the figures. Dataset
sizes also substantially change, with 501 images in the dogs dataset,
13932 in COVID-19 detection, and 30000 for facial attribute estima-
tion. As the three tasks represent very diverse scenarios, the DNNs’
performances vary across the experiments. However, the distinct
applications allow us to draw more reliable conclusions by analyzing
repeating patterns in the experiments’ results.

First, all datasets have a strong tendency to cause shortcut
learning, as intended. This is proved by the large performance drops
seen for the standard classifiers in Table 1. The baseline model repre-
sents a common DNN, without any mechanism to avoid background
attention. In the most extreme case, Stanford Dogs, the model’s
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macro-average F1-Score (maF1) falls from 0.926 ±0.019 (with geome-
trical shapes in the test dataset) to 0.546 ± 0.034 (with no synthetic
bias), and finally to 0.071 ± 0.017 (with deceiving background bias).
Putting these results into perspective, from the 201 evaluation

samples, in the biased test the model correctly classifies 192, in the
unbiased test, 89, and, in the deceiving test, 10.

Second, the segmentation-classification pipeline and the ISNet
were the only models not affected by background bias in any of the
three experiments in Table 1. They show no reduction in maF1 when
the synthetic background bias was removed or substituted by
deceiving bias. On the other hand, all other models display maF1 drop
across the columns in Table 1. Even considering the interval estimates,
none of the other benchmark DNNs have overlappingmaF1 intervals in
all three testing scenarios. Thus, the bias influence over these classi-
fiers is evident. Conversely, the ISNet successfully minimized back-
ground attention and the consequent shortcut learning.Moreover, the
ISNet’s resistance to background bias is not accompanied by an
accuracy drop: it has the highest average F1-Scores in the three diverse
tasks (standard and deceiving bias tests in Table 1). It could even sur-
pass the segmentation-classification pipeline, a much larger and
slower model (Supplementary Note 9 presents a speed and size
comparison).

As further proofof the ISNet capacity of avoiding backgroundbias
attention while retaining high accuracy, its test maF1 scores, when
trained with the synthetically biased data,match or surpass a standard
classifier trained in datasets without any synthetic background bias
(Table 1). We did not find relevant natural background bias in Stanford
Dogs or CelebA. Accordingly, in these two cases, the ISNet matched a
standard classifier trained in an unbiased environment, indicating that
the insertion of synthetic bias could not reduce its accuracy. Mean-
while, the ISNet also hindered the shortcut learning caused by the
naturally occurring background bias in the COVID-19 dataset. This
result explains why it strongly surpassed the standard classifier trained
in the COVID-19 database without any synthetic bias. I.e., in this sce-
nario the standard model suffers shortcut learning caused by non-
synthetic background bias (resulting from dataset mixing), which the
ISNet hinders (section “COVID-19 detection”).

In Stanford Dogs, the standard classifier is a VGG-1931. This archi-
tecture is also used as the classification backbone for the ISNet, ISNet
Grad*Input, segmentation-classification pipeline (defined as a U-Net32

segmenter followed by VGG-19 classifier), extended GAIN, and RRR. In
the two other datasets (and in the remaining experiments in this
study), a DenseNet12133 substitutes the VGG-19 as the standard classi-
fier and the backbone for the aforementioned DNNs. The remaining
benchmark networks (multi-task U-Net, AG-Sononet, and Vision
Transformer) utilize their original architectures in all tasks (Supple-
mentary Note 2.1). The DenseNet and VGG show how the diverse DNN
architectures behave with different types of backbone. A Densely
Connected Convolutional Network33 (DenseNet121) exemplifies very
deep (121 layers) architectures with skip connections, and a VGG-1931

represents DNNs with fewer layers (19) and no skip connections. The
VGGwas chosen as the shallowermodel because it is an influential and
popular architecture, with a simple yet effective design. DenseNets are
very deep but efficient, carrying a small number of parameters in
relation to their depth33. This characteristic resonates with the effi-
ciency focus of the ISNet design. Another reason for the DenseNet121
choice is that the architecture is among the most popular for the
classification of lungdiseases in chestX-rays34, a task that is considered
in multiple experiments throughout this work. Evidencing the ISNet’s
versatility, it surpassed all benchmark DNNs and was resistant to
shortcut learning with both backbones (Table 1).

COVID-19 detection
For COVID-19 detection we employ an external (o.o.d.) test dataset,
whose images come fromdistinct hospitals and cities in relation to the
training database (Supplementary Note 5.1). Tables 2 and 3 show the
DNNs’ test performances.

The ISNet obtained the best o.o.d. test performance in Tables 2
and 3, surpassing all benchmark DNNs’ average performance metrics.

Table 1 | Test macro-average F1-Scores for neural networks
trained in datasets with synthetic background biasa

Model Biased
test maF1

Standard
test maF1

Deceiving bias
test maF1

Stanford dogs with synthetic background bias

ISNet 0.548 ±0.035 0.553 ±0.035 0.548 ±0.035

ISNet Grad*Input 0.55 ± 0.034 0.545 ±0.034 0.545 ±0.034

Standard classifier 0.926 ± 0.019 0.419 ± 0.034 0.071 ± 0.017

Segmentation-
classification
pipeline

0.519 ± 0.035 0.519 ± 0.035 0.518 ± 0.035

Multi-task U-Net 0.522 ± 0.036 0.455 ±0.036 0.38 ± 0.035

AG-Sononet 0.956 ±0.015 0.214 ± 0.027 0.019 ± 0.009

Extended GAIN 0.935 ±0.017 0.445 ±0.034 0.1 ± 0.019

RRR 0.851 ± 0.025 0.548 ±0.034 0.299 ±0.025

Vision transformer
(ViT-B/16)

0.637 ± 0.034 0.419 ± 0.032 0.399 ±0.032

Standard classifier
reference (trained
without syn-
thetic bias)

– 0.556 ±0.035 –

COVID-19 detection with synthetic background bias

ISNet 0.775 ± 0.008 0.775 ± 0.008 0.775 ± 0.008

ISNet Grad*Input 0.542 ±0.01 0.544 ±0.01 0.417 ± 0.01

Standard classifier 0.775 ± 0.008 0.434 ±0.01 0.195 ± 0.004

Segmentation-
classification
pipeline

0.618 ± 0.009 0.619 ± 0.009 0.618 ± 0.009

Multi-task U-Net 0.667 ± 0.01 0.341 ± 0.007 0.156 ±0.004

AG-Sononet 0.943 ± 0.005 0.386 ±0.008 0.047 ±0.003

Extended GAIN 0.41 ± 0.009 0.306 ±0.006 0.219 ± 0.003

RRR 0.464 ±0.009 0.458 ±0.008 0.426 ±0.008

Vision transformer
(ViT-B/16)

0.685 ±0.009 0.496 ±0.009 0.327 ± 0.009

Standard classifier
reference (trained
without syn-
thetic bias)

– 0.546 ±0.01 –

Facial attribute estimation with synthetic background bias

ISNet 0.807 ±0.027 0.807 ±0.027 0.807 ±0.027

ISNet Grad*Input 0.496 ±0.02 0.499 ±0.02 0.503 ±0.021

Standard classifier 0.974 ±0.012 0.641 ± 0.054 0.398 ±0.019

Segmentation-
classification
pipeline

0.794 ±0.031 0.794 ±0.031 0.794 ±0.031

Multi-task U-Net 0.985 ±0.008 0.665 ±0.129 0.351 ± 0.015

AG-Sononet 0.985 ±0.009 0.616 ± 0.094 0.326 ±0.016

Extended GAIN 0.886 ± 0.023 0.773 ± 0.034 0.633 ±0.03

RRR 0.794 ±0.024 0.77 ± 0.032 0.557 ± 0.025

Vision transformer
(ViT-B/16)

0.675 ±0.023 0.645 ±0.03 0.531 ± 0.023

Standard classifier
reference (trained
without syn-
thetic bias)

– 0.802 ±0.028 –

aIn themulti-class single-label experiments (Stanford Dogs and COVID-19 detection), scores are
reported as mean and standard deviation. In facial attribute estimation (multi-label problem),
they are displayed as mean and 95% confidence intervals. Supplementary Note 10 provides
more details about the statistical analysis in this study.
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Moreover, the ISNet results’ 95% highest density intervals do not
overlap with any other network for any average performance mea-
surement. The ground-truth foreground masks used for training were
automatically generated by a U-Net, trained for lung segmentation in
another study16. Therefore, the performances achieved by the ISNet
and by the alternative segmentation-classification pipeline could pos-
sibly increase evenmore, provided a dataset containing a large amount
of chest X-rays accompanied by manually segmented lungs.

