
RESEARCH ARTICLE

Defects in skeletal muscle subsarcolemmal

mitochondria in a non-obese model of type 2

diabetes mellitus

Nicola Lai1,2,3*, China Kummitha1,2,3, Charles Hoppel4,5,6

1 Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United

States of America, 2 Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia, United

States of America, 3 Department of Biomedical Engineering, School of Engineering, Case Western Reserve

University, Cleveland, Ohio, United States of America, 4 Department of Pharmacology, School of Medicine,

Case Western Reserve University, Cleveland, Ohio, United States of America, 5 Center for Mitochondrial

Disease, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America,

6 Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United

States of America

* nlai@odu.edu

Abstract

Skeletal muscle resistance to insulin is related to accumulation of lipid-derived products, but

it is not clear whether this accumulation is caused by skeletal muscle mitochondrial dysfunc-

tion. Diabetes and obesity are reported to have a selective effect on the function of subsar-

colemmal and interfibrillar mitochondria in insulin-resistant skeletal muscle. The current

study investigated the role of the subpopulations of mitochondria in the pathogenesis of

insulin resistance in the absence of obesity. A non-obese spontaneous rat model of type 2

diabetes mellitus, (Goto-Kakizaki), was used to evaluate function and biochemical proper-

ties in both populations of skeletal muscle mitochondria. In subsarcolemmal mitochondria,

minor defects are observed whereas in interfibrillar mitochondria function is preserved. Sub-

sarcolemmal mitochondria defects characterized by a mild decline of oxidative phosphoryla-

tion efficiency are related to ATP synthase and structural alterations of inner mitochondria

membrane but are considered unimportant because of the absence of defects upstream as

shown with polarographic and spectrophometric assays. Fatty acid transport and oxidation

is preserved in both population of mitochondria, whereas palmitoyl-CoA increased 25% in

interfibrillar mitochondria of diabetic rats. Contrary to popular belief, these data provide com-

pelling evidence that mitochondrial function is unaffected in insulin-resistant skeletal muscle

from T2DM non-obese rats.

Introduction

Muscle metabolic function, vital in maintaining health and quality of life, declines in type 2

diabetes mellitus (T2DM), accompanied by mitochondrial dysfunction and insulin resistance

(IR). Skeletal muscle IR plays a major role in the pathogenesis of T2DM, because, during

the postprandial state, 65–80% of whole body glucose uptake takes place in skeletal muscle
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stimulated by insulin [1]. Resistance of skeletal muscle to insulin is related to an accumulation

of lipids, which appears to impair the insulin signaling pathway [2] that triggers glucose uptake

in the muscle. The cause of the accumulated lipid-derived products (or lipid derivatives) is less

clear and there still is a debate as to whether skeletal muscle mitochondria have a primary or

secondary role in this accumulation [3,4].

Both human and animal model studies provide conflicting results concerning the primary

or secondary role of skeletal muscle mitochondria in determining IR [5,6]. It is not clear

whether lipid accumulation is caused by mitochondrial dysfunction rather than by enhanced

fatty acid transport and/or overload [4, 7, 8]. T2DM is typically associated with obesity; skeletal

muscle mitochondrial function, electron transport chain (ETC) activity, fatty acid transport,

and β-oxidation function have been investigated under IR and obese conditions [6, 9, 10].

These investigations have been extended to lean and obese conditions without IR to determine

the causal relationship between IR, fat overload, and mitochondria energy metabolism during

the progression of the disease [11, 12, 13].

In obese T2DM patients, bioenergetics studies on permeabilized skeletal muscle fibers [5,

14] showed lower respiration rate than that measured in the control group. But respiration

rate normalized to citrate synthase as a biomarker of mitochondria content was similar in dia-

betic and control subjects. In contrast to the view of normal mitochondria function, another

study [6] reported reduced complex I activity in skeletal muscle mitochondria isolated from

frozen biopsies from obese T2DM patients. In obese nondiabetic subjects, palmitate oxidation

was reduced in muscle strips [9] while not altered in isolated mitochondria [12]. In the former

study, citrate synthase was not measured while in the second study citrate synthase was

reduced in muscle of obese women [12]. This difference could be attributed to the reduced

mitochondrial content within the muscle strip as reported for the permeabilized fibers studies

on diabetic patients [5, 14]. Another skeletal muscle mitochondria study also reported similar

palmitoylcarnitine oxidation in obese nondiabetic and T2DM patients [10]. Consistent with

the notion of a decreased mitochondrial content in muscle of obese patients, a study on leg

substrate oxidation using arteriovenous measurements, observed a reduced capacity to oxidize

fatty acid in obese subjects [6]. In the latter study, muscle carnitine palmitoyltransferase

(CPT1) activity was reduced in obese individuals. CPT1 is a mitochondrial enzyme that cata-

lyzes the conversion of fatty acyl-CoA to acylcarnitine, which can be transported into mito-

chondria for β-oxidation. In lean insulin-resistant individuals, alteration of skeletal muscle

metabolism involved a 30% decrease in muscle substrate oxidation in the presence of elevated

intramyocyte lipid and plasma fatty acid concentrations [11].

A high fat diet animal study using skeletal muscle and isolated mitochondria suggested that

mitochondria fatty acid oxidation was increased in the insulin-resistant rodent [15]. Moreover,

in a similar study, an increase of incomplete fatty acid oxidation was found to contribute to

skeletal muscle insulin resistance [16]. Also, a high fat diet was reported to increase mitochon-

dria proton leak and capacity to oxidize fatty acid although this capacity was not increased in

skeletal muscle [17]. The accumulation of fatty acid oxidation intermediates appears to cause

mitochondrial uncoupling with ATP production inefficiency.

