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I. INTRODUCTION 

Recognizing the necessity of being able to reproduce earthquake ground 

motion with accuracy, a number of seismologists have developed mathematical 

models, some rather simple and some more complex (see Brune, 1970 and Bouchon, 

1977, for example). 

Although some engineering needs could be adequately satisfied by such 

models, it gradually became evident that a large number of engi'neering 

problems could not. 

Because the effect of earthquakes on engineering realizations (struc­

tures) is predominant at short to intermediate distances from a seismic 

source (0 to approximately 100km) it became necessary to study the effect 

of the following parameters on the motion recorded at a given site: 

distance from the fault, (distance from the epicenter, 

hypocenter, shortest distance, etc.) 

location of the site relative to the fault, 

spatial orientation of the fault, 

dimension and shape of the fault, 

size of the event (amount of energy released), 

dynamic characteristics of the source, such as: 

location of focus, 

type of rupture (dislocation, slip vs. dip, and 

unilateral vs. bilateral) 

rupture propagation process, 

velocity of propagation, 

property of the dislocation (dislocation function) 
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other properties, such as the attenuation of the waves with 

distance, or the mechanical characteristics of the medium 

through which the waves propagate. 

In 1978, we presented a model which was devised to handle such a 

study by introducing a model of the source compatible with our under­

standing of the physical process. This model was based on the fact that an 

earthquake is made of a superposition of effects due to the progressive 

rupture of small portions of the total rupture area, irregular in shape 

and size. This physical phenomenon is evidenced in a study of the rupture 

process of the Parkfield, 1966, earthquake (Aki, 1979). 

An analytical solution based on the work of Boatwright & Boore (1975) 

was developed for the $-H far-field component of the motion. Although this 

solution was adequate for the type of problems analyzed (seismic risk analy­

sis) it appeared nec~ssary to modify and improve it for the purpose of per­

forming the above mentioned studies. 

This paper, therefore, presents in detail a model of generation of the 

strong motion part of earthquake ground motions, valid in the close to in­

termediate field and for any body wave component (P and $, horizontal and 

vertical). Although its algebraic formulation is slightly more complex 

than the previous model, its basic structure remains simple. The cost of 

computing acceleration records is still low and permits the creation of 

ensembles of records for statistical studies. 

In the last chapter of this paper, a brief sensitivity analysis and an 

enumeration of ongoing research and projected studies using the model are 

presented. A detailed presentation of these results will be the object of 

a follow-up paper. 
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II. FAULT RUPTURE MODEL 

2.1 Introduction 

For a long time it has been known that shallow earthquake energy is 

not released by a sudden instantaneous rupture of a part of the earth's 

crust. Rather, is is a crack-like phenomenon, the tip of which propagates 

from an initial localized region, called the focus at a finite velocity in 

one and sometimes several directions. Haskell (1966) showed that some of 

the complexity in the rupture process could be accounted for by modeling 

it with a stochastic process with a spatio-temporal autocorrelation, thus 

introducing the idea of coherence in the rupture 1enth. Later, Boore and 

Joyner (1978) using a simplified Haskell model showed the importance of 

incoherence, or irregularities, in the rupture process on the frequency 

content of the motion and its influence on directivity. 

In actuality it is only necessary to observe fault traces to be con­

vinced of the erratic manner in which a rupture propagates. The big 1857 

Fort Tejon earthquake, for instance, is believed to have been the result 

of the progressive rupture of many strands of fault where the relative 

displacement went from zero to as much as 11m at some points (Seih, 1978). 

Aki (1979) showed how the map of the aftershocks of the Parkfield earthquake 

could be interpreted as a map of the main shock rupture area putting in 

evidence the erratic spatial characteristics of the rupture. Also, using 

data from deep mines, McGarr & Al (1979) showed how micro earthquakes pre­

sented the same characteristics of irregularities in the rupture process. 

Some authors have tried to account for those irregularities in a purely 

statistical manner, such as Haskell, or Boore & Joyner, as mentioned above, 
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or such as Andrews (1980),who considers a random field of strength, stresses 

and stress build-up across the rupture fault. Others, such as Das & Aki, 

had a more physical approach by assuming the rupture surface to be made of 

regions of low strengths separated by regions of high strengths called bar­

riers. Depending on the strength of the earthquake, the rupture can prop­

agate through one of the low strength regions and stop or break one or 

several barriers. 

2.2 Geometry of the Model Source 

We assume here that the spatial irregularities can be represented by 

considering the fault rupture to be made of an assemblage of smaller areas 

which we call patches (see Fig. 2.1). These patches are random in shape 

and size, so that it is necessary to define them by their statistical 

characteristics. The shape is represented here by rectangles whose 

ratio of width to length is assumed to have a constant average value, 

generally close to 1/2 as shown by Geller (1976). 

The case of the size is a somewhat more difficult problem since it is 

believed that irregularities exist at all scales, Andrews (1980). It is 

therefore necessary to chose a typical length (the coherence length) for 

the patches, consistent with actual earthquakes and with the analytical 

model, (derived in the next chapter). The scale chosen here is a macro 

scale, that is, of the order of length of the fault. It is consistent with 

the scale chosen by others such as Aki (1980), Baecher (1980); and others, 

and a1~0 Papageorgiou (1980) who backfigured the coherence length from 

actual recordings for the frequency range of engineering interest (1 to 

10 HZ). 
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2.3 Modeling of the Fault Rupture Using Simulation 

In the model described above, the earthquake source is entirely known 

when the dimensions and orientation in space of the total rupture area, as 

well as its actual discretization in smaller patches, and their times 

of rupture initiation are defined. 

The orientation of the fault plane is defined by the angle of strike 

and angle of dip, and the direction of rupture within this plane is defined 

by what is often called the angle of rake. Once the rupture area has been 

defined, we use a Monte Carlo simulation technique to generate the assemblage 

of patches. 

In a first step, the fault is cut in strips of length whose probability 

density function f l , (.Q,)is set in advance (see Fig. 2.2a). Any probability 

distribution consistent with the physics of the process could be chosen here. 

Boore & Joyner (1978) in their linear model of fault rupture opted for a 

negative exponential distribution of the patches length (l'), so did Savy 

(1978) in a two-dimensional extension of the former model. ~!e now use a 

somewhat different probability density function which converges towards the 

negative exponential function for ruptures with large number of patches. 

This point which is developed in detail in Chapter V of this report leads 

to the following marginal distribution: 

(2,1) 

where l is the total length of the fault and nl is the number of strips. 

Each strip i of length £i and width W is then discretized in nW patches 

of length £. and width w. also using a Monte Carlo simulation (see Fig. 2.2(b)). 
1 J 

The marginal probability density function for the patches' width is of the 
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Figure 2.2a: 

Figure 2.2b: 

Fault plane includes 
Nt strips 

Generation of the fault's strips. 

ith strip includes 
NWi elements 

Generation of the coherent patch 
elements iri the i-th strip. 

Figure 2.2. Generation of the coherent patches by simulation. 



8 

same form as for the strips, i.e.: 

(2.2) 

Given the nature of the distribution function, it is interesting to note 

that the segments lengths are obtained by generating (in the case of the 

strips for instance) a set of (nL-l) segments Sj uniformly distributed on 

[O-LJ. Those segments are then ranked in ascending order say Sl~S2~S3'" 

<S l' and the strips length is obtained by taking the difference between 
nL-

two consecutive S·s. 

9,1 = 5, 
9,. = S. - S. 1 for i = 2 to nL-l (2.3) 

1 1 1 -

9, = L - S nL 
n
L
_
l 

In order to determine the triggering time of each patch, it 1s assumed 

that the rupture front, initiated from the focus, travels at an irregular 

speed from patch to patch. A patch is said to be triggered when the rupture 

front reaches it. The irregularity of the rupture velocity is accounted for 

by considering it as a random variable, and a Monte-Carlo technique is used 

to assign one value of velocity to each patch. A uniform probability 

density is arbitrarily chosen here, but the mean of the rupture velocity 

is constrained to be .72 times the shear wave velocity S, and the maximum 

value is 1.1S (Geller, 1976). 

The triggering time, Tg, for any given patch is then computed using a 

minimum path technique. That is, of all possible paths for the rupture 
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front to arrive from the focus to the given patch, the one which takes the 

shortest time is the minimum path. This shortest time is then the trig-

gering time, Tg, for this given patch. The Fig. 2.3 shows how the rupture 

propagates, and Fig. 2.4 shows an actual simulation where isochron curves 

are plotted showing the progression of the rupture front in time. 

Each patch can be triggered by any one of the surrounding patches, 

thus the analytical solution developed in Chapter III has to accomodate 

this fact. In Chapter III, the motion created at a site by the rupture 

of a single patch is derived assuming a ramp function for the relative dis-

placement of both sides of the fault thus completing the description of the 

source mechanism. 



Figure 2.3 
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Simulation of the progressive rupture 
of the fault. The rupture initiates 
at F and is propagated to neighboring 
patches, which in turn propagate it to 
their adjacent patches. 
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III. MOTION GENERATED BY A FINITE DISLOCATION 

3.1 General Model 

The model presented here is intended to be used in the generation of 

future earthquakes; not in the reproduction of any specific already recorded 

event. The emphasis is on its ability to generate a large number of records 

for the purpose of predicting the Power Spectral Density one may associate 

with a given potential rupture plane and observation site. Because it is to 

be used in engineering analysis of structures, the most important part of 

the motion to be considered is the strong motion. What appears on actual 

records as reflections or refractions at depth in the earth in the form of 

complex waves of significantly lower amplitude than the strong motion part 

is not considered in this analysis. Furthermore, as more and more site of 

critical facilities (such as Nuclear Power Plants) are found, or envisioned, 

at short distances of potentially active faults, the solution developed 

here includes the intermediate to near field effects of the earthquake 

motion. 

Assume an isotropic homogeneous unbounded medium, and after Haskell 

~1964) assume that the elastic body waves are created by a moving finite 

dislocation which is a displacement discontinuity across the rupture plane. 

Maruyama (1969) has demonstrated that this dynamic dislocation is equiva­

lent to a double couple of dynamic forces perpendicular and with opposite 

moments applied at the discontinuity. Later, Mikumo (1969), using Maruyama's 

work computed the P-wave form in the far-field for intermediate earthquakes. 

Using the same analytical model for S-waves and the stochastic model of 

progressive rupture in patches described in Section II, Savy (1978) de­

veloped a model of random earthquake generation. That model, however, was 
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limited to the far field approximation (Fraunhofer approximation, Aki & 

Richards, 1980) of S waves in the ¢ direction (see Fig. 3.1). The far 

field approximation is now considered too restrictive, and the solution 

is made here to include the intermediate to near field terms. In this 

effort, we start from the results of Maruyama (1969), with a slightly 

different notation. From Eq. 34 of Maruyama (1963), the Fourier trans­

form of the displacement u(Q, t) at any point Q in an infinite homoge­

nous elastic medium due to the displacement discontinuity ~U(~, t) over 

a plane I can be written in the following form: 

Um(Q, w) = f ~uk (§, w) Tk~(w) v~ dI 
I 

where: ~uk(f' w) is the k-component of the Fourier transform of 

~~(§, t), Tk~(w) is the m-component of the displacement field from 

equivalent dynamic double forces acting along the k- and ~ axes. v~ 

are the direction cosines of the outward normal to the surface ele-

ment, and repetition of indexes stands for summation. 

3.2 Displacement Field Approximation 

(3.1) 

For the case of a discontinuity in the y-z plane as shown in Fig. 3.1, 

the displacement field T is given explicitly in Appendix 3.1. By making 

a transformation from the (x, y, z) system of coordinates the (¢, 8, r) 

spherical system and by separating the effect of P and S waves, T can be 



z 

x 

Figure 3.1 
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\ 
\ 

coherent patch 

y 

site Q(x,y,z) 

\ 
\ 
\ , 

System's geometry for calculation of the motion 
at the Sit2 Q creatc~ ~y the ciislocation of a 
single coherent patch of length L and width W. 



written as 
T 
r 
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= T ~~sph+r-j?sph 
e QJ xy e; xy 

Tep 

(3.2) 

and by neglecting the terms of order greater than 2 in (1), where r is the r 

distance from dI to the observer,~andgbecome: (See Appendix 3.1) 

.wr 
rjlsph _ iw e -'6 
e; yx - 41TSr 

(3.3) 

where the vectors RP and RS are: (respectively in the radial direction and in 

the (e-¢) plane). 

sin2e sin2¢ a 

RP = a RS = sin2e sin2¢ (3.4) 2 

a sine cos2¢ 

The second order approximation used here adds some correction terms to the 

first order, or far field, approximation. The P-wave component, then, is no 

longer only radial (~) (colinear to RP),and the S-wave component is no longer 
2 

only in C~·-¢) (co1inear to RS). It requires that (~) be small, (where c wr 

is either a or S, the P and S wave velocities) compared to 1 and C wr 
(see Appendix 3.1). The limiting value which defines the domain of validity 

of this approximation 1s derived in Appendix 3.2. It is found that 
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c 1 -< -wr - 2 (3.5) 

meaning that the approximation is good for either high frequencies (w 

large) or when the observation point is far from the source (r large), 

or both. Since this model is derived for engineering use of accelera-

tion values rather than velocity, or displacement, the high frequency 

(10-15Hz) part of the spectrum is the most important. If we choose a 

lower bound of about 10Hz, the spatial domain of validity becomes: 

r > 2c ~ 03 . c - w 

which actually places the observation point in a region as close as a few 

hundred meters from the fault ruptur~. (i.e.: approximately 150 meters 

for the P-wave and probably around gOm for the S-wave, accounting for the 

fact that the wave velocity near the surface would be slower than at 

depth) . In the lower frequency range, the solution would be approximately 

correct for observation points as close as ~1.5km and ~lkm at 1Hz and 8km 

and 5km at .2Hz for P and S waves respectively. 

