
Learning LBP Structure by Maximizing the

Conditional Mutual Information

Jianfeng Ren∗

BeingThere Centre, Institute for Media Innovation, Nanyang Technological University, 50

Nanyang Drive, Singapore 637553.

Xudong Jiang, Junsong Yuan

Electrical & Electronic Engineering, Nanyang Technological University, Nanyang Link,

Singapore 639798.

Abstract

Local binary patterns of more bits extracted in a large structure have shown

promising results in visual recognition applications. This results in very high-

dimensional data so that it is not feasible to directly extract features from

the LBP histogram, especially for a large-scale database. Instead of extracting

features from the LBP histogram, we propose a new approach to learn discrim-

inative LBP structures for a specific application. Our objective is to select an

optimal subset of binarized-pixel-difference features to compose the LBP struc-

ture. As these features are strongly correlated, conventional feature-selection

methods may not yield a desirable performance. Thus, we propose an incremen-

tal Maximal-Conditional-Mutual-Information scheme for LBP structure learn-

ing. The proposed approach has demonstrated a superior performance over the

state-of-the-arts results on classifying both spatial patterns such as texture clas-

sification, scene recognition and face recognition, and spatial-temporal patterns

such as dynamic texture recognition.
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1. Introduction

Local binary pattern (LBP) encodes the signs of the pixel differences be-

tween a pixel and its neighbors to a binary code [1]. LBP and its variants have

been widely used in many applications, e.g. image texture classification [1–3],

dynamic texture (DT) recognition [4–7], scene recognition [8, 9], facial anal-

ysis [10–19], and others [20–26]. Its popularity arises from its simplicity, the

ability to capture image micro-structures and robustness to illumination varia-

tions.

One potential problem surfaces with the wide application of LBP features,

i.e. the feature dimensionality increases exponentially with the number of LBP

bits. The histogram of original LBP has 256 bins only [1]. This LBP only

utilizes the pixel differences between a pixel and its 8 nearest neighbors, which

cannot capture the image structures of a larger scale. In [27], LBP features

were extracted using P neighbors uniformly sampled on a circle at the radius

of R to the center pixel, denoted as LBPP,R. By varying R, micro-structures

at different scales are captured. LBPP,R has 2P bins. Due to the storage and

computational complexity constraints, the number of LBP bits is in general

limited to 24, i.e. 224 = 16, 777, 216 bins. Instead of using circular neighbors,

some other geometries were explored in Local Quantized Pattern (LQP) [3],

e.g. horizontal line, vertical line, horizontal-vertical cross, diagonal cross and

disc shape. Recent researches [3, 11, 27] show that LBP features using more

bits extracted in a larger neighborhood have higher potential to capture complex

patterns than using the basic ones, at the cost of high feature dimensionality. It

imposes a big challenge to handle such high-dimensional LBP features, especially

when we need to extract these features from a large-scale database.

In the literature, many algorithms were proposed to reduce the feature di-

mensionality by extracting a good set of features from the LBP histogram.

In [27], uniform LBP was defined for circular/rectangular structure towards the

objective of capturing fundamental image structures such as bright/dark spot
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and edges of various positive/negative curvatures. The feature dimensionality

is significantly reduced from 2P to P (P − 1) + 3. However, uniform patterns

are not clearly defined towards this objective for other geometries such as cross

or disc structure in [3]. A global dominant pattern set was learned from the

LBP histogram through a 3-layered framework in [28]. Shan et al. utilized

Adaboost algorithm to learn discriminative LBP-histogram bins for facial ex-

pression recognition [29]. In LQP [3], k-means was utilized to cluster the LBP

features into a small number of visual words. However, as the spatial informa-

tion is not fully utilized, spatially similar patterns may not be clustered into

the same group, and hence LQP may not yield a desirable performance. For

CENTRIST feature [8], PCA was applied on the LBP histogram to derive a

compact feature representation. Yuan et al. improved CENTRIST by mining

discriminative co-occurrence patterns [30]. In [31], Cao et al. utilized a random

projection tree to encode LBP features, and used PCA to reduce the dimen-

sionality. PCA can be also applied on the concatenated LBP histogram of all

patches [32]. However, these approaches may not be applicable for a large LBP

structure as it is not feasible to enumerate 2P bins for a large P .

Instead of constructing a high-dimensional LBP histogram, some algorithms

tackle the problem by breaking the large structure into small ones, or simply

replacing it by a small one. Volume-LBP (VLBP) [33] has a typical large struc-

ture, in which a joint histogram of patterns in three successive frames is built.

The dimensionality is as high as 23P+2. Thus, Zhao et al. proposed LBP-

TOP [5] to extract LBP features from three orthogonal planes. The feature

dimensionality is reduced to 3 × 2P . However, the co-occurrence information

of patterns extracted from these three planes is sacrificed. In LQP [3], LBP

features were extracted using handcrafted structures such as line, cross and disc

shapes. In Center-Symmetric LTP (CS-LTP) [34], the pixel differences between

diagonal neighbors were utilized. LBP-TOP [5], CS-LTP [34] and LQP [3] are

initial attempts to reduce the dimensionality by directly reducing the size of

LBP structure. A heuristic hill-climbing technique was used to select the LBP

structures in [35]. However, these heuristically selected structures may not be
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optimal. In [36], Lei et al. proposed to iteratively learn discriminant image

filters and neighborhood sampling strategy. Their approach works well for face

recognition, but cannot effectively handle large image variations in other appli-

cations.

In this paper, we propose to reduce the dimensionality of LBP features by

optimizing the LBP structure directly. We formulate it as a point-selection prob-

lem. Given a neighborhood, the goal is to select an optimal subset of neighbors

to compose the LBP structure. For each point, its binarized pixel difference

with respective to the center pixel is treated as a feature. For feature selection,

it is often desirable to maximize the dependency of target classification variable

on data distribution (known as Max-Dependency scheme). However, it is diffi-

cult to directly calculate such a dependency as it requires to estimate high-order

multivariate probability density functions [37]. Thus, approximated algorithms

were often utilized, e.g. Max-Relevance, Min-Redundancy-Max-Relevance [9,

37], Max-Min-Conditional-Mutual-Information [38] and Maximal-Joint-Mutual-

Information [7]. One important characteristic of the LBP-structure-learning

problem is that these binarized-pixel-difference features are strongly correlated.

