Skip to main content
Log in

Phenyl-bridged bis-salicylaldiminato binuclear titanium complexes for ethylene (co)polymerization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

P-Phenyl-bridged bis-salicylaldiminato binuclear titanium complexes Ti2L1, Ti2L2 and the corresponding momonuclear counterpart TiL4 were synthesized and characterized by 1H NMR, 13C NMR, FT-IR, and elemental analysis. The binuclear titanium complex Ti2L1 showed good catalytic performances for ethylene polymerization and copolymerization with norbornene or 1,5-hexadiene. For ethylene polymerization, the binuclear titanium complex Ti2L1 exhibited highest activity of 8.70 × 105 g/mol(Ti).h.atm at 70 °C and retained an activity of 3.00 × 105 g/mol(Ti).h.atm at 90 °C, which showed much higher thermal stability compared with its bi- and mono-nuclear derivatives Ti2L3 and TiL4, due probably to the rigid phenyl-bridged structure offering more stable state of active metal centers. The binuclear complex Ti2L1 could catalyze ethylene copolymerization with norbornene (NB) or 1,5-hexadiene (1,5-HD) to produce copolymer bearing cyclic groups. Compared with mononuclear complex TiL4, the binuclear Ti2L1 showed higher catalytic activity and incorporation rate of comonomer for ethylene/NB copolymerization. The mononuclear complex TiL4 could barely catalyze the copolymerization of ethylene and 1,5-HD, however, the binuclear analogue Ti2L1 exhibited an activity of 1.67 × 105 g/mol(Ti)·h·atm with 4.74% of incorporation rate of 1,5-HD for ethylene/1,5-HD copolymerization, implying that the bimetallic synergistic effect could greatly improve the catalytic performance of the bis-salicylaldiminato binuclear titanium complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study is available from the corresponding authors on request.

References

  1. Peng D, Chen CL (2021) Photoresponsive palladium and nickel catalysts for ethylene polymerization and copolymerization. Angew Chem Int Ed 60:22195–22200

    Article  CAS  Google Scholar 

  2. Zhang H, Zou C, Zhao HP, Cai ZG, Chen CL (2021) Hydrogen-bonding-Induced heterogenization of nickel and palladium catalysts for copolymerization of ethylene with polar monomers. Angew Chem Int Ed 60:17446–17451

    Article  CAS  Google Scholar 

  3. Janeta M, Heidlas JX, Daugulis O, Brookhart M (2021) 2,4,6-Triphenylpyridinium: a bulky, highly electron-withdrawing substituent that enhances properties of nickel(II) ethylene polymerization catalysts. Angew Chem Int Ed 60:4566–4569

    Article  CAS  Google Scholar 

  4. Chen CL (2018) Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning. Nat Rev Chem 2:6–14

    Article  CAS  Google Scholar 

  5. Chen Z, Brookhart M (2018) Exploring ethylene/polar vinyl monomer copolymerizations using Ni and Pd α-diimine catalysts. Acc Chem Res 51:1831–1839

    Article  CAS  Google Scholar 

  6. Bariashir C, Huang CB, Solan GA, Sun WH (2019) Recent advances in homogeneous chromium catalyst design for ethylene tri-, tetra-, oligo- and polymerization. Coord Chem Rev 385:208–229

    Article  CAS  Google Scholar 

  7. Tan C, Chen CL (2019) Emerging palladium and nickel catalysts for copolymerization of olefins with polar monomers. Angew Chem Int Ed 58:7192–7200

    Article  CAS  Google Scholar 

  8. Chen JC, Gao YS, Marks TJ (2020) Early transition metal catalysis for olefin–polar monomer copolymerization. Angew Chem Int Ed 59:14726–14735

    Article  CAS  Google Scholar 

  9. Yuan SF, Yan Y, Solan GA, Ma YP, Sun WH (2020) Recent advancements in N-ligated group 4 molecular catalysts for the (co)polymerization of ethylene. Coord Chem Rev 411:213254

    Article  CAS  Google Scholar 

  10. Makio H, Terao H, Iwashita A, Fujita T (2011) FI catalysts for olefin polymerization—a comprehensive treatment. Chem Rev 111:2363–2449

    Article  CAS  Google Scholar 

  11. Redshaw C, Tang Y (2012) Tridentate ligands and beyond in group IV metal α-olefin homo-/co-polymerization catalysis. Chem Soc Rev 41:4484–4510

    Article  CAS  Google Scholar 

  12. Qasim M, Bashir MS, Iqbal S, Mahmood Q (2021) Recent advancements in α-diimine-nickel and -palladium catalysts for ethylene polymerization. Eur Polym J 160:110783

