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A number of statistical properties of a random, moving surface are obtained in the special case
when the surface is Gaussian and isotropic. The results may. be stated with special simplicity for
a 'ring I spectrum when the energy in the spectrum is confined to one particular wavelength x:
In particular, the average density of maxima per unit area equals 17/(2.../3 A2), and the average
length, per unit area, of the contour drawn at the mean level equals 7T/(";21.). •

INTRODUCTION

lome of the statistical properties of a random, moving surface have been studied in a recent
laper (Longuet-Higgins 1957)t in connexion with the analysis of sea waves. The surface
Nas there assumed to have a correlation function of general form. In the present paper
Ne shall discuss the special case when the surface is isotropic, that is to say, its statistical
Jroperties are independent of direction.

Although the corresponding properties of an isotropic spectrum are simpler than for
1 spectrum of general form, to derive them from first principles would in most cases take
almost as long. In what follows, therefore~ free use will be made of the more general results
already obtained in (A).

The paper falls into two main sections. The first defines the parameters used to describe
the surface, and discusses the relations between them. The second and main section derives
various statistical properties: the distributions of elevation and gradient; the mean number
of zeros along a line in arbitrary direction; the average length of contour per unit area,
and the average density of maxima and minima per unit area. All these properties are
independent of the motion. Next are considered the statistical distributions of the velocities
of zeros, of contours and of specular points on the surface (i.e. points where the components

t This will subsequently be referred to as (A).

I "
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158 M. S. LONGUET-HIGGINS ON STATISTICAL

1. PARAMETERS FOR THE SURFACE

The energy spectmm

The surface under consideration is assumed to be representable as the sum of an infinity
ofJong-crested waves:

(1)I;(x,y,t) = ICncos(unx+vnY+Unt+En)'
n

of the gradient take given values). The results are discussed in detail when the surface has
a' ring' spectrum, that is to say, when the energy is confined to one particular wavelength,
while distributed uniformly with regard to direction.

In a final section the question is discussed of how far the spectrum is determined by its
statistical properties.

where x and yare horizontal co-ordinates and t denotes the time. The summation is over
a set ofwave numbers (un' vn) distributed densely throughout the (u, v) plane. The frequency
Un of each wave component depends only on the wavelength 21T/Wn, where

Wn= (u~+v~)t, (2) '1

and the phases En are randomly distributed in the interval (0, 21T). The amplitudes Cn are
such that, over any element dudv

I !c~ = E(u, v) dudv.
n

(3)

The function E(u, v) is called the energy spectrum of 1;. Formally, it is the cosine transform
of the correlation function 7fr(x, y) defined by . I.

1 JX JY JT7fr(x,y) = lim 8XYT I;(x',y',t')!;(x+x',y+y',t')dx'dy'dt'.
x, Y, T_<%J -x -Y -T

(4)

'1(5)

(6)

E(u, v) = E(w),

w = (U2 +v2)i.say, where

In the special case considered in the present paper E(u, v) is assumed to have circular
symmetry about the origin, i.e.

-J.(7)

Moments of the spectmm

Parameters which frequently occur in the analysis of the general two-dimensional !
spectrum are the moments mp., Ill;. and m;. defined by i

mp• = r~ r~ E(u, v) uPu<dudv,

m;. = r~ r~ E(u, v) u(u, v) uPu<dudv,

m;. = J:~ r~ E(u, v) u2(u, v) uPu<dudv.

For example, moo defines the total energy of the surface per unit area. It is assumed that
the moments exist up to all orders required.

Ifwe consider the intersection of the surface by a vertical plane in an arbitrary direction
o (that is, the plane .nin 0 = ycos 0) the resulting curve has a one-dimensional spectrum

t ....

J
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which we may denote by Eo(u'), where u' is the wave number measured in the direction O.
The moments of this function are defined by

(8)

Similar relations hold between m~(O) and m;., and between m~(O) and m;•.
It is possible to describe the statistical properties of the surface in terms of the moments

m,,(O), m;,(O) and m~(O). Nevertheless, for an isotropic spectrum it is more convenient to
use the radial moments, defined by

where Cpq(O) =2~.[ei"O+(P 1 q)!('Dei(,,-2)o+ ... +(-I)"e-inO] (ll)

and (P Tq) denotes the coefficient of x' in the expansion of (1 +x)P (1-x). (see (A), §3'2).