Tables 2 and 3 results may seem worse than other COVID-19
detection studies, which report remarkably high performances,
strongly surpassing expert radiologists (e.g., F1-Scores close to 100%).
However, evidence suggests that, currently, such results are obtained
when the training and test datasets come from the same distribution/
sources (i.i.d. datasets)14. Moreover, studies showed that these strong
performances may be boosted by bias and shortcut learning, pre-
venting the neural networks from generalizing, or achieving compar-
able results in the real-world14,16,15. Instead, the performances in Table 2
are comparable to other works that evaluate their DNNs in external
(o.o.d.) databases14,16,15. For example, an article15 reported AUC of
0.786 ±0.025 on an external COVID-19 X-ray dataset, considering a
DenseNet121 and no lung segmentation. Here, the DenseNet121
obtained 0.808 AUC, which falls into their reported confidence inter-
val. Another paper16 evaluates COVID-19 detection and utilizes lung
segmentation before classification with a DenseNet20133. They
achievedmaF1 of 0.754, with 95%HDI of [0.687,0.82], evaluating on an
external dataset. The ISNet maF1 95% HDI, [0.755,0.791], fits inside
their reported 95%HDI.Wemust note that the aforementioned studies
use different databases. Thus, caution is required when directly com-
paring the numerical results.

COVID-19 detection with mixed datasets is a task known for
background bias and common shortcut learning, which results in
subpar o.o.d. generalization15,14. Accordingly, the results in Tables 2
and 3 are consistent with our findings from the synthetic bias experi-
ments. Firstly, the standard classifier (DenseNet121) displayed unim-
pressive generalization, achieving only 0.546 ±0.01 o.o.d. maF1.
Moreover, in Table 1, the ISNet and the alternative segmentation-
classification pipeline consistently were the two models with the

highest resistance to background bias attention and the best gen-
eralization. Accordingly, in Tables 2 and 3, the two models had
superior o.o.d. maF1 in COVID-19 detection. Therefore, the results in
the COVID-19 detection confirm that the task is prone to shortcut
learning, which the ISNet and pipeline could better mitigate. However,
the ISNet could surpass even the large pipeline, showing no HDI
superposition with its results. We analyze this finding in Supplemen-
tary Note 2.2, where we also theoretically justify why the ISNet sur-
passed all other benchmark models.

To illustrate that it is not possible to simply train a model with
segmented images, and then use it without segmentation at run-time,
we tested the segmentation-classification pipeline after removing its
segmenter (U-Net). Thus, we simulated a DenseNet121 trained on
segmented images and used to classify unsegmented ones. As expec-
ted, this resulted in a dramatic performance drop: maF1 fell from
0.645 ±0.009 to 0.217 ± 0.003 (changing its 95% HDI from
[0.626,0.663] to [0.211,0.224]). Therefore, unlike the ISNet, the pipe-
line needs a segmenter at run-time. Table 4 displays the confusion
matrices for all DNNs.

Tuberculosis Detection
Table 5 reports performances for tuberculosis detection, using an
external (o.o.d.) testdataset (SupplementaryNote 5.2).On the i.i.d. test
dataset allmodels hadmeanAUCover 0.9.Moreover, considering i.i.d.
evaluation, the segmentation-classification pipeline achieved maF1
(with 95% confidence interval) of 0.955 ± 0.016, the ISNet
0.974 ±0.012, the extended GAIN 0.982 ± 0.009, the Vision Transfor-
mer 0.926 ± 0.02, RRR 0.839 ±0.028, and all other DNNs’ mean
maF1 scores surpassed0.985. Our i.i.d. test results are in linewith other
studies that detected tuberculosis with DNNs, most of which report
very high AUC and F1-Score21. We could not find studies employing a
training dataset like ours and o.o.d. testing, as the evaluation metho-
dology is rare in tuberculosis detection.

Like in COVID-19 detection and all experiments with synthetic
bias, the standard classifier (DenseNet121) o.o.d. generalization was
underwhelming inTBdetection (0.566 ±0.05maF1), and the ISNetwas
the best performing model on the tuberculosis o.o.d. dataset.

Table 2 | Test F1-Scores and ROC-AUC for the deep neural networks in COVID-19 detection (o.o.d. evaluation)a

Model and Metric Normal Pneumonia COVID-19 Mean (macro-average)

ISNet F1-Score 0.555 ±0.022, [0.512,0.597] 0.858 ±0.007, [0.844,0.871] 0.907 ± 0.006, [0.896,0.918] 0.773 ± 0.009, [0.755,0.791]

U-Net+DenseNet121 F1-Score 0.571 ± 0.018, [0.535,0.607] 0.586 ±0.013, [0.561,0.611] 0.776 ±0.008, [0.76,0.792] 0.645 ±0.009, [0.626,0.663]

DenseNet121 F1-Score 0.444 ±0.02, [0.403,0.482] 0.434 ± 0.015, [0.405,0.463] 0.76 ± 0.008, [0.744,0.775] 0.546 ±0.01, [0.527,0.565]

Multi-task U-Net F1-Score 0.419 ± 0.025, [0.369,0.469] 0.119 ± 0.011, [0.098,0.14] 0.585 ±0.009, [0.566,0.602] 0.374 ±0.01, [0.355,0.394]

AG-Sononet F1-Score 0.124 ± 0.015, [0.096,0.153] 0.284 ±0.015, [0.255,0.312] 0.659 ± 0.009, [0.641,0.676] 0.356 ±0.008, [0.34,0.372]

Extended GAIN F1-Score 0.203 ±0.019, [0.166,0.24] 0.485 ±0.013, [0.46,0.511] 0.711 ± 0.009, [0.693,0.728] 0.466 ± 0.009, [0.449,0.485]

RRR F1-Score 0.36 ±0.018, [0.325,0.394] 0.552 ± 0.013, [0.526,0.577] 0.737 ± 0.009, [0.72,0.755] 0.55 ± 0.009, [0.532,0.568]

Vision Transformer (ViT-B/16)
F1-Score

0.382 ±0.017, [0.348,0.415] 0.474 ± 0.013, [0.448,0.499] 0.525 ±0.011, [0.503,0.548] 0.46 ±0.009, [0.443,0.478]

ISNet AUC 0.931 ± 0.01 0.962 ± 0.006 0.976 ±0.005 0.952

U-Net+DenseNet121 AUC 0.888 ±0.019 0.78 ± 0.016 0.846 ±0.013 0.833

DenseNet121 AUC 0.804 ±0.023 0.805 ±0.015 0.86 ± 0.013 0.808

Multi-task U-Net AUC 0.721 ± 0.034 0.412 ± 0.019 0.487 ± 0.02 0.553

AG-Sononet AUC 0.451 ± 0.028 0.681 ± 0.019 0.658 ±0.018 0.591

Extended GAIN AUC 0.7 ± 0.025 0.756 ±0.016 0.806 ±0.016 0.724

RRR AUC 0.782 ±0.02 0.736 ±0.017 0.835 ±0.014 0.775

Vision Transformer (ViT-B/16) AUC 0.755 ±0.032 0.645 ±0.019 0.619 ± 0.019 0.683
aClass ROC-AUC scores are calculated with a one-versus-rest approach and accompanied by 95% confidence intervals. Mean AUC is provided as point estimates andwe calculate it with a pairwise
technique48, instead of averaging the class scores. Other metrics are reported as: mean ± std, [95% HDI]. Both mean and standard deviation (std) are extracted from the metric’s probability
distribution, according to Bayesian estimation. 95% HDI indicates the 95% highest density interval, an interval containing 95% of the metric’s probability mass. Furthermore, any point inside the
interval has a probability density that is higher than that of any point outside. Supplementary Note 10 explains the statistical methods in detail.
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Furthermore, the proposed model showed no confidence interval
overlap with the other DNNs’ AUCs. Here, the segmentation-
classification pipeline results were not as promising as in COVID-19
detection. Supplementary Note 2.3 analyses this finding. The ISNet
performance on the i.i.d. evaluation database is among the lowest,
while it was the best performing model on the o.o.d. dataset. Shortcut
learning is characterized by high accuracy on standard benchmarks
(i.i.d. datasets), but impaired o.o.d. generalization, and poor real-world
performance1. Thus, the ISNet quantitative results are coherent with a
reduction in shortcut learning, without overall accuracy degradation.
Therefore, TB classification is an additional example of a real-world
application that can be heavily affected by background bias and
shortcut learning, representing another notable use-case for the ISNet.

