
24 Sep/Oct 2007

Introduction

In early 2006 I became interested in the
theory and applications of DDS (Direct
Digital Synthesis), leading me to some ex-
periments using Analog Devices ICs to bet-
ter understand and evaluate this technology.
Later on, during one of the usual Web-surfing
sessions intended to find out something new
to try out with the radio waves, I got in touch
with the world of QRSS.

I knew little about these very narrow
bandwidth modes, and I was convinced they
were only used on the VLF bands. What I
found on the Internet changed my vision
about that, thanks to the contribution of a
bunch of fellow hams belonging to a group
called “The QRSS Knights.”

These hams are active worldwide and
they share a common interest: to break the
micro-watt per mile record, renewing on a
daily basis the challenge of being heard at the
longest distance with the lowest power.

Most interestingly, a good part of the
experimentation is done on the 30 m band, at
about 10,140 kHz. This makes it accessible
with the standard equipment and antennas an
average ham usually owns (some traffic is done
on 40 m, too, for an even wider audience).

What Is QRSS?

The term QRSS is derived from QRS — a
CW abbreviation that means “You are send-
ing too fast” or “Slow down.” By extension,
then, QRSS would imply a very slow sending
speed. Another interpretation is that QRSS
stands for “quasi-random signal source.”

This definition has to do with the very long
dot and dash times.

There is a lot of information on the Inter-
net about QRSS. One interesting and infor-
mative article is at www.ussc.com/~turner/
qrss1.html.

Operating QRSS

Even though a commercial radio can be
used to operate QRSS and related modes,
usually the QRSS gear is home built, either
on the basis of an existing project or starting
from scratch, and the whole story works
more or less like this: you build your QRSS/
DFCW/FSKCW (more on these terms later)
capable beacon, and put it on the air, possibly
letting the fellow Knights know you’re on
the air. (There is a very active mailing list
for this purpose: mail.cnts.be/pipermail/
knightsqrss_cnts.be.)

The enthusiasm and participation on the
list was so exciting that I decided to build my
own beacon as well, and I couldn’t think of a
better way to put my recently acquired DDS
knowledge to work.

Later on you will start receiving reports,
but do not expect an RST report — a report
is usually an e-mail or a posting onto the list,
with a screen shot attached. This depends on
the fact that, because of the very low power
involved, the signal is not usually heard; it
is buried in the noise. Given the very slow
cadence of symbols, though, it is possible
for some DSP enabled software to integrate
over time and show the carrier on a frequency
waterfall screen, much like the one we use
with PSK31. One of the most-used programs
for receiving QRSS is Argo (freely available
on the Internet at digilander.libero.it/i2phd/
argo/index.html). Even though this software
has been developed with QRSS decoding in

mind, it works perfectly with the other modes
as well, as they are small variations on the
main theme.

A Brief Guide to Narrow Bandwidth
Modes

QRSS mode is 100% good old CW, only
very, very slow; so slow that one dot is usually
3 to 120 seconds long! Considering that the
dashes and spaces are in the usual relation-
ship with the dot, you can easily imagine
how long it takes to send a simple word!
FSKCW and DFCW are instead 100% duty
emission modes, as the transmitter never
stops transmitting a carrier: FSKCW is quite
similar to CW, the only difference being
that keying is not off during the pauses but
it’s just shifted down a few hertz. Suppose
you’re transmitting on 10,140,080 Hz, in
FSKCW. You have to shift your frequency to
10,140,070 Hz during the pauses. DFCW is
quite different: dots and dashes in this mode
have the same duration, and the difference is
made by the frequency of the carrier. Referring
to the previous example, you will transmit
your dashes on 10,140,080 Hz and your dots
on 10,140,070 Hz. This is the most efficient
of the three, as it takes the smallest time to
transmit a message. It’s also a bit awkward to
recognize at a glance, as we are used to seeing
dashes always much longer than dots.

Graphically speaking, QRSS will show
up on Argo or any equivalent software as a
brighter line over the blue noise background;
the line will be dashed, with the long marks
corresponding to dashes and short ones cor-
responding to dots. The blanks will obviously
be the pauses. FSKCW looks more like a
square view, with the top line of the signal
representing dots and dashes as in QRSS, and
the bottom line the pauses. Finally, DFCW

A DDS Based QRSS
(and CW) Beacon

Matteo Campanella, IZ2EEQ

While experimenting with a DDS IC, the author added a PIC
controller and QRP amplifier to create a really slow speed CW
beacon.

SS Dei Giovi, 41/A
Binasco, Italy 20082
iz2eeq@arrl.net

 Sep/Oct 2007 25

looks like a square wave with 50% duty cycle,
the dashes being on the top line of the signal
and the dots on the bottom.