When the spectrum has circular symmetry, m,,(O) is independent of 0 and hence

(9)

(18)

(17)

(16)

(15)

(14)

(13)

(12)

(10)

•

M" = J:~ J:~ E(u, v) w"dudv

= f~ J:" E(w) w"wdwdO

= 21T f~ E(w) w"+ldw,

M~ = J:~ J:~ u(u, v) E(u, v) w"dudv

= 21T f~ u(w) E(w) w,,+ldw

M~ = J:~ J:~ u2(u, v) E(u, v) w"dudv

= 21T f~ u2(w) E(w) w"+ldw.

_{(-I)!.(PJ. q)!(:)m", p,qbOtheVen;}mpq - 2,7Z;Z1l

o otherwise.

and

and, similarly,

((A), equation (1'4'12)); on the other hand

1 f2"mpq = - m,,(O) Cpq(O) dO,
1T 0

The moments m~(O) and m~(O) are, by definition, related to Eu and Eu2in the same way that
m,,(O) is related to E. A simple relationship exists between m,,(O) and the moments mpq of
the two-dimensional spectrum. On the one hand

m,,(O) = m". 0 cos" 0 + G) m,,_I.l COS,,-l 0 sin 0+ ... +mo•"sin" 0

20·2
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The relation of Mn to mn(8), when n is even, can be found as follows. We have

(19)

= m2r,0 +G) m2r- 2,2 + (~) m2r-4,4+... +mo, 2r

from equation (12). The expression in square brackets is the coefficient ofx' in

(l +x)2r - G) (1 +x)2r-2 (l-X)2+ ... + (_I)r (l-x)2r = [(l +X)2_ (l-x)2]'

= [4x],. (21)

Hence

Similiarly, we have

and

In particular,

M. = 22r (8)/(2T) = 2.4.6 .... . 2r
2r m2r 3 (2 1) m2r·r 1. .5 ..... r-

M' _ 2.4.6 2r ,
2r- 1.3.5 (2r_l)m2r

M " _ 2.4.6 . .... 2r "
2r - 3 (2) m2r'1. .5 ..... r-l

(22)

(23)

(24)

(25)

For an isotropic spectrum the odd moments vanish identically: •

m2r+I(8) = m~r+I(8) = m;r+I(8) = O. (26)

Invariants qf the spectrum

The following determinants are fundamental for the analysis of the general spectrum:

The odd moments M2r+!, M~r+l' M;r+l do not occur in the present analysis.

and, more generally,

6.0 = moo,

6.2 = I m
20

m
ll I,

mll m02

m40 mSI m22
6.s = mSl m22 mlS ,

T.n22 1.n13 m04

(27)

(28)

(29)

The vanishing of 6.2r is a necessary condition for the spectrum to consist of not more than
r one-dimensional spectra (see (A), §1·3).

m2r ,O m2r- 1• 1

6.2r =
m2r- 1• 1 m2r- 2,2

mr,r mr-1,r+1

mr - 1,r+l
(30)
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The invariant quantity (m20 +m02)' which is independent of the direction of the co-ordinate
axes in the general case, has (from equations (12) and (25)) the value

As we should expect, t.2, vanishes only when M 2, vanishes, since an isotropic spectrum can
be the sum of a finite number of one-dimensional spectra only in the trivial case when
all the energy is concentrated at the origin.

Since, in an isotropic spectrum, m2(0) is independent of 0, we have m2max. = m2min.·

Thus the long-crestedness y-' is given by

y-' = (m 2m...)! = 1. (33)
m2 min.

(38)

(35)

(36)

(37)

(34)

(32)

(31)

•

t.2,
H3 = 1.

m20 +m02 = M2·

Substitution from (12) gives

and so from (25)
Therefore for an isotropic spectrum

Another invariant that we shall require is the quadratic expression

3H = m,omo, - 4m3l m'3+ 3m~2·

3H -;km2
- 3 4'

H=-hM~.

t. _ 1 ,+'
2, - 2'l'+ll M 2' .

