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Abstract: Due to their favorable electromechanical properties, such as high sound velocity, low
dielectric permittivity and high electromechanical coupling, Aluminum Nitride (AlN) and Aluminum
Scandium Nitride (Al1−xScxN) thin films have achieved widespread application in radio frequency
(RF) acoustic devices. The resistance to etching at high scandium alloying, however, has inhibited
the realization of devices able to exploit the highest electromechanical coupling coefficients. In this
work, we investigated the vertical and lateral etch rates of sputtered AlN and Al1−xScxN with Sc
concentration x ranging from 0 to 0.42 in aqueous potassium hydroxide (KOH). Etch rates and the
sidewall angles were reported at different temperatures and KOH concentrations. We found that
the trends of the etch rate were unanimous: while the vertical etch rate decreases with increasing Sc
alloying, the lateral etch rate exhibits a V-shaped transition with a minimum etch rate at x = 0.125. By
performing an etch on an 800 nm thick Al0.875Sc0.125N film with 10 wt% KOH at 65 ◦C for 20 min, a
vertical sidewall was formed by exploiting the ratio of the

{
1011

}
planes and

{
1100

}
planes etch rates.

This method does not require preliminary processing and is potentially beneficial for the fabrication
of lamb wave resonators (LWRs) or other microelectromechanical systems (MEMS) structures, laser
mirrors and Ultraviolet Light-Emitting Diodes (UV-LEDs). It was demonstrated that the sidewall
angle tracks the trajectory that follows the

{
1212

}
of the hexagonal crystal structure when different

c/a ratios were considered for elevated Sc alloying levels, which may be used as a convenient tool for
structure/composition analysis.

Keywords: aluminum scandium nitride (AlScN); aluminum nitride (AlN); wet etch; potassium
hydroxide (KOH); ferroelectric

1. Introduction

Acoustic filters are key components in the evolution of radio frequency communi-
cation systems. Quartz crystals, lithium tantalate (LiTiO3) and lithium niobate (LiNbO3)
surface acoustic wave (SAW) filters made the first two generations (Global System for
Mobile communication, or GSM and Code-Division Multiple Access, or CDMA) of mobile
networks possible [1,2], followed by AlN Bulk Acoustic Wave (BAW) resonators for the 3G
(WCDMA) and 4G-LTE networks [3]. As the road map to 5G and beyond unfolded, filter
requirements have increased and call for filters that exhibit lower insertion loss, higher
temperature stability, steeper skirts and wider bandwidth. To achieve these metrics, a
new material with enhanced piezoelectric coefficients is needed, since it can lead to more
efficient coupling that directly transfers to increased filter bandwidth. In 2001, Takeuchi
identified, by first principal calculation, that wurtzite AlScN had the potential [4] to achieve
higher piezoelectric coefficients than AlN. Akiyama et al. later showed this through mea-
surement of co-sputtered AlScN films [5–7] that demonstrated a peak d33 of 27.6 pC/N [6].

Micromachines 2022, 13, 1066. https://doi.org/10.3390/mi13071066 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13071066
https://doi.org/10.3390/mi13071066
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-8007-5082
https://doi.org/10.3390/mi13071066
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13071066?type=check_update&version=2


Micromachines 2022, 13, 1066 2 of 19

Therefore, AlScN has become a competitive candidate for different filter designs targeting
5G NR mmWave (Ka band, 26 GHz) [8–10] or higher. As a result, extensive research has
been conducted on its material properties, growth, characterization and device fabrication.

Etching is a key step in the fabrication of AlScN devices. Like other III–V nitride
alloys, existing etching techniques on AlN/Al1−xScxN can be grouped into two categories:
dry etching and wet etching. For dry etching, ion-milling that uses Ar exclusively and
Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE), which utilizes BCl3/Cl2/Ar
mixtures, are common methods [11]. The latter is the more routinely used technique for
dry etching polycrystalline AlN, and etch rates can reach up to 420 nm/min [12] for an ICP
power of 800 W. Nevertheless, this etch rate drops dramatically with increasing scandium
concentration. For an Al0.85Sc0.15N film, the etch rate declined to 64% of that of AlN [13];
for Al0.73Sc0.27N, 42% under the same etch condition [14]; and for Al0.64Sc0.36N, 10% of
that for AlN [15]. As for single-crystalline Al1−xScxN, the reduction in etch rate occurred
much faster: at x = 0.02, the etch rate already reduced to 15% of AlN, and at x = 0.15, it was
12.7% [16]. Not only has the existence of scandium retarded the etch rate, but its non-volatile
etching by-products also re-deposit during the etch process, resulting in a roughened and
tapered side wall less than 76◦ if Ion Beam Etching (IBE) is not used [17,18]. The poor
selectivity requires very thick, hard masks during processing and makes it challenging to
stop the AlScN etch on underlying metal electrode materials. Both the slow etch rate and
low selectivity can limit the maximum AlScN film thickness realizable in a MEMS process.
Table 1 summarizes selected studies on the dry etch rates of AlN/Al1−xScxN:

Table 1. Published dry etch rates of AlN/Al1−xScxN in ICP-RIE.

Material Crystallinity Etchant
Flow (sccm)

ICP/RF
Power (W)

Pressure
(m Torr)

Etch Rate
(nm·s−1) Rate to AlN Ref.

AlN

Polycrystal

BCl3/Cl2/Ar
(10/14/6) 800/NA 5 420 1.00 [12]

Al0.85Sc0.15N BCl3/Cl2/He
(30/90/100) 550/150 NA 160 0.64 [13]

Al0.73Sc0.27N SiCl4
(NA) 150/225 15 10 0.42 [14]

Al0.64Sc0.36N BCl3/Cl2/Ar
(30/90/70) 400/120 NA 30 0.10 [15]

AlN Single
Crystal

BCl3/Cl2/Ar

(10/20/10)
200/50 5

86.0 1.00
[16]Al0.98Sc0.02N 13.3 0.15

Al0.84Sc0.16N 11.0 0.127

Compared to dry etching, wet etching can be rather advantageous owing to its less expen-
sive tooling. Common etchants include tetramethylammonium hydroxide (TMAH) [19–21],
phosphoric acid (H3PO4) [22,23] or phosphoric acid-based solution [21] (PWS, containing
80% H3PO4, 16% H2O and 4% HNO3), potassium hydroxide (KOH) [22,24,25] and AZ400K
Developer (contain 10 wt% of KOH) [26]. Among them, we found KOH to be rather attrac-
tive due to its availability and non-toxicity with a relatively high etch rate and high etch
selectivity to silicon nitride (SiNx). The current research focusing on AlN etching in KOH is
abundant, yet very few details were disclosed regarding the etching of Al1−xScxN, let alone
a complete survey of its etch rate as a function of Sc alloying. For the data available, the etch
rate varies substantially based on the temperature, crystallinity and etchant concentration.
Table 2 summarizes previous studies on the etch rates of AlN/Al1−xScxN in aqueous KOH.
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Table 2. Published vertical etch rates of AlN/Al1−xScxN in aqueous KOH solutions.

Material Crystallinity Etchant Temp (◦C) Etch Rate
(nm·s−1)

Activation
Energy

(kcal·mol−1)

Rate at 45 ◦C
(nm·s−1) Ref.

AlN

Single Crystal AZ400K 60 1.1 15.13 0.8
[26]Single Crystal

(with high defect
density)

AZ400K 60 25.1 15.24 10.3

Polycrystal

AZ400K 32 185.0 15.65 561.40 [26]
AZ400K 40 92.20 2.0 ± 0.5 107.93 [27]

45 wt% KOH 60 5.83 NA 1.89 [28]
1 wt% KOH 70 8.33 NA 1.34 [29]

Al0.80Sc0.20N
Polycrystal

25 wt% KOH RT 0.66
15.85 3.59 [25]25 wt% KOH 40 2.38

Al0.64Sc0.36N 25 wt% KOH 80 33.33 NA 2.77 [23]
Al0.63Sc0.37N 20 wt% KOH 20 0.42 NA 3.56 [30]

Note: For comparison, the etch rates were converted to 45 ◦C with activation energy Ea given by the author, or
assuming Ea = 15.85 kcal/mol if data were unavailable.