Heatmaps
Figure 1 presents heatmaps for the experiments with synthetic back-
ground bias. They show that only the ISNet and the segmentation-
classification pipeline consistently and effectively minimized the
influence of the background bias over the classifier. The results in
Table 1 support the heatmaps, by quantitatively proving that the two
models were the only ones never influenced by the artificial bias.

Figure 2 shows heatmaps for the COVID-19 and TB detection
applications (without synthetic bias). The tasks use mixed training
datasets, which are known to cause background bias and shortcut
learning35,13,15,14. Accordingly, the LRP heatmaps for a standard classifier
(DenseNet121) demonstrate a significant influence of background
features over the classifier’s decisions, indicating shortcut learning.
Supporting this finding, Tables 2 and 5 show that the model’s gen-
eralization performance was impaired. It achieved only 0.546 ± 0.01
and 0.566 ± 0.05 average F1-Scores in the COVID-19 and TB o.o.d. test

datasets, respectively. Conversely, the heatmaps in Fig. 2 indicate that
the ISNet is the DNNwith the least amount of background attention in
the two tasks. Quantitatively supporting the information in the heat-
maps, the ISNet’s o.o.d. generalization performance surpassed all
othermodels inTB andCOVID-19 detection (Tables 2 and 5), indicating
that it could betterminimize the influenceof backgroundbias over the
classification decisions.

Supplementary Note 2.3 thoroughly analyses the heatmaps in
view of the quantitative results in Tables 1–5, and uses this investiga-
tion to compare the ISNet and the benchmark DNNs in more detail.
Moreover, it also presents Grad-CAM explanations for the ISNet.
Finally, Supplementary Note 3 compares the ISNet’s LRP heatmaps to
X-rays where a radiologist, who had no access to the DNN or
the heatmaps, marked the lung diseases’ lesions. The comparison
demonstrates a correlation between themarked regions and the areas
that influenced the ISNet’s decisions. In summary, the ISNet diverted
DNN focus from background bias to the lesions. The high-resolution
marked X-rays and ISNet heatmaps are available and individually
analyzed in Supplementary Data 136, and exemplified in Supplemen-
tary Fig. 2.

Discussion
In three synthetic bias applications, considering diverse tasks, dataset
sizes, and classifier backbones, we quantitatively demonstrated that
the artificial background bias could not influence the ISNet’s decisions.
Therefore, the model hindered shortcut learning and improved gen-
eralization. The COVID-19 and Tuberculosis classification tasks exem-
plify realistic and contemporary scenarios where dataset mixing is
commonly employed, frequently causing background bias, shortcut
learning, and impaired o.o.d. generalization35,13,15,14,23. The two

Table 3 | Test precision, recall and specificity for the deep neural networks in COVID-19 detection (o.o.d. evaluation)a

Model and Metric Normal Pneumonia COVID-19 Mean (macro-average)

ISNet precision 0.544 ±0.026, [0.494,0.594] 0.794 ±0.01, [0.774,0.814] 0.993 ±0.002, [0.988,0.997] 0.777 ± 0.009, [0.759,0.795]

U-Net+DenseNet121 precision 0.446 ±0.019, [0.408,0.483] 0.791 ± 0.015, [0.763,0.82] 0.723 ± 0.011, [0.702,0.744] 0.653 ±0.009, [0.636,0.67]

DenseNet121 precision 0.364 ±0.02, [0.324,0.402] 0.827 ± 0.018, [0.792,0.861] 0.649 ±0.01, [0.629,0.67] 0.614 ± 0.009, [0.594,0.631]

Multi-task U-Net precision 0.552 ± 0.033, [0.488,0.617] 0.232 ± 0.02, [0.194,0.272] 0.469 ±0.01, [0.449,0.489] 0.418 ± 0.013, [0.392,0.444]

AG-Sononet precision 0.104 ±0.013, [0.079,0.129] 0.665 ± 0.025, [0.616,0.715] 0.549 ± 0.01, [0.528,0.569] 0.439 ±0.01, [0.419,0.459]

Extended GAIN precision 0.189 ±0.019, [0.152,0.225] 0.603 ± 0.016, [0.571,0.636] 0.642 ±0.011, [0.62,0.664] 0.478 ±0.009, [0.461,0.496]

RRR precision 0.262 ± 0.015, [0.232,0.293] 0.728 ±0.016, [0.697,0.758] 0.723 ± 0.011, [0.701,0.745] 0.571 ± 0.008 [0.555,0.587]

Vision transformer (ViT-B/16)
precision

0.268 ±0.015, [0.239,0.297] 0.552 ± 0.016, [0.521,0.584] 0.572 ± 0.014, [0.544,0.598] 0.464 ± 0.009, [0.447,0.481]

ISNet recall 0.566 ±0.026, [0.515,0.616] 0.933 ±0.007, [0.919,0.946] 0.835 ±0.01, [0.816,0.853] 0.778 ±0.009, [0.76,0.796]

U-Net+DenseNet121 recall 0.796 ±0.021, [0.756,0.837] 0.466 ±0.014, [0.439,0.494] 0.838 ±0.009, [0.819,0.856] 0.7 ± 0.009, [0.683,0.717]

DenseNet121 recall 0.57 ± 0.026, [0.518,0.618] 0.294 ±0.013, [0.27,0.32] 0.916 ± 0.007, [0.902,0.93] 0.594 ±0.01, [0.574,0.612]

Multi-task U-Net recall 0.338 ± 0.024, [0.29,0.386] 0.08 ±0.008, [0.066,0.095] 0.776 ±0.011, [0.755,0.797] 0.398 ±0.009, [0.38,0.416]

AG-Sononet recall 0.156 ±0.019, [0.12,0.192] 0.18 ± 0.011, [0.16,0.201] 0.824 ±0.01, [0.805,0.843] 0.387 ± 0.008, [0.371,0.402]

Extended GAIN recall 0.22 ± 0.021, [0.178,0.261] 0.406 ±0.014, [0.379,0.432] 0.796 ±0.01, [0.775,0.816] 0.474 ±0.009, [0.456,0.492]

RRR recall 0.574 ± 0.025, [0.524,0.624] 0.445 ± 0.014, [0.417,0.471] 0.753 ±0.011, [0.731,0.775] 0.59 ±0.01, [0.57,0.611]

Vision transformer (ViT-B/16) recall 0.665 ±0.024, [0.616,0.712] 0.415 ± 0.014, [0.388,0.442] 0.486 ±0.013, [0.461,0.511] 0.522 ± 0.01, [0.501,0.542]

ISNet specificity 0.937 ± 0.005, [0.928,0.946] 0.834 ± 0.009, [0.817,0.851] 0.995 ± 0.002, [0.991,0.998] 0.922 ± 0.003, [0.916,0.928]

U-Net+DenseNet121 specificity 0.869 ± 0.006, [0.857,0.882] 0.915 ± 0.006, [0.903,0.928] 0.708 ±0.011, [0.686,0.73] 0.831 ± 0.004, [0.823,0.839]

DenseNet121 specificity 0.869 ± 0.006, [0.856,0.881] 0.958 ±0.005, [0.949,0.967] 0.549 ± 0.012, [0.525,0.573] 0.792 ± 0.004, [0.784,0.8]

Multi-task U-Net specificity 0.964 ±0.004, [0.957,0.971] 0.818 ± 0.009, [0.801,0.835] 0.201 ± 0.01, [0.182,0.22] 0.661 ± 0.004, [0.653,0.669]

AG-Sononet specificity 0.823 ±0.007, [0.808,0.837] 0.938 ± 0.006, [0.927,0.948] 0.384 ± 0.012, [0.361,0.408] 0.715 ± 0.004, [0.707,0.722]

Extended GAIN specificity 0.875 ±0.006, [0.863,0.888] 0.817 ± 0.009, [0.799,0.834] 0.597 ± 0.012, [0.573,0.62] 0.763 ±0.004, [0.754,0.772]

RRR specificity 0.787 ± 0.008, [0.772,0.802] 0.886 ±0.007, [0.872,0.9] 0.737 ± 0.011, [0.716,0.758] 0.803 ±0.004, [0.795,0.812]

Vision transformer (ViT-B/16)
specificity

0.761 ± 0.008, [0.745,0.776] 0.769 ±0.01, [0.75,0.788] 0.669 ±0.012, [0.646,0.692] 0.733 ±0.005, [0.723,0.742]

aMetrics are reported as: mean ± std, [95% HDI], according to Bayesian estimation. Supplementary Note 10 provides more details about the statistical analysis.
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applications displayed shortcut learning in this study, as indicated by
the standard classifiers’ (DenseNet121) unimpressive o.o.d. general-
ization and strong background attention. Consequently, being able to
hinder background attention and shortcut learning, the ISNet was
consistently the model with the best o.o.d. generalization in the two
tasks, like in the experiments with synthetic background bias.
Accordingly, the ISNet’s LRP heatmaps indicate a minimization of the
influence of background features on classifier’s outputs.

