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Abstract

Measuring the specific kind, temporal ordering, diversity, and turnover rate of stories sur-

rounding any given subject is essential to developing a complete reckoning of that subject’s

historical impact. Here, we use Twitter as a distributed news and opinion aggregation source

to identify and track the dynamics of the dominant day-scale stories around Donald Trump,

the 45th President of the United States. Working with a data set comprising around 20 billion

1-grams, we first compare each day’s 1-gram and 2-gram usage frequencies to those of a

year before, to create day- and week-scale timelines for Trump stories for 2016–2021. We

measure Trump’s narrative control, the extent to which stories have been about Trump or

put forward by Trump. We then quantify story turbulence and collective chronopathy—the

rate at which a population’s stories for a subject seem to change over time. We show that

2017 was the most turbulent overall year for Trump. In 2020, story generation slowed dra-

matically during the first two major waves of the COVID-19 pandemic, with rapid turnover

returning first with the Black Lives Matter protests following George Floyd’s murder and then

later by events leading up to and following the 2020 US presidential election, including the

storming of the US Capitol six days into 2021. Trump story turnover for 2 months during the

COVID-19 pandemic was on par with that of 3 days in September 2017. Our methods may

be applied to any well-discussed phenomenon, and have potential to enable the computa-

tional aspects of journalism, history, and biography.

1 Introduction

What happened in the world last week? What about a year ago? As individuals, it can be diffi-

cult for us to freely recall and order in time—let alone make sense of—events that have

occurred at scopes running from personal and day-to-day to global and historic [1–10]. One

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0260592 December 8, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dodds PS, Minot JR, Arnold MV, Alshaabi

T, Adams JL, Reagan AJ, et al. (2021)

Computational timeline reconstruction of the

stories surrounding Trump: Story turbulence,

narrative control, and collective chronopathy. PLoS

ONE 16(12): e0260592. https://doi.org/10.1371/

journal.pone.0260592

Editor: Alexandre Bovet, University of Oxford,

UNITED KINGDOM

Received: February 3, 2021

Accepted: November 12, 2021

Published: December 8, 2021

Copyright: © 2021 Dodds et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Twitter’s Terms of

Service prohibit sharing the raw data. A similar size

sample from their API will reproduce the results

reported here. In order to reproduce the results of

our study, researchers can query Twitter’s API for

English language messages matching the word

"trump" starting on January 1 2015. The

documentation for access to this API can be found

here: https://developer.twitter.com/en/docs/twitter-

api/early-access In addition, there are several

software packages enabling this sort of query

https://orcid.org/0000-0002-9857-2845
https://doi.org/10.1371/journal.pone.0260592
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260592&domain=pdf&date_stamp=2021-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260592&domain=pdf&date_stamp=2021-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260592&domain=pdf&date_stamp=2021-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260592&domain=pdf&date_stamp=2021-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260592&domain=pdf&date_stamp=2021-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260592&domain=pdf&date_stamp=2021-12-08
https://doi.org/10.1371/journal.pone.0260592
https://doi.org/10.1371/journal.pone.0260592
http://creativecommons.org/licenses/by/4.0/
https://developer.twitter.com/en/docs/twitter-api/early-access
https://developer.twitter.com/en/docs/twitter-api/early-access


emblematic challenge for remembering story timelines is presented by the 45th US president

Donald J. Trump, our interest here. Stories revolving around Trump have been abundant and

diverse in nature. Consider, for example, being able to remember and then order stories

involving: North Korea, Charlottesville, kneeling in the National Football League, Confederate

statues, family separation, Stormy Daniels, Space Force, and the possible purchase of

Greenland.

Added to these problems of memory is that people’s perception of the passing of time is

subjective and complicated [11–18]. Days can seem like months (“this week dragged on for-

ever”) or might seem to be over in a flash (“time flies”). Story-wise, periods of time can also

range from being narratively simple (“it was the only story in town”) to complicated and hard

to retell (“everything happened all at once”). At the population scale, major news stories may

similarly arrive at slow and fast paces, and may be coherent or disconnected. As one example,

within the space of around 15 minutes after 9 pm US Eastern Standard Time on March 11,

2020, Tom Hanks and Rita Wilson announced that they had tested positive for COVID-19, the

National Basketball Association put its season on hold indefinitely due to the COVID-19 pan-

demic, and Trump gave an Oval Office Address during which the Dow Jones Industrial Aver-

age futures dropped. And to help illustrate the potential disconnection of co-occurring stories

within the realm of US politics, at the same time as the above events were unfolding, former

US vice presidential candidate Sarah Palin was appearing on the popular Fox TV show “The

Masked Singer” performing Sir Mix-A-Lot’s “Baby Got Back” in a bear costume.

Here, in order to quantify story turbulence around Trump—and the collective experience

of story turbulence around Trump—we develop a data-driven, computational approach to

constructing a timeline of stories surrounding any given subject, with high resolution in both

time and narrative (see Data and Methods, Sec. 2).