Skeletal muscle mitochondria exist in at least two populations, subsarcolemmal (SSM) and

interfibrillar (IFM); diabetes and obesity have been reported to selectively affect SSM rather

than IFM in determining alterations of bioenergetic function. In a human study, the relative

succinate oxidase activity was selectively reduced in SSM rather than in IFM of skeletal muscle

of obese and T2DM populations [18]. In the same study, electron transport chain (ETC) activ-

ity of SSM was reduced in diabetic patients compared to active lean adults. In obese Zucker rat

skeletal muscle, fatty acid transport, esterification, and oxidation were enhanced in SSM, but

unaltered in IFM [19]. In contrast, another study reported that the respiratory capacity of SSM
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was reduced and that of IFM was preserved in skeletal muscle of rats fed a high fat diet [13].

Thus, the cause for the discrepancies between human and animal model studies is not

resolved. The role of the subpopulations of mitochondria in the pathogenesis of IR in the

absence of obesity has not been dealt with. Therefore, in this study, a non-obese and spontane-

ous rat model of T2DM, Goto-Kakizaki (GK), was used to evaluate bioenergetic function in

both populations measuring integrated mitochondria function, as well as β-oxidation and

ETC activity. Our proposal was that in the absence of obesity in insulin-resistant rats, bioener-

getic function and biochemical properties of the ETC as well as fat oxidation are not altered in

skeletal muscle mitochondria, both SSM and IFM.

Methods

Materials

Reagents: Dispase, trypsin and collagenase type 2 were purchased from Worthington Bio-

chemical Corporation (Lakewood, NJ. Unless otherwise specified, all other reagents were

obtained from Sigma-Aldrich (St Louis, MO, USA).

Buffers

The buffers, Chappell–Perry (CP) (100 mM KCl, 50 mM MOPS, 5 mM MgSO4, 1mM ATP)

[20], CP2 (Buffer CP plus 0.2% defatted BSA and 1 mM EGTA), KME (100 mM KCl, 50 mM

MOPS and 0.5 mM EGTA, pH 7.4) were prepared for tissue storage, mitochondrial isolation,

and mitochondria storage [21]. The respiration buffer (80 mM KCl, 50 mM MOPS, 1 mM

EGTA, 5 mM KH2PO4, and 1 mg/mL defatted BSA, pH 7.0) was used for mitochondrial oxy-

gen uptake measurements [22].

Animal model

The experimental protocols conformed to the Guide for the Care and Use of Laboratory Ani-

mals published by the National Research Council [23] and were approved by the Case Western

Reserve University Institutional Animal Care and Use Committee. A non-obese model of type

2 diabetes mellitus (T2DM), Goto-Kakizaki (GK) rats, and Wistar colony rats as a control

group were obtained from Charles River. Twelve male GK and 12 male Wistar (W) rats were

housed in pairs in the Animal Resource Center facilities of Case Western Reserve University

under a 12:12-h light-dark cycle and were fed a standard diet chow (Prolab Isopro RMH 3000,

LabDiet, St. Louis, MO). The GK and W rats were euthanized by decapitation using a guillo-

tine at 18 wk (n = 6) and 28 wk (n = 6) of age.

Isolation of mitochondria

Skeletal muscle SSM and IFM were isolated from quadriceps muscle (2–4 g wet tissue) using a

previously developed [24, 25] protocol with minor modifications. After fat and connective tis-

sue were removed, the skeletal muscle was blotted dry and weighed. To separate fibers, the tis-

sue was minced and resuspended in cold (4˚C) buffer (CP) (5 ml/ g wet tissue), and incubated

with 0.18 mg dispase per gram wet tissue in CP buffer with stirring on ice for 10 min. Subse-

quently, 10 ml of CP2 buffer/g wet tissue was added to the sample and centrifuged at 7650g for

10 min. The pellet was resuspended in CP2 buffer (5 ml/ g wet tissue) and homogenized at 400

rpm (Fisher Maxima Overhead Stirrer) with a loose pestle (Potter-Elvehjem) and centrifuged

for 10 min at 580 g. The supernatant was decanted from the myofibrillar pellet and centrifuged

at 7000 g for 20 min to collect the SSM fraction. The myofibrillar pellet was resuspended in CP

buffer (10 mL/ g wet tissue), treated with collagenase 2 (30 mg/g wet tissue) and trypsin (5 mg/
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g wet tissue) for 10 minutes on ice with stirring, and homogenized at 1600 rpm with a tight-fit-

ting pestle (Potter-Elvehjem). An equal volume of CP2 buffer was added to the homogenate

and centrifuged for 10 min at 12,000 g. The pellet was resuspended in CP2 buffer (5 ml/g wet

tissue) and centrifuged for 10 min at 350 g. To isolate the IFM fraction, the supernatant was

collected by filtering through two layers of gauze and centrifuged at 7000 g for 20 min. Both

SSM and IFM fractions were washed first with 5 ml/g wet tissue of CP2 buffer and second with

2.5 ml/g wet tissue of KME buffer (BSA free). The KME buffer was used to resuspend the final

pellets to a concentration of ~30–40 mg mitochondrial protein/ml. Ice-cold conditions were

maintained throughout the SSM and IFM isolation procedure. The Lowry method was used to

determine mitochondrial protein concentration [24].

