Skip to main content

Advertisement

Log in

Lysosome-targetable selenium-doped carbon nanodots for in situ scavenging free radicals in living cells and mice

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Lysosome-targetable selenium-doped carbon nanodots (Lyso-Se-CDs) that can efficiently scavenge lysosomal •OH in living cells and mice were designed in this research. Se-CDs with redox-responsive fluorescence (λex = 379 nm, λem = 471 nm, quantum yield = 7.1%) were initially synthesized from selenocystine by a facile hydrothermal method, followed by the surface modification with morpholine, a lysosome targeting moiety. The as-synthesized Lyso-Se-CDs exhibited excellent colloidal stability, efficient scavenging abilities towards •OH, low biotoxicity, as well as good biocompatibility and lysosome targetability. Due to these desirable properties, Lyso-Se-CDs had been successfully utilized for rescuing cells from elevated lysosomal •OH levels. More importantly, Lyso-Se-CDs efficiently relieved phorbol 12-myristate 13-acetate (PMA) triggered ear inflammation in live mice. These findings reveal that Lyso-Se-CDs are potent candidates for treating •OH-related inflammation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hou J-T, Yu K-K, Sunwoo K, Kim WY, Koo S, Wang J, Ren WX, Wang S, Yu X-Q, Kim JS (2020) Fluorescent imaging of reactive oxygen and nitrogen species associated with pathophysiological processes. Chem 6:832–866

    Article  CAS  Google Scholar 

  2. Li H, Ma H (2018) New progress in spectroscopic probes for reactive oxygen species. J Anal Test 2:2–19

    Article  Google Scholar 

  3. Zhen X, Pu K (2018) Development of optical nanoprobes for molecular imaging of reactive oxygen and nitrogen species. Nano Res 11:5258–5280

    Article  CAS  Google Scholar 

  4. Huang H, Tian Y (2018) A ratiometric fluorescent probe for bioimaging and biosensing of HBrO in mitochondria upon oxidative stress. Chem Commun 54:12198–12201

    Article  CAS  Google Scholar 

  5. Liu Z, Tian Y (2021) Recent advances in development of devices and probes for sensing and imaging in the brain. Sci China Chem. https://doi.org/10.1007/s11426

  6. Kowaltowski AJ, De Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343

    Article  CAS  PubMed  Google Scholar 

  7. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    Article  CAS  PubMed  Google Scholar 

  8. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  9. Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer's disease. Brain Pathol 9:133

    Article  CAS  PubMed  Google Scholar 

  10. Kwon HJ, Cha M-Y, Kim D, Kim DK, Soh M, Shin K, Hyeon T, Mook-Jung I (2016) Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano 10:2860–2870

    Article  CAS  PubMed  Google Scholar 

  11. Kwon HJ, Kim D, Seo K, Kim YG, Han SI, Kang T, Soh M, Hyeon T (2018) Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson's disease. Angew Chem Int Ed 57:9408–9412

    Article  CAS  Google Scholar 

  12. Yao J, Cheng Y, Zhou M, Zhao S, Lin S, Wang X, Wu J, Li S, Wei H (2018) ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem Sci 9:2927–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bao X, Zhao J, Sun J, Hu M, Yang X (2018) Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano 12:8882–8892

    Article  CAS  PubMed  Google Scholar 

  14. Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, Wu C, Mao Z, Luo G, Chen X, Deng J (2020) Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Comomun 11:2788

    Article  CAS  Google Scholar 

  15. Li H, Cao X, Fei X, Zhang S, Xian Y (2019) Nanoscaled luminescent terbium metal–organic frameworks for measuring and scavenging reactive oxygen species in living cells. J Mater Chem B 7:3027–3033

    Article  CAS  Google Scholar 

  16. Huang Y, Liu C, Pu F, Liu Z, Ren J, Qu X (2017) A GO-Se nanocomposite as an antioxidant nanozyme for cytoprotection. Chem Commun 53:3082–3085

    Article  CAS  Google Scholar 

  17. Liu Y, Cheng Y, Zhang H, Zhou M, Yu Y, Lin S, Jiang B, Zhao X, Miao L, Wei C-W, Liu Q, Lin Y-W, Du Y, Butch CJ, Wei H (2020) Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci Adv 6:eabb2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu H, Li F, Wang S, Lu J, Li J, Du Y, Sun X, Chen X, Gao J, Ling D (2018) Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials 151:66–77

    Article  CAS  PubMed  Google Scholar 

  19. Wu Y, Huang W, Peng D, Huang X-A, Gu J, Wu S, Deng T, Liu F (2021) Synthesis of dihydroquinolines as scaffolds for fluorescence sensing of hydroxyl radical. Org Lett 23:135–139

    Article  CAS  PubMed  Google Scholar 

  20. Benitez-Martin C, Guadix JA, Pearson JR, Najera F, Perez-Pomares JM, Perez-Inestrosa E (2019) A turn-on two-photon fluorescent probe for detecting lysosomal hydroxyl radicals in living cells. Sensors Actuators B Chem 284:744–750

    Article  CAS  Google Scholar 

  21. Li F, Yang D, Xu H (2019) Non-metal-heteroatom-doped carbon dots: synthesis and properties. Chem Eur J 25:1165–1176

    Article  CAS  PubMed  Google Scholar 

  22. Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, Qu M (2017) Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 184:343–368

    Article  CAS  Google Scholar 

  23. Zhou D, Huang H, Wang Y, Wang Y, Hu Z, Li X (2019) A yellow-emissive carbon nanodot-based ratiometric fluorescent nanosensor for visualization of exogenous and endogenous hydroxyl radicals in the mitochondria of live cells. J Mater Chem B 7:3737–3744

