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Introduction

In early 2006 I became interested in the 
theory and applications of DDS (Direct 
Digital Synthesis), leading me to some ex-
periments using Analog Devices ICs to bet-
ter understand and evaluate this technology. 
Later on, during one of the usual Web-surfing 
sessions intended to find out something new 
to try out with the radio waves, I got in touch 
with the world of QRSS.

I knew little about these very narrow 
bandwidth modes, and I was convinced they 
were only used on the VLF bands. What I 
found on the Internet changed my vision 
about that, thanks to the contribution of a 
bunch of fellow hams belonging to a group 
called “The QRSS Knights.” 

These hams are active worldwide and 
they share a common interest: to break the 
micro-watt per mile record, renewing on a 
daily basis the challenge of being heard at the 
longest distance with the lowest power. 

Most interestingly, a good part of the 
experimentation is done on the 30 m band, at 
about 10,140 kHz. This makes it accessible 
with the standard equipment and antennas an 
average ham usually owns (some traffic is done 
on 40 m, too, for an even wider audience).

What Is QRSS? 

The term QRSS is derived from QRS — a 
CW abbreviation that means “You are send-
ing too fast” or “Slow down.” By extension, 
then, QRSS would imply a very slow sending 
speed. Another interpretation is that QRSS 
stands for “quasi-random signal source.” 

This definition has to do with the very long 
dot and dash times. 

There is a lot of information on the Inter-
net about QRSS. One interesting and infor-
mative article is at www.ussc.com/~turner/
qrss1.html.

Operating QRSS

Even though a commercial radio can be 
used to operate QRSS and related modes, 
usually the QRSS gear is home built, either 
on the basis of an existing project or starting 
from scratch, and the whole story works 
more or less like this: you build your QRSS/
DFCW/FSKCW (more on these terms later) 
capable beacon, and put it on the air, possibly 
letting the fellow Knights know you’re on 
the air. (There is a very active mailing list 
for this purpose: mail.cnts.be/pipermail/
knightsqrss_cnts.be.)

The enthusiasm and participation on the 
list was so exciting that I decided to build my 
own beacon as well, and I couldn’t think of a 
better way to put my recently acquired DDS 
knowledge to work.

Later on you will start receiving reports, 
but do not expect an RST report — a report 
is usually an e-mail or a posting onto the list, 
with a screen shot attached. This depends on 
the fact that, because of the very low power 
involved, the signal is not usually heard; it 
is buried in the noise. Given the very slow 
cadence of symbols, though, it is possible 
for some DSP enabled software to integrate 
over time and show the carrier on a frequency 
waterfall screen, much like the one we use 
with PSK31. One of the most-used programs 
for receiving QRSS is Argo (freely available 
on the Internet at digilander.libero.it/i2phd/
argo/index.html). Even though this software 
has been developed with QRSS decoding in 

mind, it works perfectly with the other modes 
as well, as they are small variations on the 
main theme.

A Brief Guide to Narrow Bandwidth 
Modes

QRSS mode is 100% good old CW, only 
very, very slow; so slow that one dot is usually 
3 to 120 seconds long! Considering that the 
dashes and spaces are in the usual relation-
ship with the dot, you can easily imagine 
how long it takes to send a simple word! 
FSKCW and DFCW are instead 100% duty 
emission modes, as the transmitter never 
stops transmitting a carrier: FSKCW is quite 
similar to CW, the only difference being 
that keying is not off during the pauses but 
it’s just shifted down a few hertz. Suppose 
you’re transmitting on 10,140,080 Hz, in 
FSKCW. You have to shift your frequency to 
10,140,070 Hz during the pauses. DFCW is 
quite different: dots and dashes in this mode 
have the same duration, and the difference is 
made by the frequency of the carrier. Referring 
to the previous example, you will transmit 
your dashes on 10,140,080 Hz and your dots 
on 10,140,070 Hz. This is the most efficient 
of the three, as it takes the smallest time to 
transmit a message. It’s also a bit awkward to 
recognize at a glance, as we are used to seeing 
dashes always much longer than dots.

Graphically speaking, QRSS will show 
up on Argo or any equivalent software as a 
brighter line over the blue noise background; 
the line will be dashed, with the long marks 
corresponding to dashes and short ones cor-
responding to dots. The blanks will obviously 
be the pauses. FSKCW looks more like a 
square view, with the top line of the signal 
representing dots and dashes as in QRSS, and 
the bottom line the pauses. Finally, DFCW 
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looks like a square wave with 50% duty cycle, 
the dashes being on the top line of the signal 
and the dots on the bottom.

