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In order to descrtbE- our main topic, we need an ade­
quate language for de.crlblng dctermln18t1c evolution
equations. Typical behavior will be de.crlbed In terms
of the attractors of a 5yetcm. The evolution equations,
for fLxed \'tlluc or the ~rameter, wlll be aS8umed

II. DISSIPATIVE SYSTEMS AND THEIR ATTRACTORS

forced pendulum with friction are cxceedin~ly hard to
analyze. One would nevertheless like to Cincl similari­
ties among, and predictions (or, various dynamical
systems.

The aim here is to present an approach to the undcr­
standlng of irreIXu1ar (or nearly irreg-ular) phenomen."
which ha.s been relatively slIccessful recently.' To
avoid any misunderstanding, I must Insist that this
approach does not reach any conclusions about such
matters as the beautiful turbulenct's on Jupiter or the
dynamics of the Niagara Calls.! Rather, by setting- more
modest,aims, I describe here examples oC relatively
s1mple, but neve.rlheless aperiodic behavior, and put
them In perspective. In U,ls View, .ystems exhibiting
tills behavior are stili su[flciently Irregular to be
called turbulent, and in fact Borne of their aspects are
found In (irregular) convecllon of fluids. All form. of
apertod1city (even very weak ones) are of 'interest. but
the words aperiodic, erratic, chaotic. and (weakly)
/urbulenl wHl be used interchangeably for any of these
forms.

The approach I describe has its roots 1n the general
study of determlnistic differential equations which are
supposed to model Ute physical (chemical, ... ) system
under investigation (Smale, 1961). Throughout, we
shall suppose that the system depends on an external
controllable JXlrameter and that for some value of the
parameter its dynamical behavior 15 well understood
(e.g., the system could have only a stable equillbrlum
state, or a stationary solution). As the parameter 18
changed from this value, the qualitative beh:lvtor of the
system may ch.lng£', too. Aft!':" ~ flnlt<" or tnflnltt" ~uc­

cesslon of such changes lhc system mJ.y present crr3t1c
beh~l\'ior 1n the st'nse that Its time evolution may be
quite unpredlctlble on lar~e time scnles, or It mar
show broad-oond spectrum or may not be periodic any
marc. Some systems may show features of a stochas­
tic process,' nlthough no external noise 80urce la
present in the dyn..,mical equations.

} Couyrigf'l1 () 1981 Al"I1trican PhyslUI SOCilfty

lin n way, thlft approach ean be vIewed a•• con<:r{'!IznUon of
son\(' :ulpf'rls of Thom'!! 1197~!) cltll1l1trophc theory.

If'or II. dlS('uaskm of "fully developed rurhulenoe," l'lC(', for
example, Montn Md "'a.dom 097&).

JGooc.] Il'JJCJ)Oe1tory reff'renccB aboul theae :l.apeets :lTe BoWeD

(1976) 000 l..onford (19i8).
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Three scenariO! leading (0 lurbulence. in theory and experiment are outlined. The rC5I'l«'ti"e mathemAtical

theories are clIplainCKl and compared.
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I. INTRODUCTION

Every physicist Is exposed early in his career to
solvable dynamical problems, for example, the har­
mor-ic oscillator and Ole Kepler problem. One also
learns that a damped ">endulum reache~ its equilibrium
position, and one learns how to nnd the exp:mentlal
functions descrlbln~ the approach to this equtllbrlum.
Quite soon, one becomes aware that not all dynamlcal
problt'ms are expllcitly solvable, even allowin~ for
solutions in terms of Ute more complicated transcen­
dental functions. This situatlon may occur for systems
with few degrees of frt>edom, (Le., few dynamical
variables), and without extern:al no~se. In addition, It
is not restricted to lIamlltonlan problems, but appears
as well for dynamical systems with lnternal frictlon,
callC'd dlsslJXltlve dynamical 8yst~m8. Th~ reason for
this difficulty 1s the fact that dynamical prOblems ",ilh
rCJ:"lar equn!iOt's may hOlIC solutions wit ich b"halJe
,rregulrrrly in limB.

We would like to understand, in the abe.nce of ex­
plicit solutions, more about tile qualitative aspect. of
thcst' IrreJtul:tr 801utlons. There lR no general clas­
sillcotlon of dynamical .y.tems which 188ufflclently
fine (0 account for all po8sible types of erratic beh;n.'1or
of thclr solutlons, and even Ruch simple systems a8 a

-/
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out to be of one of two lypell, "",mely,

,,

w. n T'v...
(of ."ro volume). Thus every solution curve starting
at some y E V approach"s IV as /-... We can al­
ternately ... y that U Y E V\IV then y Is /rlJllsi,utl and th"
eurv" T'y "Ill for some sufficiently large 1definitively
depart lrom y and converge to IV. This Is In sharp
contrast with the situatlon encountered In nondls.lpa­
tlve closed systems, where almost all curves Tty
return infinitely otten arbitrarily closc to thetr initial
state y. We shall not discuss the question of transi­
ence. allhoul:h this is an Intcrcsllng subject. There­
fore we consider only systems which hav(' attained
Bome sort of "internal equllibrlum." In other words,
we analyze the motion on 1V or on parts of W, as­
suming the orbits wh Ich tend to IV but arc not In It
behave similarly to those In W, at lE'ast after a suf­
ficient lapse 01 tlme. These parts 0111' will be called
a/l,'ac/m"s, and studying attractors only amounts to
neRlectlnJl transient behavior. Before readinR the
deflnilion of attraclors, it should be kept In milid thai
there 15 no universal agreement about what the best
definition should be [sec, for example, Newhousc
(1980b), Shub (1980). Lanford (1981)].