    Article  CAS  Google Scholar 

  24. Liu Z, Pei H, Zhang L, Tian Y (2018) Mitochondria-targeted DNA nanoprobe for real-time imaging and simultaneous quantification of Ca2+ and pH in neurons. ACS Nano 12:12357–12368

    Article  CAS  PubMed  Google Scholar 

  25. Li F, Li T, Sun C, Xia J, Jiao Y, Xu H (2017) Selenium-doped carbon quantum dots for free-radical scavenging. Angew Chem Int Ed 56:9910–9914

    Article  CAS  Google Scholar 

  26. Rosenkrans ZT, Sun T, Jiang D, Chen W, Barnhart TE, Zhang Z, Ferreira CA, Wang X, Engle JW, Huang P, Cai W (2020) Selenium-doped carbon quantum dots act as broad-spectrum antioxidants for acute kidney injury management. Adv Sci 7:2000420

    Article  CAS  Google Scholar 

  27. Su R, Shi J, Pu Y, Wang J-X, Wang D, Chen J-F (2020) Synthesis of ultrasmall and monodisperse selenium-doped carbon dots from amino acids for free radical scavenging. Ind Eng Chem Res 59:16876–16883

    Article  CAS  Google Scholar 

  28. Zhu J-H, Feng Y-G, Wang A-J, Mei L-P, Luo X, Feng J-J (2021) A signal-on photoelectrochemical aptasensor for chloramphenicol assay based on 3D self-supporting AgI/Ag/BiOI Z-scheme heterojunction arrays. Biosens Bioelectron 181:113158

    Article  CAS  PubMed  Google Scholar 

  29. Shen Z, Cai Q, Yin C, Xia Q, Cheng J, Li X, Wang Y (2020) Facile synthesis of silica nanosheets with hierarchical pore structure and their amine-functionalized composite for enhanced CO2 capture. Chem Eng Sci 217:115528

    Article  CAS  Google Scholar 

  30. Luo W, Wang Y, Lin F, Liu Y, Gu R, Liu W, Xiao C (2020) Selenium-doped carbon quantum dots efficiently ameliorate secondary spinal cord injury via scavenging reactive oxygen species. Int J Nanomedicine 15:10113–10125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ye X, Xiang Y, Wang Q, Li Z, Liu Z (2019) A red emissive two-photon fluorescence probe based on carbon dots for intracellular pH detection. Small 15:1901673

    Article  CAS  Google Scholar 

  32. Huang H, Shen Z, Chen B, Wang X, Xia Q, Ge Z, Wang Y, Li X (2020) Selenium-doped two-photon fluorescent carbon nanodots for in-situ free radical scavenging in mitochondria. J Colloid Interface Sci 567:402–409

    Article  CAS  PubMed  Google Scholar 

  33. Simões EFC, Leitão JMM, Esteves Da Silva JCG (2017) Sulfur and nitrogen co-doped carbon dots sensors for nitric oxide fluorescence quantification. Anal Chim Acta 960:117–122

    Article  PubMed  CAS  Google Scholar 

  34. Bauer C, Jacques P, Kalt A (1999) Investigation of the interaction between a sulfonated azo dye (AO7) and a TiO2 surface. Chem Phys Lett 307:397–406

    Article  CAS  Google Scholar 

  35. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921

    Article  CAS  Google Scholar 

  36. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem 122:4532–4536

    Article  Google Scholar 

  37. Lu S, Sui L, Liu J, Zhu S, Chen A, Jin M, Yang B (2017) Near-infrared photoluminescent polymer–carbon nanodots with two-photon fluorescence. Adv Mater 29:1603443

    Article  CAS  Google Scholar 

  38. Dam BV, Nie H, Ju B, Marino E, Paulusse JMJ, Schall P, Li M, Dohnalová K (2017) Excitation-dependent photoluminescence from single-carbon dots. Small 13:1702098

    Article  CAS  Google Scholar 

  39. Liu H, Sun Y, Li Z, Yang J, Aryee AA, Qu L, Du D, Lin Y (2019) Lysosome-targeted carbon dots for ratiometric imaging of formaldehyde in living cells. Nanoscale 11:8458–8463

    Article  CAS  PubMed  Google Scholar 

  40. Wang Q, Zhou L, Qiu L, Lu D, Wu Y, Zhang X-B (2015) An efficient ratiometric fluorescent probe for tracking dynamic changes in lysosomal pH. Analyst 140:5563–5569

    Article  CAS  PubMed  Google Scholar 

  41. Huang H, Lou X, Hu B, Zhou Z, Chen J, Tian Y (2019) A comprehensive study on the generation of reactive oxygen species in Cu-Aβ-catalyzed redox processes. Free Radic Biol Med 135:125–131

    Article  CAS  PubMed  Google Scholar 

  42. Wu J, Yu Y, Cheng Y, Cheng C, Zhang Y, Jiang B, Zhao X, Miao L, Wei H (2021) Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47(V) metal–organic framework nanozyme for therapy. Angew Chem Int Ed 60:1227–1234

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully thank the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ20B050003) and Grant from the Scientific Research Start-up Project Foundation of Jiaxing University (CD70519012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Huang or Zuming Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nanomaterials for biomedical imaging and targeting

Supplementary Information

ESM 1

(DOCX 2128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Huang, H., Yu, J. et al. Lysosome-targetable selenium-doped carbon nanodots for in situ scavenging free radicals in living cells and mice. Microchim Acta 188, 223 (2021). https://doi.org/10.1007/s00604-021-04883-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04883-1

Keywords

Navigation