It is shown in the appendix A3 .. 1 that the correction terms to the 

far-field terms may be as high as to multiply the spectral values by 3 
c 1 for the P wave and 2 for the $-wave for the limiting case where wr = 2 

at 10Hz; thereby showing the need for including them in near to inter-

mediate field engineering calculations. 

It is also interesting to note that the dimension of the correction 

terms is equal to the dimension of the far-field terms multiplied by i, 
w 

or :l. Therefore in the time domain they have the dimension of the in­
lw 

tegral of the far field terms (i.e.: velocity, if we are considering 

acceleration). This means that these terms adds a smoother component 

to the far field terms. 



18 

3.3 Model of Dislocation 

Examining the several possibilities of dislocation directions and 

sense leads to the following cases. 

1. Direction of the dislocation parallel to the y-axis with prop-

agation either in the y > 0 or y < 0 sense. This case may be 

referred as the Strike slip model for our purpose. 

2. Direction of the dislocation parallel to the z-axis with prop-

agation either in the z > 0 or z < 0 sense. This case will be 

referred here as the Dip slip model. 

As in the previous section, we concentrate on the strike slip model for 

propagation in the y > 0 direction. The other cases are presented at the 

end with reference to their development in Appendix A3. 

After Aki (1967), we assume a dislocation in the form of a ramp func-

tion with parameters T and DO as the finite rise time and static final 

dislocation, respectively. For the dislocation along the y-axis, starting 

at the origin of time, the Fourier transform of the dislocation function 

is: . T 
Slnw 2: 

= DO T 

w2: 

. T 
e -lw "2 

(3.6) 

Since T (ell) is proportional to (iw) and iw .6.u(w) is the Fourier transform yx 
of the time derivative of .6.u(t) , Eq. 3.1 can be rewritten as: 

L W T m _ 1wl; 
Um(Q, w) = .6.u(w) f f .yx e v dl; dn o 0 1 w 

_ iwt;: 

(3.7) 

where the term e v accounts for the fact that the dislocation is moving 

along Oy with velocity v, Land Ware the length and width of the finite 
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rupture, and it is assumed that the dislocation function is the same at 

all points of this finite rupture. 

3.4 Second Order Finiteness Condition 

In order to linearize the integrand of Eq. (3.7) due to the ~ factor 

which comes in Ty~ one is lead to make an approximation. 

l1hen only the far field terms are desired, it is common to make what 

is commonly called the Fraunhofer approximation (Aki & Richards, 1980) 

which is an approximation to the first order in~. It leads to a condi­

tion on the maximum size of the finite fault (L or W) associated with a 

given frequency. If rO is the distance from the origin of rupture 0 to 

the observer and fmax (in Hz) is the desired maximum frequency, the maxi­

mum size is given by: 

(3.8) 

The necessity of considering a second order approximation, however, 

leads to a different condition. This second order finiteness condition 

gives the maximum size of the finite rupture as a function of the dis-

tance rO and the maximum desired frequency fmax ' It is derived in Appen­

dix A.3 as: 

i3 
Lmax = 2f 

max 

1/3 

(3.9) 

This Lmax given here refers to the case of the S-wave. For the p-wave, 
1/3 

i3 would be replaced by a and Lmax would be multiplied by (~) Solving 

for r we may find the minimum distance rmin for which the finiteness con­

dition is satisfied, for a given source length L and azimuthal direction ¢. 
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(3.10) 

A comparison between the first and second order approximation1s domain 

of validity is presented in the Appendix A.33. Figure A3.3 shows the 

general shape of these domains. The numerical values given in Table A3.1 

are associated with a maximum frequency of 20Hz a~d a largest dimension 

L = .5km to l5km. The second order approximation appears to be much bet­

ter for <p close to 90° and overall it wi 11 be better than the fi rst order 

approximation, except perhaps at very small angles <p for which the domain 

of non validity of the solution is smaller for the first than for the 

second order, that is for distances of the order of L (See Figure A3.3). 

The second order solution takes over for angles increasing with decreasing 

L. In the numerical case of Appendix A, this angle <PS is given by the 

solutions of the following equation: 

c 
2f L cos¢S = 0 

max 

For L in the range of 0.5 to 3km, fmax = 20Hz and c = S = 3.5km. <PS varies 

from 24 degrees to 10 degrees, with corresponding r values of .5 to 3km, 

that is of the order of magnitude of L. This case where the first order 

solution is better than the second order does not have to be considered 

however, because it corresponds to very short distances from the source 

to the receiver and was excluded in the condition expressed by Eq. 3.5. 

The two conditions, expressed by Eq. 3.5 and 3.9-3.10 are different 

in nature. The first one says that our solution does not apply for re-

ceiver distances r smaller than a certain value. The second one says that 
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for a given patch of largest dimension L, the distance r also has to be 

greater than a certain value rmin . While the first one is imperative, the 

second condition can be overridden by discretizing the patch in smaller 

sub-patches in such a way that finally their largest dimension satisfies 

Eq. 3.9. 

Hence, for all practical purposes the first condition is the only 

limiting one in the capabilities of the model. 

3.5 Second Order Approximation of the Acceleration 

The distance r from the receiver Q(x, y, z) to the point of rupture 

P(O,s,n)(Fig. 3.1) approximated to the second order is: 

r rO[l 
So cos¢ - .B... cose] ~ - - Slne 
rO rO 

(3.11) 

and 1 1 + ~ sine + .B... cose] - ~ -[1 cos¢ 
r ro ro rO 

Defining 
2 2 

~ = (~) 1 RP 8 = 2(&) [RS - 2RP], a a a 

(3.12) 

AS = 1 RS -3 S P 
S 86 = 15 [R - R ] 

then, combining Eq. (3.3), (3.4), (3.5) and (3.7) gives: 

(3.13) 

where U(q, w) is the 3-component vector displacement. 
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The above equation can be re-written into a sum of two integrals, one for 

each wave type, P and S, as; 

U(Q, w) = 
lI1f(w) 

and, using (3.11) and (3.12): 

L W 

(3.14) 

f f [A + __ i __ (l+~sinecos¢ + ncose)B ][1+ __ 1 (~sinecos¢+~ cose] 
a wrO rO rO a rO rO 

o 0 

iwr - iw~ 
exp[ - __ 0 (1-.5... s i necos<p-~ cose)] e v d~dn 

a rO rO 

(3.15) 

Similarly for I
B

, all the a's are replaced by 6's. 

Expanding I into 
a 

a sum of integrals and neglecting the term of order 
1 - and higher gives: 

r 3 o 
iwro 

I = JJL e- -a- {A [J aJ a + __ 1 (J aJ a + J aJ a)] 
a 41Tr 0 a 1 2 r 0 2 3 4 1 

(3.16) 

+ __ i __ B [J a J a + ~ (J a J a + J a.J a) J} 
wrO a 1 2 rO 2 3 4 1 

where: 

W iw cose n 
J

c - 1 f c d 1 - Wen 
o 

L . (1 sinecosffi) _ 1 -lW~ - - - * 
JC I e v c dE; 2 - [ 0 



J
c _ 1 W 
3 - w f n cos8 e 

o 
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iwcos8 
n 

C dn 

W iw(_l + sin8cos¢)~ 
JC = 1 f ~ s i n8cos¢ e v C d~ 
4 L 0 

and C may take the value a or S when associated with P or S waves. 

Performing the integrations and simplifying gives I : 
a 

. [ 2iwT~ 
+ -,_ a( 1- e ) _ 

wrO Ja 
1 

where: 

. TC . TC 

JC = 
lw W Slnw W 

e 1 TC w,W 

-iwT sinw\ 
JC -. e L 

w\ 2 

TC W cos8 
- "2 --W C 

TC = h (~ _ L 2 
sin8cos¢) 

C 

(3.17) 

(3.18) 

(3.19) 
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For the case of a dislocation propagating in the z direction and for the 

dip slip case with propagation along Oy or Oz the integrals involved in 

the solution have the same form as in Eq. 3.17. The development of these 

cases appears in Appendix A4. 

Finally for the basic case of strike slip with propagation along Oy, 

using the following definition of seismic moment MO: 

where p is the medium mass density and ~ is the earth's rigidity (~ ~ 3 1010 

Pascals). The displacement then becomes: 

where: 

-iuJ-
M e 2 a U(Q,w) = --=,---41TprO 

(3.21 ) 

(c ="a or s) (3.22) 
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Recalling Eq. (3.2) for collection of the terms, and using the identity 

between displacement and acceleration: 

r(Q,w) 2 
= -w U(Q,w) 

gives the vector acceleration in the spherical system (rr' re' rq), 

where: 

and 

. T 
-llUn 

2 T 
MO e sin~ 2 

r ( Q ,w ) - - T '- W g ( Q, w) 
4'Tfpro ~ 

g(Q,w) 

Y3 [ II 
II 

Yl 
. 2e = Sln sin2<jl 

Y2 
1 . 2 . 2 = "2 Sln e Sln <jl 

Y3 = sine cos2<jl 

iwrO 
---c = J~ c c (c =aori3). G J 2 e , 

I 

(3.23) 
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3.6 Triggering Tin~ Shift, Attenuation and Free Surface Effect 

In order to apply Eq. (3.23) to the model of rupture described in 

Chapter II and to account for the attenuation of different frequency waves 

with distance, the solution of Eq. (3.23) is multiplied by: 

(1) 

(2) 

where: 

e 
-iwT g 

(3.24) 

(1) is an application of the shift theorem, it acocunts for the fact that 

the rupture of this patch initiated at time T
g

, (the triggering time) 

at the origin 0 of the patch. 

(2) accounts for the material d~mping of the medium through which the 

waves propagate. (c is either equal to a or S for P or S wave). This 

attenuation effect is taken care of by the first part, 

but the use of this filter violates the causality principle so that a 

phase correction tactor C(w) is applied. This correction factor is taken 

from Kjartansson (1979). Q is the quality factor of the medium, it is 

related to the material damping s commonly d · . . b Q 1 use 1n englneerlng y = 2~ , 

and Wo ;s a.constant value used to center the filter. In this model the 

value of Wo is chosen equal to lOTI rad/sec (corresponding to 5Hz). 



27 

The final expression for the vector acceleration is then 

r(Q,w) 
M 2 . (L .,..) . T _ 0 W -1W 2+ Ig slnw"2 

- - 4npr
o 

e -T- g(Q,w) 
~ 

(3.25) 

where g(Q,w) is modified to include the attenuation by changing the def­

inition of GC to the following: 

(3.26) 

The above solution applies to an infinite medium. The effect of the free 

surface is approximately accounted for by multiplying the amplitude of the 

acceleration by 2. Anderson (1976) showed that ;s ;s a good approximation 

for a strike slip case. For other cases however, it could constitute a 

rather poor approximation, especially for S waves when the angie of inci-
o 

dence becomes larger than 30 with the normal to the free surface. But 

since this approximation is an overestimation of the amplitude of the 

motion, it is used for all cases in this analytical model in order to 

preserve its simplicity. 
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IV. MOTION GENERATED BY AN ASSEMBLAGE OF PATCHES 

4.1 Motion Generated by the Entire Fault Rupture 

4 .1.1 Frequency Domain Superposition 

The Fourier transform of the acceleration at a site Q, created by the 

rupture of a single patch i, is given by Eq. 3.25. This solution assumed 

that the propagating medium is linear elastic. Therefore the motion at the 

site Q due to the rupture of the N patches comprising the entire fault is 

the sum of the motion created by the rupture of each individual patch. 

This is expressed by the following equation: 

N 
r(Q, w) = I ri(Q, w, Tg.) 

i = 1 1 

(4.1) 

where: ri(Q, w, Tg.) is given by Eq. 3.25 and Tg. is the triggering time 
1 1 

of patch i (i .e.: Tg = T in Eq. 3.25). 
gi 

For each simulation of an earthquake the triggering time Tg. of a 
1 

patth i is computed according to the scheme of rupture presented in Chapter 

II. The rise time Li for the ith patch is computed by an empirical rela­

tionship proposed by Geller (1976). The effect is to make Li proportional 

to the square root of the area of the patch (i.e., roughly proportional to 

its length) which is in agreement with what was proposed by Aki (1980). 