Substitution from (12) and (25) shows that for an isotropic spectrum

t.o = mo = Mo, }
t.2 = m~ = !M~,

_i 3_.J.... 3t., - 27m, - 64M,.

It can be proved (see Appendix) that, for all integers r;;;' 0,

A ring spectrum

When the surface is isotropic it is impossible for the spectrum to be 'narrow' in the sense
that the energy is concentrated with respect to both wavelength and direction (except in
the trivial case when all the energy is at the origin). However, an interesting special case
is when the energy has predominantly one wavelength X, that is, when it is concentrated in
a narrow annular region in the (u, v) plane, with centre the origin. If W= 21T/X denotes
the mean radius of the annulus we have approximately

and hence

or

Mn = WnMo,

MoM,=M~

mom, = !m~.

(39)

(40)

(41)
Now from (14)

MoM,-M~ = ffffE(u"v,) E(U2,V2) (w~-wlw~) du,dv,du2dv2, (42)

and hence

2(MoM,-M~) = fIIIE(u"v,)E(U2,V2) (wl-wn2duldv,du2dv2· (43)
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This quantity is always positive or zero and vanishes only when E(u, v) is a ring spectrum.
Further, in the isotropic case,

2(MoM4-M~) = 41T2[[ E(w,)E(w2) (wi-w~)2dw,dw2' (44)

which, for a nearly annular spectrum, is proportional to the square of the width of the
annulus. A convenient parameter for specifying the width of the annulus is therefore

(45)

2. STATISTICAL PROPERTIES

The distribution ofsurface elevation and gradient

The statistical distribution of the surface elevation ~ ( = ~,) is given by equation (2'1'8)
of (A). Substituting rno = Mowe have

(46) I

This is a Gaussian distribution, with mean-square value

(47) •

The joint distribution of the two components of gradient

is given by

(48)

(49)
1

P(~2' ~3) = 21T6~ exp [ - (rno2~~-211l1l~2~3 +rn2o.~§)fM2]

in the general case (see (A), equation (2'1'12)). On substituting from (12) and (31) we have

(50)

a symmetrical Gaussian distribution in two dimensions. The distributions of~, and (~2' ~3)

are statistically independent (see (A), §2·1).
Let us write

(c C) ( 8 . 8) J(~2' ~3) = a
~2'~3 = acos ,asm , J(a,O) (51)

in (50), so that a and °denote the magnitude and direction of the surface gradient. Then
we have for the joint distribution of a and °

a
p(a,O)= uexp(-a2fM2),

1T1V12

which is of course independent of 0. The mean-square slope of the surface is given by

(52)

(53)
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I
(59)

(58)

(57)

(55)

(54)

•

N. = ~ (m4(0))' = ~ (3M4) ,
1 1T m2(0) 1T 4M2 •

No(£,) = ~ (2~J' exp (-W2Mo),

In general, the number of zeros, per unit distance, of the rth derivative of the curve is
given by

N = ~ (m2T+ 2(0)) , = ~ (2r+ r M2T+2)'
T 1T m2T (0) 1T 2r+2 M2T •

Also from (2'2'12) and (2·2'13) of (A) the number of points per unit distance where the
curve crosses the arbitrary level ~ = £, is

The distribution of the slope ct, regardless of 0, is a Rayleigh distribution:

2ct
p(ct) = M. exp (-ct2/M2)_

2

The distribution of0, regardless of ct, is a 'constant:

1
p(O) = 9-

~1T

The number of zeros per unit distaru:e

Ifwe consider the curve of intersection of the surface by a vertical plane in the direction
0, we may count the number No of zeros of this curve per unit horizontal distance_ From
(A), equation (2-2-5), No is given by

N, = ~ (m2(0))' = ~ (M2.\' _ (56)
o 1T mo(O) 1T 2Mol

Similarly from equation (2'2'10) of (A) the number of maxima and minima of the curve
per unit distance is given by

where

and, in general,

and the number of times when the gradient of the curve takes the arbitrary value £2 is

1 (3M)'NO(£2) =:;; 4M: exp (-£~/M2)'

For a ring spectrum, we have

N, =~(~)' =~(~)'
o 1T2 .1.2'

N. =~(~)' =;(~)i
'-1T4 .1.4'

N = ~ (2r+ 1)' = ~ (2r+ 1)'
T 1T 2r+2 A 2r+2 '

X= 21T
ill

(60)

(61)

(62)

(63)

(64)

denotes the characteristic wavelength of the spectrum. For a long-crested wave of the same
wavelength, the number of zero crossings per unit distance would be 2/X in a direction at
right angles to the crests, and zero in a direction parallel to the crests. Equation (63) shows
that, for an isotropic spectrum, NT is always less than the maximum value 2/A.. On the other
hand, for large values of r, N, approaches this value.