For data, we use Twitter as a vast, noisy, and distributed news and opinion aggregation ser-

vice [19–23]. Beyond the centrality of Twitter to Trump’s communications [24–29], a key ben-

efit of using Twitter as “text as data” [30–34] is that popularity of story is encoded and

recorded through social amplification by retweets [35]. We show that Twitter is an effective

source for our treatment though our methods may be applied broadly to any temporally

ordered, text-rich data sources.

We define, create, and explore week-scale timelines of the most ‘narratively dominant’

1-grams and 2-grams in tweets containing the word Trump (Sec. 3.1). We supply day-scale

timelines as part of the paper’s Online Appendices (compstorylab.org/trumpstoryturbulence/).

Having a computationally determined timeline of n-grams then allows us to operationalize

and measure a range of features of story dynamics.

First, and in a way particular to Trump, we quantify narrative control: The extent to which

n-grams being used in Trump-matching tweets are due to retweets of Trump’s own tweets

(Sec. 3.2). We show Trump’s narrative control varies from effectively zero (e.g., ‘coronavirus’)

to high (‘Crooked Hillary’).

Second, we compute, plot, and investigate the normalized usage frequency time series for

n-grams that are narratively dominant in Trump-matching tweets for three or more days (Sec.

3.3). Along with their temporal ordering, these day-scale time series provide a rich representa-

tion of the shapes of Trump-related stories including shocks, decays, and resurgence. We also

incorporate our narrative control measure into these time series visualizations.

Third, we measure story turbulence at the scale of months by comparing Zipf distributions

for 1-gram usage frequencies between individual days across logarithmically increasing time

scales (Sec. 3.4). We are able to quantify and show, for example, that story turbulence for

Trump was highest in the second half of 2017 and lowest during the lockdown period of the

COVID-19 pandemic in the US.
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Finally, we are then able to realize a numeric measurement of ‘collective chronopathy’

which we define to be how time seems to be passing (‘time-feel’) by the rate of story turnover

(Sec. 3.5). We quantify how the past can seem more distant or closer to the present as we move

through time, and that it may do so nonlinearly as a function of how far back we look in time.

The course of the COVID-19 pandemic in the US rendered, for example, July 2020 as being

closer to April 2020 than June.

2 Data and methods

We draw on a collection of around 10% of all tweets starting in 2008. We take all English lan-

guage tweets [35, 36] matching the word ‘Trump’ from 2015/01/01 on. We ignore case and

accept matches of ‘Trump’ at any location of a tweet (e.g., ‘@RealDonaldTrump’ matches). We

break these Trump-matching tweets into 1-grams and 2-grams, and create Zipf distributions

at the day scale per Coordinated Universal Time (UTC). In previous work, we have assessed

the popularity of major US political figures on Twitter, finding that the median usage rank of

the word ‘trump’ across all of Twitter is less than 200, tantamount to that of basic English func-

tion words (e.g., ‘say’) [28]. Consequently, our resulting data set is considerable containing

around 20 billion 1-grams.

Our main collection of Trump-matching tweets thereby includes tweets about Trump and

tweets by Trump. Retweets and quote retweets are naturally accounted for as they are individu-

ally recorded in our database. We further filter n-grams for simple latin character words

including hashtags and handles.

To quantify the degree to which Trump might be in control of a story, we make a second

database using the subset of n-grams found in retweets of Trump’s tweets (we exclude any

quote tweet matter). We then generate day-scale Zipf distributions again, in the same format

as for all Trump-matching tweets.

We perform two main analyses of these time series of Zipf distributions, treating 1-gram

and 2-gram distributions separately. First, we determine which n-grams are most ‘narratively

dominant’ by comparing each day’s Zipf distribution with the Zipf distribution of the same

day one year prior, using our allotaxonometric instrument of rank-turbulence divergence

(RTD) [37]. A full derivation and exploration of the benefits of RTD relative to other informa-

tion theoretic measures is beyond the scope of the present work. However, we briefly describe

the formulation and impetus for RTD here to offer context.

Component size distributions for complex systems are typically conducted using compari-

sons such as Jensen-Shannon divergence. Most of these methods lack transparency and adjust-

ability, and our RTD measure offers a principled approach to make visible component

contributions through a tunable instrument for comparing any two ranked lists, here for

words and phrases on different dates. Many additional details can be found in Dodds et. al.

2020 [37], where we explore the performance of RTD for a series of distinct settings including

species abundance, baby name popularity, market capitalization, and performance in sports

among others.

As mentioned previously, we begin by rank ordering a system O’s types from largest to

smallest size according to some measure in the manner of Zipf [48]. For the present study, we

identify the top 10,000 1-grams and 2-grams found in messages containing ‘trump’. We indi-

cate the rank of type τ as rτ, and the ordered set of all types and their ranks as RO. For all n-

grams with the same count, we assign the mean of the sequence of ranks these types would

occupy otherwise.

