
J. Favela and D. Decouchant (Eds.): CRIWG 2003, LNCS 2806, pp. 135–150, 2003.
© Springer-Verlag Berlin Heidelberg 2003

A New Language to Support Flexible Failure Recovery
for Workflow Management Systems

Gwan-Hwan Hwang1, Yung-Chuan Lee1, and Bor-Yih Wu2

1 Dept. of Information and Computer Education, National Taiwan Normal University, Taiwan
{ghhwang,u86278}@ice.ntnu.edu.tw

2 Software Project Development Division, Stark Technology Inc., Taiwan

Abstract. In this paper, we propose a new failure-recovery model for workflow
management systems (WfMSs). This model is supported with a new language,
called the workflow failure-handling (WfFH) language, which allows the
workflow designer to write programs so that s/he can use data-flow analysis
technology to guide the failure recovery in workflow execution. With the WfFH
language, the computation of the end compensation point and the compensation
set for failure recovery can proceed during the workflow process run-time ac-
cording to the execution results and status of workflow activities. Also, the fail-
ure-recovery definitions programmed with the WfFH language can be inde-
pendent, thereby dramatically reducing the maintenance overhead of workflow
processes. A prototype is built in a Java-based object-oriented workflow man-
agement system, called JOO-WfMS. We also report our experiences in con-
structing this prototype.

1 Introduction

Workflow management systems (WfMSs) are software systems for supporting coor-
dination and cooperation among members of an organization whilst they perform
complex business tasks [1–5]. Business tasks are modeled as workflow processes,
which are then automated by the WfMS. The workflow model (also referred to as
workflow process definition) is the computerized representation of the business proc-
ess. It defines the starting and stopping conditions of the process, the activities in the
process, and control and data flows among these activities. An activity is a logic step
within a workflow, which includes the information about the starting and stopping
conditions, the users who can participate, the tools and/or data needed to complete
this activity, and the constraints on how the activity should be completed. Activities
are usually organized into a directed graph that defines the order of execution among
the activities in the process. Nodes and edges in the graph represent activities and
control flow, respectively. A workflow process instance is the execution of a
workflow process definition by the WfMS. The execution of a workflow process
instance is controlled by the workflow engine.

Two different types of problems or anomalous situations can occur during
workflow execution: exceptions and failures [6]. Exceptions are semantic failures that
can be caused by a system failure or by a new situation introduced by the external

136 G.-H. Hwang, Y.-C. Lee, and B.-Y. Wu

environment. A comprehensive approach to the management of exceptions is to inte-
grate the exception handler with the WfMS. The exception-handling mechanism must
be able to capture exceptional events and react to them. The WfMS may terminate the
workflow process or return to the execution of the workflow process after the excep-
tion has been handled [7,8].

The other problem in managing workflow processes is that of failure recovery [9–
11]. The goal of failure recovery is to bring the failed workflow process back to some
semantically acceptable state so that the cause of the failure can be identified. The
problem can then be fixed and the execution resumed with the hope that the workflow
process will be completed successfully. The basic failure-recovery process includes
the following three steps:

1. The execution of the workflow process is terminated and the workflow engine then
decides the end compensation point (ECP) and the compensation set of the oc-
curred failure.

2. Activities in the compensation set are compensated.

3. The workflow process is restarted from the ECP.

An ECP is a previously executed activity of the workflow process which represents
an acceptable intermediate execution state where certain actions can be taken so that
either the problems which caused the failure can be fixed or the execution path of the
workflow can be altered to avoid the problem. Compensating an activity A involves
executing a compensation subroutine that attempts to undo the effects of the previous
execution of A. This compensation can be very expensive, so it is important to mini-
mize compensation scope to avoid unnecessary compensation effort. In this paper,
those activities that require compensation are called the compensation set [9] of a
failure.

A1 A2 A3
. . . Ai Ai+1

. . .
Activity fails

End compensation point B1
. . .

Rollback

A4

or

Fig. 1. The basic failure-recovery model

The complex failure-recovery process is illustrated in Fig. 1. We assume that the
execution sequence of the activities is A1, A2, A3, …, and Ai in that order; and that a
failure occurred in activity Ai. The rollback of workflow process returns the execution
to A2, i.e., A2 is the ECP of this failure. The workflow engine then compensates those
activities in A3–Ai that are in the compensation set. If an activity needs to be compen-
sated, then the corresponding compensation subroutine of the occurred failure is exe-
cuted. After all the compensations are finished, i.e., all the activities in the compensa-
tion set are compensated, the workflow process restarts from A2. In the re-execution,
the workflow process may proceed either from B1 or A4 after the end of A3.

The failure-recovery models proposed in [9-11] have some drawbacks. First, they
only allow specification of the ECP and compensation set of a failure in an activity in
a static way before the workflow process is compiled. This limits the flexibility of
failure recovery. A more flexible way is to compute the ECP and compensation dur-

A New Language to Support Flexible Failure Recovery 137

ing the process run-time according to the execution results of activities. Second, the
ECP and compensation set are specified by explicitly using the names (or some kind
of identities) of activities. Therefore, inserting or deleting activities to or from a
workflow process may require modification of the failure-recovery specification in
another activity. Although Du et al. [9] proposed a compensation scoping strategy that
allows the workflow designer to specify some designated compensation scopes based
on data dependencies between workflow activities, their model does not allow the
workflow designer to specify the ECP and compensation set in a flexible way, such as
by using a programming language. In this paper, we propose a new language, called
the workflow failure-handling (WfFH) language, which supports a workflow failure-
recovery model with the following features:

1. The ECP and compensation set can be computed or derived during the workflow
process run-time according to the execution results and status of workflow activi-
ties, as well as the type of failures.

2. The workflow designer can use the WfFH language to program the computation of
the ECP and compensation. With the WfFM codes written by the workflow de-
signer, the WfMS employs data-flow analysis technology to compute the ECP and
compensation when the failure occurs.

