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a finite limiting value. In the case of fractals the resolu­
tion dependence can, however, be followed over
several orders ofmagnitude. Since not only surfaces or
curves can be fractals but also dust-like objects, it is
useful to extend the definition by introducing the con­
cept of lhe observed volume. Let d =I, 2, 3 denote the
Euclidean dimension of the geometric entity the set of
interest is embedded in. (More precisely, d should be
the smallest·possible·such dimension.) For a fixed grid
of d-dimensional cubes of size I the observed volume
V(l) is the total volume of the boxes needed to cover
the object, i.e. of boxes containing pan of the set
(Fig. I). An object will be called fractal if its obserwl
volume depends on the resolution (grid size) over several
orders 0/magnitude and follows a power law behaviour
with a nontrivial exponent. This dependence can be
observed over an infinite range of the resolution in the
case of fractals generated by mathematical construc­
tions. Such fractals :lave no smallest or no largest
scale.

Fig. 1. a) A set (dots) and a grid of SW: L L denotes the
diameter of the set b) Boxes (black) needed to cover the set..

I. Fractals

The basic concept of fractals and multi fractals are introduced for pedagogical purposes.. and the
present status is reviewed. The emphasis is put on illustrative examples with simple mathematical
structures rather than on Dumerical methods or experimenlal techniques. As a general characteriza­
tion of fractals and multifractals a tbennodynamical fonnalism is introduced, establishing a connec­
tion between fractal properties and the statistical mechanics of spin chains.
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I. Introduction

The surface· to-volume ratio for usual macroscopic
bodies (sphere, cube, etc.) is small since this ratio is
inversely proportional to the linear size of the system.
and the latter is characterized by a large Dumber in
appropriate (atomic) units. There exist, however,
porous or hairly objects with a large surface-to­
volume ratio. They may playa fundamental role io
natural phenomena. Efficient catalysis. e.g... requires
materials with large surface area. The need of a rapid
gas exchange explaiJ the existence of the large
surface-to-volume ratio observed in the lung. The area
of the human lungs respiratory surface (measured with
the resolution of 100 lUll) is as large as that of a tennis­
court (of order Iu' m ' ) while the volume enclosed by
it is ofa few litres [I] (of order 10- 3 m"). The general
importance of such systems was recognized by B. Man­
delbrot. He also coined the name/ractal and worked
out a new type of geometry for their mathematical
description [2J. (For further references on fractals, see
[3-9] ).

The following observation leads to a broad defini­
tion of fractals: Experience shows that in such systems
the surface area depends on the resolution used in the
measurement. Typically, this area diverges as the reso­
lution is increased. The area of usual objects also
depends on the resolution but it converges very fast to

• Chapters 1 and II are based on a talle. given at the Winter
School on Fractals. Budapest, January 12-16, 1987.
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2. Fractal Dimension
n =0

o

Fig. 2. The first steps in constructing the triadic Cantor set.
For the resulting fractal Do = 0.631.

II is intuitively appealing to think of a h~sur.face

as an object of dimension larger than 2. r-;{Qre ramified
surfaces should have larger dimensions. This idea is
fonnulated in a quantitative manner by the concept
of the fractal dimension [2].

Let L be the diameter (more generally, a character­
istic linear size) of the set to be investigated.. Using the
aforementioned grid of box-size I, the number ofcubes
needed to cover the set is denoted by N (I, L) (Figure I).
This number can depend only on a dimensionless
quantity which must be

n =1

1/9

1/3

1/9-

1/3

1/9 1/9
.......... -

i.e. the box-size expressed in units of L. Tberefore, we
have N(/, L)=N(t). The number of nonempty cubes
increases with a decresing box-size.

It is easy to find the precize fonn of N(t) for usual
geometric objects. As a simple example, we consider
first a straight line segment of lengtb L. Let us use a
grid obtained by dividing tbe segment into equal
pieces of length I. Their number is obviously LII. Thus,
N(t)=t- 1 for a straight line segment. In the more
general case of compact d-dimensiooal objects (like a
sphere) N(t)-e-' is obtained, provided the box size I
is sufficiently small, since the volume of such bodies
goes with the doth power of their linear size L. The
symbol - means here and in the following that the
proportionality constan~ not written out explicitly, is
independent of the resolution.

Next, we show that the rule found for compact
object must be modified for noncompact ones. Let us
consider the so-called triadic Cantor set [10, 2] which
is constructed as follows, One begins with the unit
interval. The middle third of the interval is removed,
leaving two intervals ortength 1/3. Next one removes
the middle third of each of these two intervals, leaving
four intervals of length 1/9. and this is then repeated
with the remaining pieces again and again (Figure 2).
The Cantor set is then the set of the points not
removed by this prooedure. Let us use a grid obtained
by dividing the unit interval into 3'" equal intervals (m
is a fixed integer). As follows from the construction,
the number of such pieces (of size 3 'M) needed to cover
the Cantor set is 2'". Since L = 1 we have £ = 1= 3-'".
Consequently, N(e) = 2'" = e- 1n 211n J = £-0.6Jl.

The example illustrates the general finding that
N (e) exhibits a power-law behaviour also for noncom­
pact objects. The exponent is, however. /lot an integer

Remarks:

• If I is proponional to the particle size. N(l•. L) ~mes
proportional to the mass M(L) or the cluster Wlth dwneter
L. ThhS M(L)_LPo follows., which is a widely used relation
for growth processes.

with e~ I, defines a positive quantity Do, !be so-called
fractal dimension. (It 'is ·worth noting that !bere exist
also other variants in the definition or fractal dimen­
sion (2, 3, 5] .)

(2)N(t)_t'D.,

and is smaller than the Euclidean dimension of the
space the object is embedded in.

Thus, tbe following definition seems to be quite
plausible. Let us consider the e-dependence of N(.) for
an arbitrary object at sufficiently fine resolution. The
relation

1. Fractals obtained from mathematical construe-­
tions can be divided into two main classes according
to their rule of construction. To the first class belong
fractals generated by defining structures on finer and
finer scales (see the triadic Cantor set and Examples I,
III below). Consequently, sucb fraetals have no
smallest scale. In this case L = const, and (\) and (2)
imply

N(I.L)_I- D•• (2a)

In order to model aggregation-like phenomena, fractals
constructed by growth processes (Examples II, IV) are
used. Then the grid size I can be kept constant, and Do
is to be deduoed from t~ relation'

N(I, L) - e'. (2 b)

(\ )t = IlL,
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Fig. 3. A lypical In N(,) vs. 1n(1/,) plOL

where ). is an arbitrary positive number, follows from
(2). Among usual geometrical objects there are also
selfsimilar ones (e.g. linc, plane) but they are simple.
Fractals arc, thus, nontrivial seUsimilar objects.

The fractal dimension turned out to be a very good
characteristic of different structures in nature [2).
Moreover, in certain cases Do proved to be universal,
i.e. the same for a class of systems. In many cases
(coast line: Do ~ 1.25, landscape: Do ~ 2.2) the origin
of this universality is not yet known, in other cases,
however. (polymer coil: Do ~ 1.66, the region of active,
nonlaminar now in fully developed turbulence: Do ~
2.8-3.0) the physical reasons of the universality seem
to be understood [2J.

The resulting fractals have no largest scale. By an ap­
propriate rescaling of the linear size, however, this
second class can be made equivalent to the first one.
This is exactly the physical meaning of the fact that
the number of nonempty cubes depends only on the
ratio£.

2. Since N (e) cannot be larger than the number
of cubes needed to fill the space, Do;;; d is obtained.
For compact geometrical objects, (2) holds with the
Euclidean dimension, Do =d.