Given two systems, O1 and O2, both comprised of n-grams (e.g., 2 word phrases found in

tweets containing ‘trump’ on two separate dates), we express rank-turbulence divergence
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between these systems as DðaÞRTðO1 kO2Þ, where α is a single tunable parameter with 0� α<1.

Given a pair ranked lists, R1 and R2, we will more directly write DðaÞRTðR1 kR2Þ for their compari-

son, where

DðaÞRTðR1 kR2Þ ¼
X

t2R1;2;a

DðaÞRT;tðR1 kR2Þ: ð1Þ

Finally, we sort n-grams by descending contribution, DðaÞRT;tðR1 kR2Þ, indicating this ordering

by the set R1,2;α.

Having established the methodology, first we compare the top 10,000 n-grams and set the

RTD parameter α at 1/4, a reasonable fit for Twitter data (sensitivity experiments [37]). Tuning

away from 1/4 gives similar overall results as does the use of different kinds of probability-

based divergences such as Jensen-Shannon divergence. We use a rank-based divergence

because of the plain-spoken interpretability and general statistical robustness that ranks con-

fer. As an example, in S1 Fig, we provide and explain an RTD-based allotaxonograph to deter-

mine the narratively dominant 1-grams in Trump-related tweets for the date of the Capitol

insurrection, 2021/01/06.

We find a year to be both a stable time gap with six months to two years also producing

similar results. We then create day- and week-scale timelines of keyword n-grams, filtering out

hashtags and user handles.

Second, we use RTD to quantify the turbulence between Zipf distributions for any pair of

dates. To systematically measure change in story over time, we compare each date’s Zipf distri-

bution to that of an approximately logarithmically increasing sequence of days δ before.

We use the one instrument of rank-turbulence divergence throughout our paper for two

reasons: (1) Analytic coherence (each section builds out from the previous ones), and (2) Facil-

itation of quantification. While we would expect sophisticated topic modeling approaches

would also help elucidate stories, our goals are more expansive regarding the experience of

time.

3 Analysis and discussion

3.1 Computational timeline generation for dominant Trump stories

In Figs 1 and 2, we show computational timelines of the most narratively dominant 1-grams

and 2-grams in Trump-matching tweets for each week running from the start of 2016 into

2020. We coarse-grain from days to weeks by finding n-grams with the highest overall rank-

turbulence divergence (RTD) sum for each week.

Our computational timelines provide n-grams as keyword hooks, and immediately give a

rich overall view of the major stories surrounding Trump. Broadly, the early major chapters

run through the Republican nomination process, the election, and inauguration. Reflected in

names of individuals and entities, places, and processes, the timelines then move through a

range of US and world events (North Korea, Charlottesville, Parkland, Iran, George Floyd’s

murder, Portland); US policy and systems (travel ban, Space Force, southern border wall,

Supreme Court); natural disasters (hurricanes in 2017, COVID-19 in 2020); scandals (Russia,

Stormy Daniels, Mueller, impeachment, Taliban bounties for American soldiers), and the 2020

US election and aftermath (death of Ruth Bader Ginsburg, debate with Biden, Trump’s con-

traction of COVID-19, claims of fraud, a focus on Georgia, the storming of the US Capitol).

The week-scale timelines for 1-grams and 2-grams variously directly agree (e.g., ‘Epstein’

and ‘Jeffrey Epstein’ in week 27 of 2019, and ‘coronavirus’ and ‘the coronavirus’ for 9
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Fig 1. Computational timeline of ‘narratively dominant’ 1-grams surrounding Trump-matching tweets at the week scale. The timelines of 1-grams

and 2-grams (Fig 2) give an overall sense of story turbulence through turnover and recurrence. For each week, we show the 1-gram with the highest

sum of rank-turbulence divergence (RTD) contributions [37] relative to the year before, based on comparisons of day-scale Zipf distributions for

1-grams in Trump-matching tweets. See S1 Fig for a full example of 2021/01/06, the day of the Capitol insurrection. Each 1-gram must have been the

most narratively dominant for at least 1 day of the week (i.e., highest RTD contribution). The numbers and pale pink bars represent Trump’s narrative

control as measured by the percentage of an n-gram appearing in retweets of Trump’s own tweets during a given week. The limits of 0 and 100 for
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narrative control thus correspond to a 1-gram being never tweeted by Trump and a 1-gram only appearing in retweets of Trump. After Trump’s

account was suspended by Twitter following the Capitol insurrection, Trump’s narrative control necessarily falls to 0. To align weeks across years, we

assign the final 8 days to Week 52, and for each leap year we include February 29 as an 8th day in week 9. See the paper’s Online Appendices