4.1.2 Time Domain Superposition 

It is clear that the superposition could also be done in the time 

domain, but it implies that the time history for each patch be computed 

by inverse Fourier transform and superimposed to obtain the final motion. 

This technique is much more time consuming than first computing the 
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frequency domain function and taking its inverse Fourier transform at the 

end, so that the final time history of the acceleration at the site is 

given by the inverse Fourier transform of the expression in 4.1. 

y(Q, t) = FT-l[r(Q, w)] 

4.2 Simulation of an Ensemble of Synthetic Earthquakes 

4.2.1 General 

(4.2) 

In some cases, such as in the study of the response of structures to 

seismic loading, it ;s necessary to perform a number of analyses with an 

ensemble of input time histories. The ensemble to be considered may be 

representative of a certain type of earthquakes for which some of the param­

eters are known with enough confidence to be considered as deterministic 

(i.e.: constant) and others are only known with uncertainty so that they 

are considered as random variables. 

A Monte Carlo simulation technique may be used to generate the un­

certain parameters of each sample event and an ensemble of events can be 

created in that fashion. 

In theory, any of the parameters, source, geometry or attenuations can 

be considered as random variables. However, in most simple cases one is 

interested in a type of earthquake with fixed strength (seismic moment, 

fixed geometry, and constant material properties (P and S wave velocity, 

earth density, attenuation properties-quality factor). For instance, in 

some of the research now performed using this model, the statistical char­

acteristics of the motion created by a well defined type of earthquakes is 

examined. In that case only the rupture process is assumed to be random, 
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that is the patch pattern is simulated and the focus is given a random 

location at each new simulation and the attenuation and directivity effects 

are studied. The Fig. 4.1 is an example of calculation of 4 synthetic 

earthquakes for a series of earthquakes with constant seismic moment, 

material properties and fixed patches pattern (Fig. 4.1{a)). but with 

random focus location. The Fig. 4.1(b), (c), (d), (e) show how drastically 

different the time histories of the acceleration at a same site can be, 

emphasizing possibilities of constructive and destructive interferences. 

4.2.2 Frequency Domain Statistics of the Ensemble of Synthetic Earthquakes 

The creation of large ensembles of time histories remains expensive, 

due to the amount of calculations required. One alternative, chosen here, 

is to define the statistics of the ensemble in terms of the Power Spectral 

Density (PSD) of the ensemble of time histories. This is much less time 

consuming, because each simulation r(Q, w) (Eq. 3.25) needs only be 

computed for a few frequency points (say 20 to 30) instead of large numbers 

(say 512 or 1024) for time domain analyses. 

Changing our previous notations, let rk{w) be the Fourier transform 

of the motion obtained in the kth simulation of an ensemble of N samples. 

An estimate of the PSD for that ensemble can be computed by an averaging 

process (Bendat and Piersol, 1971) as follows: 

where: P(w) is the estimate of the Power Spectral Density (PSD) 

r(w) is the motion function in the frequency domain 

T is the time duration of the motion. 

(4.3) 
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Figure 4.1(b) Isochrones of the rupture front and synthetic 
accelerogram for focus in a upper corner. 
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Isochrones of the rupture front and synthetic 
accelerogram for focus in a lower corner. 
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Figure 4.l(d) Isochrones of the rupture front and synthetic 
accelerogram for focus placed at random at the 
bottom of the fault. 
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axis are only indicative of the relative amplitudes bet~een 
Figure 4.la, b, c, and d). 



36 

More explicitly P{w) is computed as follows: 

1 N 
P{w) = N kIl (4.4) 

Since the actual time equivalent function of rk(w) is a non-stationary 

process, it appears that the choice of Tk is a critical one in the compu­

tation of the PSD. 

Many quantitative definitions of strong motion duration have been 

proposed (Bolt, 1974; Trifunac and Brady, 1975; Trifunac and Westermo, 1977; 

Vanmarcke and Lai, 1977; Perez, 1974; McCann and Shah, 1979; Esteva and 

Rosenblueth, 1964; Housner, 1965, Aptikayev, 1975; Hays, 1975; Kameda and 

Ang, 1977). All of these definitions are based on the recorded accelerations 

(or derived velocities or displacements) at a site during an earthquake; none 

use properties of the source, such as the duration of rupture of the fault. 

It is not our purpose here to propose another definition of duration, but it 

appears that none of the existing ones is adequate here. 

It is assumed here that the equivalent period of time during which the 

motion can be considered stationary is the cumulative time duration during 

which the energy arriving at the site is above an arbitrary set fraction 

(5%) of the peak energy arrival rate. This is illustrated in the sketch 

of Fig. 4.2 (see Appendix 4.1). It is, in a sense, similar to looking at 

the time derivative of a Husid plot, Husid et al., 1967, setting a threshold 

at a fraction of the peak, and adding the time periods during which the func-

tion is above that threshold. Thus Tk is an estimate of the actual total 

duration of strong motion. If an event is, for instance, made of two separate 

strong shocks with very little energy arriving at the site in between, say for 

a few seconds, that period of relative quiescence is discarded in the calcula-

tion of Tk. 
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T6tal Strong Motion puration = Tl + T2 + T3 + T4 

Figure 4.2 Average power proportional function. 
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As an example~ the Figure 4.3~ taken from Papageorgiou~ 1981~ shows 

a Husid plot and its derivative for a record of the Kern County earthquake. 

In this case the normalized RMS acceleration time history is the equivalent 

of the Power proportional function derived in this study (see Appendix 4.1). 

A set of 15 Fourier Amplitude spectra for simulation of a given fault 

rupture is plotted in Fig. 4.4. The average Power Spectral Density computed 

according to Eq. 4.4 is shown in Fig. 4.5. For each simulation~ the total 

duration of the strong motion is calculated as described above. 
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station during the Kern County earthquake of 1952, and 
the corresponding ~usid plot, moving time window root 
mean square acceleration, and time variation of . 
principal plane (¢-angle). (Taken from Papageorglou, 1981) 
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RUN 1 ,M=5.5,O=8KM 
FCURIER SPECTRUM CCMPNT. 1 

Figure 4.4 Example of 15 simulation of Fourier 
spectra for computation of the power 
Spectral density of Figure 4.5. 
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RUN 19,M=5.5,Z5=8KM 
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Example of a Power Spectral Density. 
This case was obtained with the 15 
Fourier Amplitude spectra of Figure 4.4. 
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V. ESTIMATION OF THE AVERAGE PATCH SIZE 
IN AN EARTHQUAKE FAULT RUPTURE 

5.1 Introduction 

Very little is known regarding the actual rupture process of earth-

quakes. As a result it is rarely possible to select confidently any 

particular set of parameters to be used in a strong motion simulation 

model. The average patch length, I, or coherence length is one such 

parameter in the strong motion models which include the effect of the 

random rupture propagation. These models are very sensitive to small 

variation in the average patch length so that a reliable determination 

of it is of paramount importance. Until recently the method used in 

selecting I was mostly intuitive for generic cases, such as in the 

generation of ensembles of earthquakes for risk analysis. The average 

RMS acceleration and peak acceleration were compared with an often 

arbitrary set of results from actual records, and I was modified until 

the results of the simulation agreed with actual data. In geophysics 

the research in this domain has been mostly concentrated on trying to 

reproduce records by trial and error, thereby coming up with an actual 

rupture process where the main patches are individually identified, 

such as in the case of San Fernando (Shakal, 1979). Other techniques 

involve looking at the area of aftershocks in the fault rupture plane 

and identifying the main shock rupture process as the undisturbed 

aftershock region (Aki, 1979) and (Eaton et al, 1970). In this case 

it is therefore possible to have an estimate of the average size I as 

well as the maximum patch's length. This is the case for the Parkfield 

earthquake 1966. In some cases, such as in the 1857 Fort Tejon earthquake, 

it is possible to estimate the spacing between barriers, (Aki, 1979), from a 
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geologists description of the surface trace. Since the distance between 

barriers can be regarded as the length of a patch, then it provides some 

estimate of the average patch length as well as maximum values and other 

statistics, such as the probability distribution of the length. 

The same operation can be performed also for other fault traces. It was 

found (Wallace, 1973) that the probability distribution function of fault 

strands was approximately negative exponential, and we show that it may be 

only an approximation of another simple law. 

In this chapter, we propose to use statistical considerations toqether 

with basic physical assumptions to come up with an estimate of I ,then de­

vise a methodology to select I in the strong motion simulation models of 

large ensembles of artificial earthquakes. 

5.2 Statistical Relationships Between Average Slip, Average and 
Maximum Patch Length 

5.2.1 Basic assumptions 

The technique developed here depends on three major physical assump­

tions; the subsequent ones, less important for the results, can rather be 

seen as approximations. 

These three major assumptions are: 

(1) In a given earthquake, where the actual stress drop may actually be rep-

resented by a spatial stochastic process, (Andrews, 1980) we assume that 

it is a constant over the whole rupture surface. Thus imrlying that, 

for a given patch, the ratio of the maximum slip over the length of the 

patch is a constant: 

llUmax 
-- = a a constant 

t 
(5.1) 
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Comparison between, (a), the negative exponential 
distribution function and,(~, the distribution of 
i.i.d. Segments between two fixed points for 
several numbers of segments. 

n=2 

for number of segments n 2,4,10,20 and 30 

1 
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(2) The generation of an earthquake is created by the rupture of the part 

of a fault located between two strong barriers which physically limit 

the extent of the propagation and form the extremities of the fault 

rupture. The region located betweeen the two strong barriers may then 

be ruptured in smaller segments separated by weaker barriers thus 

forming the patches. The process of rupture between the two strong 

barriers is assumed to be homogeneous, so that the distribution of the 

weaker barriers can be regarded as uniformly distributed between the 

two stronger ones. The intervals between barriers, LI, (i.e., the 

patches· lengths), are then marginally identically distributed (Kendall 

& Moran, 1970). The probability distribution is: 

(n-1) n-2 
f~(9,) 

9, 
dens ity = (1 - [) L • 
O~9,~L (5.2) 

. n- i 
FL,(9,) 1 C ;x, , cumulative = I - [J , 

where (n-l) is the number of weaker barriers, so that n is the number 

of segments and, L is the total length of the rupture, that is the 

distance between the two stronger barriers. 

The mean value and standard deviation of the patch length are 

therefore given by: 

L 9, - -
n 

(5.3) 

(5.4 ) 

And the covariance between any two segment lengths L~, L~ is (see 
1 J 

Appendix 5.3): 
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-2 -9, , for iij (5.5) 
(n+l) 

It is interesting to notice that when the fault rupture becomes 

large, that is when n becomes large, the distribution of L' converges 

towards the negative exponential distribution, as found by Aki (1979) 

for the San Andreas fault. 

Keeping 9,jI constant, and using (5.3) in (5.2) gives: 

1 1 - 1 1 9, n- 2 
fl' (9,) = = (l-t-:-:-) (1-- =) 

9, n-l n 9, 

And, 

For small n these two distributions could be significantly different 

however, as it is shown in Fig. 5.1 in the comparison of the two cumula-

tive distributions for values of n between 2 to 10. 

(3) We thirdly assume that the gross statistical properties of the rupture, 

such as an average slip for the whole fault rupture derived from the 

above assumptions is equal to the average slip as estimated from tele-

seismic data. 

5.2.2 Computation of the average slip for the entire fault rupture 

Assuming that all the patches have same width W = al 
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the seismic moment associated with the rupture of the ith patch is: 

where 6U. is the average slip on patch i. The total seismic moment 
1 

associated with the entire rupture is: 

(5.6) 

On the other hand, the total seismic moment can be expressed in terms of 
n 

the total rupture area (I aL~i) and the average slip 6U, as: 
i =1 

n 
]J6U I aQ,.l 

i=l 1 

Thus equating (6) and (7) gives 6U: 

n 
. I. 6U. 9,. 
1 = I 1 1 

Mr=-~--
n 
I 9,. 

i=l 1 

(5.7) 

(5.8) 

The theoretical shape of the slip function for a given patch can be taken 

as an ellipse (ref. Oas & Aki) so that: 

2 
6U. = = (6U ) 

1 'IT max ( 5.8 1 
) 
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where (6U x) is the maximum slip, reached at the middle of patch i. rna . 
1 

Then, using Eq. (5.1) together with above gives: 

n 
L 9,? 

