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Abstract: An innovative generative design strategy, based on shape grammar, is proposed for the
minimum-weight design of diagrid tall buildings. By considering the building as a three-dimensional
vertical cantilever beam with a tubular section under horizontal load, it is evident that bending
and shear stiffness demands vary along the width and elevation of the building. Further, while
the structural design of tall buildings is usually governed by stiffness, the predominant design
criterion for diagrids could be the local strength demand, especially for low slenderness values,
thanks to the inherent rigidity of the triangular pattern. Starting from these considerations, in this
paper, a generative design strategy is proposed, able to find diagrid patterns that accommodate the
differentiated stiffness demand along width/elevation and satisfy the predominant design criterion,
stiffness or strength. The design strategy is applied to tall building models characterised by different
slenderness values. The comparison to diagrid patterns analysed in previous literature works in
terms of structural weight and performance parameters highlights the effectiveness of the design
strategy and the efficiency of the generated patterns.

Keywords: tall buildings; diagrid; structural grammar; generative design; structural optimisation;
genetic algorithms; steel structures

1. Introduction

Design is a typical “wicked problem” [1], namely an ill-structured problem, char-
acterised by open-ended expectations, emerging constraints, non-quantifiable features,
absence of global optimality and contradicting solution paths [2]. A problem, thus, that
cannot be successfully treated with analytical approaches throughout a linear process. The
structural engineers traditionally tame this wickedness and complexity, preserving the
human control of the design workflow and relying on: insight into the fundamental me-
chanical aspects of the problem with simplified models, parameter definition, parametric
analysis and iterative calculations, reference to precedents and conservativeness. How-
ever, intuition, experience and iterations might not be sufficient for manually exploring
unprecedentedly large and complex design spaces.

Recently, a paradigm shift has occurred in the structural design workflow thanks to
Computational Design (CD) that fully entails the use of computation for the exploration
of structural solutions and the development of design ideas [3,4]. Within CD, generative
design (GD) is an approach that employs algorithmic or ruled-based processes to generate
multiple and complex solutions [3]. GD tools are able to seek for uncommon solutions
that usually do not fall within a standard and defined set of shapes/topology and cannot
be anticipated in the phase of the algorithm writing, also including so-called “happy
accidents” [5]. These characteristics make the approach widely used in fields like product
design, mechanical engineering and architecture. In the case of the structural engineering,
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the outcomes of GD procedures most of times are used just to encourage divergent thinking
rather than becoming an actual design solution. The reason for this mainly lies in the
intrinsic nature of the generative procedure, which is hardly able to constrain the design
solutions for feasibility sake at the scale and size of a building structure.

Nevertheless, a number of researchers and designers are advancing both the theoretical
aspects and the application potentials of GD in the structural engineering context, where,
among the most promising approaches, the rule-based or grammar-based strategies show
high versatility and effectiveness in generating novel and unexpected structural solutions.
Shape grammar, firstly proposed by Stiny and Gips [6] for analysing and interpreting
existing design styles and solutions both in art and architecture, as well as for formulating
new styles, has been subsequently generalised [7] and imported in the field of engineering
design by coupling shape generation and performance assessment [8,9].

Within the academy, worthy contributions are provided by References [2,10-15], only
to cite few. In particular, Mirtsopoulos and Fivet [2] propose a rule-based design strategy,
which combines shape grammar and graphic statics methods for generating equilibrated
truss structures, with a great degree of control allowed to the designer throughout the
process. The interaction between the machine intelligence and the human designer, and the
exploitation of the relevant potential benefits, is also central in the approach proposed by
Saldana Ochoa et al. [10], the so-called Combinatorial Equilibrium Modelling, an algorithm
grounded on vector-based three-dimensional (3D) graphic statics and aimed to the fast
generation and transformation of non-standard structural forms. As an important part of
exploration in the conceptual design phase, Loos et al. [11] emphasise the need of data
visualisation in structural design for comparing whole series of structural geometries and
topological alternatives, thus enabling designers to make informed decisions, exemplifying
the cases of bowstring bridges and grid shells. Computational tools for exploring wide
design spaces in the phase of conceptual structural design are thoroughly reviewed by
Rolvink et al. [12], while Lee et al. [13] propose an approach that combines shape grammar
and graphic statics for exploring trans-typological structural solutions in various design
scenarios, with designs obtained using few predefined parts and simple grammar rules.

The above papers constitute a representative sample of recent research works employ-
ing grammar or rule-based approaches, which appear mainly focused on truss struc-
tures, grid shells or domes for large-span roofs. Few contributions, instead, are de-
voted to buildings [14-16], and in particular to tall buildings, for which this approach
seems particularly suitable to generate structural patterns for tube configurations. Among
these, the pioneering and sophisticated work by Meyer and Fenves [17] provides a three-
dimensional grammar for defining a structural and architectural design language for tall
buildings, by means of syntactic structures composed of 3D shapes and functional attributes.
Kicinger et al. [18] present an evolutionary computation support tool for design of tall
buildings that provides both conceptual solutions and detailed designs; after subdividing
the building in parallel frame alignments, the procedure identifies cells (i.e., beam column
grid units) where different types of bracings can be positioned according to the evolu-
tionary search algorithm. Automated search algorithms are also utilised in the context
of the building engineering and design industry, particularly by the most advanced and
high-profile companies, such as SOM (Skidmore, Owings & Merrill), for identifying sets of
optimal solutions for tall building projects, but also to gain understanding as to why the
optimal solutions perform so well [19,20].