However, previous approaches assume certain degree of feature independence,

e.g. the high-order interaction is assumed negligible in [7, 9]. In view of this, we

propose to first approximate the dependency as closely as possible by a set of

low-order conditional mutual information, and then achieve Max-Dependency

criterion through maximizing its approximation. In such a way, we derive a

more accurate approximation of Max-Dependency criterion. Then, we propose

a Maximal-Conditional-Mutual-Information (MCMI) scheme for LBP structure

learning. It is difficult to seek a globally optimal solution for MCMI scheme.

For simplicity, we utilize sequential forward selection (SFS) [39].

After deriving the LBP structures, the LBP histograms are generated using

these structures. PCA is applied on the histogram of each patch to further

reduce the dimensionality. The final concatenated feature vector is classified by

a support vector machine with a RBF kernel or a nearest-neighbor classifier with

Chi-squared distance. We use LIBSVM package [40] in the implementation.
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BRIEF feature [41] and ORB feature [42] also utilize binarized pixel differ-

ences. They randomly sample pixel differences in a patch, binarize them and

finally form a feature vector of a long bit stream. These two features are essen-

tially different from the proposed approach and other LBP-based features since

they do not utilize the histogram of the bit stream as the final feature vector.

2. Overview of Proposed Approach

In general, it is beneficial to extract LBP features using more binarized pixel

differences in a larger neighborhood. As the feature dimensionality grows expo-

nentially, those approaches that directly extract/select histogram-bin features

quickly become infeasible. An optimal LBP structure needs to be determined

first to produce a histogram of a reasonable size. Some initial attempts uti-

lize handcrafted structures [3, 5, 34]. To develop a good handcrafted structure,

a trial-and-error process is often involved. Even so, in many situations the

handcrafted structure cannot yield a desirable result due to the followings: a)

Optimality cannot be guaranteed as the handcrafted structure is often selected

heuristically. b) The handcrafted structure is not scalable. Given a good hand-

crafted structure, it is unclear how to compress it to a compact one that achieves

a comparable performance at a higher speed, or how to extend it to a larger

one to achieve a better performance. c) The handcrafted structure is not uni-

versal. For different applications or even different patches of an image, the

intrinsic image characteristics may be different. It is impossible to develop one

structure that works well for all. Tremendous effort is needed to design a good

handcrafted structure for every application and every patch.

The block diagram of the proposed approach is shown in Fig. 1. We de-

rive the LBP structure first, and then use it to generate LBP-histogram bins.

Formally, denote zi = Ci − Ic as the pixel difference between the neighboring
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Figure 1: Block diagram of the proposed approach. The neighbors of learned LBP structure

are marked as “o”.

pixel Ci and the center pixel Ic. The binarized pixel difference is defined as:

xi =











1 if zi ≥ 0,

0 if zi < 0.

(1)

Now point Ci is represented by its binarized pixel difference xi. We cast the

LBP structure learning as a point subset selection problem: given binarized

pixel differences x = {x1, x2, . . . , xn} and target classification variable c, the

goal is to find a subset of m binarized pixel differences xm ⊆ x that “optimally”

characterize c. We solve the problem via the proposed Maximum-Conditional-

Mutual-Information scheme, which will be elaborated in detail in the next sec-

tion. As a result, the feature dimensionality is reduced from 2n to 2m. Then,

we apply PCA to further reduce it to d.

Potentially, the proposed approach could handle a large set of binarized

pixel differences, whereas approaches that directly extract features from the

histogram bins [3, 8, 31, 32, 43–45] cannot as it is not feasible to enumerate

2n bins for a large n. This is even more crucial when handling a large-scale

database.

Even in the scenario that it is possible to enumerate all histogram bins, the
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proposed approach may still yield a better performance. The joint probability

p(x) of set x can be estimated by the LBP histogram of 2n bins generated

from these n points. If point xj is not selected, the marginal probability of

the remaining point set is
∑

xj
p(x). Correspondingly, each resulting bin is

the summation of two original histogram bins. Eventually, when we derive the

LBP structure of m points out of these n candidates, we reduce the number

of histogram bins from 2n to 2m, and each resulting bin is the summation of

2n−m original bins. Thus, the resulting histogram is less noisy, more statistically

significant and reliable than the original histogram. In contrast, for those direct-

bin-selection approaches [3, 8, 31, 32] the feature set is directly extracted from

the histogram of 2n bins, which may be statistically insignificant and error-

prone. Thus, we expect a better generalization performance for the proposed

approach.

Now we briefly discuss how to determine the potential candidates. In LQP [3],

disc structure in a neighborhood of 5 × 5 pixels has demonstrated a superior

performance over other geometries. Thus, we use the same neighborhood, and

the binarized pixel differences between 24 neighbors and the center pixel as po-

tential candidates, as shown in Fig. 2(a). The LBP structure of CENTRIST

feature [8] consists of 8 neighbors in the neighborhood of 3× 3 pixels, as high-

lighted in yellow in Fig. 2(a). For spatial-temporal LBP (STLBP), we consider

a spatial-temporal neighborhood of 3×3 pixels in 3 successive frames, resulting

in 26 binarized pixel differences, as shown in Fig. 2(b). It is not feasible to

directly use all 26 neighbors to construct the histogram as 226 = 67, 108, 864.

Thus, we treat them as potential candidates and aim to find the optimal subset.