Dejini/ion, An al/rac/or for the flow T' is a com(Xlet
set X satlsfyln~

(I) X is Invariant under T': T'X aX.
(2) X has a shrinking neighborhood, I.e., there Is an

open neighborhood II 01 X. II 'JX such that T'lie 1/
for I> 0 and X = n PO T'U.

This deCinlllon cxcludes rcpellors-for example, an
isolated fixed point x, Ttx =x, in whose neighborhood
there is for every l: > 0 a y with Iy - xl < &, which es­
capes away from x, I.e., IT'y - xl grow. (relallvely)
large. A repellor x would be in lV, but not In X. We
are not Interested in repellors, slnce trom an experI­
mental point of view only attractors can playa role.
Many points behave like the points on attractors, but
only few behave like a repellor; a repellor Is a gen­
eralizalion 01 an unstable equlJibrlum point or of a.
saddle point.

A good definHlon of an attractor needs another in­
gredient which g:enerallzes 'the description of k !H'~rate

stable equilibria 10 J,; separate attractors. 1111s 1.5
achieved by the following requirement.

(3) The flow']" on X is r('cur-re,,/ and ;lUlecvmposn­
hie. Recurrent means T' Is nowhen:' transient 011 X:
If V is an opcn ~('t in r and if un" Hij. then therc ~1I"e

arbill"arily large values fo'" I such (hat T'xE X n 1I
when x E X n U" Indecomposable means that X cannot
be split inlo two nontrivial closed in\'arL.'l1l1 pieces.

In the simplest dynamical systems Ule' situation
mil:ht be as shown in Fig, 1. There are two attractors,
XI and x~. which are stable fixed points, There basins oC
aU raction are I"espcclively Ule left and ri~ht sides oC the
line L. The 1111e' L is attl-actccl by x,. which is not an
aUractor, since it also has an unstable' dire'ction. It is
a saddle point. WiUl our previous definitions.
II' = {x,. x,. x,l.

If X is;1n .ttl r,.clol'. its I'f/srn 1)/ nll'rad;ulI is df'fincc!
to be the set of initial points x su"ch that '(IX appro;lchcs
Xas/-..o,

(1)

Eckmann: Rollds to turbulence in dissipative dynamical systems

Interpretation of l'oorrlln:\lcs

Coordinates p,q In ph:l8C space
Deviations from !tIcal trajectory
Fnurler modi'S or \'clnt:ll)' field

(not position uf molecules)

Conccntrallnns
c.'urrcnts. vo1tal~(,8

< 0,
BX.(y, I)

By,

IlamUtonlan mechanics
Particle accelerators
Ilydrodynnmlc.::s

~}emIC:l1 reactions
~cctrlcal circuits

System·

--- ------------

TABLE I. lJyn:unic:l1 systclns and thl~ir phase-sJlace coonlill­
alcf.'.

...here *=tlx/til.
We shall deal exclusively with dissipative systems,

and we start now with the description of their attrac­
tors. AsBume there is a finlle volume V in state space
(A~) such that II yE V then T'y =x(y.1l Is In V for all
1>0. Since the now T' decreases VOlumes, the sets
T'V decrease as , - 00 to a set

X"+l -/(x,,) I

where x" E R, "cO, I, 2, ... and/: R - R IB conUnuous,
often serves as a gUiding tool (Collet and Eckmann,
1980). Here, one should think of /I as the (discrete)
time.

It.1B well known that In Hamiltonian dynamics Llou­
vUle's theorem asserts that the now /- x(t) preserves
volumes In phase space. II we denote by x(Y, t) the solu­

'tlon of Eq. (I) with initial condition x(Y,/ =0) =y, and If

.", .• 8F
:"., ~ 'it(x)=O,
f .: :~. ht:1. t

z".,=F(x.). (2)

Here x Is a vector In R-. mOIl 1 and .ch of lts com­
ponents describes a "nlode" or a coordlnate. When F
wUl depend on a parameter, we shall denote it by Jl

and write F,. Typical examples of dynamical systems
,f the form of Eq. (I) ore listed In Table I. .

We shall describe later how Eq. (2) appears naturally
In appllcallons; In any case, the simple dynamical
eystem (discrete Iteration) which Is dellned by

·Some lntrodudorr I'cfcn~nn:s an.. Sil'~l'1 :lncl ;,\1~)5('r (l!}7G).
Hagedorn 09571. Folas and Tem:lm 09701. Nicolis ::Iml Pri~o­

glne 09771. and lJr:1yton anrl Moser 096-1),

..•.. ( • l~. SF, (x) O'
;.;: r ax <'1
... ',J • ,_1 I
,j j.!,,, , '.' I
~'~~r·(equlvalenl1Y )
j.' Y

)~;

then the flow preserves volumes locally. On the other
hand, for systems with internal frldlon, called dis­

5';;'flJJ;ili~·l! systems, such as the last three examples In
.~!'r~e I, the now contracts volumes, Le .•
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(j/z(f)=F.(x(t)), z(O):y

III. THE PROBLEM OF CLASSIFYING ATTRACTORS.·
SCENARIOS

turbulent, erratic, etc., independently of whether or
not the nttraetor is ~tJ-Ange.