In this paper, a generative design algorithm is proposed for creating structural patterns
for tall buildings that are both optimal and feasible. Attention is specifically focused to
diagrid-like patterns. The diagrid, indeed, emerged in the last two decades as the most
efficient solution for tall buildings with tube configurations [21-24], and is a uniform grid of
diagonal members arranged according to triangulated tessellation of the building facades.
The diagonals act both as inclined columns and as bracing elements, carry only axial forces
and experience only axial deformations, thus minimising racking deformations and shear
lag effects [24]. Thanks to the triangulated geometry, once the pattern is defined, the phase
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of member sizing is straightforward and can be easily carried out by hand calculations, as
proposed in References [22,24,25] for regular diagrids. Despite their inherent efficiency,
diagrid structures can be further improved. In fact, the analogy between tall building and
vertical cantilever beam under lateral load [20,26,27] clearly suggests that the structural
pattern should not be uniform for accommodating the variation of bending and shear
stiffness demands along elevation, with diagonals gradually steeper going from the top
to the base of building. As first contributions in this direction, design procedures for the
generation and preliminary sizing of diagrids with variable angle have been proposed in
the literature [28-30]. A deeper insight into the problem mechanics, however, reveals that
optimal diagrid patterns should be made by diagonal with angle and density varying both
along building elevation and facade width, as can be obtained by mapping the principal
stress trajectories of the equivalent cantilever beam on the building fagade [20,31].

The generative design strategy proposed here emerges from the above considerations.
It deals with structural patterns made by triangle units, and is based on the use of structural
grammar, which is composed by a shape grammar and structural optimisation. The shape
grammar defines the design rules for creating the geometry of the pattern, made of triangle
units with diagonals’ slope and number that can vary along both height and width of the
building fagade. The design solutions generated by means of the grammar rules are then
examined and ranked in the phase of structural analysis and optimisation, and the optimal
solution is identified as the lightest one able to satisfy structural performance targets. In
the following, a detailed description of the structural grammar is firstly provided. The
GD strategy is applied to tall building models characterised by different slenderness ratios
and the optimal patterns are obtained. The comparison to diagrid patterns analysed in
previous works by the authors [27,31-33] in terms of structural weight and performance
parameters highlights the effectiveness of the design strategy and the efficiency of the
generated patterns.

2. Construction of Structural Grammars for the Generation of Topology
Optimisation (TO) Patterns

A structural grammar is defined by a shape grammar built within a parametric
design space and by structural analysis and optimisation processes. In particular, the
parametric design space controls the design of the geometry by means of some parameters
that represent the variables of the problem and help to limit and drive the design space
generation. The grammar is defined by such parameters and intertwined rules with which
the algorithm makes a series of automated choices and decisions. These decisions lead to a
number—theoretically—infinite of geometries, where all possible solutions are considered
as potentially feasible and efficient, despite not being imagined and anticipated in the phase
of algorithm writing. However, shape grammar only explores different solutions in terms
of geometry, and thus is completely agnostic about their structural behaviour. Therefore,
for each solution generated by the shape grammar, a structural model is created, structural
members are sized and analyses are carried out under design loads. Both the generation of
the design alternatives and the choice of the optimal one are then demanded to optimisation
algorithms. In this study, the fitness function is the structural weight of the diagrid pattern.
Concerning the choice of the fitness function, it is well known that minimising the weight
of the structure does not necessarily minimize the overall construction cost [27], and, more
importantly, other constructional, architectural, even haptic considerations can strongly
affect the final design choice. However, the structural weight is an index of structural
efficiency, since it gives a measure of the material consumption for satisfying a required
performance level, and in the context of tall building design, it represents an item of great
interest for ranking and selecting the different structural options.

The structural grammar is developed within the software Grasshopper [34], one of
the most popular and advanced visual scripting environments, embedded into the virtual
modelling package Rhinoceros [35]. Grasshopper is an algorithm editor that allows for
writing custom subroutines intuitively, by means of visual scripting, and with a high level
of versatility. For this reason, it is widely employed in both research and professional fields.
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The structural analyses are carried out through Karamba [36,37], a finite element analyser
integrated into the Grasshopper workflow. The optimisation phase is developed through
Galapagos, a genetic algorithm engine integrated into the Grasshopper platform as well.
The whole process of structural grammar is schematised in Figure 1. The flow chart is
divided into four blocks (a, b, ¢, d), each devoted to a different phase of the process, i.e.:

Generation of geometry with rule-based shape grammar (block a).

Creation of the structural model (block b).