3. It has been mentioned that e must be much
smaller than unity in (2). In physical examples, there
exists also a lower cut-off for e since the fractal struc­
ture is replaced by some other patterns when ap­
proaching the microscopic scales. Therefore, a straight
line in the In N(e) vs. In (I/e) diagram can be observed
in a range of. only (Figure 3). This range must extend
over several decades in order to imply the existence of
a fractal structure.

4. Fractals arc selfsimilar objects, i.e. they look the
same on many different scales in the range where (2)
holds. This is consistent with the fact that a scaling
form

Do In 1/£. const

(5)V(n - V(O) - L'-' f7

has been found [2, II, 12J, where y>O is a new expo­
nent(not a dimension!) and V(O) is the finite limiting
value of the ohserved volume obtained for I~ O. Such
ohjects are also fractals. These fractals are called foe
[11 Jsince their d-dimensionaJ volume is nonzero.

A simple analytically tractabie example is obtained
hy modifying the construction of the triadic Cantor
set in such a way [11] that, at the n-th stage, the
fraction of each interval removed is (1/3)", rather than
1/3 (e.g. at the second stage the middle ninth of each
interval is removed).

Fat fractals are also common in nature. Examples
include [2) the vascular system, the branching struc­
ture of bronchia in the lung, river networks, and the
top of certain trees which are with a very good accu­
racy space filling ohjects.

In what follows we shall mainly deal with thin
fractals.

The aim of this report is to give a tutorial introduc­
tion to help new-comers from different fields of science
to learn recent notions and concepts related to fractals.
For tbis reason, mainly mathematical examples with
simple recurrent structures will be used which are best
suited for clarifying concepts like multifractality or
thermodynamical formalism. Nevertheless, the general
results and relations we obtain hold for all fractal
ohjects. The article is not intended to be a historical
surveyor a complete review of the field, as re"ected
also in the choice of references which are concentrated
only on a few phenomena mentioned in the paper.
Even these selections are necessarily incomplete, but
the author hopes they are sufficient to help the reader
in further orientation.

3. Thin Fractals - Fat Ff1lctals

If the fractal dimension Do of a set is smaller than
the Euclidean dimension d, the ohserved volume

V(n = N(e) I' - LD'I'-o, (4)

depends, actually. on the grid size I in the range where
(2) holds. Such system are, therefore, fractals. We call
them thin fractals since V(Q would vanish in the limit
I~ O. Such fractals are, in a mathematical sense, ob­
jects of measure zero in the d-dimensional space.

It is worth mentioning that Do = d does not neces­
sarily imply that the object is a usual body. In several
cases a power law behaviour

(3)

L-~ ln11£

N().e) =). -D. N(e) ,

InN(&)



Fig. 4. Schematic construction of a one-scale fractal.
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N(e) = NN,(e).

is obtained. which is an exact result for one-scale
fractals [2].

Due to the similarity, Nt (e) is the same as the number
of boxes needed to cover the complete set with boxes
of size Ilr:

N, (e) = N (elr) . (7)

By putting (6), (7), and (2) together,

In N
Do = In (1Ir) (8)

Consequently, the fractal can be divided inlO N
identical parts, each being rescaled versions. by a fac­
lor r, of the complele set. Let N, (e) denote the number
of boxes on a grid of size /4 L (L is the diameter of the
fractal) needed to cover one such part. Then the num­
ber of boxes noeded to cover the complete fractal is
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Fig. S. The flI'St steps in oonstructiDg a Koch curve (r = O.3~

The fractal dimension of the resulting fractal is Do =
In 4/1n(ljO.3) = 1.151.

4. Deterministk Fractals

We study a few classes of fractals which are con­
structed by deterministic rules. First, exactly selfsimi­
lar objects possessing a recursive structure will be con­
sidered.

One-Scale Fractals

The rule of construction for such fractals can be
schematically represented as on Figure 4. One starts
with a single object of linear size 10 , In the next step
this object is divided into N identical pieces each of
which is a reduoed version of the original object by the
same factor r < I (hence the name one-scate fractal).
The prooedure is then repeated in the next step so that
N of the newly created pieces of size 10 "> are arranged
inside a piece of size 10 r exactly in the same way as
these parts are arranged inside the original object
(Fig. 4). The fractal is then obtained by applying this
rule subsequently ad infinitum.

Example I: Koch's Curve

The construction of a Koch curve [13, 2] proceeds
as follows. Let us cut out from the unit interval tbe
interval (r,l-r), where 1/41i,.r~1/2 is a parameter.
To the two newly created endpoints a V-shaped curve
is added, both sides of which are straight and of
length r, as shown on Fig. 5a. The same process is
repeated with all sides of length r, and then again and
again (Fig. 5b, c) ad infinitum.

By comparing this rule with the general scheme we
find N = 4. The fractal dimension of a Koch curve is
therefore Do = In 4/1n (1/r). It is worth noting that tbe
length of this curve (tbe analogue of the surface area)
diverges with the resolution: the length measured by
bars oflength r-, m> 1 fixed, is 4-, as follows from tbe
construction.

Example II: Snownake Fractal

The construction rule [14J shown in Fig. 6 can be
considered as a model for aggregation processes. The
"seed" configuration (n =0) is a symmetric cross built
by five particles. The configuration at the n-th slage is
obtained by adding to the four corners ofthe(n-I)-th
stage configuration the cluster corresponding to the
(n-I)-th stage of the growth. By reducing the n-th
stage configuration by a factor 3- one finds a series of
objects of the same linear size [14]. The rule of con-
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Fig. 6. The first steps in constructing a snowflake fractal with
a growth process.

O@
to lot) j=1.2 ..... N

Fig. 7. Schematic construction of a multi-scale fractal.

(9)

(10)

(11)/

N

N(e) = L Ni(e).
i-'

From the similarity property,

Ni(e) = N (elr})

follows. Tbese relations and (2) then yield [2, 3)

which is an exact (implicit) equation for the dimension
of multi-scale fractals. For r, = ... = rN "" result (8)
is, of course, recovered.
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procedure is then repeated in a similar way ad infini·
tum (Figure 7). Consequently, the resulting fractal can
be divided into N parts, eacb being rescaled versions
of tbe complete fractal Let Ni(e) denote the number of
boxes on a grid (size 14 L) needed to cover the j·th
such part. The number of boxes needed to cover tbe
complete fractal is

n:2
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Example III: Two-Scale Cantor Set

This fractal is obtained· by dividing the interval
[0, I] as shown in Fig. 8 [16]. We initially replace tbe
unit interval with two intervals of length r1 and r2

(r, +r2 < I). At the next stage of the construction the
same process is applied to each of tbese two intervals.
Tbe procedure is tben repeated again and again. Tbe
general formula (II) yields for tbe dimension

r," +rf' = I. (12)

Fig. 8. The first steps in constructing a two-scale Cantor set
(r l = 0.25"2 = O.4~ For the resulting fractal Do = 0.61 1. The
codes associated with the intervals will be explained in
Section 14.

(Tbe ooe-scale Cantor set is obtained as the limiting
case r, =r2 =r. Then Do=ln 2/In(llr). For tbe triadic
Cantor set r= 1/3 and Do=0.631.)

5truction corresponds then to that represented in
Fig.4 with parameters N=5, r=1/3. Consequently,
the dimension of the fractal is Do = In 51ln 3 = 1.465.