(compstorylab.org/trumpstoryturbulence/) for the analogous visualization at the day scale as well as a visualization of the daily top 10 most narratively

dominant 1-grams. In constructing this table and the table for 2-grams in Fig 2, we excluded hashtags, a small set of function word n-grams, and

expected-to-be surprising n-grams such as ‘of the’ and, in 2017, ‘President Trump’.

https://doi.org/10.1371/journal.pone.0260592.g001

Fig 2. Computational timeline of narratively dominant 2-grams surrounding Trump at the week scale. The timeline’s construction and the plot’s

details are analogous to that of Fig 2. The n-grams in both timelines match (‘coronavirus’ and ‘the coronavirus’), expand on each other (‘bounties’ and

‘American troops’), or point to different stories (‘Mueller’ and ‘Stormy Daniels’). See the paper’s Online Appendices (compstorylab.org/

trumpstoryturbulence/) for a day-scale visualization of the top 10 most narratively dominant 2-grams in Trump-matching tweets.

https://doi.org/10.1371/journal.pone.0260592.g002
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consecutive weeks in 2020); make connections (e.g., ‘Crooked’, ‘Hillary’, and ‘Crooked Hillary’

in 2016); or point to different stories (e.g., ‘Syria’ and ‘Trump Foundation’ in week 51 of 2018).

The n-gram timelines also provide an overall qualitative sense of story turbulence. In the

lead up to the 2016 election, the stories around Trump largely concern his opponents, particu-

larly Ted Cruz and Hillary Clinton. Near the election, we see an increase in story turbulence

with ‘sexual assault’, ‘rigged’, and ‘FBI’. During Trump’s presidency, the timelines give a sense

of stories becoming more enduring over time. After a tumultuous first nine months of 2017,

we see the first stretch of four or more weeks being ruled by the same dominant story:

‘Puerto’/‘Puerto Rico’ and ‘Mueller’. In 2018, ‘Mueller’ then dominates for 12 of 17 weeks and

then later ‘Kavanaugh’ leads for 5 of 6 weeks. In 2019, ‘Barr’ is number one for 4 of 5 weeks

early on. Later, ‘Ukraine’ and ‘impeachment’ reflect the main story of the last four months of

2019, broken up only by ‘Kurds’. And in 2020, COVID-19 is the main story for 13 consecutive

weeks for 1-grams starting at the end of February, pushed down by the murder of George

Floyd and subsequent protests, before returning again as the major story of July. The remain-

der of the timeline largely reflects the 2020 election and its aftermath of claims of fraud by

Trump, leading to the Capitol insurrection in 2021.

Our intention with Figs 1 and 2 is to give one page summaries of over five years of stories

around Trump. Below these dominant n-grams at the week scale are n-grams at the day

scale representing many other stories. For example, Table 1 shows the the top 12 most narra-

tively dominant 1-grams for three consecutive days in late June of 2020 where the story of Rus-

sia paying Taliban soldiers bounties for killing US soldiers rose abruptly to prominence. We

see that by June 27, references to the COVID-19 pandemic had dropped down the list (‘coro-

navirus’ would return to the top 3 on July 1), as had indicators of other stories (‘Biden’, ‘lob-

ster’, and ‘statues’ point to Trump’s 2020 challenger, a call by Trump to subsidize the US

lobster industry, and the taking down of Confederate statues in the aftermath of George

Floyd’s murder). The Russian bounties story would fall away within a week, with the next non-

pandemic story appearing being the arrest of Ghislaine Maxwell on July 2, 2020. Maxwell was

charged for sex trafficking of underage girls in connection with convicted sex offender Jeffrey

Epstein.

As part of the Online Appendices, we provide a range of visualizations and data files for

day-scale computational timelines for the most narratively dominant 1-grams and 2-grams.

Table 1. Top 12 most narratively dominant 1-grams for Trump-matching tweets for an example three day period. The sharp rise of the Russian bounties for Taliban

soldiers to kill US troops, along with the fall of other stories, gives an example of a microscopic detail of story turbulence we aim to quantify macroscopically.

Rank 2020/06/25 2020/06/26 2020/06/27

1 coronavirus pandemic bounties

2 Biden bounties bounty

3 pandemic coronavirus soldiers

4 testing Biden militants

5 lobster militants Russia

6 Matter hiring kill

7 statues cases briefed

8 virus testing Afghanistan

9 cases virus intelligence

10 ad Statues Taliban

11 fishing bounty troops

12 ChinaVirus Care pandemic

https://doi.org/10.1371/journal.pone.0260592.t001
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3.2 Narrative control

Because we are working with Twitter, some n-grams may become narratively dominant due to

high overall use by many distinct individual users because of one highly retweeted individual’s

tweet, and all degrees in between. Trump is the evident potential source of many retweets in

our data set, and we introduce the concept of ‘narrative control’ as part of our analysis. In Figs

1 and 2, the underlying pale pink bars and accompanying numbers indicate our measure of

Trump’s narrative control, Cτ,t. We quantify Cτ,t for any given n-gram τ on Twitter for some

time period t as the percentage of the occurrences of τ due to retweets of Trump tweets:

Ct;t ¼ 100f RT
t;t =ft;t .