3. The definition of failure recovery and compensation scope between activities can
be absolutely independent. With this, inserting or deleting activities to or from a
workflow process may not require modification of the failure-recovery specifica-
tion in other activities. This reduces the maintenance overhead of workflow proc-
ess dramatically and increases the reusability of workflow activities.

4. The details of information related to the failure can be sent to the ECP and activi-
ties in the compensation set to activate the most appropriate compensation for the
failure situation that has occurred.

5. There can be multiple failures in a single activity, and each such failure can acti-
vate different failure-recovery processes.

The remainder of the paper is organized as follows. Section 2 explains, with the aid
of some examples, why a language like the WfFH language is needed in WfMSs.
Section 3 presents the WfFH language we propose. In Section 4, we detail the system
architecture and implementation for a WfMS to support the WfFH language. Section
5 presents the experimental result. Section 6 concludes the paper.

2 Motivation Examples

In this section, we will begin with a simplified example of a workflow process to
explain why the WfFH language is needed in the failure recovery of the WfMS (see
Fig. 2). Assume that the workflow process is a selling process of a wholesale mer-
chant. It consists of nine activities, A1, A2, …, and A9 as well as five failures F1, F2, …,
and F5:

� Activity A1. Receive order.
� Activity A2. Build up or update customer information.

138 G.-H. Hwang, Y.-C. Lee, and B.-Y. Wu

� Activity A3 (named input_order). Input the order details.
� Activity A4. Check the customer transaction and credit records.
� Activity A5. Check the inventory records.
� Activity A6. (named evaluate_order) Evaluate if the order should be accepted.
� Activity A7. Pick up goods from the warehouse according to the order specified,

and then deliver the goods to the customer.
� Activity A8. Send the rejection letter to customer.
� Activity A9. Bill customer.
� Failure F1. Inventory-insufficient.
� Failure F2. Over-quantity.
� Failure F3. Goods were not successfully delivered.
� Failure F4. Goods were rejected by customer because they did not conform to the

order.
� Failure F5. Unable to get the payment for goods.

Work
activity

Connection
edge

Start of
workflow

End of
workflow

Start End 1

End 2

A1 A2 A3

A4

A5

A7 A9

(Failure)
Roll back
to ECP

F1

F2

F3 F4

F5

A6

A8

Fig. 2. An example of a workflow process

Below we describe some cases where the static method of specifying the ECP and
compensation set could cause some problems in the design and maintenance of the
workflow process.

The first problem is that inserting or deleting an activity may result in a change
being required to the specification of the ECP and the compensation set in other ac-
tivities of the workflow process. For example, assume that A6 should rollback to the
earliest activity that relates to the ordered goods when activity A6 causes an inventory-
insufficient failure. In this case the workflow designer specifies the ECP and compen-
sation set to be A3 and {A3, A6}, respectively. However, after that, if the workflow
designer has to change the workflow process by adding an activity A10 named con-
firm_order, which is phone confirmation of the order after A2 (see Fig. 3), the
workflow designer has to change the ECP and compensation set of all the five failures
F1, F2, …, and F5. For the setting of each failure, its ECP and compensation set may
have to be modified, e.g., the ECP and compensation set of inventory-insufficient
failure of A6 should be changed to A10 and {A10, A3, A6}, respectively. This kind of
maintenance overhead for failure-recovery specification can be even more serious if a
subflow is added to an existing workflow process. This is called composite workflow
(or nested workflow) [16]; see Fig. 4A. In this case, specification of the ECP and
compensation set for the inventory-insufficient failure of A6 should consider all the
activities in the added subflow – this can be very tedious and error-prone. We con-

A New Language to Support Flexible Failure Recovery 139

sider that a good way to reduce the maintenance overhead is to provide a mechanism
to let the workflow designer change the flow of the workflow process without having
to change the failure-recovery definitions of other activities. The failure-recovery
mechanism in [9–11] cannot solve this problem.

Work
activity

Connection
edge

Start of
workflow

End of
workflow

Start End 1

End 2

A2 A10 A3

A4

A5

A7 A9

Modified failure

F1
F2

F3
F4

F5

Original failure

A1

A8

A6

Fig. 3. Change of failure settings after inserting a new activity

A10: write(quantity=210)
A3: write(quantity=210)

A3

A4

A6

A5

A10

A2 A3

Insert a subflow

(A)

(B)

Fig. 4. Problems in changing the workflow process

The second problem is that it may not be possible to determine the ECP or com-
pensation set of a failure until the run-time of the workflow process. This situation is
illustrated in Fig. 4B. Assume that the wholesale merchant sets the quantity limitation
for some goods during a peak period to, say, 100. Thus, A6 may cause another failure
called over-quantity for some specific goods. However, the quantity of the ordered
good may be set either by activity A10 or by activity A3, depending on the execution of
A10 and A3: if A10 does not set it, then A3 must do so. Thus, the activity that sets the
quantity can only be obtained according to the execution results of activities A10 and
A3. That is, the ECP or the compensation for over-quantity failure of A6 depends on
the execution results of previously executed activities. The WfMS should therefore
compute or derive the ECP and compensation set according to the execution results of
activities after the occurrence of the failure. The failure-recovery mechanism in [9–
11] again cannot solve this problem.

The third case is that a single activity may cause multiple different failures. For ex-
ample, activity A6 may cause inventory-insufficient and over-quantity failure. The
ECPs and compensation sets of these failures are all different. The failure-recovery

140 G.-H. Hwang, Y.-C. Lee, and B.-Y. Wu

models proposed in [9–11] do not mention how to implement a WfMS which allows
multiple failures to occur in a single activity: here we propose an architecture of the
WfMS to support multiple failures in a single activity.

The activities of a workflow process usually involve arbitrarily complex functions.
Thus, the activities can be very expensive to compensate and re-execute. It is there-
fore very important to decide the most-recent ECP and the minimal compensation set
during the failure-recovery process. As we have discussed with the example shown in
Fig. 2, the static way of specifying the ECP and compensation set causes difficulties
in maintaining the failure-recovery definition when the workflow process is changed.
Also, it cannot use run-time results of activities to compute the ECP and compensa-
tion set. Thus, we have designed the WfFH language to solve these problems.