(2) Even simple dynamical systems may have an
infinity of distinct allractors. As an example, it has
been shown lNewhouse, 1980a; see also LeVi, to
appear) that the Iterath'e scheme of Henon

(
•• )_(~.,,)=(l +y.~a>:)
Y.. )It'! h.\"

has an lnflnity of attrnctors at Borne values of (l near
1.15357 and b =0.3. The attractors correspond to
periodic points or hiRher and higher period~ which may
be numerically Indistinguishable from a strange at­
tractor. Incidentally, it is believed that for some val­
ues of nand b the above system does have a stra11Ke
attractor, but this has not been proved so far,"

(3) BIlslns of attraction may be complicated, even U
the attrnctors are simple. A very old exampleS is the
lollowlng: ConSider the map

x"..,-PJI(x.,), Xo·y·

The parameter 1'; In the list at Table I, can be tbollllht
of as the strength of a driving force, the amount at
frlcUon, the amount 01 chemicals added per time unit.
,tc. It Is assumed that I' sbys Ilxed durlng the whole
duration of an experiment. We ar, Interested In the
c~ang•• oj the al/rae/ors as the PlIrameter I. varied.

dellned on C \ (of. This Is the Newton algorithm lor
finding the roots 01 z' =1. It has three stable fixed
points z = I, exp(i2./3), exp(-i2./3), with domains of
attraction 1)lI1)t,1)~. One can show that the boundary
points of 1)111)2,1), coincIde. So these three regions
must be highly Interlaced.

Z3 _ t
Zit. 1 !I:: Z _..:JL...-..:-

.. 3.1::

or

In thE' spirit of th(' precedin~ discussion, one should
arrive at a description of the nontranslent behavior of
dynamical systems by classUylng their altractors and
the motion on them. This aim Is clearly fell through­
out the literature on dyn....mIcal systems. One Is, how­
e\'er, far from any complete classUlcatlon of at­
tJ'2ctors, or ev('n from a canonical choIce of adequate
classification criteria. What I present here is a
more modest approach which wlll lead to a description
oj "oure nontrilfia/ nUractors. which have the additio1UJl
feature that they a,.ise as modifications of trilrio1 a/ ..
tractors as an exlcrnal parameter is changed.' ThUl,
Instead of considering a single problem, we deal with
a one-parameter family of problems:

'A panl.&1 anewer ,. In ltn.turewlca (1980).

it have beard !hIll from F. Serloraert.
'Tbla procedure hu been advocated In Ruelle and Takena

(J971).

T'V

o

T'V
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It is now time to point out some m isconceptlons wh lch
could arls, from the simple ploture of Fig. I.

(l) Although T' contracts volumes, It need not con­
Iract lengths. If we Ulke snapshots of T' at I =0,1, 2,
say, we may have the picture shown In,Fig. 2(rl) but
could alBa get that 01 Fig. 2(b) or even that 01 Fig. 2(c).
In particular, even If all points in V converge to a
single attractor X, one still may !Ind U,at points which

'-.. are arbitrarily cloee Initially may get macroscopically
separated on the altractor arter surnclenlly large time
lntervals. This property is caU,d sensitive dependence
em initial conditions. It is not excluded for area-
contractlng flows, Le., it can, and will, occur in dis­
sipative dynamical systems. An all rae tor exhibiting
this property wlll be called a strnnJ(e nUraclnr. Strange
attractors are neither periodic points nor periodic
orbits. Observe, however, that there exists a large

- variety of attractors which are neither trivial (l.e.,
they are neither periodic orbits nor Ilxed points) and
which are not strange ath-actors. All of them seem to
present more or less pronounced chaotic features,. We
shall call the motion on any nontrivial attractor weakly

"0 • R... Mod. Phyt.. Vol. 53. No.4, Pan I. ae- 1181
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pared. In addition, Ul£" relevant parameter ranges may
overlap, and while the basins of altractlon for different
scenarios must be disJoint. thC'y may be interlac('d.

It Is implicit in the precedln~ discussion that n .'iC(,­

Haria does not describe j/s IlolI/aj" oj applicabilily.
We have alrC'ady stated that a scenario cons\sts of an
"If" part and a "lhen" part, which should be a state·
mcnt that somethlnR is IUtely to happen. But there is
no attempt beinR made to say how prob.'lble the "U"
p;lrt is; such statements must bC' found by other,
maybe more specific, theories. Therefore, i! the
hypotheses of a scenario do not apply, nothing is falsl­
tied and there is no contradiction, but no prediction is
being made. Finally It should be stressed that while
scenarios intend to describe roads to turbulence, no
cblm Is made that this is the only way to find turbu­
lence. Turbulence also occurs elsewhere, e.g., In
the Niagara tails.

Let us recapitulate the main advnn(;J,~es and handicaps
of the procedure.

(I) The turbulence described In the scenarios whleh
have been found so far fB a simple form of temporal
aperiodicity, whose appearance Is well under control.
It has not been possible, so far, to flnd scenarios
which lead to the rich spatlotemporal structure of lully
developed turbulence, but nothi~ excludes in prlnclple
rtndlng such scenarios.

(2) The theory is completely general, but It cannot
·descrlbe Its domain of applicability.

(3) The main field of study for scenarios Is deter­
ministic evol4tion eqtJations, leading- to slochastic
behaVior, whose occurrence does 1101 nced mr)! external
twist! source. All)' cxlcnrnillojsr should be IhOll,ffJrl of
as all adtJi/jollal co",plica!iuPf. 7

TIIC description of scen,'lrlos will be uniform, 80 that
differences and simllarlties may appear more clearly.
Arter a IIInlhcmnliral dcscrj!IliOlr. tht' sccnarlo will be
described in more simple-minded terms, foHowed by
illierprcialiofl. ('xf,r-rill/e"lnl "I'idf'"cr, and it short
description of the jn,nUI'/rt"C nf cxlf'nJaI noisc. Since
there seems (0 be a ~elleral interest in such external
noise, a Hn.1.1 section will be devoted to a summary of
the known results fo,. the various scenarios. Table II
at the end will summarize the results.

r

> <pral, lbe atlractor cllangea amootllly lor sma.l
lions at lbe parameter. For example, a lind

jl may move a IIltle bit "" lbe parameter Is VIlrled,
l'lbble limit cycle may cllange It. .hnpe Indlor the
~needed to complete I cycle (s.. F~. 3).
Samellmes, however, Ibe topologlal nature 01 the

'.ttractor may change as the parameter cr088es a point
,i •. One calla lbl. a bijurctllio1f point. For example,
In Fig. 4 Ibe stable lind point at 1', charees to a stable
limit cycle at I's (plus In unstable fixed point). Quite
onen a bltur<:atlon Is prompted by the cra..lng of elj(en­
valueo of the llRearlzed now at the Ilxed point (or
periodic orbit) through the WIlt circle when the parame­
ter l>10oeo through I's.