The Project

The most basic device to get on the air with 
QRSS is a crystal based oscillator followed 
by a buffer and a final amplifier. You want an 
output power that doesn’t exceed half a watt 
most of the time (100 mW is the most common 
power). This allows for very simple circuit 
solutions and cheap components, but on the 
other hand there is a critical requirement — 
frequency stability. QRSS and similar modes 
are extremely narrow band, allowing many 
signals to be stacked close in the same 100 Hz 
frequency span (the range monitored by Argo). 
In such a condition it is very important to avoid 
as much drift as possible. This goal is normally 

Figure 1 — This schematic diagram shows PIC controller module portion of the project.

achieved using heated crystals and thermally 
stable enclosures for the VFO module. Let’s 
see how a DDS will behave.

The approach I have used with this project 
was to think modular, and to design each 
module so that it could be reused in a number 
of different contexts from the original project, 
as an elementary building block for something 
more complex. According to this model, I 
have identified three modules: the DDS mod-
ule (responsible for signal synthesis), the CPU 
control module and the amplifier module.

Choosing Module Cores

When it comes to DDS, there’s a huge 
choice on the market today. The most mod-
ern devices are out of reach for the casual 
experimenter anyway, mainly because of 
the package that makes them unsolderable 

by means of a simple iron. Luckily enough, 
Analog Devices makes a device that perfectly 
fits the needs at HF and low VHF bands 
— the AD9851. It’s not exactly what you can 
consider easy soldering, having a pin to pin 
distance of 0.6 mm, but with some patience, 
a magnifying glass and a good low power 
iron it is possible to work it out. 

This small wonder can be clocked at a 
maximum of 180 MHz, thus allowing synthe-
sis of a sinusoidal signal up to 90 MHz for the 
Nyquist Theorem limit. (As a matter of fact 
you will want to limit synthesis to one third 
of the clock frequency, or 60 MHz, because of 
hardware limitations over theory.) The other 
interesting aspect of this chip is that it needs 
just one voltage (2.7 to 5.5 V) for operation, 
while some of the more powerful and modern 
solutions require different voltages for I/O 
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Figure 3 — The DDS output signal 
waveform is displayed on the oscilloscope 
CRT.

Figure 4 — This 
schematic 
diagram gives 
the class A MMIC 
amplifier circuit.

and core (as happens in computer processors). 
Ease of use, together with the advantages de-
scribed above make this device very popular 
among Amateur Radio experimenters.

The choice of the microprocessor couldn’t 
be easier: requirements are to control the 
device, drive some human readable interface 
(LCD) and manage input of commands. The 
PIC16F628 was chosen for this task, because 
it is small, versatile and abundant in my 
component box.1

The CPU Module

There’s really nothing special about the 
CPU module, with the possible exception of 
the serial interface. In this case, rather than 
using an ad-hoc device for doing CMOS to 
RS232 level conversion, I have used two 
transistors and a bunch of resistors to obtain 
a similar result. Even though this way the 
transmitted signal is going to be in the range 
0 to 12 V and not bipolar (–12 / +12 V) as 
RS232 specification dictates, I have never 
found a computer serial input that got con-
fused and garbled the serial stream.

The crystal frequency for clocking the 
CPU is not critical at all; you can choose 

any frequency in the range of 4 to 20 MHz 
for the 16F628. 

Of the 13 bits available as inputs or out-
puts on the CPU, six are used for LCD control 
(I used a Hitachi HD44780 compatible LCD 
module) and four for DDS control, while 
three ports are still free for custom uses. In 
order to achieve the minimum number of 
wires around, a four bit control mode has 
been chosen for LCD and serial control mode 
for the DDS; that way only seven wires are 
required to control the LCD and four for 
the DDS.

The schematic diagram of this module is 
shown in Figure 1. 

1The PIC controller hex program file for this 
project is available for download from the 
QEX Web site at www.arrl.org/qexfiles. 
Look for the file 9x07_Campanella.zip.
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Figure 2 — The direct digital 
synthesizer (DDS) module 
is given in this schematic 
diagram.

about the correct use and placement of decou-
pling capacitors near the power supply pins 
are very precise and peremptory on the DDS 
datasheet. In order to achieve the best spectral 
purity of the synthesized signal, there are sepa-
rate pins for analog and digital power supplies 
for the internal circuitry. C12, L4, L5, C14 and 
C13 are aimed at this purpose, and there is a 
dedicated 0.10 µF capacitor for every analog 
power supply pin (C1 to C4). See Figure 2.