In the applications with artificial bias and on COVID-19 detection,
the segmentation-classification pipeline was surpassed only by the
ISNet. However, the pipeline’s generalization capacity was less pro-
mising in tuberculosis detection. The synthetic bias experiments
quantitatively demonstrated that, besides the ISNet and the
segmentation-classification pipeline, the remaining benchmark mod-
els could not effectively hinder the shortcut learning caused by back-
ground bias. Accordingly, their generalization capacity did not match
the ISNet’s, and their heatmaps showed significant background
attention.

We justify these empirical findings with a theoretical analysis in
Supplementary Note 2 and section “ISNet theoretical fundamentals”. It
explains the benchmark models’ drawbacks, which the ISNet does not

share. In summary, the segmentation-classification pipeline is robust
to background bias, but it is computationally expensive even at run-
time, and it may form decision rules based on images’ foreground
shape, possibly hindering generalization. In the multi-task DNN, fore-
ground features can guide the creation of the segmentation output,
while background features heavily influence the DNN’s classification
output. Therefore, the model can precisely segment the foreground,
while background bias influences its classification scores. Attention
mechanisms that do not learn from foreground segmentation masks
(e.g., AG-Sononet9 and Vision Transformer10) cannot reliably differ-
entiate background and foreground features. Thus, they may not
hinder background bias attention and shortcut learning. Input gra-
dients and Gradient*Input explanations are much noisier than LRP for
deep neural networks. Accordingly, considering deep backbones and
high-resolution images, the ISNet can more effectively and stably
minimize background attention in relation to DNNs optimizing input
gradients (RRR6) and Gradient*Input (ISNet Grad*Input). Finally, Grad-
CAMoptimization (GAIN4) can produce spuriousGrad-CAMheatmaps,
which deceivingly display no background attention, while background
bias influences the classifier’s outputs. Thus, minimization of Grad-
CAM backgrounds may not suppress shortcut learning. Summarizing,
in relation to the state-of-the-art, we empirically and theoretically
demonstrate the ISNet’s superior capacity of avoiding the influence of
background bias, thus hindering shortcut learning and improving
generalization.

Besides its superior resistance to background bias, the ISNet
introduces no increment in run-time computational cost to its back-
bone classifier. E.g., by replacing a U-Net followed by a DenseNet121
(segmentation-classification pipeline) with an ISNet containing a
DenseNet121 backbone, we obtain a model that is about 70% to 108%
faster at run-time and has almost 80% less parameters. Indeed, the
ISNet matches a standard DenseNet121 run-time speed and size (Sup-
plementary Note 9). Accordingly, the proposed architecture is an
efficient technique to suppress background attention and shortcut
learning, increasing confidence in a DNN’s decisions. Moreover, it
accepts virtually any backbone classifier and represents an inter-
pretable attention mechanism: we know that it works by hindering
attention outside of a region of interest, which is clearly defined by the
ground-truth segmentation targets used during training. In summary,
this study empirically and theoretically demonstrated that the ISNet’s
optimization of LRP heatmaps is a flexible approach, which produces
deep classifiers that are resistant to background bias while retaining
high accuracy and efficiency.

Methods
Layer-wise relevance propagation
Since DNNs are complex and nonlinear structures with millions of
parameters, it is difficult to explain their decisions. Layer-wise rele-
vancepropagation2 (LRP) is an explanation technique tailored for deep
models, providing heatmaps to interpret DNNs. A past work qualita-
tively and quantitatively demonstrated that LRP explanations provide
higher resolution heatmaps and more interpretable information than
attention mechanisms and the corresponding attention heatmaps37.
Furthermore, in relation to standard attention, LRP heatmaps can
reveal additional evidence used by the classifier to make a decision37.
Other studies compared explanation techniques and found LRP to be
among themost robust, surpassing Grad-CAM and Gradient*Input38,39.
From a theoretical perspective, LRP is rooted in the Deep Taylor
Decomposition framework40,41: it explains a classifier’s decision by
approximating a series of local Taylor expansions, performed at each
DNN neuron (section “ISNet theoretical fundamentals”).

For each class, an LRP heatmap explains the influence of the input
image regions on the classifier’s confidence for that class. LRP is based
on a semi-conservative propagation2 of a quantity called relevance

Table 4 | Test confusion matrices for the deep neural net-
works in COVID-19 detection (o.o.d. evaluation)

True class Predicted class
Normal Pneumonia COVID-19

ISNet

Normal 210 157 3

Pneumonia 81 1210 4

COVID-19 93 156 1266

U-Net + DenseNet121

Normal 296 9 65

Pneumonia 271 604 420

COVID-19 95 149 1271

DenseNet121

Normal 211 16 143

Pneumonia 306 381 608

COVID-19 63 62 1390

RRR

Normal 213 84 73

Pneumonia 355 576 364

COVID-19 243 130 1142

Multi-task U-Net

Normal 125 42 203

Pneumonia 62 103 1130

COVID-19 38 300 1177

Attention Gated Sononet

Normal 57 2 311

Pneumonia 346 233 716

COVID-19 151 114 1250

Extended GAIN

Normal 81 145 144

Pneumonia 241 526 528

COVID-19 108 200 1207

Vision Transformer

Normal 247 50 73

Pneumonia 279 538 478

COVID-19 393 385 737
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through the DNN layers, starting from one of the outputs of DNN’s last
layer neurons (logits), and ending at the input layer, where the heat-
map is produced. The meaning of the relevance in the heatmap is
determined by the choice of the logit where the propagation starts.
Positive values indicate that an input image pixel positively influenced
the logit, increasing the classifier confidence in the class it represents.
Meanwhile negative values indicate areas that reduced this confidence
(e.g., regions that the classifier related to other classes in a multi-class,
single-label problem). The relevance’s magnitude indicates how
important the image regions were for the classifier’s decision.

After choosing the explained output neuron, we define its rele-
vance as its output (the logit, prior to nonlinear activation), and set the
relevance of all other last-layer neurons to zero. Afterwards, diverse
rules propagate the relevance through each DNN layer, one at a time,
until themodel’s input. The choice of propagation rules influences the
heatmap’s interpretability, noisiness, and the stability of the
propagation40. The most basic rule is called LRP-0. We define the k-th
output of a fully-connected layer, zk, before the layer’s non-linear
activation, as:

zk =
X
j

wjkaj ð1Þ

Where wjk represents the layer’s weight connecting its input j (aj) to
output k (zk). The output k bias parameter is represented as w0k, and
the equation assumes a0 = 1. LRP-0 propagates the relevance from the
layer output, Rk, to its input, Rj, according to the following equation40:

Rj =
X
k

wjkaj

zk
Rk ð2Þ

LRP-0 redistributes the relevance fromthe layer’s k-th output (Rk) to its
inputs (aj) according to howmuch they contributed to the k-th output
(zk). A second rule, LRP-ε, changes LRP-0 to improve the relevance
propagation stability, noisiness, and the explanation’s contextualiza-
tion and coherence (section “ISNet theoretical fundamentals”). It adds
a small constant, ε, to zk. Being sign( ⋅ ), a function evaluating to 1 for
positive or zero arguments, and to -1 otherwise, LRP-ε is defined as:

Rj =
X
k

wjkaj

zk + signðzkÞε
Rk ,where ε>0 ð3Þ

It is possible to adopt a different rule for the DNN input layer, taking
into account the input space domain. For images, a rule called LRP-zB40

considers the maximum and minimum pixel values allowed in the
figures (Supplementary Note 4.3). LRP has defined rules for the most
common DNN layers. The technique is scalable and can be efficiently
implemented and applied to virtually any neural network architecture.
Since convolutions have equivalent fully-connected layers, the rules
explained here directly apply to them. However, efficient implementa-
tions of LRP for convolutions and other layers are presented in
Supplementary Note 4.