A IIrot bifurcation may be followed by further bi­
furcations, and we may ask what happens when a cer­
tatn sequence of bifurcations has bt"en €'nconntered.
In principle there Is an Infinity of lurther posslbllltlcs,
but, in 80mp sense to be spe-ctfled, not all of them are
equally probable. TI" more likely ones will be called
scenarios, and below we shall examine thrfMt prominent
scenarios which have had thenretlcal and experimental
success. One should hope that further relevant scena r­
los 1011\ be lound In the luture.

We are now going to look at the nature 01 the prc­
diction whIch can be made with the help of scenarios,
sinc~ this may be a somewhat unfamUiar way of
reasoning. But It appears that this kind of argument
has the most promIsing chances of illuminating the
nature of chaotic behavior. The statement of a scenario
ala'VB takes the form "if. .. then... , If I.e., if certain
~.,)9 happen to the attractor as the parameter is var­
ied, then ceria In other things are likely 10 happen as
the farameter is varied further. The mathematical
meaning of "likely·' may depend on the scenario and
will be described below for each of the scenarios. But
whardoes Ilkely mean In a physical context? I do not
intend to go to any phliosophicaI depth but, rather, L~ke

a pragmatic stand. (I) One never knows exactly which
equation (Le.• which F) is relevant for the description
oC a given physical system. (2) When an experiment is
repealed, the equations may have slightly changed (e.g.,
the gravitationa.l cHeets change on the earth by the mo­
tion of the moon). (3) The equalion under investigation
is one among several, all of which are very close to
each other. (4) J{ amon~ lhese there are many which
satisfy the conclusions of the scenario, then we will
say that if we perform an actual experiment, it will be
probable that the conclusions of the scenario apply.

In general, a scenario deals with the description of a
fewattraetors. On the other hand, a g-iven dynamical
system may have many attractors. Therefore, scvcral
scclZm'io:i may el'ol,'c cOIrcurrenlly ill difft!~'eH/ regions
0/ !,hnse spacr. 'nlcre is OlUS no contradiction if
several scenarios occur in a given physical system,
depending on how the in ilL'll state of the system 18 pre-

FIG. 3. Phase pnrtr:llts illustratlnJ!; stable limit cycles.

~, c~1',

A. Description

Thts scenario is the oldest one, ir we disregard the
Landau scenario (see below for a dlscusslon of why this

'For other formulations of this point o( vIew. sec Lanford
(19811, Ituel!t' (I9t\O), 01- Loren? (l!lG:J).
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crossing the unit circle). This means that the steady
state (a constant, now or an equlllbrlum) becomes oscil­
latory; we may Bay that some mode has been de­
stabilized, Assume that this happens three times In
succession, and that the three newly created modes
are essentlall}' independent lsce Ruelle and Takens
(1971) lor details I. Thus the "If" p:1rt 01 the scen:trlo
I.. at; lihown In Fig. 5. tlnoer all the~E' a~8umptinn!{,

the scenario of Ruclle-Takens .tsserts: Ii s/nlnj,(c
al/rador may occm', Its occurrence iR "likely" In the
rollowinR sense.

d I this pA cr
" c

r lh lhII &TAB LE Immnry 0 • ree Bccnnr as ( • USBC n p
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Typical bi rurcollons HopI Pilchtar' ( in"",,1 Soddl,-nod,
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Alrlr :3 bifurcations ,'ro"Gt 0" '"""ill cOlCad, or puiod dou- In"rmlll,nl "on,lIio" 10 chao,.MolI'I p"I"ome"o"
-liZ

froclor
..
probobll

..
bli"OS wilh \1'11 .... ,.01 lcali"o or po- Lomlrtor phctt losh ..-(~-ftc).

(4 ,6692J-1, remt',r '1011,111 III - JArD-

Mlasur,m."' p..., ,peclrum, torr,lollan Pow.r "Ichum ,ubhOrmoncl R,ol-lim. 171101...,.171,""
- 13,edb bllow priced ina Ilvll

Smdl noin no inUulnce 1'1101'1 p'tlods dlsopp,or Inoi,. I,,,. Iiml of 10 mlnoril)' sea", 01
-112 ""l

'I mut' QO doWf'l by 6.6Z '0 ,., Ip-ftcl Tlullp-Pcl 'or

one morl p,rlod doublinol naiu of Iiondord deviation CT

Is an Inadequate scenarIo) (Ruelle and Takens, 1971).
In abstract mathematical terms, the situation is as l

follows.