Structural analysis, cross-section sizing and output processing (block c).
Optimisation with genetic algorithms, i.e., generation of Topology Optimisation (TO)
patterns (block d).

definition of the
geometrical parameters
J 1.1-1.2
/ definition and subdivision /

of design domain

definition of distances between
intersection points of diagonals a;

T
[2.1-2.4 [3.1-34 ] 4.1

GGD modula Gansition beD Gorners chamferinD
L J

, DGD pattern ; a

Y.
Topol
creation of structural model and Op;)ifn?zZ?i{m
calculation of I(I)ad conditions b with GA d

¥
/ definition of cross-section family /

assignment of the first
cross-section to members

structural analysis

update
cross-section

[ I [ [ |
[w ] [om] [0 [ [wrR] [ocR]

Figure 1. Flow chart of the structural grammar; DGD = DiaGriD, DCR = Demand to Capacity
Ratio, Dyop = Displacement at the top of the building; Dy, = limit Displacement at the top of the
building, W = Weight, Wy, = minimum Weight obtained after optimization, D =Displacement,
IDR = Interstorey-Drift, GA =Genetic Algorithm.

In the following sub-sections, the above phases are described in detail.
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2.1. The Shape Grammar

The shape grammar conceived here consists of two types of rules: rules for the
definition of the design domain, and rules for the discretisation of the design domain.
The former rules define building fagades as the design domain and divide them along
height into a certain number of macro-modules and modules. The latter rules generate the
diagrid pattern on the fagades, with distribution and cross-sections of the diagonals that
vary within a module and from one macro-module to another. These rules, included in
block a of Figure 1, are described in the following.

2.1.1. Rules for the Definition and Subdivision of the Design Domain

The first rule concerning the definition of the design domain identifies the volume
occupied by the building model. The external surface of this volume represents the building
fagades, where the diagrid pattern should be applied. The facades are vertically subdivided
into a number of stacking macro-modules, each containing a certain number of modules,
each of which, in turn, spans an integer number of floors. The geometrical features of the
pattern, i.e., the number and slope of diagonals, are the same for the modules within a
macro-module, though they vary from one macro-module to the other.

The main geometrical parameters that define the design domain are:

Width of the building facade, B.

Building height, H.

Inter-story height, hs.

Number of macro-modules, 1.

Number of modules, 1,,;, for each macro-module (where j varies from 1 to ).

Total number of modules, 1, in the pattern (given by ¥j n,,; for j from 1 to ny).

In the applications presented in this paper, the width of the building facade, B, and
the inter-story heights, &, are fixed a priori. Instead, the number of macro-modules, 1y,
the number of modules, Nj, for each macro-module, and, in turn, the total number of
modules, n,,, vary to generate building models characterised by different extensions of
the macro-modules and, more in general, different building heights. Having set the value
of the building width, B, buildings characterised by different slenderness ratios, H/B, are
obtained. The parameters and the rules that regulate the definition and subdivision of
the design domain are illustrated in the example of Figure 2, which depicts a 68-storey
building, subdivided into 3 macro-modules (1151 = 3), the lowest one spanning 5 modules
(n,,1 = 5), while the intermediate and upper ones both cover 6 modules (1, = 1,3 = 6).

PARAMETERS: PARAMETERS:
- Base points (b, b,, by, by) - Base surface
-h
o b
-y
® b, % b,
RULE 1.1 RULE 1.2
B
D x s g
B a
s
= Q
= &
=~ @)
a <
g’ =
=

Figure 2. Rules for the definition of the design domain.
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2.1.2. Rules for the Discretisation of the Design Domain

Given the definition and vertical subdivision of the design domain, the rules for the
creation of the pattern require the preliminary definition of the pattern unit, i.e., the module.
As shown in Figure 3, the single module, m;, within the j-th macro-module, M]-, represents
the horizontal fascia covering the full width of the building fagade and spanning multiple
floors. The module height, h,;, is given by hy,; = ng ;,;-hs, with ng ,,; number of storeys of
the single module, and /s inter-storey height. The height of the j-th macro-module, Hy;,
is given by Hyyj = nyj-hyj, with ny,; already defined as the number of modules. For the
sake of simplicity, in Figure 3, two different reference systems are defined on the building
facade, i.e., a global system of coordinates (X, Y), and a local system (x, y), referred to the
single module. For example, the mid-height of the lowest module in the j-th macro-module
has local ordinate y = ,,;/2 and global ordinate Y = Yjj; 1 + hy,j/2, with Yyy; 1 the distance
between the top of the j-th—1 macro-module and the base of the building.

module

i

Hy; =nyhy| M, < h §

I 1 By =Ngphy b2

Y = Yy g+ 2
rE——-F % o . 2 |
| mj
I | module I}mj

ml=-===

Y = Ymj-1

H X |
1 macro-module |

; B/2 I

X >
B B
>

Figure 3. Schematic representation of the module.