Oxidative phosphorylation

Oxygen consumption of SSM and IFM was measured with a Clark-type electrode (YSI model

53) in a final volume of 0.5 mL of respiration buffer [22, 26] at 30˚C in the presence of the fol-

lowing substrates and inhibitors: glutamate (G, 20 mM), pyruvate (P, 10 mM) plus malate (M,

5 mM), glutamate (G, 20 mM) plus malate (M, 5 mM), succinate (SR, 20 mM) plus rotenone

(7.5 μM), duroquinol (DHQR, 1 mM) plus rotenone (7.5 μM), N,N,N0,N0-tetramethyl-p-phe-

nylenediamine (TMPD, 1 mM) plus ascorbate (A, 10 mM) plus rotenone (TMPD+A)R,

7.5 μM, palmitoylcarnitine (PCN, 40μM) plus malate (M, 5 mM), palmitoyl-CoA (P-CoA,

20μM) plus malate (M, 5 mM) and plus carnitine (C, 5mM) assays. The concentrations of sub-

strates, inhibitor, uncoupler, and ADP refer to the final concentrations in the chamber. The

assays with complex II, III, and IV substrates were performed with rotenone to inhibit com-

plex I. ADP at a concentration of 0.1 mM was used to deplete endogenous substrates before

adding the substrates G, P+M, G+M, PCN+M or P-CoA+M+C, and 0.2 mM ADP (ADP-stim-

ulated) to measure State 3 respiration rate. For only S, DHQ, and TMPD+A assays ADP was

added to 0.1 mM (ADP-stimulated). After ADP depletion, State 4 respiration was measured

(ADP-limited). The mitochondria State 3 and 4 respiration rates were measured twice for each

assay. The respiration rate was then measured in the presence of high ADP concentration, 2

mM ADP. Finally, 0.2 mM of the uncoupler dinitrophenol (DNP) was added to the chamber

[25] to measure the oxidative capacity of mitochondria. The respiration rate is reported in

nAO min-1 mg-1 while the conversion factor to express the respiration rate in pmolO2 s-1 mg-1

is 8.333.

Respiratory control ratios (RCR, State 3 divided by State 4) are calculated to quantify the

control of oxygen consumption by phosphorylation (‘coupling’). The concentration of ADP

was determined by an enzymatic method [21] and used to calculate the ADP/O ratio (ADP

mole added for mole of oxygen atom consumed), an index of the efficiency of oxidative phos-

phorylation [27].

Preparation of samples and enzymatic assays

Mitochondrial enzyme activities were measured as described previously [22, 26, 28, 29].

Briefly, fresh SSM and IFM (1 mg of mitochondrial protein) samples were treated with cholate

(10 mg cholate /mg of protein) [30] in 25 mM KPi/2mM EDTA buffer to a final volume of 1

mL supplemented with mammalian protease inhibitor cocktail (10 μL/ mg). The samples were

diluted 1:10 for the enzymatic assays. For cytochrome c oxidase (CIV) activity, 0.1 mg of fresh

intact mitochondria were suspended in 25 mM KPi/2mM EDTA buffer + protease inhibitor

and assayed with dodecyl D-maltoside in the cuvette with and without KCN; the first-order

rate constant was determined and the cyanide sensitive activity recorded. ETC enzyme activi-

ties were measured by specific donor–acceptor oxidoreductase activities in 0.1 M phosphate
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buffer using a spectrophotometer: CI, complex I–rotenone-sensitive; CIII, complex III—anti-

mycin A-sensitive; NCR, rotenone-sensitive NADH-cytochrome c reductase; SCR, antimycin

A-sensitive succinate-cytochrome c reductase; CS, citrate synthase; NFR, NADH-ferricyanide

reductase; SDH, succinate dehydrogenase; Aconitase; CII, TTFA sensitive complex II; CII+Q,

TTFA sensitive complex II with exogenous coenzyme Q analogue. The donors and acceptors

span specific regions of the ETC [26, 28, 29]. The ETC activity components were determined

using biochemical kinetics principles. Cytochrome c oxidase activity also was determined by a

polarographic assay using the protocol for kidney [31] and heart [32] mitochondria.

Skeletal muscle tissue samples were used to determine citrate synthase (CS) and succinate

dehydrogenase (SDH) activity and were treated with cholate (10 mg cholate/10 mg) in 25 mM

KPi/2mM EDTA buffer to a final concentration of 10 mg wet weight tissue/mL supplemented

with mammalian protease inhibitor cocktail (10 μL/ mL). Citrate synthase activity and succi-

nate dehydrogenase were measured using the spectrophotometer at 412 and 600 nm, respec-

tively [26, 33]. Mitochondrial cytochrome contents (aa3, b, c1, c) were determined using the

method of Williams [34].

Statistical analysis

Results are reported as means ± standard deviation. Differences between control and diabetic

rats during the time course were compared by one-way analysis of variance. A difference of

P< 0.05 was considered significant.

Results

Animal model

The characteristics of the animal model are reported in Table 1. The body weight of diabetic

(GK) rats is significantly lower than that of control (W) rats at both 18 and 28 weeks. The body

weight of GK rats does not change from 18 to 28 weeks, while that of W rats significantly

increases by 24%. The GK rats are hyperinsulinemic and hyperglycemic at 18 and 28 weeks

(Table 1).

Skeletal muscle mitochondria

To quantify mitochondrial content in skeletal muscle, the enzyme activities of CS and SDH are

used as mitochondrial markers. At 18 weeks, both CS and SDH activity are 15–25% lower in

skeletal muscle of diabetic rats compared to controls, but no difference is observed between

those two groups at 28 weeks (Table 2). This suggests a lower mitochondrial content in skeletal

muscle of only diabetic rats at 18 weeks than that at 28 weeks. The specific activity of CS

and SDH in the isolated mitochondrial is similar in the two groups of rats at both ages. The

Table 1. Animal characteristics: Body weight, insulin and glucose concentration in blood.