The Project

The most basic device to get on the air with
QRSS is a crystal based oscillator followed
by a buffer and a final amplifier. You want an
output power that doesn’t exceed half a watt
most of the time (100 mW is the most common
power). This allows for very simple circuit
solutions and cheap components, but on the
other hand there is a critical requirement —
frequency stability. QRSS and similar modes
are extremely narrow band, allowing many
signals to be stacked close in the same 100 Hz
frequency span (the range monitored by Argo).
In such a condition it is very important to avoid
as much drift as possible. This goal is normally

Figure 1 — This schematic diagram shows PIC controller module portion of the project.

achieved using heated crystals and thermally
stable enclosures for the VFO module. Let’s
see how a DDS will behave.

The approach I have used with this project
was to think modular, and to design each
module so that it could be reused in a number
of different contexts from the original project,
as an elementary building block for something
more complex. According to this model, I
have identified three modules: the DDS mod-
ule (responsible for signal synthesis), the CPU
control module and the amplifier module.

Choosing Module Cores

When it comes to DDS, there’s a huge
choice on the market today. The most mod-
ern devices are out of reach for the casual
experimenter anyway, mainly because of
the package that makes them unsolderable

by means of a simple iron. Luckily enough,
Analog Devices makes a device that perfectly
fits the needs at HF and low VHF bands
— the AD9851. It’s not exactly what you can
consider easy soldering, having a pin to pin
distance of 0.6 mm, but with some patience,
a magnifying glass and a good low power
iron it is possible to work it out.

This small wonder can be clocked at a
maximum of 180 MHz, thus allowing synthe-
sis of a sinusoidal signal up to 90 MHz for the
Nyquist Theorem limit. (As a matter of fact
you will want to limit synthesis to one third
of the clock frequency, or 60 MHz, because of
hardware limitations over theory.) The other
interesting aspect of this chip is that it needs
just one voltage (2.7 to 5.5 V) for operation,
while some of the more powerful and modern
solutions require different voltages for I/O

26 Sep/Oct 2007

Figure 3 — The DDS output signal
waveform is displayed on the oscilloscope
CRT.

Figure 4 — This
schematic
diagram gives
the class A MMIC
amplifier circuit.

and core (as happens in computer processors).
Ease of use, together with the advantages de-
scribed above make this device very popular
among Amateur Radio experimenters.

The choice of the microprocessor couldn’t
be easier: requirements are to control the
device, drive some human readable interface
(LCD) and manage input of commands. The
PIC16F628 was chosen for this task, because
it is small, versatile and abundant in my
component box.1

The CPU Module

There’s really nothing special about the
CPU module, with the possible exception of
the serial interface. In this case, rather than
using an ad-hoc device for doing CMOS to
RS232 level conversion, I have used two
transistors and a bunch of resistors to obtain
a similar result. Even though this way the
transmitted signal is going to be in the range
0 to 12 V and not bipolar (–12 / +12 V) as
RS232 specification dictates, I have never
found a computer serial input that got con-
fused and garbled the serial stream.

The crystal frequency for clocking the
CPU is not critical at all; you can choose

any frequency in the range of 4 to 20 MHz
for the 16F628.

Of the 13 bits available as inputs or out-
puts on the CPU, six are used for LCD control
(I used a Hitachi HD44780 compatible LCD
module) and four for DDS control, while
three ports are still free for custom uses. In
order to achieve the minimum number of
wires around, a four bit control mode has
been chosen for LCD and serial control mode
for the DDS; that way only seven wires are
required to control the LCD and four for
the DDS.

The schematic diagram of this module is
shown in Figure 1.

1The PIC controller hex program file for this
project is available for download from the
QEX Web site at www.arrl.org/qexfiles.
Look for the file 9x07_Campanella.zip.

 Sep/Oct 2007 27

Figure 2 — The direct digital
synthesizer (DDS) module
is given in this schematic
diagram.

about the correct use and placement of decou-
pling capacitors near the power supply pins
are very precise and peremptory on the DDS
datasheet. In order to achieve the best spectral
purity of the synthesized signal, there are sepa-
rate pins for analog and digital power supplies
for the internal circuitry. C12, L4, L5, C14 and
C13 are aimed at this purpose, and there is a
dedicated 0.10 µF capacitor for every analog
power supply pin (C1 to C4). See Figure 2.