3. An Incremental Maximal-Conditional-Mutual-Information Scheme

for LBP Structure Learning

Due to the spatial dependence among image pixels within a small neighbor-

hood, the binarized pixel differences are strongly correlated. Previous feature-
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(a) (b)

Figure 2: Potential candidates. (a) The binarized pixel differences between 24 neighbors

and center pixel in a neighborhood of 5 × 5 pixels as potential candidates. LQP Disc3∗
5

[3]

utilizes the same set of neighbors. CENTRIST feature [8] utilizes 8 neighbors highlighted in

yellow. (b) The binarized pixel differences between 26 neighbors and center pixel of Frame t

as potential candidates for STLBP.

selection approaches assume certain degree of feature independence, and hence

may not be suitable in our scenario. Thus, we propose an incremental Maximal-

Conditional-Mutual-Information scheme. We begin with problem analysis of

previous algorithms.

3.1. Review of Feature-Selection Algorithms Based on Mutual Information

In Max-Dependency scheme [37], the dependency of target classification vari-

able c on data distribution is maximized. Mutual information is often employed

to characterize the dependency. Given two random variables x and y, their mu-

tual information is defined in terms of probability density functions p(x), p(y)

and p(x, y):

I(x; y) =

∫ ∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy. (2)

Given a set of features x, the goal is to find a subset of m features xm ⊆ x,

which jointly have the largest dependency on target classification variable c:

x∗
m = argmax

xm⊆x

I(xm; c). (3)

I(xm; c) =

∫ ∫

p(xm, c) log
p(xm, c)

p(xm)p(c)
dxmdc

=

∫

. . .

∫

p(x1, . . . , xm, c) log
p(x1, . . . , xm, c)

p(x1, . . . , xm)p(c)

dx1 . . . dxmdc.

8



It is difficult to reliably estimate p(x1, . . . , xm) and p(x1, . . . , xm, c) due to

limited training samples available and the large number of joint states to be

estimated. Thus, approximated algorithms were often utilized [37, 38]. In Max-

Relevance scheme, I(xm; c) is approximated by the mean value of mutual infor-

mation between individual feature xi and c:

x∗
m = argmax

xm

1

m

∑

xi∈xm

I(xi; c). (4)

Max-Relevance has a strong assumption that all features are independent to

each other [37], which in general does not hold. The features selected accord-

ing to Max-Relevance may have rich redundancy. To solve this problem, the

criterion of Min-Redundancy was added to select mutually exclusive features.

x∗
m = argmin

xm

1

m2

∑

xi,xj∈xm

I(xi; xj). (5)

In [37], Min-Redundancy and Max-Relevance (mRMR) were combined:

x∗
m = argmax

xm

∑

xi∈xm

I(xi; c)−
1

m

∑

xi,xj∈xm

I(xi; xj). (6)

mRMR has two weak assumptions that high-order interaction information is

negligible and the desired features are conditional independent given classi-

fication variable c [46]. In many cases, these two assumptions do not hold.

Particularly in our case, the binarized-pixel-difference features are strongly cor-

related, and hence the high-order interaction information among these features

is non-negligible.

Both Max-Relevance and mRMR only approximate Max-Dependency crite-

rion intuitively. Recent research [46] shows that when high-order interaction

information is negligible, I(xm; c) can be approximated by:

I(xm; c) ≈
∑

xi∈xm

I(xi; c)−
∑

xi,xj∈xm

I(xi; xj) +
∑

xi,xj∈xm

I(xi; xj |c), (7)

where I(xi; xj |c) is conditional mutual information. For discrete random vari-

9



ables x, y, z, the conditional mutual information is defined as:

I(x; y|z) = Ez{I(x; y)|z}

=
∑

x,y,z

p(x, y, z) log
p(z)p(x, y, z)

p(x, z)p(y, z)
, (8)

where Ez{.} is the expectation on z.

It can be observed that only when Eqn. (7) is dominated by its first term,
∑

xi∈xm
I(xi; c) defined in Eqn. (4) for Max-Relevance is a good approximation

of I(xm; c). It is equivalent to the feature-independence assumption of Max-

Relevance. mRMR defined in Eqn. (6) differs from Eqn. (7) by a missing term
∑

xi,xj∈xm
I(xi; xj |c) and a weighting factor for the second term. It has the

assumption that the last term in Eqn. (7) and high-order interaction informa-

tion are negligible. In our scenario, these two assumptions do not hold. A

better approximation, Maximal-Joint-Mutual-Information (MJMI) scheme, is

given in [7]. However, MJMI scheme also assumes that high-order interaction

is negligible.

A Max-Min-Conditional-Mutual-Information (MmCMI) scheme is proposed

in [38], which iteratively selects the feature x∗
i so that:

x∗
i = argmax

i

{

min
j

I(xi; c|xj)

}

, (9)

where xj is one of selected features. As we will show shortly, MmCMI implicitly

assumes negative interaction information, which may not be true in our case.

3.2. A Close Approximation to I(xm; c)

In this paper, we propose to approximate I(xm; c) closely by a set of low-

order conditional mutual information. Our formulation is inspired by [47]. Chow

and Liu approximated high-order discrete probability distributions P (x) with

dependence trees P̃ (x) as follows:

P̃ (x) =

n
∏

i=1

P (xai
|xaj(i)

), 0 ≤ j(i) < i, (10)

where (a1, a2, . . . , an) is an unknown permutation of integers 1, 2, . . . , n and

P (xa1 |xa0) is by definition equal to P (xa1).
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Similarly, we would like to approximate I(xm; c) by a set of conditional

mutual information of the form I(xi; c|xj):

Ĩ(xm; c) =

m
∑

i=1

I(xbi
; c|xbj(i)

), 0 ≤ j(i) < i, (11)

where {b1, b2, . . . , bm} is an unknown permutation of integers 1, 2, . . . , m and

I(xb1 ; c|xb0) is by definition equal to I(xb1 ; c). In fact, such a formulation is

feasible. Recall the chain rule for I(xm; c):

I(xm; c) =

m
∑

i=1

I(xi; c|x1, . . . , xi−1). (12)

For i ≥ 3, I(xi; c|x1, . . . , xi−1) is high-order conditional mutual information.

Compare Eqn. (11) with Eqn. (12), we can see that if we could approximate high-

order conditional mutual information I(xi; c|x1, . . . , xi−1) closely by low-order

conditional mutual information of the form I(xi; c|xj), we could approximate

I(xm; c) closely by Ĩ(xm; c) as defined in Eqn. (11).