1 
6U == k i=l = 2a g(9,) 

IT n IT ~ 

L 9,i 
i=l 

where 9, is the vector (9,1,9,2"'" 9,n)' 

(5.9a) 

The value of 6U can be viewed as one realization of the random variable--

average slip on the fault--for a given value ,Q, of the random vector ll. This 

is expressed by 

- 2IT r·v 6U = - g(ll) a ~ 
(5.9b) 

The expected value of the random variable 6U can be approximated by a Taylor 

series expansion limited to the second moment, as follows: 

E[ED] a
2 

I ~ Var(l~) 
al I ~ 1 

1 l!=,Q, 
1 

(5.10) 

+ 1 ~ ~ 32
9 ( 2 .L

l 
L al! all. Cov li' lJI.) 

1 = J'=l 1 J l !=l 1.= 
1 J 

where II is the random vector (ll' lZ"'" l~) whose mean is ,Q, = (Y,Y, ... , Y) 

because the l!IS are i.i.d with mean Y. 
1 
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Using the Eqs. (5.3), (5.4) and (5.5) gives the expected value of the mean 

slip 

E[ AUJ - 2a n 2n _ 4aL 
u - ~)(, n+l - 'Tf(n+l) (5.11) 

When the coefficient a is known we can assume that the expected mean 

slip E[b:.UJ is estimated by the observed value (calculated from teleseismic 

data). If a is not known we need another observation such as the largest 

slip observed on the fault, and we can use Eq. (5.11) together with Eq. (5.13') 

and solve for a and n. If the largest patch length is known, then we can use 

the method presented in the next section. In any case, the uncertainty is 

such that we will try to make use of all available data and choose the values 

of n and possibly "a" which are the most compatible with Eq. (5.11), (5.13) 

and (5. 13' ) . 

5.2.3 Estimation of n and I from the largest patch length 

Assuming that the number of patches, n, is large, the correlation 

between any two patches' lengths becomes small (see Eq. 5.5). Then the 

patches' lengths can be treated approximately as independent random vari-

ables. 

Given the total fault length L, and the number of patches n, and 

approximating the patch's lengths by independent and identically distrib­

uted random variables, the cumulative probability function of the largest 

patch's length, Q,max is given by the foll owi ng: 

n { n-y P[Q, < Q,J == II FL,(Q,) == 1 - (1 - t) (5.12) max ' S==l 
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where FL,(,Q,) is given by Eq. (5.2). (See Fig. 5.2 for P[,Q,max ~ ,Q,] for 

several n values]. 

Given that we observed one value of ,Q,max on the fault, the problem 

is to determine what is the most likely value of n which could have 

generated that value. Three methods are considered. 

(i) The observed value is considered to be the most probable 

realization of ,Q,max' Then the observed value can be 

equated to the mode of the distribution of ,Q, This max 
d2p[,Q,max ~ ,Q,] 

is expressed in Eq. (5.13) by setting to 
d,Q,2 

zero and solving for ,Q,max' 

* ,Q,max = observed,Q, = L {l -max 

and Eq. (5.13) is solved for n. The corresponding most 

probable maximum slip is obtained by using Eq. (5.1). 

(5.13) 

(ii) The observed value is equated to the mean of the distribution 

of ,Q,max' 

(iii) The parameter n is estimated by a method of maximum likelihood. 

The three methods are compared in Appendix A5.1. It is found that the 

first method (Eq. 5.13) is the most desirable. Furthermore it is possible 

to get a confidence interval, as is shown in Section 3.2. 
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5.3 Estimation of the Average Patch Length 

5.3.1 Method 

The method used to estimate the number of patches (i.e., the average 

patch length I) depends on the type of data available. For all cases the 

total length L must be known however. 

(1) If the largest patch length along the fault is known, it is assumed 

that the observed value is a characterization of the most probable 

value of the largest patch length one could obtain with n patches. 

Eq. 5.13 (or 5.14) is then solved for n and we obtain an estimate 

of the most probable average patch length ~ = ~. 

(2) If the largest value of the patch length is not very well known but 

the maximum slip 6Umax is known, then we use Equation 5.13'. In 

that case we need to assume a value for the coefficient a. Con-

currently the same value of a is used in Eq. 5.11 together with 

6U, obtained from teleseismic data. The values obtained from Eqs. 

5.13' and 5.11 are compared and if they don't match, a is changed. 

By iteration the system Eq. 5.13 1 -5.11 is solved for ~. 

This method also gives us a means of estimating the stress drop 

60 by using a relationship between stress drop and maximum strain as 

in Aki, 1970, for the case of the San Andreas Fort Tejon Earthquake. 

In our notation: 

7Tr2 
60 = 24 ]J a ( 5. 1 4 ) 

and by taking 6U in meters, ~ in kilometers, ]J = 3.1010 Pascals, 

and 60 in bars, the above equation becomes: 
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60 = 550 a 

(5.15) 

a = , (Eq. 5.1) 

It has been recently found that for certain classes of earth­

quakes, the value of 60 is fairly constant (Papageorgiou, 1981). 

For the California earthquakes, this value is approximately 300 

bars. In those cases when 60 can be estimated, we can compute 

an estimate of a and knowing 6U, we can solve Eq. (5.11) for n. 

This is exactly what we do when using models of simulation of 

earthquakes, as explained in Section 5.5 of this paper. 
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5.3.2 Uncertainty 

When using the method 1 described above, it is possible to get a 

confidence interval for L The problem that we want to solve here could 

be stated as follows. 

The distribution function of the larqest value one could observe on a 

fault rupturing into n segments- can be computed. As an example we plotted 

several of those functions for n = 2, 4, 10, 20 and 30 on Fig. 5.2. It can be 

seen on that figure that the knowledge of one value of the largest patch 

length, i.e., the observed £max' is not sufficient to give a reliable esti­

mate of n. (However as n increases we can show that, see Appendix 5.1, the 

standard deviation decreases very fast so that the most probable value be­

comes a better estimate). The question that we can ask then is, given the 

observed value ~max what is the value of n for which there is a certain 

probability, say P, that ~max be smaller (i.e., P = .8, .9, .95, etc.). 

In other words, given a value of the largest ~, ~max' to which cor-

responds to the most probable n, say nO' there 

~max may have been generated by a distribution 

Let nl be such that nl < nO and such that 

that the random variable IIlargest £11 produced 

parameter nl be smaller than £max; that is 

peN ~ nl l£maxJ = P 

= FLlnl(£[nl) = {1 

Similarly define n2 > nO such that: 

peN ~ n21£maxJ = P 

= FLI n2(£max1n2) 

is a finite likelihood that 

with lower n or higher n. 

there is a probabi 1 ity P 

by the distribution with 

n 
n -1 1 

( 1-Q,max) 1 } (5.17) 
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Then we obtain a P probability of the number of patches to be smaller than 

n2 and bigger than nl . 

(5.18) 

5.4 Application 

The above methods are applied to a set of seven earthquakes, the 

results of which are presented in Table 5.1. Some comparisons are made 

with current available estimates. 

(1) San Andreas 1857 

On the one hand this earthquake has been very well documented and a 

recent study by Sieh, 1978, gives us a very detailed knowledge of the slip 

history associated with it. On the other hand we don't have any instru­

mental measurement of the characteristics of the earthquake as we would 

nowadays. Nevertheless it is possible to estimate the maximum slip from 

historical records, (Aki, 1979) at about 11m and the largest patch's length 

possibly at 23km (Wallace, 1968, 1973). The total length of the fault rup­

ture may also be estimated from Sieh, 1978, at between 360 to 400km. For 

our purpose we choose an average value of 380km. The 85% confidence in­

terval on the number of patches and the average patch length then come out 

to be: 

55 ~ n ~ 104 and 3.6 ~ ~ ~ 6.9 km 

the most probable value of n being 69 with the corresponding average patch 

length I = 5.5km. 
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TABLE 5.1 

Earthquake L'lU L ,Q,max L'lUmax 
y y L'lo 

(observed) (observed) observed 
lor others 

(m) (km) ( km) (m) (km) ( km) (bars) 

San Andreas, 1857 380 23 11 {3.6}-5.5-{6.9} 5.5 

San Fernando 

Lower 2.1 13 2.4 /3.5-5 105 

Upper 2.4 5 5 2.5 550 

Parkfield 36 4.5 (.8)-1.4-{2) 1.7 

Dasht-e-bayaz, 1968 39 8 (1.7)-3.1-{5.2) 3.5/7 

Nob;, 1891 80 8 (6.4)-12.7-{26.8) /14 

Tango, 1927 35 3.5 3 2.1 /3 470 

Sa itama, 1968 .92 10 l.4 .9-3.5 /3.5 340 
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A recent study by Aki, et al, 1980, gives an average barrier interval 

of 8km. Sieh, 1978, gives a detailed slip history of the fault. The sca'e 

of his Fig. 5 for the slip unfortunately does not show that the s\ip may have 

been very small in between the points of measurements. If one assumes that 

the slip drops to zero, between each cluster of measurements, one can iden-

tify the number of patches, and compute the average patch length for the 

1857 earthquake. This assumption is equivalent to saying that the measure-

ments were made where the slip was noticeable, that is, close to the middle 

of each patch. Based on a subjective count of the clusters we find 47 of 

them for a length of approximately 260km, the average patch length is there­

fore 260/47 = 5.5km. This may be a coincidence but it is at least consistent 

with our result! 

(2) San Fernando 

This earthquake has been the subject of very detailed studies by many 

authors. All of them agree on the biplanar shape of the rupture fault. In 

our study we use the data from Heaton, 1978. 

The lower part of the earthquake has different characteristics from the 

upper part. The former is assumed to have propagated within the lower plane, 

then started in the upper plane but stopped soon, as shown in Fig. 5.3. The 

latter part consisted mainly of the rest of the upper plane. The parameters 

associated with each part are chosen as: 

Lower part Upper part 

MO 
19 19 -

= .8 10 m.N .6 10 m.N 

Area = 190 km2 84 km2 

L'lUmax = 2.4 m 5 m 

Length = 13 km 5 km 

L'lU = 2.1 m 2.4 m 



Approx. 
Surface 
Rupture 

Figure 5.3 
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A' 
~--- 2 4km 

----- -\. - - ----
A 

Contour map of the assumed fault 
displacements for the model Norma 163. 

/' 
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where the areas and lengths have been estimated from Fig. 3 of Heaton's 

paper and 6U was calculated by 6U = MO/(~.Area), (where ~ = 3l0l0pa). 

For the lower part of the fault our method breaks down, indicating 

that n has to be less than 2. From this analysis, we have to conclude that 

the rupture was a massive continuous one. This also means that I was fairly 

large. To be consistent with application of the method we would find here 
. 6Lfma i = L, Slnce n = 1, and a = ---L- = .19. The stress drop computed with Eq. 

5.15 would then be 105 bars. 

For the upper part of the rupture, using Eq. 5.11 for the value of n 

which gives 6Umax = 5m (see Fig. 5.4) leads to n = 2 and T = 2.5km. Our 

evaluation of the stress drop is then 60 ~ 550 bars. 

After a process of trial and error, Shakal~ 1979, derived his best 

model of source, as shown by his Fig. 5.5, which implied also a high stress 

drop of 600 bars. 

(3) Parkfield 

Eaton et al, 1970, gave a mapping of the aftershocks of the Parkfield 

earthquake, Fig.5.6. Aki, 1979, interpreted the region with no aftershocks 

as the regions of the major shock ruptures. It appears to us then that the 

largest single convex shape which can be isolated is of approximately 4 to 

5km and we will choose ~ = 5.4km. The total length of this rupture is max 
36km (Fig. 6), so that from Eq. 5.13 the most probable number of patches 

is n = 26 and the corresponding average patch length is I = 1.4km. The 85% 

confidence interval on the number of patches, and the corresponding average 

patch length then are: 
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Alewine 

Norma 163 

4 8 12 A' 
km 

Comparison of the fault slip as a function of distance 
along the line AA' of Figure 4.30. Alewine's (1974) 
model is from an inversion of static vertical uplift 
data. Notice that both the static offsets and this 
study seem to indicate massive faulting very near the 
free surface (from Heaton, 1978). 
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fault rupture for San Fernando. 
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18 ~ n ~ 43 and .8 ~ £ ~ 2 km 

Again, as when we tried to estimate the average patch length from data in 

the San Andreas case, we are here confronted with a scaling problem. Never­

theless if we try to fit circles of .5km to 5km in the blank parts in Fig. 

5.6, we roughly obtain 45 patches for a cumulative length of roughly 80km. 

The average patch length is therefore approximately 80/45 = 1.7km, which 

is consistent with our values. 

(4) Dasht-e-Bayaz, 1968 

Tchalenko & Berberian, 1975, gave the slip distribution along the 

fault, Fig. 5.7, from which we can infer the maximum patches length 

£max = 8km, for a total length of 39km. The most probable number of 

patches is then 12 and the corresponding average patch length is 3.1km. 

