Skip to main content
Log in

Organic geochemistry and origin of bitumen seeps in the Upper Permian (Zechstein) bituminous anhydrite in a Cu–Ag mine in western Poland

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Migrating hydrocarbons in the form of bitumen seeps can provide detailed information about the overall features of a petroleum system, source rock characteristics and maturity. Here we present the results of organic geochemical analyses of five bitumen seeps collected at the Polkowice–Sieroszowice Cu–Ag mine in western Poland at the eastern margin of the Southern Permian Basin. Bitumen seeps occur in fractures in bituminous anhydrite in the Lower (Werra) Anhydrite (A1d) and in veins cutting the Zechstein Limestone (Ca1) dolomite. The A1d bituminous anhydrite is one of several anhydrite types interpreted to have been deposited in supratidal sabkha and pan settings. Thermal maturity parameters (isoprenoid-based, hopane, sterane and aromatic hydrocarbon ratios) show that the bitumen was generated in the early to peak oil window. The analysed samples are characterised by high abundances of C35 homohopanes (homohopane index, HHI 0.3–0.5), an even-over-odd predominance of C1632 n-alkanes, high gammacerane (0.2–0.4) index and low Pr/Ph (< 0.7) ratios. These parameters together indicate (anoxic) evaporitic depositional conditions for the related source rock. The presence of C2729 4-desmethyl steranes (C29 > C27 > C28) and bicyclic sesquiterpanes together with a DBT/P ratio of < 0.5 imply the dominance of algal material and a clay-rich source rock, respectively. The presence of characteristic biomarkers for archaeal lipids (2,6,10,15,19-pentamethylicosane, squalane and C40 head-to-head biphytane) and C40 carotenoids (β- and γ-carotane, C21 and C30 alkylbenzenes) confirms that the bitumen was generated from the A1d bituminuous anhydrite. The molecular characteristics of the analysed bitumen samples rule out the possibility that the hydrocarbons have migrated from underlying Carboniferous source rocks or from Kupferschiefer mudrocks (higher Pr/Ph ratios, lack of gammacerane, secohopanes, secosteranes, and β- and γ-carotanes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abrams MA (2005) Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Mar Pet Geol 22:457–477. https://doi.org/10.1016/j.marpetgeo.2004.08.003

    Article  Google Scholar 

  • Adam P, Schaeffer P, Albrecht P (2006) C40 monoaromatic lycopane derivatives as indicators of the contribution of the alga Botryococcus braunii race L to the organic matter of Messel oil shale (Eocene, Germany). Org Geochem 37:584–596. https://doi.org/10.1016/j.orggeochem.2006.01.001

    Article  Google Scholar 

  • Alexander R, Kagi RI, Noble R, Volkman JK (1984) Identification of some bicyclic alkanes in petroleum. Org Geochem 6:63–72. https://doi.org/10.1016/0146-6380(84)90027-5

    Article  Google Scholar 

  • Alsharhan AS, Kendall CGSC (2003) Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues. Earth Sci Rev 61:191–243. https://doi.org/10.1016/S0012-8252(02)00110-1

    Article  Google Scholar 

  • Banaś M, Głuszek A, Jarosz J, Salamon W (1998) Żyły polimetaliczne w permskich złożach miedzi na monoklinie przedsudeckiej. Prace Specjalne PTMiN 10:43–49

    Google Scholar 

  • Bechtel A, Gratzer R, Püttmann W, Oszczepalski S (2000) Geochemical and isotopic composition of organic matter in the Kupferschiefer of the Polish Zechstein basin: relation to maturity and base metal mineralization. Int J Earth Sci 89:72–89. https://doi.org/10.1007/s005310050318

    Article  Google Scholar 

  • Bechtel A, Gratzer R, Püttmann W, Oszczepalski S (2001) Variable alteration of organic matter in relation to metal zoning at the Rote Fäule front (Lubin-Sieroszowice mining district, SW Poland). Org Geochem 32:377–395. https://doi.org/10.1016/S0146-6380(01)00002-X

