
IllNIVERSl1Y OF ,.:•

•- 7 OCT 1986

Time Ordering and the Thermodynamics of Strange Sets: Theory and Experimental Tests

From the spectrum of dimensions of a fractal invariant measure of a dynamical system one can
extract information about the dynamical process that gave rise to the measure. This is equivalent to
finding the class of Hamiltonians of an Ising model with a given thermodynamics.
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For the purpose of the present argument we conside
special partitions such that P, ~ const. If the numbe
of boxes of the partition is denoted Nn in the nth gen
eration of refinement, then P, ~ Nn-

I . Inserting this il
Eq. (2) we get

N~(T)~I,llin)I-T, (3)

The key idea that allows such an inversion rests on
the thermodynamic formalism ll - 14 of dynamical sys
tems that maps the process of refinement of the fractal
measure (in time!) to a transfer matrix theory lJ.14 of
an appropriate Ising model. To see this analogy we be
gin with a partition of the set into N distinct pieces of
diameters II,} f'!,. ,. Denoting the measure of each
piece by Ph we consider the partition function

N p?
r(q,r)~ I -. (I

i-I I{
It was argued in Ref. 7 that upon refinement of th!
partition, i.e., when max/,- 0, f(q,r) tends to infini
ty for r > r(q) and to zero for r < r(q). The quantit)
r(q) ~ (q -1 )Dq , where Dq are the generalize,
dimensions, defined first by Renyi '5 and considere(
first in the context of strange attractors in Ref. 6. />
convenient way of calculating r(q) is therefore to fi)
f (q, r) to a number as the partition is refined. For ex
ample, we can take

J. Weiner

M. Bishop
........
I. K. Ford
t. Klauder
·ion-solid

A. Sellin,
PepmilIer
C. Willis

PACS numbers: 05.90.+m, 05.45.+b, 47.20.Tg, 47.25.-c

A Fractal measures appear in a number of nonlinear
physical phenomena like turbulence,I-3 chaotic dy

A namical systems:-' and fractal growth processes.s
Such measures cannot be fully characterized by the

A fractal dimension of their support; rather, an infinity
A of generalized dimensions is called for their descrip

lion6 - 8 Recently this spectrum of dimensions was
linked (via Legendre transforms) to the spectrum of

A scaling indices of the fractal measures.',9
Bt' The fractal measures that arise in dynamical systems

have the particular character that they result from a
time-ordered process, be it an iteration scheme or a
continuous fiow lO The resulting measures are, how
ever, invariant to the dynamics and hence become
"static" objects. Describing these invariant measures
by their generalized dimensions (or spectra of scaling
indices) appears, therefore, 10 lead to a complete loss
of the dynamic information. In a sense that will be
made sharper below; this description is "thermo
dynamic." The aim of this Letter is to demonstrate
that this conclusion is in fact incorrect. With some of
the provisos that are explained in the sequel, the pro
cess can be inverted, and the dynamical process that is
responsible for the construction of the measure can be
read from the thermodynamics. In this sense we claim
that the information stored in the generalized dimen
sions (or spectra of scaling indices) is larger than what
Could be naively anticipated.

f(q, r(.q)) ~ L (2
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-0.686 1.3 0.1557
-0.384 1.6 0.3072
-0.093 1.9 0.4563

0.182 2.2 0.6036
0.445 2.5 0.7515
0.696 2.8 0.8964
0.935 3.1 1.0416
1.162 3.4 1.1856
1.377 3.7 1.3257

-1.339 4.0 1.464
-1.696 4.3 1.5972
-3.276 4.6 1.728

4.9 1.8486
5.2 1.9614

U~ uoof 0 0

0 0 uOi& 0r.(2) _
ulOO uiOf 0 O' OS)Wc

0 0 0 0

q

0.3
0.6
0.'
1.2
1.5
1.8
2.1
2.'
2.7

-0.3
-0.6
-1.8

TABLE I. The experimentally obtained numberS dq)
from a forced Rayleigh-BCnard system (Refs. 9 and 18).

Golden mean Period doubling
T(q) q T(q)

we have indeed a golden-mean orbit, we can now sub
stantiate this by going to the next order where the
transfer matrix reads,

A calculation shows that there are only two indepen
dent scales in OS). Assuming then that a -1.618, we
can use essentially any two entries from Table J to
solve for these scales. We get a wonderful fit with
uooo-0.44 ±O.03 and UOOOUOIOUHlI- 0.26 ±O.OJ. We
consider this excellent support of the ideas presented
here.