3 The WfFH Language

Before we introduce the WfFH language, we first present the architecture of the
workflow process definition which embeds the WfFH programs to support flexible
and data-flow-analysis-based failure recovery. The WfFH program is embedded in the
definition of the activity. The workflow process definition consists of at least the
definitions of all of its activities as well as the specification of the control and data
flows, including conditional branching, concurrent execution of activities, looping,
and other complex control structures. Fig. 5 illustrates the basic architecture of the
definition of workflow process and activity. The flow of activities is presented as a
directed graph that defines the execution order of the activities in the process. Nodes
and lines in the graph represent activities and control flow, respectively. Note that the
directed graph is not the unique way of representing the flow of the activities; existing
methods of specifying the flow of activities include the Petri Net [12,13] and gener-
alized process-structure grammar [14].

3.1 The Structure of Activities to Support WfFH

An activity is a logic step within a workflow. The activity definition is also shown in
Fig. 5, which contains basic information for activity execution and additional failure-
recovery definitions. The basic information for activity execution includes at least the
starting and stopping conditions, the users who can participate, the tools and/or data
needed to complete this activity, the constraints on how the activity should be com-
pleted (such as the time limits), and the execution codes of the activity. The additional
failure-recovery definition in the activity for data-flow-analysis-based failure recov-
ery comprises recovery definitions and definitions of the compensation subroutines.
The execution code is the program that executes the activity and which may trigger
the failure-recovery process when the execution causes a failure.

A New Language to Support Flexible Failure Recovery 141

Definition of
activity A1

Definition of
activity A2

Definition of
activity A3

. . . Definition of
activity A4

Definition of
activity Ai

. . .
Definition of

activity B 1

. . . Definition of
activity B1

Definition of activities

Flow of activities
Recovery definitions

•Start and stopping condition
•Users who can participate
•Tools and/or data needed
•Some constraints

Execution codes
Begin activity

… … … .
if ((quantity>order_lim it) & & (period==HOT))

RAISE_FAILURE over-quantity(order_NO,100);

… … … .
End activity

Recovery
definition of

failure F1
…

Definition of an activity

Compensation subroutine definitions

Default
compensation

subroutine

Compensation
suboutine for

failure F 1

…Compensation
suboutine for

failure F2Definition of a workflow process

Failure recovery
definition

Recovery
definition of

failure F2

R ecovery
definition of

failure F3

Occurrence of
a failure called
RYHU�TXDQWLW\

Basic information
for activity execution

Fig. 5. The definition of the workflow process and activities

3.2 The Skeleton of the Recovery Definition

In this paper, we propose using the WfFH language to specify the recovery definition.
When a failure occurs, the workflow engine executes the WfFH codes of the corre-
sponding recovery definition of the failure to compute the ECP and compensation set.
All the activities in the compensation set should be compensated. In the compensation
of an activity, the workflow engine first checks if there is a corresponding compensa-
tion subroutine of the occurred failure in the activity – this compensation subroutine
will be executed if it exists; otherwise the default compensation subroutine will be
executed. Since an activity may cause different failures, the activity definition may
contain multiple recovery definitions and compensation subroutines. According to the
syntax of WfFH language, each recovery definition has the form shown in Fig. 6.

����)$,/85(�1DPH�W\SH��DUJ���W\SH��DUJ���«�
��� %(*,1�'HFODUDWLRQ
��� �������PDNH�GHFODUDWLRQ�RI�YDULDEOHV

��� ����$FWLYLW\BVHW�DBVHW���DBVHW��

��� ����5HVRXUFH�5���5��

«

��� (1'�'HFODUDWLRQ
��� %(*,1�&RPSHQVDWLRQ�6HW�&RPSXWDWLRQ
��� �����FRGH�WR�GHULYH�FRPSHQVDWLRQ�VHW�KHUH

«

��� ��'2B&RPSHQVDWLRQ�DBVHW��
��� (1'�&RPSHQVDWLRQ�6HW�&RPSXWDWLRQ
��� %(*,1�(&3�&RPSXWDWLRQ
��� �����FRGH�WR�PDNH�(&3�FRPSXWDWLRQ�VHW�KHUH

«

��� ��5ROOEDFNB7R�DBVHW��
��� (1'�(&3�&RPSXWDWLRQ

����(1'�)DLOXUH

Fig. 6. The skeleton of a recovery definition written in the WfFH language

A recovery definition programmed with the WfFH language consists of a header
and a body. The header begins with a keyword “FAILURE,” which is followed by the
name of the failure and a sequence of arguments. The syntax of the argument list of
the WfFH language is the same as that for Java [15]. These arguments have two uses:

142 G.-H. Hwang, Y.-C. Lee, and B.-Y. Wu

(1) to provide information for the computation of the ECP and compensation set, and
(2) they will be passed to the compensation subroutines of the compensated activities.
The compensation subroutines could use the received arguments to perform the most
appropriate compensation. The body comes after the header, and comprises three
sections. The first section in the body, the declaration section, includes declarations
of variables used in the next two sections. Variables declared in the declaration sec-
tion include:

� Variables used to store set of activities. The compensation set and ECP of a failure
consist of set of activities. We can use the keyword “Activity_set” to make the
declaration (see line 1.3 of Fig. 6).

� Variables used to store resources. For data-flow-analysis-based specification and
computation of the compensation set and ECP, we have to declare some variables
which store shared resources accessed by different activities (see line 1.4 of Fig. 6).

� Others. The WfFH language allows the use of all the data types defined in Java
[15], including types defined by the user.