    Article  CAS  Google Scholar 

  13. Antonov AA, Bryliakov KP (2021) Post-metallocene catalysts for the synthesis of ultrahigh molecular weight polyethylene: Recent advances. Eur Polym J 142:110162

    Article  CAS  Google Scholar 

  14. Beheshti MS, Arabi H (2022) One-pot synthesis of symmetrical and unsymmetrical α-diimine Nickel complexes in comparison with two-pot synthesis method for ethylene polymerization. J Polym Res 29:214

    Article  CAS  Google Scholar 

  15. Agrawal D, De SK, Singh PK (2020) Synthesis and characterization of post-metallocene titanium complexes of bidentate dicarboxylic acids and studies on the effect of ring size on their polymerization activity at room temperature in aqueous emulsion. J Polym Res 27:99

    Article  CAS  Google Scholar 

  16. Trivedi PM, Gupta VK (2021) Progress in MgCl2 supported Ziegler-Natta catalyzed polyolefin products and applications. J Polym Res 28:45

    Article  CAS  Google Scholar 

  17. Hassanian-Moghaddam D, Mortazavi SMM, Ahmadjo S, Doveirjavi M, Rahmati A, Ahmadi M (2022) Resolving long-chain branch formation in tandem catalytic coordinative chain transfer polymerization of ethylene via thermal analysis. J Polym Res 29:3

    Article  CAS  Google Scholar 

  18. Masoori M, Nekoomanesh M, Posada-Pérez S, Rashedi R, Bahri-Laleh N (2022) Exploring cocatalyst type effect on the Ziegler-Natta catalyzed ethylene polymerizations: experimental and DFT studies. J Polym Res 29:197

    Article  CAS  Google Scholar 

  19. Masoori M, Rashedi R, Sepahi A, Jandaghian MH, Nikzinat E, Houshmandmoayed S (2022) Structure-Performance Relationship(SPR) of Ziegler Natta catalysts(TiCl4/MgCl2-based) in ethylene/1-butene and ethylene/1-hexene copolymerization. J Polym Res 29:317

    Article  CAS  Google Scholar 

  20. Khoshsefat M, Ma YP, Sun WH (2021) Multinuclear late transition metal catalysts for olefin polymerization. Coordination Chem Rev 434:213788

    Article  CAS  Google Scholar 

  21. Suo HY, Solan GA, Ma YP, Sun WH (2018) Developments in compartmentalized bimetallic transition metal ethylene polymerization catalysts. Coord Chem Rev 372:101–116

    Article  CAS  Google Scholar 

  22. Kremer AB, Mehrkhodavandi P (2019) Dinuclear catalysts for the ring opening polymerization of lactide. Coord Chem Rev 380:35–57

    Article  CAS  Google Scholar 

  23. Delferro M, Marks TJ (2011) Multinuclear olefin polymerization catalysts. Chem Rev 111:2450–2485

    Article  CAS  Google Scholar 

  24. McInnis JP, Delferro M, Marks TJ (2014) Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal–metal cooperative effects. Acc Chem Res 47:2545–2557

    Article  CAS  Google Scholar 

  25. Salata MR, Marks TJ (2008) Synthesis, characterization, and marked polymerization selectivity characteristics of binuclear phenoxyiminato organozirconium catalysts. J Am Chem Soc 130:12–13

    Article  CAS  Google Scholar 

  26. Salata MR, Marks TJ (2009) Catalyst nuclearity effects in olefin polymerization. enhanced activity and comonomer enchainment in ethylene + olefin copolymerizations mediated by bimetallic group 4 phenoxyiminato catalysts. Macromolecules 42:1920–1933

    Article  CAS  Google Scholar 

  27. Han SL, Yao E, Qin W, Zhang SF, Ma Y (2012) Binuclear heteroligated titanium catalyst based on phenoxyimine ligands: synthesis, characterization, and ethylene (co)polymerization. Macromolecules 45:4054–4059

    Article  CAS  Google Scholar 

  28. Radlauer MR, Buckley AK, Henling LM, Agapie T (2013) Bimetallic coordination insertion polymerization of unprotected polar monomers: copolymerization of amino olefins and ethylene by dinickel bisphenoxyiminato catalysts. J Am Chem Soc 135:3784–3787

    Article  CAS  Google Scholar 

  29. Liu Q, Jordan RF (2019) Sterically controlled self-assembly of a robust multinuclear palladium catalyst for ethylene polymerization. J Am Chem Soc 141:6827–6831

    Article  CAS  Google Scholar 

  30. Liu SF, Xing YH, Zheng QD, Jia YT, Li ZB (2020) Synthesis of anthracene-bridged dinuclear phenoxyiminato organotitanium catalysts with enhanced activity, thermal stability, and comonomer incorporation ability toward ethylene (co)polymerization. Organometallics 39:3268–3274