Now the question is: how to derive a close approximation of I(xm; c) using

Ĩ(xm; c) defined in Eqn. (11)? More specifically, which term I(xi; c|xj) should be

chosen? At a first glance, we may assume that I(xi; c|xj) ≥ I(xi; c|x1, . . . , xi−1), j =

1, 2, . . . , i − 1. Thus, I(xm; c) is upper-bounded by Ĩ(xm; c), and we should

minimize I(xi; c|xj) in order to achieve a tighter upper bound. However, this

assumption may not hold always. Let us re-examine it:

I(xi; c|x1, . . . , xi−1)− I(xi; c|xj) = I(xi;xk; c|xj), (13)

where I(xi;xk; c|xj) is conditional interaction information and xk = {xk}, k =

1, 2, . . . , i−1, k 6= j. The interaction information is the gain (or loss) in informa-

tion among a set of variables due to additional knowledge of the other variables,

i.e. I(x; y; z) = I(x; y|z)− I(x; y). The conditional interaction information can

be obtained as: I(x; y; z|w) = Ew{I(x; y; z)|w}.

In general, negative interaction information seems much more natural than

positive interaction information as it explains typical common-cause structures.

However, in our case we are dealing with positive interaction information. Let us
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start with a simplified case. The interaction information among xi, xj , c can be

derived as: I(xi; xj ; c) = I(xi, xj ; c)−I(xi; c)−I(xj; c), where I(xi, xj ; c) is joint

mutual information. One feature alone, i.e. each individual binarized-pixel-

difference feature, is rather weak and does not have much discriminative power.

Thus, both I(xi; c) and I(xj ; c) are small. If we consider two features together,

the classification capability increases significantly, i.e. I(xi, xj ; c) > I(xi; c) +

I(xj ; c). This is a typical example of positive interaction information. We can

view it from another aspect. By definition I(xi; xj ; c) = I(xj ; c|xi) − I(xi; c).

In our case, I(xi; c) is very small and approaches 0. Then, I(xi; xj ; c) ≈

I(xj ; c|xi) ≥ 0. We calculate I(xi; xj ; c) for the 21-land-use dataset [48] and

dyntex++ dataset [49, 50]. We find that 92.9% and 96.4% are positive interac-

tion information, respectively. Similarly, I(xi; c;xk|xj) may also very likely be

positive.

Therefore, we conclude that in general for binarized pixel differences, I(xi; c|xj) ≤

I(xi; c|x1, . . . , xi−1). Thus, rather than an upper-bound, Ĩ(xm; c) is actually a

lower bound for I(xm; c). We will further verify this in the experimental section.

In order to obtain a tighter lower bound, Ĩ(xm; c) is derived as:

Ĩ(xm; c) =

m
∑

i=1

max
j(i)

I(xbi
; c|xbj(i)

), 0 ≤ j(i) < i. (14)

3.3. Proposed Incremental MCMI Scheme

After we approximate I(xm; c) closely by Ĩ(xm; c) defined in Eqn. (14), we

achieve Max-Dependency criterion by maximizing Ĩ(xm; c):

x∗
m = argmax

bm

{

m
∑

i=1

max
j(i)
{I(xbi

; c|xbj(i)
)}

}

, (15)

where bm = {b1, b2, . . . , bm} is an subset of m integers out of 1, 2, . . . , n.

Equivalently, our objective function is:

b∗
m = argmax

bm

{

m
∑

i=1

I(xbi
; c|xbj(i)

)

}

, 0 ≤ j(i) < i. (16)

We call this as Maximal-Conditional-Mutual-Information (MCMI) scheme. As

we only need to estimate the joint probability mass function of three variables

only, in which xbi
, xbj(i)

are binary, the computational cost is low.
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It is worth noting that our method is different from MmCMI in [38]. Eqn. (9)

of MmCMI can be equivalently rewritten as:

x∗
m = argmax

bm

{

m
∑

i=1

min
j(i)
{I(xbi

; c|xbj(i)
)}

}

. (17)

Compared it with Eqn. (15), we can see that the proposed MCMI aims to

Max-Max the conditional mutual information, whereas MmCMI aims to Max-

Min the conditional mutual information. MmCMI implicitly assumes that

it is an upper bound of I(xm; c) in Eqn. (12), i.e. I(xbi
; c|xb1 , . . . , xbi−1) ≤

I(xbi
; c|xbj(i)

). Equivalently, it assumes negative conditional interaction infor-

mation, i.e. I(xbi
;xi; c|xbj(i)

) = I(xbi
; c|xb1 , . . . , xbi−1 ) − I(xbi

; c|xbj(i)
) ≤ 0.

Then, MmCMI aims to minimize I(xbi
; c|xbj(i)

) to achieve a tighter upper bound

of I(xm; c). In Section 3.2, we have shown that this assumption does not hold

true in our case. Later in Section 4.1, we will show using a real dataset that

MmCMI is a lower bound rather than an upper bound of I(xm; c), and the

proposed MCMI achieves a tighter lower bound than MmCMI. By better ap-

proximating I(xm; c), the proposed MCMI consistently outperforms MmCMI

on all 6 datasets in the experimental section.

It is challenging to seek a globally optimal solution to MCMI scheme as it is

a NP-hard problem. Even a small pool of 100 features will result in 1.86× 1011

subsets for selecting just 8 features. Sequential forward selection (SFS) [39]

is widely used in feature selection, e.g. MmCMI [38] and mRMR [37]. For

simplicity and for a fair comparison with MmCMI, we also utilize SFS in this

work.

The proposed algorithm starts with a set of possible point candidates. We

initialize the selected point subset as a null set. Denote si = {xi
j} as the current

point subset, and vi = x − si as the available feature pool. Then, we aim to

find a point in such a way that:

xi+1
j∗ = argmax

x
i+1
j

∈vi,xi
s∈si

I(xi+1
j ; c|xi

s). (18)

Here, we assume the conditional mutual information I(x1
j ; c|x

0
s) = I(x1

j ; c). The

proposed incremental MCMI scheme is summarized in Algorithm 1.
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Algorithm 1 Proposed incremental MCMI scheme to learn LBP structure

Input: a set of potential candidates x, the desired number of neighbors m

Output: an optimal subset xm

Initialization: Set the selected feature subset as s0 = ∅ and the feature pool

v0 = x.

