Skip to main content

Advertisement

Log in

Phycoerythrin extends life span and health span of Caenorhabditis elegans

  • Published:
AGE Aims and scope Submit manuscript

Abstract

In the present study, we tested the antioxidant activity of phycoerythrin (PE, an oligomeric light harvesting protein isolated from Lyngbya sp. A09DM) to curtail aging effects in Caenorhabditis elegans. Purified PE (100 μg/ml) dietary supplement was given to C. elegans and investigated for its anti-aging potential. PE treatment improved the mean life span of wild type (N2)-animals from 15 ± 0.1 to 19.9 ± 0.3 days. PE treatment also moderated the decline in aging-associated physiological functions like pharyngeal pumping and locomotion with increasing age of N2 worms. Moreover, PE treatment also enhanced the stress tolerance in 5-day-aged adults with increase in mean survival rate from 22.2 ± 2.5 to 41.6 ± 2.5 % under thermo stress and from 30.1 ± 3.2 to 63.1 ± 6.4 % under oxidative (hydrogen peroxide)-stress. PE treatment was also noted to moderate the heat-induced expression of human amyloid-beta(Aβ1-42) peptide and associated paralysis in the muscle tissues of transgenic C. elegans CL4176 (Alzheimer’s disease model). Effectiveness of PE in expanding the life span of mutant C. elegans, knockout for some up (daf-2 and age-1)- and down (daf-16)-stream regulators of insulin/IGF-1 signaling (IIS), shows the independency of PE effect from DAF-2–AGE-1–DAF-16 signaling pathway. Moreover, the inability of PE in expanding the life span of hsf-1 knockout C. elegans(sy441) suggests the dependency of PE effect on heat shock transcription factor (HSF-1) controlling stress-induced gene expression. In conclusion, our results demonstrated a novel anti-aging activity of PE which conferred increased resistance to cellular stress resulting in improved life span and health span of C. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benedetti MG, Foster AL, Vantipalli MC, White MP, Sampayo JN, Gill MS, Olsen A, Lithgow GJ (2008) Compounds that confer thermal stress resistance and extended lifespan. Exp Gerontol 43:882–891

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. J Am Med Assoc 297:842–857

    Article  CAS  Google Scholar 

  • Blagosklonny MV (2008) Aging: ROS or TOR. Cell Cycle 7:3344–3354

    Article  PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brown MK, Evans JL, Luo Y (2006) Beneficial effects of natural antioxidants EGCG and alpha-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol Biochem Behav 85:620–628

    Article  PubMed  CAS  Google Scholar 

  • Cai WJ, Huang JH, Zhang SQ, Wu B, Kapahi P, Zhang XM, Shen ZY (2011) Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans. PLoS ONE 6:e28835

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chiang WC, Ching TT, Lee HC, Mousigian C, Hsu AL (2012) HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity. Cell 148:322–334

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cian RE, López-Posadas R, Drago SR, de Medina FS, Martínez-Augustin O (2012) Immunomodulatory properties of the protein fraction from Phorphyra columbina. J Agric Food Chem 60:8146–8154

    Article  PubMed  CAS  Google Scholar 

  • Crawford D, Libina N, Kenyon C (2007) Caenorhabditis elegans integrates food and reproductive signals in lifespan determination. Aging Cell 6:715–721

    Article  PubMed  CAS  Google Scholar 

  • Dostal V, Link CD (2010) Assaying β-amyloid Toxicity using a Transgenic C. elegans Model. JoVE. 44

  • Finch CE, Ruvkun G (2001) The genetics of aging. Annu Rev Genomics Hum Genet 2:435–462

    Article  PubMed  CAS  Google Scholar 

  • Gems D, Doonan R (2009) Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong? Cell Cycle 8:1681–1687

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1998) Aging and oxidative stress. J Int Fed Clin Chem 10:24–27

    PubMed  CAS  Google Scholar 

  • Harrington LA, Harley CB (1988) Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans. Mech Aging Dev 43:71–78

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Xiong C, Kornfeld K (2004) Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci 101:8084–8089

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ishii N, Senoo-Matsuda N, Miyake K, Yasuda K, Ishii T, Hartman PS, Furukawa S (2004) Coenzyme Q10 can prolong C elegans lifespan by lowering oxidative stress. Mech Aging Dev 125:41–46

    Article  PubMed  CAS  Google Scholar 

  • Iwasa H, Yu S, Xue J, Driscoll M (2010) Novel EGF pathway regulators modulate C elegans healthspan and lifespan via EGF receptor, PLC‐γ, and IP3R activation. Aging Cell 9:490–505

    Article  PubMed  CAS  Google Scholar 

  • Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104

    Article  PubMed  CAS  Google Scholar 

  • Kamath RS, Ahringer J (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30:313–321

    Article  PubMed  CAS  Google Scholar 

  • Kenyon CJ (2010) The genetics of aging. Nature 464:504–512

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudener A, Tabtiang R (1993) A C elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  PubMed  CAS  Google Scholar 

  • Kumar J, Choudhary BC, Metpally R, Zheng Q, Nonet ML, Ramanathan S, Klopfenstein DR, Koushika SP (2010) The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genet 6:e1001200

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/fork head family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    Article  PubMed  CAS  Google Scholar 

  • Link C (2003) Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model. Neurobiol Aging 24:397–413