The AD9851 can be clocked either by pro-
viding the right final clock frequency or by us-
ing the internal 6× multiplier. The latter choice 
is to be preferred for non critical applications, 
as it dramatically reduces the cost, considering 
that a 30 MHz computer grade oscillator costs 
much less than a 180 MHz one. (Actually, 
surplus computer cards are good sources of 
24 MHz oscillators.) I am personally using a 
25 MHz oscillator, thus limiting my theoretical 
maximum output frequency to 50 MHz (rather 
than the maximum obtainable 60 MHz).

The output of the DDS chip is balanced, 
and it is a current output; this means that IOUT 
is “pushing” current out of the chip while IOUTB 
is pulling current into the chip. Balanced out-
puts are really useful for cancelling common 
mode noise, supposing that the noise is equally 
induced on the two wires — as the difference 
between the two signals is considered — the 
same-sign components simply cancel out. Giv-
en the balanced output, two solutions are pos-
sible: one uses a center tapped 1:1 transformer 
to couple the IOUT and IOUTB outputs into a single 
output, while the other terminates IOUT and IOUTB 
to the same resistive load, capacitively coupling 
IOUT to the output connector. 

The first has the advantage of pushing out 
some more power and being quite immune to 
common mode noise; the second is less expen-
sive and gives a flatter response over the whole 
device frequency range, at the expense of less 
output power. This is due to the fact that, no 
matter how broadband a transformer is, it will 
be difficult to obtain a frequency response that 
is as flat as that of a chip capacitor, especially 
at low frequencies, where the transformer ef-
ficiency degrades dramatically. I tested both 
solutions, and in the end I chose the capaci-
tive coupling because I plan to use the same 
module for experiments at the IF as well, not 
to mention the reduced costs implied.

In order to eliminate aliases from the output 
signal, the last stage is a low pass filter with 
a cut-off frequency of about 50 MHz. Some 
applications are based on the ability of a DDS 
to produce aliases, so an unfiltered output 
could come in handy sooner or later — that’s 
what you get from the IOUTB circuitry. The im-
portant thing to remember is that the unused 
output must be terminated in 50 Ω for a correct 
operation of the device. The schematics show 
the DDS with the unfiltered output terminated, 
supposing you’re going to use the filtered out-
put to connect the power amplifier.

The output current, and therefore the out-
put power, is dependent on the value of R1, 
because, according to the datasheet, it is given 
by 39.93 divided by R1, and it cannot be big-
ger than 20 mA. The given value of R1, 2 kΩ, 
is set for maximum output current. It could be 
a good idea to place a variable resistor in series 
with R1, so that the output power can be fine 
tuned to give the final amplifier the correct 
input power. R1 alone gives about 1 Vpp on 
a 50 Ω load, or 4 dBm. A good practice is to 
keep the maximum output current near 10 mA, 
rather than to the rated maximum. This value 
is obtained using an R1 of 4 kΩ, and it gives 
an output power of –2 dBm on 50 Ω.

Figure 3 shows the output of the DDS 
modules tuned at 10,140,080 Hz.

The Amplifier Module

The amplifier is the most “independent” 
part of this project, because you can use any 
power amplifier to get on the air, just taking 
into account that it has to accept an input sig-
nal at –2 dBm, and be able to provide 10 to 
27 dBm (10 mW to 500 mW) output for QRSS 
activity. I built three different amplifier mod-
ules. The first one was based on MMIC ampli-
fiers, the second on a 2N2259 transistor and the 
third on a bunch of 2N2222 transistors. 

The MMIC amplifier is a two stage class 
A amplifier, based on a MiniCircuits MAR-
4, and provides a power gain of 16 dB (each 
device is capable of 8 dB power gain). The 
third harmonic is well below 35 dB, and at 
these output levels a low pass filter after the 
amplifier is not really needed. Figure 4 is 
the schematic diagram of this amplifier. 
Figure 5 shows my circuit board. There is 
a limitation with this solution though: the 
maximum output of a MAR-4 device is 
12.5 dBm, and this limits the maximum pos-
sible input to –3.5 dBm. This is not really a 
problem if you adopted the variable resistor 
in series with R1, as mentioned earlier.

The 2N2259 solution is a very simple 
power amplifier in class AB configuration, 
using a multiturn variable resistor to provide 
the correct bias to the base-emitter junction of 
the transistor. A low pass filter at the output 
of this circuit is mandatory because of the 
working class. An output power of about 
100 mW is easily obtained with this solution. 
The transistor can reach quite high tempera-
tures, so you will have to use a heat sink. 
Figure 6 shows my construction for this am-
plifier version. I haven’t provided a schematic 
diagram because there was nothing special 
about the construction or operation of this 
amplifier.