The geometrical discretisation of the single module is defined by diagonals, which create
a sequence of rhomboid shapes, made by superimposing two triangle units, base-to-base.
Since the diagonal pattern is assumed doubly symmetric within each module (Figure 3),
the algorithm starts from the definition of the diagonals in one quarter of the module and
then mirrors the diagonals with respect of the two axes of symmetry. The discretisation of
the relevant macro-module is then obtained by simple replication of the module along
the vertical direction. The rules for the definition of the number and slope of diagonals
within a module are established starting from the parameters a;; in Figure 4, which define
the horizontal distance between the end points of the i-th diagonal (of the generic module
within the j-th macro-module), and work as sliders. Starting from the lowest module of
the j-th macro-module and exploiting the double symmetry of the module, the algorithm
generates the geometry of the triangular units from the left edge to the mid-line of the
building facade, namely within one quarter of module (Rules 2.1 and 2.2 in Figure 4).
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PARAMETERS: ay;, a,;, ..

el ‘

fixed
point

RULE 2.1 RULE 2.2 -
_— P \
P 2 g
Pyj (x5, ¥ij) Z?ﬂ/ a; =§ i
a, a, a; a; |
g RULE 2.3
MIRROR
% RULE 2.5 RULE 2.4
—_— —
MERGING REPLICATE
MACRO-MODULES ) )

Figure 4. Rules for the discretisation of the design domain.

Then, the geometrical layout is mirrored once with respect to the vertical axis, and once
with respect to the horizontal axis, to generate the entire module (Rule 2.3 in Figure 4), which
is replicated along elevation to cover the relevant macro-module (Rule 2.4 in Figure 4). Finally,
all macro-modules are stacked along elevation (Rule 2.5 in Figure 4).

It is interesting to focus on Rules 2.1 and 2.2. They describe the geometry and the possible
variation of the triangular units in the single module. It is obtained by means of sliders that
control the horizontal distances, ajj, between the diagonals’ end points Py = (xl-]-, yl-]-) (Rule 2.1
in Figure 4). The first end of the first diagonal is not a slider, since it is fixed and defined by
local coordinates (0, h,,,;/2). The other points Pj; = (x;, y;;) work as sliders, moving on one of
the horizontal lines at y = 0 or y = h,,j/2, thus varying the abscissas and, in turn, the slopes
of diagonals. The parameter 4;; is given by Equation (1):

aj = Xjj — Xj_1,j @
It can also be expressed by Equation (2):

hs- Ms,mj

aij - 2-tan(6i]-) (2)

withi=1,..., nd]-/2 and 14 the number of diagonals covering the module. Therefore, the
slope of the i-th diagonal in the j-th macro-module 6;; is given by Equation (3) (Rule 2.1 in

Figure 4):
W
91']‘ =tan"! <2am]> 3)
)

and the length L, ;; of the i-th diagonal of the j-th macro-module can be derived by Equation (4):

Cll']'

() "’

Lyjij =
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The number of diagonals, 14/2, to be included in the half-width of the building facade

is governed by the sum of the distances 4;;, i.e., Z?ijl/z ajj, which should be exactly equal to
B/2. This is equivalent to state that the abscissa of the end point of the innermost diagonal
should be exactly equal to B/2 (Rules 2.2 in Figure 4); if it is greater than B/2, then the algorithm

rejects the diagonals” arrangement and moves the sliders to obtain Z?i’i/z ajj = B/2.

Within the algorithm, the user should define one of the following: the range of
variation for the sliders, the range of variation for the diagonals’ slope, or the maximum
number of diagonals. The three choices are geometrically interrelated. Setting the range of
variation for a;; leads to a definite range of the number of diagonals and, depending on the
module height, to a range of 6;;. The most straightforward approach is to restrain the range
of the diagonals’ slope, since it accounts for both structural logics and considerations on
constructional feasibility. Therefore, considering that 6;; should vary between 6;; 4, and
03 min (€.g.,45° and 85°) and knowing the module height /,,; and the number of storeys
in the single module 7, (e.g., between 2 and 10), a range for a; can be preliminarily
obtained as a function of hmj (i.e., of by and ns,mj), which, in turn, determines the range for
the number, ngj, of diagonals. Hence, the parameter a;; varies between a minimum and
maximum value, i.e., 4 i, and a; y,y, according to the Equation (5):

hm]-
2. tan(eij,max)

hnj

< a: < @ —
- 2 tan(0i,min)

Aij min = ®)
where h,,,; can be expressed as: hy,; = hs 11 ).

Once the discretisation of the macro-modules is done, the algorithm defines the
connection between two successive macro-modules. Since the module geometry may
change from one macro-module to the other, the number and slope of the diagonals
characterising two stacking macro-modules are usually different. In such layouts, the
diagonals’ ends at the interface between the two macro-modules are staggered, as shown in
the example of Figure 5, thus the continuity of the diagrid structure might be undermined.

[ PR

Figure 5. Example of unfeasible solution.

To overcome this problem, potentially arising according to the generation strategy,
specific rules are defined in Figure 6 for inserting a special module (i.e., the upper module
of the macro-module) which works as a transition belt between the macro-modules. In
particular, the first rule identifies the points that should be connected, i.e., the points
with maximum ordinate of the lower module and the points of minimum ordinate of the
upper module, which are characterised by abscissas offset from each other (Rule 3.1 in
Figure 6). The second rule joins the corresponding points of the upper and lower half
modules, from the middle to the edge of the module (Rule 3.2 in Figure 6). The third
rule inserts diagonals connecting the points of the upper and lower modules located in
offset positions, always going from the inner to the edge zone of the module (Rule 3.3 in
Figure 6). Finally, the fourth rule mirrors the constructed diagonals, to cover the entire
module (Rule 3.2 in Figure 6). It is interesting to note that, already in this phase of geometric
design, the rules of shape grammar are able to guarantee the generation of structurally
acceptable solutions.
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RULE 3.1 RULE 3.2

—_—_——

POINT JOINING
IDENTIFICATION W CORRESPONDENT
yVv) POINTS

JOINING
RULE 3.3 | SHIFTED
POINTS

RULE 3.4

MIRROR
DIAGONALS

Figure 6. Rules for the construction of the transition belt.