The AD9851 can be clocked either by pro-
viding the right final clock frequency or by us-
ing the internal 6× multiplier. The latter choice
is to be preferred for non critical applications,
as it dramatically reduces the cost, considering
that a 30 MHz computer grade oscillator costs
much less than a 180 MHz one. (Actually,
surplus computer cards are good sources of
24 MHz oscillators.) I am personally using a
25 MHz oscillator, thus limiting my theoretical
maximum output frequency to 50 MHz (rather
than the maximum obtainable 60 MHz).

The output of the DDS chip is balanced,
and it is a current output; this means that IOUT
is “pushing” current out of the chip while IOUTB
is pulling current into the chip. Balanced out-
puts are really useful for cancelling common
mode noise, supposing that the noise is equally
induced on the two wires — as the difference
between the two signals is considered — the
same-sign components simply cancel out. Giv-
en the balanced output, two solutions are pos-
sible: one uses a center tapped 1:1 transformer
to couple the IOUT and IOUTB outputs into a single
output, while the other terminates IOUT and IOUTB
to the same resistive load, capacitively coupling
IOUT to the output connector.

The first has the advantage of pushing out
some more power and being quite immune to
common mode noise; the second is less expen-
sive and gives a flatter response over the whole
device frequency range, at the expense of less
output power. This is due to the fact that, no
matter how broadband a transformer is, it will
be difficult to obtain a frequency response that
is as flat as that of a chip capacitor, especially
at low frequencies, where the transformer ef-
ficiency degrades dramatically. I tested both
solutions, and in the end I chose the capaci-
tive coupling because I plan to use the same
module for experiments at the IF as well, not
to mention the reduced costs implied.

In order to eliminate aliases from the output
signal, the last stage is a low pass filter with
a cut-off frequency of about 50 MHz. Some
applications are based on the ability of a DDS
to produce aliases, so an unfiltered output
could come in handy sooner or later — that’s
what you get from the IOUTB circuitry. The im-
portant thing to remember is that the unused
output must be terminated in 50 Ω for a correct
operation of the device. The schematics show
the DDS with the unfiltered output terminated,
supposing you’re going to use the filtered out-
put to connect the power amplifier.

The output current, and therefore the out-
put power, is dependent on the value of R1,
because, according to the datasheet, it is given
by 39.93 divided by R1, and it cannot be big-
ger than 20 mA. The given value of R1, 2 kΩ,
is set for maximum output current. It could be
a good idea to place a variable resistor in series
with R1, so that the output power can be fine
tuned to give the final amplifier the correct
input power. R1 alone gives about 1 Vpp on
a 50 Ω load, or 4 dBm. A good practice is to
keep the maximum output current near 10 mA,
rather than to the rated maximum. This value
is obtained using an R1 of 4 kΩ, and it gives
an output power of –2 dBm on 50 Ω.

Figure 3 shows the output of the DDS
modules tuned at 10,140,080 Hz.

The Amplifier Module

The amplifier is the most “independent”
part of this project, because you can use any
power amplifier to get on the air, just taking
into account that it has to accept an input sig-
nal at –2 dBm, and be able to provide 10 to
27 dBm (10 mW to 500 mW) output for QRSS
activity. I built three different amplifier mod-
ules. The first one was based on MMIC ampli-
fiers, the second on a 2N2259 transistor and the
third on a bunch of 2N2222 transistors.

The MMIC amplifier is a two stage class
A amplifier, based on a MiniCircuits MAR-
4, and provides a power gain of 16 dB (each
device is capable of 8 dB power gain). The
third harmonic is well below 35 dB, and at
these output levels a low pass filter after the
amplifier is not really needed. Figure 4 is
the schematic diagram of this amplifier.
Figure 5 shows my circuit board. There is
a limitation with this solution though: the
maximum output of a MAR-4 device is
12.5 dBm, and this limits the maximum pos-
sible input to –3.5 dBm. This is not really a
problem if you adopted the variable resistor
in series with R1, as mentioned earlier.

The 2N2259 solution is a very simple
power amplifier in class AB configuration,
using a multiturn variable resistor to provide
the correct bias to the base-emitter junction of
the transistor. A low pass filter at the output
of this circuit is mandatory because of the
working class. An output power of about
100 mW is easily obtained with this solution.
The transistor can reach quite high tempera-
tures, so you will have to use a heat sink.
Figure 6 shows my construction for this am-
plifier version. I haven’t provided a schematic
diagram because there was nothing special
about the construction or operation of this
amplifier.

The last amplifier I tried is based on a
design that I found on the Internet, and is
part of an all 2N2222 transceiver that K8IQY
designed to attend (and win) the 1997 NorCal
QRP Club building contest. It does not need
any active devices except a couple of diodes

Figure 6 — This photo shows the 2N2259
transistor amplifier.