The last amplifier I tried is based on a 
design that I found on the Internet, and is 
part of an all 2N2222 transceiver that K8IQY 
designed to attend (and win) the 1997 NorCal 
QRP Club building contest. It does not need 
any active devices except a couple of diodes 

Figure 6 — This photo shows the 2N2259 
transistor amplifier.

Figure 5 — Here is a photo of the MMIC 
amplifier construction.

The DDS Module

This is the “trickier” module of the project, 
because it has a mixed nature of both analog 
and digital circuits. The recommendations 
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and a bunch of 2N2222 transistors. (Actually, 
I used a 2N2219 transistor for the final stage. 
That is a somewhat more rugged version of the 
2N2222.) It produces 2 W at 7 MHz. The only 
thing I had to redesign was the output low pass 
filter, because I chose to use this amplifier on 
30 m. The details of this interesting project 
are at www.k8iqy.com/qrprigs/2n240/
2n240page.html and the schematics are 
available at www.k8iqy.com/qrprigs/2n240/
2n2sche.html. Figure 7 is a picture of the 
amplifier I built from this design.

As I mentioned earlier, any power ampli-
fier that is able to take a –2 dBm input signal 
is perfectly suitable.

Figure 8 shows the prototype assembly of 
the DDS board, Control board and LCD.

The Firmware

The firmware of the beacon implements 
three narrow bandwidth modes (QRSS, DFCW, 
FSKCW) plus standard CW, serial communica-
tion to a computer for calibration, mode/speed 
selection and a way to enter beacon text. The 
mode and frequency are displayed on a Hitachi 
HD44780 compatible LCD. The text shown 

Figure 7 — This amplifier uses 2N2222 
transistors to produce about 2 W of output 
power on the 40 m band. 

Figure 8 — Here is the combined PIC control module with LCD 
and the DDS module ready for testing.

Figure 9 — With power applied, the LCD shows the operating 
mode (FSK CW), sending speed ((03) and the operating 
frequency (10,140,080 Hz).

on the LCD, visible in Figure 9, indicates the 
mode (FSKCW in the example), the speed (03), 
and the frequency in hertz (10,140,080).

The serial port is always checked by the 
PIC processor during operation, so that com-
mands can be sent to the beacon all the time; 
port setup is 57600,n,8,1. Valid commands 
are letters, as indicated in the following list.
1) q — switches to QRSS mode;
2) d — switches to DFCW mode;
3) f — switches to FSKCW mode;
4) c — switches to CW mode (fixed 
 16 wpm);
5) 1 — switches to speed 10;
6) 3 — switches to speed 3;
7) 6 — switches to speed 6;
8) a — increases frequency offset by 1 Hz;
9) z — decreases frequency offset by 1 Hz;
10) s — increases carrier frequency by 

 10 Hz;
11) x — decreases carrier frequency by 

 10 Hz;
12) h — increases calibration factor by 1;
13) n — decreases calibration factor by 1;
14) m — enables beacon message input;
15) r — resets device.

An echo is sent on the serial line for any 
key pressed, in order to give the user some 
sort of feedback.

Upon switching the unit on, if any digit 
is typed on the keyboard of a computer con-
nected to the device, it enters the frequency 
programming mode, and expects a total of 8 
digits (including the first one) that are the digits 
of the new frequency you want your beacon 
to operate on. The useful time frame during 
which the first digit is accepted is shown both 
on the serial line and LCD display by a “>.”

Any variations to the settings are saved in 
the PIC flash memory, so the device will keep 
settings through resets or on/off cycles.

A calibration factor is used to fine tune the 

output frequency, in order to compensate for 
small errors in the clock nominal frequency. 
Since calibration is saved on flash memory, 
calibration is a once in a while operation.

I will offer programmed PICs for $15 US, 
plus shipping charges. I can also make the 
PIC source code available for $20 US. I will 
accept payment by PayPal.

Conclusions

Even if not aimed at the assembly of a 
QRSS beacon, the solutions presented in this 
article are well suited for reuse wherever a 
direct radio frequency synthesizer is needed. 
Considering the spectral purity of the generated 
signal, as well as the incredibly small tuning 
step DDS are capable of, only your imagination 
will limit the possible applications. One future 
extension of this project will be to connect a 
DAC to the output current calibration pin, in 
order to make the output current vary accord-
ing to some input signal. We’re talking about 
amplitude modulation here! If you’re rather in-
terested in discrete frequency modulation (such 
as FSK), no additional hardware is needed. It 
will just take some CPU reprogramming. 
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