1: for i← 1 : m do

2: for j ← 1 : n− i + 1 do

3: Calculate the conditional mutual information I(xi
j ; c|x

i−1
s ) by Eqn. (8),

where xi
j ∈ vi−1, xi−1

s ∈ si−1.

4: end for

5: Choose xj that maximizes I(xi
j ; c|x

i−1
s ).

6: Update si ← si−1 ∪ xj

7: Update vi ← vi−1 − xj

8: end for

9: xm = sm

Image patches at different scales or locations may exhibit totally different

characteristics. Thus, the “spatial pyramid” [8, 51] was proposed to preserve the

patch-wise location information and capture image characteristics at different

scales. Similarly, we propose to derive the LBP structure on a patch-wise basis

instead of using a unified one for all patches. Each patch is processed separately.

The feature vectors of all patches are concatenated to form the final feature

vector.

4. Experimental Results

The proposed approach can be used in many applications. In this paper,

we show three examples: learning a single LBP structure for texture classi-

fication, a set of patch-wise LBP structures for scene/face recognition and a

spatial-temporal LBP structure for dynamic texture recognition. The proposed

approach is compared with approaches that directly extract features from the
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LBP histogram [3, 8], those utilizing handcrafted LBP structures [5], as well as

the state of the art reported in solving these problems.

4.1. Comparison in Approximating I(xm; c)

We first show that we derive a closer approximation to high-order mutual

information I(xm; c). Max-Min Conditional Mutual Information scheme (Mm-

CMI) [38] is similar to the proposed one. Thus, we compare it with the proposed

scheme in approximating I(xm; c).

We use the 21-land-use dataset [48] for illustration. It contains 21 classes

of aerial orthoimagery, and each class has 100 images of resolution 256 × 256

pixels. We randomly choose 80 images from each class as the training set,

and randomly select 8 points from 24 point candidates as the LBP struc-

ture. We calculate the ground-truth value of high-order mutual information

I(xm; c) using this 8-bit LBP structure. Then, we approximate I(xm; c) us-

ing max{
∑m

i=1 I(xbi
; c|xbj(i)

)}, 0 ≤ j(i) < i for the proposed MCMI scheme,

and using
∑m

i=1 maxi{minj(i){I(xbi
; c|xbj(i)

)}}, 0 ≤ j(i) < i for MmCMI [38].

We repeat it 100 times, and plot the ground-truth and approximated values of

I(xm; c) in Fig. 3.
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Figure 3: The proposed MCMI achieves a closer approximation to high-order mutual informa-

tion I(xm; c) than MmCMI [38]. The proposed MCMI is a tighter lower bound of I(xm; c).

We can observe from Fig. 3 that even we greedily maximize Ĩ(xm; c) through
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the proposed incremental MCMI, Ĩ(xm; c) < I(xm; c). Thus, Ĩ(xm; c) is a lower

bound rather than an upper bound of I(xm; c). The proposed MCMI achieves

a tighter bound than MmCMI [38]. It justifies our Max-Max scheme as de-

fined in Eqn. (15), rather than Max-Min scheme [38]. To compensate possible

scaling factor for Ĩ(xm; c), we calculate the correlation coefficients between the

approximated value Ĩ(xm; c) and the ground-truth value I(xm; c) in 100 trials,

and show them in Table 1. The proposed MCMI scheme exhibits a larger cor-

relation coefficient than MmCMI. It suggests that the proposed MCMI scheme

varies more closely with high-order mutual information I(xm; c) than MmCMI.

In the rest of the experiments, we will utilize the proposed approach to derive

the LBP structures using both MCMI and MmCMI schemes, and show their

performances for different applications.

Table 1: Correlation coefficient between Ĩ(xm; c) and I(xm; c) for MmCMI and the proposed

MCMI scheme.

Method Correlation Coefficient

MmCMI [38] 0.20

Proposed MCMI 0.47

4.2. Texture Classification on the KTH-TIPS-2a Dataset

We now compare the proposed approach with others on the KTH-TIPS-2a

dataset [52] for texture classification using basic experimental settings. This

dataset contains 11 classes, and each class has four samples (groups). In each

sample group, there are 72-108 images taken at different scales from different

orientations. We follow the same experimental settings as in [3]. Three samples

of each class are used for training and the fourth for testing. We report average

classification rate over four random partitions. Same as in [3], we use simple

3-nearest-neighbor classifiers with Chi-squared distance. Better results using

more sophisticated classifiers such as SVM are available in [52].

We compare the proposed approach with LQP [3], which is an alternative

to reduce the LBP feature dimensionality by directly extracting features from
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a large pool of histogram bins. Many handcrafted structures were proposed

in LQP [3], among which Disc3∗
5 performs the best. Disc3∗

5 means features

extracted in a disc-shape region of 5 × 5 pixels and 3∗ means split ternary

coding [53]. For a fair comparison to LTP and Disc3∗
5 LQP, a variant of the

proposed approach is used, i.e. after deriving the LBP structure, we use it to

generate split ternary codes, similarly as in [3, 53]. We use the default setting

as in [53] for LTP, e.g. the threshold t = 5. We also utilize the proposed

approach to extract LTP features using MmCMI scheme [38]. The results are

summarized in Table 2. The results for LBP, LTP, Disc3∗
5 LQP, Weber Law

Descriptors (WLD) [54] and color WLD [54] are taken from [3].

Table 2: Comparisons with other approaches on the KTH-TIPS-2a dataset for texture classi-

fication.