An additional aspect dealt with by the generative grammar is the construction of
the tapered chamfering of the building corners (bird mouth profile), arising due to the
triangulated pattern and lack of corner columns (Figure 7). For this aim, specific scripting is
created, which assumes considerable importance in the generative phase, since it redefines
the volume of the building, and, in turn, the design domain.

RULE 4.1

— N\ [ ———

CORNER
TAPERS

Figure 7. Realisation of the tapered chamfering of the corners.

2.2. Construction of the Structural Model and Cross-Section Design

Once the geometric model of the building is obtained, the structural model is created
and analysed. The structural model is built (block b in Figure 1) by assigning: beam
elements to diagonals and floor lines, external restraint conditions for the building model
(globally fixed at the base by means pinned supports applied at the ends of the base
diagonals), interior constraint conditions (bending moment releases at the end of diagonals)
and vertical and horizontal loads. The phase of assessment of structural performance is
carried out (block c in Figure 1) by means of: structural analysis, sizing of diagonals’ cross-
sections, check of global top drift and output processing in terms of: top displacement,
Drop, drift along elevation, D, members’ strength demand to capacity ratio (DCR), diagrid
structural weight, W, and inter-storey drift ratio (IDR).
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The sizing of the diagonal cross-sections is carried out through an iterative optimisa-
tion process implemented in the component Optimize Cross-Section of Karamba [36,37].
The iterative process consists of selecting, for groups of structural elements previously
defined by the user, the smallest cross-section that guarantees the strength or stability
requirement, within a set of user-defined cross-sections, sorted in ascending order of size.
In particular, the algorithm starts assigning the first item of the cross-section set to each
group of elements and computes the DCR value for each element of the group. If there is
an element with DCR larger than one, then the algorithm assigns the next section of the set
and stops when the first section that guarantees the strength requirement is found. The
DCR values are computed as the ratios between the axial force in the structural member
and the relevant yielding or buckling load, according to Eurocode 3 [38], as defined in

Equation (6):
! N jf Ny >0
DCR={ N ¢ ©)
Nb,erd if Nyg<0

where N, is the axial force acting in the diagonal (positive for tension, negative for com-
pression), and N,z and Ny, 4 are the relevant axial and buckling strengths, respectively [38].

Once this local check is satisfied, the building top drift (Dyp) is verified against the
design value (Dygp ji, usually assumed equal to H/500); then, if necessary, the selected
cross-sections are adjusted to satisfy the global drift requirement.

2.3. Pattern Optimisation

The last phase of the structural grammar, which in fact involves all the previous ones,
concerns the sequential generation of several patterns and the selection of the optimal one
by means of a topology optimisation process. Within the process, patterns are generated
according to the shape grammar defined in Section 2.1, by simply varying the parameters
appointed as a;; (Figure 4) that define the distances between the end points of diagonals
in the single module. The phase of cross-section sizing, described in Section 2.2, is fully
integrated into the pattern generation process so that each potential pattern is evaluated
with the diagonal cross-sections optimally sized. In this study, the optimisation process,
based on genetic algorithms, aims to obtain the diagrid pattern characterised by the
minimum structural weight, W.

The optimisation problem is stated in Equation (7):

nMm ngj/2
minimise : W = 754} njed- ) Lajj Ay ?)
j=1 i=1
with variables : a;; = - =2%m
© T 2-tan(6y)

subjected to : Aij,min < ajj < Aijmax

i/2
v a; = B/2

fori =1, ..., nd]-/Zandj =1,..., 1M
with: 75 steel weight, n1)1 number of macro-modules , 7,,; number of modules in the j-th
macro-module, L; ;; and A;; length and cross-section area of the i-th diagonal, ngj number
of diagonals and a;; horizontal distance between intersection points of the i-th diagonal.
The j subscript identifies quantities in the single module of the j-th macro-module.

The only variables in the pattern optimisation process are the parameters a;;. By
varying a;;, the length of diagonals, L4 ;;, and the number of diagonals are directly modified,
while the cross-section area A;; changes as a consequence of the pattern modifications. As
indicated above, the values that the variable 4;; can assume are implicitly restrained by the
Rules 2.1 and 2.2 (Figure 4 and Equations (1)—(5)).

No constraints concerning the structural performance, in terms of strength and stiff-
ness design requirements, are included in the definition of the optimisation problem, since
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for each population generated by the genetic algorithm (GA), the cross-section sizing of
the diagonals is carried out through the Karamba component Optimize Cross-Sections.