Mu/ri-Scale Fracrals

The essential dilference between the construction of
multi-scale and one-scale fractals is the fact that the
staning object is now divided into N parts whicb are
nor all identical. However, all of these are reduced
versions of the original object by certain factors rJ< 1,
j = I, .... N (all ri cannot be identical) [2, 15). Tbe

Example IV: Two-Scale Snowflake Fractal

Tbis is a generalization [17] of Example IL Tbe
"seed" configuration is now a single particle. The con­
figuration at tbe n-tb stage is obtained by adding tbe
twice enlarged version of the cluster corresponding to
tbe (n -l)-tb stage of tbe growth to tbe four corners of
tbe (n-I)-tb stage configuration (Figure 9). Reducing
tbe object obtained after n steps by a factor 5' tbe
general scbeme (Fig. 7) can be applied. Since r, = 1/5,
r2 = ... =r,=2/5 we find

(13)

as an equation for Do- Its solution is Do = 1.601.
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Fig. 9. The flf'St steps in constructing a two-scale ~nownake This function is more complicated than C(t) sin~ a
fractal by means of a growth process. scaling relation holds now only up to an additive

/

. smooth runction. For n~\);n-{~

W(yl) = y' -0 W(/) + cos (I) . (19)
5. Fractal (unctions * ...........___

Consequently; the graph-or-W(I does have a largest
There exist eontinuous functions given by simple scale, W(/) has a maximum (Figure 11~

formulae, which are nowhere differentiable. The graph For the local rractal dimension of the graph, (17)
of sucb a function turns out to be a fractal curve. has been shown to hold [21 J in the parameter range
These fractaJs are also deterministic ones. given by (15).

We consider, first, the Fourier series

the so-called Weierstrass-Mandelbrot function [2, 18J.
In the range of parameters

(20)

(17)

1159

(X'(/) - I,

graph or C(/) has been shown (18) to be

0 0 =0

in the parameter range (15). As a runher eonsequence
or(16) the eurve C(/) possesses no sade 01 all, which is
also demonstrated on Figure 10.

The first example, or great historical importance, ror
a continuous but nowhere differentiable function was
given by Weierstrass (20). It is defined as

~ eas(y" I)
W(/) = L 12-0'"' (18)

,,=0 'Y

where the bracket denotes averaging over several
realizations. Relation (20), implies usual diffusion. The

6. Random Fractals

Fractals which are generated by nondeterministic
rules are called random. In order to illustrate the dif­
ference between the construction of deterministic and
random fractals, let us eonsider the following example­
In the first step of the deterministic eonstruction the
upper right quaner of a square is cut out. Then the
same procedure is repeated in all remaining squares
(Figure 12a). Modifying this rule by choosing sto­
chastically which of the four quarters of th,e square in
question is deleted, a random fractal is obtained
(Figure 12 b). Although the geometrical appearance or
these two sets is quite different, their fractal dimen­
sions coincide since the number of boxes needed to
cover them is the same.

There exist also random fractal functions. The most
extensively studied phenomenon connected with them
is diffusion or Brownian mOlion. The displacement x(/)
of a Brownian particle moving along a line is a sto­
chastic variable with zero average and with variance:

Report

(16)

(15)

(14)

n=2

.t.•••.·.·t..·•+.+••••

1- eos(y" I)

.- -00

n=1

C(/) '" L

1<0<2, y> I,

•

n=O

C (I) is eontinuous but the series defining dC(/)/dl di­
verges everywhere.

By a formal replacement n _ n + I the scaling rela­
tion

follows from (14) with y > O. Consequently, the graph
of C(/) on the interval 10~/~y/o, 10 arbitrary, can
be obtained by magnirying the graph in the range
leJy~ I ~10 with factors y and y' - 0 in horizontal and
vertical directions, respectively. This nontrivial sym­
melIy, the so-called self-affUlily [2, 19], can clearly be
observed in Figure 10. The fractal dimension" orthe

• Sections S. 6 provide an outlook on certain important
fields of fractals but can be omitted when reading the paper
as an introduction to the subject of multifractals.

•• For self-affine sets a nontrivial fractal dimension. called
the local dimension, can be obtained only by using a very fine
grid. On long scales, (2) yields a trivial integer value (in our
case unily) for Do [19, 9J.
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(22)

Fig. to. The, Weierstrass-Mandelbrot function for
D = J.5. y = 2. The plot was obtained by keeping
Fourier components with Inl~ 10 in (14).

Do=2-H.

7. Fractal Dimension for Composite Fractals

correlations extend to arbitrarily long time scales and
have a large effect on tbe visual appearance of the
traces (Figure 13). The graphs are self-affine fractal
curves with a local fractal dimension [2, 22]

Fig. 11. The Weierstrass (unction for D "'" I.S.1 = 2
when it is 2x-periodic.. The plot was obtained by
keeping Fourier components with n:;; 10 in (18).

. ~Note that the fractal -dimensions of the curves
2'" shown on Figs. 10 and 11 are the same.

Several fractals proved to be composite, i.e. to be
unions of fractal subsets. Let us assume that a com-

Fractional Brownian motion is used when making
computer simulations of fractals like mountainous
terrains or clouds [2, 22J.

Fractals in nature are typically random ones. The
field of applications in physics is also extremely broad
and ranges from percolation [23] and pattern/ormation
through growth processes [4, 5, 24, 25] to chaos [26]
and turbulence [2, 27, 28).

Despite this great practical relevance we sball, in
what follows, mainly be interested in deterministic
fractals which are best suited for an elementary intro­
duction of further new concepts.
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<x'(t) _ r'H ,
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o
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aph of x(t) was proved [2, 22J to be a fractal curve
th local fractal dimension Do = 1.5 (Figure 13 b).
The fractional Brownian motion [2, 22J is an exten­
In of the concept of the usual Brownian motion. The
;placement x(t) of a particle following such a mo­
n in one dimension is - by definition - a stochastic
riable with zero average and with variance

ere 0< H < l. For H *' 1/2 this corresponds to an
lmalous diffusion with correlated increments. Such

g. 12. Deterministic fractal (a) and a random version (b)
it. The objects are exhibited here as obtained after five

:ps ofconstruction. The fractal dimension is for both cases
,= 103/10 t =1.585.
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laIH=O.2

D,=1.8

(bIH=O.5

D,=1.5

(clH--o.8

0,=1.2

J 161

Fig. 13, Traces of fractional Brownian motion
at three different values of the parameter H
(after [22)).

On the right band side the contribution with the
largest V\:' dominates for • ~ 0, thus, from (2)

plete set of linear size L consists of m fractal subsets,
and let N.(.)" = IlL, denote the number of boxes of
size I needed to cover the k-th subset on a grid. For
small box size Nk(e) - e - Db"', where D~) is the fractal
dimension of the subset. Since the overlap among dif­
ferent covers vanishes with decreasing box size, the
number of boxes needed to cover the complete set is

The fractal dimension of the complete set is the same
as the largest dimension of the subsets.

This relation tells us that simple and complete
i fractals cannot be distinguished by measuring tbe

\

fractal dimension alone. Consequently, a more detailled
description of fractals requires the introduction of fur­
ther parameters characterizing different subfractals,
How this can be done will be discussed in the next
sections.

~

N(e) = L N.(.).
'-1

Do = max D~).

(23)

(24)

on the physical system in question. Here we mention
only a few examples. On random resistor networks
[29] the voltage or current distribution can be mea·
sured. For aggregation processes the probability that
a given site is the next to grow, the sCH:alled growth
probability, gives a distribution [30, 31). In the case of
fully developed turbulence the velocity dijJereMe in­
side eddies is a quantity defining a measure [27, 28J. It
is to be noted that dilferent distributions may exist on
a fractal leading to the existence of different fractal
measures on the same support.