Method Recognition Rate

WLD [54] 59.4%

Color WLD [54] 56.5%

LBP [27] 58.7%

LTP [53] 60.7%

Disc3∗
5 LQP [3] 64.2%

Proposed approach with MmCMI 70.2%

Proposed approach with MCMI 71.1%

We can see that the proposed approach outperforms LTP by more than

10%, which shows that the proposed approach is able to derive a structure that

has more potential to capture the intrinsic image structures than the hand-

crafted one. Compared with Disc3∗
5 LQP that directly extracts features from

the LBP-histogram bins, the proposed approach with MCMI scheme improves

the classification rate from 64.2% to 71.1%.
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4.3. Scene Recognition on the 21-Land-Use Dataset

We conduct experiments on the 21-land-use dataset [48] for scene recognition

using the same experimental setup as in [48, 55]. The spatial pyramid [8, 51]

is utilized. Each image is divided into 1 patch for level 0, 5 patches for level 1

and 25 patches for level 2, respectively. For each class, we randomly split it into

five equal-size sets. Four of the sets are used for training and the held-out set is

used for testing. We use CENTRIST feature [8] as the baseline algorithm. As

CENTRIST utilizes 8-bit LBP, we derive LBP structures of 8 points for a fair

comparison. The learned LBP structures for the first patch of each pyramid

level of trial 1 are shown in Fig. 4. These LBP structures are significantly

different from each other. For each patch, the intrinsic image characteristic is

different, and hence a different LBP structure is needed.

Figure 4: The learned LBP structures for the first trial of 21-land-use dataset.

Then, LBP histograms are generated using these 8-bit patch-wise LBP struc-

tures. The concatenated feature vector of 31 patches is of size 256× 31 = 7936.

To derive a compact feature representation, PCA is applied on each patch to

reduce the dimensionality from 256 to 50. Image statistics are shown helpful for

scene recognition [8], and hence included as features. For CENTRIST, different

weights are assigned to features of different pyramid levels. In our experiments,

we use w0 = 2.4, w1 = 1.2, w2 = 1 for level 0, 1, 2, respectively.

The proposed approach is also compared with Disc3∗
5 LQP [3]. We imple-
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ment Disc3∗
5 LQP according to [3], in which unsupervised k-means algorithm is

used to cluster LBP-histogram bins into visual words and linear SVM is used

for classification. For a fair comparison, we also include the results for Disc3∗
5

LQP using RBF SVM. The results of other state-of-the-art approaches are also

included in Table 3, such as spatial pyramid co-occurrence kernel (SPCK) [48],

extended SPCK (SPCK+) [48], second extended SPCK (SPCK++) [48] and

randomized-spatial-partition-based classifier via boosting (BRSP) [55].

Table 3: Comparisons with the state of the art on the 21-land-use dataset for scene recognition.

Method Recognition Rate

SPCK [48] 73.1%

SPCK+ [48] 76.1%

SPCK++ [48] 77.3%

BRSP [55] 77.8%

CENTRIST [8] 85.9%

Disc3∗
5 LQP Linear SVM [3] 83.0%

Disc3∗
5 LQP RBF SVM [3] 85.6%

Proposed approach with MmCMI 87.4%

Proposed approach with MCMI 88.2%

The proposed approach extracts features in the same 5 × 5 neighborhood,

whereas it outperforms Disc3∗
5 LQP by 2.6%. It demonstrates the advantages

of the proposed approach over directly extracting features from LBP histogram.

CENTRIST feature achieves a recognition rate of 85.9%. The proposed ap-

proach outperforms it by 2.3%, which shows that the learned LBP structures can

better capture the image characteristics than handcrafted structures. Clearly,

the proposed approach to extract LBP features demonstrates a superior perfor-

mance over others. The confusion matrix of the proposed approach with MCMI

scheme is given in Fig. 5.
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Figure 5: Confusion matrix of the proposed approach with MCMI scheme for the 21-land-use

dataset. Only entries with count at least 3 are shown.

4.4. Scene Recognition on the 8-Event Dataset

The 8-event dataset [56] is composed of eight sport classes. Each class has

137 to 250 high-resolution images (from 800 × 600 to thousands of pixels per

dimension). To capture the image micro-structures at the same scale, we resize

the images so that the minimum image dimension (height or width) is 600 pixels.

We use the same setup as in [8, 55, 56]. For each class, we randomly select 70

images for training and 60 for testing. The experiments are repeated 5 times.

PCA is applied to reduce the dimensionality of LBP histogram from 256 to

40, same as in [8]. The other parameters are the same as for the 21-land-use

dataset.

The learned LBP structures are shown in Fig. 6. These structures are sig-

nificantly different from those in Fig. 4. As the discriminative information for

different applications may not be the same, different LBP structures are needed.

The comparisons with the state of the art are summarized in Table 4. The

baseline algorithm CENTRIST built upon handcrafted LBP structure achieves
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Figure 6: The learned LBP structures for the first trial of 8-event dataset.

a recognition rate of 78.3%. The proposed approach using MCMI scheme signif-

icantly improves it to 84.3%. It also outperforms Disc3∗
5 LQP, which achieves

a recognition rate of 78.9% using linear SVM and 77.8% using RBF SVM. The

confusion matrix of the proposed approach with MCMI scheme is shown in

Fig. 7.

Table 4: Comparison with the state of the art on the 8-event dataset for scene recognition.

Method Recognition Rate

Scene/Object Model + SIFT [56] 73.4%

RSP + Optimal Selection [55] 77.9%

RSP + Boosting [55] 79.6%

CENTRIST [8] 78.3%

Disc3∗
5 LQP linear SVM [3] 78.9%

Disc3∗
5 LQP RBF SVM [3] 77.8%

Proposed approach with MmCMI 83.0%

Proposed approach with MCMI 84.3%

4.5. Face Recognition on the HKPU-NIR Dataset

The Hong Kong Polytechnic University near-infra-red (HKPU-NIR) face

database [57] consists of around 40,000 near-infra-red face images of 335 sub-

jects. We combine the training, gallery and probe subsets of Experiment 1, 2,
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Figure 7: Confusion matrix of the proposed approach with MCMI scheme for the 8-event

dataset. Only entries with count at least 3 are shown.

3 used in [57], which results in a large subset of 7,778 images of 298 subjects.