..



The velocities of zeros

If a plane section of the surface be taken in a direction 8 as before, we may consider the
distribution of the velocities of points on this curve which lie at a given level, say t = G,.·
This would be equivalent to drawing a contour map of the surface and finding the velocities
of the intersections of the contours t = Gl with a fixed line in direction 8.

For a general spectrum, the distribution of the velocity is given by
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( )
1 ~2,/m~

/) c ~I ="2 ( "+2 '+ 2)lrno mt' m2c
(see (A), equation (2'5'14)), where

(81)

(82)

For an isotropic spectrum we have

(85)

(84)

(83)

2 J(~) (Z:(

rno = Mg, m; = 0, l
m~ = M~, mz = tM2,J

This distribution is symmetrical about the origin, as we should expect. Its second moment
and standard deviation are infinite, but a measure of its width is the interquartile range,
given by

glVlng

For a ring spectrum this becomes

(86) " .

(87)

where cis the phase velocity of the component waves.
It will be noticed that the distribution of c is independent of the particular contour

t = G, at which the velocity is measured.
Similarly, we may consider the velocities c, of the maxima and minima of the curve.

From equation (2'5'19) of (A) we find for the distribution of c,

( )
2M;/3M.

pc, = (c2 +4M;/3M,)l'

This is of the same form as P(c) but with an interquartile range of width

~(M;)l
3 M•. (88)

The distributions of the velocities of higher derivatives of the curve may be found in a
similar way.

For a ring spectrum this becomes

~?:. _ .4.
3 w- aC' (89)
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(90)

The motion qf the contours
The motion ofa contour may be defined as follows. Let P be a fixed point through which

the contour passes at a given time, and let straight lines be drawn through P parallel to
the axes Ox, Oy. The intersections of the contour with these two lines will move with velo
cities Cx> cy, say, which determine completely the local motion of the contour. If any other
fixed line is drawn through P in a direction 0, and ifc is the speed of the contour intersection
along it, then it can be shown that

1 1 0 1. 0- = -cos +-sm .
c ex cy

The reciprocals l/cx> l/cy will be denoted by Kx> Ky respectively.
Alternatively we may consider the components qx' qy of the velocity of the contour

normal to itselfat P. Between (IC" Ky) and (qx> qy) there is a reciprocal relationship:

(qx' qy) = (K~tr K~~K;)'!
(91)

(K K) - (qx ~)
x> Y - q~+q;' q~+q;

(see (A), §2·6).
The statistical distribution of (Kx> Ky) is given by equation (2'6·21) of (A). In the general

case, _ 1 _ J(l+y') (K~+K~)t

P(Kx>KY)f,'-1T~~(m,o+mo,)tE(J(l-Y')) R ' (92)

where m,o mll

~3 = mll mo,
,

mOl ,
•

(93)
II'

II

(95)

y-I is the long-crestedness, E is the Legendre elliptic integral of the first kind, and

R = MllK~+2MI,IC,Ky+M22K;-2MI3Kx-2M'3Ky+M33' (94)

in which (Ad;) is the matrix inverse to that of ~3' In the isotropic case we have

!M, 0 0

~3 = 0 !M, 0

o 0 M~

(96)

(97)

(98)

(99)(qx>qy) = (q cos 0, qsinO),

These are symmetrical distributions, independent of direction in the horizontal plane.
Ifwe write

21-2
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so that q is the absolute value of the normal velocity, we have

or from (98)

(100)

(101)

(102)- 2M~
q2 _

- M. .
2

This distribution has a mode at the origin q = o. The mean-square value of the velocity
is given by

For a ring spectrum, ? 2iT2 _
q- = -2 = 2c2,

W
(103) I

where cis the velocity of a component sine wave in the spectrum.