We see that Trump’s week-scale levels of narrative control vary greatly over time. A few

example highs, ordered by their date of first becoming narratively dominant, are ‘Crooked Hil-

lary’ (82.6%), ‘Fake News’ (37.6%) ‘Border Security’ (70.6%), ‘Minneapolis’ (32.1%), and ‘Left

Democrats’ (75.1%).

By contrast Trump’s narrative control has been low to non-existent for narratively domi-

nant n-grams representing many stories. For ‘Mueller’ in 2017 and 2018, Cτ,t ranges from 0%

to 2.2% (see however Sec. 3.3 below). The names ‘Stormy Daniels’, ‘Jeffrey Epstein’, and ‘Ghi-

slaine Maxwell’ all register Cτ,t = 0, as does ‘the bombs’ in reference to pipe bombs mailed to

leading Democrats and journalists in October, 2018.

Strikingly, Trump’s narrative control for ‘coronavirus’ has been effectively 0. Of course, and

as for all n-grams, Trump may have used other terms to refer to them. In the case of ‘coronavi-

rus’, he has used ‘corona virus’ (with optional capitalizations), ‘invisible enemy’, and a deroga-

tory term. But our measurement here gets at the degree to which Trump has engaged with a

specific n-gram being used on Twitter in connection with him.

Transitions in narrative control also stand out. In 2020, the most striking shifts at the week

scale are 0% for ‘pandemic’ to 32.1% for Minneapolis, 0% for ‘photo op’ to 75.1% for ‘Left

Democrats’, and 0% for ‘coronavirus’ to 11.8% for ‘Portland’. And the start of 2020 with the

US assassination of Iranian general Soleimani jumps out amid the n-grams of the impeach-

ment hearings (‘Iran’ 9.6%, ‘Soleimani’ 5.9%, ‘a war’ 6.6%).

The storming of the Capitol on 2021/01/06 by Trump supporters lead to Twitter perma-

nently banning Trump’s Twitter account. In the context of Twitter and by the nature of our

measure, Trump’s narrative control therefore ended abruptly on 2021/01/08.

3.3 Time series for dominant Trump stories

We now take our list of narratively dominant 1-grams and 2-grams and extract day-scale time

series of normalized usage rate in Trump-matching tweets. We also generate the correspond-

ing narrative control time series.

In Fig 3, we show a selection of n-gram time series (blue lines) with Trump’s narrative con-

trol time series inverted (orange lines with pale pink fill). Below each horizontal axis, we anno-

tate the n-gram along with the overall narrative control percentage for section of time series

visible. We normalize each time series by its maximum.

We see a range of motifs common to sociotechnical time series: spikes (‘Saudi Arabia’,

‘Syria’, ‘Cambridge Analytica’), shocks with decays (‘Puerto Rico’, ‘Kurds’), sharp drop offs

(‘Ted Cruz’), episodic bursts (‘Roger Stone’, ‘Syria’, ‘sexual assault’), and noise (‘Russia’,

‘Obama’) [38–40].

While an n-gram may be ranked as the most narratively dominant for some period of time,

its usage rate may fluctuate during that time. A clear example is the time series for ‘coronavi-

rus’ which begins with an initial spike followed by a shock, and then trends linearly down until

the end of June, 2020.
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Fig 3. Example time series of narratively dominant 1-grams and 2-grams for Trump-matching tweets. Each time series shows the relative usage rate

for n-grams (blue curve), and Trump’s level of narrative control (inverted orange curve with pale pink fill). See the Online Appendices (compstorylab.

org/trumpstoryturbulence/) for full time series for all n-grams which have been narratively dominant on at least three days. The background shading

and vertical dashed lines indicate years and quarters.

https://doi.org/10.1371/journal.pone.0260592.g003
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As it is derived from a subset’s fraction of a whole, the narrative control time series can at

most exactly mirror the overall time series. Four examples of time series with high and endur-

ing narrative control percentages are ‘Crooked Hillary’, ‘Witch Hunt’, ‘Fake News’, and ‘our

Country’ (59.2%, 62.0%, 56.2%, and 70.7%).

More subtly, we see that Trump’s narrative control for ‘Mueller’ increases over time, though

remaining modest at 4.4%.

Many of the examples we show exhibit relatively flat narrative control time series. For

2-grams, Trump did not tweet about ‘Black Lives’ (Matter) in 2016, and only a fraction in 2020

(2.5%). And we see zero narrative control for ‘sexual assault’ whose time series correlates

strongly with ‘women’.

Post the 2020 election, we show three time series connected with Trump’s claims of a

‘rigged election’: ‘fraud’ (6.6%), ‘Georgia’ (16.3%), and ‘Capitol’ (2.0%).