Background relevance minimization and ISNet
Layer-wise Relevance Propagation was created to show how input fea-
tures influenced classifier’s decisions2. With the ISNet, we suggest
directlyoptimizingLRPtoimproveclassifiers’behavior.Duringtraining,
background relevance minimization (BRM) penalizes undesired rele-
vanceinthetrainingimages’LRPheatmaps,constrainingtheclassifierto
learndecisionrulesthatdonotrelyonbackgroundfeatures.Algorithm1
explains BRM, the ISNet training procedure. The heatmap loss (LLRP,
Algorithm1, step2d,explained insection"ISNet loss function")employs
gold standard foreground segmentationmasks to identify andpenalize
the background relevance in LRP heatmaps. Themasks are only neces-
sary for training. They arefigures valuedone in the image’s foreground,
andzerointhebackground.Whennotavailable,apretrainedsegmenter
can create them. E.g., a U-Net32 pretrained to segment a specific type of
foreground,orageneralmodelpretrained fornovel class segmentation
(like DeepMAC29). Supplementary Note 6 details training settings,
hyper-parameters, data processing, and augmentation used for the
applications in this study, considering both the ISNet and the bench-
markmodels.

Table 5 | Performancemetrics for the deep neural networks in
tuberculosis detection (o.o.d. evaluation)a

Model and metric Normal Tuberculosis Mean (macro-
average)

ISNet precision 0.744 ±0.045 0.734 ±0.043 0.739 ±0.044

U-Net+DenseNet121
precision

0.63 ±0.061 0.573 ±0.043 0.601 ± 0.052

DenseNet121 precision 0.578 ±0.055 0.564 ±0.046 0.571 ± 0.05

Multi-task U-Net
precision

0.515 ± 0.048 0.539 ±0.053 0.527 ± 0.05

AG-Sononet precision 0.731 ± 0.06 0.599 ±0.041 0.665 ±0.05

Extended GAIN
precision

0.576 ±0.04 0.766 ±0.06 0.671 ± 0.05

RRR precision 0.663 ±0.049 0.664 ±0.046 0.663 ±0.048

Vision Transformer (ViT-
B/16) precision

0.52 ± 0.044 0.56 ±0.059 0.54 ± 0.052

ISNet recall 0.714 ± 0.046 0.762 ±0.042 0.738 ± 0.044

U-Net+DenseNet121
recall

0.409 ±0.05 0.768 ±0.042 0.589 ±0.046

DenseNet121 recall 0.479 ±0.05 0.659 ±0.047 0.569 ±0.048

Multi-task U-Net recall 0.586 ±0.05 0.468 ±0.05 0.527 ± 0.05

AG-Sononet recall 0.406 ±0.05 0.855 ±0.035 0.631 ± 0.042

Extended GAIN recall 0.883 ±0.032 0.372 ± 0.048 0.627 ± 0.04

RRR recall 0.642 ±0.049 0.685 ±0.046 0.663 ±0.048

Vision Transformer (ViT-
B/16) recall

0.679 ±0.047 0.395 ±0.049 0.537 ± 0.048

ISNet F1-Score 0.729 ±0.046 0.748 ±0.043 0.738 ± 0.044

U-Net+DenseNet121
F1-Score

0.496 ±0.056 0.656 ±0.044 0.576 ± 0.05

DenseNet121 F1-Score 0.524 ±0.052 0.608± 0.047 0.566 ±0.05

Multi-task U-Net
F1-Score

0.548 ±0.049 0.501 ± 0.052 0.524 ±0.05

AG-Sononet F1-Score 0.522 ± 0.057 0.704 ±0.04 0.613 ± 0.048

Extended GAIN
F1-Score

0.697 ± 0.039 0.501 ± 0.056 0.599 ±0.048

RRR F1-Score 0.652 ±0.049 0.674 ±0.046 0.663 ±0.048

Vision Transformer (ViT-
B/16) F1-Score

0.589 ±0.046 0.463 ± 0.054 0.526 ±0.05

ISNet AUC 0.809 ±0.031 0.809 ± 0.031 0.809 ±0.031

U-Net+Dense-
Net121 AUC

0.667 ±0.039 0.667 ± 0.039 0.667 ± 0.039

DenseNet121 AUC 0.576 ±0.04 0.576 ±0.04 0.576 ± 0.04

Multi-task U-Net AUC 0.549 ± 0.041 0.549 ±0.041 0.549 ±0.041

AG-Sononet AUC 0.717 ± 0.037 0.717 ± 0.037 0.717 ± 0.037

Extended GAIN AUC 0.676 ±0.038 0.676 ±0.038 0.676 ±0.038

RRR AUC 0.728 ± 0.036 0.728 ± 0.036 0.728 ± 0.036

Vision Transformer (ViT-
B/16) AUC

0.558±0.041 0.558 ±0.041 0.558 ±0.041

aThe cells display the metrics’ mean and 95% confidence intervals.
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Fig. 1 | Heatmaps (Layer-wise Relevance Propagation/LRP for convolutional
networks and attention rollout for Vision Transformer) for positive COVID-19
and Pneumonia X-rays and photographs, extracted from the synthetically
biased test datasets (biased test). Last row displays classifier trained without the
synthetic bias (and analyzing images without the bias), for reference. The image’s
true class is stated above the figures, and the DNN that produced the heatmap is
identified on the left. The triangle (background bias) indicates the classes COVID-
19, smiling or Pug. The circle pneumonia, high cheekbones, and Tibetan Mastiff.

The square rosy cheeks and Pekingese. Red colors in the LRP maps indicate areas
the DNN associated to the image’s true class, while blue colors are areas that
reduced the network confidence for the class. For attention rollout, red shows the
DNN attention.White represents areaswith little influence over the classifiers. DNN
focus on the images’ foregrounds (dogs, faces, or lungs), which results in whiter
heatmap backgrounds, is desirable. For privacy, the face picturewas substitutedby
a representation of the face (gray) and bias (white) locations, but classifiers
received the real picture.
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Fig. 2 | Heatmaps (Layer-wise Relevance Propagation/LRP for convolutional
networks and attention rollout for VisionTransformer) for positive COVID-19,
Pneumonia, and tuberculosis. The image’s true class is stated above the figures,
the DNN that produced the heatmap is identified on the left. For LRP, red colors
indicate areas that the DNN associated to the true class, while blue colors are areas
that decreased the network confidence for the class. For attention rollout, red
indicates the DNN attention. White represents areas with little influence over the

classifiers. DNN focus on the images' foregrounds (lungs), which results in whiter
heatmap backgrounds, is desirable. Examples of background bias are markings
over the right shoulder in the pneumonia X-ray, a letter R in the neck region of the
left TB X-ray, and an L over the left shoulder in the other tuberculosis X-ray. Only
the heatmaps for the ISNet and the U-Net + DenseNet show no attention to these
biases. Body regions outside of the lungs also represent background bias, which
the ISNet ignored as well.

Article https://doi.org/10.1038/s41467-023-44371-z

Nature Communications |          (2024) 15:291 10



Algorithm 1. Background relevance minimization: the ISNet train-
ing procedure
1: Initialization: randomly initialize the backbone classifier’s trainable
parameters, θ.

2: Training epoch: for every randomly drawn mini-batch (images X,
segmentation ground-truth foregroundmasksM, and classification
labels Y) in the training dataset:
a: Preprocess and (optional) augment the mini-batch.
b: Classifier forward pass: classify the B (mini-batch size) images

with the backbone classifier, assigning probabilities (Ŷ) for the K
possible classes.

c: Layer-wise Relevance Propagation: create B ×K differentiable LRP
heatmaps inparallel,H, explaining theK classifier’s logits for the B
input images. Employ LRP-ε (we set ε =0.01) throughout the
entire DNN, except for its first layer, where we use LRP-zB.

d: Loss calculation: calculate classification loss (e.g., cross-entropy)
according to the classifier output and the classification labels,
LC ðŶ,YÞ. Calculate the heatmap loss according to the LRP heat-
maps and the foreground masks, LLRP(H,M). Linearly combine
both to produce the ISNet loss, using a balancing hyper-para-
meter, P: LIS = (1 − P). LC + P. LLRP, where 0 ≤ P ≤ 1. Increasing P
increases the ISNet resistance to background bias, but it may
reduce training speed.

e: Gradient backward pass: use automatic backpropagation to cal-
culate the gradient of the ISNet loss with respect to the backbone
classifier’s trainable parameters, ΔθLIS.

f: Optimizer step: update the backbone classifier’s trainable para-
meters according to the gradient ΔθLIS. We use stochastic gra-
dient descent with momentum as the optimizer.

