Skip to main content
Log in

Thermoluminescence glow curve analysis and trap parameters calculation of UV-induced La2Zr2O7 phosphor doped with gadolinium

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermoluminescence (TL) glow curve analysis and calculation of trap parameters are reported for gadolinium (Gd3+)-doped La2Zr2O7 (LZO) phosphor. Phosphors were prepared by modified solid-state reaction method with varying concentration of Gd3+ (0.1–2.5 mol%) including proper calcination and sintering temperature. Structural analysis of prepared phosphor for optimized TL concentration was recorded by X-ray diffraction analysis technique. Morphology was analyzed by scanning electron microscopic technique. The UV ray induced to the phosphor and effect of dose response recorded for variable dose rates of UV and TL glow curve were observed. The experimental and theoretical comparison was done by computerized glow curve deconvolution technique which determines the trap parameters such as trap depth, order of kinetics, and frequency factor for optimized concentration of dopant. The trap parameters and trap model are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Azorin, Luminescence Dosimetry: Theory and Applications (Ediciones Técnico-Científicas, México, 1990)

    Google Scholar 

  2. J. Azorin, Determination of thermoluminescence parameters from glow curves—II. In CaSO4: Dy. Int. J. Radiat. Appl. Instrum. D 11, 159 (1986)

    CAS  Google Scholar 

  3. R. Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, Singapore, 1997)

    Book  Google Scholar 

  4. H. Zhou, D. Yi, Z. Yu, L. Xiao, Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings. J. Alloys Compds. 438, 217–221 (2007). https://doi.org/10.1016/j.jallcom.2006.08.005

    Article  CAS  Google Scholar 

  5. H. Song, L. Zhou, Y. Huang, L. Li, T. Wang, L. Yang, Synthesis, characterization and luminescent properties of La2Zr2O7:Eu3+ nanorods. Chin. J. Chem. Phys. 26, 83 (2013). https://doi.org/10.1063/1674-0068/26/01/83-87

    Article  CAS  Google Scholar 

  6. Y. Tong, Y. Wang, Z. Yu, X. Wang, X. Yang, L. Lu, Preparation and characterization of pyrochlore La2Zr2O7 nanocrystals by stearic acid method. Mater. Lett. 62, 889–891 (2008). https://doi.org/10.1016/j.matlet.2007.07.005

    Article  CAS  Google Scholar 

  7. Y. Tong, P. Xue, F. Jian, L. Lu, X. Wang, X. Yang, Preparation and characterization of Y2Zr2O7 nanocrystals and their photocatalytic properties. Mater. Sci. Eng. B 150, 194–198 (2008). https://doi.org/10.1016/j.mseb.2008.04.009

    Article  CAS  Google Scholar 

  8. S. Saitzek, Z. Shao, A. Bayart, A. Ferri, M. Huvé, P. Roussel, R. Desfeux, Ferroelectricity in La2Zr2O7 thin films with a frustrated pyrochlore-type structure. J. Mater. Chem. C 2, 4037 (2014). https://doi.org/10.1039/c4tc00207e

    Article  CAS  Google Scholar 

  9. H. Yi, Z. Wang, G. Zhou, J. Zhang, S. Wang, Highly transparent La2Zr2O7 ceramic fabricated by slip casting. Ceram. Int. 42, 2070–2073 (2016). https://doi.org/10.1016/j.ceramint.2015.09.070

    Article  CAS  Google Scholar 

  10. J.W. Seo, J. Fompeyrine, A. Guiller, G. Norga, C. Marchiori, H. Siegwart, J.-P. Locquet, Interface formation and defect structures in epitaxial La2Zr2O7 thin films on (111) Si. Appl. Phys. Lett. 83, 5211 (2003). https://doi.org/10.1063/1.1635966

    Article  CAS  Google Scholar 

  11. M. Kumar, I.A. Raj, R. Pattabiraman, Y2Zr2O7 (YZ)-pyrochlore based oxide as an electrolyte material for intermediate temperature solid oxide fuel cells (ITSOFCs)—influence of Mn addition on YZ. Mater. Chem. Phys. 108, 102–108 (2008). https://doi.org/10.1016/j.matchemphys.2007.09.010