    Article  Google Scholar 

  • Bechtel A, Gratzer R, Püttmann W, Oszczepalski S (2002) Geochemical characteristics across the oxic/anoxic interface (Rote Fäule front) within the Kupferschiefer of the Lubin-Sieroszowice mining district (SW Poland). Chem Geol 185:9–31. https://doi.org/10.1016/S0009-2541(01)00395-3

    Article  Google Scholar 

  • Bertheas O, Metzger P, Largeau C (1999) A high molecular weight complex lipid, aliphatic polyaldehyde tetraterpenediol polyacetal from Botryococcus braunii (L race). Phytochemistry 50:85–96. https://doi.org/10.1016/S0031-9422(98)00481-6

    Article  Google Scholar 

  • Betzler C, Pawellek T (2014) Facies, stratigraphic architecture and high-resolution sequence stratigraphy of the Zechstein anhydrite (Werra Anhydrite) in Menslage area (Lower Saxony, N Germany). Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften 165:331–344. https://doi.org/10.1127/1860-1804/2014/0067

    Article  Google Scholar 

  • Biliński M, Hryciuk A, Laskowski M, Mirek A (2013) Zagrożenie wyrzutami w KGHM „Polska Miedź” S.A. O/ZG „Rudna”—stan po czterech latach od wyrzutu. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie 1:24–28

    Google Scholar 

  • Błaszczyk JK (1981) Wpływ paleomorfologii stropu białego spągowca na zmienność facjalną serii złożowej w Zagłębiu Lubińskim. Geol Sudet 16:195–217

    Google Scholar 

  • Boon JJ, Hine SH, Burlingame AL et al (1983) Organic geochemical studies of Solar Lake laminated cyanobacterial mats. In: Bjorøy M, Albrecht K, Cornford K et al (eds) Advances in organic geochemistry 1981. Wiley, New York, pp 207–227

    Google Scholar 

  • Brocks JJ, Grice K (2011) Biomarkers (molecular fossils). In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Netherlands, pp 147–167

    Chapter  Google Scholar 

  • CBJ (2020) Sprawozdanie z badań nr CK-4/B/m/04/2020

  • Clark JP, Philp RP (1989) Geochemical characterization of evaporite and carbonate depositional environments and correlation of associated crude oils in the Black Creek Basin, Alberta. Bull Can Petrol Geol 37:401–416

    Google Scholar 

  • Connan J, Bouroullec J, Dessort D, Albrecht P (1986) The microbial input in carbonate-anhydrite facies of a sabkha palaeoenvironment from Guatemala: a molecular approach. Org Geochem 10:29–50. https://doi.org/10.1016/0146-6380(86)90007-0

    Article  Google Scholar 

  • Davison I (2009) Faulting and fluid flow through salt. J Geol Soc 166:205–216. https://doi.org/10.1144/0016-76492008-064

    Article  Google Scholar 

  • Dean WE, Davies GR, Anderson RY (1975) Sedimentological significance of nodular and laminated anhydrite. Geology 3:367–372. https://doi.org/10.1130/0091-7613(1975)3%3c367:SSONAL%3e2.0.CO;2

    Article  Google Scholar 

  • Dec J, Pietsch K, Marzec P (2011a) Application of seismic methods to identify potential gas concentration zones at the Zechstein Limestone Level in the „Rudna” mining area, SW Poland. Ann Soc Geol Pol 81:63–78

    Google Scholar 

  • Dec J, Pietsch K, Marzec P, Staszkowska T (2011b) Nadzór naukowy oraz geologiczna interpretacja powierzchniowych badań sejsmicznych 2D w pasie przyszłej eksploatacji na terenie O.G. Głogów Głęboki Przemysłowy, O.G. Sieroszowice I, O.G. Rudna I oraz O.G. Rudna II. Etap II i III. Stowarzyszenie Naukowe im. Stanisława Staszica w Krakowie. Archiwum KGHM Polska Miedź S.A. (unpublished)

  • Dembicki H, Meinschein WG, Hattin DE (1976) Possible ecological and environmental significance of the predominance of even-carbon number C20–C30 n-alkanes. Geochim Cosmochim Acta 40:203–208. https://doi.org/10.1016/0016-7037(76)90177-0