The images are normalized to 64×64 pixels, the same as in [57]. To reduce illu-

mination variations, the images are photometrically normalized as in [53]. We

randomly choose 80% of images from each subject as the training set and the

rest as the testing set. The experiments are repeated 5 times and the average

performance is reported.

We compare the proposed approach with CENTRIST [8] and LQP [3]. For

a fair comparison with CENTRIST, the same spatial pyramid [8, 51] is utilized.

For the proposed approach, we use 24 neighbors in Fig. 2(a) as potential candi-

dates, and nearest-neighbor classifier with Chi-squared distance (NNC-Chi2D)

for classification. For CENTRIST and LQP, we report the results using linear

SVM, RBF SVM and NNC-Chi2D. The results are summarized in Table 5.

As shown in Table 5, NNC-CHi2D performs the best for CENTRIST and

linear SVM performs the best for LQP. The proposed approach with MCMI

improves the recognition rate by 2.0% compared with CENTRIST + NNC-

Chi2D, and by 2.2% compared with LQP + linear SVM.

4.6. Dynamic Texture Recognition on the DynTex++ Dataset

Dynamic texture is sequences of images of moving scenes that exhibit cer-

tain stationarity properties in time [49, 50]. The dynamics of texture elements

are statistically similar and temporally stationary. The recognition of DT in-
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Table 5: Comparison with the state of the art on the HKPU-NIR face dataset.

Method Recognition Rate

CENTRIST [8], Linear SVM 95.4%

CENTRIST [8], RBF SVM 93.9%

CENTRIST [8], NNC-Chi2D 96.4%

Disc3∗
5 LQP [3], Linear SVM 96.2%

Disc3∗
5 LQP [3], RBF SVM 96.0%

Disc3∗
5 LQP [3], NNC-Chi2D 94.3%

Proposed approach with MmCMI 98.1%

Proposed approach with MCMI 98.4%

volves the analysis of both the spatial appearance of static texture patterns and

temporal variations in appearance.

The DynTex++ dataset proposed in [4] aims to provide a rich benchmark

for DT recognition. It consists of 36 classes of DTs. Each class contains 100

sequences of 50× 50× 50 pixels. It mainly contains tightly cropped sequences.

Thus, we treat each DT sequence as a whole and do not divide it into patches.

We use the same setup as in [4, 50]. For each class, 50 sequences are randomly

chosen as the training set, and the other 50 sequences are used in testing. The

experiments are repeated 5 times and the average performance is reported. We

use 26 binarized pixel differences as potential candidates, as shown in Fig. 2(b).

The learned spatial-temporal LBP structures for the DynTex++ dataset are

shown in Fig. 8. The number indicates the order of the neighbor being selected.

We select up to 16 neighbors. The STLBP structures for 5 trials are fairly

consistent. Specifically, the same model is built for Trial 1, 2, 3 and 5, and the

first 13 neighbors are the same for 5 trials.

There is one free parameter, i.e. the desired number of neighbors m. The

proposed approach is scalable. We could vary m to obtain different LBP struc-

tures according to the requirements on computational complexity and accuracy.
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Figure 8: The learned spatial-temporal LBP structures of the DynTex++ dataset for 5 trials.

The respective LBP structures for different m can be easily derived from Fig. 8.

In contrast, the handcrafted structure is not scalable. It is difficult to define a

consistent rule to build the handcrafted structure for different m. The average

recognition rates over 5 trials vs. m are shown in Fig. 9. The highest recognition

rate is 95.9% when m = 16. The recognition rate does not increase significantly

after m = 10.

Figure 9: The average recognition rate over 5 trials for the proposed approach built using

different number of neighbors.

It is not feasible to enumerate 226 = 67, 108, 864 bins of the LBP histogram

built using all 26 neighbors. This is exactly the case that direct feature se-

lection/extraction from histogram bins is not applicable. Alternatively, we

compare the proposed approach with LBP-TOP [5], in which the large LBP

structure is broken into small ones. In LBP-TOP, LBP features are extracted
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from three orthogonal planes, i.e. XY-plane (spatial LBP), XT-plane and YT-

plane [5]. The feature vectors of three planes are concatenated to form the final

feature vector. We summarize the performance comparisons with the state of

the art in Table 6.

Table 6: Comparison with the state of the art on the DynTex++ DT dataset.

Method Recognition Rate

DL-PEGASOS [4] 63.7%

Dynamic fractal analysis (DFS) [50] 89.9%

LBP-TOP [5] 93.2%

Proposed approach with MmCMI 95.7%

Proposed approach with MCMI 95.9%

We implement and test LBP-TOP on the Dyntex++ dataset, which achieves

a recognition rate of 93.2%. The proposed approach with MCMI scheme im-

proves the recognition rate to 95.9%, which demonstrates a superior performance

to other approaches.

4.7. Dynamic Texture Recognition on the UCLA Database

The UCLA dynamic texture database [58, 59] has been widely used as a

benchmark dataset for DT categorization [4, 50, 60, 61]. It consists of 50 classes

of DTs, each with 4 sequences captured from different viewpoints. There are

several breakdowns when evaluating the dataset [50]. Among them, we choose

the following three representative settings:

50-Class: This is the original setting for the UCLA dataset. 4-fold cross-

validation is used. The average recognition rate over 4 trials is reported. It is

rather a simple setting and a recognition rate of 100% is achieved in [50].

9-Class: Those 50 classes can be clustered to 9 classes by combining the se-

quences of different viewpoints. We use the same experimental settings as

in [4, 50]. We randomly choose half of the dataset as the training set and

the other half as the testing set. The experiments are repeated 10 times and

25



the average recognition rate is reported. This setting is challenging and used to

evaluate DT recognition under viewpoint changes.

Shift-invariant Recognition(SIR)-class: In [61], each original sequence is

spatially partitioned into non-overlapping left and right halves and 400 se-

quences are obtained. The “shift-invariant recognition” [61] was implemented to

compare the sequences only between halves to test the shift-invariant property.