It is a recent observation [27, 32, 30, 16] that non·
trivial distributions can be considered as analyse", of
strange sets. They open up dijJerent fractal subsets by
e.g. selecting subsets giving the dominating contribu­
tions to different moments of the distributions. If this
is the case, the system will be called multifractal [32, 30,
16, 33]. Different distributions may lead to different
multifractal properties. It may happen that a fractal
with a given measure is a multifractal but with anoth­
er one it is not.

The following simple example illustrates how a
nontrivial distribution selects different fractal subsets
of its support.

-

II. Multifraetals

8. Fractal MCllSUres

In several phenomena fractals appear not only as
strange geometrical objects but provide stages on
which ·something is going on". Physical proCesses on
fractals may generate stationary distributions (mea­
sures). Fractals with time independent distribution on
them are called fractal measures (for a quantitative
definition see the end of Section H~ The quantity
which may be distributed on a given fractal depends

9. An Example for Moltifractals

We consider here a probability distribution on the
unit interval constructed by a simple rule [34J. In the
fi",t step the middle third of the interval is made more
(or less) probable than the outer thirds. Let the proba­
bility of each of these pieces be PI' and the probability
nf the middle third be P, = 1-2p, (Figure 14a~ In
the next step each piece is divided again into thirds,
and the probability is redistributed whithin each of

-
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d
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Fig. 14. The first steps in constructing the distribution described
in the text (P, =O.1l4~ a) "= I. b) "= 2, c) "- 3, d) "- 6,
e) the logarithm of the distribution obtained after 6 steps (after
[34)).

these nine pieces so tbat tbe ratios within eatb third
are the same as those of the first stage distribution
(Figure 14b). The procedure is repeated again and
again (Figure 140, d). The distribution becomes so in­
homogeneous that its internal regular structure can be
seen only on a logarithmic scale (Figure 14e). The
density of the asymptotic distribution obtained after

an infinite number of sleps is Iben discontinuous
everywhere.

When studying Ibe properties of this distribution
one bas 10 use a grid of finite size. Now not only !be
number of boxes is importanl bUI also Ibe measures
inside boxes, tbe so-called box probabilities. Let us
take a grid obtained by subdividing Ibe unit intervals
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Their number increases again exponentially with n.
We can, therefore, write

into intervals (boxes) of size I = <= (1/3)' with n ~ I. It
follows from the construction described above that
the box probabilities can take on one of the values

(25)

where m is an integer between 0 and n. Since the
number of boxes 3" ~ n. there must be a degeneracy in
the distribution:

with Pm" are found to dominate, where

mq = 2p1
n 2p1+p~·

(30)

(31)

i.e. these boxes cover a fractal subset of the unit inter­
val, and I, is the dimension of this subset From
(26)-(28)

~,

f1 (note that mIn is a quasi continuous quantity for
n ~ I).

The number Nm, of the relevant boxes increases, of
course, exponentially with n. Since the resolution is
<= (1/3)', N~, can be written as

(32)

In(2pj +p'l)J In(~/3) /

This means that a subset offractal dimension h, gives
the dominant contribution to the sum of the q-th
power 01 the box probablities. Note that for q'!' I this
subset is dilferent from that contributing to the total
measure. In our example

is obtained as can be checked easily.
By increasing (decreasing) the exponent q, boxes

with higher (lower) probabilities, i.e. fractal regions
with denser (mor!:rarified) occupation are selected. In
fact, the limit q~ <Xl picks up the most probable box
which is alone. Consequently, 1m = O. The opposite
limit selects Ihe least probable boxes. Their number is
2', therefore I-m = In 2/1n 3. ,esc limiting results
can be obtained also from (32).

We have, thus, demonstrated that the contribution
of the 'sum of different powers of the box probabilities
is dominated by different fractal subsets. The spectrum
I q of their fractal dimension provides a characteristic
of this multi/ractal. The example also illustrates that
an inhomogeneous distribution on a non..jractal sup­
port (here the unit interval) can be multifractal.

In addition to the fractal dimension also the content
of those boxes which contribute, i.e. the probability
p... belonging 10 each of them, is an important quanti.
ty. Since, however, p... depends on n (or eJ, it is better
to introduce an e~independentparameter, the crowd­
ing index tIq , by writing

_[2 pj In pI +1'1 In 1'1
1,- 2pl+p'l

(26)

(27)

(28)

v·

is the number of boxes with the same measure P",. For
the sake of definitness we assume P2 > PI"

First, we ask which boxes give the main contribu~

tion to the total probability when refining the grid.
Although the most probable box is that in the middle,
with content Po =Pi,.Jl is alan . Its contribution is
negligible for n ~as since pz 1. The most rarified

......-boxes (P" = pi) are 'nlLmerOl!S; evertheless the proba­
bility in such boxes is also negligible since (2p,J" ~ o.
It is, therefore, plausible that, for large n, columns very
close to some medium hight give the main contribu­
tion. More precisely, for n - 00 there exists a single
index m = m, (n) between aand n, so that only boxes
with p... contribute to the total probability: NM, P"" -1.
Consequently, none of the other boxes are important
from the point of view of the total measure. An easy
calculation (see Appendix) yields

f _ 2p, Inpi +pzlnpz
,- In 1/3 (29)

P.... =e..".

From (25) and (30)

(33)

is obtained. 2pj In p, +1'1 In pz 1
Next, we investigate the q-th poweroflhe box prob- a, = 2pj +1'1 In(I/3) (34)

abilities. where - co <q < 00 is a parameter. The total / . .
amount of these quantities is L N 1" = (2pj +pj)" Jis found. The values of a, lie In the range between

m ~ ~ 'z· am = InpJln(1/3) and a_m=lnptlln(I/3~(For the
Similarly to the previous case, columns of a certain particular choice ofp, used in constructing Figs. 14-17
height contribute only to this sum. At a fixed q, boxes (P, = 0.1 14) we "btain am = 0.234 and a_ m= 1.981.)
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(37)

(38)~-e~.

i.e. these boxes cover a subset of fractal dimension
f(a). The variable a may take on values from '!-@Dge
[a~, a_~l, and f(a) turns out to be, in ieneralJa
single humped function with Do as its~um [16]
(Figure 16). The f(a) spectrum of a simple lctal con­
sists of a single point.

where a is position dependent Relation (38) defines
the set of crowding indices [16) (or Holder exponents
[2)) a. At any fixed • there exis~ however, several
boxes with a given crowding index, say. a:.. Their num­
ber N.(e) increases witb e like

N.(.)_e-f(·', (39)

proximately a constant, ~. The crowding index a" for
these boxes is defined by the asymptotic relation

o d._

o

fllI-
f( J. I ~,

/\
'--:
\ -;

L--.\ )'"

Fig. J6. The I(a} spectrum for the multifractaJ of Sect. 9 as
obtained from (32) and (34) by eliminating q. The straight line
is the diagonal f = a.

A multifractal is then characterized by the spectra I.
and «".

Since Xo(') = N(.), the quantity fo is tbe fractal
dimension Do of the support. It follows from the prop­
erty of composite fractals (Section 7) tbat fo>J. for
q '" 0 since the multifractal is tbe union of all sub­
fractals with dimension f,. The function I. vs. q in­
creases until it rcaches its maximum Do and then de~

creases. As higher powers select denser regions., IX" is
monotonously decreasing (see Figure 15).

A simple fractal corresponds in this picture to the
special~...