    Article  Google Scholar 

  • Derenne S, Largeau C, Casadevall E, Connan J (1988) Comparison of torbanites of various origins and evolutionary stages. Bacterial contribution to their formation. Causes of the lack of botryococcane in bitumens. Org Geochem 12:43–59. https://doi.org/10.1016/0146-6380(88)90114-3

    Article  Google Scholar 

  • Didyk BM, Simoneit BRT, Brassell SC, Eglinton G (1978) Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272:216–222. https://doi.org/10.1038/272216a0

    Article  Google Scholar 

  • Dow WG (1977) Kerogen studies and geological interpretations. J Geochem Explor 7:79–99. https://doi.org/10.1016/0375-6742(77)90078-4

    Article  Google Scholar 

  • Dyjaczynski K, Gorski M, Mamczur S et al (2001) Reefs in the basinal facies of the Zechstein Limestone (Upper Permian) of Western Poland: a new gas play. J Pet Geol 24:265–285. https://doi.org/10.1111/j.1747-5457.2001.tb00675.x

    Article  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335. https://doi.org/10.1126/science.156.3780.1322

    Article  Google Scholar 

  • Farrimond P, Fox P, Innes H et al (1998) Bacterial sources of hopanoids in recent sediments: improving our understanding of ancient hopane biomarkers. Anc Biomol 2:147–166

    Google Scholar 

  • Gautier DL (2003) Carboniferous-Rotliegend total petroleum system; description and assessment results summary

  • Gunatilaka A, Saleh A, Al-Temeemi A (1980) Plant-controlled supratidal anhydrite from Al-Khiran, Kuwait. Nature 288:257–260. https://doi.org/10.1038/288257a0

    Article  Google Scholar 

  • Hall PB, Douglas AG (1983) The distribution of cyclic alkanes in two lacustrine deposits. In: Bjorøy M (ed) Advances in organic geochemistry 1981. Wiley, Chichester, pp 576–587

    Google Scholar 

  • Harvey HR, Mcmanus GB (1991) Marine ciliates as a widespread source of tetrahymanol and hopan-3β-ol in sediments. Geochim Cosmochim Acta 55:3387–3390. https://doi.org/10.1016/0016-7037(91)90496-R

    Article  Google Scholar 

  • Harwood GM (1994) Sabkha. In: Keary P (ed) The encyclopedia of the solid earth sciences. Wiley, New York, pp 532–618

    Google Scholar 

  • Hughes WB, Holba AG, Dzou LIP (1995) The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim Cosmochim Acta 59:3581–3598. https://doi.org/10.1016/0016-7037(95)00225-O

    Article  Google Scholar 

  • Irwin H, Meyer T (1990) Lacustrine organic facies. A biomarker study using multivariate statistical analysis. Org Geochem 16:197–210. https://doi.org/10.1016/0146-6380(90)90040-7

    Article  Google Scholar 

  • Jerzykiewicz T, Kijewski P, Mroczkowski J, Teisseyre AK (1976) Geneza osadów białego spągowca monokliny przedsudeckiej. Geol Sudet 11:57–100

    Google Scholar 

  • Jiamo F, Guoying S, Pingan P et al (1986) Peculiarities of salt lake sediments as potential source rocks in China. Org Geochem 10:119–126. https://doi.org/10.1016/0146-6380(86)90015-X

    Article  Google Scholar 

  • Jiamo F, Guoying S, Jiayou X et al (1990) Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments. Org Geochem 16:769–779. https://doi.org/10.1016/0146-6380(90)90116-H

    Article  Google Scholar 

  • Jiang ZS, Fowler MG (1986) Carotenoid-derived alkanes in oils from northwestern China. Org Geochem 10:831–839. https://doi.org/10.1016/S0146-6380(86)80020-1

    Article  Google Scholar 

  • Kashirtsev VA, Hein FJ (2012) Overview of natural bitumen fields of the Siberian Platform, Olenek Uplift, Eastern Siberia, Russia. In: Hein FJ, Leckie D, Larter S, Suter R (eds) Heavy-oil and oil-sand petroleum systems in Alberta and beyond. AAPG Studies in Geology 64:509–529

  • Kendall AC (2010) Marine evaporites. In: James NP, Dalrymple RW (eds) Facies models, 4th edn. Geological Association of Canada, pp 505–239