3: Validation epoch. For every mini-batch (images X, segmentation
ground-truth foreground masks M, and classification labels Y) in
the hold-out validation dataset:
a: Perform the image processing, classifier forward pass, LRP, and

loss calculation as described in steps 2a (except for data aug-
mentation), 2b, 2c, and 2d. Monitor the average validation ISNet
loss at the end of each epoch.

4: Repeat steps 2 and 3 until the maximum number of epochs (N) is
reached. At the end of the training procedure, return the backbone
classifier with the parameters (θ) that minimized the hold-out vali-
dation ISNet loss.
We introduce an efficient implementation of Layer-wise Rele-

vance Propagation in PyTorch, dubbed LRP Block, which produces
differentiable LRP heatmaps in parallel. The LRP Block allows auto-
matic backpropagation through LRP. Thus, the heatmap loss gradient
can be backpropagated from the loss output until the backbone clas-
sifier’s parameters, allowing the minimization of the ISNet loss (Algo-
rithm 1, step 2e). The block is presented in detail in Supplementary
Note 4, which explains its LRP implementation for multiple types of
classifier layers. The structure can be deactivated or removed after the
training procedure, representing no run-time computational cost.
Alternatively, it can explain the trained ISNet’s decisions with LRP:
minimal background relevance indicates the success of background
relevance minimization. Since LRP can be applied to virtually any
DNN40, the ISNet can accept virtually any classifier backbone
architecture.

We need to produce one heatmap for each possible class, starting
the LRP relevance propagation at the output neuron that classifies it
(Algorithm 1, step 2c). We cannotminimize background LRP relevance
for a single class (e.g., the winning one). Imagine that we have a bias in
the image background, associated with class C, and we minimize only
the background LRP relevance for classC. In this case, the classifier can
negatively associate all other classes with the bias, using it to lower
their outputs, making the class C output neuron the winning one. This
negative association is expressable as negative relevance in the other
classes’ heatmaps. Consequently, the penalization of positive and

negative background relevance in allmaps is a solution to theproblem.
Accordingly, the ISNet training time increases with the number of
categories in the classification task (K). For efficiency, the LRP Block
propagates relevance in batches, producing multiple independent
heatmaps in parallel. If a memory limit is reached, heatmaps will need
to be produced in series, making training time linearly increasewith K.
Future ISNet implementations may reduce this drawback. However, as
heatmaps are not necessary after training, the run-time ISNet is as fast
and efficient as its backbone classifier. Thus, the ISNet exchanges
training time for run-time performance, especially when compared to
the benchmark segmentation-classification pipeline (Supplementary
Note 9). This trade-off may be very profitable, given that DNNs can be
trainedwith powerful computers, then later deployed in less expensive
or portable devices.

ISNet loss function
The ISNet loss, LIS, is the function minimized during ISNet training
(Algorithm 1, step 2d). It is a linear combination of two terms (Equation
(4)): LC, a standard classification loss (e.g., cross-entropy), and LLRP, the
heatmap loss. Their influence over the loss gradient is balanced by a
hyper-parameter P. The heatmap loss, LLRP, is also a linear combination
of two functions, the background (L1) and the foreground (L2) losses
(Equation (5)). The combination utilizes two hyper-parameters,w1 and
w2. Both L1 and L2 depend on the LRP heatmaps and the foreground
segmentation masks.

LIS = ð1� PÞ:LC +P:LLRP , where0≤P ≤ 1 ð4Þ

LLRP =w1:L1 +w2:L2, where 0<w1 and0<w2 ð5Þ

Algorithms 2 and 3 describe the calculation of L1 and L2, respec-
tively. The background loss quantifies and penalizes background
relevance in LRP heatmaps. Meanwhile, the foreground loss is an
auxiliary term, which ensures the stability of the LRP heatmaps during
ISNet training, avoiding zero maps or exploding LRP relevance. Sup-
plementary Note 1 presents a more detailed description of the func-
tions. Supplementary Note 6.3 details which hyper-parameters require
a fine search, a coarse search, or no search. It also explains our hyper-
parameter tuning strategy. The ISNet loss is differentiable, and
PyTorch can perform automatic gradient backpropagation through it.

Algorithm 2. The Background Loss, L1
Input: B ×K heatmaps, where B is the mini-batch size and K the
number of classes in the classification task.
A corresponding foreground segmentation mask, Mbk, for each
heatmap Hbk.
Output: L1, the scalar background loss for the mini-batch.

1: Absolute heatmaps: take the absolute value of the LRP heatmaps
(element-wise), abs( ⋅ ). This step ensures that the background loss
equally penalizes positive andnegative LRP relevance.Hbk is the LRP
heatmap explaining the classifier output (logit) for class k, con-
sidering the mini-batch image b as the DNN’s input.
abs(Hbk)

2: Normalized absolute heatmaps: normalize the absolute heatmaps,
dividing each map by the absolute average relevance in its fore-
ground region. Use foreground masks,Mbk, to define such regions.
This step makes the background loss relative. I.e., the loss mini-
mization makes the influence of background features on the clas-
sifier progressively smaller than the influence of foreground
features. Moreover, because L1 is relative, an overall reduction of
both background and foreground LRP relevance (which does not
represent foreground focus) cannotminimize the loss. Sum( ⋅ ) adds
all elements in a tensor, and⊙ represents element-wise
multiplication.
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H0
bk = absðHbkÞ � f½SumðabsðHbkÞ �MbkÞ=ðSumðMbkÞ+ eÞ�+ eg,

where0< e<<1
3: Segmented heatmaps: in the normalized absolute heatmaps, set all

foreground relevance to zero, by element-wise multiplying the
maps and inverted foregroundmasks (i.e., figures valued one in the
background and0 in the foreground, 1 −Mbk). This step ensures the
loss penalizes only background LRP relevance.
UH0

bk = ð1�MbkÞ �H0
bk

4: Raw background attention scores: use Global Weighted Ranked
Pooling42 (GWRP) over the segmented heatmaps, obtaining one
scalar score per map channel. GWRP can be seen as a hybrid
between average pooling and max pooling. It is governed by a
hyper-parameter d (0 ≤ d ≤ 1). If d =0, GWRPmatchesmax pooling.
If d = 1, GWRP matches average pooing. The lower the d, the more
the background loss penalizes the existence of small background
regions with strong influence over the classifier. Thus, lowering d
increases the ISNet resistance to background bias. However, smal-
ler values can decrease training stability. GWRP outputs one scalar,
rbkc, per channel (c) in a segmented heatmap UH0

bk. UH
0
bk has 3

channels, UH0
bkc, when the ISNet classifies RGB images.

rbkc =GWRPðUH0
bkcÞ

5: Activated scores: pass the raw scores, rbkc, through the non-linear
function f(rbkc) = rbkc/(rbkc + E), where E is a constant hyper-para-
meter, normally set as 1. The activated scores are naturally limited
between 0 and 1, being an adequate input for cross-entropy.

6: Background attention loss: calculate the cross-entropy between the
activated scores and a zero target, CE( ⋅ ).We utilize a zero objective
in cross-entropy, because lower activated scores represent weaker
background attention.
CEðf ðrbkcÞÞ= � lnð1� f ðrbkcÞÞ

7: L1: calculate the average background attention loss for all heatmaps
in the training mini-batch:
L1 =

1
B:K :C

PB
b= 1

PK
k = 1

PC
c = 1 CEðf ðrbkcÞÞ

Algorithm 3. The Foreground Loss, L2
Input: B ×K heatmaps, where B is the mini-batch size and K the
number of classes in the classification task.
A corresponding foreground segmentation mask, Mbk, for each
heatmap Hbk.
Output: L1, the scalar background loss for the mini-batch.