Unit W GK W GK

18 wk 28 wk

Body weight [g] 474±47 350±23* 590±58 389±21#

Insulin [ng mL-1] 2.8±1.4 5.2±2.1* 2.4±2.1 5.1±1.4#

Glucose [mM] 6±1 16.5±2.3* 6.5±1.7 17.4±3#

(n = 6)

* (P<0.03) W-18wk vs. GK-18 wk;
# (P<0.03) W-28wk vs. GK-28 wk;

https://doi.org/10.1371/journal.pone.0183978.t001
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yield for SSM and IFM of diabetic rats is 20% lower than from control rats only at 18 weeks

(Table 2). These yields in GK and W groups are consistent with the lower CS and SDH activity

in GK versus W rats at 18 weeks.

Aconitase activity measures mitochondrial matrix oxidative stress. The aconitase specific

activity is similar in both populations of mitochondria from control and diabetic group of rats.

In control rats, aconitase activity is 30% higher at 28 wk than at 18 wk.

Oxidative phosphorylation

The rates of oxidative phosphorylation for SSM and IFM are measured at 18 and 28 weeks of

age in both GK and W rats (Table 3 and Figs 1–3). In both populations of mitochondrial, the

RCR of the W and GK group of rats in both age groups is higher than 15 when glutamate is

used as substrate. The RCR values indicate that both populations of mitochondrial are highly

coupled in the diabetic and control rats at both ages.

Subsarcolemmal mitochondria

In GK rats (Table 3) at 18 weeks, state 3 respiration rate measured with glutamate is statistically

reduced in comparison to the W rats (13.5%). With addition of either a saturating concentra-

tion of ADP or by the uncoupler, DNP, the difference is eliminated. In the presence of gluta-

mate and malate, the state 3 rate is not different (wk 18, W: 328±26 vs. GK: 300±25 nAO min-1

mg-1). In the presence of pyruvate and malate, the respiration rate with a non-saturated con-

centration of ADP is similar in both groups of rats (Fig 1a), while with a saturating concentra-

tion of ADP it is reduced in GK (Fig 2a). Substrates for complex II, III, and IV are used to

probe the respective entry points of reducing equivalents into the ETC. In the presence of

these substrates, state 3 respiration rate with an unsaturated or saturated concentration of

ADP is similar in GK and W rats. Only with a substrate for complex III (Fig 2c) the uncoupled

mitochondrial respiration rate in GK is statistically different from that of W rats. State 4

Table 2. Specific activities of mitochondrial enzymes in skeletal muscle homogenate (U g-1 wet weight) and isolated subsarcolemmal (SSM) and

interfibrillar (IFM) mitochondria (U g-1 mitochondrial protein).

Unit W GK W GK

18 wk 28 wk

Skeletal muscle homogenate

Citrate Synthase [U g-1] 40±6 33±3* 35.5±3 39.6±6

Succinate Dehydrogenase [U g-1] 3.2±0.3 2.4±0.3* 3.8±0.5 3.9±0.6

Isolated mitochondria

Citrate Synthase SSM [U g-1] 1714±143 1658±112 1753±163 1646±303

IFM [U g-1] 1915±140 1929±272 2088±234 2208±65

Succinate Dehydrogenase SSM [U g-1] 224±24 220±27 232±20 206±35

IFM [U g-1] 242±21 254±46 275±18 288±32

Aconitase SSM [U g-1] 579±196 627±53 690±71 600±86

IFM [U g-1] 593±105 695±75 826±99¥ 750±93

Mitochondrial Yield

SSM [mg g-1] 3.5±0.4 2.8±0.3* 3.1±0.6 2.8±0.4

IFM [mg g-1] 8.7±1.4 7.0±0.9* 6.9±1¥ 6.5±1

(n = 6)

* (P<0.05) W-18wk vs. GK-18 wk;
¥ (P<0.05) W-18wk vs. W-28 wk;

https://doi.org/10.1371/journal.pone.0183978.t002
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respiration rate measured for different substrate complexes of the ETC is similar in GK and

control rats. For the same substrate, RCR is similar in GK and W rats except for a trivial differ-

ence for succinate and duroquinol (S1 Fig).

In GK rats at 28 weeks, the respiration rates for glutamate (Table 3) and for pyruvate

+malate (Fig 1a) are similar to those of the control rats. In the diabetic group, state 3 respira-

tion rate for complex II, III, and IV substrates with non-saturated or saturated concentrations

of ADP are lower (20–25%) than those of the control group (Figs 1a and 2a). Uncoupled oxida-

tive capacity with complex II and III substrates is similar in GK and control rats, whereas with

complex IV the rate is lower in GK compared to the control (Fig 2c).

State 4 respiration rate (Fig 1c and 1d) is similar between controls and diabetic rats except

that with (TMPD+A)R substrate the respiration rate in diabetic SSM is lower than control

group without any change in RCR. Also, state 4 respiration rate increases for complex III sub-

strate from 18 to 28 weeks in diabetic rats with a small change in RCR.

Interfibrillar mitochondria

In both age groups, the state 3 respiration rate measured with glutamate (Table 3), pyruvate +

malate, or substrates for complex II, III, and IV is not different between diabetic and control

rats (Fig 1b). Additionally, the respiration rate obtained with a saturated concentration of

ADP or by DNP is not altered in diabetic rats at 18 and 28 weeks (Fig 2b and 2d). In diabetic

rats, state 4 respiration rates for complex I and III substrates increase from 18 to 28 weeks (Fig

1d), but with no differences between diabetic and control rats.

