Skip to main content

Traditional Point Cloud Analysis

  • Chapter
  • First Online:
3D Point Cloud Analysis
  • 1474 Accesses

Abstract

Point cloud data is widely used in the fields of computer-aided design (CAD), augmented and virtual reality (AR/VR), robot navigation and perception, and advanced driver assistance systems (ADAS). However, point cloud data is sparse, irregular, and unordered by nature. In addition, the sensor typically produces a large number (tens to hundreds of thousands) of raw data points, which brings new challenges, as many applications require real-time processing. Hence, point cloud processing is a fundamental but challenging research topic in the field of 3D computer vision. In this chapter, we will first review some basic point cloud processing algorithms for filtering, nearest neighbor search , model fitting, feature detection, and feature description tasks. We generate some images using an open-source library, Open3D , to help illustrate the algorithms. Next, we will go over some classical pipelines for object recognition, segmentation, and registration tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  2. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (slam): part II. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006)

    Article  Google Scholar 

  3. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  Google Scholar 

  4. Bentley, J.L.: Survey of techniques for fixed radius near neighbor searching. Tech. rep., Stanford Linear Accelerator Center, Calif. (USA) (1975)

    Google Scholar 

  5. Bentley, J.L., Stanat, D.F., Williams Jr., E.H.: The complexity of finding fixed-radius near neighbors. Inform. Process. Lett 6(6), 209–212 (1977)

    Article  MathSciNet  Google Scholar 

  6. Besl, P.J., McKay, n.d.: Method for registration of 3-d shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics (1992)

    Google Scholar 

  7. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74(1), 59–73 (2007)

    Article  Google Scholar 

  8. Btyner: K-d tree (2006). https://commons.wikimedia.org/wiki/File:3dtree.png. Accessed 16 Aug 2021

  9. Chehata, N., Guo, L., Mallet, C.: Airborne lidar feature selection for urban classification using random forests. In: Laserscanning (2009)

    Google Scholar 

  10. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992)

    Article  Google Scholar 

  11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  12. Dcoetzee: Binary Search Tree (2005). https://commons.wikimedia.org/wiki/File:Binary_search_tree.svg. Accessed 16 Aug 2021

  13. Deng, H., Birdal, T., Ilic, S.: PPFNet: Global context aware local features for robust 3d point matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 195–205 (2018)

    Google Scholar 

  14. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  Google Scholar 

  15. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  16. Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image sampling. IEEE Trans. Image Process. 6(9), 1305–1315 (1997)

    Article  Google Scholar 

  17. Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval on composite keys. Acta Inform. 4(1), 1–9 (1974)

    Article  Google Scholar 

  18. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  19. Fix, E.: Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties, vol. 1. USAF school of Aviation Medicine (1985)

    Google Scholar 

  20. Hackel, T., Wegner, J.D., Schindler, K.: Fast semantic segmentation of 3d point clouds with strongly varying density. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. 3, 177–184 (2016)

    Article  Google Scholar 

  21. Harris, C.G., Stephens, M., et al.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, pp. 10–5244. Citeseer (1988)

    Google Scholar 

  22. Katsavounidis, I., Kuo, C.C.J., Zhang, Z.: A new initialization technique for generalized Lloyd iteration. IEEE Signal Process. Lett. 1(10), 144–146 (1994)

    Article  Google Scholar 

  23. Knuth, D.E.: The Art of Computer Programming, vol. 3. Pearson Education (1997)

    Google Scholar 

  24. Landrieu, L., Raguet, H., Vallet, B., Mallet, C., Weinmann, M.: A structured regularization framework for spatially smoothing semantic labelings of 3d point clouds. ISPRS J. Photogramm. Remote Sens. 132, 102–118 (2017)

    Article  Google Scholar 

  25. Leon, S.J., Bica, I., Hohn, T.: Linear Algebra with Applications, vol. 6. Prentice Hall, Upper Saddle River (1998)

    Google Scholar 

  26. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh Ieee International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE, Piscataway (1999)

    Google Scholar 

  27. Mallet, C., Bretar, F., Roux, M., Soergel, U., Heipke, C.: Relevance assessment of full-waveform lidar data for urban area classification. ISPRS J. Photogrammetry Remote Sensing 66(6), S71–S84 (2011)

    Article  Google Scholar 

  28. Meagher, D.: Geometric modeling using octree encoding. Comput. Graph. Image Process. 19(2), 129–147 (1982)

    Article  Google Scholar 

  29. Moenning, C., Dodgson, N.A.: Fast marching farthest point sampling. Tech. rep., University of Cambridge, Computer Laboratory (2003)

    Google Scholar 

  30. Msm: Noisydata (2007). https://commons.wikimedia.org/wiki/File:Line_with_outliers.svg. Accessed 18 Aug 2021

  31. Msm: Ransac (2007). https://commons.wikimedia.org/wiki/File:Fitted_line.svg. Accessed 18 Aug 2021

  32. Nguyen, A., Le, B.: 3d point cloud segmentation: a survey. In: 2013 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp. 225–230. IEEE, Piscataway (2013)

    Google Scholar 

  33. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152. IEEE, Piscataway (2001)

    Google Scholar 

  34. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3d registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217. IEEE, Piscataway (2009)

    Google Scholar 

  35. Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. In: Robotics: Science and Systems, vol. 2, p. 435. Seattle (2009)

    Google Scholar 

  36. Shi, J., et al.: Good features to track. In: 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600. IEEE, Piscataway (1994)

    Google Scholar 

  37. Sipiran, I., Bustos, B.: Harris 3d: a robust extension of the Harris operator for interest point detection on 3d meshes. Vis. Comput. 27(11), 963–976 (2011)

    Article  Google Scholar 

  38. Smith, S.M., Brady, J.M.: Susan—a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)

    Article  Google Scholar 

  39. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: European Conference on Computer Vision, pp. 356–369. Springer, Berlin (2010)

    Google Scholar 

  40. WhiteTimberwolf, P.v.N.: Octree (2010). https://commons.wikimedia.org/wiki/File:Octree2.svg. Accessed 16 Aug 2021

  41. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  42. Yang, H., Shi, J., Carlone, L.: Teaser: Fast and certifiable point cloud registration. IEEE Trans. Robot. 37(2), 314–333 (2020)

    Article  Google Scholar 

  43. Yang, J., Li, H., Campbell, D., Jia, Y.: Go-ICP: A globally optimal solution to 3d ICP point-set registration. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2241–2254 (2015)

    Article  Google Scholar 

  44. Zhong, Y.: Intrinsic shape signatures: A shape descriptor for 3d object recognition. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 689–696. IEEE, Piscataway (2009)

    Google Scholar 

  45. Zhou, Q.Y., Park, J., Koltun, V.: Fast global registration. In: European Conference on Computer Vision, pp. 766–782. Springer, Berlin (2016)

    Google Scholar 

  46. Zhou, Q.Y., Park, J., Koltun, V.: Open3d: A modern library for 3d data processing (2018). arXiv preprint arXiv:1801.09847

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, S., Zhang, M., Kadam, P., Kuo, CC.J. (2021). Traditional Point Cloud Analysis. In: 3D Point Cloud Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-89180-0_2

Download citation

Publish with us

Policies and ethics