In the Online Appendices and as an anciliary file on the arXiv, we include a PDF booklet of

time series for all n-grams which have been narratively dominant in Trump tweets on at least

three days. We extend the time series for all n-grams to run from 2016/01/01 on, and order

them by the date they first achieve narrative dominance. Moving through this ordered

sequence of 308 time series gives another qualitative experience of how the stories around

Trump have unfolded in time, placing them in temporal context.

3.4 Story turbulence

We have so far demonstrated that the n-grams of Trump-matching tweets track major event]s

and narratives around Trump. We now move to using our comparisons of Zipf distributions

for 1-grams via rank-turbulence divergence (RTD) to operationalize and quantify two aspects

of story experience: (1) Story turbulence, the rate of story turnover surrounding Trump, and

(2) Collective chronopathy, the feeling of how time passes at a population scale. Chronopathy

is to be distinguished from the differently defined chronesthesia [11]. Here, we use the -pathy

suffix primarily to mean ‘feel’ (as in ‘empathy’) though a secondary connotation of sickness

proves serviceable too (as in ‘sociopathy’).

In Fig 4, we present visualizations of the collective chronopathy for Trump-matching

tweets. We focus first on the heat map of Fig 4A, the core distillation of our measurement of

the passing of time.

For each day in each month, we compare 1-gram Zipf distributions to the 1-gram Zipf dis-

tribution for δ days before using RTD with δ varying approximately logarithmically from 1

day to 1 year (vertical axis of Fig 4A). We generate the heat map using the median value of

RTD for each month and each δ. We employ a 10 point, dark-to-light perceptually uniform

color map for increasing RTD which corresponds to the speeding up of story turnover. For

each δ, we indicate the five slowest months by annotation with 1 being the slowest.

Overall, we see a general trend of story turnover slowing down—the plot thickens—with

several marked exceptions, leading to an extraordinary slowing down across many time scales

throughout the COVID-19 pandemic in 2020.

We describe the main features of the heat map, moving from left to right through time. As

we would expect, the election year of 2016 shows fast turnover at the longer time scales of δ*
six months to a year. This turnover carries through into 2017 as the shift to being president

necessarily leads to different word usage around Trump. For the shorter time scales, January

2016 has fast turnover at all time scales—Trump’s narrative was rapidly changing as he was

becoming the lead contender in the Republican primaries. Some of the slowest turnovers for 1

day out to 14 days occur in 2016, notably in March and August.

PLOS ONE Computational timeline reconstruction of stories surrounding Trump

PLOS ONE | https://doi.org/10.1371/journal.pone.0260592 December 8, 2021 10 / 17

https://doi.org/10.1371/journal.pone.0260592


Story turnover generally increases through 2017 at all time scales δ, with September, 2017

being the month with days least connected to all that had come before in the previous year. As

suggested by Figs 1 and 2, the first year of Trump’s presidency burned through story, with just

some of the dominant narratives concerning Flynn, Comey, Russia, Mueller, North Korea,

Charlottesville, DACA, NFL, and three major hurricanes.

Fig 4. A. Chronopathic equivalency heat map: Each cell represents the ‘story distance’ for a given month and a given number of δ days before. We

measure story distance as the median rank-turbulence divergence (RTD) between the Zipf distributions of 1-grams used in Trump-matching tweets for each

day of a month and δ days before (we use RTD parameter α = 1/4). Lighter colors on the perceptually uniform color map correspond to higher levels of story

turnover. Numbers indicate the slowest five months for each value of δ. After the story turbulence of the 2016 election year and especially the first year of

Trump’s presidency, there has been a general slowing down in story turnover at all time scales (the ‘plot thickens’). By September US of 2020, the COVID-19

pandemic had induced record slowing down of story turnover around Trump at time scales up to 91 days, the story being punctuated by and then combined

with the Black Lives Matter protests in response to George Floyd’s murder on May 25, 2020. B. Using an example anchor of April 2020 and δ = 14 days (white

square in panel A), a plot of chronopathic equivalent values of δ across time. During Trump’s presidency, the same story turnover occurred as fast as every 1.8

days in September 2017 and 1.7 days in October 2020. Because story turbulence is nonlinear, using a different anchor month and δ (i.e., selecting a different cell

in the heatmap) potentially gives a different chronopathic equivalency plot. C. Anchor of 56 days in May 2020. D. Anchor of 182 days in August 2020. See the

Online Appendices (compstorylab.org/trumpstoryturbulence/) for the most recent version of this figure. As for Fig 3, shading and lines give guides for years

and quarters.

https://doi.org/10.1371/journal.pone.0260592.g004
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In 2018 and 2019, we see some of the slowest turnover at longer time scales. Trump has the

consistency of being president in the previous year. Two periods where story turnover for shorter

time scales slow down in the second and third years of the Trump presidency are around the gov-

ernment shutdown (January 2019) and the impeachment hearings (last three months of 2019).