The ADP/O ratios determined for complexes I, II, and III substrates are similar in diabetic

and control rats in both populations of mitochondria at 18 and 28 weeks (S2 Fig). In the pro-

gression from 18 to 28 weeks, the ADP/O ratio slightly decreases in both mitochondrial popu-

lations in GK with complex I and III substrates.

Table 3. Oxidative phosphorylation using glutamate in skeletal muscle subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM)

in control (W) and diabetic (GK) rats.

Unit W GK W GK

18 wk 28 wk

SSM

State 3 [nAO min-1 mg-1] 297±22 257±26* 305±22 279±22

State 4 [nAO min-1 mg-1] 14±5.5 12.7±4.4 12.6±4 17.3±6

RCR [-] 26.5±16.1 21.9±5 27±10 18.0±5.6

ADP/O [-] 2.96±0.2 2.90±0.21 2.88±0.17 2.70±0.14

Maximal ADP [nAO min-1 mg-1] 409±31 380±48 384±56 361±31

DNP [nAO min-1 mg-1] 446±35§ 421±63§ 439±66§ 407±34§

IFM

State 3 [nAO min-1mg-1] 365±27 339±39 356±37 363±36

State 4 [nAO min-1mg-1] 18.6±4.7 22.4±6.3 15.4±10 18.9±4.6

RCR [-] 21.5±7.5 16.3±5.4 30.7±15.7 20.7±5.7

ADP/O [-] 2.99±0.11 3.04±0.26 2.84±0.25 2.8±0.13

Maximal ADP [nAO min-1mg-1] 550±47 509±71 467±65 528±55

DNP [nAO min-1mg-1] 602±55§ 573±57§ 535±94§ 608±24§

The respiratory rate is normalized to mg of mitochondrial protein.

* (P<0.05) W-18wk vs. GK-18 (n = 6)
§ (P<0.02) Maximal ADP vs. DNP (n = 6)

https://doi.org/10.1371/journal.pone.0183978.t003
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Fatty acid oxidation

Mitochondrial fatty acid oxidation was measured in presence of CPT1-dependent (palmitoyl-

CoA) and independent (palmitoylcarnitine) substrates. In particular, the enzyme, CPT1, cata-

lyzes palmitoyl-CoA conversion on the outer membrane of mitochondria in the presence of

carnitine and the resulting palmitoylcarnitine is transported into mitochondria via carnitine-

acylcarnitine translocase. Therefore, oxidative phosphorylation rates measured in the presence

of palmitoyl-CoA and palmitoylcarnitine provide information on CPT1 and mitochondrial

oxidation of fatty acids. In SSM, fatty acid oxidation in the presence of palmitoylcarnitine or

palmitoyl-CoA is similar in diabetic and control rats at 18 and 28 weeks (Fig 3). In IFM, fatty

acid oxidation in the presence of palmitoylcarnitine is similar in both rat groups at 18 and 28

weeks while that in the presence of palmitoyl-CoA reveals differences between GK and W rats.

At 18 wk, palmitoyl-CoA oxidation is similar in both diabetic and control groups, whereas the

oxidation rate increases by 25% from 18 to 28 weeks in IFM from diabetic rats; oxidation does

not change in control rats during this period (Fig 3b and 3d). Thus, this adaptation results in a

Fig 1. State 3 (a and b) and state 4 (c and d) respiration rates of skeletal muscle SSM and IFM at 18 and 28 weeks. (Control (W) and

diabetic (GK) groups are designated with open and grey bars, respectively). Complex I substrate (malate and pyruvate, P); Complex II

(succinate and rotenone, SR); Complex III (duroquinol and rotenone, DHQR); Complex IV (TMPD, ascorbate and rotenone, (TMPD+A)R.
¥(P<0.05) W-18wk vs. W-28; ¶(P<0.05) GK-18wk vs. GK-28; #(P<0.05) control W-28wk vs. diabetic GK-28; (n = 6), Mean ± SD.

https://doi.org/10.1371/journal.pone.0183978.g001
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respiration rate 30–35% higher in GK rats than that in the control group at 28 weeks and

approaches the oxidation rate of palmitoylcarnitine.

Electron transport chain and cytochrome assays

The SSM and IFM function of the ETC complexes is evaluated with specific assays that quan-

tify the activity of the ETC components. The activity of the ETC components in SSM and IFM

of diabetic rats are similar to those of the control (Fig 4) group for both age groups. In SSM

and IFM, the activity measured for a) rotenone-sensitive CI; b) linked complex I and III

(NCR), c) flavin protein domain of complex I (NFR); d) linked complex II and III (SCR) in

GK is similar to that observed in controls. In SSM, complex II activity with endogenous coen-

zyme Q (CoQ) is unaffected, whereas at 28 weeks a minor decrease in activity is observed

when exogenous CoQ is added (Fig 4). In IFM, complex II activity with endogenous or exoge-

nous CoQ is unaffected at 18 and 28 weeks. In SSM and IFM, complex III activity is similar in

GK and controls at both 18 and 28 weeks; however, in SSM from GK rats there is an aging

Fig 2. ADP saturated concentration (a and b) and uncoupled (c and d) respiration rates of skeletal muscle SSM and IFM at 18 and 28

weeks. Notation as in Fig 1. Complex I substrate (malate and pyruvate, P); Complex II (succinate and rotenone, SR); Complex III (duroquinol

and rotenone, DHQR); Complex IV (TMPD, ascorbate and rotenone, (TMPD+A)R. *(P<0.05) W-18wk vs. GK-18 (n = 6); #(P<0.05) W-28wk vs.