The eliminatIon of the variable q between I. and a,
leads to a new characteristic, to the so-<:alled f(a)
spectrum (16). Direct definitions of a and f(a) can be
given as follows. For £-+0 around each point of the
fractal one finds

(35)x,(I, L) '" L P;' ,

0.5

-r---=o-;:---------, 2 1.5 r------r--,

---

The spectra I. and a, are exhibited in Fig. 15 for a
case P2 > PI' Note that the multifractal properties are
lost for the parameter values PI =P2 = 1/3 when
J:, = all = 1, since the density is then constant over the
whole intervaL A similar case is obtained for P2 = 0,
PI = 1/2 when I. = a, = In 2/ln 3. This correspondsjo
the familiar triadic Cantor set with a uniform dislji6u-
tion on it. t//

~
10. Characterization of General Multifractals

where J. is the fractal dimension of the subset. Fur­
thennore. the content of each contributing box is ap-

'-------------"'~-+o

the sum over all boxes of the q-th power of the box
probabilities, - 00 < q < 00. X, depends only on the
dimensionless number e == IIL. where L is the linear
size of the support: X,O, L) =X,(.). For q =0, (35)
yields the number of boxes needed to cover the sup­
port. Since the distribution should be normalized,
Xd') '" I holds.

The properties of the previous example turn out to
be typical for multifractals. For e -+0 the contribution
to X,(.) with a given q comes from a subset of all
possible boxes. These boxes cover a fractal, I.e. tbeir
number N,(') depends on • as

N,(') -.- f. , (36)

In order to describe multifractal properties a uni­
form grid of size I, as introduced in Section I. is used
again. Let P; denote the measure or probability inside
tbe i-tb box: for empty boxes Po vanishes. A central
quantity [35, 15,36) is

-4 0 q. 4

Fig. 15. The q-depcndencc of the fractal dimension ~. (32),
and of the crowding index IX., (34), for the multifractal con­
structed in the previous Figure.
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Before turning to the question how a" and f., can be 0... .,-----------------.
obtained from f(a.) it is worth introducing the concept
of generalized dime~sions.

0,

II. Generalized Dimensions

1\65

(43)

- L P, In p, - D, In (I/e) .
I

The quantity X,(£) is ~otind to follow a power law
behaviour as e - 0:

(40)

where 0 q is the so-called order q generalized dimension
[35, 27, IS, 36). The faclOr (q -I) has been pulled out
in the exponent to ensure automatically the relation
X, (£)= I. Consequently, the D;s are positive numbers.
Thcir values monotonously decrease with q [15J
(Figure 17). For simple fractals all the D;s coincide.

It is easy now to connect the generalized dimen­
sions and the spectra /4' a". Since the contribution
to X,(£) is given by boxes with content P, we have
X,(£) = N,(e) p;. This implies via (36), (37) and (40)

(q-I) D, = q a,-I,. (41)

For q = 0 the relation Do = fo is recovered. Further­
more. as /q is finite, D ± co =a: ± OD follows.

In order to find the relation to the f(a) spectrum let
us notice that X,(£) can be written (see (35), (38), (39))
for e-0 as " -,

X,(e) - J£" - [(., da, ) (42)

when a is a quasi~c6ifiinuous variable. Since E is very
small, the integral will be dominated by the value of a
which makes the exponent minimal. This immediately
lead~ to (41) with the conditions

df(a) I = q',d f, =f(a,).
a ",

!X
4

is, therefore, that particular value of the crowding
index for which the derivative of f(a) is exactly q.
As a consequence, also the spectra f(a) and (I-q) D,
are connected: they are Legendre transforms of each
other (see (41)).

The case of the order I generalized dimension is of
special importance. From (41) and its derivative taken
at q = I we find

(44)

This relation together with (43) explains why the I,
and a, curves touch each other at q = I (Fig. IS) and

----4­D_
o 0

-10 0 q 10

Fig. 17. The D. spectrum for the multifractal of SectiOD 9.

why f(a) is tangent to the diagonal exactly at a point
where f(a) = a = D, (Figure 16). Furthermore, by per­
forming the limit q _I in (35) and (40) one obtains

(45) III
The quantity D, thus measures how the information
(left hand side) scales with In(l/e~ Therefore D, has
been called the information dimensio.n [37, 34]. More­
over, this concept has been used to give a precise
definitio. ·Jf fractal·measures [34): a distribution is
said to b" a fractal measure if its fractal dimension
exceeds its information dimension. In this sense the
example of Sect 9 is a fractal measure and, moreover,
all fractal measures are multifractals. (The value ofp,
used in Fig. 14 was chosen in such a way that
DI = In 2/ln 3, i.e. the same as thefractal dimension of
the triadic Cantor set The fractal dimension of the
support is, of course, unity in this example.)

It is worth noting that despite their name, the gener­
alized dimensions D, (q'i'O, I) are not dimensions. as
expressed by (41). This can also be seen from the fact
that all D, with a negative q are in the example of
Sect 9 larger than 1 (Fig. 1~ Nevertheless, the spectra
Dq and f(a) (or I, and a,) provide equivalent charac­
terizations of multifractals. (For another interpretation
of D, see [27].)

Finally, we mention that distributions on fat frac­
tals can also be multifractals characterized not only by
D, but by another set of exponents r. obtained by
generalizing (5) [38).

12. Fractals Measures ..ith an Exact Recursive
Structure

The class of fractal measures possessing an exact
recursive structure provides analytically tractable





I~

Fractals on which a measure is distributed with a
constant density form an interesting class, since in
such cases multifractality. if present., manifests purely
geometrical properties. The multifractal spectra can
then be considered to characterize the fractal support
itself. An example is provided by tbe two-scale Cantor
set of Sect. 4 if tbe measure associated witb an interval
appearing in tbe construction (Fig. 8) is cbosen to be
proportional to the lengtb of the interval (to the
Lebesgue measure). Multifractal properties then re­
flect the heterogeneity in the size-distribution of these
intervals.

Such geometrical multi/ractality [17] is of special
importance for growing structures, where a distribu·
tion of constant density always exists and is of pbys­
ical relevance. This is due to tbe fact tbat such systems
are built up by identical particles and, therefore, the
mass distribution on the growing structure is uniform.
The multifractal properties witb respect to this mea­
sure can be analysed along tbe lines described in
Sect. 10 by cbosing tbe box probability Il to be pro­
portional to tbe mass, or tbe number of particles,
inside box i.

As an example, let us consider the two-scale snow­
(fake fractal of Section 4. By reducing the object ob­
tained after n steps of construction by a factor S· the
general scheme worked out in the previous Section
can be applied The cluster consists of a smaller cen­
tral and four larger pieces eacb baving tbe overall
shape of a square (Figure 9). Since tbe masses of these
different sqaures are 1/17 and 4/17 parts of the total
mass, one obtains [17] from (48)

(47)

(48)

(46)

/

"X,(e) = L X,.;!t).
J= I

From these relations and from (40)

follows, where x,je) stands for the quantity defined
by (35), evaluated for the j-th piece by using a grid of
size I (e = IlL, L is the linear size of tbe support). For
the complete system

is obtained, which is an exact equation for the general­
ized dimension D, [15]. For q =0, of course, (II) is
recovered.