The 85% confidence interval is 7.5 ~ n ~ 23 and the corresponding one 

on the average length is 1.7 ; I; 5.2km. By comparison we find 10-11 

patches, therefore the average patch length is I = 39/11 = 3.5km, which is 

in good agreement with our value. Aki, 1980, however, found a quite dif­

ferent value of 7km for his barrier interval. 
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(5) Nobi, (Mino-Owari), Japan, 1891 

The surface faulting was about 80km long (Fig. 5.8) and the maximum 

displacement was 8m of left slip, (Bonilla, 1979). The surface ruptures 

consist of several segments that are locally en echelon to the general 

trend. We assume here that the patches are limited in size by sudden 

changes in direction of the fault trace, therefore the largest patch length 

one can identify here is approximately 25km. 

Using Eq. 5.13, we obtain the most probable number of patches n = 6.3 

and corresponding average patch's length I = 12.7km. Then the minimum and 

maximum n values determined with 85% confidence are 3 and 12.5 giving the 

corresponding bounds for I. 

6.4 < ~ < 26.8 

most probable I = 12.7km 

The most probable value is comparable with the 14km average barrier inter­

val found by Aki (1980). 

(6) Tango, Japan 1927 

The Tango, Japan faulting of 1927 comprised two surface faultings, the 

Gomura fault trending north-northwest and the Yamada fault trending northeast 

(Fig. 5.9). We are restricting our attention to the Gomura fault where 

the maximum observed slip is 3m and the largest observed patch is 3.5km, 

(Bonilla, 1979). 

These values cannot, however, be used in Eq. 5.13 since there could 

be higher values for the portion of the fault under the sea. The parameter 

a = 3/3.5 can, however, be used together with the total length L = 35km 
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136°15' 136°30' 136°45' 
56°0'-r'---------------L---------------J 

Figure 5.8 

GlfuO 

o , IOKM , 

Hap of Nobi, Japan, fault area. Strike slip 
surface faulting of 1891 is shown (generalized) 
by heavy line; other faults with Quaternary 
displacements shown by light lines (from 
Matsuda, 1974) .. 
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JAPAN 1927 

• :s ~ 
:"<. /' I /' " 

(:)/1 
• 

~. 

J • • • , 

I 

Surface faulting associated with the Tango, 
Japan, earthquake of 1927. From Yamasaki 
and Tada, 1928. 
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and the average slip 6U = 3m determined by Geller, 1976. This value of 35km 

should be allocated to the entire earthquake, including both portions Gomura 

& Yamada, but if we assume that the congregate fault (Yamada) contributed 

much less to the seismic moment, we can neglect it and consider that the 

length and average slip apply to the principal fault. Then assuming that 

the value of a = 3/3.5 is representative of the whole fault, including the 

submerged part, and applying Eq. 5.11 we find n ~ 12 segments, and an average 

patch length of I ~ 3km (exactly n = 11.7, I = 3km). The corresponding prob~ 

able largest length is 7.4km and most probable largest slip is 6.4m. These 

values are much higher than the observed values, but one could argue that 

under our assumptions a large part of the fault would be under water and the 

observed values may not be the absolute maximum for the fault. It is inter­

esting to note that Aki, 1980, found a barrier interval of 3km for this event. 

The stress drop computed from the above values is 60 = 470 bars. 

(7) Saitama 1968 

Geller, 1976, provides us with the average slip 6U = .92m and the total 

length L = 10km. The maximum observed slip is 1~4m (Aki, 1980). The param­

eters compatible with Eq. 5.11 then are obtained as I = 3km and a = .31, 

thus implying a stress drop in the range of 170 bars. 

By comparison, Aki, 1980, assumed a 3.5km barrier interval, which is 

in agreement with our result. 
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5.5 Choice of T in the Simulation Model 

The choice of the average size of the patches, ~, is directly re-

lated to the choice of a stress drop. For some isolated cases of par­

ticular earthquakes it is possible to obtain directly T from data. However 

the type of model considered here is not designed for simulation of spe-

cific earthquakes; rather it is used for generation of large samples of 

hypothetical events which may have only their statistical characteristics 

in common with actual earthquakes. This model which is intended to be 

used in risk analysis studies may in some cases be used to predict 

the risk inherent in a region where few or no earthquake history is known. 

From geological considerations it may be possible however to assume some 

value for the stress drop. For instance, one can set the stress drop to 

some value for all earthquakes occurring intra plate, and another value for 

inter plate earthquakes when no better information is available. 

If we assume a value for the stress drop, the parameter a can then be 

computed from Eq. 5.15. The seismic moment and dimensions of the rupture 

is known in the simulation so that the average slip is easily computed by, 

{5.l9} 

and the average patch length, or coherent length, to be used in the model 

is computed by solving Eq. 5.11. 

For example, letus choose three hypothetical events with the following 

parameters: 
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event 1: MO = 2 1017 mN 

L = 6 km 6U = .37 m 

2: MO = 63 1017 mN 

L = 19 km 6U = 1.17 m 

3: M = 2 1020 
0 mN 

L = 60 km , 6U = 3.7 m 

If we further assume the stress drop to be in the range 150 to 250 

bars, (Papageorgiou, 1981) the corresponding ranges of average coherence 

length are: 

event 1: ~ = .7 to 1.3 km 

2: ~ = 2.2 to 4.1 km 

3: ~ = 7.0 to 13 km 
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VI. CHARACTERISTICS OF THE MODEL AND APPLICATIONS 

6.1 General 

The general characteristics of this model of strong ground motion may 

be identified as belonging to two classes. Firstly, the ones which are 

the results of physical and mathematical assumptions and simplifications, 

and secondly, the ones which depend more strongly on the range of values 

of the parameters to be used in the simulations. In Chapters II and III 

the physical and mathematical assumptions were described and their theo­

retical effect on the results analyzed in detail. In this chapter we 

describe the second class of characteristics by the means of a parametric 

study. The different uses of the model in engineering and research appli­

cations are only mentioned as an introduction to a forthcoming report on 

the matter. 

6.2 Parametric Study 

6.2.1 Shear Wave, Quality Factor, Velocity of Rupture Propagation 

The results summarized in this section are taken from a previous 

study (Savy, 1978). A sensitivity analysis was performed to study the 

effect of the shear wave velocity (S), the quality factor (Q) and the 

velocity of propagation (Vr ) on the time histories and the frequency 

content of the acceleration record. In that study the model was a far 

field model of SH waves only. The motion computed in the new improved 

model has the same functional dependence, however, regarding the above 

parameters. As a consequence the above mentioned sensitivity study applies 

equally to the new model for those parameters (S, Q, VR). A summary of 
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the results of that study is presented in Table 6.1, where the various 

parameters are as follows: 

COLUMN (5) 

COLUMN (6) 

COLUMN (7) 

COLUMN (8) 

COLUMN (9) 

* f is a statistical characteristic of the motion. It is 

computed as follows: 

~ 
1/2 

* (6.1) f = 

A = 

f 

fo
max 

fi PSD(f)df 

and PSD(f) is the power spectral density for an ensemble of 

* events. (See Section V.3.2, p.94-95, Savy 1978). f can be 

interpreted as the most characteristic frequency. 

Ymax is the peak on the 0% damping response spectrum. 

Ypeak is th~ peak value read on a single sample of an 

acceleration time history. 

aacc is the logarithmic decay of the Fourier Amplitude spectrum 

of the acceleration (see Boore, 1978, for a description) and, 

ad. is the logarithmic decay of the Fourier Amplitude 
lSP 

spectrum of the displacement (see Boore, 1978). 

An increasing shear wave velocity (Cases 2, 3, 4) shifts the energy towards 

higher frequencies (Col. 5,8 & 9), but at the same time the total energy 

transmitted decreases, thus the peak acceleration actually decreases. This 

somewhat curious result will be studied in more detail with the new model 

in a further study. 
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1 2 3 4 5 6 7 8 9 

CASE p Q V2/V l f* Y max Y peak e/, acc Ie/, d isp 
# (spectral) (T/H) 

(km/s) (km/s/km/s) (Hz) (m/s/s) (m/s/s) 

NOMINAL 
1 3.2 200 3.2/1.8 7.89 14.8 1.53 2.10 3.05 

2 1.8 * * 5.47 32.8 2.11 1. 94 2.97 
3 2.6 * * 7.38 19. 1 2.73 1.57 2.78 
4 4.5 * * 8.54 7.4 .80 1.27 2.63 

5 * 400 * 8.65 16.4 2.53 .92 2.46 
6 * 100 * 4.86 11.8 .81 1.90 2.95 
7 * 50 * 2.83 6.8 .35 2.65 3.32 

8 * * 4.4/3.0 8.10 20.2 2.05 2.25 3.12 
9 * * 2 . .2/1.6 7.95 9.5 .80 1. 51 2.75 

10 * * 2.0/Q.5 7.74 6.1 .72 1.89,2,94 

TABLE 6.1 

KEY: * The value used in this case is the nominal value of Case #1. 
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The cases 5, 6 and 7 indicate clearly, as expected, that decreasing 

Q values eliminates high frequency content. Finally, in columns 8 to 10 

it is seen that a velocity of rupture propagation higher than S can create 

very high accelerations with an overall high frequency content, but decaying 

also very fast (Col. 8). Increasingly lower propagation velocity creates 

increasingly lower peak accelerations. 

6.2.2 Behavior of the Solutions for a Single Patch. 

Before looking at the effect of the parameters on the solution for 

an assemblage of patches, a study for a single patch was performed to 

visualize the effect of size and rise time on the elementary solution. 

This is important to understand the effect of a single large rupture within 

an assemblage of smaller patches. For instance one can envision a large 

rupture area with small patches overall, but with a few much larger patches 

at some distance from one another. This is actually what happens in the 

example of rupture propagation given in Chapter 2 (see Fig. 2.4). The 

Fig. 6.1 is a time history calculated with the rupture scheme of Fig. 2.4. 

The large isolated peaks correspond to the rupture of the larger patches 

superimposed on the overall smaller contribution of the other patches. For 

the single patch analysis we chose a nominal case where the rupture area is 

(6 x 3)km2 and the site is 8km at the surface (the fault breaking the surface 

on its 6km length) on a normal to the middle point of the trace. 

First the size of the element was changed with density of seismic 

moment per unit area kept constant and the rise time kept constant at .25sec 

(see Table 6.2). The peak acceleration decreased in a non-linear fashion, 

as seen in Fig. 6.2. The non-linear effect is believed to be due to geo­

metric changes related to location of the extremities of the patch relative 

to the site. This appears in the variables TL and TW of Eq. 3.25. Conversely, 



74 

Q 
N~ __________________________________________________________ --, 

({) 

'" ." 
'" 

.'" 
~"a 
;-..:0 

=0+--4+1+ 

"-' en 

'" . 
'" '" 

R70R:L,M,O=4.5.7.5,8 
SIMULRTED COMPONENT No.1 

O:~.-CO----~~.-O-O----3~.Q-C----:L.-C~O---:~5~.Q~:C---~~O~.C~'C~~2-.~QO~·--~2~'.~OO~.--~3'<.~O~O--~3~~~Q~O---:tO.QO 

Figure 6.1 

T I ME (SEC) 

Example of acceleration time history 
obtained from a simulation with large 
patches (~ = 4.5km). 



1 75 

...... 

'" 
~.2 
..... 
E 

v 
c: 
.~ -0 ... 
Go 

~ . I 
~~ __ -Data points 

u 
u 
0 

.JI: 
0 ., 
n. 

o+-------------------~--------------~--------------~ 
.6 t.3 

,... 
CIt 

............ 
CIt 

"-e 
v 

c: 5. 
~ --0 
to. 

~ 

., 
u 
u 
<[ 

o 

Figure 6.2 

I 
I 

\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 

-

\ , 
\ 
\ , 

\ , 
\ 

\ 
\ . , 

1.5 x _ 75 3. x 1.5 6.x 3. 
Log (Area in km x km) 

Variation of peak acceleration, for a single 
patch, versus area of the patch. 

(least squares) 

'1= 

r 
23 

~-~ ------ ----

5 
iJ Average Patch length Ckm) 

Figure 6.3 Peak acceleration versus average 
patch's length (£). 



76 

if we normalize these results for a constant seismic moment we find that 

the peak acceleration is roughly inversely proportional to the area of the 

patch. This can be physically interpreted by saying that areas with higher 

stress drops will generate higher frequencies and. therefore. higher peak 

accelerations. In a second set of analyses. the density of seismic moment 

was kept constant and the rise time was computed by means of an empirical 

formula (Geller, 1976). 

L = 04105 (L • W) 1/2 
6 

(6.2) 

where Land Ware the length and width of the patch and S is the shear 

wave velocity. From Eq. 3.25 it is expected to see a high sensitivity on 

T since it directly alters the phasing (e- iw L/2) and the modulus (sinw L/2) 
w L/2 ' 

especially in the higher range of frequencies, which set the value of the 

peak acceleration. This is clearly seen in Table 6.3, especially in the 

case of constant seismic moment (MO)' 

6.2.3 Coherence Length. 

This is a governing parameter since it determines the average size 

of the patches and three of the parameters of Eq. 3.25 which give the 

phasing and overall modulus of the Fourier Transform (i.e.: TL, TW and L). 