GK-28; (n = 6), Mean ± SD.

https://doi.org/10.1371/journal.pone.0183978.g002
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effect with a decrease at 28 weeks relative to that at 18 weeks. We do not consider as physiolog-

ically relevant the differences observed for complex II and III activities because the linked

activities of complex I and III (Fig 4, NCR) and of complex II and III (Fig 4, SCR) are unaf-

fected in diabetic rats.

In the control group, cytochromes aa3, b, and c1 content in SSM are similar to IFM (Fig 5),

while cytochrome c is higher in IFM than SSM. In the SSM of both control and diabetic rats,

the content of most of the cytochromes is similar with age except for cytochrome c, where only

in the control group, there is a significant increase (26%) from 18 to 28 weeks. At 28 weeks,

cytochrome aa3, b, and c content in SSM of GK rats is significantly lower than that of the con-

trol rats. In the IFM population at 18 weeks, no differences are observed between diabetic and

control groups for any cytochromes. At 28 weeks, cytochrome aa3, and c1 are not different.

Cytochrome b and c content increases significantly by 32% and 21% in the control group and

by 10% and 16% in diabetic rats between 18 and 28 weeks, respectively.

The first order rate constant of complex IV measured in solubilized mitochondria (Fig 4) is

not different between GK and control rats, but in both coupled or uncoupled SSM the

Fig 3. ADP unsaturated (a and b) and saturated concentration (c and d) respiratory rates of lipid substrates in skeletal muscle

SSM and IFM at 18 and 28 weeks. Notation as in Fig 1. Malate and palmitoylcarnitine, PCN; malate, palmitoyl-CoA and carnitine (P-CoA

+C). ¶(P<0.05) GK-18wk vs. GK-28; #(P<0.05) W-28wk vs. GK-28; (n = 6), Mean ± SD.

https://doi.org/10.1371/journal.pone.0183978.g003
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oxidation rate in the presence of complex IV substrate is reduced in GK rats. To reconcile this

apparent discrepancy a polarographic assay of azide-sensitive cytochrome c oxidase was per-

formed in permeabilized SSM with endogenous cytochrome c (Fig 6). The assay reveals no dif-

ferences between GK and W rats. With the addition of exogenous cytochrome c, the activity in

both GK and W SSM increases about 2.5 fold; however, a statistically significant decrease of

30% activity is observed in GK rats compared to controls.

Discussion

An integrated approach that combines oxidative phosphorylation, electron transport chain activ-

ity, and biochemical measurements was used to evaluate bioenergetic function in mitochondrial

populations of insulin-resistant skeletal muscle from non-obese rats. This approach provided

large representative samples of both SSM and IFM populations with a high recovery and high

quality from both groups of rats. There were minor defects in oxidative phosphorylation only in

Fig 4. The enzymes activity of ETC of isolated skeletal SSM and IFM at 18 and 28 weeks. Notation as in Fig 1. Rotenone-sensitive NADH-

cytochrome c reductase (NCR); NADH ferricyanide reductase (NFR); Antimycin A-sensitive succinate-cytochrome c reductase (SCR); Complex II

activity (CII); total complex II with exogenous coenzyme Q (CII+Q); Complex III (CIII); Complex IV (CIV). ¥(P<0.05) W-18wk vs. W-28; ¶(P<0.05) GK-

18wk vs. GK-28; #(P<0.05) W-28wk vs. GK-28; (n = 6), Mean ± SD.

https://doi.org/10.1371/journal.pone.0183978.g004
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SSM while IFM function was preserved. In SSM at 18 weeks, mitochondria dysfunction was con-

fined to a minimally reduced oxidative phosphorylation rate with glutamate, but was normal

with a saturated concentration of ADP or in the presence of other substrates of the ETC. In SSM

at 28 weeks, the oxidative phosphorylation rate was slightly reduced in the presence of complex

II, III, and IV substrates, but is considered unimportant because of the absence of defects

upstream as we found with polarographic and spectrophometric assays. Thus, these small devia-

tions do not affect overall SSM bioenergetic function of the diabetic rats. Fatty acid oxidation is

unaltered in SSM and IFM at both ages, and palmitoyl-coA oxidation was even enhanced in

IFM GK at 28 weeks. These data provide compelling evidence that mitochondrial function is not

affected in insulin-resistant skeletal muscle from T2DM non-obese rats.

Our study follows a previous study on the metabolic function of skeletal muscle mitochon-

dria of GK rats evaluated using 31P MRS and BOLD MRI [35]. The selfsame GK and control

rats used to study mitochondria function in vivo [35] were used in this work to study mito-

chondria in vitro. The mitochondrial function in skeletal muscle of GK rats was normal at 12

and 20 weeks and is consistent with our study supporting the absence of impairment in the

bioenergetic function of the subpopulations of mitochondria.

The GK rat is a well-characterized non-obese model of T2DM that exhibits spontaneous

moderate hyperglycemia and peripheral and hepatic insulin-resistant hyperinsulinemia

[36,37] without abnormal elevated content of lipids in blood. In our work, the hyperglycemia

and hyperinsulimeia observed in the GK rats at 18 and 28 weeks confirmed the metabolic

characteristics of this T2DM model observed in previous work [37, 38, 39].