3.3 Methods in WfFH

The data-flow analysis technology (or global data-flow analysis technology) for com-
piler optimization analyzes how data values are modified across basic blocks of pro-
gram statements [17]. The data-flow analysis technology used in our failure-recovery
model is derived from the data-flow analysis technology used in compiler optimiza-
tion. However, instead of analyzing the data values modified in program statements,
our model analyzes the resource accesses of activities in workflow processes. To
build up a data-flow-analysis-based failure-recovery mechanism, i.e., to compute the
ECP and compensation set using data-flow analysis technology, the workflow engine
which controls the execution of the activities has to monitor and record all the ac-
cesses to the shared resources of each activity. During the execution of a workflow
activity, it may access private and/or shared resources. Private resources are defined
as data used only within the execution of a single activity, whereas shared resources
are data that are created, read, written, or modified by multiple activities, or data
which are considered as the output results of the workflow process. In the current
definition and implementation of the WfFH language, they are two kinds of resources
that the activity can access: files and database records. The accesses to shared re-
sources issued by activities are stored in an execution-log database. Each access rec-
ord stored in the execution-log database contains at least the activity which performs
the access, the time and type of the access (i.e., insert, delete, update, or create), and
the file name or the primary keys (or table name) of the access database records. File
accesses are easy to monitor, but monitoring accesses to database records is much
more difficult. We do this using execution-monitoring technology which is proposed
and developed for reachability testing of client–server database applications [18,19].
The next section in the definition is the compensation-set computation section, which
the WfMS executes to derive the compensation set of this failure. Its syntax is similar
to Java, with some extension of functions to support the computation of compensation
sets. They can be classified into three main groups as described below.

A New Language to Support Flexible Failure Recovery 143

The first group comprised functions which return the set of activities. We call them
activity-manipulation functions:

� $&7,9,7<�´QDPHBRIBDFWLYLW\µ���Given the name of an activity in the workflow
process as the argument of this function (possibly containing the wildcard operator
* or ?), this function returns the specified activities. For example,
DBVHW� $&7,9,7<�´FKHFN
µ� will return the set of activities whose names are pre-
fixed with “check.”

� $&7,9,7<�$//�� This function returns the set of all the activities in the workflow
process.

� $&7,9,7<�(;(&87('�� This function returns the set of all the activities which have
been executed.

� $&7,9,7<�7+,6�� This function returns the set of the activity which causes the
failure (the current activity).

� $&7,9,7<B5($'�UHVRXUFH�� This function returns the set of all the activities which
performed a read operation on resource.

� $&7,9,7<B:527(�UHVRXUFH�� This function returns the set of all the activities
which performed a write operation on resource.

� $&7,9,7<B5($'B:527(�UHVRXUFH�� This function returns the set of all the activi-
ties which performed read and write operation on resource.

� $&7,9,7<B'(/(7(�UHVRXUFH�� This function returns the set of all the activities
which performed the delete operation on resource.

� $&7,9,7<B&5($7(�UHVRXUFH�� This function returns set of all the activities which
created UHVRXUFH.

�),567�DFWLYLW\BVHW�� This function returns the earliest executed activity in the
DFWLYLW\BVHW.

� /$67�DFWLYLW\BVHW�� This function returns the most-recent executed activity in
the DFWLYLW\BVHW.

The second group comprises functions which return a set of resources. We call
them resource-manipulation functions:

� 6(/(&7B'%B5(&25'6�´'%B1DPHµ��´VHOHFWBVTOBWUDQVDFWLRQµ�� This returns the
database records which are queries with the transaction VHOHFWBVTOBWUDQVDFWLRQ
from the database '%B1DPH.

�),/(6�I���I���«��IQ�� This returns the files I���I���«��IQ as a resource type.
� 5(6285&(B5($'B%<�DFWLYLW\BVHW�� This returns all the resources read by DFWLY�

LW\BVHW.
� 5(6285&(B:527(B%<�DFWLYLW\BVHW�� This returns all the resources written by

DFWLYLW\BVHW.
� 5(6285&(B'(/(7('B%<�DFWLYLW\BVHW�� This returns all the resources deleted by

DFWLYLW\BVHW.
� 5(6285&(B&5($7('B%<�DFWLYLW\BVHW�� This returns all the resources created by

DFWLYLW\BVHW.

The functions SELECT_DB_RECORDS and FILES return the specified resources
from the shared resources of the workflow process. RESOURCE_READ_BY,

144 G.-H. Hwang, Y.-C. Lee, and B.-Y. Wu

5(6285&(B:527(B%<, 5(6285&(B'(/(7('B%<, and 5(6285&(B&5($7('B%< allow the
user to determine what resources are accessed by activities.

The third group comprises the set of operations which support the activity- and re-
source-manipulation functions:

� ,17(56(&7�6���6��. This returns the intersection of activity sets or resource sets
(i.e., ^[�_�[�³�6��DQG�[�³�6�`).

� 81,21�6���6��. This returns the union of activity sets or resource sets (i.e., ^[�_�[
³�6��RU�[�³�6�`).

� 6,=(B2)�6�. This returns the number of elements in set S corresponding either to
the set of activities or resources.

� ',))(5(1&(�6���6��. This returns the set which deletes element of S2 from S1 (i.e.,
^[�_�[�³�6��DQG�[�´�6�`).

� 6�L�. This returns the i-th element in set 6.

The codes in this section also conform with the statement and loop structures of
Java, which allows the recovery definitions programmed with the WfFH language to
be easily translated into Java objects. A statement specifying the resulting compensa-
tion set should appear at the end of this section, consisting of a keyword
“'2B&RPSHQVDWLRQ” and an activity set variable which stores the resulting compensa-
tion set (see line 2.3 of Fig. 6).

The final section in the recovery definition for the WfFH language is the ECP
computation section. The programmer uses this to specify how to compute the ECP.
The syntax and available functions of this section are identical to those for the com-
pensation-set computation section described above. Furthermore, it inherits the com-
putation results of all the variables used in the section in which the compensation set
is computed. The ECP computation section also ends with a statement to specify the
resulting ECP. It begins with a keyword “Rollback_To” which follows an activity-set
variable which stores the resulting ECP.