The same geometry as previously was selected. that is a total rupture 

dimensions of 6km by 3km, and the site was at 8km on the normal to the 

trace. A set of five ensembles of time histories was generated with in-

creasing coherence length ranging from .5km to 5km. Five sample time 

histories were computed to create each ensemble. For each individual 

sample a new rupture area discretization and rupture propagation as well 

as focus location were simulated by Monte Carlo simulation. The place of 
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TABLE 6.2 

AREA PEAK ACCELERATION 
KM2 (mjS /5 ) 

6x3 .23 

3 xl .5 .16 

1 .5 x .75 .10 

6 x 3 .03 

TABLE 6.3 

AREA RISE TIME PEAK ACCELERATION 
KM2 T(sec) (m/s/s) 

CONSTI\NT CONSTANT 
MO ~10 DENSITY 

6 x 3 .51 .12 .12 

3 x 1 .5 .26 .60 .15 

1.5 x .75 .13 2.56 .16 

.6 x .3 .05 19.00 .19 

TABLE 6.4 
COHERENCE PEAK ACCELERATIONS A MEAN a 0 a 
LENGTH Q, (m/s/s) (m/s/s) (m/s/s) 

( KM) 
.5 11.35 11.38 6.05 9.85 6.64 9.05 2.56 

1.0 5.59 5.70 13.68 5.76 3.47 6.84 3.94 
2.0 3.69 4.13 2.14 5.67 2.34 3.59 1.44 

3.0 4.89 1.10 1. 51 3.44 .90 2.10 1.69 
5.0 .47 .59 .65 .87 .44 .61 .17 
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focus was set to occur anywhere within the rupture area with equal 

probability. The mean peak value and its standard deviation were com­

puted. These results are shown in Table 6.4. 

In spite of the very small sample size, the mean values seem to 

vary uniformly. The uncertainty which is attached to them, on the other 

hand, is very high as shown in Table 6.4. As a first approximation the 

mean peak acceleration varies in the inverse proportion of I raised to 

3 the power 4' although a negative exponential gives a better fit, as shown 

on Fig. 6.3. Fig. 6.4 is representative of the changes in the frequency 

content of the time histories as a function of I, and Fig. 6.5 and 6.6 

give the 5 samples for I = .5 and I = lkm. 

6.2.4 Other Parameters 

In addition to the parameters which appear in the Eq. 3.25 some are 

hidden such as the geometry of the overall system, the orientation of the 

rupture plane, the direction of the rupture propagation and the location 

of the rupture initiation (focus). At this point this study has not 

addressed itself to these parameters, but the influence of the focus 

location was emphasized in a set of four samples generated from the same 

discretized fault as in Fig. 2.4, but where only the location of the focus, 

hence the propagation scheme) vary. As these examples show, in Fig. 6.7, 

the shape of the envelope of the time history, as well as the peak accel-

eration values, can be drastically different depending on the location of 

the focus. In the cases where the focus is in the corner of the rupture 

surface (Fig. 4.l(d) and (e) ) the energy is focused forward in the direc-

tion of the site by constructive interferences of the waves. The result 

is a much higher peak acceleration and a more spiked envelope of accelera-

tion time history than in the other two cases, Fig. 4.l(b) and Fig. 4.l(c). 
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6.3 Applications 

6.3. 1 Genera 1 
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The applications considered at this point evolved from a variety of 

engineering problems for which classical techniques did not exist or were 

not satisfactory. Since any physical model of earthquake ground motion 

used as a generator of records for a particular earthquake would have to 

be calibrated, most problems considered here deal with qualitative (relative) 

analyses rather than quantitative. 

6.3.2 Functional Form of Attenuation Laws 

The very large dispersion in. the recorded peak acceleration data has 

not to date permitted the identification of a complete functional form of 

the attenuation of peak or RMS accelerations. Using linear and non-linear 

least square optimization techniques, Askins & Cornell (1979) concluded 

that there was not statistical evidence, from the data, to adopt one form 

rather than any other among the "reasonable" contenders. As a result they 

recommended the simplest form. Since we cannot identify the best functional 

form yet, from empirical data we turn our attention towards getting artifi­

cial data from physical modeling. 

The model developed here offers the possibility of studying in detail 

some of the physical aspects of earthquake record generation and will lead 

to a better understanding of the phenomenon of attenuation. The most im­

portant aspects to be analyzed are: 

Distance effects, with a distinction between the near, intermediate 

and far fields. Very little data exists in the near field, for 

instance, but there is ample data in the far field. 
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Orientation of the fault. Orientation of the trace, as well 

as angle of dip of the fault plane. 

Location of the hypocenter. 

Rupture propagation in the rupture plane, including 

Average coherence length of the rupture process. 

Energy level (seismic moment, or magnitude) and, 

Fault dimension (length and width). 

Some of the results of this analysis appear in the parametric study of 

the model presented in Section 6.2. The more complete results will be 

presented in the forthcoming report. 

Because of the cost of numerical computation this analysis is per­

formed in the frequency domain with calculation of the PSD and RMS accel­

eration values for an ensemble of earthquakes. By assuming that the strong 

motion part of a time history is a stationary process, the statistical 

characteristics of the peak acceleration can also be estimated. The study 

of the effect of variations in the above mentioned parameters is based on 

the RMS in most cases and on peak values estimated from RMS when necessary. 

6.3.3 Analysis of Recording Networks Biases. 

The nature and quality of the seismic records available depend pri­

marily on the spatial distribution of the recording stations. To this add 

biases introduced by the technology of the recording devices, such as the 

operating range of frequencies or the dynamic range or the threshold trig­

gering value of acceleration. 
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Our knowledge of the physical phenomenon, therefore, has been based 

on a filtered version (the filter data) of the ensemble of data actually 

produced (the true data). In an ongoing project the correlation between 

the distribution of earthquake magnitude on a given fault, spatial distri­

bution of recording stations and the distribution of peak value of accel­

erations is studied. The effect of recorder-triggering threshold is also 

analyzed. The ultimate goal is to devise a methodology to determine a 

network-independent attenuation law. 

This is important for engineering computations because it permits 

us to perform site dependent seismic hazard analysis with data borrowed 

from other locations rather than from the seismic zone associated with 

the site under consideration. (Especially when we realize that potential 

sites for critical facilities are not always located in the middle of an 

existing recording network with a lot of data!) 

6.3.4 Spatial Statistics of Acceleration Records 

In most dynamic analyses of structures submitted to seismic excitation 

a single input location is chosen. Generally all the points located at the 

foundation level are subject to that excitation. It has been recognized, 

however, that the changing characteristics of the input in space may be an 

important factor in stress concentration or other behavior such as rocking 

or torsional motion that is unpredictable with a single input. Although 

these "secondary" effects are believed to be negligible for most structures, 

it becomes increasingly important with the horizontal dimensions. Such is 

the case of bridges or very long buildings and other special facilities, 

such as a linear accelerators or lifelines. 
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The first step in dealing with this engineering problem is to evalu­

ate the spaiial correlation of the seismic records. This analysis will 

be performed in the frequency domain by computing the cross-spectral den­

sity function of each couple of ensemble of records at stations located 

on a grid centered on the site of interest. It will be performed for the 

horizontal components as well as for the vertical components of the motion. 

In addition, the correlation between horizontal and vertical components will 

be studied. Hence a better knowledge will be gained which will help select­

ing vertical components when needed in engineering analyses. 

6.3.5 Quantitative Analyses 

The most deterministic use of the model is envisioned in the reproduc­

tion of actual historic earthquakes for which acceleration records are 

available and all source parameters are reasonably known. The number of 

such cases is very limited, and if we consider the restrictions due to the 

model itself, it is even more limited. The Parkfield is a very good can­

didate for this type of calculation. Its rupture surface is known (Aki, 

1979, Eaton & Al, 1970). The predicted motion may be compared with actual 

records, and the model may be calibrated by trial and error. 

In other cases where time histories are requested at a given site for a 

set of hypothetical earthquakes, it may be possible to use the model developed 

here provided one can define the various parameters within reasonable bounds. 

An extension of the above is the integrated methodology for computing 

pseudo-time-histories, as described in Savy (1978). In that particular case 

an ensemble of time histories is generated by simulation, the common charac­

teristic of which is to possess a constant probability (Iso-return Period) 

Power Spectral Density. That is, where the value of each point of the P.S.D. 

has a given probability of being exceeded during a set period of time (life 

time) . 
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Appendix 3.1 

For a dislocation in the y-z plane (see Fig. 3.1) with slip in the 

y direction, the forces forming the double couple are in the y-x plane 

only, as shown in Fig. 3 of Maruyama (1963). The explicit form for the 

m-component of the displacement field in Q due to such dynamic forces 

with time dependence exp(iwt) at their origin is: 

T m(w)e iwt 
yx 

and Ty~(w) is given by Eq. 35: 

Ty~(w) = 4~ {a~h12)(alr) 

+ o2h(2)(o r) _l(o y + 0 y) 
1-'1 1 1-'1 5 my x xm y 

where: 

a and S are the P and S wave velocities, 

~ and A are the Lame~ constants, 

(A3.1 .1) 
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0 .. is the Kronecker delta: 
'J 

cS ... = 
lJ 

if i=j 

= 0 if irj, 

y. is the direction cosine of direction i, , 
and the function h~2)(p) are the spherical Hankel 

functions of the second kind, given by: 

(_1 + ~) e -i p 
p 2 p 

1 . 1 . 
= (-- 6_' - 15-+ 15-') 

p 2 3 4 p p p 
-ip e 0 

If we limit the estimation of the h functions by neglecting the terms in 

~ and ~ and replace p by w; where c can be alternatively equal to a or 
r r 
S, it becomes: 

-iwr 
= ~ (-1 + ~) e c 

cr wr 
-iwr 

= ~ (1 _ 62.E.) e c 
cr wr 

where c1 

Separating Ty~(w) into the sum of the P and S contributions, 

(A3. 1. 2) 

and defining, 6 as 6 = 6y~ = 0myYx + 0xmYy' and using Eq. A3.1.2 in A3.1.1, 
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gives the following: 

iwr 
--S-{ 3 . 2 6,'S 6iS } 

(pm() iw -~(-l+~) + ~(l--) - 2(1--)y Y Y o yx w = 47fSr e 5 wr 5 wr wr x y m 

Recalling the relationships between velocities and Lam~ constants, 

leads to 

-iwr 

!lI{:(w) = 2!~r e-cx - (~)2 [~/' + (1- 6;rcx)YxYyYmJ 

For the three different m components, L takes the values shown in the 

fo 11 owi ng tab 1 e: 

m 8 
L (direction) (values of Kronecker 8) 

x 8 -1 xx- , 8 =0 xy Yy 

y 8 -0 xy- , 8 =1 yy Yx 
z 8 =8 =0 zx zy 0 
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Then in this x, y, z coordinate system, the vectors and are given by: 

-iwr -- 2 
6l) () i w ex. (P..) 

Q/yx w = 2nex.r e ex. 

-iwr 
rJ?yx(w) = ~ e-S- (1- 3iS) 

Q7v 4nBr wr Yx 

6'S 
- 2(1--'-)y Y Y wr x y z 

(A3 .1.3) 

In order to facilitate the rest of the analysis, the above relationships 

are expressed in the spherical coordinate system (r,e,¢) as shown in Fig-

ure 3.1. 

The transformation matrix~is given by: 

sinesin¢ sinecos¢ cose 

~ = cosesin¢ cosecos¢ -sine 

cos¢ -sin¢ o 

(A3. 1.4) 
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so that the direction cosines of the direction x, y, and z in this (r,8,~) 

system, become: 

Yx = sin8sin~ 

Yy = sin8cos~ 

Yz = cose 

After rearranging the trigonometric terms,~nd~s expressed in the 

spherical system are: 

. 28 . 2 Sln Sln ~ . 28 . 2 Sln Sln ~ 

-iwr 

q)W) --
(13/ {2ia iwe cx sin28sin2~ + (1_ 6icx ) :: 0 4'lTcxr cx wr 2 wr 

sin8cos2~ 0 

Let us define two vectors RP and RS in the following way: 
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. 28 . 2 Sln Sln ¢ 0 

RP 
= 0 and RS 

= sin28sin2¢ 
2 

0 sin8cos2¢ 

RP is therefore in the radial direction ~, while RS is parallel 

plane (8,$), perpendicular to ~. ~nd~ay be expressed as a 

combination of RP and RS, in the following manner: 

-iwr 
= ~e-8-

4n8r 

to the 

1 inear 

LA 3.1. 5) 

Since Tyx(w) is the sum of the above two expressions, it is clear that as 

the distance from the observer to the source increases, the correction 

terms to the first order approximation can be neglected and we are back 

to the first order solution presented by Mikumo (1969). 