  • Kiersnowski H, Paul J, Peryt TM, Smith DB (1995) Facies, paleogeography, and sedimentary history of the Southern Permian Basin in Europe. In: Scholle PA, Peryt TM, Ulmer-Scholle DS (eds) The Permian of Northern Pangea, vol 2. Sedimentary Basins and Economic Resources. Springer, Berlin, pp 119–136

    Chapter  Google Scholar 

  • Kiersnowski H, Peryt TM, Buniak A, Mikołajewski Z (2010) From the intra-desert ridges to the marine carbonate island chain: middle to late Permian (Upper Rotliegend-Lower Zechstein) of the Wolsztyn-Pogorzela high, west Poland. Geol J 45:319–335. https://doi.org/10.1002/gj.1189

    Article  Google Scholar 

  • Kijewski P, Leszczyński R (2010) Węgiel organiczny w rudach miedzi—znaczenie i problemy. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN 79:131–146

    Google Scholar 

  • Kijewski P, Kubiak J, Gola S (2012) Siarkowodór—nowe zagrożenie w górnictwie rud miedzi. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi Polskiej Akademii Nauk 83:83–95

    Google Scholar 

  • Kijewski P, Czechowski F, Raczyński P (2014) Związki siarkowe w anhydrycie bitumicznym z OG „Sieroszowice” w świetle badań petrograficznych i geochemicznych. CUPRUM – Czasopismo Naukowo-Techniczne Górnictwa Rud 71:17–42

  • Kłapciński J (1966) Stratygrafia anhydrytów Werra w rejonie Lubina i Sieroszowic (Monoklina Przedsudecka). Ann Soc Geol Pol 36:65–78

    Google Scholar 

  • Kłapciński J, Konstantynowicz E, Salski W et al (1984) Atlas obszaru miedzionośnego: (monoklina przedsudecka): 1:50 000

  • Kluska B, Rospondek MJ, Marynowski L, Schaeffer P (2013) The Werra cyclotheme (Upper Permian, Fore-Sudetic Monocline, Poland): insights into fluctuations of the sedimentary environment from organic geochemical studies. Appl Geochem 29:73–91. https://doi.org/10.1016/j.apgeochem.2012.09.010

    Article  Google Scholar 

  • Knoll AH, Summons RE, Waldbauer JR, Zumberge JE (2007) The geological succession of primary producers in the oceans. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the Sea. Academic Press, Burlington, pp 133–163

    Chapter  Google Scholar 

  • Kodner RB, Pearson A, Summons RE, Knoll AH (2008) Sterols in red and green algae: quantification, phylogeny, and relevance for the interpretation of geologic steranes. Geobiology 6:411–420. https://doi.org/10.1111/j.1472-4669.2008.00167.x

    Article  Google Scholar 

  • Kosakowski P, Markiewicz A, Kotarba MJ et al (2007) Wiek mineralizacji kruszcowej w analizie dojrzałości materii organicznej łupku miedzionośnego i jego powiązanie z tektoniką południowej części monokliny przedsudeckiej. Biuletyn Państwowego Instytutu Geologicznego 423:139–150

    Google Scholar 

  • Kotarba MJ, Peryt TM, Kosakowski P, Więcław D (2006) Organic geochemistry, depositional history and hydrocarbon generation modelling of the Upper Permian Kupferschiefer and Zechstein Limestone strata in south–west Poland. Mar Pet Geol 23:371–386. https://doi.org/10.1016/j.marpetgeo.2005.10.003

    Article  Google Scholar 

  • Langbein R (1987) The Zechstein sulphates: the state of the art. Lect Notes Earth Sci 10:143–188. https://doi.org/10.1007/BFb0011378

    Article  Google Scholar 

  • Lorenc S (1975) Petrografia i zróżnicowanie facjalne wapieni i anhydrytów Werra monokliny przedsudeckiej. Geol Sudet 10:59–101

    Google Scholar 

  • Markiewicz A (2007a) Tektonika obszaru złoża. In: Piestrzyński A, Banaszak A, Zaleska-Kuczmierczyk M (eds) Monografia KGHM Polska Miedź S.A., 2nd edn. KGHM CUPRUM Sp. z o.o. CBR, Lubin, pp 115–132