It is worth observing that the vertical subdivision of the design domain into macro-
modules and modules also affects the pattern and the consequent structural behaviour of
the tall building model. However, in this study, both the number of macro-modules and
the number of modules in each macro-module are set by the designer at the beginning of
the process to reduce the space of investigation. Therefore, only the number and slope of
diagonals (and, in turn, the diagonal cross-sections) vary in each generation according to
the shape grammar.

The genetic algorithm employed is implemented in the component Galapagos of
Grasshopper and it is based on the principle of natural selection [34,39]. In particular, the
basic steps of the automatic random generation algorithm, reported in Figure 8, are:

e  First generation with random individuals, i.e., with random geometries obtained by
assigning arbitrary values to the parameters a;;. The number of individuals is set by
the parameters Population (here set to 50) and Initial Boost (here set to 2).

e Computation of the fitness function (weight) for each individual of the current genera-
tion and ranking of the individuals (patterns) according their fitness value.

e  Selection of the best individuals (lightest patterns) of the current generation, which
survive in the next generation, defined by the parameter Maintain (here set to 5%),
while the others create offspring by Mutation or Crossover.

e  Creation of offspring by coupling the other individuals of the current generation
(based on the genetic distance and governed by the parameter Inbreeding Factor, here
set to 75%).

e  Definition of the way the parents are genetically combined, by means of the parameter
Coalescence Crossover (half the genes, i.e., ajj values, belonging to one parent and half
belonging to the other parent).

e  Definition of the random genetic changes of the offspring genome, in order to increase
the biodiversity in the population (controlled by the parameter Mutation, which
mutates a single gene, i.e., the g;; value of the individuals).

ny =3 MACRO-MODULE 1[@11 Q21 431 Q41 G513 Q1 Q73
= |MACRO-MODULE 2|aq; Qp; Q3 Q4 A5z Qg A7
ng;/2 =17 MACRO-MODULE 3[a;3 a3 a3z Q43 as3 Q3 Gr3
KO
KAXAD
a;j (meters) m
INITIAL RANDOM NEW
i <X><X> variyng POPULATION PARENTS OFFSPRING POPULATION
a e —» ©®
3 45150 0 0 B a; (Y Moo o, o 2o
3 348 90 0— — OO 0000 TyaNT oo
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Figure 8. Framework of the automatic random generation algorithm.

In this study, the process stops when no progress is made for a specified number of

generations, defined by the parameter Max Stagnant, here set to 50.
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3. Building Model and Structural Solutions

A tall building model is considered as an example of application of the proposed pro-
cedure. The building model is the same as the one adopted in previous studies, in order
to compare the structural solutions of this study to counterparts obtained through other
approaches [27,31-33,40]. The building has a prismatic shape, with plan of 54 m x 54 m. The
lateral load resistance is entrusted to the diagrid fagade, while gravity loads are carried
by the diagrid and a central service core structure, as a function of the respective tribu-
tary areas. Structural patterns, appointed as TO (topology optimisation), are generated
according to the proposed procedure for three building models, characterised by the same
plan dimensions and different heights, H, thus obtaining different slenderness ratios, H/B,
namely: H/B = 3, 5, 6.6. Once the optimal TO pattern for each H/B is selected, the structural
weight and performance indexes are evaluated and compared to counterparts obtained for
diagrid and diagrid-like structures of previous studies, in order to validate the procedure
and to assess the potential advantages of the TO patterns. The patterns considered for
comparison are: Regular (RE) diagrids and Principal Direction Inspired (PDI) patterns. The
RE patterns are characterised by uniform angle, namely 60° for H/B = 3, and 70° for both
H/B =5 and H/B = 6.6, which are the diagonal angles providing the minimum weight for
the relevant slenderness ratios [40]. The PDI patterns are characterised by diagonal slopes
that vary along both elevation and width of the building facade, according to a procedure
proposed by the authors in Reference [31] for mimicking the principal stress trajectories of
cantilever beam equivalent to the building. The PDI and TO patterns are both divided into
three macro-modules, M1, M2, M3, each containing a certain number of modules, #,,1, 11,2,
n,3 (Figure 9).

nm
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Figure 9. (a) Identification of macro-modules, modules and transition belt, (b) total number of modules, 1, in the analysed

patterns, (c) number of modules for each macro-module 1,,; in the Principal Direction Inspired (PDI) and TO patterns.
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The design gravity loads are: dead load 7 kN/m?, and live load 4 kN/m?. The
horizontal loads due to the wind pressure are computed according to Eurocode 1 [41],
considering wind speed 50 m/s. The resulting global overturning moment and base shear
are equal to: 2585 MNm and 29 MN for H/B = 3, 8171 MNm and 54 MN for H/B =5, and
13,043 MNm and 69 MN for H/B = 6.6. The global stiffness and local strength design criteria
are respectively: maximum top displacement (Dyop) equal to H/500 and maximum strength
demand to capacity ratio (DCR) equal to one. The structural material used for the diagrid
is steel 5275 (f,x = 275 MPa).