The lack of variable control and the limited data make it difficult to draw solid con-
clusions on the factors affecting the etch rate, though from the AlN/Al1−xScxN dry etch
results and the KOH wet etch of its III–V alloy kin Al1−xInxN [27]/Al1−xGaxN [29], one
would assume that the etch rate decreases with the increasing Sc concentration. Moreover,
even though prior etching studies reported the anisotropic nature of the etch, with prefer-
ential etching of the c-plane

{
0001

}
in N-polar AlN/Al1−xScxN [28,29] while exposing the{

1011
}

planes [31] from whose boundary the sidewall that follows is the
{

1212
}

of the
hexagonal crystal structure, lateral etch rates have not been reported. To date, there have
been but a few papers [32,33] discussing KOH etching of AlN/Al1−xScxN in detail, and
only AlN and Al0.80Sc0.20N were studied. Therefore, we report a thorough survey on the
vertical and lateral etch rates of sputtered AlN/Al1−xScxN in aqueous KOH solutions vs.
scandium concentrations, where the KOH concentrations and solution temperatures were
strictly regulated. We found that the vertical etch rate declines steadily with increasing
scandium concentration, whereas the lateral etch rate experiences a V-shaped transition
with a minimum value of 0.043 ± 0.002 nm/s at x = 0.125. By etching the Al0.875Sc0.125N
film in 10 wt% KOH at 45 ◦C for 10 min, a nearly 90◦ sidewall was produced by exposing
the

{
1100

}
planes. This technique is capable of generating a vertical sidewall without

pre-treatment and could be beneficial for the fabrication of numerous kinds of microelec-
tromechanical systems (MEMS) device such as lamb wave resonators (LWRs), laser mirrors
and Ultraviolet Light-Emitting Diodes (UV-LEDs).

The findings are presented in four sections: (1) Introduction, containing the problem
selected, literature review, novelty and section description; (2) Experiment, containing the
deposition methods, film characterization, etch mask patterning, wet etching process steps
and data interpretation methodology; (3) Results and Analysis, containing the illustration
of results and detailed analysis; (4) Conclusion, summarizes the paper and the novelty of
the research.

2. Experiment
2.1. Film Deposition
2.1.1. Growth

Based on the crystallinity of AlN/Al1−xScxN, several methods can be used for film
growth. Single-crystal AlN can be grown via physical vapor transport (PVT) on substrates
up to 60 mm in diameter [34–36]. Single-crystal Al1−xScxN can be grown by molecular
beam epitaxy (MBE) [9] on 100 mm wafers [37] with scandium concentration x from 0.06
to 0.36 [38]. The growth of Sc alloyed AlN via metal–organic chemical vapor deposition
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(MOCVD) had suffered from the lack of Sc precursors [39]; however, research in this
field is catching up quickly, and the ability to grow 36% Sc alloyed Al1−xScxN films on
100 mm wafers has been demonstrated [40,41]. High-quality polycrystalline Al1−xScxN
films can be deposited with physical vapor deposition (PVD) methods such as magnetron
sputtering. This method features a high deposition rate, low growth temperature, and the
capability of up-scaling in substrate size [42–46], and has been adopted by a variety of tool
manufacturers for industrial mass production [47].

Al1−xScxN depositions were performed in an Evatec CLUSTERLINE® 200 II Physical
Vapor Deposition System (Evatec AG, Trübbach, Switzerland) at a substrate temperature
of 350 ◦C with 150 kHz pulsed DC bias with an 88% duty cycle. No RF substrate bias was
applied and the AlScN materials were deposited directly onto silicon substrates. No pre-
cleans were applied to the substrates. Two 100 mm metal targets were used, Al (99.999%)
and Sc (99.99%), with a target-to-substrate distance of 88.5 mm. Before deposition, the
chamber was pumped to a base pressure lower than 1.0 × 10−7 mbar. A 15 nm AlN film
was deposited first onto a 100 mm Si (100) wafer as the seed layer by sputtering Al in a pure
nitrogen environment with a target power of 1000 W and N2 flow of 20 sccm. Subsequently,
a 35 nm linearly graded Al1−xScxN layer was deposited by gradually increasing the Sc target
power while maintaining the Al target power constant. Finally, a 750 nm bulk Al1−xScxN
layer was deposited by fixing both the Al and Sc target powers. The 20 sccm N2 flow was
maintained during the process and no Ar was used throughout. The chamber pressure
remained close to 8.0× 10−4 mbar during the deposition. A total of 15 films were deposited
with Sc concentration ranging from 0% to 42%. Table 3 summarizes the correlation between
Sc target power and Sc concentration based on our previous research [48].

Table 3. Scandium concentration vs. Sc target power.