  • Markiewicz A (2007b) Naskórkowa strkutura południowej części monokliny przedsudeckiej a zagospodarowanie utworów najstarszej soli kamiennej (Na1). Gospodarka Surowcami Mineralnymi 23:35–49

    Google Scholar 

  • Meier R (1977) Turbidite und Olisthostrome-Sedimentationsphänomene des Werra-Sulfats (Zechstein 1) am Osthang der Eichsfeld-Schwelle im Gebiet des Südharzes. Akademie Der Wissenschaften Der Zentralinstitut Für Physik Der Erde 50:1–45

    Google Scholar 

  • Mello MR, Gaglianone PC, Brassell SC, Maxwell JR (1988a) Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils. Mar Pet Geol 5:205–223. https://doi.org/10.1016/0264-8172(88)90002-5

    Article  Google Scholar 

  • Mello MR, Telnaes N, Gaglianone PC et al (1988b) Organic geochemical characterisation of depositional palaeoenvironments of source rocks and oils in Brazilian marginal basins. Org Geochem 13:31–45. https://doi.org/10.1016/0146-6380(88)90023-X

    Article  Google Scholar 

  • Metzger P, Rager M-N, Sellier N, Largeau C (2003) Lycopanerols I−L, four new tetraterpenoid ethers from Botryococcus braunii. J Nat Prod 66:772–778. https://doi.org/10.1021/np020604b

    Article  Google Scholar 

  • Moldowan JM, Seifert WK, Gallegos EJ (1985) Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bull 69:1255–1268

    Google Scholar 

  • Noble RA, Alexander R, Kagi RI (1987) Configurational isomerization in sedimentary bicyclic alkanes. Org Geochem 11:151–156. https://doi.org/10.1016/0146-6380(87)90018-0

    Article  Google Scholar 

  • Oberc J, Salski W (1968) Fałdy i spękania w skałach dolnocechsztyńskich na obszarze szybu wschodniego kopalni Lubin. Geol Quart 12:519–536

    Google Scholar 

  • Ourisson G, Albrecht P (1992) Hopanoids 1. Geohapanoids—the most abundant natural-products on Earth. Acc Chem Res 25:398–402

    Article  Google Scholar 

  • Palacas JG, Anders DE, King JD (1984) South florida basin—a prime example of carbonate source rocks of petroleum. In: Palacas JG (ed) Petroleum geochemistry and source rock potential of carbonate rocks, vol 18. AAPG Studies in Geology, pp 71–96

  • Park RK (2011) The impact of sea-level change on ramp margin deposition: lessons from the Holocene sabkhas of Abu Dhabi, United Arab Emirates. IAS Spec Publ 43:89–111. https://doi.org/10.1002/9781444392326.ch4

    Article  Google Scholar 

  • Pepper AS, Corvi PJ (1995) Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Mar Pet Geol 12:291–319. https://doi.org/10.1016/0264-8172(95)98381-E

    Article  Google Scholar 

  • Peryt TM (1994) The anatomy of a sulphate platform and adjacent basin system in the Leba sub-basin of the Lower Werra Anhydrite (Zechstein, Upper Permian), northern Poland. Sedimentology 41:83–113. https://doi.org/10.1111/j.1365-3091.1994.tb01393.x

    Article  Google Scholar 

  • Peryt TM, Oszczepalski S (2007) Stratygrafia serii złożowej. In: Banaszak A, Zaleska-Kuczmierczyk M (eds) Piestrzyński A. Monografia KGHM Polska Miedź S.A. KGHM CUPRUM Sp. z o.o. CBR, Lubin, pp 108–115

    Google Scholar 

  • Peryt TM, Orti F, Rosell L (1993) Sulfate platform-basin transition of the lower Werra Anhydrite (Zechstein, Upper Permian), western Poland; facies and petrography. J Sediment Res 63:646–658. https://doi.org/10.1306/D4267B9F-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide. Biomarkers and isotopes in petroleum exploration and earth history, vol. 2. Cambridge University Press, Cambridge, p 1155

  • Peters KE, Moldowan JM (1991) Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Org Geochem 17:47–61. https://doi.org/10.1016/0146-6380(91)90039-M