    Article  CAS  Google Scholar 

  12. K. Yang, J.-H. Shen, K.-Y. Yang, I.-M. Hung, K.-Z. Fung, M.-C. Wang, Formation of La2Zr2O7 or SrZrO3 on cathode-supported solid oxide fuel cells. J. Power Sources 159, 63–67 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.049

    Article  CAS  Google Scholar 

  13. R.S. Rejith, J.K. Thomas, S. Solomon, Structural, optical and impedance spectroscopic characterizations of RE2Zr2O7 (RE = La, Y) ceramics. Solid State Ion. 323, 112–122 (2018)

    Article  CAS  Google Scholar 

  14. R.S. Rejith, R.R. Krishnan, A. John, J.K. Thomas, S. Solomon, Structural optical and electrical properties of RE4Zr3O12 (RE = Dy, Y, Er, and Yb) nanoceramics. Ionics. https://doi.org/10.1007/s11581-019-03097-z

    Article  CAS  Google Scholar 

  15. S. Solomon, A. George, J.K. Thomas, A. John, Preparation, characterization, and ionic transport properties of nanoscale Ln2Zr2O7 (Ln = Ce, Pr, Nd, Sm, Gd, Dy, Er, and Yb) energy materials. J. Electron. Mater. (2015). https://doi.org/10.1007/s11664-014-3473-y

    Article  Google Scholar 

  16. N. Dubey, V. Dubey, Synthesis and characterization of europium doped zirconium based phosphor for display applications. Rev. Fluoresc. (2017). https://doi.org/10.1007/978-3-319-48260-6_7

    Article  Google Scholar 

  17. V. Dubey, J. Kaur, N. Dubey, M.K. Pandey, N.S. Suryanarayana, K.V.R. Murthy, Kinetic and TL glow curve analysis of UV-, β-and γ-irradiated natural limestone collected from Chunkatta Mines. Radiat. Eff. Defects Solids 172(11–12), 866–877 (2017)

    Article  CAS  Google Scholar 

  18. V. Dubey, N.V. Dubey, S.J. Dhoble, H.C. Swart, TL glow curve analysis and kinetics of UV, β and γ irradiated YBO3:Eu3+ and Y2O3:Eu3+ phosphors. J. Mater. Sci. Mater. Electron. 28(18), 13565–13578 (2017)

    Article  CAS  Google Scholar 

  19. V.K. Singh, S. Tripathi, M.K. Mishra, R. Tiwari, V. Dubey, N. Tiwari, Optical studies of erbium and ytterbium doped Gd2Zr2O7 phosphor for display and optical communication applications. J. Disp. Technol. 12(10), 1224–1228 (2016)

    Article  CAS  Google Scholar 

  20. S.W.S. McKeever, Thermoluminescence of Solids (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  21. M. Martini, F. Meinardi, Thermally stimulated luminescence: new perspectives in the study of defects in solids. La Riv. Nuovo Cim. 20–4(8), 1–71 (1997)

    Article  Google Scholar 

  22. R. Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomenon (World Scientific, London, 1997)

    Book  Google Scholar 

  23. S.W.S. McKeever, M. Moscovitch, P.D. Townsend, Thermoluminescence Dosimetry materials: Properties and Uses (Nuclear Technology Publishing, Ashford, 1995)

    Google Scholar 

  24. Y. Kirsh, Kinetic analysis of thermoluminescence. Physica Status Solidi (A) 129, 15 (1992)

    Article  CAS  Google Scholar 

  25. R. Chen, Glow curves with general order kinetics. J. Electrochem. Soc. 116(9), 1254–1257 (1969)

    Article  Google Scholar 

  26. A. Halperin, A.A. Braner, Evaluation of thermal activation energies from glow curves. Phys. Rev. 117, 408 (1960)

    Article  CAS  Google Scholar 

  27. R. Chen, Y. Kirsh, The Analysis of Thermally Stimulated Processes (Pregamon Press, 1981)

  28. D. Shenker, R. Chen, Numerical curve fitting of general order kinetics glow peaks. J. Phys. D: Appl. Phys. 4, 287 (1971)