Sc Alloying
in Film (%) 0 5 10 12.5 15 20 25 28 30 32 34 36 38 40 42

Sc Target Power
(W) 0 40 80 130 185 300 400 450 510 555 610 655 685 710 770

2.1.2. Surface Metrology

The adoption of the AlN seed layer, the Al1−xScxN gradient layer, and pure nitrogen
sputtering environment greatly reduced the occurrence of abnormally oriented grains
(AOGs). AOGs are a series of wurtzite Al1−xScxN crystals that do not have their c-axis
perpendicular to the substrate [49]. They could erupt from the crystalline interface if grown
under unfavorable conditions, especially for films with higher Sc concentration [50]. If
not suppressed, they may occupy the entire film surface [49,51,52], severely degrading
device performance [53,54] and locally slowing the etch rate. To examine the film quality,
atomic force microscopy (AFM) scans were conducted using a Bruker Icon AFM, and most
of the films measured showed a roughness of <2 nm. Figure 1a shows the surface of an
Al0.64Sc0.36N film within a 20 × 20 µm2 field. The root mean square (RMS) surface rough-
ness Rq is 0.840 nm and Ra is 0.641 nm. The film quality is also supported by the rocking
curve measurements, which were performed by a Rigaku Smart Lab X-RAY Diffractometer
(XRD) with a high resolution Parallel Beam (PB) Ge (220) × 2 monochromator (Rigaku
Corporation, Tokyo, Japan). The Omega scan data are centered at 18.13 ◦ with a full width
at half maximum (FWHM) of 1.80 ◦ for a 500 nm film deposited on Si (100) using the same
process, indicating that the film is highly c-axis textured. All films had a similar quality
based on the AFM and XRD measurement.
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Figure 1. (a) AFM of the Al0.64Sc0.36N Film. (b) Rocking curve measurement (Omega Scan) of an
Al0.64Sc0.36N film.

2.2. Film Patterning

To selectively etch AlN/Al1−xScxN, the film must be patterned so that only locations
of interest would be exposed in the etchant. Silicon nitride (SiNx) was chosen as our
hard mask, as it has an etch rate of 0.67 nm/min in 30% KOH at 80 ◦C [55], which is
negligible compared to the etch rates of Al1−xScxN. A 200 nm SiNx film was deposited on
top of the Al1−xScxN film in an Oxford Plasma Lab 100 Plasma-enhanced Chemical Vapor
Deposition (PECVD) machine (Oxford Instruments Plasma Technology, Bristol, UK), and
on the backside of the wafer as well to protect the Si substrate during the etch. Afterwards,
photoresist MICROPOSIT®S1813 was spin-coated and exposed in a Karl Süss MA6 Mask
Aligner (SÜSS MicroTec SE, Garching, Germany) via contact lithography. The exposed
film was developed in TMAH-0.26N developer, then transferred to an Oxford 80 plus
Reactive-ion Etching (RIE) etcher (Oxford Instruments Plasma Technology, Bristol, UK).
A 30 s O2 descum was performed first to remove the remaining resist, followed by 3 min
of SiNx etch with CHF3/O2 mixture. Finally, the resist was stripped in MICROPOSIT®

remover 1165 with ultrasonic bath at 60 ◦C and plasma cleaned. Figure 2 illustrates the
fabrication process.

2.3. KOH Wet Etching
2.3.1. Principle

The wet etching of III–V nitrides in general involves the formation of an oxide on the
surface and the subsequent dissolution of the oxide [24]. The flowing reactions occur when
AlN/Al1−xScxN is subjected to the alkaline environment [29]:

2AlN + 3H2O KOH→ Al2O3 + 2NH3 (1)

AlN + 3H2O KOH→ Al(OH)3 + NH3 (2)

2ScN + 3H2O KOH→ Sc2O3 + 2NH3 (3)

ScN + 3H2O KOH→ Sc(OH)3 + NH3 (4)

In this reaction, KOH acts as the catalyst that pushes the equation to the right side.
Due to the origin of the reaction, N-polar AlN/Al1−xScxN are preferred to be etched as it is
difficult for OH− to make contact with the Al/Sc atoms in the metal polar state because of
repulsion from the negatively charged dangling nitrogen bonds [24].
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2.3.2. Etching Process