Theorem (Newhouse, Ruelle, lakens. 1978).' 'Lei ,I
he a camilanl I'ector field on Ihe lon,s r" e Alt/z". If
,,~ 3, cI'er.\' C' lIci!Jhborhoud of v conlaim; a vedo,"
field v' willi U ~lrml.lo!e Axiom ...l o/lrador. Ij II ..: 4, we
may lake C" ins/end Of c2•

For the definition of Axiom ;\ \'ector flelos, set'Smnlt'
(1967).
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B. Assumptions

It Is now easy to describe an "H" tor a scenario which
implies the conditions of the theorem and hence its con­
clusion,

Asswllc a system x= F,,(x) has a steady-state soluUonxp
tor }J < IJ to Assume further that this steo.dy-state solu­
tion loses Its slabllity through a Hop! bifurcation (Ruelle
and Takens, 1971) (I.e., a pair 01 complex eigenvalues
of

8F(tl IA
IJ

.... .:.:.......Il..

eXJ a" .. ,

crosses the Imaginary ....Is. or expl!" lias elienval""s

'Ruelle and Taken!!'~ orlPnal work (1971) Meded foor d l r,an­
slana. This was rcduocd to three by ualn& all Idea of. Plykln

n",. Mod. Ph"". Vol. 63. No.4. Port I. OCUlbor 11181

C. Interpretation

In the space 01 all dUlerentla1 equations. some equa­
tions have slran~c attractors; others have none, Those
which do Corm a set which eOluOllns a subset which is
ope/l In the C· topolOKl'. The closure of this open sot
contains the constant vector fields on the torus 7".

O ~'- -~-

- ,). l-e.-,1OtlQI 110...,.

"';'.,.
FlG.5. Thno critical \"alaes of the par::anll!ter "'-.~.-':'. :uxf
the ....ocl.ted motion In phase'! 8p.t.Oe,
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F1G. i_ Pow('r spectrum of veloclt)" In rotating cyllnders
drin'n at lhrce dlff('r('nt speeds_

FIt:. tL Power speclrul11 of he:ll Iral\flpurt al different hl';lllnJ,\
In Ha)"I('I~h-13~n:trd cOO\'Cl'llon,

view, from which these figures are taken, see SWinney and
Gollub, 1918). They can be Interpreted In the sense
of the Ruelle-Takens-Newhouse scenario. It should_
also be stressed that measurements oC time correla-

I.~

II.~
I,

Eckll\8M: R-SI to turbulence In disll~1vw dynlmicll IYItemI

bov<>60' J r:I 0 ,,"oil
"t'9hOO'hood 01 w

~xperimental evidence Ind Its measurement

In order to describe how the appearance of the sce­
arlo manifests itself in measurements and to show the
leasura,ble conse9uences of the presence of strange
~tractor, let us reformulate the scenario: If a syslem
,dergoes Iilree HoP/ bifurcatiolls. slarti,ig [rom a
fntiolU1ry solution, as n /Jarameter is varied, then
is likely Ihal Ihe s)'slem possesses a sl1-allgc at­

·aelor with sensUi"il)! to initial com/itions afler the
!i nl bifurcation.
The power spec/rum oC such a system will exhibit
Ie, then two, and possibly three independent basic
equencies. When the third frequency is about to ap­
'art simultaneously some broad-band noise will
'pear it there Is a strange aBrador. This we inter­
et as chaotic, turbulent evolution of the system.
:periments have been performed on Ule Cormation of
ylor vortices betw('en rot..1.tinR cylinders and the
,ylei~h-Dcnardconvection (see Fi~s_ 7and 8; rora re-

,6. Mcasun' tlll'orcUc situ:llion for Iht, ItUClll'-T;lkclls­
,house flcl.',,~rin.

'lPC1of 1000~h ..,P, "0"1­

---:: '''Of'lQt bthov'O'

I properl)' of dUferenl1ai ~..tlon.l holds In an open
, then If we val")' the coerflelent. of the differential

FlIon.l .ufllclently lillie, the property continues to
t1'" ThUB the strangeness of the attractor l8 amble

(g~lfer small perturbations of the dynamical 8y&tem; tn
other wOrda, It ,_ not exceptional. We can compare
thl8 with the LAruiau .cercario (Landau and Llfshlm.
IQ59, ID, Sec. 103), which assumes that the now on the
three-tortll (and In fact on all u-torl which appear aner
further blfurcallona) Is the constant velocity flow. This
18 a much more stringent reqUirement than the one of
the Ruelle-Takens scenario. While the lalter Is rul­
fllled on an open set of vector fields, the former does
not hold on any open Bet of vector fields and Is not even
generic, I.e., It does not hold on any countable lnter­
.ecllon or dense open sets (called a residual set). But
lenericlty is perhaps a minimal w., of s.,lnp; that
,omethlng is likely, and thus the Landau scenario is
lot Ilkely. (In partlcular. If two propertles are p;enerlc,
:hey hold Aimultaneouslv on a reSidual Rei, and rE'­
,Idual sets are more or less the weakest posslblllty
'or this slmullanelty property to hold.)

Returning to the Ruelle-Takens scenario, we add a
vord or caution. While It is true that the set of vector
ields with strange aUractor is open near the constant
·ector Held., this does not mean that this set is large
n the measure theoretic sense. We can visualize the
,ituation In the space of vector fields near the constant
ector fields as in Fig. 6.
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B. Assumptions

1
11m -,- loglll, - /'.1 =- log6.
,-- J

One even has

1/',-11_1- const6-' as j-~.

C. Romar1<.

(1) TIle bifurcations of the orb II stru~ture ·~f-P. ~~e'"
pitchfork bifurcations. I.e., a stable fixed point loses
lis stablilty and ~ives rise to a stable periodic orbit lUI
the pammeter is chan~ed. This corresponds to a cross­
ing of one ei~envalue or Uw tangent map DF jJ through
-1 (Fig. 10).

(2) One can sho..· that any suitable property (such as
bifurcation) which can be described by a coordlnale
il1:dependent codimenB Ion 1 surface tn the space of func­
tions on D .. will double Us spatial structure in phase
space in the same way as Ole periodic orbits, I.e., it
will split In 2,4,8, .•• pIeces. Typically, such sur­
faces are given by a Blnjitle functional relaUon, e.g.,
fixing the value of a derivative at a fixed point.