We now provide several examples to illustrate the WfFH language. The WfFH
Code in Fig. 7A demonstrates how to use the WfFH language to specify the inven-
tory-insufficient failure of the motivating example we presented in Section 2. We set
the compensation set to be activities whose names are postfixed with _order, because
the names of A3, A6, and A10 are input_order, evaluate_order and confirm_order, re-
spectively. It is obvious that there is no need to change the recovery definition of
inventory-insufficient failure of A6 when A10 is added to the workflow process, and so
we did not employ the data-flow analysis technology of the WfFH language in it.
However, in the definition of the over-quantity failure (see WfFH Code Example in
Fig. 7B), we have to use data-flow analysis technology in the computation of ECP
and compensation set. There are two arguments: order_No and order_Limit. The
order_No argument is used in the computation of ECP and compensation set, and
both of them will be sent to the compensation subroutines. The database record of
“quantity” is first retrieved and stored in “OQuantity.” This database record refers to
the quantity of the order stored by either A10or A6. Then, each executed activity is
checked to see if it wrote to “OQuantity,” and all those that did are added to the com-
pensation set. The ECP is the earliest activity in the compensation set.

A New Language to Support Flexible Failure Recovery 145

(A) (B)
)$,/85(�LQYHQWRU\�LQVXIILFLHQW���
��%(*,1�'HFODUDWLRQ
����$FWLYLW\B6HW�DBVHW���DBVHW���DBVHW��
����$FWLYLW\B6HW�FRPSBVHW��HFS�
��(1'�'HFODUDWLRQ
��%(*,1�&RPSHQVDWLRQ�6HW�&RPSXWDWLRQ
����DBVHW�� �$&7,9,7<�(;(&87('��
����DBVHW�� �$&7,9,7<�´
BRUGHUµ��
����FRPSBVHW� �,17(56(&7�DBVHW���DBVHW���
����'2B&RPSHQVDWLRQ�FRPSBVHW�
��(1'�&RPSHQVDWLRQ�6HW�&RPSXWDWLRQ
��%(*,1�(&3�&RPSXWLRQ
����HFS� �),567�FRPSBVHW��
����5ROOEDFNB7R�HFS�
��(1'�(&3�&RPSXWLRQ
(1'�)$,/85(

)$,/85(�RYHU�TXDQWLW\�LQW�RUGHUB1R��LQW�RUGHUB/LPLW�
��%(*,1�'HFODUDWLRQ
����$FWLYLW\B6HW�DBVHW��
����$FWLYLW\B6HW�FRPSBVHW��HFS�
����5HVRXUFH�2,QYHQWRU\�
����LQW�L��VL]H�
��(1'�'(&/$5$7,21
��%(*,1�&RPSHQVDWLRQ�6HW�&RPSXWDWLRQ

��������24XDQWLW\� � 6(/(&7B'%5(&25'6� �´:)B'%�µ�� ´6(/(&7� TXDQWLW\
)520�2UGHU)RUP�:+(5(�2UGHU)RUP�2UGHU1R µ���2UGHUB1R��

����DBVHW�� �$&7,9,7<�(;(&87('��
����VL]H� �6,=(B2)�DBVHW���
����IRU��L� ����L�� �VL]H���L���
����^

����������LI��,17(56(&7�5(6285&(B:527(B%<�DBVHW��L���24XDQWLW\���
(PSW\6HW�

�������������FRPSBVHW� �81,21�FRPSBVHW��DBVHW��L���
����`
����'2B&RPSHQVDWLRQ�FRPSBVHW�
��(1'�&RPSHQVDWLRQ�6HW�&RPSXWDWLRQ
��%(*,1�(&3�&RPSXWLRQ
����HFS� �),567�FRPSBVHW��
����5ROOEDFNB7R�HFS�
��(1'�(&3�&RPSXWLRQ
(1'�)$,/85(

Fig. 7. Two WfFH code examples.

4 The System Architecture and Implementation

Definition of
activity A1

Definition of
activity A2

Definition of
activity A3

. . . Definition of
activity A4

Definition of
activity Ai

. . .
Definition of
activity B1

. . . Definition of
activity B1

Definition of activities

Flow of activities

Recovery definitions

Execution codes
Begin activity

……….
if ((quantity>order_limit) && (period==HOT))

RAISE_FAILURE over-quantity(order_NO,100);

……….
End activity

Recovery
definition of
failure F1

…

Definition of an activity

Compensation subroutine definitions

Default
compensation

subroutine

Compensation
suboutine for

failure F1

…Compensation
suboutine for

failure F2Definition of a workflow process

Recovery
definition of
failure F2

Recovery
definition of
failure F3

Execution code
object

Failure-handling
objects

Compensation
objects

JOO-WfMS
compiler

JOO-WfMS
compiler

JOO-WfMS
compiler

Fig. 8. Generating Java object codes of a workflow process

Here we are implementing a Java-based object-oriented WfMS (JOO-WfMS [21])
which supports the WfFH language. Fig. 8 shows the workflow process definition
which conforms to the syntax of the JOO-WfMS as compiled using the JOO-WfMS
compiler to generate Java object codes (or Java class files), including some activity
objects, a flow object, some failure-handling objects, and some compensation objects.
An activity object includes information and codes for executing the activity. Also,
each activity object is associated with some failure-handling objects and compensa-
tion objects. The flow object is used to control the order of execution of the activities.
These Java objects are sent to the JOO workflow engine which activates and controls
the execution of the workflow process encoding by these Java objects. There are stan-

146 G.-H. Hwang, Y.-C. Lee, and B.-Y. Wu

dard Java interface definitions for workflow, flow control, activity, execution code,
failure, and compensation handler objects in JOO-WfMS.