    Article  PubMed  CAS  Google Scholar 

  • Lordan S, Ross RP, Stanton C (2011) Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9:1056–1100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC, Malfroy B, Doctrow SR, Lithgow GJ (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289:1567–1569

    Article  PubMed  CAS  Google Scholar 

  • Morton EA, Lamitina T (2013) Caenorhabditis elegans HSF‐1 is an essential nuclear protein that forms stress granule‐like structures following heat shock. Aging Cell 12:112–120

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Murphy CT, Hu PJ (2013) Insulin/insulin-like growth factor signaling in C elegans.. WormBook: the online review of C elegans biology, 1

  • Narasimhan SD, Yen K, Tissenbaum HA (2009) Converging pathways in lifespan regulation. Curr Biol 19:R657–R666

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C elegans. Nature 389:994–999

    Article  PubMed  CAS  Google Scholar 

  • Parmar A, Singh NK, Kaushal A, Sonawala S, Madamwar D (2011) Purification, characterization and comparison of phycoerythrins from three different marine cyanobacterial cultures. Bioresour Technol 102:1795–1802

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen RS, Morrissey MT (2007) Marine biotechnology for production of food ingredients. Adv Food Nutr Res 52:237–292

    Article  PubMed  CAS  Google Scholar 

  • Rattan SI (2008) Hormesis in aging. Aging Res Rev 7:63–78

    Article  Google Scholar 

  • Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, Sabatini DM, Blackwell TK (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15:713–724

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Romay CH, Gonzalez R, Ledon N, Remirez D, Rimbau V (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216

    Article  PubMed  CAS  Google Scholar 

  • Samuelson AV, Carr CE, Ruvkun G (2007) Gene activities that mediate increased life span of C elegans insulin-like signaling mutants. Genes Dev 21:2976–2994

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6:280–293

    Article  PubMed  CAS  Google Scholar 

  • Shah V, Garg N, Madamwar D (2001) Record of the marine cyanobacterium from the rocky shores of Bet-Dwarka and Okha, India. Acta Bot Mal 26:188–193

    Google Scholar 

  • Singh NK, Hasan SS, Kumar J, Raj I, Pathan AA, Parmar A, Shakil S, Gourinath S, Madamwar D (2014) Crystal structure and interaction of phycocyanin with β-Secretase: a putative therapy for Alzheimer’s disease. CNS Neurol Disord Drug Targets 13:691–698

    Article  PubMed  CAS  Google Scholar 

  • Sonani RR, Singh NK, Kumar J, Thakar D, Madamwar D (2014) Concurrent purification and antioxidant activity of phycobiliproteins from Lyngbya sp. A09DM: an antioxidant and anti-aging potential of phycoerythrin in Caenorhabditis elegans. Process Biochem. doi:10.1016/j.procbio.2014.06.022

    Google Scholar 

  • Soni B, Trivedi U, Madamwar D (2008) A novel method for single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresour Technol 99:188–194

    Article  PubMed  CAS  Google Scholar 

  • Soni B, Visavadiya NP, Madamwar D (2009) Attenuation of diabetic complications by C-phycoerythrin in rats: antioxidant activity of C-phycoerythrin including copper-induced lipoprotein and serum oxidation. Br J Nutr 102:102–109

    Article  PubMed  CAS  Google Scholar 

  • Taboada C, Millán R, Míguez I (2010) Composition, nutritional aspects and effect on serum parameters of marine algae Ulva rigida. J Sci Food Agric 90:445–449

    Article  PubMed  CAS  Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854–854

    Article  PubMed  CAS  Google Scholar 

  • Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signalling in C. elegans. Cell 132:1025–1038

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vadiraja BB, Giakwad NW, Madyastha KM (1998) Hepato-protective effect of C phycocyanin: protection for carbon tetrachloride and R-(+)-pulegone-mediated hepatotoxicity in rats. Biochem Biophys Res Commun 249:428–431

    Article  PubMed  CAS  Google Scholar 

  • Waterbury JB, Stanier RY (1981) Isolation and growth of cyanobacteria from marine and hypersaline environments—the prokaryotes. Springer, Berlin Heidelberg, pp 221–223

    Google Scholar 

  • Zhang LX, Cai CE, Guo TT, Gu JW, Xu HL, Zhou Y, Wang Y, Liu CC, He PM (2011) Anti-cancer effects of polysaccharide and phycocyanin from Porphyra Yezoensis. J Mar Sci Tech 19:377–382

    CAS  Google Scholar 

  • Zhou KI, Pincus Z, Slack FJ (2011) Longevity and stress in Caenorhabditis elegans. Aging (Albany NY) 3:733

    Google Scholar 

Download references

Acknowledgments

This research was supported by the following funding agencies: (1) the Department of Science and Technology DST and (2) DBT-Patna University-IPLS Programme funded by the Department of Biotechnology (DBT), Govt. of India. RRS gratefully acknowledges the Department of Science and Technology (DST), New Delhi for financial support in the form of INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jitendra Kumar or Datta Madamwar.

Additional information

Ravi Raghav Sonani and Niraj Kumar Singh contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 501 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonani, R.R., Singh, N.K., Awasthi, A. et al. Phycoerythrin extends life span and health span of Caenorhabditis elegans . AGE 36, 9717 (2014). https://doi.org/10.1007/s11357-014-9717-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-014-9717-1

Keywords

Navigation