The period-doubling data yield similarly satisfactory
results. Here we use the experimental value of
Do=0.54 Ii.e., l-X(-Do--0.54»), and solve Eq.
(6) in the lowest-order nontrivial case of a 2x2
transfer matrilt. Typical results are summarized in

(4)
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fJ' ... are allowed, ~nd so on.
A strategy for the extraction of dynamic information

therefore suggests itself. Given q (T) we begin by at
tempting to fit an equation afCf}_A(T), where A(T)
is calculated from a 2 x 2 matrix. Writing the general
characteristic polynomial

A2( T) - A(T) (uoo" +uii T
)

+ (uooun) -T - (U01UIO)-' - 0, (3)

we see that UOI and UlO appear only as a product,l3 and
thus A (T) depends on three scales, Uoo - 51> Un - 52,

O"lI)UO' - 53' We can further use our knowledge of
q(T), and in particular the knowledge of Do (which is
the fractal dimension) in Eq. (6), which for q-O
reads

1505

TABLE II. Typical resulls or the inversion or the data in Table I. Olher values or T(q) give similar results.

0.3,0.6,0.9 1.618 0.467 -1.1)( 10- 11 0.3,0.6 0.456 0.261 1.3,1.6,1.6 2.003 0.441
0.3,0.9,1.2 1.619 0.469 3.8)( 10-11 0.9,1.2 0.468 0.227 1.3,2.8,4.9 1.999 0.379
0.3,0.9,1.5 1.619 0.469 3.7)( IO-n 1.2,1.5 0.450 0.252 1.3,1.9.5.2 2.002 0.405
0.6,0.9,1.2 1.619 0.471 1.3)( 10-13 1.5,2.1 0.441 0.269 1.6,2.2,4.9 2.000 0.409
0.9,2.1,2.4 1.607 . 0.344 1.1)( 1O- S4 -0.3.-0.6 0.425 0.255 1.9,2.2,4.9 1.998 0.400
OJ, -0.3.-0.6 1.652 0.457 5.8x IO- J -0.6,-1.8 0.419 0.259 1.9,2.5,4.3 1.992 0.391

This can be used in Eq. (3) to eliminate one of the
three scales, leaving (6) as an equation with three un
knowns, i.e., two scales and the number a. We solved
such equations by a multidimensional Newton·
Raphson technique, that proved to be rapidly conver
gent.

To demonstrate how the procedure works we chose
not to employ theoretical data that are perfectly accu
rate, but rather use experimental data that are subject
to some uncertainty. As case models we chose the
data pertaining to a golden-mean orbit and to the
period-doubling scenario in a forced Rayleigh-Benard
eltperiment using mercury as the fluidP The experi
ment and its results were reported elsewhere,9.11 and
here we summarize in Table I the q(T) values that
were obtained from the experimental orbits [we have
mainly used positive values of q which typically lead to
smaller uncertainties in T(q)].

Picking any three values of T from' the data we can
solve Eqs. (6), (3) (with Do-I), and (4) numeri
cally. Table II shows typical results. For the golden
mean data the use of any three values of T that are
reasonably accurate leads to a very rapid convergence
to uII-O and the number a being very close to the
golden mean. Taking this as a strong indication that
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is an eigenvalue of a transfer matrix. D , I. To show this
we point out that whenever a ~ 2 we can write the in-,
dex lof f/"l as E", ••• ,EO, where E j takes on binary
values 0 or I. For 2~ a :s:;: 3 we need Ej that takes on
ternary values 0, I, 2, etc. We thus rewrite Eq. (5) as

we discover immediately that adjacent I's are not al
lowed since they cause overflow of the time uis.
Thus u(l, 1), for example, must be zero. According
ly, the lowest-order nontrivial approximation of the
transfer matrix reads

(l) _[uro' UOi'1
Twa uiO' 0 •

The result of this argument will be that

the binary tree is complete. Therefore all the elements
of the transfer matrix are nonzero. For the golden
mean cycle, a - wG (asymptotically) and the tree can·
not be complete. Therefore there must be zero ele
ments in T. To see which are the zero elements we
use the fact that for these sets at the onset of chaos the
orbits are time ordered eltactly such as to match the f

ordering of the partitions. If we expand the time in Fi
bonacci numbers F". F,,+,-F,,+F,,_h Fo-F,-l,
i.e.,

whereas the period-doubling case has a nonzero UII'

In a similar way, if we consider period tripling versus,
say, a critical orbit with silver-mean winding number,
Ws -1 +..ti, we deal with cases that have ternary E'$.