If the support is a one-scale object, i.e. if'j = r for all
j, the implicit" equation (48) can be solved, yielding
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cases. \Vc consider measures for which the rule of 13. Geometrical Multifractality
construction is based on that of multi-scale fractals
(Section 4, Fig. 7). Now the redislribution of the mea­
sure is also to be defined. Let Pi be the probability
associated with the j-th piece which is the reduced

"version of the original one by a factor 'j. L Pi = 1. At
j=1

the next stage of construction each piece is further
divided into N pieces, each with a probability reduced
by a factor Pi and size by a factor 'j. etc. The support
of the resulting measure can, therefore, be divided into
N parts, each being a rescaled version of the complete
support, by a factor Tjo Each such part carries an
amount Pi of the total measure. From this similarity
property

./

(50)
I In (f PJ)

D = ~J_'..:.I--,:...

, q - I In r (49) The D, values lie in the range between D~=ln(17/4)1
In (5/2) = 1.579 and D _~ = In 17/1n 5 = 1.760. The

This result applies also to tbe example of Sect. 9, numbers appearing in (50) are linear size and area
where N = 3, r = 1/3 and PI = p,. ratios of the five main squares, with respect to the data

Note that in cases wben the probability is dis- of the whole cluster, which reflects the fact that the
lributed uniformly on a one-scale support (Pj= liN), multifractality is in tbis case of geometrical origin.
multifractal properties are lost since D4 == a4 =/4" It is worth mentioning that a growing structure
= In N/ln(l/r) for all q. For measures on multi-scale may be a multi fractal, say, witb respect to the growtb
fractal supports, tho property of multifractality is probability and, simultaneously, a geometrical multi­
more persistent. Even a uniform distribution of the fractal~ i.e. a multifractaI.. with respect to the homoge-

probability, i.e. the choice p = r.!( f r), leads to a neous mass distribution on the structure. The spectra
} J j=1 j) lR\ / for these two multifractals are then, of course, differ-

nontrivial D q spectrum, as can be seen from (~ 'ent.

/
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(52)

15. Statistical Analogy - Thermodynamical Poteatials

wbere Ko is an important characteristic, the topole>­
glcal entropy [26) of the hierarchy. On a k-nary trce
Ko ~ In k, where the equality holds for a trivial gram­
mar when the number of allowed sequences is just k". ./

Unfortunately, there is no general recipe for encod­
ing a hierarcby. Only intuition'and a detailed knowl­
edge of the particular physical process ntight help to
find the encoding of the fractal generated.

In what follows we assume that the encoding has
been found. Let S,S2 ... S."'{s,}",SJ denote a code
occurring at the n-th stage of tbe hierarcby, where the
elements s. can take on values 0, 1, ... , k-l, and
J = I, ... , W(n) is a subscript specifying the code. To
each code there is a box covering tbe part of the fractal
which is associated with that particular code. In con­
trast to boxes of a uniform grid, these boxes fit to the
fractal structure in a natural way providing an "opti­
mal" coverage. For the sake of simplicity we assume
that the boxes are d-dimensional cubes where d is the
dimension of the space the fractal is embedded in. (An
extension for more general cases can also be worked
out.) The size of the cube associated with a code SJ is
denoted by /J '" I(s;}). Let eJ '" e({s,ll = IJIL repre­
sent the length scales measured in units of the diame­
ter L of the fractal. It is worth introducing [41, 47] for
a given code of length n the quantity

14. Encoding

Fractals are. in general, organized in a hierarchical
way which is often reflected in their rules of construc­
tion. Tbe fact that this hierarchy can be encoded is the
basis for the thermodynamical formalism. To illus­
trate the concept of encoding. let us take again a sim­
ple example: the two-scale Cantor set of Sect. 4 (see
Figure 8). The number of intervals used to approach
the fractal doubles in each step, thus, at the n-th stage
of construction there are 2" intervals. Each of them
can, therefore, be denoted by a binary number of
length n. Let us apply the following rule: At the first
stage the intervals of length r t and r 2 are associated
with the symbols 0 and I, respectively. In general, the
last digit of the code for "daughter" intervals is 0 or 1
depending on whether their length were obtained by

/"

The thermodynamical formalism has been worked
out in mathematics for describing fractal properties of
chaotic dynamical systems [39]. It has recently been
developed into a powerful technique [40-46], acces­
sible also to experimentalists, providing more accu­
rate results for the multifractal properties than box
counting methods described in the previous sections.
The concept of thermodynamical potentials has al­
ready been extended (47) for fractals which appear
beyond the scope of dynamical systems. Based on
these developments, we go here one step further and
show how the thermodynamical formalism, built on
an underlying spin system, can be worked out for such
fractals. We shaH see that the thermodynamical poten­
tials arising in the formalism give the most general
characterization of fractal and multifractal objects.

In the next sections we introduce the so-called ther- multiplying the Jength of their "mother" interval by r t

modynamical formalism, the importance of which in or r2 (Figure 8). Note that each code specifies ao inter­
natural sciences has been realised only very recently. val uniquely, but there is a degeneracy io the length of
Besides providing a broad theoretical framework, us- the intervals.
ing the language of classicaJ sta . tical mechanics, Several fractals can be encoded in a similar way.
this method possesses also practical relevance since it The encoding consists of two important items: i) the
yields more accurate results than a direct application "ABC": the number k of independent symbols needed,
of the definitions of Chapts. I and Il. The formalism is and ii) the "grammar": the rules telling us which sym­
expected to become a widely used characte/rizationof bol sequences are aHowed. In the previous example.
fractals and multifractals in the near future. the grammar was trivial, all hinary sequences occurred.
~ In general. however, this is oot the case and ocrtain

\ . sequences are to be excluded. Such hierarchies can
~ Ill. The Thermodynamical Formalism for Fractals then be represented by a k-nary (binary, ternary, ... )
""Jt' 'and Multifractals tree which in the case of nontrivial grammars is not

complete. Nevertheless, the number W(n) of elements
at the n-th level of the trce grows rapidly. For large n

W(n) - exp(Kon), (51)

I



I
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where - 00 < P< 00, and the sum is taken over all
allowed sequences of length n (n l> 1). We note by pass­
ing thai exp {-pFljl) appears also as an eigenvalue
of an operator which can explicitly be constructed for
fractals organized on a k-nary tree [46]. I,

Two special values of PF(f!) follow immediately
from (54). For P= a the sum is just the number of
allowed sequences, thus

(57 a)

(57 b)

Meaning in statistical mechanics

microstate
number of spins
thermodynamic limit
inverse t~rature
Boltzmann factor
partition sum

energy per spin (in a macrostate)
number of microstates
emropy per spin
free energy per spin

dS/dE =p.
where

p
~ ~cxp(-pE,n)

L~,
E
W
S
F

code (Si}

Fractal characteristics

n

Relations (53) and (54) correspond to a microcanDn-
ical and canDnical description, respectively. In the IL, see «
lhermodynamical limit these ensembles are equiva- ~1 (,\iI.OJ"J
lent, consequently, PF(f!) llIId (-S(£) are Legendre
transforms of each other, Le.

It is worth noting the parallelism between the pres­
ent fonnalism and that of statistical mechanics. The
key observation is that any allowed sequence {SI} can
be associated with a microstate of a chain of n. in
general interactive, spins (for k = 2 Ising mode~ other­
wise k-stale Potts model). Thus, the analogy can be
summarized as follows:

(53)/
The spectrum S(£) characterizes lhe length scale dis­
IribUlio1l of the fractal. The maximal value of S is, of
course, the topological enlropy K o (Fig. 18 a). mustra­
live examples will be given below.