In order to visually depict the breadth of the design space explored through the
generative process, in Figure 10, the solutions generated and analysed for the slenderness
ratio H/B = 6.6 are shown utilising a parallel coordinate plot. The plot provides the number
and slopes of diagonals in the single module of each macro-module characterising the
various solutions. Among them, it is possible to select the best ones, as shown in Figure 11,
which contains the solutions characterised by diagrid weight less than 80% (yellow lines)
and 50% (blue lines) of the average value, W,,, calculated considering all solutions.

Macro-module 1 Macro-module 2 Macro-module 3
Hdllellez|93|94|95I96|e7 ndz|91|92|e3|94|95|96|e7 nd}lel|92|e3|e4|65|eéle7
18 90° 18 90° 18 900
16 16 /80 \ 16
1 / 4
1 \

1 0} 0 \
A 8///4 8/ 40°
6 30° 6 30° 6 30°

Figure 10. Generative design: parallel coordinates plot for H/B = 6.6: all solutions.

Macro-module 1

Macro-module 2 Macro-module 3
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91|92|93|94|95|96|e7 ”(|3|e||92|63|e4|65|96|97

Ngp
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8 90°
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Figure 11. Generative design: parallel coordinates plot for H/B = 6.6: solutions characterised by weight less than 80% and

50% of the average value.
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In Figure 12, various generated patterns are presented to show the amount of diversity
that can be explored with the proposed approach, that, even with macro-modules and
modules fixed a priori, still provides a wide choice from which the designer can select
the solution, also considering non-structural aspects, not explicitly contemplated in the
optimisation process. In fact, it is not straightforward to account for qualitative aspects
during the optimisation processes, such as exterior appearance, daylight supply, distances
between the diagonals for functional or aesthetic reasons, etc. [16]. Therefore, a wide
class of optimised solutions, properly ranked in terms of structural efficiency, offers the
possibility of integrating non-quantitative criteria in the selection process, and eventually,
prioritising one of them even at an aware, slight sacrifice of efficiency.
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Figure 12. Examples of patterns obtained from the generative design workflow.

RE(60°)  PDI

The solutions selected at the end of the generative and optimisation process and
indicated as TO patterns are the ones characterised by the minimum diagrid weight for
each slenderness value and are depicted in Figure 13, together with the regular diagrids
(RE) and the PDI patterns, adopted as benchmark structures in the comparisons.
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Figure 13. Structural patterns: (RE) regular, (PDI) Principal Direction Inspired, (TO) topology optimisation.
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From a first visual appraisal of the TO patterns (Figure 13), it can be observed that
the diagonals are steeper and denser at the edges of the building fagade and become less
inclined toward the centre. This distribution allows for satisfying the different demands
of axial strength due to overturning moment along the width of the building facade, and
contemporarily maximises the bending stiffness of the structure. Furthermore, it can be
observed that for H/B = 6.6, the PDI and TO patterns are quite similar and both governed
by stiffness design criteria. Indeed, analyses and applications in Reference [31] have shown
that the PDI pattern exhibits optimal performance and high efficiency for slender buildings.
It is worth observing that the proposed design strategy has generated a pattern very close
to the PDI on the basis of simple geometric rules, without any underlying mechanical
concept. On the other hand, the TO patterns for H/B 3 and 5 show a less legible trend of the
diagonal angles and are both governed by the local strength criterion rather than stiffness,
thanks to the inherent stiffness gained by means of the optimal members’ arrangement.

4. Weight Comparison and Performance Assessment

In Figure 14, the TO patterns are compared to RE and PDI counterparts in terms of
unit structural weight, i.e., the total weight of the structural steel utilised for the pattern
solution divided by the total floor area of the building. The graph indicates that: for
H/B =3, the TO pattern provides the minimum weight, while the PDI and RE patterns have
similar, slightly larger weight, for H/B = 5, all patterns provide almost the same weight,
and for H/B = 6.6, the TO and PDI patterns are characterised by similar weights, rather
lower than the RE pattern counterpart.
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Figure 14. Comparison among the analysed patterns: unit steel weight.

Figure 15 depicts the normalised drift along elevation for all the analysed patterns.
Similar drift trends of TO and PDI patterns can be observed at increasing H/B, with
deformed configurations that closely recall the flexural behaviour of a vertical cantilever
beam under lateral load. In particular, the almost perfect overlapping of the drifts along
elevation obtained for the TO and PDI patterns in the case of H/B = 6.6 is a result somehow
expected, considering the strong similarity of the patterns observed in Figure 13. Looking
at H/B = 3, the drifts of the TO pattern are larger than the PDI and quite close to the RE
counterparts. Recalling Figure 14, that for H/B = 3 shows weights of the RE and PDI
patterns larger than the TO counterpart, it can be deduced that the minor stiffness provided
by the TO pattern testifies that the proposed design strategy correctly accommodates the
demand of both strength and stiffness, avoiding unnecessary stiffness at the expense of
weight increase.
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Figure 15. Normalised drift along elevation of the analysed patterns.