A water bath was established for the etching to be conducted in a stable temperature
environment. A trough was filled with deionized (DI) water and placed upon an Echo
Thermal HP30 hotplate (Torrey Pines Scientific, Inc., Carlsbad, California). Around 300 mL
of 30% KOH/diluted KOH was poured into a beaker, which was later transferred into
the trough. A Teflon plate was added in between to avoid direct heating. Finally, a ther-
mocouple was submerged into the KOH solution and connected to the hotplate through
a proportional–integral–derivative (PID) control loop to adjust the solution temperature.
With all these measures, the solution temperature was able to be stabilized within ±1 ◦C
during etching. The test sample was cleaved into an 8 × 10 mm2 die and clamped by
a tweezer when dipped into the solution. When submerged in the KOH, samples ex-
perienced minimal agitation, and upon removal, they were rinsed under DI water and
subsequently dried with N2. Finally, the sample was cleaved from the middle (Figure 3a)
and a cross-section was imaged in a FEI Quanta 600 Environmental Scanning Electron
Microscope (ESEM) (FEI Company, Hillsboro, OR, USA) (Figure 3b).
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2.3.3. Data Interpretation

Three types of data were extracted from the SEM images: vertical etch depth, lateral
etch length (undercutting) and the sidewall angle. The vertical etch depth is defined as
the etching depth into the AlN/Al1−xScxN film from the bottom of the SiNx hard mask.
It can be somewhat ambiguous, as hexagonal-shaped hillocks are known to form after
KOH etching [29], which makes it difficult to identify the end point of the etch. Since the
phenomenon is presumed to be defect-related in AlN [28,55], we conclude that the ‘tip’ of
the pyramid acts as a mask in this process and thus the etch front should be read as the
basal plane of the hexagonal pyramid. Figure 4a is a demonstration of how the etch depth
was measured in case of the existence of the hillocks. The lateral etch length is defined as
the etch length underneath the SiNx hard mask (Figure 4b). Finally, the sidewall angle is
simply the angle between the sidewall and base plane.
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Figure 4. (a) Al0.95Sc0.05N etched for 10 s in 30% KOH at 45 ◦C. (b) Al0.85Sc0.15N etched for 2.5 min
in 30% KOH at 65 ◦C.

3. Results and Analysis
3.1. Etch Result with 30% KOH at 45 ◦C

Due to the limited film thickness and the vastly different etch rates of films with
varying Sc concentrations, it was not practical to use the same etch time when determining
the vertical etch rate. Instead, films with lower Sc concentration were etched for a shorter
amount of time. The following table (Table 4) illustrates the time used in each case:

Table 4. Scandium concentration vs. etch time (short etch time in 30% KOH at 45 ◦C).

Sc Alloying (%) 0 5 10 15 20 25 28 32 36

Etch Time (s) 5 10 20 20 60 60 60 60 60

It should be noted that not all samples fabricated, as mentioned in Section 2, had their
vertical etch rate measured due to the availability of the sample at the time this experiment
was conducted. For the etched samples, cross-section images were taken from several spots
to avoid local variations. Figure 5 summarizes the vertical and lateral etch rates vs. Sc
concentration for etching in 30% KOH at 45 ◦C.
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Figure 5. (a). Vertical etch rate of Al1−xScxN in 30% KOH at 45 ◦C. (b) Lateral etch rate of Al1−xScxN
in 30% KOH at 45 ◦C (short etch time).

Intuitively, the vertical etch rate matches our expectation: a steady decline with
increasing Sc concentration. The Al0.80Sc0.20N has an average vertical etch rate of 7.58 nm/s,
and the Al0.64Sc0.36N has an average vertical etch rate of 3.68 nm/s. Compared to the values
of 3.59 nm/s and 2.77 nm/s obtained by K. Bespalova et al. [25] and S. Fichtner et al. [23]
respectively, they are not exact matches but in the same order of magnitude. It should be
noted that as per the view of A. Ababneh et al. [56], the etch rate of AlN is a strong function
of sputtering conditions; thus, this study can be used to predict the trend instead of the
absolute etch rate when applied to films deposited under different conditions. The lateral
etch rate has several distinctive features requiring further examination. First, the standard
deviation of the lateral etch rate is considerably larger than that for the vertical etch. This is
due to the finite amount of lateral etching performed. As exhibited in Figure 4a, the film
has a lateral etch length of only a few dozen nanometers in some cases, which makes it
difficult to accurately measure. Secondly, the etch rate of Al0.72Sc0.28N does not fit in the
line. Lastly, the lateral etch rate begins to increase for concentrations in excess of 20% Sc.

To further explore the lateral etching, a second experiment was conducted in which
the lateral etch length was extracted over a longer etching period. The number of Sc
concentrations in this study was also expanded for higher resolution as shown in Table 5:

Table 5. Scandium concentration vs. etch time (long etch in 30% KOH at 45 ◦C).