    Article  CAS  Google Scholar 

  29. P. Kivits, H.J.L. Hagebeuk, Evaluation of the model for thermally stimulated luminescence and conductivity; reliability of trap depth determinations. J. Lumin. 15(1), 1–27 (1977)

    Article  CAS  Google Scholar 

  30. B. Duan, J. Zhang, X. Liu, Q. Yuan, Y. Wang, Tunable blue–white–red photoluminescence and long lasting phosphorescence properties of a novel zirconate phosphor: La2Zr2O7:Sm3+, Ti4+. J. Alloy Compds. 587, 318–325 (2014)

    Article  CAS  Google Scholar 

  31. V. Dubey, N. Tiwari, Structural and optical analysis of europium doped AZrO3 (A = Ba, Ca, Sr) phosphor for display device application. AIP Conf. Proc. (2016). https://doi.org/10.1063/1.4946052

    Article  Google Scholar 

  32. N. Tiwari, V. Dubey, J. Dewangan, N. Jain, Near UV-blue emission from cerium doped zirconium dioxide phosphor for display and sensing applications. J. Disp. Technol. 12(9), 933–937 (2016)

    Article  CAS  Google Scholar 

  33. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969)

    Article  CAS  Google Scholar 

  34. J. Kaur, Y. Parganiha, V. Dubey, D. Singh, D. Chandrakar, Synthesis, characterization and luminescence behavior of ZrO2:Eu3+, Dy3+ with variable concentration of Eu and Dy doped phosphor. Superlattices Microstruct. 73, 38 (2014)

    Article  CAS  Google Scholar 

  35. V. Pagonis, G. Kitis, C. Furetta, Numerical and Practical Exercises in Thermoluminescence (Springer, Berlin, 2006)

    Google Scholar 

  36. A. Triolo, M. Brai, A. Bartolotta, M. Marrale, Glow curve analysis of TLD-100H irradiated with radiation of different LET: comparison between two theoretical method. Nucl. Instrum. Methods A 560, 413 (2006)

    Article  CAS  Google Scholar 

  37. I.A. Weinstein, E.A. Popko, Genetic search for model parameters in fitting thermoluminescence curves. Tech. Phys. Lett. 32, 534 (2006)

    Article  CAS  Google Scholar 

  38. M.S. Rasheedy, A.I. Abd-Elmageed, The validity of the two heating rates method to obtain the trapping parameters from general-order thermoluminescence glow peaks. J. Phys. Chem. Solids 68, 243 (2007)

    Article  CAS  Google Scholar 

  39. M.S. Rasheedy, N.T. Algethami, Adaptation of the OTOR-model to explain exactly the thermoluminescence processes during thermal excitation. Phys. Scr. 86, 045703 (2012)

    Article  Google Scholar 

  40. M. Mohapatra, B. Rajeswari, N.S. Hon, R.M. Kadam, M.S. Keskar, V. Natarajan, An electron spin resonance and photoluminescence investigation of the effect of annealing temperature on Gd-doped La2Zr2O7 nano-ceramics. Ceram. Int. 41(7), 8761–8767 (2015)

    Article  CAS  Google Scholar 

  41. M. Mohapatra, B. Rajeswari, N.S. Hon, R.M. Kadam, V. Natarajan, Photoluminescence properties of ‘red’ emitting La2Zr2O7:Eu pyrochlore ceramics for potential phosphor application. J. Lumin. 166, 1–7 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are very thankful to Department of Science and Technology funding through WOS-A Project entitled “Synthesis and Characterization of rare earth activated zirconium based phosphor for biomedical applications” Reference No. SR/WOS-A/PM-14/2018 (G)) Dated 14/12/2018. Also they are thankful to Dr. R.N. Singh Principal Govt. V.Y.T. PG. Auto. College Durg for providing lab facilities and department of physics for kind support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neha Dubey or Vikas Dubey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, N., Dubey, V., Saji, J. et al. Thermoluminescence glow curve analysis and trap parameters calculation of UV-induced La2Zr2O7 phosphor doped with gadolinium. J Mater Sci: Mater Electron 31, 1936–1944 (2020). https://doi.org/10.1007/s10854-019-02712-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02712-z

Navigation