In March 2020, the COVID-19 pandemic brings story turnover to a functional halt at

shorter time scales. April is especially slow with either the slowest or second slowest turnovers

for time scales ranging from 1 day to 14 days. The same time scales for May are all still slow

(top 5) but now longer time scales show less story turnover. The murder of George Floyd on

May 25 and subsequent Black Lives Matter protests then leads to a sharp transition in the heat

map. At the same time, the pandemic had subsided before what would be new surge in August,

and was for much of June a secondary story.

Entering July 2020, story turnover slows dramatically for a second time—now slowing at all

time scales—as the pandemic once again becomes a major narrative along with that of the

Black Lives Matter protests. August has the slowest 91 day story turnover, and September the

same for 28 and 56 day time scales. The text around Trump in August 2020 is closer to that of

May 2020 than for any other three month comparison.

Story turnover rises sharply again in October and November of 2020, in the lead up to and

aftermath of the 2020 US presidential election. The narratives around Trump begin to roil at

the end of September which saw the contentious first presidential debate and the death of Jus-

tice Ruth Bader Ginsberg. The subsequent nomination and confirmation of Amy Coney Bar-

rett for the Supreme Court, and the direct connection to Trump’s contraction of COVID-19,

hospitalization, and recovery then led to a thrashing of the narrative timeline. Post election,

the lack of a clear immediate winner and then Trump’s refusal to concede and claims of fraud

made November, December, and January especially turbulent at longer time scales.

3.5 Collective chronopathy

We turn finally to determining what we will call chronopathically equivalent time scales. For

any given month and time scale δ—any cell in the heat map of Fig 4A—we can estimate time

scales in other months with corresponding values of RTD.

For three examples, the white-bordered squares in 2020 in Fig 4A mark anchor time scales

and months of δ = 14 days (2 weeks) in April, δ = 56 days (* 2 months) in May, and δ = 182

days (* 6 months) in August. For these three anchors, Fig 4B–4D, show the equivalent values

of δ across all months.

Fig 4B shows that two weeks in April felt like the longest two weeks across the whole time

frame. All other months achieve the same level of story turnover in less than a week, with a

maximum of 6.1 days in August 2020. With the first wave of the pandemic unfolding, the sto-

ries around Trump became stuck and time dragged, collectively.

Lifting up to the 56-day anchor in May 2020, in Fig 4C, we see the slowdown of July,

August, and September 2020 dominate, with time scales doubling. We see some near equiva-

lent time scales in 2018 and 2019, with the impeachment’s progression by the end of 2019 pro-

ducing a 45 day period. The equivalent time scales of around 9.5 for October and November of

2020 point to speed-up factors of * ×12.

Stepping further out to the level of story turnover in six months relative to August 2020, Fig

4D We see episodic slowdowns in 2018 and 2019, with two main causes in 2019 being the

Mueller report and the impeachment hearings. With this anchor, we see November 2020 sepa-

rate from October with a chronopathically equivalent time scale of 13 days versus 47.

Taken together, Fig 4B–4D make clear, and quantify, the rapidity of story turnover in 2017,

especially September of that year.
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Story turbulence is complicated as the speed up or slow down of story can vary nonlinearly

across different memory time scales. Annual days of the year may seem close to that of a year

before (e.g., Thanksgiving) but further away from time periods in between. For Trump stories,

our measure of story turnover across 56 days looking back from May 2020 was equivalent to

around 3 days in September 2017, a speed up of ×19, and 110 days in July 2020, a slowing

down by a factor of ×2. In choosing 28 days instead of 56 in May 2020, we would find equiva-

lent time scales of 2.1 and 16 in September 2017 and July 2020, with speed-up factors of ×13

and ×1.7. So by this shorter time scale benchmark of about a month in May, story seems to

have moved faster in July because of the narrative dominance of protests in June.

4 Concluding remarks

We have shown that interpretable, high-level timeline summaries of historical events can be

derived from Twitter. Our process, which we have worked to make as rigorous as possible, is

necessarily computational: In our approximately 10% sample of all of Twitter, there were from

2015/01/01 through to 2020/08/12 around 20 billion distinct 1-grams in Trump-matching

tweets, with 1.5 billion of those being contained in retweets of Trump’s tweets.

Because we have shown that the narratively dominant n-grams our method find are histori-

cally sensible, we are then able to defensibly quantify narrative control, story turnover, and col-

lective chronopathy in the context of Trump.

We observe that our focus on n-grams has resulted in timelines that are largely descriptive

of major events and stories through the surfacing of the names of people, places, institutions,

processes, and social phenomena. While the collective construction of what matters cannot be

said to be objective—what matters socially is what matters socially [41, 42]—we find that our

computationally derived timelines are not laden with overt opinion or framing with the nota-

ble exception of certain phrases due to Trump himself.

Our study of stories around Trump suggests much future possible research.