This correction will affect mostly the low frequency end of the 

spectrum, for medium distances (r), thus not affecting the peak accelera­

tion that-much, but for short distances this correction could become large, 

More specifically, if we consider r of the order of one wavelength, at 

10Hz, and using the limiting value of ~ = -21 derived in Appendix A3.2, a wr 
simple calculation could show that the value of the correction is at 
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least three times the far field term for the P wave. For the S wave this 

ratio would be approximately two. 
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Appendix 3.2 

Limits of validity of the second order approximation. 

In a manner similar to the determination of the limits of validity 

of the Fraunhofer approximation, lets study the effect of the error in 

the source spectrum introduced by making the approximation. 

Defining the source spectrum as: 

(A3. 2.1) 

where: hi 2) and h~2) are defined in A.3.l, C1 and C2 are geometry dependent 

constants, and 6u(w) is the Fourier transform of the dislocation function. 

The error introduced in ~(Q,w) will be significant if the error in-

troduced in the polar angle of the complex number: 

is greater than n/2, and the error in its modulus is large. Since the co-

efficients C, and C2 are of the same order, we can ignore them and only 

consider the complex number hi 2)(w) + h~2)(w). This in turn will only 

provide one order of magnitude of the range of va1idity of the approxima-

tion. 

Let 

-iwr 
-hi 2)(w) + h~2)(w) = (A+~A)ei(8+6e) e t 
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then, using the definition of h(w), and ignoring the constants gives: 

C 
2. 2 

= [2-15(-) ] - ~7+15(.£.) ] wr wr wr 

2 2 1 i2 
A + t:,A = [( 2 - 15£ 2 + E 

2 (7 + 15£ 2) ] ' 

tg(e+M) = - E 7+15S~ 
2-15s 

E: = ~. 
<.Or 

(A3.2.2) 

Assuming that t:,e is small, a series development limited to the first order 

for the tangent is: 

tg(e+t:,8) = tg(8) + 6.8 1 
1+tg2e 

tg8 is given by the value after neglecting the 3rd and 4th order terms in 

(1) that is: r 

tg8 h 1 4 
-;r '1+tg2e 4+49s2 

so that 6.8 is given by the following: 
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The assumption of a small 68 implies that s ;s also small and therefore 

1681 ~ 1~5 s3 ~ 36s3. The condition on the error in the angle 8 then be-

comes: 

1T < -
2 or s = ~ < -' wr 2" (A3.2.3) 

The relative error on the modulus A is: I~j = jA+fA - lj. A simple 

calculation of I~l for vaiues of s ~ } shows that it ;s always smaller 

than 40% and drops very fast to 10% approximately when s=.4. This order 

of magnitude is consistent with the projected use of the model so that 

the limits of validity will be for: 

.£ < 1 
wr - 2 
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Appendix 3.3 

Derivation of the second order finiteness condition. 

Consider a dislocation surface with largest dimension L, 

Q 

Fig _ A3. 3.1 

U = unit vector along Ox 

y = unit vector along OQ 

Assuming that the largest dimension is in the plane QOx, is shown in 

Fig. A3.3.l, the distance 'r between the observation point Q and the rupture 

pOint can be computed as follows. 

r = 111 = ,-+ -+,1/2 
lr-r) = { -+ ~ -+ -+ ll/2 (roy-;u).(roY-~U)J 

= ... 2 
LrO - 2ro;(y-otr) + 

2 1/2 
t; J 
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And since yoU = cos¢, the distance r becomes: 

Assuming that ~« 1 we can approximate r by a series expansion which we 
rO 

limit here to the third order for the purpose of estimating the first two 

terms of order higher than two which are neglected. 

Let A = ; , the series expansion of r gives 
o 

r = rO {l + }c-2,\COS¢+A2) - ~(_2,\Cos¢+A2)2 + l16(-2,\cos¢)3 + O(),4)} 

Collecting the terms in ascending order up to order 3: 

The approximated r used here is then: 

( ~ 1 ~ . 2) r ~ rO 1 - -- cos¢ + -2(-- sln¢) 
rO rO 

the first term neglected is therefore: 

to ~ 3 2 
6r = -- (--) cos¢sin ¢ 

2 rO 

(A3.3.l) 

The wave form will be negligibly altered if the error 6r on r is smaller 

than a quarter wavelength of the wave considered. (Aki & Richards, 1980). 

Therefore if L is the largest dimension of the finite rupture this condi-

tion becomes: 
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rO L 3 2 
-- (--) cos¢sin ~ ~ A(W) (wavelength at frequency w) 
2 rO 

(A3.3.2) 

Since A(W) = T' and considering that the worst case occurs for the S 

waves (i.e., c = s) and for the maximum frequency f max ' the maximum length 

Lmax then becomes: 

(2) = {s r~ }1/3 
Lmax 2 2fmax cos¢sin cj> 

(A3.3.3) 

The corresponding 1st order approximation on the other hand would be valid 

for values of L less than L(l) given by: max 

1/2 
(1) _ 1 {sr 0 } L ---max sin¢ 2fmax 

(A.3.3.4) 

where fmax is the maximum frequency desired, in Hz' 

As a comparison between Land L , the rlg. A3.3.2 shows that l(2) max max 
is always substantially larger than L(l), and blows up to infinity at <P=O 

d 'IT B 't' L(l), .. h 'IT an 1> =2" Y OppOSl lon, lS mlnlmUm w en 1> =2' 

rO=8km, S=3.5kmis and f =20Hz, (values used for Fig. max . 
values of L(l) and L(2) are: 

max max 

min(L(l)) = .84 km at <P = ~2 max 

min(L(2)) = 2.44 km at 1> = 54 max 

For instance, for 

A3.2) the minimum 
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-'. ---... ~ ... ------- ... _----
------- .. _- ----------- -------

o ~------------------------------~------------------------------~ 
o 

Figure A3.3.2 

45 
Ang Ie ¢ (degrees) 

Comparison of 1st approximation (dashed line) vs. 2nd 
approximation, for rO = 8kIn, S = 3. Skm/ s and a maximum 
frequency of 20Hz. 
The vertical axis gives the maximum allowable patch's 
length (in kIn) as a function of the angle ¢. 

90 
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The figure A3.3.3 shows the typical shape of the domain around a 

fault of length L where the approximation is not valid. Both first and 

second order approximation domains are showno The minimum distance r . m1n 

(plotted on Fig. A3.3.3) at which the observation point Q must be for the 

approximation to be valid is easily found as: 

1st order: 
2f 

r (l.) max. 2~ L2 = -0- Sln 'V m1 n fJ 

2nd order: 
2f 2 1/2 3/2 

= (~sin cpcoscp) L 
S 

The values of r . are tabulated in Table A3.1. A glance at Table A3.3.l 
mln 

shows that for all practical purposes the 2nd order approximation is valid, 

but the 1st order approximation becomes fast invalid. The maximum value 

for r. is obtained along the normal to the fault (cp=90 2 ) with the first mln 

order approximati on; and at ¢=54.73 2 with the second order approximation. 

As soon as L~3 km the observation point has to be in the range of 100 km 

far, for the approximation to br valid at all angles. For most cases the 

second order approximation will allow computing the motion without further 

subdivision of the rupture area. 
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(') L = 2 

(I) L = '3 

5. 10. 

Domains of validity of the 1st order approximation 
(curves (1» and 2nd order approximation (curves (2». 
For a given length of the single element fault (patch) 
the approximation is va,lid if the site is outside the 
appropriate curve (the distance scale on Ox and Oz in km). 

z 
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TABLE A3.3.1 

Values of the minimum distance at which the finiteness condition is valid 

for 20 Hz maximum frequency. 

Tabulation for 7 rupture area largest dimensions Land 2 computed values 

r(l) and r(2) for 1st and 2nd order approximation versus the angle ~. 

~ 
. 5 1. 2 • 3. . 5 10 . 15. (km) 

(~eg. (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11.25 .11 .23 .44 .65 1.74 1.85 3.91 3.39 10.9 7.30 44.0 20.7 98 38.0 

22.5 .42 .44 1.67 1.24 6.70 3.52 15.1 6.46 42.0 13.9 167 39.3 376 72.0 

33.75 .88 .61 3.53 1.71 14.1 4.84 31.7 8.90 88.0 19. 1 353 54.0 - 99.0 

39.23 - .67 - 1.88 - 5.22 -. 9.78 - 21.0 - 59.5 - 109 

45 1.43 .71 5.71 2.01 22.9 5.69 51.4 10.4 143 22.5 571 64 - 117 

54.73 - .74 7.62 2.10 30.5 5.93 68.6 10.9 191 23.5 762 66 - 122 

56.25 1. 98 .74 7.90 2.10 31.6 5.93 71.0 10.9 198 23.4 - 66 - 122 

63.43 - .71 - 2.02 - 5.72 - 10.5 - 22.6 - 64 - 118 

67.5 2.44 .68 9.75 1.93 39.0 5.48 88.0 10.0 244 21.6 - 61 - 112 

78.75 2.75 .52 11 .0 1.46 44.0 4.14 99.0 7.61 275 16.4 - 46 - 85.0 

90 2.86 0 11.4 0 45.7 0 103 0 286 0 - 0 0 

(1) for 1st order rmin values 

(2) - 2nd -----~ 

all values of r in k.m. 
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Appendix 3.4 

1. Dislocation along Oy and propagation along Oz. 

The roles of sand n as expressed in Eq. 3.17 are exchanged so that 

performing the integrations and simplifying, the solution remains the same 

if the following alternate definitions are made: 

rC = _ h s i n8cos<jJ 
L 2 c (A3.4.l) 

2. Dip slip case. 

The same steps as performed in A3.l are performed here by replacing 

T m. T m 
yx oy zx. Then 

so that Eq. A3.l.3 becomes 

[\ z 1 
r ] ~(w) 

-iwr Yx 
= ~ e-a-(f) 2[2ia ( 6ia) 

1

0 

J 
+ 2 1-- y y Yy ] 4nar a wr wr x z 

l'Yx Yz 
(A3.4.2) 

-iwr Yz Yx] 
GJ;x(w) 

iw -6-[(1 _ 3i6) 6'6 
Yy ] = --e 0 -2(1 _ -'-)y y 

4nSr wr wr x z 
Yx 'Yz 



106 

Transforming to spherical coordinates by using (A3.l.4) gives 

-iwr 
6/)() ;w (S)2 e-a,- {RP + 2icx[RS _ 2RP]} 
~x w = 4ncxr a wr 

that is, the same equation as for the strike slip case (Eq. A3.l.5), but 

where RP and RS are here: 

By going through the same process as for the strike slip presented in 

Chapter III the final solution is the same as in Eq. 3.25, where the fol-

lowing terms are now defined by: 

'{l = sin28sin¢ 

'{2 = cos28sin¢ 

'{3 = cos8cos¢ 
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. TC sinwT~ 
JC = 

lw W 
1 e 

C 
wTW 

. TC . TC 

JC = 
e -lW L Slnw L 

2 C 
w\ 

(a) Propagation along Oz, 

Tc _ -L sinecos~ C 
'I' F =-1 L - 2" c L 

(b) Propagation along Oy, 

TC _ W cose 
W - "2 -c-

TC = ~l sinecos¢) 
L 2 v C 

FC = Lsinecosp 
L C 2c\ 
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Appendix 4.1 

DETERMINATION OF AN EQUIVALENT ARTIFICIAL 
EARTHQUAKE STRONG MOTION DURATION 

A4.1.l Introduction 

The problem of determination of the duration of an earthquake record 

is a delicate one. There has been a variety of definitions depending on 

the intended use of the records. Engineers are more particularly inter-

ested in the strong motion part of earthquake records, and even so they 

propose several definitions. For instance, R. McGuire (1979) summarized 

four different techniques which can be used for the computation of the 

duration for engineering uses. These four techniques give different re-

sults, but it can be emphasized that they are not intended to be used in 

the same contexts. 

The generation of Power Spectral Density functions (PSO) by our method. 

requires a knowledge of the strong motion duration without knowing the time 

history beforehand. In this case we want to simulate a large sample of 

records in order to compute the statistical characteristics of a type of 

earthquake at a given site. In order to av.oid prohibitive computer costs 

we then limit ourselves to computation of F.A.S. for a limited number of 

frequency points (an order of magnitude smaller than the number of points 

required for time domain calculations). The PoS.D. is then computed by 

dividing the square of the FAS by the duration of the motion at the site. 

Such a technique implies that we are dealing with a stationary process--a 

wild departure from reality! (we mean here reality of our synthetic records). 

In the technique used up until now in calculations (Savy, 1978), the 

time of a record was determined by the difference in time between the last 

arrival of an impulse at the site minus the first arrival. This obviously 
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did not account for the fact that a large earthquake record, for instance, 

may be made up of several strong motion parts with relative quietness in 

between this, impairing the PSD estimates (which imply a stationary pro­

cess). In some of our previous calculations the estimate of duration was 

twice, and in some even more, the actual total strong motion duration 

which could be derermined visually from a plot of the time histories. 