Figure 16 shows the values of maximum DCR, DCRx, and Dyop/Dyyyy, for each pattern,
which allow to guess the predominant design criterion between stiffness and strength, by
varying the pattern type and the slenderness ratio.
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Figure 16. Performance assessment of the analysed patterns: DCRyuax, Dtop/Dij-
In order to jointly assess performance and weight of all structural patterns, two

comparative efficiency parameters that correlate the structural weight respectively to the
stiffness and strength, are suggested in Equations (8) and (9), respectively:

E o Wmin,p Dtop,min
STF W Dtop

®)

Wmin,p

ESTR = ‘DCRgy (9)
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where:

Winin p 1s the minimum among the weights derived for the analysed patterns,

W is the weight of the current pattern,

Diop,min is the minimum among the top displacement derived for the analysed patterns,
Dtop is the top displacement of the current pattern,

DCR,y is the average value of the diagonals DCRs of the current pattern.

To fairly compare the different patterns, the relative strength efficiency ratio (E,sTr)
and the relative stiffness efficiency ratio (E,str) have been defined. In particular, for a
specific pattern, these relative efficiency ratios are given by the efficiency parameter (Esrg
or Egtr) normalised to the relevant maximum value (Estruax OF ESTR max) Obtained among
the patterns considered for each slenderness ratio. In Figure 17, these relative efficiency
ratios are reported, together with a global efficiency parameter E, given by the product of
the two ratios E, s7r and E, sTR.

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

RE PDI TO | RE PDI TO | RE PDI TO
3 5

- Er,STR o Er,STF = E
Figure 17. Efficiency assessment of the analysed patterns.

This comparison confirms the ability of the proposed strategy to provide the optimal
solution according to the dominant design criterion. It can be observed that the TO
patterns are characterised by efficiency parameters always larger than the RE and PDI
counterparts, though very close to the values of the PDI patterns for slenderness ratios 5
and 6.6. This comparison further emphasizes the ability of the proposed strategy to provide
the optimal solution according to the dominant design criterion, namely according to the
slenderness ratio.

Finally, an additional parameter to be monitored in tall building design is the Inter-
storey Drift Ratio (IDR), given by the relative horizontal displacement between two con-
secutive storeys divided by the inter-storey height. This parameter is not explicitly taken
into account in the design process, but it has been evaluated a posteriori (Figure 18) by
considering a limit value equal to 1/200. From the results given in Figure 18, it can be ob-
served that some IDR exceed the limit value, in particular at the upper storeys: this feature
generally appears in all structure typologies characterised by a primary bracing system
with diagonals or mega-diagonals that span over multiple floors. Indeed, concentrated
lateral loads act in the triangular module along the diagonal length, where intermediate
floors meet the diagonals. Therefore, while the overall lateral stiffness of the building struc-
ture strictly depends on the axial stiffness of the diagonal members, the lateral stiffness
within the module height is related to the flexural stiffness of the diagonals, which may
not be sufficient to limit the inter-storey drifts. This problem has already been analysed in
Reference [33] and solved by proposing (i) a procedure to determine the need of introduc-
ing a secondary bracing system (SBS), and (ii) the design criteria for the consequent SBS
member sizing. The problem has also been addressed by a structural optimisation process
developed for the design of the diagrid, which explicitly assumes a constraint condition on
the IDR maximum value [27].
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Figure 18. Performance assessment of the analysed patterns: IDR.

5. Conclusions

In this paper, a generative design strategy for the topology optimisation of tubular
diagrid tall buildings, based on the construction of a structural grammar, was proposed.
The structural grammar was specifically developed for generating the geometry of the
pattern and sizing the relevant structural members. In particular, the generation process
allows for varying the density, the slopes and the number of diagonals along the height and
the width of the building facades. The peculiarity of the proposed grammar is that several
patterns are generated within the workflow, by automatically changing the parameters
that define the location and slope of diagonals, and the most efficient pattern was finally
selected by a topology optimisation strategy based on genetic algorithms.

The procedure proposed here was formulated for tall buildings with prismatic form,
however, it is characterised by a high level of versatility and can be easily extended to
diagrid tall buildings of any size and geometry.

The proposed structural grammar is able to generate patterns incorporating the spe-
cific language and aesthetics of diagrid that, though simple in outline and undoubtedly
reflecting inherent structural stability and efficiency, has almost endless morphological
potentials [42]. Furthermore, the same framework can be utilised for defining grammar
able to generate different types of patterns, such as hexagonal grids [43,44] or Voronoi
diagrams [45,46].

Applications of the procedure to structural models characterised by different slender-
ness ratios and consistent comparisons with literature works showed that the patterns gen-
erated and optimised employing the proposed procedure are characterised by lower weight
and better performance than the other ones, for different slenderness ratios, whichever is
the predominant design criterion between stiffness and strength.

The proposed approach generates structural patterns characterised by significant
geometrical diversity, thus providing a wide choice of optimised solutions, properly ranked
in terms of structural efficiency, which allows the designer to integrate non-quantitative
criteria in the selection process, and eventually, prioritise one of them even at the expense
of an aware, slight sacrifice of efficiency.

It is worth observing that patterns very similar to the ones obtained by mapping the
stress lines automatically emerged from the application of the proposed generative strategy,
particularly for slender buildings. This result, while it confirms the current understanding
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of structural shaping of structures for tall buildings, also suggests the fascinating possibility
of using such strategies as design knowledge acquisition tools [18,19].
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