(3) A simllar scenario exists for area-preservIng
(~Hamlltonlan)map of the plane tn ltself, but with
P.721. .. as the universal constant instead of
6 =4.86920... (Collet, Eckmann, and Koch, 1980;
Greene el al .. 1981).

(4) The scenario can be 8ome\\'hal extended under
the assumption of very slrong friction. This has the
effect of making the situation very almllar to the cUe
of maps of the Interval 10 Itself. Then one can show
that If the system has transllloM from perloda 1 10 2
and 2 to 4 at valuE'S III and ~12' reapectively, a lltable
period 3 with a LUI1. basin of attraction near

The scenario assumes fhaf P II exlends fo an analy/Jc
/,mclioll on lJ.., and Ihnl fhe Cllrl't' JL - P II Irnlls,'ersolly

crosses lV. near4t .. ,
Under these hypotheses one can assert
(1) The family P II has an lnflnite sequence of period

doubllng bllurcations of stable periodic orbits at pa­
rameter values Pol (period 1-2), IJ 2 (pcrlod 2-4), ... ,
PoI'I (period 2 J_2 J ' I ) (the sequence mi~ht only start

at some hl~h n.
(2) lIm,_.oll,=I'. exists.
(3) At II. =11_, Jl I1 has an aperiodic attractor (a stable

periodic orbit of "period 2 ..... ). The action on the at­

tractor is erRodlc. but not mixing (In particular, there
Is no se"sHive dependence all inltlal conditions),

(4) There Is a universal number 6 =4.66920... such
that

"

PIO. 10. KJl:ample DC • pftcMork blfurcaUon (or a no".

o

tions (measures or .Ii-tuples X,. -"Pit ...• -"'."_1 as a­
lum'tion of I) are v('ry useful indicators about Hows tn
general (TakE'nB, 1980; Raux at al .. 1980), and allow
one in some sense to reconstruct tht:" dynamical sys­
tem.

V. THE FEIGENBAUM SCENARIO

A. Description

We s!:lrt with the description of a general framework.
Assume we are In the presence of a one-parameter
famlly of vector fields v. In R· (we conJeclure thai the
results extend to the' case III =«1), where Il 18 the pa­
rameter. Assume each vjJ has a periodic orbit, and
assume there is a piece ot hyperplane of dimension
m - I, transversal to this periodic orblt. for which the
Poincare map p. can be defined (Fig. 9). The scenario
will make predictions about these Poincare mapa and
hence for the corresponding flow.-

Now fix m, Two objects, ~ .. and W., whose existence
Is asserted by a mathematical theory, will be offunda­
mental importance In describing the scenario, namely,
there Is a neighborhood D. ofl0,1 Jx {oj .-. In C·-I and
on this neighborhood an analytic function 4>. :
C"'-1_C·-1 whose restriction to R--1 Is real. In the
space of analytic functions on D ... (With, for example,
the supnonn) there is an open disk W.. oC codlmenslon
one, containing: ~ ... The existence of the tu'o objects
~ .. and W .. 15 assure-d through an extension of FelRcn­
baum's orl~IJUlI th<'Ory (Fel~enbaum, 1978. 19790)
(m =2, onE'~dlmensional r•. .lps) by Collet, Eckmann,
and Lanford (1980) and Collet, Eckmann, and Koch
(1981).

E. Tho influonce of noi..

The Ruellc- Takens scena rio is not destroyed by the
addition of small cxtcrn.:ll "olse to the cvolutlon equa­
tions. This result, whlch is somewhat counterintuitive,
will be explained In more detail In the fhUlI section.
In erreet, the chaos of the scenario is so stronR that
order cannot be nccidl:>ntally established by small noise
terms, much like a very attracting fixed polnt is
locally not much altered by noise, and Rlobally there Is
at most a smail probability to chan~e stochastically
Crom one baSin of attraction to another (Kifer, 1974;
Ventsel and Freidlln, 1970).

....... '~", ... ,"'. " ....u .... ~ \V l ............. e" ... ..: ,,' V'3)' ' •.Howe Vyl'l.IlI""'cJ' ;:,y;)lt:II'::I

FlO. 8. Phaso porLra.u lUu.~aUDC Poiooare .eoUoa ot "•.

"rb... Id... w." flnt uplolllod In Ecl<m.... U9IMll. 8eo
0110 COUel olld Eokln.... UNOI.
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Maurer (11180)'· lor the heal tranapor! by convection
of liquld helium, heated from below, show•• sequence
of period doubll~ bifurcations. The power goes down
by about 10 db per doubling, bul lhe apparent dls­
crep;a.ncy with the prediction of the 6cenarlo may be
nscrlbed to not yet haVing reached the asymptotic
regime (Fig. 12). The prediction (5) above has recenlly
been seen by Libchaber (1981) IFig. 12(c)J.

O. "The inlluencs 01 noise (Crutdlfield el aI •• 1980)

Again we postpone a detailed descrlpllon of the In­
f1urnc@ of nOlAf!'. Sinre fhp Rfru("lurr of thf' ~r'octir

orbit must acquire finer nnd finer lenKth scales as
the parameter approaches ~_, it Is clear that even
very 8n1.1.11 noise will eventually pl:ly a role. There
exist esllmates on the relation between Ule noise level
and the maximal period which can be obs<.'rved. This
Is of course related to the pow('r spectrum described
above.