The method that we propose here must fulfill several conditions: 

(i) not increase substantially the computation time, 

and (ii) give an estimate of the total duration of the strong motion part 

of the record 3 that is the time duration during which part of 

the record can be considered as part of a same stationary strong 

motion process. 

A4.l.2 Estimate of the Energy Time History 

A.4.l.2.l General Method 

We first define a function proportional to the total energy radiated 

toward the observation point. A time history of this function is calculated 

in an approximate manner, independently of the calculations of FAS, and for 

a limited number of time pOints. The function is then scanned for its maxi­

mum, and the strong motion duration is defined as that portion of the time 

axis for which the energy function is above some fraction (to be determined 

by testing) of its maximum. 

A.4.l.2.2 The Energy Proportional Time History 

In this section we limit the derivations to the case of the energy of 

the S-wave generated by a patch small enough to use the far-field solution. 

The kinetic energy of a unit mass of ground at the observation point is 

proportional to the square of its velocity. 

Let v(t) be the velocity at the site, the total energy received will 

be proportional to: 
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(A4.l.l) 

and using Parseval1s theorem it is also: 

f
oo 2 

E ~ G = 0 IV(w)1 dw (A4.1.2) 

where: V(w) is the Fourier transform of v(t). 

If we make the simplifying assumption that this energy is released by 

dislocation of the patch, in a stationary manner, the power input at the 

E site from this given patch is therefore proportional to t ; where t is the 

total rupture time of the patch. It is equal to the length of the patch 

divided by the rupture velocity (v r ). 

P E 
~ -

t (A4.1.3) 

t 
.Q, 

- -
vr 

(M.1.4) 

P is proportional to the average power dissipated by the patch, at 

the site, and we can construct a curve proportional to the average power 

dissipated by superimposing the contribution of each patch as it is sketched 

in Figure A4.l. 

The total strong motion duration may be determined as the sum of the 

time durations during which P is greater than a portion a of its maximum 

Pmax ' In such a method the discrete -time definition does not have to be as 

fine as one needed for actual time history calculations. In practice we 

can decide to have ~T as a fraction of the total anticipated maximum dura­

tion, and we can therefore choose the number of time points, say 40 for 
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instance. 40 seems adequate since it would give a 6T = .1sec for a 4sec 

record, and ~T = lsec for a 40sec record. That is an accuracy of 2.5%. 

What we now need is a simple way of evaluating Eq. A4.1.2. 

Power 

.p -----
max 

exPmax 

(ex%) 

o 

I 

Cumulated power 

Contribution of a single 
patch to the total power 

I I 
1 r-t-----4----.L--,----. 
II t ,---1""-, J 
II I , " , . 

WW 3 4 

Total strong motion duration = Tl + T2 + T3 + T4 

Figure A4.l.2 Average power spectral proportional function 
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A4.l.2.3 Total Energy Radiated Towards the Site by One Patch 

The far field expression for the Fourier Transform of the velocity 

may be expressed by: 

V(w) " [ RM0
3

] 
[w 

l 
sinw\ sinwTW :Q1 sin~ 

(A4.1. 5) 
l wTL wTW 4npB r w2 

(See Savy (1979) for definition of parameters). 

If we only consider the part in the brackets, we notice that we have a 

product of 3 sinc functions. When we square a sinc function we know that 

most of the area under it is under the first lobe, so in order to calcu-

late Eq. A4.1.2 we need only to integrate the part under the first lobe. 

Furthermore, in our case the product of the 3 sinc functions can be 

approximated by the one with the larger coefficient of w, since we in­

tegrate only in the first lobe (see Figure A4.1.3). 

First lobe 

w 

Figure A4.1.3 Representation of (sin2aw) where: 
~.'- _ .... 

T f T T a i = I' TW' TL or TL > W > I . 
The product can be approximated 

by sinc2[w max(a;)] . 
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We can rewrite V(w) as: 

where: 

V(w) - y(w} :; A y(w) 

y(w) = sin aw e-bw 
a 

Then Eq. A4.1.2 becomes: 

A foo "2 -2bw G :; -- Sln aw e dw 
/ 0 

_ A foo( l-cos2aw) -2bw d 
- 2"" 2 e w 

a 0 

A {-2bW 0 Joo 2bw} 
= -2 e 2b - cos2aw e- dw 

2a 0 
00 

A {l foo cos2aw e -2bw dW} -;z 2b - 0 

where: 

Let: t, = cos2aw e- 2bw 

. 2 -2bw t2 = Sln aw e 

t
"t 2aiw-2bw 2(a;-b)w 

T = 1 +1 2 = e = e 

(A4. 1. 6) 

(A4.1 "7) 

(A4.1 ,8) 
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then: 

-2bw 
= (ai+b) [l-e 2(cos2aw

2
+isin2aw

2
)] 

2(a2+b2) 

f
W2 -2bw o cos2awe dw = 

= 
-2bw -2bw 

1 [b- 2 bcos2aw2+ae 2 sin2aw
2
] 

2(a2+b2) 

-2bw 
b+e 2(asin2aw2-bcos2aw2) 
=-----~~---~ 

2(a2+b2) 

where: w2 is the maximum frequency for which the FT of V(w) is calculated. 

Then it becomes finally: 

(A4.1.9) 

if the quality factor Q is large or if we are dealing with large values 

of b (r small). G simplifies to: 

(4.1.10) 
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Appendix 5.1 

The choice of n as being that value of the parameter for which the 

most probable value of the largest patch length is equal to the observed 

value is compared with the value obtained from a maximum likelihood tech­

nique and also by assuming that the observed value is closest to the mean. 

(i) Mean of the largest value and standard deviation 

Let Y be the random variable "largest value of .Q, on the fault 

with n patches," and normalize the total length of the fault to 

1. The mean value of Y is a function of n, say ~y(n) 

(A5.1.1) 

integrating by parts: 

{ 
_l}n . where: FyIN(yln) = 1 - (l_y)n 1S the COF of Y. 

Similarly we can compute E[y2IN]. The variance is then given by 

(A5.1.2) 

It comes; 

(A5.1 .3) 
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where: 

Expanding the terms to the power n and integrating term by term 

fi na lly gi ves: 

n (_1)i 
ll{n) = nl i~O il(n-i)l[l+i(n-l)] 

(A5.1.4) 

(ii) Maximum likelihood estimator of n 

We have only one data point, so that the likelihood function is 

proportional to the probability density function. Maximizing 

that function for the parameter n is achieved by maximizing its 

logarithm. 

{ }
n-l 

fYln(yln) = n(n_l)(1_y)n-2 1 _ (l_y)n-l 

n-l L(n) = Logn+ Logn-l + (n-2)Log(1-y) + (n-l)Log[l - (l-y) ] 

The value of n which makes L(n) maximum is solution of: 

d L(n) = a 
dn 

(A5.1.5) 

(A5.1.6) 

(A5.1.7) 
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that is: 

o = 1 + ~l + Log(l-y) + Log[l_(l_y)n-l] - (n-1)(1-y)n-1L~9(1-Y) (A .1.8) 
n n- l_(l_y)n-

* Table A5.1.1 gives the most probable value t(n), the mean value ~y(n) 

and the maximum likelihood largest length ~L(n) as obtained from Eq. 5.13, 

A5.1.3, and A5.1.6, respectively. The two last columns give also the stan­

dard deviation (Eq. A4.1.3) and the coefficient of variation. 

Conversely in Table A2 an observed value of the largest value is as-

sumed as .04, .06, .08, .1, .2, •.• , .9 and the corresponding n and average 

patch length r are computed assuming as above that: first the observed 

value is the most probable one, second, it is the average, and last n 

maximizes the likelihood. 

Except for small values of n, that is except for the cases when the 

largest patch length is within .6 to 1 the three methods give similar re­

sults. But the coefficient of variation (CQV) (see Table A5.1.1), being 

of the order of 25 to 35%, the uncertainty on the estimate of n will be 

large enough so that any of the three techniques makes as much sense as the 

other 2. Therefore in the computations we chose the flrst method, since it 

is numerically the simplest, where n is estimated as that value where the 

mode of the distribution of ~max is equal to the observed largest value. 
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TABLE 5.1.1 

* n 9,(n) JJy(n) \(n) 0y(n) COV 

% 

2 1.000 .667 .813 .256 38.4 

3 .553 .543 .632 .200 36.8 

4 .433 .462 .523 ,161 34,8 

5 .370 .412 .448 .154 37.4 

6 .327 ,371 .395 .135 36.4 

7 .296 .338 .355 .122 36.1 

8 .271 .319 .323 .11 0 34.5 

10 .235 .271 .276 .093 34.3 

12 .209 .241 .242 .080 33.2 

15 .180 .208 .208 .068 32.7 

20 .148 .171 .167 0058 33.9 

30 .112 .127 .123 .037 29.1 

40 .091 .103 .099 .028 27.7 

50 .077 .087 .083 .023 26.6 

60 .067 .076 .072 .020 25.8 

70 .060 .068 .064 .017 25.1 

80 .054 .061 .058 .015 24.5 

90 .049 .055 .053 .013 24.0 

100 .046 .051 .048 .012 23.5 
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TABLE A5. 1. 2 

Observed Largest Most Probable Average Max. L i-ke 1 i hood 

i n 9- n i n I 

.02 280 .0036 .... 300 .0033 293 .0034 

.04 118 .0085 135 .0074 126 .0079 

.06 69.9 .014 81 .012 76 .013 

.08 47.5 .021 56 .018 53 .019 

. 1 35.0 .029 42 .024 39 .025 

.2 12.8 .078 15.9 .063 15.6 .064 

.3 6.90 .146 8.5 .117 8.9 .112 

.4 4.50 .224 5.3 .190 5.9 .169 

.5 3.40 .299 3.5 .285 4.3 .234 

.6 2.80 .361 2.54 .394 3.3 .308 

.7 2.44 .409 2.6 .390 

.8 2.24 .446 2.06 .486 

.9 2.10 .475 1.66 .603 



120 

Appendix 5.2 

Covariance of the Patches I Lengths 

jth realization 

of a set of 
(n-l) segments 

i.i.d U[O,lJ 
f 
f 
I 
I 
f 
I 
I 

, I 

I I I I I t 

f. X1j J _u l Xu ~ ___ ~~l 
Consider a segment of unit length divided in n segments obtained 

by ranking n-l independent segments of uniform distribution on [0, lJ. 

Consider two random variables, Xi and Y, such that 

n-l 
X = I 

i=l 
X. , where X. ;s the ;th segment 

1 1 

Y = nth segment 

thus: X + Y = 1 

If we fix Y=y, the distribution of the Zi's becomes the distribution 

of n-l segments on a (l-y) length segment: 

(n-2) (l _~) 
n-3 

fx;/y(X/y) = (l-y) l-y 

and (A5.2.1) 

fy(Y) = (n-l)(l-y )n-2 
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The joint distribution of X. and Y becomes: 
1 

fXi,y(X. y) = fXily(xly) • fy(Y) } 

= (n-l)(n-2)(1-y-x)n-3 

!
y ~ 1 

for x ~ 1-y 

o ~ l-y-x ~ 1 

The expected value of XiV is computed as: 

f
l f'-y E[X;y] = 0 0 XyfX,Y(X' y)dxdy 

f
1 fl-y = 0 0 (n-l)(n-2)xy(1-y-x)n-3 dxdy 

(A5.2.2) 

J
' f'-y 3 f1 = (n-1)(n-2) 0 ydy 0 x[(l-y)-x]n- dx = (n-1)(n-2) 0 ydy I(y) 

where: 

f
1-Y n-3 f1

-
y 

n 3 f1-
y 

n 2 I(Y) = 0 [(l-y)-uJu du = (l-y) 0 u - du - 0 u - du 

_ (l_y)n-l 
- (n-1)(n-2) 

then: 
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The covariance between Xi and Y is given by: 

COV[XiV] = E[XiV] - E[X i ] . E[Y] 

Since the X;IS and Y have the same density function and their mean is 

E[X;] = E[V] = * ; the covariance of XiV is obtained as: 

COV[XiV] = 1 _1. 1 
n(n+l) -n n 

-1 = 
n2( n+ 1) 

By reason of symmetry this is also true for any two segments X. and X., 
1 J 

where i = 1 to n, including V. 

-1 COy [X . X .] = -:2=;----'--
1 J n (n+ 1 ) 

for ;fj 

The correlation between any two segments is then: 

p(X.X.) = 
1 J 

COV[X.X.] 
1 J = 

2 
0g, 

For a segment of total length L we have: 

COV(x.X.) = 
1 J 

1 
- n-l 

itj 

(A5.2.3) 

(A5.2.4) 
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