Another characteristic can be obtained by consider­
ing the sum of lhe length scales raised to a power p.
This sum changes with n also in an exponential fash­
ion [41, 47J, i.e. we have-

Le1=LC'({Sill-e-m"., (54)
J II1I

In the limit 11-00 the value of E is positive and lies
generally in an interval (E_, E.) [41, 47J. In other
words. the characteristic exponents E tell us how
rapidly the length scales decrease with increasing n. As
11 grows, there are. in the coverage. more and mOTC

boxes of the same size belonging to a given value of E.
Their number W(n, E) increases exponentially [41, 47J,
i.e. for large 11 ~e can write

W(n, £) - eSIE) ••

(55)

Fractals are asymR!0tically selfsimilar: the coverage
obta\ned~he~-t~tevel is similar to that obtained at
lhe (2 n-th )evel,1Or n l> I. The role of the similarity
rati~efined in Sect. 4 (see Fig. 7) is then played just
be the t/5. A compari~~£Of (11) with rj = £j.

N = W(n), and (54) ShOWS'" /

PF(f!) I,-D, = o. J (56)

This means lhat the sum of the length scales raised to
a power p remains finite in the n - 00 limit if P is
chosen to be the fractal dimension. For fractals associ­
ated with dynamical systems relation (56) is the so­
called Bowen-Ruelle formula obtained in [3~J. (Strict­
ly speaking, the particular P value for which F(f!)
vanishes was proved to be the so-called Hausdorff
dimension [2} which. however, coincides with Do dis­
regarding very exotic examples.)

• The quantity (- PF (P)) is often called the pressure func­
lion [39). We prefer to call F(fi) the free energy as follows
from the statistical analogy (d. table in the next column).

They both decribe a new spectrum offractal properties.
S(£) is typically a single humped function, while PF(f!)
is monotonic increasing with a nonpositive second
derivative (Figure 18).

The quantity PF(f!) is a linear function for one-scale
fractals only. Using (51) and (54) PF(f!) = PEo - K o is
obtained, where Eo is the energy value characterizing
all the boxes.

In the example of the two-scale Cantor set, the
length scales can be expressed as c({s,ll = r;' ri--,
where m is the number of a's occurring in the (binary)
code {soJ. This number uniquely specifies, via (52), an
exponent E(m/n). Based on the fact that the multiplic­
ity of intervals characterized by a given ratio min, or

E(m/n), isjust (:) = W(n, £), it is easy to check, using

(53) and (54), that (58)

E-E_ (E-E_) E.-E (E.-E)S(£)=---In -- ---In --tJE tJE tJE tJE'
and

(59)

!
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Fig. 18. Thermodynamical properties for the two-scale snowflake fractal (Fig. 9). - a) The plot of the enlropy function
S(El= -{(E- E.)/"£] In (E - E.)/"£]-(E, - Ell"£] In (E. -El/l4"El), where"E = E. -E. and E. =0.916, E. = 1.609.
b) The plot of the free energy (heavy line) PF(PJ = -In (4 (0.4)' +(0.2)'). For comparison also plots of the Gibbs potential (sec
Sect. 16) are shown. The latter is taken with respect to a measure defined with an exact recursive structure, as described in
Sect. 12, on the two·scale snowflake fractal. Here the particular parameter values Pt =0.12, P2 =... =Ps =0.22 are chosen.
Thus, PG(P, p) = -In (4(0.22)"(0.4)' + (0.12)' (0.2)'). Dotted and dash-dotted lines correspond to PGlP, p) at [lXed "pressure"
p=2 and p= -2, respectively.

2..-----------,
D.

2

Fig. 19. f(rt) spectra with respect to distributions (60) for the
two-scale snowflake fractal The values q =0, 1,2 and 3 arc
taken and the spectrum is obtained via (63). The case u = 2
corresponds to the D" spectrum defined by (SO}. Note that for
q = Do measure (60) is not a multifraetal since there exists
then a single index ::r =Do= 1.601 only (sec (56), (61)). For
a ..... Do the widths of the spectra tend to zero.

where E. = In (l{r2 ), E. = In (I{r,) and tJE = E. - E..
Here we have assumed, without loss of generality, that
rz > r t . These results show that the thermodynamical
potentials of the two-scale Cantor set are those of n
noninteractive two-state systems with energy levels
E_. E. (e.g. spins in magnetic field) [48). .

The two-scale snowflake fractal (Fig. 9) might seem
to be a less trivial example. In this case the "ABC"
must have 5 elements. but the fractal still shares the
thennodynamics with n independent spins. They are
now 5-state spins~ the lowest energy level of which is
4 times degenerared (E_ = In (5{2) = 0.916, E. = In 5 =
1.609). It is recommended that the reader derive the

expressions for the potentials given in the caption to
Figure 18.

In more general cases without exact recursive fea­
ture the associated spin chain is interactive. Infinite
range interactions might lead to a qualitatively new
phenomenon, to a phase transitian [49J reflected by
nonanalyticities in the thermodynamical potentials.
(A simple example is provided by a fractal the cover-
age of which contains a single box with an exponent
E., while all-other box sizes scale with another value
Eo>E•. This leads to F(Jf)=E. for P>P, and
pF(Jf)=pEo-Ko, otherwise. At P,=Ko{(Eo-E.) a
first order transition occurs.) A detailed discussion of
the phenomenon is beyond the scope of this paper. It
is worth noting, however, tbat methods worked out to
handle phase transitions (like transfer matrix, finite
size scaling) can successfully be used also in the ther­
modynamical description of fraetals [49]. while the W
eigenvalue fonnalism mentioned after (54) provides a
new lechnique [46, 44).

16. Relation to the MoItifractaJ Spectrum ­
lhe Gibbs Potential

It is clear from the definition (52)-(54) that both
S(E) and F(Jf) reflect purely geometrical properties of
thefractal. They have, therefore, a priori nothing to do
with the multifraetal spectrum characterizing also a
distribution on the fractal. For an important class of
fractal measures, however, flo) can be shown to be
closely related to S(E).

(
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a is a parameter of the measure. The crowding index
(38) for boxes with a certain value of E is thus

eO
P

J
", pels;}) = _J_ _ eo"ol.-oe,.. (60)

L/;~
J

i.e. a unique function of E. The number of boxes
with a given a (or E) must behave as a power of
e=exp(-EII):

e S "" _ (e-e.)-n., (62)

(66)

(65)

(67)

pGp(P, p) 1"0 = (q-l) K •.
p',

PGp(P,P)I'."-., D • =0
P-'

which defines a new set of parameters, that of the K, 's.
Using the terminology of dynamical systems, we call
K. the order q generalized elltropy [50] with respect to
the distribution P. (The q = 0 case corresponds to the
topological entropy.) From (64) and (65)

- CO <q < <.0. Since the distribution PJ is normalized,
the sum scales with II [SOl as

Thus, the spectra PF(p) and (P-I) K pare obtained as
restrictions of p Gp(ft, p) on two orthogonal axes p = 0
and p= 0, respectively. To determine the multifractal
spectrum some intermediate point of the p- p plane is
needed: Using again the fact that fraetals are asymp­
totically selfsimilar and recalling (48) (with PJ=PJ'
rJ=eJ, N = W(II)) we obtain

(63)

(61 )~ ~ a - a F(a)/E,

SeE) I
f(~)=E £_oF'a'

a-.

from which

Let us consider measures· with the following prop­
erty: the probability inside a box is proportional to a
power a of the box sire (- 00 <a < co) for all boxes
[41,44,45]. By taking into account normalization this
means

follows. [n such cases, therefore, the entropy [unctioJl
uniquely specifies the f(~) spectrum. Geometrical
multifractality as defined in Sect. 13 corresponds to
the choice a = d. Figure 19 exhibits the f(a) spectra
obtained in this way for a few values of a in the case
of the snowflake fractal shown on Figure 9.