This setting is very challenging. Thus, in general rank-5 recognition rate was

reported [50, 61]. 1

We try different ways to divide DTs into patches. The best performance

is achieved using the following settings: for 50-class and SIR, we divide DTs

along time axis into two patches of equal size; for 9-class, we spatially divide

the sequences into 3 × 3 patches. We use the same potential candidates as

shown in Fig. 2(b). As the number of training samples is limited, to avoid

over-fitting we train one 12-neighbor STLBP structure for all patches. Nearest-

neighbor classifier with Chi-squared distance is utilized. The proposed approach

is compared with published methods in literature [4, 50, 61], as well as LBP-

TOP [5] built upon handcrafted structures. The results are summarized in

Table 7.

Compared with previous results [4, 50, 61] in literature, the proposed ap-

proach demonstrates a superior performance. On 9-class setting, it reduces the

error rate from 2.5% to 1.6%. On the most challenging SIR setting, it improves

the recognition rate from 73.8% to 94.5%. Compared with LBP-TOP [5], the

proposed approach achieves a much better performance on 50-class and 9-class

setting, and a slightly better performance on SIR setting. The performance

of LBP-TOP on SIR setting is also significantly better than previous results.

This is partially because LBP-TOP feature is less affected by shift operation,

especially the LBP histograms extracted from XT-plane and YT-plane.

1If among top-5 matches there is at least one gallery sample with the same label as the

probe sample’s, it is counted as a successful recognition. The recognition rate calculated in

this way is rank-5 recognition rate.
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Table 7: Comparison with the state of the art on the UCLA DT dataset for 50-class, 9-class

and SIR settings.

Method 50-Class 9-Class SIR

Distributed spacetime orientation [61] 81.0% - 60.0%

DL-PEGASOS[4] 99.0% 95.6% -

DFS [50] 100.0% 97.5% 73.8%

LBP-TOP [5] 87.5% 85.8% 93.8%

Proposed approach with MmCMI 99.5% 98.4% 92.3%

Proposed approach with MCMI 100.0% 98.4% 94.5%

4.8. Analysis of Computational Complexity

We analyze the computational complexity in both off-line training stage

and online testing stage. In the training stage, compared with handcrafted

LBP/LTP, we need an additional step to estimate the conditional mutual infor-

mation I(xi; c|xj) in order to determine the LBP structure. To derive I(xi; c|xj),

we need to estimate the joint probability mass function (PMF) p(xi, xj , c).

When incremental search is utilized, we need to estimate roughly n(m − 1)

such PMFs, in which xi, xj are binary. Each PMF corresponds to a histogram

of 4Nc bins, where Nc is the number of classes. The computational complexity is

O(mnNc). Two points are worth to mention. Firstly, we only need to store the

estimated histogram of a class, but not histograms of all samples in this class.

Thus, much less memory is required, which is particularly important when deal-

ing with a large-scale database. Secondly, the computational complexity grows

linearly with the number of candidates n and the desired number of neighbors

m. In general, we expect m ≤ 24 for binary encoding and m ≤ 16 for ternary

encoding. Thus, ideally we could utilize a large number of potential candidates,

and hence deal with high-dimensional LBP features. For those applications we

tested, we find that n = 24 for spatial LBP and n = 26 for spatial-temporal

LBP yield a satisfactory performance. In the testing stage, the LBP structures
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derived in the training stage can be used in the same way as handcrafted ones.

The training and testing time of different algorithms is summarized in Ta-

ble 8. The 21-land-use dataset has 1680 training images and 420 testing images

of size 256 × 256 pixels, whereas the HKPU-NIR dataset has 6097 training

images and 1681 testing images of size 64 × 64 pixels. We report the testing

time using RBF SVM on the 21-land-use dataset and using NNC-Chi2D on

the HKPU-NIR dataset. In our experiment, we use Matlab 2013a on Intel(R)

Core(TM) i7-3930K CPU @ 3.20 GHz with 16Gb memory.

Table 8: Comparisons of time consumption for CENTRIST, Disc3∗
5

LQP and the proposed

approach on the 21-land-use dataset and the HKPU-NIR dataset.

Method 21-land-use HKPU-NIR

Training

(s)

Testing (s) Training

(s)

Testing (s)

CENTRIST [8] 65.7 18.6 109.6 109.2

Disc3∗
5 LQP [3] 4779.5 53.3 1747.3 465.7

Proposed approach 1417.7 38.9 1535.5 604.1

CENTRIST [8] utilizes handcrafted structures, which can be viewed as the

baseline for time comparison. The proposed approach needs additional time to

derive the LBP structures. Even so, the extra time required is still reasonable.

We also include the time cost of LQP for reference. We use FKMEANS pack-

age [62] for k-means clustering of LQP. It can be seen that both sample size and

image size affect the training time. Although the HKPU-NIR dataset has about

4 times of training samples of the 21-land-use dataset, the training time does

not significantly increase for the proposed approach. The testing time is much

less than the training time, particularly when SVM is used for classification.

5. Conclusion

In general, LBP features using more bits improve the performance, at the

cost of high feature dimensionality. The dimensionality easily goes beyond the
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capability of approaches that directly extract features from the histogram bins

as it increases exponentially with the number of LBP bits. Alternatively, the

large structure was broken into small handcrafted ones. However, handcrafted

LBP may not be optimal. Instead, we learn discriminative LBP structures from

image and video data. The LBP structure learning is casted as a point-selection

problem, where the optimal subset of neighboring pixels rather than histogram

bins are selected. Due to the high dependency among image pixels in a local

neighborhood, existing feature-selection algorithms may not be suitable in our

scenario. We thus propose a novel feature-selection method by approximating

the high-order mutual information with a set of low-order conditional mutual

information, and achieving Max-Dependency via maximizing the approximated

one. As shown in the experiments, our proposed incremental MCMI scheme

can well solve the LBP-structure-learning problem. Moreover, the proposed

approach is readily incorporated to spatial pyramid framework that can bet-

ter capture the intrinsic characteristics of image patches at different locations

and scales. The proposed approach outperforms the state-of-the-art solutions

to scene and dynamic texture recognition significantly on several benchmark

datasets.
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