1: Absolute heatmaps: take the absolute value of the LRP heatmaps
(element-wise), abs( ⋅ ). Hbk is the LRP heatmap explaining the clas-
sifier output (logit) for class k, considering themini-batch imagebas
the DNN’s input.
abs(Hbk)

2: Segmented heatmaps: in the absolute heatmaps, set all background
relevance to zero, by element-wise multiplying them by the fore-
ground masks. This steps avoids a direct interference of the fore-
ground loss on the minimization of LRP background relevance,
caused by the background loss (L1) optimization.
abs(Hbk)⊙Mbk

3: Absolute foreground relevance: sum all elements in the segmented
maps, Sum( ⋅ ), obtaining the total absolute foreground relevance
per-heatmap. g(Hbk) = Sum(abs(Hbk)⊙Mbk)

4: Square losses: if a heatmap’s absolute foreground relevance, g(Hbk),
is smaller than a hyper-parameter,C1, the corresponding square loss
is Lbk2 = ðC1 � gðHbkÞÞ2=C2

1 . If it is larger than C2 (C2 >C1 > 0), we have
Lbk2 = ðC2 � gðHbkÞÞ2=C2

1 . If C1 > g(Hbk) >C2, we define Lbk2 =0.
Accordingly, the foreground loss, Lbk2 , and its gradient are zerowhen
the heatmap’s absolute foreground relevance (g(Hbk)) is within a
pre-defined range, [C1,C2]. However, the loss raises quadratically
when the absolute foreground relevance exits the range. The C1 and
C2 hyper-parameters are set to represent a natural range of absolute

relevance (Supplementary Note 6.3).

Lbk2 =

ðC1�gðHbkÞÞ2
C2
1

, if gðHbkÞ<C1

0, if C1 ≤ gðHbkÞ≤C2

ðgðHbkÞ�C2Þ2
C2
1

, if gðHbkÞ>C2

8>>><
>>>:

5: L2: take the average of all square losses, considering all heatmaps in
the mini-batch. L2 will be zero if the LRP relevance stays within
normal values, but it quickly raises if it exits this natural range. Thus,
L2 avoids zero or exploding LRP heatmaps during ISNet training.
L2 =

1
B:K

PB
b= 1

PK
k = 1 L

bk
2

ISNet theoretical fundamentals
Wecouldnotfindotherworks optimizing LRPexplanations to improve
classifiers’ behavior. Layer-wise relevance propagation sits among the
most robust, interpretable, and high-resolution explanations to
date38,37. While the relevance signal is propagated through the DNN
(from output to input), it extracts context and high level features from
late DNN layers, and captures precise spatial information from earlier
layers. Accordingly, the resulting explanation heatmap carries both
high resolution and high level of abstraction. Therefore, LRP optimi-
zation can teach the ISNet to precisely identify the images’ foreground
features, and to form decision rules based on them (Supplementary
Note 4.5).

In this Section, we theoretically justify the empirically verified
(section “Results”) ISNet capacity of avoiding background attention,
and the shortcut learning caused by background bias. We begin by
summarizing the mathematical fundamentals behind LRP, elucidating
its relationship with Taylor expansions. Afterwards, we discuss how
LRP optimization makes the ISNet robust to background bias.

LRPmathematical fundamentals. A DNN implements a function of its
input, y = f(X), where y is a network’s logit of interest. A first-order
Taylor expansion can decompose the logit into a summation of one
term per input dimension (xj), plus an additional zero-order term
(f ð~XÞ), and an approximation error (ρ) with respect to higher-order
Taylor expansions (Eq. (6)). To minimize the approximation error (i.e.,
the Taylor residuum, ρ), the Taylor reference (~X, with elements ~xj)
should be close to the data point X. Furthermore, by setting the
reference point as a root of the function f(X), we remove the zero-
order element (f ð~XÞ=0). Thus, with a nearby root as the Taylor
reference, the logit is decomposed as the summation of the first-order
terms, with one term per input dimension (Eq. (7)). In this case, the
terms explain thedifferential contributionof each input element to the
logit, with respect to the logit’s state ofmaximal uncertainty, when it is
zero (50% class probability for a sigmoid function, and the ReLU
function hinge)2. I.e., the terms explain how each input element con-
tributed to making the logit different from zero. Accordingly, the
terms can form a heatmap, explaining and decomposing the network’s
output, y. For the explanations to be more meaningful, the Taylor
reference should reside in the classification problem data manifold2.

f ðXÞ= f ð~XÞ+
X
j

ðxj � ~xjÞ
∂f
∂xj

����
~X

+ρ ð6Þ

f ðXÞ≈
X
j

ðxj � ~xjÞ
∂f
∂xj

����
~X

ð7Þ

Although principled, adequate Taylor explanations are difficult to
compute for deep neural networks. The function f(X) is complicated,
highly non-linear, and can have noisy gradients. Finding a root ~X that
satisfies all aforementioned requirements is a complex and analytically
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intractable problem41. However, a DNN function, f(X), is defined as a
structure of simpler sub-functions, learned at each neuron. Finding
Taylor references for the simpler functions is easier, and approximate
analytical solutions can be found for the corresponding Taylor
expansions41.

The LRP relevance propagation rules we employ for the ISNet
(LRP-ε and LRP-zB) are justified by the Deep Taylor Decomposition
(DTD) framework41,40. DTD propagates relevance, from the classifier’s
logit to its inputs, according to local Taylor expansions performed at
each neuron. The neuron output relevance (Rk, received from the
subsequent layer) is viewed as a function of the neuron’s inputs, a
(composed of elements aj). Accordingly, Equation (8) displays a first-
order Taylor expansion of Rk(a), considering a reference point ~a.

RkðaÞ=Rkð~aÞ+
X
j

ðaj � ~ajÞ
∂Rk

∂aj

�����
~a

+ρ ð8Þ

The relevance Rk(a) is redistributed to the neuron’s inputs aj
according to the first-order terms in the expansion (summed terms in
Eq. (8))40. Ideally, we choose a reference point (~a) that minimizes the
zero-order term Rkð~aÞ. We also want the reference to be close to the
data point a, as the proximity reduces the Taylor residuum (ρ). Finding
this reference point is still not simple, nor computationally inexpen-
sive, considering the complexity of the function Rk(a)2. Therefore, to
obtain a closed-form solution for the Taylor expansion, LRP considers
an approximation of Rk(a) (dubbed approximate relevance model,
R̂kðaÞ), and standardized choices of the reference ~a. These choices are
justified by the approximate relevance model and the neuron’s input
domain40. For a neuron with ReLU activation (Eq. (9)), a modulated
ReLU activation is the most common relevance model (R̂kðaÞ). It is
defined in Eq. (10), where ck is a constant chosen to force themodel to
match the true relevance at the data point a (RkðaÞ= R̂kðaÞ). For further
explanation and theoretical justification of the relevancemodel, please
refer to ref. 40.

ak = maxð0, zkÞ= max 0,
X
j

wjkaj

 !
ð9Þ

R̂kðaÞ= max 0,
X
j

wjkaj

 !
ck ð10Þ

The LRP-ε and LRP-0 rules are derived by selecting different
reference points (~a) for the approximate local Taylor expansions40. All
these points satisfy ~aj ≥0, thus residing in the neuron’s input domain
(considering that it follows other neurons with ReLU activations). For
LRP-0, we have ~a=0. For LRP-ε the definition is: ~a= ε

ak + ε
a. The Eucli-

dean distance between the LRP-ε reference point and the actual data
point, a, is much smaller than the distance between a and the LRP-0
reference point40. Therefore, in comparison to LRP-0, LRP-ε reduces
the Taylor residuum (ρ) in relation to higher order Taylor expansions,
creating heatmaps that are more faithful, less noisy, and more
contextualized40.

Optimizing for background bias resistance: why LRP?. There are
some key qualities we expect the optimized explanation strategy to
have: it must be differentiable, consider both positive and negative
evidence (section “Background relevance minimization and ISNet”),
and be computationally efficient. Moreover, we search for an expla-
nation methodology that can fundamentally justify why its optimi-
zation leads to resistance to background bias. LRP-ε2 satisfies these
requirements. As we show in the LRP block, the strategy is differ-
entiable. Second, it is fast, constructing an LRP heatmap requires a
single backpropagation of relevance through the neural network.
Efficiency and differentiability are essential for explanations that

must be created during training and optimized. Third, LRP-ε con-
siders both positive and negative relevance. Finally, the technique is
principled, because it approximates the sequential application of
local Taylor expansions (per-neuron) in deep neural networks with
ReLU activations. Interestingly, we had no success in preliminary
experiments with the optimization of LRP rules that do not consider
negative evidence (e.g., LRP-γ40), or that are not justified by the deep
Taylor framework (e.g., LRP-αβ40). They could not produce back-
ground bias resistance.