Sc Alloying
in Film (%) 0 5 10 12.5 15 20 25 28 30 32 34 36 38 40 42

Etch Time (min) 10 10 10 10 5 5 5 5 4 5 4 5 4 4 4

Before the long-span etching was performed, a linearity check was conducted to
make sure that the etch does not change during the etching process. The film tested was
Al0.64Sc0.36N and it was subjected to etches of 60 s, 80 s, 300 s, 1200 s and 2400 s, respectively.
A linear regression was performed, and the lateral etching proved to be highly linear with
the R2 = 0.9968. The fact that the same etch rate was retained after 40 min indicates that the
etch is reaction-limited, e.g., not confined by mass transferring, and matches the description
of AlN etching in KOH given by Mileham et al. [26] (Figure 6).
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Figure 6. (a). Lateral etch length with respect to etch time of Al0.64Sc0.36N in 30% KOH at 45 ◦C.
(b) Lateral etch rate of Al1−xScxN in 30% KOH at 45 ◦C (long etch time).

The long etch time returned similar results compared with the short etch time. The
etch rate experienced a transition where it reaches the lowest at x = 0.125. However,
discrepancies still exist for the etch rates of x = 0.28, 0.30, 0.34 and 0.38 when compared to
other films with Sc concentration x > 0.125. One explanation might be that these films were
deposited in different batches as opposed to the rest of the films. As stated above, what
exhibits as different etch rates here might be the result of the different chamber condition
when the films were being sputtered. It was apparent that even though they do not fit in the
line made from the x = 0.125, 0.15, 0.20, 0.25, 0.32 and 0.36 films, they were able to constitute
their own trend line with almost has the same slope. Deeper examination revealed that
the etch rate of the x = 0.28 film was lower than expected on two different films deposited
in different batches, and further studies should be carried out to better understand these
subtle trends in lateral etch rate.

For most Sc concentrations, the sidewall angle of films remains invariant throughout
the etching. As demonstrated in Figure 7, an extra-long submerge of the sample does not
change the sidewall angle by a visible amount, and for the changes that could be measured,
it can be attributed to the tilting of the sample itself during imaging.

The sidewall is a reflection of the crystal structure of the Al1−xScxN films. As per
the findings of W. Guo et al., due to the energy difference between crystalline planes, the
c-plane

{
0001

}
will be etched first prior to the deterioration of the

{
1011

}
planes [31].

Hence, during the anisotropic etching process, the exposed 〈1123〉 slip edges between the
boundary of the

{
1011

}
planes forms the facets that follow the

{
1212

}
of the hexagonal

crystal structure, behind which lateral etching ceases advancing (Figure 8).
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Figure 7. (a) Al0.90Sc0.10N etched for 20 s; (b) Al0.75Sc0.25N etched for 60 s; (c) Al0.64Sc0.36N etched for 80 
s; (d) Al0.90Sc0.10N etched for 10 min; (e) Al0.75Sc0.25N etched for 5 min; (f) Al0.64Sc0.36N etched for 20 
min. All etching was performed in 30 wt % KOH at 45 °C. The sidewall angle is preserved after the 
long etch. 
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Figure 7. (a) Al0.90Sc0.10N etched for 20 s; (b) Al0.75Sc0.25N etched for 60 s; (c) Al0.64Sc0.36N etched for
80 s; (d) Al0.90Sc0.10N etched for 10 min; (e) Al0.75Sc0.25N etched for 5 min; (f) Al0.64Sc0.36N etched
for 20 min. All etching was performed in 30 wt% KOH at 45 ◦C. The sidewall angle is preserved after
the long etch.
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Figure 8. (a). Exposed 〈1123〉 slip edge in an Al0.95Sc0.05N film etched in 30% KOH at 45 ◦C for
10 min; (b) the sidewall that follows the

{
1212

}
facet created by the boundary between the

{
1011

}
planes of the same etch condition for 5 min.

Moreover, for a Hexagonal Close-Packed (HCP) unit cell with an axis length c/a,
the sidewall angle, θ (Figure 9), of the

{
1212

}
facets as a function of lattice length can be

calculated as θ = arctan(c/a):
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Figure 9. Crystal planes in Al1−xScxN HCP lattice.