Mitochondrial content

A reduced mitochondria content in GK rats was observed only at 18 weeks, while there was no

difference between the two groups of rats at 28 weeks. A lower content of SDH in GK com-

pared to controls was previously reported [40]. The animals in the control group continue to

grow between 18 to 28 weeks of age while GK rats do not. Consistent with this result, a GK

Fig 5. The cytochrome content in isolated skeletal SSM and IFM at 18 and 28 weeks. Notation as in Fig 1. ¥(P<0.05) W-18wk vs. W-28; ¶(P<0.05)

GK-18wk vs. GK-28; #(P<0.05) W-28wk vs. GK-28; (n = 6), Mean ± SD.

https://doi.org/10.1371/journal.pone.0183978.g005
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study [41] reported reduced skeletal muscle mass and alteration of muscle fiber distribution,

e.g., type I and II, in GK rats. Thus, a skeletal muscle fiber shift from one fiber type to another

could be related to the effects observed in the rats at 28 weeks.

Subsarcolemmal mitochondria

In the presence of glutamate, SSM from GK rat had a lower state 3 respiration rate than that of

the control group (Table 3). Oxidative phosphorylation in the presence of glutamate provided

information not only on the phosphorylation process, but also on glutamate transport and

glutamate dehydrogenase; that in the presence of pyruvate and malate reflects the monocar-

boxylate and dicarboxylate transporters as well as pyruvate and malate dehydrogenase. The

difference between GK and W observed in state 3 respiration in the presence of glutamate

Fig 6. Polarographic cytochrome c oxidase assay of skeletal muscle SSM at 28 weeks. Notation as in Fig 1. #(P<0.05) W-28wk

vs. GK-28; (n = 5), Mean ± SD.

https://doi.org/10.1371/journal.pone.0183978.g006
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should not be ascribed to a defect in complex I because it vanished when a saturated concen-

tration of ADP is used to stimulate oxidative phosphorylation.

The SSM defect observed could be related to the ATP synthase, the adenine nucleotide

translocase (ANT) and/or inorganic phosphate transporter. ANT is responsible for ADP/ATP

exchange across the mitochondrial inner membrane, while the phosphate transporter provides

for the movement of inorganic phosphate into mitochondria. Thus, a reduced respiration rate

could be related to a low affinity of ANT for the substrate, but this does not appear to be the

case because in our study, the respiration rate with an unsaturated concentration of ADP was

not reduced for P+M, G+M, or P-CN. Alternatively, the difference between the two groups

could be related to glutamate transporter or glutamate dehydrogenase activity, but this possi-

bility is eliminated because oxidative phosphorylation at saturated concentration of ADP and

uncouple respiration rate are unaffected. The difference between GK and W in state 3 respira-

tion rate was eliminated in the presence of glutamate and malate; glutamate is metabolized by

aspartate aminotransferase and malate by malate dehydrogenase.

The analysis of the respiration rate in the two populations of mitochondria revealed a spe-

cific alteration of the oxidative phosphorylation using substrates for complex II, III, and IV

(Figs 2 and 3) only in skeletal muscle SSM of the older GK rats. By the addition of an uncou-

pler, this defect was relieved when using substrates for complex II and III but was still present

using complex IV substrate. The lack of effect on oxidation starting at complex II and III sug-

gests that complex IV does not affect upstream substrates and is physiological irrelevant. The

components of the ETC work as units in series with electrons entering in complex I, II and III

sites that share the same common path to reach complex IV to reduce oxygen and produce

water. Thus, complex IV is located upstream of the ETC and it can control the amount of elec-

trons flowing from complex I to IV per unit of time. In our study, complex I was inhibited

with rotenone to evaluate the function of the other complexes. The defect in Complex IV does

not limit the electron flux and thus, the respiration rate in presence of complex II or III sub-

strates because the uncoupled mitochondria respiration rate measured in GK rats with com-

plex II or III substrates was similar to that observed in the control group. Furthermore,

complex V could be responsible for the respiration difference observed for complex II and III

substrates. Under these conditions, the oxidative phosphorylation rates were reduced by 20–

25% in comparison to the control group. Although the effect of these mitochondrial alterations

on the skeletal muscle remains to be determined, they should not have a major effect on energy

metabolism. Indeed, two independent NMR studies reported that mitochondria ATP produc-

tion was not altered in re-perfused [35] or contracting [42] skeletal muscle at 18 and 28 weeks

old GK rats, respectively.

Alternative mechanisms related to a decrease in mitochondrial cytochromes could explain

the age-dependent defects in oxidative phosphorylation observed in GK rats at 28 weeks. At

this age, significant decreases (50%, 40%, and 16%) were observed in cytochrome aa3, b, and c
in SSM of GK rats compared to the control group. To determine whether cytochrome c was

responsible for the defect, a polarographic assay of complex IV with and without exogenous

cytochrome c was performed. The addition of exogenous cytochrome c did not correct the

defect in the polarographic activity of cytochrome c oxidase. This indicates that beside the

reduced amount of cytochrome c, other factors are responsible for the observed defect.

Cytochrome b also was lower than that of the control group (Fig 5). The total cytochrome b
content is distributed between complexes II and III within the mitochondria [43]. Neverthe-

less, the reduced cytochrome b content in SSM does not affect complex II or III function

because the state 3 respiration rate observed for complex II or III substrate was relieved by the

addition of the uncoupler (Fig 2a and 2c). Moreover, the activity of complex II and III was

unaffected in GK rats (Fig 4). The decrease of the transmembrane protein, cytochrome aa3,
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which is a subunit of complex IV, is not responsible for the defect observed in SSM of GK rats

(Fig 5), because the complex IV assay does not reveal any enzyme activity difference between

GK and W rats (Fig 4). It should be noted that the differences between GK and W rats in oxi-

dative phosphorylation rate in the presence of complex IV (Fig 2a and 2c) and endogenous

cytochrome c substrates disappear when the mitochondrial membrane is disrupted (Fig 6).