I°See COllet and l::f'km;,u,., (1980), lip. :J9 and 4t for tl Itst or
te-sts. In panlcular, hC'ilutirul c,'tperlmC'nts on liquid helium
were pt"rformC'r1 hy Li"·'bnl,t"r and M:lUI'f'r (I9RO),

VI. THE POMEAU·MANNEVILLE SCENAF.lO

A. Description

This scenario (Pomeau and MannevilIe, 1980;
Manneville and Pomeau, 1980) has been-correctly­
termed transition 10 turbulence thrall}!" intermit­
tency. Its mathematical status is somewhat less satis­
(actory than that or the two other scenarios presented
here. This Is because the parameter region the sce­
nario intends to describe contains an infinity of (very
long) stable periods, and because there is no mention
as to when the "turbulent" reglme 18 reached or what
the exact nature of this turbulence IS. We nevertheless
examine it here because of its esthetic and conceptual
beauly.

While the two othcr scenarios have been associated
with HopI bifurcations (Ruelle-Takens) and pltchlork
bifurcations (Feij:tcnbaum), this one ls associated with
.a "saddle node blfurcallon," l.e., the collision of a
stable and an unstable fixed point which Ulen both
disappear (inl()Compl~x lixed points).

The general idea is best expL.1.ined for the simple
example of a one-parameter family of iterated maps
on the unll interval, x•• , =/.r.r.). We lake/.(x)=1
-/lX', which lor /lE[O,2j maps [-1,1] inlo Itself.
The function f:. :flJo/llo/1J can be shown to have a saddle
node for /l = 'l-. For /l > I.75, /~ has a slable periodic
orbit of period three, and an unstable one nearby. The
two collide at 11 =1.15, and both have Ulen eigenvalue 1.
See Fig. 13.

For 11 slightly below 1.15, the local picture near
x=O Is shown In Fig. 14. II can be shown that II
/l-1.75 = ole) then a typical orbit will need ole''')
iterations to cross a fixed small x interval around
x - O. As long as lhe orbil is In this small interval,
an observer wlll have the impression of seeing a
periodic orbit of period three. Once one has left the
small interval, the Iterations of the map will look
rat1ler like UlOse of a chaotic map la consequence of a

o

·00

.' ~ IXpeeled.

jAlter the cascade of period doublings, one expects
I~ the accwnulallon point ~_ an i,?Vf1T6e cascade of

: periods.
. ~,... phyolcal interpretation 01 the Feigenbaum sce­

Aarlo can be brought to a more appealing form than for
the Ruelle-Takena scenario, becauae the statement
dea15 with all curves which cross W. transversally.
On tho otller hand, It Is only a ollliement about a very
small parameter range, and point (B.4) doscrlbes no­
thing more tban a critical index.

D. Int8rp~n

In an experLment, if one observes 8ubharmonlc bi­
furcations at Jl lt JL J • then, accordlng to the scenario,
it is very probable Cor a further blfurcatlon to occur
near lJ, =IJ! - (JJ. 1 - ""2)/6, where 6 =4.66920.... In
addition, U one has seen three bifurcations. a fourth
bLCurcation becomes more probable than a third atlcr
only two, etc. At the accumulation point, one wl1l
observe aperiodic behavior t but no broad-band spec­
trum.

E. Experimental evidencs

This scenario Is extremely well tested on numerical
and phystcal grounds. The period doublings have by now
been observed In most current low dimensional dy­
namical systems (Henon map, Lorenz equations, forced
osclllalor with Irletlon, etc). Experiments with liquid
lJelium have confirmed the predictions.

F.~~ment .

In all numerical examples, the blJurcatLons are 'found
by a direct analysis 01 the orbits and 01 their stability.
The experiments on liquid helium produce power spec­
tra. 'Felgenbaum has gtven a nice prediction of how lh~
power spectrum evolves 3S 3 function of the parameter
(see Fig. 11). At each successive blfurcatton a new
frequency is born. The mean of the squares of the new
amplitudes is then expected to rise until it stops about
13.5 db below lhe level of Its predecessors (Feigen­
baum, 1979b, 1980j Nauenberg and Rudnick, 1981;
:ollet, Eckmann, and Thomas, 1981).

The measured power spectrum of Llbchaber and

~,-I----'.o---'r--'-o'~J~,;J .J~,0

"eQ\MlIC,
FIG. II. Numerical prediction of the shape of the power spec-
trum.
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FtG. 13. Graph of f: lor three values of IJ.

Ie I

other hand, we also conjecture that a modification of
the proof of Jakobson (1980) would show that truly ape­
riodic behavior with sensitivity to initial conditions oc­
curs Cor a set of parameter values oC positive Lebesque
measure near 1. 75.

B. Assumptions

We can now formulate a rea.onable ver.lon or till.' "
.cenarlo for general dynamical .ystem., " ", '

Assume a one-parameter family oj dy~mical s)'stems
has Poincare maps close /0 Q one-param./~r family 0/1 .

maps of Ihe inlerual, and Ihallhese map. halHl a slab!!,,:
and unstable fixed poinl which collide as Ihe parameter.,
is I1aried. Then. as the parameter is varied further to
Il from the critical parameter val"" Il,' one UJiIl .e. _' <
ilttermil1enLlJ tllyblllenl behGllior of random duration, ":
with lamina" phases of mean duration - (11.1 - J.1 e l-11J

) in
between. . '.

C. Interpnltation

The dlrtlculty with thl. scenario Is that It does not"
have any clear-cut precursors, because the"unstable
fixed point which Is golnc to collide with the .table fixed
polnl (respecllvely periodic orbit) may not b8 visible.
One can think of two ways out of this problem. The
tlrst would be that Increa.lngly long tran.lents can be
ob.erved before the two fixed point. (periodic orbit.)
collide. The second klnd of precursor is a cascade of
int1crse pitchfork bilurcaUons, and, at the "end" of.
this, the Intermittent transillon to turbulence (Collet
and Eckmann. 1980),

'IllJ,.,------+-I---------~--_,
I

....0... Hl '-60 ...

f1G. 12. Po.....or spectra lor t\l,"O values or heAUng. (c) Cbser­
vatlon of the noley period 8.