Using the c/a data from the work presented by Österlund et al. [45], and considering
the isotropic etching of the

{
1011

}
plane, the theoretical sidewall angle ϕ can be plotted

against the experimental value (Figure 10).
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Figure 10. Comparison of experimental and theoretical sidewall angle vs. Sc concentration.

The absolute value of the experimental and theoretical angles follows the same trajec-
tory with a parabolic downtrend with increasing Sc concentration until the Sc concentration
exceeds 40%. We hypothesize that the side profile is the result of both anisotropic and
isotropic etching. At lower Sc concentration, the etch rate on the c-plane

{
0001

}
is signif-

icantly higher, the momentum of the etch is downwards, and thus the side wall creates
a facet that follows the

{
1212

}
of the hexagonal crystal structure. At a higher Sc concen-

tration, the low vertical etch rate slows down the descending penetration, allowing the
etchant to further react with the sidewall planes already exposed. Therefore, the closer the{

1011
}

planes are to the surface, the more they are etched away; as a result, the sidewall
angle becomes lower than that predicted solely based on the anisotropic crystal etching, i.e.,
lower than θ. This can be partially verified by some of the abnormal points on the graph,
most of which have a small lateral etch rate (e.g., 12.5% and 42% Sc), which prevents the
etching of their corresponding

{
1011

}
planes.

3.2. Etch Results with 30 wt% KOH at 65 ◦C and 10 wt% KOH at 65 ◦C

The experiment was also carried out at an elevated temperature and with lower KOH
concentration to rule out any possible interference to the outcome except for the intrinsic
material properties. At elevated temperature, the etching was performed with a short
etching time of 150 s, except for Al0.875Sc0.125N, which was etched for 450 s. Etching with
lower KOH concentration was performed for 20 min for all Sc alloying concentrations. As
a result of the faster etching rate, the vertical etch rate could not be measured. The lateral
etch rate and sidewall angle of the experiment are presented below (Figure 11):
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the etch results have shown that during the etching, a more vertical side wall can be 
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Figure 11. (a) Lateral etch rate at elevated temperature and lower etchant concentration. (b) Sidewall
angle at elevated temperature and lower etchant concentration.

A trend consistent with the etching studies reported above was also observed here,
where the lowest etch rate was found to be at x = 0.125 and a decreasing sidewall angle
was observed with increasing Sc concentration. Under the SEM, white clusters can be seen
occasionally near the etch front, which we assume to be the unsoluable reaction by-product
Sc(OH)3. Further research still needs to be conducted on the effect of its presence.

3.3. Formation of Vertical Sidewall in Al0.875Sc0.125N

While differences can be observed across the spectrum, the lateral etch rate unani-
mously reaches its lowest point when the Sc concentration is at 12.5%. An inspection of the
etch results have shown that during the etching, a more vertical side wall can be formed, as
shown in Figure 12.



Micromachines 2022, 13, 1066 14 of 19Micromachines 2022, 13, x FOR PEER REVIEW 14 of 19 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 12. Lateral etch of Al0.875Sc0.125N in (a) 30% KOH at 45 °C for 10 min; (b–d) 10% KOH at 65 °C 

for 20 min. 

Although (a) was etched with different parameters compared to (b)(c)(d)—plus, 

(b)(c)(d) were etched for almost the same time—we conjecture that these images are 

demonstrating the transient response of the same etching dynamics. The KOH etch is 

slowed significantly at the Si {111} plane and the Al0.875Sc0.125N {1011} plane due to the 

low etch rate. Because of the energy differences between removing {1011} Al0.875Sc0.125N 

and {111} Si , the KOH slowly etches Si {111} until it comes into contact with the 

Al0.875Sc0.125N {1100}  planes, which requires lower energy to react than the {1011} 

planes. As a result, the etchant begins to remove and simultaneously etch Si {111} and 

{1100} AlScN. By the time the entire {1100} planes were exposed, a vertical sidewall 

was formed. It is possible that the slow lateral etch rate is necessary but not sufficient for 

the exposure of the {1100} AlScN to occur. This has been demonstrated with the lateral 

etching of Al0.85Sc0.15N and Al0.72Sc0.28N, which have slightly higher lateral etch rates than 

Al0.875Sc0.125N. As shown below (Figure 13), the etchant may preferentially etch Si {111} in-

stead of m-plane Al1−xScxN.  