    Article  Google Scholar 

  • Pieczonka J, Piestrzyński A (2001) Złoże złota na Monoklinie Przedsudeckiej—fakty i hipotezy. Geologia/akademia Górniczo-Hutnicza Im Stanisława Staszica w Krakowie 27:411–434

    Google Scholar 

  • Pieczonka J, Piestrzyński A, Mucha J et al (2008) The red-bed-type precious metal deposit in the Sieroszowice-Polkowice copper mining district, SW Poland. Ann Soc Geol Pol 78:151–280

    Google Scholar 

  • Pöhlig C (1986) Sedimentologie des Zechsteinkalks und des Werra-Anhydrits (Zechstein 1) in Südost-Niedersachsen. Göttinger Arbeiten Zur Geologie Und Paläontologie 30:1–99

    Google Scholar 

  • Püttmann W, Goβel W (1990) The Permian Kupferschiefer of southwest Poland: a geochemical trap for migrating, metal-bearing solutions. Appl Geochem 5:227–235. https://doi.org/10.1016/0883-2927(90)90050-F

    Article  Google Scholar 

  • Püttmann W, Heppenheimer H, Diedel R (1990) Accumulation of copper in the Permian Kupferschiefer: a result of post-depositional redox reactions. Org Geochem 16:1145–1156. https://doi.org/10.1016/0146-6380(90)90150-X

    Article  Google Scholar 

  • Richter-Bernburg G (1960) Zeitmessung geologischer Vorgänge nach Warven-korrelationen im Zechstein. Geol Rundsch 49:132–148. https://doi.org/10.1007/BF01802401

    Article  Google Scholar 

  • Richter-Bernburg G (1985) Zechstein-Anhydrite—Fazies und Genese. Geol Jahrb A85:1–82

    Google Scholar 

  • Rydzewski A (1978) Facja utleniona cechsztyńskiego łupku miedzionośnego na obszarze monokliny przedsudeckiej. Przegląd Geologiczny 26:102–107

    Google Scholar 

  • Salski W (1975) Zmiany układu spękań w cechsztyńskich skałach węglanowych monokliny przedsudeckiej. Geol Quart 19:583–596

    Google Scholar 

  • Salski W (1977) Rozwój tektoniczny obszaru miedzionośnego monokliny przedsudeckiej. Rocz Pol Towarz Geol 47:27–48

    Google Scholar 

  • Salski W (1996) Tektonika złoża. In: Piestrzyński A (ed) Monografia KGHM Polska Miedź S.A. CBPM “Cuprum,” Lubin, pp 141–145

  • Schlager W, Bolz H (1977) Clastic accumulation of sulphate evaporites in deep water. J Sediment Res 47:600–609. https://doi.org/10.1306/212F71F3-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Schoenherr J, Urai JL, Kukla PA et al (2007) Limits to the sealing capacity of rock salt: a case study of the infra-Cambrian Ara Salt from the South Oman salt basin. AAPG Bull 91:1541–1557. https://doi.org/10.1306/06200706122

    Article  Google Scholar 

  • Schouten S, Hoefs MJL, Koopmans MP et al (1998) Structural characterization, occurrence and fate of archaeal ether-bound acyclic and cyclic biphytanes and corresponding diols in sediments. Org Geochem 29:1305–1319. https://doi.org/10.1016/S0146-6380(98)00131-4

    Article  Google Scholar 

  • Schreiber BC (1988) Subaqueous evaporite deposition. In: Schreiber BC (ed) Evaporites and hydrocarbons. Columbia University Press, New York, pp 182–255

    Chapter  Google Scholar 

  • Schreiber BC, El Tabakh M (2000) Deposition and early alteration of evaporites. Sedimentology 47:215–238. https://doi.org/10.1046/j.1365-3091.2000.00002.x

    Article  Google Scholar 

  • Seifert WK, Moldowan JM (1978) Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochim Cosmochim Acta 42:77–95. https://doi.org/10.1016/0016-7037(78)90219-3

    Article  Google Scholar 

  • Shen G, Fan S, Lin D et al (1980) The geochemistry of n-alkanes with an even-odd predominance in the Tertiary Shahejie Formation of northern China. Phys Chem Earth 12:115–121. https://doi.org/10.1016/0079-1946(79)90093-4