    Article  CAS  Google Scholar 

  31. Ji G, Chen Z, Wang XY, Ning XS, Xu CJ, Zhang XM, Tao WJ, Li JF, Gao YS, Shen Q, Sun XL, Wang HY, Zhao JB, Zhang B, Guo YL, Zhao YN, Sun JJ, Luo Y, Tang Y (2021) Direct copolymerization of ethylene with protic comonomers enabled by multinuclear Ni catalysts. Nat Commun 12:6283–1292

    Article  CAS  Google Scholar 

  32. Sampson J, Bruening M, Akhtar MN, Jaseer EA, Theravalappil R, Garcia N, Agapie T (2021) Copolymerization of ethylene and long-chain functional α-olefins by dinuclear zirconium catalysts. Organometallics 40:1854–1858

    Article  CAS  Google Scholar 

  33. Qin YW, Li TC, Chen X, Li J, Meng X, You QL, Xie GY (2021) Asymmetric bis-salicylaldiminato binuclear titanium complexes for ethylene polymerization and copolymerization. New J Chem 45:11390–11398

    Article  CAS  Google Scholar 

  34. Li J, Wang LW, Qin YW, You QL, Li TC, Sun L, Li XD, Xie GY (2020) Binuclear titanium complexes coordinated by rigid p-phenylene linked bis-β-carbonylenamine: synthesis, structure, ethylene polymerization and copolymerization with 1,5-hexadiene. Appl Organomet Chem 34:e5772

    Article  CAS  Google Scholar 

  35. Luo YN, Li J, Luo DR, You QL, Yang ZF, Li TC, Li XD, Xie GY (2019) Methylene-bridged tridentate salicylaldiminato binuclear titanium complexes as copolymerization catalysts for the preparation of LLDPE through [Fe]/[Ti] tandem catalysis. Polymers 11:1114

    Article  CAS  Google Scholar 

  36. Chen X, Zeng Y, Lan Z, You QL, Li TC, Li XD, Zhang DH, Xie GY (2018) A Methylene-bridged salicylaldiminato tridentate [ONS] binuclear titanium complex for ethylene-norbornene copolymerization. J Macromol Sci A 55:489–495

    Article  CAS  Google Scholar 

  37. Luo DR, Zeng Y, Chen X, Xia P, Xie GY, You QL, Zhang L, Li TC, Li XD, Zhang AQ (2018) Synthesis, characterization and olefin polymerization behaviors of phenylene-bridged bis-β- carbonylenamine binuclear titanium complexes. RSC Adv 8:6954–6964

    Article  CAS  Google Scholar 

  38. Zhang L, Chen X, Xiao X, Luo DR, Zeng Y, Li TC, Li XD, Zhang AQ, Xie GY (2018) A novel tridentate [ONS] binuclear titanium complex bearing oxo-bridged macrocyclic structure for ethylene polymerization. J Organomet Chem 856:50–55

    Article  CAS  Google Scholar 

  39. Li TC, Lan Z, Xie GY, Luo DR, Li L, Xiong SF, Zhang L, Ouyang LP, Zhang AQ (2017) Binuclear titanium catalysts based on methylene-bridged tridentate salicylaldiminato ligands for ethylene homo- and copolymerization. Catal Lett 147:996–1005

    Article  CAS  Google Scholar 

  40. Tuskaev VA, Gagieva SC, Bogdanov VS, Kurmaev DA, Melnikova EK, Saracheno D, Buzin MI, Golubev EK, Kechek’yan AS, Myagkova KZ, Denisov GL, Bulychev BM (2021) Binuclear Ti(IV) complex with new compartmental ligand 2,6-(bis-CF3-carbinol)-4-tert-butylphenol as precatalysts for ethylene polymerization and its copolymerization with propylene and 5-ethylidene-norbornene. Appl Organomet Chem 35:e6396

    Article  CAS  Google Scholar 

  41. Xie GY, Qian CT (2008) Dramatic electronic effect of fluoro substituents on the olefin polymerization activity of mono β-diiminato titanium complexes. J Polym Sci A Polym Chem 46:211–217

    Article  CAS  Google Scholar 

  42. Xie GY, Li YX, Sun J, Qian CT (2009) Titanium complexes with β-ketoiminate chelate ligands for ethylene polymerization: The significant influence of substituents on structures and catalytic activities. Inorg Chem Commun 12:796–799

    Article  CAS  Google Scholar 

  43. Xie GY, Li TC, Zhang AQ (2010) Highly active and selective ethylene oligomerization catalysts: Asymmetric 2,6-bis(imino)pyridyl iron (II) complexes with alkyl and halogen substitutients. Inorg Chem Commun 13:1199–1202