Figure 5 — Here is a photo of the MMIC
amplifier construction.

The DDS Module

This is the “trickier” module of the project,
because it has a mixed nature of both analog
and digital circuits. The recommendations

28 Sep/Oct 2007

and a bunch of 2N2222 transistors. (Actually,
I used a 2N2219 transistor for the final stage.
That is a somewhat more rugged version of the
2N2222.) It produces 2 W at 7 MHz. The only
thing I had to redesign was the output low pass
filter, because I chose to use this amplifier on
30 m. The details of this interesting project
are at www.k8iqy.com/qrprigs/2n240/
2n240page.html and the schematics are
available at www.k8iqy.com/qrprigs/2n240/
2n2sche.html. Figure 7 is a picture of the
amplifier I built from this design.

As I mentioned earlier, any power ampli-
fier that is able to take a –2 dBm input signal
is perfectly suitable.

Figure 8 shows the prototype assembly of
the DDS board, Control board and LCD.

The Firmware

The firmware of the beacon implements
three narrow bandwidth modes (QRSS, DFCW,
FSKCW) plus standard CW, serial communica-
tion to a computer for calibration, mode/speed
selection and a way to enter beacon text. The
mode and frequency are displayed on a Hitachi
HD44780 compatible LCD. The text shown

Figure 7 — This amplifier uses 2N2222
transistors to produce about 2 W of output
power on the 40 m band.

Figure 8 — Here is the combined PIC control module with LCD
and the DDS module ready for testing.

Figure 9 — With power applied, the LCD shows the operating
mode (FSK CW), sending speed ((03) and the operating
frequency (10,140,080 Hz).

on the LCD, visible in Figure 9, indicates the
mode (FSKCW in the example), the speed (03),
and the frequency in hertz (10,140,080).

The serial port is always checked by the
PIC processor during operation, so that com-
mands can be sent to the beacon all the time;
port setup is 57600,n,8,1. Valid commands
are letters, as indicated in the following list.
1) q — switches to QRSS mode;
2) d — switches to DFCW mode;
3) f — switches to FSKCW mode;
4) c — switches to CW mode (fixed
 16 wpm);
5) 1 — switches to speed 10;
6) 3 — switches to speed 3;
7) 6 — switches to speed 6;
8) a — increases frequency offset by 1 Hz;
9) z — decreases frequency offset by 1 Hz;
10) s — increases carrier frequency by

 10 Hz;
11) x — decreases carrier frequency by

 10 Hz;
12) h — increases calibration factor by 1;
13) n — decreases calibration factor by 1;
14) m — enables beacon message input;
15) r — resets device.

An echo is sent on the serial line for any
key pressed, in order to give the user some
sort of feedback.

Upon switching the unit on, if any digit
is typed on the keyboard of a computer con-
nected to the device, it enters the frequency
programming mode, and expects a total of 8
digits (including the first one) that are the digits
of the new frequency you want your beacon
to operate on. The useful time frame during
which the first digit is accepted is shown both
on the serial line and LCD display by a “>.”

Any variations to the settings are saved in
the PIC flash memory, so the device will keep
settings through resets or on/off cycles.

A calibration factor is used to fine tune the

output frequency, in order to compensate for
small errors in the clock nominal frequency.
Since calibration is saved on flash memory,
calibration is a once in a while operation.

I will offer programmed PICs for $15 US,
plus shipping charges. I can also make the
PIC source code available for $20 US. I will
accept payment by PayPal.

Conclusions

Even if not aimed at the assembly of a
QRSS beacon, the solutions presented in this
article are well suited for reuse wherever a
direct radio frequency synthesizer is needed.
Considering the spectral purity of the generated
signal, as well as the incredibly small tuning
step DDS are capable of, only your imagination
will limit the possible applications. One future
extension of this project will be to connect a
DAC to the output current calibration pin, in
order to make the output current vary accord-
ing to some input signal. We’re talking about
amplitude modulation here! If you’re rather in-
terested in discrete frequency modulation (such
as FSK), no additional hardware is needed. It
will just take some CPU reprogramming.

Matteo Campanella has been a radio ama-
teur since March 1999, when he earned a
Tech Class license with the call IW2NGE. He
upgraded to Extra in June 2001 as IZ2EEQ.
He has been interested in electronics since
he was 13, when he built his first FM radio.
He received the Laurea degree in Electronic
Engineering in 1994 from the University of
Pisa. Since then his work has mostly involved
software related activities. He presently is
Senior Consultant on Java Enterprise Appli-
cations and Open Source Solutions. For now,
electronics has become a spare time activity,
when he enjoys digital signal processing and
embedded systems programming.