    Article  Google Scholar 

  • SinningheDamsté JS, Kenig F, Koopmans MP et al (1995a) Evidence for gammacerane as an indicator of water column stratification. Geochim Cosmochim Acta 59:1895–1900. https://doi.org/10.1016/0016-7037(95)00073-9

    Article  Google Scholar 

  • SinningheDamsté JS, Van Duin ACT, Hollander D et al (1995b) Early diagenesis of bacteriohopanepolyol derivatives: Formation of fossil homohopanoids. Geochim Cosmochim Acta 59:5141–5157. https://doi.org/10.1016/0016-7037(95)00338-X

    Article  Google Scholar 

  • Słowakiewicz M (2016) Characteristic biomarkers in organic matter from three Zechstein (Late Permian) carbonate units. Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften 167:269–279. https://doi.org/10.1127/zdgg/2016/0061

    Article  Google Scholar 

  • Słowakiewicz M, Tucker ME, Hindenberg K et al (2016) Nearshore euxinia in the photic zone of an ancient sea: part II—the bigger picture and implications for understanding ocean anoxia. Palaeogeogr Palaeoclimatol Palaeoecol 461:432–448. https://doi.org/10.1016/j.palaeo.2016.09.003

    Article  Google Scholar 

  • Słowakiewicz M, Blumenberg M, Więcław D et al (2018) Zechstein Main Dolomite oil characteristics in the Southern Permian Basin: I. Polish and German sectors. Mar Pet Geol 93:356–375. https://doi.org/10.1016/j.marpetgeo.2018.03.023

    Article  Google Scholar 

  • Słowakiewicz M, Gluyas J, Kowalski A et al (2020) A new and working petroleum source rock on the UK Continental Shelf (Upper Permian, offshore Yorkshire). Mar Pet Geol 121:104605. https://doi.org/10.1016/j.marpetgeo.2020.104605

    Article  Google Scholar 

  • Sofer Z (1984) Stable carbon isotope compositions of crude oils; application to source depositional environments and petroleum alteration. AAPG Bull 68:31–49

    Google Scholar 

  • Sokołowski J (1967) Charakterystyka geologiczna i strukturalna obszaru przedsudeckiego. Geol Sudet 3:297–367

    Google Scholar 

  • Sokołowski J (1974) Geodynamika rozwoju oraz prawidłowości rozmieszczenia węglowodorów obszaru przedsudeckiego. Acta Geol Pol 24:601–630

    Google Scholar 

  • Steinhoff I, Strohmenger CJ (1999) Facies differentiation and sequence stratigraphy in ancient evaporite basins—an example from the Basal Zechstein (Upper Permian of Germany). Carbonates Evaporites 14:146–181

    Google Scholar 

  • Summons RE, Powell TG (1987) Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria. Geochim Cosmochim Acta 51:557–566. https://doi.org/10.1016/0016-7037(87)90069-X

    Article  Google Scholar 

  • Sun Y-Z, Püttmann W (2001) Oxidation of organic matter in the transition zone of the Zechstein Kupferschiefer from the Sangerhausen Basin, Germany. Energy Fuels 15:817–829. https://doi.org/10.1021/ef0002187

    Article  Google Scholar 

  • Szuflicki M, Malon A, Tymiński M (eds) (2020) Bilans zasobów złóż kopalin w Polsce wg stanu na 31.12.2019 r. Państwowy Instytut Geologiczny-PIB, Warszawa

  • Taylor JCM (1980) Origin of the Werraanhydrit in the UK southern North sea—a reappraisal. Contrib Sedimentol 9:91–113

    Google Scholar 

  • ten Haven HL, De Leeuw JW, Schenck PA (1985) Organic geochemical studies of a Messinian evaporitic basin, northern Apennines (Italy) I: hydrocarbon biological markers for a hypersaline environment. Geochim Cosmochim Acta 49:2181–2191. https://doi.org/10.1016/0016-7037(85)90075-4

    Article  Google Scholar 

  • ten Haven HL, de Leeuw JW, Damsté JSS et al (1988) Application of biological markers in the recognition of palaeohypersaline environments. Geol Soc Lond Spec Publ 40:123–130. https://doi.org/10.1144/GSL.SP.1988.040.01.11