    Article  CAS  Google Scholar 

  44. Xie GY, Liu GY, Li L, Li TC, Zhang AQ, Feng JW (2014) Tandem catalysis of iron and titanium non-metallocene catalysts for the production of branched polyethylene. Catal Commun 45:7–10

    Article  CAS  Google Scholar 

  45. Xie GY, Zhang X, Li TC, Li L, Liu GY, Zhang AQ (2014) Preparation of linear low-density polyethylene from ethylene by tandem catalysis of iron and titanium non-metallocene catalysts. J Mol Catal A Chem 383:121–127

    Article  Google Scholar 

  46. Li TC, Song W, Ai HT, You QL, Zhang AQ, Xie GY (2015) β-diiminato titanium complexes with varying fluorine substitution patterns on the N-aryl moiety: probing the effect of ligand substitution on ethylene polymerization. J Polym Res 22:631–638

    Article  Google Scholar 

  47. Xie GY, Song W, Li TC, Xu XH, Lan Z, Li YS, Zhang AQ (2014) Synthesis, characterization and catalytic behavior of copper complexes with fluorosubstituted β-ketoimine ligands. J Appl Polym Sci 131:41178

    Article  Google Scholar 

  48. Wang LW, You XQ, You QL, Li TC, Zhang AQ, Xie GY (2016) Synthesis and structures of mono(β-diiminato) copper complexes and their catalytic performances for homo- and copolymerizations of methylacrylate. Transit Metal Chem 41:857–866

    Article  CAS  Google Scholar 

  49. Ma ZF, Yang WH, Sun WH (2017) Recent progress on transition metal (Fe Co, Ni, Ti and V) complex catalysts in olefin polymerization with high thermal stability. Chin J Chem 35:531–540

    Article  CAS  Google Scholar 

  50. Mitchell NE, Long BK (2019) Recent advances in thermally robust, late transition metal-catalyzed olefin polymerization. Polym Int 68:14–26

    Article  CAS  Google Scholar 

  51. Marvel CS, Stille JK (1958) Intermolecular-intramolecular polymerization of α-diolefins by metal alkyl coordination catalysts. J Am Chem Soc 80:1740–1744

    Article  CAS  Google Scholar 

  52. Naga N, Imanishi Y (2002) Copolymerization of ethylene and 1,5-hexadiene with zirconocene catalysts. Macromol Chem Phys 203:771–777

    Article  CAS  Google Scholar 

  53. Naga N, Tsubooka M, Suehiro S, Imanishi Y (2002) Crystalline structure and thermal property of polyethylene and isotactic polypropylene containing cyclopentane units in the main chain. Macromolecules 35:3041–3047

    Article  CAS  Google Scholar 

  54. Naga N, Tsubooka M, Sone M, Tashiro K, Imanishi Y (2002) Crystalline structure of polyethylene containing 1,2- or 1,3-disubstituted cyclopentane units in the main chain. Macromolecules 35:9999–10003

    Article  CAS  Google Scholar 

  55. Rahmatiyan S, Bahri-Laleh N, Hanifpour A, Nekoomanesh-Haghighi M (2019) Different behaviors of metallocene and Ziegler-Natta catalysts in ethylene/1,5-hexadiene copolymerization. Polym Int 68:94–101

    Article  CAS  Google Scholar 

  56. Kokko E, Pietikäinen P, Koivunen J, Seppala JV (2001) Long-chain-branched polyethene by the copolymerization of ethene and nonconjugated α, ω-dienes. J Polym Sci A Polym Chem 39:3805–3817

    Article  CAS  Google Scholar 

  57. Li WW, Mu HL, Liu JY, Li YS (2017) 9,9-Dimethylxanthene-based binuclear phenoxy-imine neutral nickel(II) catalysts for ethylene homo- and copolymerization. J Organomet Chem 836:34–43

    Article  Google Scholar 

  58. Dandachi H, Nasrallah H, Ibrahim F, Hong X, Mellah M, Jaber N, Schulz E (2014) Chiral calix-salen cobalt complexes, catalysts for the enantioselectivedynamic hydrolytic kinetic resolution of epibromohydrin. J Mol Catal A Chem 395:457–462

    Article  CAS  Google Scholar 

  59. Tritto I, Marestin C, Boggioni L, Zetta L, Provasoli A, Ferro DR (2000) Ethylene-norbornene copolymer microstructure. assessment and advances based on assignments of 13C NMR Spectra. Macromolecules 33:8931–8944

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (21172269) and Major bidding projects of provincial and ministerial scientific institutions, South-Central Minzu University (PTZD22007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyong Xie.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, M., Luo, Y., Ren, S. et al. Phenyl-bridged bis-salicylaldiminato binuclear titanium complexes for ethylene (co)polymerization. J Polym Res 30, 28 (2023). https://doi.org/10.1007/s10965-022-03410-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03410-x

Keywords

Navigation