This indicates a potential aging effect (from 18 to 28 weeks) leading to a structural defect of the

inner mitochondria membrane. A selective aging effect on heart mitochondrial dysfunction

was previously reported and attributed to an altered membrane environment, rather than to a

reduced protein subunit content [32].

In conclusion, the complex IV defect is not considered relevant because it does not affect

the respiration rate obtained with C-II and III substrates and the complex IV enzyme activity

assay does not reveal any difference between GK and W rats.

Interfibrillar mitochondria

The IFM function was normal in GK rats at both age groups. The bioenergetic assays per-

formed to probe the function of the ETC components showed no difference between GK and

controls (Figs 1 and 2). In addition, the biochemical assays to quantify the activity of com-

plexes of the ETC showed no difference between GK and controls (Fig 4). This evidence was

consistent with the absence of difference in state 3 respiration rate measured in presence of

an unsaturated or saturated concentration of ADP and in uncoupled mitochondria (Figs 1

and 2).

Fatty acid oxidation

Both transport and utilization of fat in myocytes contribute to lipid accumulation. Previous

studies presented conflicting results on mitochondrial dysfunction as a key factor in impairment

of fatty acid utilization in skeletal muscle cells [4, 7, 8, 44]. Some obese and insulin resistant

human and animal studies provided evidence in support of enhanced fatty acid transport [45,

46]. A bioenergetics study on permeabilized skeletal muscle fiber reported on even higher oxida-

tive phosphorylation rate using palmitoylcarnitine in GK rats [38] compared to the control

group but similar ADP/O. In that study palmitoylcarnitine respiration rate decreased 5% from 6

to 16 weeks. Thus, the difference between this and our study possibly is related to the GK age.

In our study, the higher respiration rate with palmitoyl-CoA substrate in IFM of GK rats

than that obtained for the control group was not related to differences in respiratory capacity

of the ETC or mitochondria content since ETC components and CS activities were similar in

the two groups. Also, the difference between GK and W rats should not be attributed to an

effect of palmitoyl-CoA on ANT, since the palmitoyl-CoA oxidation rate difference between

GK and W also was observed with a saturated concentration of ADP (Fig 5). In this condition,

the effect of palmitoyl-CoA inhibition on ANT transferase, which is responsible for export/

import of ATP/ADP from/to the mitochondrial matrix, is negligible. The difference in palmi-

toyl-CoA oxidation between the two groups of rats could be related to a higher CPT1 activity

in IFM of GK rats than that in IFM of Wistar rats. Although these results are in agreement

with enhanced FA transport in obese Zucker rats, the skeletal muscle adaptations appear dif-

ferent between obese and non-obese rats during the development of the disease. While obesity

appears to enhance FA transport and oxidation predominately in SSM by an increase of FAT/

CD36, CS, and β-hydroxyacyl-CoA dehydrogenase activities with unaltered CPT1 [19], the

absence of obesity and presence of T2DM lead to enhancement of FA oxidation only in IFM

by CPT-I. It is possible that the enhanced ability to metabolize fatty acid is related to a com-

pensatory skeletal muscle adaptation to the reduced utilization of carbohydrate fuel due to
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insulin resistance. In T2DM patients and obese insulin-resistant skeletal muscle, CPT-I activity

was reduced [47]. The effects of obesity on skeletal muscle metabolic function were also inves-

tigated in human subjects [12]. Obesity was found to not alter FA transport and oxidation,

while impairment of mitochondrial function was attributed mainly to a reduced content of

these organelles.

Mitochondria efficiency

The ADP/O ratio provides information on oxidative phosphorylation efficiency. The ADP/O

ratio is similar in both groups of rats although there is an age effect with a significant decrease

of the ratio of both SSM and IFM from 18 to 28 weeks only for GK rats. In human skeletal

muscle, the mitochondrial ADP/O ratio of T2DM patients was not different from that of the

control group although there was a trend for less efficient mitochondria in the diabetic group

[10]. Animal studies showed that skeletal muscle adaptations to obesity are accompanied by an

increase of oxidative phosphorylation efficiency [48, 49] that potentially can contribute to the

development of insulin resistance induced by a high fat diet [50]. Thus, our study showed a dif-

ferent mitochondrial adaptation to IR in the absence of obesity in comparison to that occur-

ring in obesity.

In conclusion, in the absence of chronic tissue fat overload, the bioenergetic function of

both mitochondrial populations of insulin-resistant skeletal muscle is not compromised. Mito-

chondrial function is normal in T2DM in the absence of a fat overload during the progression

of the disease. Thus, increased fuel load rather than mitochondrial oxidative capacity is the

trigger event altering insulin action in T2DM [4].

Supporting information

S1 Fig. Respiratory control ratio (RCR) of skeletal muscle SSM (a) and IFM (b) at 18 and

28 weeks. Notation as in Fig 1. Complex I substrate (malate and pyruvate, P); Complex II (suc-

cinate and rotenone, SR); Complex III (duroquinol and rotenone, DHQR). ¥(P<0.05) W-18wk

vs. W-28; ¶(P<0.05) GK-18wk vs. GK-28; �(P<0.05) W-18wk vs. GK-18 (n = 6); #(P<0.05)

control W-28wk vs. diabetic GK-28; (n = 6), Mean ± SD.

(TIF)

S2 Fig. ADP to atomic oxygen phosphorylation ratio ADP/O of skeletal muscle SSM (a)

and IFM (b) at 18 and 28 weeks. Notation as in Fig 1. Complex I substrate (malate and pyru-

vate, P); Complex II (succinate and rotenone, SR); Complex III (duroquinol and rotenone,

DHQR). ¶(P<0.05) GK-18wk vs. GK-28; (n = 6), Mean ± SD.

(TIF)
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