For the period-tripling case, a - 3 and the ternary tree
is complete. For silver-mean trajectories neither con"
secutive 2's nor the combinations ... , £/. I, 2,1.
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where now the function Q(r) rather than T(Q) is em
ployed. Typically, the number N" grows exponentially
with n. Writing

~-a", W)
we perform now one step of the refinement of the set
and consider

N"'I }; 1/'0+°1-'---!!..±....-_af(r)_ j / (5)
N:hl LJ 1~(")1 ' .

Next we define the daughter-to-mother ratio, also known as the scaling function,l6 by

J(En+I,··· ,fO) -( )
J(E", ... ,fO) -u E,,+l ... · ,Eo·

Substitution in Eq. (7) leads to

we obtain lhe result lhat A(T) is an eigenvalue of T.
II should be clear by now how the problem maps

onto an Ising model. The number of spin states
depends on E being binary, ternary, quaternary, elc.
The range of interaclion depends on how far back the
memory goes in determining daughter-ta-mother ra
tios. If we can truncate En" •• ,EO after, say, f"_,,
Ihen we have r nearest-neighbor interactions. In that
case A(T) becomes the largest eigenvalue of T, be
cause (9) can be iterated.

In general, sets arising in dynamical systems might
or might not have long-range interactions. We know
however that in scts that belong to the borderline of
chaos the memory usually falls off exponentially. We
therefore limit ourselves to such sets, and ask if we
can find the dynamics from the information about gen
eralized dimensions Dq , spectra of scaling indices
I(a), etc.7•9 In other words, given q(T), can we find
the winding number, the type of dynamical system
(quadratic maximum, cubic innection point, etd, and
the elements of the scaling function? We shall see
that the first two questions are answered positively in
full and the last one in part.

To focus the ideas let us examine two cases of sets
that have binary f. The first is the 2- cycle at the ac
cumulation point of period doubling, and the second is
the critical orbit with irrational winding number
wG-1.618 ... <the golden mean), at the point of
breakdown of a two-torus. For the 2"- cycle, a - 2 and

where upon subsdlUlion we also added summations on Ei, ... ,E; which were immediately compensated by the
Kronecker 8's. We therefore conclude that by defining a transfer malrix T,

<504
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Table II. Notice that a = 2 and no element of T is
zero. The only dynamics at the borderline of chaos
consistent with this is that of an infinitely doubled or
bit.

Notice that we get good information about the
underlying dynamical system as well; in the case of
period doubling the scales obtained are a number ·and
its square. This indicates a map with a quadratic max
imum. In the golden-mean case we get from the fit to
the matrix (J 5) values for 0"000 and for 0"0000"0100"101.
Comparing 51 = 0"000 to 52 ~ 0"0100"101 we find 51 ~ 5i/2
This is consistent with 0"010 = 0"101 = a-I and
O"ooo=a- J (a= 1.2558 ... is a universal numberl9 )
which is a strong indication for a map with a cubic in
flection point.

If the data were not consistent with winding number
,,;; 2, a fit to a 2x 2 matrix would have failed. 20 In that
case one should try a fit to a ternary tree. Then the
lowest-order nontrivial matrix is of size 3 x 3. Similar
constraints on A( - Do) can be used to reduce the
number of free parameters. Obviously if no good fit is
obtained with ternary trees, one can seek solutions
with quaternary trees, etc., but the number of free
scales increases and numerical convergence becomes a
tedious affair.

In summary, we show that much of the dynamical
information can be retrieved from data which appear
"static." In some sense this is like retrieving whole
potatoes from mashed potatoes.21 We can get the
winding number, and the nature of the underlying
dynamical system. We cannot retrieve the full scaling
functions. There are scales that always appear in prod
ucts and in this sense there is degeneracy in the "ther
modynamic" description D We can find, however, to
what class the scaling function belongs, and this ap
pears sufficient to pinpoint the dynamics (at least in
the class of dynamics at the borderline of chaos).

It is our feeling that the mapping onto transfer ma
trix language is extremely useful for the study of
strange sets, and attempts to generalize it off the bor
derline of chaos will be reported elsewhere.
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