The velocities ofspecular points

As defined above, a specular point is a point that would be seen by a distant observer as
a point ofreflexion of a distant source oflight. We may imagine such a point to be followed
continuously. Ifits velocity is denoted by (cx> cy ) then the distribution of (cx' cy ) is shown in
(A), §2'7, to depend upon the matrix

:

(104)

, ,
m31 m 22 i m30

m22 m13 !m~1
Tin13 m04 ! ml 2

....................,...
, ':"m21 m12 i m20

If (M,) denotes the inverse of this matrix, then it is found that

where (Nu) is the symmetric 3 x 3 matrix whose components are

Nll = MHc; -2M41 cx +Mll ,

N22 = M55C;+2M45CxCy+M44C~-2M52Cx -2M42 Cy +M22,

N33 = M55C~ -2M53 Cy +M33 ,

N,3 = M55CxCy+M45C~-M53Cx - (M43 +M52) Cy +M23 ,

~l = M 45 CxCy -M43 cx -M51 Cy +M3 l>

N I2 = M 45 C;+ M..4 CxCy -(M42+M51 ) cx -M4l cy +M12,

(105)

(106)

and where
~2= I

m20 mll I, ~5 = 13;j I, N= IN;jl, (107)
{mll m02

11 13 = N21~2-N22~1'} (108)
1122 = N" 1N33 - Nr3'
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The form of the distribution is shown in figure 2. There is a single maximum, at a = 0·72
approximately. At infinity pia) is O(a- 3 ), so that the second moment diverges. The median
value (dividing the distribution into two equal parts) is at

(1l8)

(1l7)

(1l5)

(ll6)

(1l2)

(1l4)

(1l3)

(109)

(m)

21-3

•

o

o
o

o

2
M;'

-1 )
2~ry ,

2ry2+3

o
o
o

o

2
1\.1"2

JrM" 0• 2

o tM;

o

o

o
%M.

o
o

o

o

o
o

t M•
o

o

a = 1·240 ... = am'

o

o
o

o
tM•

3
0

1
0 0

M. -M'•
0

8
0 0 0

M.

1
0

3
(M;) = I - M. M•

0 0 I· (1l0)
............

(E,) =

and so

where

Hence we have

gIvmg

To find the distribution of the non-dimensional velocity a we may write

(s,ry) = (a cos 0, asinO),

1\.1"
pia) = 2rrap(s,ry) = 2rra M 2p(c"cy),

• •

(a) = 8J3a(a2+4) (3a2+4) (a2 +6)+6a'.
P [(a2+4) (3a2+4)]!

(

2S2 +3 2~ry

(N,) = ~. 2Sry 2(~2+ry2)+8
-1 2~ry

where (s,ry) = (Z,;)' (cx>cy).

After some reduction we find from (105)

4J3M. (a2 +4) (3a2+4) (a2+6)+6a'
P(cx>cY);I';' =~ 1\.1; [(a2+4) (3a2+4)]! '

M
a2 = ~2+712 = M; (c;+c~).

(Dma• denotes the density of maxima.) For an isotropic spectrum these expressions are
considerably simplified. Thus (E,) becomes

~M. 0 tM.

and so
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say. The value am has the following significance: if the positions of the specular points are
noted at two successive instants t and t+ dt, halfofthe points may be observed to have moved
through distances greater than

(~2)'amdt (119)

from their original positions.

0·5

0·4

p(u.)

0·3

,

0·2

r
J,

,

I 2 a. 3 4
FIGURE 2. Graph ofpia), showing the form of the probability distribution of the absolute

velocities of specular points.

o

0·1

For a ring spectrum this median distance is .,~ .

~.

J
..,~

..
J. ~

(121)

(120)

F(fJ) = F(w2) = 1TE(w)

3. ON THE UNIQUENESS OF THE SPECTRUM

Suppose we are given certain of the statistical properties discussed in §2, the question
arises whether these determine the spectrum uniquely, or to what extent the properties
may be shared by other spectra.