The way to activate the failure-recovery process is specified in the execution code of
the definition of the activity (see Fig. 5). In the JOO-WfMS, the execution code of an
activity is also a Java program with the failure-recovery extension, which is of the
following form:

5$,6(B)$,/85(�)DLOXUHB1DPH�DUJ���DUJ���«�DUJQ��

The JOO-WfMS compiler translates the above statement into the following Java
program:

��7R�JHQHUDWH�DQ�DUUD\�DUJV�WR�VWRUH�DUJ���DUJ���«��DQG�DUJQ
2EMHFW>@�DUJV �QHZ�2EMHFW>Q@�

DUJV>�@ �DUJ��

DUJV>�@ DUJ���

«

DUJV>Q@ DUJQ��

���7R�LQVWDQWLDWH�D�IDLOXUH�REMHFW

)DLOXUH�IDLO� �DFWLYLW\�JHW)DLOXUH�)DLOXUHB1DPH���

��7R��VHWXS�WKH�IDLOXUH�DUJXPHQWV

IDLO�6HW$UJXPHQWV�DUJV���

���7R�WKURZ�D�-DYD�H[FHSWLRQ�WR�VWDUW�WKH�IDLOXUH�UHFRYHU\�SURFHVV

WKURZ�QHZ�5DLVH)DLOXUH([FHSWLRQ�IDLO���

The following is a fragment from the execution code of the activity definition of
A6. It specifies how to activate recovery process of the inventory_insufficient and
over-quantity failures:

…
LI��LQYHQWRU\���RUGHUHGBTXDQWLW\�

5$,6(B)$,/85(�LQYHQWRU\�LQVXIILFLHQW����
LI���TXDQWLW\�!�RUGHUBOLPLW��		��SHULRG +27��

5$,6(B)$,/85(�RYHU�TXDQWLW\�RUGHUB1R��RUGHUBOLPLW��
«

The “LQYHQWRU\,” “RUGHUHGBTXDQWLW\,” “TXDQWLW\,” “RUGHUBOLPLW,” “SHULRG,”
and “RUGHUB1R” are local variables in the execution codes of A6. If the value of “LQ�
YHQWRU\” is less than “RUGHUHGBTXDQWLW\,” it will activate the failure recovery ac-
cording to the recovery definition named “inventory-insufficient” (see Fig. 7). Also, if
“TXDQWLW\” is greater than “RUGHUBOLPLW” and the “SHULRG” is “+27,” the recovery
for an over-quantity failure will start. The code translated by JOO-WfMS compiler is
shown as follows:

LI��LQYHQWRU\���RUGHUHGBTXDQWLW\��^

��)DLOXUH�IDLO� DFWLYLW\�JHW)DLOXUH�´LQYHQWRU\�LQVXIILFLHQWµ���

��WKURZ�QHZ�5DLVH)DLOXUH([FHSWLRQ�IDLO���

`

LI���TXDQWLW\�!�RUGHUBOLPLW��		��SHULRG +27���^

��2EMHFW>@�DUJV �QHZ�2EMHFW>�@��

��DUJV>�@� �RUGHUB1R��

��DUJV>�@� �RUGHUBOLPLW��

)DLOXUH�IDLO� DFWLYLW\�JHW)DLOXUH�´RYHU�TXDQWLW\µ���

IDLO�6HW$UJXPHQWV�DUJV���

��WKURZ�QHZ�5DLVH)DLOXUH([FHSWLRQ�IDLO���

`

Fig. 9 uses an example to illustrate how the JOO-WfMS compiler translates the
WfFH code in Fig. 7B into a Java program. We currently have a Java implementation

A New Language to Support Flexible Failure Recovery 147

of the JOO-WfMS that supports our proposed workflow failure-handling model. For
details about it, refer to [21].

Over-Quantity failure in WfFH Java Code
)$,/85(�RYHU�TXDQWLW\��LQW�RUGHUB1R��LQW�RUGHUB/LPLW�

��
�����������9DULDEOH�GHFODUDWLRQV���������������������
%(*,1�'HFODUDWLRQ

$FWLYLW\B6HW�DBVHW��
$FWLYLW\B6HW�FRPSBVHW��HFS�
5HVRXUFH�2LQYHQWRU\��24XDQWLW\�
LQW�L��VL]H�

(1'�'(&/$5$7,21

�������������������&RPSXWH�FRPSHQVDWLRQ�VHW����������
%(*,1�&RPSHQVDWLRQ�6HW�&RPSXWDWLRQ

����24XDQWLW\ 6(/(&7B'%5(&25'6�´:)B'%�µ��´6(/(&7
TXDQWLW\�)520�2UGHU)RUP�:+(5(
2UGHU)RUP�2UGHU1R µ���2UGHUB1R��

DBVHW�� �$&7,9,7<�(;(&87('��
VL]H� �6,=(B2)�DBVHW���
IRU��L� ����L�� �VL]H���L���
^

������LI��,17(56(&7�5(6285&(B:527(B%<�DBVHW��L��
24XDQWLW\��� �(PSW\6HW�

��������FRPSBVHW� �81,21�FRPSBVHW��DBVHW��L���
�`
�'2B&RPSHQVDWLRQ�FRPSBVHW�

(1'�&RPSHQVDWLRQ�6HW�&RPSXWDWLRQ

����������������&RPSXWH��(&3�������������������������
%(*,1�(&3�&RPSXWLRQ

HFS� �),567�FRPSBVHW��
5ROOEDFNB7R�HFS�

(1'�(&3�&RPSXWLRQ
(1'�)$,/85(

SXEOLF�FODVV�)DLOXUHB2YHUB4XDQWLW\�H[WHQGV�)DLOXUH
^
�����������9DULDEOH�GHFODUDWLRQV���������������������

$FWLYLW\6HW�DBVHW���
$FWLYLW\6HW�FRPSBVHW��HFS��
5HVRXUFH6HW�2LQYHQWRU\��24XDQWLW\�

��LQW�L�VL]H�

������������0HWKRGV�WR�KDQOGH�DUJXPHQWV�RI�IDLOXUH����
��SXEOLF�YRLG�6HW$UJXPHQWV��2EMHFW>@�DUJV��^

IRU��LQW�L� �����L���DUJV�OHQJWK���L����
IDLOXUH$UJV�DGG(OHPHQW��DUJV>L@���

`
��SXEOLF�2EMHFW>@�*HW$UJXPHQWV��^

2EMHFW>@�REM� �QHZ�2EMHFW
>�IDLOXUH$UJV�VL]H���@�

IDLOXUH$UJV�FRS\,QWR��REM���
UHWXUQ�REM�

`
SXEOLF�&ODVV>@�*HW$UJXPHQW7\SHV��^
&ODVV>@�FOD� �QHZ�&ODVV

>�IDLOXUH$UJV�VL]H���@�
IRU��LQW�L� �����L���IDLOXUH$UJV�VL]H�����L���
FOD>L@� �IDLOXUH$UJV�HOHPHQW$W�L��JHW&ODVV���

UHWXUQ�FOD�
`

�������������������&RPSXWH�FRPSHQVDWLRQ�VHW�����������
SXEOLF��$FWLYLW\6HW�&RPSHQVDWLRQ6HW&RPSXWDWLRQ���^

FRPSBVHW� �QHZ�$FWLYLW\6HW�����
LQW�2UGHUB1R�
��,QWHJHU�*HW$UJXPHQWV��>�@��LQW9DOXH���
24XDQWLW\ 6(/(&7B'%5(&25'6�´:)B'%�µ�

´6(/(&7�TXDQWLW\�)520�2UGHU)RUP�:+(5(
2UGHU)RUP�2UGHU1R µ���2UGHUB1R��

DBVHW� $&7,9,7<B(;(&87('�
DFWLYLW\�*HW%HORQJ:RUNIORZ���*HW:RUNIORZ,'����
VL]H 6,=(B2)�DBVHW����
IRU��L ��L� VL]H�L���
�^

��������LI��,17(56(&7�5(6285&(B:527(B%<�DBVHW��L��
24XDQWLW\��� �(PSW\6HW�

����������FRPSBVHW� �81,21�FRPSBVHW��DBVHW��L���
`

UHWXUQ�FRPSBVHW��
`

����������������&RPSXWH��(&3��������������������������
SXEOLF�(&3�(&3&RPSXWDWLRQ���^

HFS),567��FRPSBVHW�����
UHWXUQ�QHZ�(&3�HFS��

`
`

Fig. 9. Translating of the WfFH code into the Java program.

5 Performance Evaluation

We conduct a series of experiments to evaluate the performance of the failure-
handling system in JOO-WfMS. The performance was evaluated by measuring the
time required to instantiate the execute code, compensation, and failure-handling
objects as well as the computation of compensation set and ECP. All the experiments

148 G.-H. Hwang, Y.-C. Lee, and B.-Y. Wu

were performed on a PC with a 1-GHz Pentium VI processor, 512 MB of RAM, the
MS Windows 2000 operating system, and Java Development Kit 1.4.1_01 [22].

Table 1. The times required to instantiate the execute code, compensation handler, and failure
objects (in seconds)

Activity A1

Execution code object (code_a1.ser – 169 bytes) 0.025� 0.021�

Activity A2

Execution code (code_a2.ser – 169 bytes) 0.025� 0.017�

Activity A3

Execution code (code_a3.ser – 171 bytes) 0.022� 0.015�

Compensation handler object of failure F
1
 (cfii_a3.ser – 531 bytes) 0.029� 0.019�

Compensation handler object of failure F
2
 (cfoq_a3.ser – 531 bytes) 0.029� 0.020�

Compensation handler object of failure F
3
 (cfwc_a3.ser – 531 bytes) 0.033� 0.020�

Compensation handler object of failure F
4
 (cfwo_a3.ser – 531 bytes) 0.025� 0.020�

Compensation handler object of failure F
5
(cfib_a3.ser – 531 bytes) 0.031� 0.019�

Activity A4

Execution code (code_a4.ser – 169 bytes) 0.022� 0.016�

Activity A5

Execution code (code_a5.ser – 169 bytes) 0.022� 0.016�

Activity A6

Execution code (code_a6.ser – 169 bytes) 0.024� 0.016�

Failure object of failure F
1
 (fii.ser – 654 bytes) 0.030� 0.020�

Failure object failure F
2
 (foq.ser - 698 bytes) 0.032� 0.020�

Activity A7

Execution code object (code_a7.ser – 169 bytes) 0.021� 0.015�

Failure object of failure F
3
 (fwc.ser – 653 bytes) 0.029� 0.020�

Failure object of failure F
4
 (fwo.ser – 651 bytes) 0.030� 0.020�

Activity A8

Execution code object (code_a8.ser – 169 bytes) 0.021� 0.015�

Activity A9

Execution code object (code_a9.ser – 169 bytes) 0.021� 0.015�

Failure object of failure F
5
 (fib.ser – 651 bytes) 0.030� 0.020�

Activity A10

Execution code (code_a10.ser – 170 bytes) 0.023� 0.016�

Compensation handler object of failure F
1
 (cfii_a10.ser – 532 bytes) 0.028� 0.022�

Compensation handler object of failure F
2
 (cfoq_a10.ser – 532 bytes) 0.027� 0.024�

Compensation handler object of failure F
3
 (cfwc_a10.ser – 532 bytes) 0.026� 0.022�

Compensation handler object of failure F
4
(cfwo_a10.ser – 532 bytes) 0.027� 0.019�

Compensation handler object of failure F
5
(cfib_a10.ser – 532 bytes) 0.027� 0.022�

� The serialized Java objects are on the local hard disk.
� The serialized Java objects are on a remote Web site in the same network segment (100Mbps).

Table 1 presents times required to instantiate the execute code, compensation, and
failure-handling objects of the workflow shown in Fig. 3. In the JOO-WfMS, all these
objects are translated into serialized Java objects to support dynamic linking and exe-
cution. We also list the size of the serialized Java objects, e.g., the execution code
object of activity A1 comprised 169 bytes. The serialized Java objects are either on the

A New Language to Support Flexible Failure Recovery 149

local hard disk or on a remote Web site in the same network segment (100Mbps).
Table 2 shows times required to compute the compensation set and ECP. Experimen-
tal results obtained demonstrate the efficiency and practicability of the proposal fail-
ure-handling model.