As previously explained, the terms of a first-order Taylor expan-
sion, considering an adequate Taylor reference (a nearby root in the
data manifold), indicate the contribution of a function’s input ele-
ments to its output variation, when the input moves from the Taylor
reference to the actual data point. Thus, the minimization of terms
associated with bias should minimize the bias contribution to the
function output variation, when its input moves from a point of max-
imal uncertainty (root) to the current data point. I.e., it minimizes the
bias influence over the function’s output. However, the creation of
adequate Taylor explanations of a DNN is a complex and analytically
intractable problem2. Thus, such explanations violate our requirement
of computational efficiency.

However, LRP-ε is a fast procedure, which explains a DNN output
by approximating a sequence of local Taylor expansions. For this
reason, LRP-ε optimization is an efficient and justifiable alternative to
minimize the influence of biased input elements on the network’s
logits. Recapitulating, LRP-ε relevance propagation starts with the
classifier logit we are explaining and uses an approximate Taylor
expansion to decompose its value, and redistribute it to the inputs of
the last DNN layer, according to their contribution to the logit.
Repeating this procedure, the decomposition results (relevance) are
further decomposed and redistributed multiples times through the
DNN. I.e., an approximate Taylor expansion at each DNN neuron
decomposes its output relevance and redistributes it to the neuron’s
inputs, according to how much they contributed to the neuron’s out-
put relevance (Eq. (8)). The procedure ends at the input layer, forming
the LRP heatmap.

For the backgroundbias to influence the logit, it needs to influence
neurons (or convolutional activations) throughout the entireDNN, until
its last layer. The layer L neurons that carry and process the bias
informationmust influence neurons in layer L+1, or thebias information
will not reach the DNN output. This influence will be captured by the
local Taylor expansions performed at the layer L+1 neurons, affecting
the LRP relevanceflow.Whenbackgroundbias influences the classifier’s
decisions, it produces a flow of influence from the bias to the logit,
encompassing the neurons and connections that carry and process the
bias information. This influence flowwill cause a corresponding flow of
LRP relevance, bringing relevance from the logit to the background
region of the LRP heatmap. The ISNet’s background relevance mini-
mization procedure optimizes DNN parameters to constrict and ulti-
mately stop the relevance flow from the logits to the LRP heatmaps’
background, thus minimizing the corresponding influence and infor-
mation flow from the background bias to the logit. Accordingly, the
ISNet hinders the background bias influence on the classifier’s outputs.

We selected the LRP-ε rule to propagate relevance through all
DNN, except for itsfirst layer. The inputdomain of thefirst DNN layer is
diverse. In a network with ReLU activations and analyzing images, the
first layer inputs range from 0 to 1 (standardized pixels), while other
layers’ inputs assume values in R+. While LRP-ε is adequate for the
remaining layers, the LRP-zB rule represents a more accurate choice of
Taylor reference for the first layer41. According to preliminary tests, the
ISNet works with the LRP-ε in layer one, but LRP-zB produced an
accuracy improvement.

Meanwhile, LRP-0 explanations are highly noisy, and less inter-
pretable than LRP-ε. In the LRP-ε propagation rule (Eq. (3)), the ε term
not only avoids division by zero, but it absorbs some of the relevance
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that would have been propagated to the lower layer. The absorption
mostly reduces the influence of neurons with small activations (zk in
Eq. (3)) over the relevance signal being propagated. Therefore, it
reduces noise and contradiction in the resulting heatmaps40. This
improvement is justifiedby theDTD framework. As previously noticed,
in relation to LRP-0, LRP-ε represents a deep Taylor decomposition
using Taylor references that are closer to the data points. Thus, LRP-ε
reduces the Taylor residuum, and explanations become more con-
textualized and coherent with the network’s behavior40.

Past studies showed that, inDNNsbasedonReLUactivations, LRP-
0 is equivalent to Gradient*Input explanations (assuming no division
by zero or numerical instabilities in LRP-0)40. The equality demon-
strates that the advantages of LRP-ε over LRP-0 directly apply when
comparing LRP-ε to Gradient*Input. Gradient*Input is an explanation
technique proposed to improve the sharpness of input gradients8, by
multiplying them (element-wise) with the DNN input itself. Input gra-
dients (or saliency maps) are another explanation technique7, repre-
senting the gradient of a DNN logit with respect to the model’s input.
To create input gradients and Gradient*Input explanations, we back-
propagate the gradient of the logit corresponding to the class wewant
the heatmap to explain. The ISNet Grad*Input is an ablation study,
wherewe substituted the ISNet LRP heatmaps byGradient*Input. Right
for the Right Reasons (RRR) is a model that optimizes input gradients
(alongside a standard classification loss), minimizing their background
values, which are identified by ground-truth foreground masks6.
Essentially, DNN optimizers treat the networks’ inputs as constants.
Consequently, background minimization in Gradient*Input minimizes
the input gradient’s background elements. Therefore, Gradient*Input
optimization shares the solid fundamental fromRRR: theminimization
of input gradients’ backgrounds make classifier’s outputs locally
invariant to changes in images’ backgrounds. The learned local invar-
iance can be generalizable: during testing, RRR also based its decisions
on foreground features, instead of background bias6. Both input gra-
dients and Gradient*Input are computationally efficient (similar to
LRP, refer to Supplementary Note 9), differentiable, and show positive
and negative evidence.

However, both input gradients and Gradient*Input are noisy for
large DNNs analyzing high-resolution images39. RRR was originally
tested in networks with few hidden layers6. This study considers dee-
per classifier backbones (DenseNet121, with 121 layers, and VGG-19,
with 19 layers) and 224x224 images. Accordingly, when employing the
VGG-19, the ISNet’s generalization and background bias resistance
significantly surpassed RRR, and slightly surpassed the ISNet Gra-
d*Input (with confidence interval overlap, Table 1). However, with the
deeper backbone, the ISNet significantly surpassed both models,
without overlaps (Table 1). In summary, our empirical findings
(Tables 1 to 5) indicate that the LRP-ε theoretical advantages over LRP-
0 or Gradient*Input (lower noise, higher coherence, and better con-
textualization) allow the ISNet tomore effectively and stablyminimize
background attention, better hindering the shortcut learning caused
by background bias and improving o.o.d. generalization.

SupplementaryNote 2 thoroughly compares the ISNet to RRR and
the ISNet Grad*Input, and it explains the alternative models in more
detail. Supplementary Note 8 formally demonstrates the equivalence
between LRP-0 and Gradient*Input. Afterwards, it provides an alter-
native view on LRP-ε, which makes its denoising quality clear. Finally,
Supplementary Note 2.4 displays the advantages of LRP optimization
over the optimization of another popular explanation technique,
Grad-CAM5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The X-ray data from healthy
and/or pneumonia positive subjects used in this study are available in
theMontgomery and Shenzen databases26, http://archive.nlm.nih.gov/
repos/chestImages.php; in ChestX-ray1443, https://paperswithcode.
com/dataset/chestx-ray14; and in CheXpert25, https://
stanfordmlgroup.github.io/competitions/chexpert/. The COVID-19
radiography data used in this study are available in The BrixIA
COVID-19 project12, https://brixia.github.io/; and in the BIMCV-
COVID19+ database44, https://bimcv.cipf.es/bimcv-projects/bimcv-
covid19/. The tuberculosis-positive X-rays used in this study are avail-
able in NIAID TB Portals20, https://tbportals.niaid.nih.gov/download-
data. The Images for facial attribute estimation (along with their seg-
mentation masks) used in this study are available in the Large-scale
CelebFaces Attributes (CelebA) Dataset27, https://mmlab.ie.cuhk.edu.
hk/projects/CelebA.html. The MIMIC-CXR-JPG database (v2.0.0)45,46,47

used in this study is available at https://physionet.org/content/mimic-
cxr-jpg/2.0.0/. The Stanford Dogs28 dataset used in this study is avail-
able at http://vision.stanford.edu/aditya86/ImageNetDogs/. X-rays
with lesions marked by the radiologist and the corresponding ISNet
Layer-wise Relevance Propagation heatmaps (Supplementary Data 1),
generated in this study, have been deposited in https://doi.org/10.
6084/m9.figshare.24243895.v236. All data supporting the findings
described in this manuscript are available in the article and in
the Supplementary Information and from the corresponding author
upon request. Source data are provided with this paper.

Code availability
The code containing the ISNet PyTorch implementation is available at
https://github.com/PedroRASB/ISNet30. It also presents the imple-
mentations for the benchmark deep neural network architectures.
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