The correlation function !fr(x, y), if known for all values of x and y, would suffice to
determine E(u, v) under general conditions; for E is simply the cosine transform of!fr.
However, the properties discussed above are purely local, that is to say, they involve the
behaviour of the surface at one point and its immediate neighbourhood. We have seen that
these properties depend only on the moments M2" M 2r of the spectrum (which are the
derivatives of!fr at the origin). In fact M 2r is the rth moment with respect to fJ (= w2), of
the function

amcdt,

where cis the velocity corresponding to the wave number w.

defined over 0<fJ<a:::>.
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The properties which depend on moments M2r up to order r = s will be said to be of
order 2s. If all the properties of order up to 2s are known, the moments up to order 2s may
all be determined. For example, from (47) and (59) we have

Mo = ~2, }

M2r+2 = 2r+2 2N2 (= 0 1 2 ) (122)
M. 2

1r r r ", ... ,
2r r+ 1

d th r M. 2.4.6 .... . 2r 2rr2N2 N2 N2 (123)an erelore 2r = 3 (2) 1T ~ 0 1··· r_lo1. .5 ..... r-l

Suppose first that the moments of F exist and are known up to infinite order. This does
not determine F uniquely in general (see Kendall 1952, chap. 4), but if certain restrictions
are placed upon F for large values offJ-for example, ifE is exponentially small at infinity
-then only one function with these moments can exist.

I

v v

,
r I,u ,

r
,

r
,

,

I
, • u,

, I

, r
, r
, ,

, r
, - - - ,... " - ..
... , I "-

, "
, \ I \

J , I \
I , I ;;, \

I \ I \

I \ I I

" u, 'J ', "\ ,\ I
\ I \ I

\ I \ I
,I \ I, , '.. ..','-----,

r ,

•

~ 00
FIGURE 3. Examples of spectra whose statistical properties are isotropic (a) to order 2,

(b) to order 4.

(124)

(125)then

In practice we may know, or be concerned with, properties up to a finite order 2s only.
Except in special cases, if the moments are known up to a finite order only, infinitely many
functions may be found having these same moments. A particularly simple function is one
consisting of the sum of delta functions. It can be shown (Stieltjes 1894, chap. 1) that if
the moments M2r are specified for r =-0, 1, ... , s, then a function F*, the sum ofnot more than
[!s+ 1] positive delta functions, may be found having these same moments and lying in
the range O~fJ<oo. Hence a combination of not more than [!s+l] ring spectra may be
found which has the required statistical properties, to order 2s.

One can also find non-isotropic spectra with the same statistical properties. Consider,
for example, a surface which is the sum of two pairs oflong-crested, incoherent systems of
waves, of equal wavelength and mean-square amplitude, intersecting at right angles
(figure 3a). The spectrum function has the same moments moo, m20, mil, m02 as an isotropic
ring spectrum of the same radius w, for if

moo = Mo,
(m20 , mw m02) = (tw2Mo, 0, !wMo).
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Now by equation (9) both TlZO(O) and TlZ 2(0) depend only on these moments; thus they are
the same as for a ring spectrum, and so independent of O. Hence the number No of zeros
per unit distance, which is given by equation (56), is also independent of the direction O.
Similarly, all properties depending only on moments of order 0 and 2 will appear as
isotropic, including the distributions of surface slopes and of contour direction.

More generally, if we consider a surface which is the sum of s+ 1 pairs of long-crested
waves travelling in directions 0 = j1T/(S+ 1) uniformly spaced between 0 and 21T, then all
the moments TlZpq of orderp+q~2s are the same as for a ring spectrum. Hence No, N1, ••• ,

~-l are all independent of 0, and so are all properties of order less than or equal to 2s.
The case S = 2 is shown in figure 3 b. For this surface both the number No of zeros and

the number N I of maxima and minima in a direction 0 are independent ofO.
The general theorem may be quite simply proved as follows. Consider any spectrum in

which the energy is all concentrated on the circle w = w, and in which the distribution of
energy with regard to 0 is given by some function G(O). The (p, q)th moment of the spectrum
is then

J
2.

TlZpq = 0 uPIflG(O) dO, (126)
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where (u,v) = (wcosO, wsinO). That is to say,

(129)

(128)

(127)

Al : A 2 =... =A 2
s+

1
: O,}

B I - B2 - ••• - B2s+ 1 - O.