When the probabilty of a box depends on the size
in a more complicated way than power law, SeE) is no
longer related to f(~) in any simple manner. It is
then worth including also powers of the probabililies
P; '" P({s,}). i.e. the measures of boxes specified by (sil,
into a partition sum (16, 36,43,47]. Let us consider

L. P! ~ = L. PP«si})e'«si}) - e-,G.".pl., (64)
J lli1

as an implicit equation for the spectrum of generalized
dimensions D. with respect to the measure P. Equa­
tions (66), (67) are extensions of (55), (56). They mean
that D. and K. can be obtained from the plot
p Gp(fJ, q) vs. Pby cutting it with the horizontal and
vertical axes, respectively. In view of this, the two
important spectra D. and K. appear only as partial
characterizations of a fractal measure, a much richer
description of which is given by the Gibbs potential
Gp(fJ, p) itself. Figure 18 b shows also plots of the p0­

tential P Gp(ft, p) at f",ed values p for a distribution
having an exact recursive structure, as defined 10

Sect 12, on the two-scale snowflake fractal
It is worth noting that for measures of type (60)

pGp(fJ, p) = (fJ +ap) F(ft+a p) - a p F(u), (68)

i.e. all quantities can be expressed in terms of the free
energy alone.

Distributions on one-scale fraetal supports from
another interesting special class. Such cases are char­
acterized by a single energy value Eo, and consequently

where - 00 <p < 00. In the language of statistical
mechanics this is the analogue of an isolerm-isobar
ensemble [48]. The parameter p is the "pressure", -In 1]
plays the role of a nuctuating volume divided by the
temperature, and Gp(ft, p) represents the Gibbs potell­
lia/ per spin. The subscript P is to remind us that the
potential now depends on the dislrihwion.

The free energy is recovered from the Gibbs
potential for p = O. A completely dilTerent charac­
teristic of purely probabilistic nature is the sum L: pt.

J

and

P F(p) 1'-lI-.,D....=qa F(a),

aq
K. ~ q"': 1 (F(aq) - F(a)),

(69 a)

(69 b)

• Called Gibbs measures in dynamical systems (391. pGp(fJ, p) ~ P Eo + (p-l) K p, (70)

/



i.e. the plot PG,(fi, p) vs. Pis a staight line for all fixed
p. From (67) the explicit relation Eo D, = K, follows
then between dimensions and entropies. The example
of Sect. 9 belongs to this class with Eo = In 3.

Finally, we mention that there is an essential differ­
ence in calculating the multifractal spectrum via (39),
(40) and via the thermodynamical formalism. When
introducing D, and J(a) we used a uniform grid. The
organization of the fractaL however, defines a range of
length scales and a coverage of the set by boxes oj
different size. This is why the equations specifying the
multifractal spectrum appear now in different forms.
The knowledge of the encoding helps to find an "op­
timal" coverage which is optimal also in the sense that
the asymptotic regime in n is reached for this coverage
much faster than by refining a uniform grid. In other
words, the application of the thermodynamical for­
malism provides an increased precision in describing
the scaling properties of multifractals. In particular,
this is the case at phase transition points, which are
very difficult to locate by means of other methods.

IV. Closing Remarks

Although it is not been the aim of this report to give
a complete overview of what has been done on the
field of fractals and multifractals, it is worth illustrat­
ing the wide range of recent applications in natural
phenomena by few examples. We do not go into a
detailed discussion of the results since many of them
have recently been reviewed [51, 52, 8, 9]. Rather we
give here a pictorial comparison of J(a) spectra ob­
tained for different systems in numerical or laboratory
experiments (Fig. 20) [52-56).

[n the case of chaolic motion the most important
distribution on strange attractors is the so-<:aIIed nat­
ural measure [26), the distrihution descrihing how
often a given part of the attractor is visited by chaotic
trajectories, in the long time IimiL This defines a
fractal measure, which under special conditions [40,
41,44,45] can be also of type (60). The field of dynam­
ical systems is the one where the thermodynamical
formalism has successfully been applied. Recent for-

/
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mulations arc based on the sel of all unstable periodic
orbits [57. 531 which can uniquely be encoded. Phase
transitions have been found to be typical for chaotic
a!tractors [49J. Figure 20a exhibits the f(a) spectrum
for the Henon attractor. in which a straight line seg­
ment, the sign of a phase transition. can clearly be seen
[53J.

In growth phenomena, like DLA [24, 30, 31] the
growth probability distribution on the cluster is a
Cractal measure. The broad range of the crowding in­
dex observed (Fig. 20 b) [54J is a consequence or the
fact that the dislribmion is concentrated on the tips
and the bulk is practically screened. The maximal ex
value is, therefore, rather large.

A quite different example is that of the voltage dis­
tribution on the backbone of a percolaling cluster in a
random resistor network [29, 55]. The range or a
values is narrower than that ror the DLA [55]. but the
shape of the middle parts of the two spectra is similar
(Figure 20c). Note that the spectrum ror the voltage
distribution does not go down to zero. At the right end
this is the consequence of the numerical procedure:
7 _ ~ could not be reached in the simulation or [55J.
The positivity of I at the left end is, however, essential:
the so-called single connected bonds, carrying the to­
tal current, and consequently maximal voltage, form a
set of nonzero rractal dimension [55].

In the case or rully developed turbulenf nows or
incompressible nuids the distribution of the energy
dissipation has been pointed out to be a multifractal
[27, 32J. The [(a) spectrum exhibited on Fig. 20d dir­
fcrs from the previous ones in the property that it was
obtained for a one-dimensional section along the now
[561 with the assumption that the support or dissipa­
tion was an isotropic fractaL

The complete Fig. 20, thus, illustrates the differ­
ences (and similarities) in the multifractal spectra
characterizing different natural phenomena.

Finally two remarks are in order.
The thennodynamical fonnalism has not yet been

applied outside the field or dynamical systems. Tbe
accuracy of the results obtained in other cases could
not reach the level which is expected to be provided by
the use or the thermodynamical rormalism.-Further­
more, the existence of phase transitions can hardly be
pointed out by means of other methods. Therefore, the
following recent finding is of interest: certain fractal
measures on 1ulia sets arising in dynamical systems
exhibit quantitative similarity to the growth probabil­
ity distribution on DLA clusters [58J. This observa-

tion might help in enlarging the range of natural phe­
nomena where the thermodynamical formalism can
be applied with success.

As illustrated also by Fig. 20, measurements have
concentrated on the [(a) spectrum so rar. In cascs
where the encoding is known, it would be, however,
desirable to evaluate the complete thermodynamical
potentials F(jJ) or Gp(fJ, p) since tbey contain more
inrormation about tbe rractal or multifractal tban tbe
dimensions. Their knowledge might also make a
stronger classification of systems possible than that
provided by the multirractal spectrum f(a) alone.

Appendix (to Section 9)

Since m, is expected to be large ror n~ I, Stirling's
rormula

In k' = k (In k - I),

k ~ I, cao be used wben evaluating In NR p•. One,
thus obtains

In N
R

Pm = n In n - min m - (n - m) In (n - m)

+mln2+mlnp, +(n-m)lnpz'

The maximum of this expression is found to be at m1

given by (27). The value or In NR , p., is then 0 witb tbe
accuracy of Stirling's formula. It is easy to see that

In NR , = -n(2p,lnp, +pzln pz),

rrom which (28) and (29) rollow.
The calculation of Iff goes along similar lines.
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