Al0.875Sc0.125N 

Si 

SiNx 

{    }  

Al0.875Sc0.125N {    } 

Si 

SiNx 

Al0.875Sc0.125N 

Si  

SiNx 

Al0.875Sc0.125N 

Si 

SiNx 

Figure 12. Lateral etch of Al0.875Sc0.125N in (a) 30% KOH at 45 ◦C for 10 min; (b–d) 10% KOH at
65 ◦C for 20 min.

Although (a) was etched with different parameters compared to (b–d)—plus, (b–d)
were etched for almost the same time—we conjecture that these images are demonstrating
the transient response of the same etching dynamics. The KOH etch is slowed significantly
at the Si {111} plane and the Al0.875Sc0.125N

{
1011

}
plane due to the low etch rate. Because

of the energy differences between removing
{

1011
}

Al0.875Sc0.125N and {111} Si, the KOH
slowly etches Si {111} until it comes into contact with the Al0.875Sc0.125N

{
1100

}
planes,

which requires lower energy to react than the
{

1011
}

planes. As a result, the etchant
begins to remove and simultaneously etch Si {111} and

{
1100

}
AlScN. By the time the

entire
{

1100
}

planes were exposed, a vertical sidewall was formed. It is possible that
the slow lateral etch rate is necessary but not sufficient for the exposure of the

{
1100

}
AlScN to occur. This has been demonstrated with the lateral etching of Al0.85Sc0.15N
and Al0.72Sc0.28N, which have slightly higher lateral etch rates than Al0.875Sc0.125N. As
shown below (Figure 13), the etchant may preferentially etch Si {111} instead of m-plane
Al1−xScxN.
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Figure 13. (a) Al0.85Sc0.15N etched for 20 min in 10 wt% KOH, etch front of AlScN approaching Si
{111}; (b) KOH preferentially etches Si {111} instead of

{
1212

}
AlScN; (c) Al0.72Sc0.28N etched for

20 min in 10 wt% KOH, etch front of AlScN aligned with Si {111}; (d) KOH preferential etching of Si
{111} instead of

{
1212

}
AlScN. All etches were performed at 60 ◦C.

The
{

1100
}

plane etching has been reported before in single-crystal GaN [57] and
Al1−xGaxN [58], and as per the findings of W. Chen et al. [57], the preference of its etching
in GaN is a result of its smaller dangling bond density, which makes it more stable in KOH
than the

{
1011

}
plane. Therefore, one explanation might be that the Al0.875Sc0.125N film

has the highest activation energy in terms of the lateral etching, which was calculated to be
23.14 kcal/mol based on the data available. Nevertheless, this is one of the limited examples
where this is reported in sputtered Al1−xScxN, and more research needs to be conducted to
reveal the mechanism behind the vertical sidewall formation. This method, combined with
BCl3/Cl2 dry etching, could potentially be applied in fabricating vertical side walls using a
two-step fabrication process, which will benefit the research and production of LWR, laser
mirrors, UV LEDs and a variety of MEMS devices.
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4. Conclusions

We extensively studied the vertical and lateral etch rate of AlN/Al1−xScxN in aqueous
KOH solutions across etch temperature, KOH concentration and a broad range of scandium
alloying. It was shown that the vertical etch rate declines steadily with increased levels of
Sc alloying, declining from 124.6 ± 0.68 nm/s for AlN to 3.7 ± 0.063 nm/s for Al0.64Sc0.36N
in 30 wt% KOH at 45 ◦C. By contrast, the resistance to lateral etching peaks at a mere
0.043 ± 0.002 nm/s when x = 0.125. This is orders of magnitude lower compared to the
lateral etch rate of 1.99 ± 0.01 nm/s for AlN or 1.99 ± 0.17 nm/s for Al0.64Sc0.36N. We have
also demonstrated that KOH wet etching of Al1−xScxN is mostly anisotropic, and that the
etch profile can be predicted from the crystal structure coupled with a small-scale isotropic
etching of the sidewall. A technique for fabricating a vertical sidewall by exposing the{

1100
}

planes of sputtered Al1−xScxN was also demonstrated via etching an 800 nm thick
Al0.875Sc0.125N film in 10 wt% KOH at 65 ◦C for 20 min. With this method, the fabrication
of numerous MEMS devices such as LWRs, laser mirrors and UV-LEDs can be benefited.
Future work will include detailed research on the activation energy for the lateral etching of
AlN/Al1−xScxN using Arrhenius plots formed [32] from a series of design of experiments
(DOE) using the Taguchi method [59].
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