    Article  Google Scholar 

  • ten Haven HL, Rohmer M, Rullkötter J, Bisseret P (1989) Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochim Cosmochim Acta 53:3073–3079. https://doi.org/10.1016/0016-7037(89)90186-5

    Article  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Toboła T (2014) Influence of tectonics on petrological characteristics of the anhydrite and anhydrite-halite intercalations in the Oldest Halite (Na1) (Zechstein, Upper Permian) of the Bądzów area (SW Poland). Geol Quart 58:531–542. https://doi.org/10.7306/gq.1171

    Article  Google Scholar 

  • van Wees J-D, Stephenson RA, Ziegler PA et al (2000) On the origin of the Southern Permian Basin, Central Europe. Mar Pet Geol 17:43–59. https://doi.org/10.1016/S0264-8172(99)00052-5

    Article  Google Scholar 

  • Vaughan DJ, Sweeney MA, Friedrich G et al (1989) The Kupferschiefer; an overview with an appraisal of the different types of mineralization. Econ Geol 84:1003–1027. https://doi.org/10.2113/gsecongeo.84.5.1003

    Article  Google Scholar 

  • Wagner R (1994) Stratygrafia osadów i rozwój basenu cechsztyńskiego na Niżu Polskim. Prace Państwowego Instytutu Geologicznego 146:1–71

    Google Scholar 

  • Wang TG, Simoneit BRT, Philp RP, Yu CP (1990) Extended 8β(H)-drimane and 8,14-secohopane series in a Chinese boghead coal. Energy Fuels 4:177–183. https://doi.org/10.1021/ef00020a009

    Article  Google Scholar 

  • Warren J (1989) Evaporite sedimentology: importance in hydrocarbon accumulation. Advanced Reference Series. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Warren JK (1991) Sulfate dominated sea-marginal and platform evaporative settings: sabkhas and salinas, mudflats and salterns. In: Melvin JL (ed) Developments in sedimentology. Elsevier, Amsterdam, pp 69–187

    Google Scholar 

  • Warren JK (2016) Evaporites: a geological compendium, 2nd edn. Springer International Publishing, Berlin

    Google Scholar 

  • Warren JK, Kendall CGSTC (1985) Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) settings—modern and ancient. AAPG Bull 69:1013–1023. https://doi.org/10.1306/AD462B46-16F7-11D7-8645000102C1865D

    Article  Google Scholar 

  • Więcław D, Kotarba MJ, Pieczonka J et al (2007) Rozmieszczenie strefy redukcyjnej, przejściowej i utlenionej w łupku miedzionośnym na monoklinie przedsudeckiej na podstawie wskaźników materii organicznej. Biuletyn Państwowego Instytutu Geologicznego 423:125–138

    Google Scholar 

  • Yang C, Wang Z, Hollebone BP et al (2009) Characteristics of bicyclic sesquiterpanes in crude oils and petroleum products. J Chromatogr A 1216:4475–4484. https://doi.org/10.1016/j.chroma.2009.03.024

Download references

Acknowledgements

The authors would like to thank the management of the division of Zakłady Górnicze "Polkowice–Sieroszowice" KGHM Polska Miedź S.A. for organizing a visit to the mine in 2018 and for permitting geological sampling and photographic documentation. Izabella Nowak (KGHM CUPRUM) is acknowledged for permission to use mineralogical-petrographic laboratory. We are also grateful to an anonymous reviewer and Johannes Schoenherr for their comments and suggestions, which improved our manuscript. Dariusz Botor and Maurice E. Tucker are acknowledged for additional remarks.

Author information

Authors and Affiliations

Authors

Contributions

MS instigated the project. MS and PP analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Mirosław Słowakiewicz.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 392 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Słowakiewicz, M., Panajew, P. Organic geochemistry and origin of bitumen seeps in the Upper Permian (Zechstein) bituminous anhydrite in a Cu–Ag mine in western Poland. Int J Earth Sci (Geol Rundsch) 111, 1373–1394 (2022). https://doi.org/10.1007/s00531-022-02189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-022-02189-y

Keywords

Navigation