Broader explorations of Trump’s (and others’) narrative control should be possible. We

have limited ourselves here to narratively dominant n-grams and only within the same time

frame. We have elsewhere examined “ratioing” of tweets by Obama and Trump [43], exploring

in particular the balance of likes to retweets, and these and other measures of interactions

could provide a more nuanced way to operationalize narrative control. Studies across different

news outlets and social media platforms could explore the extent to which Trump’s narratives

are driven by external stories and vice versa, as well as their persistence in time, and certain

modeling and prediction may be possible.

We have indexed stories by keywords of 1-grams and 2-grams. Connecting these n-grams

to Wikipedia would possibly allow for the automatic generation of timelines augmented by

links to (or summaries of) Wikipedia entries. Disconnects between Twitter and Wikipedia

(and other texts) would be of interest to explore as well.

Computationally generating a taxonomy of story type would be a natural way to improve

upon our work. How have the kinds of stories around Trump changed over time, which ones

have persisted, and which ones have been more likely to last only a few days?

We have presented narratively dominant n-grams for the time scales of weeks, while reserv-

ing the top 20 at the day scale for the paper’s Online Appendices. While this is reasonable for a

study going across now five years, for certain major events, shorter time scales of hours or

even minutes may be better suited as the temporal units of analysis.

The relationship between Trump’s favorability polls with story turbulence and story kind

could also be examined. As a rough observation, we note that the speeding up and then slow-

ing down of story turnover around Trump through 2017 and into 2018 appears to be anti-
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correlated with Trump’s approval ratings during that same period. Having established a story

taxonomy would be important for moving in this direction.

While our specific instrumental focus has involved the use of Twitter to analyze stories sur-

rounding Trump, in doing so we have laid out a general, structured approach to quantifying

and exploring story turbulence for any well-defined topic in temporally ordered, large-scale

text (e.g., news outlets, online forums, and Reddit). Wherever Zipf distributions can be

derived, our methods will allow for the computational construction of n-gram-anchored story

timelines along with measures of story distance, turbulence, and chronopathy. For such exten-

sions, we caution that the popularity of text must be incorporated in some fashion through

measures of readership, shares, etc. We also observe that stronger variations in findings would

potentially come from choosing different text sources rather than through reasonable adjust-

ments of the methods of analysis we have laid out here.

We believe that our techniques will be of value for computationally augmented journalism

and the computational social sciences [44–47]. News reporters and historians in particular are

faced with having to process ever more data, text, and media, and we see our work here as con-

tributing to a far broader effort to develop ways to provide powerful computational support

for the vital work performed by domain-knowledge experts.

Supporting information

S1 Fig. Example allotaxonograph [37] comparing 1-grams in Trump-matching tweets on

two dates, separated by a year: 2020/01/06 and 2021/01/06. Our findings all build out from

allotaxonometry: The principled measurement of the difference between the architectures of

any two complex systems as represented by Zipf distributions [48]. For 2020/01/06 versus

2021/01/06, 1-grams on the first date reflect the aftermath of the assassination of Iranian mili-

tary commander Qasem Soleimani by the United States on 2020/01/03, while 1-grams appear-

ing on the second date revolve around the Capitol insurrection by Trump supporters. The

rank-rank histogram on the left of the allotaxonograph displays the joint Zipf distribution, nat-

urally laid out in double-logarithmic space. We generate the 1-gram ranking on the right of

the allotaxonograph using rank-turbulence divergence (RTD) [37] with tuning parameter α =

1/4. The contour lines on the histogram provide guides for RTD showing a reasonable fit to

the joint Zipf distribution’s form. Variations around α = 1/4 will not change the overall find-

ings (i.e., the orderings of contributing 1-grams as well as the overall RTD score). See Ref. [37]

for a full explanation of allotaxonometry and RTD. In Sec. 3.1 in the main paper, we use RTD

at the year scale to determine narratively dominant 1-grams and 2-grams arising on the second

of the two dates being compared. By comparing to a year ago, we are able to generate a back-

ground Zipf distribution that will help remove calendrical features as well as generically Twit-

ter- and Trump-related 1-grams (e.g., ‘RT’ and ‘Donald’). While the allotaxonograph shows

1-grams on both dates, we emphasize that our focus is on the second date, in that we are seek-

ing to determine the most important 1-grams of today. For 2020/01/06 versus 2021/01/06,

looking at the ranked list on the right, we see that the top five 1-grams for the day of the Capi-

tol insurrection are ‘Capitol’, ‘supporters’, ‘police’, ‘building’, and ‘breached’. The salience of

‘BLM’ (Black Lives Matter) and ‘Antifa’ point to the immediate confusion and disinformation

surrounding the Capitol insurrection. We provide all year-scale allotaxonographs at the

paper’s Online Appendices. In Secs. 3.4 and 3.5, we then use RTD at time scales of a day up to

a year to quantify story turbulence and collective chronopathy.

(PDF)
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