Table 2. The times required to compute the compensation set and ECP (in seconds)

Failure F
1

3.20E-4
Failure F

2
6.26E-4

Failure F
3

1.88E-4
Failure F

4
9.40E-5

Failure F
5

9.40E-5

6 Conclusion

The paper has addressed workflow failure recovery in WfMSs. The new failure-
recovery model proposed in this paper provides the workflow designer with a WfFH
language in which to write programs to guide the recovery. New features of the pro-
posed new model include: (1) computing the ECP and compensation set according to
the execution results during the workflow process run-time, (2) employing data-flow
analysis technology to guide the failure-recovery process, (3) allowing multiple fail-
ures to occur in a single activity with different recovery definitions, and (4) minimal
dependency between activities of the failure-recovery definitions, thereby reducing
the maintenance cost and improving the reusability of the workflow process.

Due to space limitations, some important issues are discussed only briefly or not at
all. First, in our implement, each recovery definition written in the WfFH language is
translated into a Java object, which makes the JOO-WfMS use a Java-based workflow
engine to activate the failure-recovery process. Second, we have also designed an
activity-monitoring protocol for recording the accesses of shared resources, and this
forms the basis for the data-flow analysis technology used in our model. Third, we
have not described how to send the arguments of the recovery definitions to the com-
pensation subroutines. Refer to [21]�for�more�details.

References

1. D. Georgakopoulos, M. Hornick, and A. Shet. Overview of Workflow Management: From
Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel Data-
bases, Vol. 3, No. 2, 1995, Pages 119–153.

2. Shi Meilin, Yang Guangxin, Xiang Yong, and Wu Shangguang. Workflow Management
Systems: A Survery. International Conference on Communication Technology, 1998.

3. A. Elmagarmid, and W. Du. Workflow Management: State of the Art vs. State of the Mar-
ket. Proceedings of NATO Advanced Study Institute on Workflow Management Systems,
1997.

4. Workflow Management Coalition. Workflow Reference Model. Workflow Management
Coalition Standard, WfMC-TC-1003, 1994.

5. Workflow Management Coalition. Workflow Management Systems: A Survery. Workflow
Handbook, 2001.

150 G.-H. Hwang, Y.-C. Lee, and B.-Y. Wu

6. Nina Edelweiss and Mariano Nicolao. Workflow modeling: Exception and Failure Han-
dling Rrepresentation. IEEE International Conference of the Chilean Computer Science So-
ciety, 1998.

7. Fabio Casati, Stefano Ceri, Stefano Paraboschi, and Guiseppe Pozzi. Specification and
Implementation of Exceptions in Workflow Management Systems. ACM Transactions on
Database Systems, Vol. 24, No. 3, September 1999, Pages 405–451.

8. Claus Hagen and Gustavo Alonso. Exception Handling in Workflow Management Systems.
IEEE Transactions on Software Engineering, Vol. 26, No. 10, October 2000,
Pages 943–958.

9. Weimin Du, Jim Davis, and Ming-Chien Shan. Flexible Specification of Workflow Com-
pensation Scopes. ACM Group, Phoenix, Arizona, USA, 1997.

10. M. Kamath and K. Ramamrithan. Failure Handling and Coordinated Execution of Concur-
rent Workflows. IEEE International Council for Open and Distance Education, 1998.

11. J. Eder and W. Liebhart. Workflow recovery. IEEE International Conference on Coopera-
tive Information Systems, 1996.

12. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Jour-
nal of Circuits, Systems and Computers, Vol. 8, No. 1, 1998, Pages 21–66.

13. Sea Ling and H. Schmidt. Time Petri nets for workflow modelling and analysis. IEEE
International Conference on Systems, Man, and Cybernetics, 2000.

14. N.S. Glance, D.S. Pagani, and R. Pareschi. Generalized process structure grammars
(GPSG) for flexible representations of work. Proceedings of Conference on Computer Sup-
ported Cooperative Work, 1996.

15. James Gosling, Bill Joy, and Guy Steele. The Java Language Specification (First Edition).
Addison-Wesley, Reading, Massachusetts, USA, 1996.

16. D. Worah and Amit Sheth. Transactions in Transactional Workflows. In: S. Jajodia and L.
Kerschberg (eds) Advanced Transaction Models and Architectures, Kluwer Academic,
Boston, Massachusetts, USA, 1997.

17. Afred V. Aho, Ravi Sethi, and Jeffery D. Ullman. Compilers Principles, Techniques, and
Tools, Addison-Wesley, Reading, Massachusetts, USA, 1986.

18. Gwan-Hwan Hwang, Huey-Der Chu, and K.C. Tai. Testing of Non-Deterministic Client–
Server Database Applications. The 2001 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2001), June 25–28, 2001,
Monte Carlo Resort, Las Vegas, Nevada, USA.

19. Gwan Hwan Hwang, Sheng-Jen Chang, and Huey-Der Chu, “Testing Client/Server Data-
base Applications,” Technical Report, National Taiwan Normal University, 2002.
http://bashful.ice.ntnu.edu.tw/~ghhwang/papers/Testing_CSDB.pdf.

20. Sun Microsystem, Inc. JSR-000053 Java™ Servlet 2.3 and JavaServer Pages™ 1.2 Specifi-
cations. http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html, March 2002.

21. Gwan-Hwan Hwang and Yung-Chuan Lee, “The Architecture of JOO-WfMS and its im-
plementation,” Technical Report, National Taiwan Normal University, 2003.

22. Sun Microsystem, “The Source for Java(TM) Technology,” http://java.sun.com, 2002.

	1 Introduction
	2 Motivation Examples
	3 The WfFH Language
	3.1 The Structure of Activities to Support WfFH
	3.2 The Skeleton of the Recovery Definition
	3.3 Methods in WfFH

	4 The System Architecture and Implementation
	5 Performance Evaluation
	Activity A1

	6 Conclusion
	References