J
2.

TlZpq = 0 wp+qcosP0 sinqOG(O) dO.

~

G(O) = G+ 2: [An cos 110 +Bnsin 110],
n=l

where

The product cosP0 sinq0 can be expressed as a trigonometric series in 0 containing terms in
COS1l0 and sin nO, where n does not exceed P+q. Suppose then that the Fourier series for
G(O) is of the form

Then ifP+ q~ (2s+ 1) all terms in (126) will vanish except those arising from the constant
term G. This gives

J
2.

TlZpq = 0 wP+qcosPOsinqOGdO. (130)

In other words, TlZpq is the same as for a ring spectrum. Now when the spectrum consists
of s uniformly spaced pairs of wave systems we have

1TG 2s+2 ( j1T)
G(O) = +1.2: 0 0- +1 '

S j""l S

where 0(0) denotes the Dirac delta function. So

1 J2. G 2s+2 j1l1T
An=- G(O)cosnOdO= +1 2: cos +1'

7T 0 S j:c:l S

(131)

(132) .
It

which vanishes when 11 = 1,2, ... , (2s+ 1); and similarly for Bn• Thus the conditions (128)
are satisfied. ~
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As a corollary it follows that any spectrum which is periodic in 0 with period rr/(s+ 1)
will have isotropic properties up to order 2s+ 1. For the spectrum may be considered as
the sum of regular systems of point spectra of tbe type just discussed.

ApPENDIX

Proof of equatioll (32)

Substitution from (7) into (30) gives

U2
' U2r - 1V U~+lV~+l, 2 2

U2r- 1V U~r-2V~ r-l r+l
1 , Ur+ 1Vr+ l

du, dV J •.. du,+, dv,+, (A 1)x

u1v1 U2- 1V2+ 1 v2
',+'

x

(V,/u,)' (V2/U2l' (V'+l/U,+,)'

x (u,{v,)' (U2/V2l'-1 ... (u,+,/v,+,)O

(A2)

The value of 1:>.2, is unaltered by permuting the suffIxes 1,2, ... , (r+ 1) among themselves.
Thus, adding all the (r+ I)! different permutations we have

x

1 1

x

1 1

Now writing

= J:~ J:~ ... J:~ J:~ E(u 1v,) ... E(u'+l> v,+,)

X II (up/vp-uq/vq) II (vp/up-vq/uq)
p>q p>q

X (u t VI'" ur + 1vr+1Y clu 1dv} ... dUr + 1dvr+ 1•

(Up, vp) = (wpco~Op, wpSinOp),}

E(up, vq) - E(wp),

(A3)

(A4)



_'_0 _0 _ ...... _, ..................... - ...................... ..&. ... ,u

= (M
2

'r)r+1 f" ... f" II sin' (Op-Oq) dOl'" dOr+l •
1T 0 0 p>q

The multiple integral may be evaluated as follows. Since

sin' (Op-Oq) = He2iOp_e2iO,) (e-2iOp_e-2iD,),

(A5)

(A6)
we have

II sin2 (Op-Oq)
p>q

1 1 1 1 1

1 e 2iOt e2i02 e2iOr+ t e-2iO , e-2i02

2>'(r+ I) X

e2riO , e2r102 e2riOr+ I e-2riOt e-2ri02

A typical term in the expansion of the first determinant is

1 . e2i02. e4iO, • .... e2riOr+ t,

which, when multiplied into the second determinant, gives

1

. (A 7)

(A8)

1 e2i02 e2riOr+l

e-2iOl 1 e 2(r-l)iOr+ ,

(A9)

I e-2riOl e- 2(r-l)i02 1

The integral of this determinant over the given ranges of 01, ... ,Or+1 is

21T 0

o 21T

o
o

(AI0)

o o 21T

(A 11)

Since the first determinant in (A 7) contributes altogether (n+ I)! such terms we have

f2. f2. . 2 (r+l)! (21T),+1
... II Sin (Op-Oq) dOl'" dOr+! = 2>'(r+l)

o 0 p>q

From this and (A 5) the result follows.
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