H'

(01

" i
i, 1.,

•"

FlO. 14. Oraph of ,: In u... \OleinUT "f the origin.

result of Misiurewlc%; se. Collet and Eckmam (1980).
Theorem 5.2,2], Thus this map can be called lnter-

, millenlly turbulent (see FIiI. 15).
The problem with this argument come. In the .pllt­

ling Into two reglono. It Is true that the Iterated map
may have .ensltlvlty to Initial condillon. for x E .mall

, Intervals around contact polnlB. But thlll de.lablllzlnc
e!fect may be lo.t -.:h.never one pa•••• near the con­
tact point. In l'llct. w. conjecture that thl. will happen
ror an infinity or param.ter value. n... r to, and lust
below Il -1.75. For the.. parametu nlue., one .... lIl
have (very long) .tabl. periods, but no chaos. On the

I
~------~
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~. Experimental a.iden,,"

Pomeau and MannevUle based their work on observa­
tions for the Lorenz system. Intermittent transltlone
to turbulence can be seen In many physical experlmente.
TIle only ones which seem to agree with the scenario
described above are thoee oC Maurer and Llbchaber
(1980), Berge et al. (1980), and Pomeau et al. (1981).
TIley exhibit intermittent transition 10 aperiodic be­
havior. but more work needs to be done to show that
thpoq are really instances of the scenario described

~I fl· .
E. Measurement

We have already discussed the difficulties of delecllng
the scenario. We add here only that one should not look
at power spectra in Otis case, but mUler at real-time
measurements.

F. The influence of noise

As the parameter value at Which' the two Clxed points
collide is a critical point, the influence of noise is
relevant. This has been first exhibited by Mayer­
Kress and lIaken (1981). A more detailed analysis oC
lhe lW1neling through the region of contact shows thal
certain scaling relations hold between the noise level
and the distance (rom the critical parameter value
(Eckmann ('I 0/.. 1981).

VII. THE INFLUENCE OF EXTERNAL NOISE ON
SCENARIOS

It seems to be a widespread opinion Ulat external
nolae Is retevant

(a) for Ule appearance of (even weak) turbulence and
chaotlc behavior and

(b) for the form, amplitude. and spectrum of the
tu~ence. once it has appeared.

T~~regOlngdiscussion of attractors and of Ute sce­
narios should have shown that this opinion is wrong
for case (a)-et·l!odiC bcllal'iur is possible, alld quite

common, for d;,.,wmical equatiolls u'i/lloul extenml

noise. In this section, we shall examine case (b)

U>d aee tllat lbe nature of chaollc syolel'lUl may be
lotally ln8enolllve to omall external nol... The eye­
temll most sensitive to noise seem to be determln1.lltlc
oyetemo near tnlMlllon (blfurcatlon) points.

This Inseneltlvlty 10 noIse Is surprising and at flrot
elgbt coun~rlntuillve. It has been discovered by
Kifer (1974), whose work Is an extension oC. paper
by Ventsel and Freldlln (1910). Klfer's theorem states
that for a dynamical system with an Axiom A attractor,
which has an Invarlant measure v, the following lB true:
GIven any reasonable small noIse, goIng to zero with 0,

consider the corresponding lnvarlant measure V n •

l Under suitable assumptions. tile measures vand v ..
are given, for dlscrete mappings.f as follows:

J 1 .~

dv(x)h(x) = lim - L hV'(v)
,,-_ 11 .~o

for Lebesque-almost every y, and every continuous h.1
The density o( the measure VOl' given a nalse with transi­
tion probabliity Pu(x, y) [and an Itemlion scheme
x lI • 1 =f(xlI ) + Eo(x.. ), where (o Is a random variable with
density P.(x., .)J satisfies

v.(x) = !p"V(y), x - f(y))v.(y}iy.

Theorem (Klfer, 1974). Vo converges weakly to vas
0- 0 (i.e .. all cXIJcctaJion vaJlIes Of b01mded obserrmbles
converge ).

This lells us, then, that If the noise is sufficiently
small, the corresponding probability distributlons (v
and vol are as close to l'ach other In the weak-.
topology as we wish. 111 is result is astonishing, be­
cause any nontrivial (strange) Axiom A attractor Is full
of hyperbolic points. and one could think that a small
random deviation might get amplified away (rom any
deterministic path. But the celebrated "shadOWing
lemma" leads to a dUCerent conclusion. With high

~ probability, the sample paths of the problem with ex­
ternal nolse follow some orbit o( the deterministic
problem arbitrarily crosely. This hounds va by V

(up to small errors). On th£:' oUler hand, the central
limit theorem shows Ulat v is bounded by vo: For
every deterministic orbit, UHfre are many sample
paUlS which follow it miller closely.

We next discuss the Influence of noisc on the Feigen­
baum scenario. It is known (Collet, Erkmann, and
Lanford, 1980; Collet dol .. 1981; Feig:enbaum, 1918,
t 979:1) that Ule smallest scalf'S of the period 2" are of
approximate size 0(,\ 2"), with ,\ = .3995 .. (another
universal constallt). TIllis it is obvious that even sm<lll
noise can wipe out the finest structures of the orbit,
and hence the orbit itselt, provided" Is sUfficienlly
large. The question then is how la rge the noise may
be if we want to see a pcriod 2". Crutchfield el al.,
(1980) give a heuristic argument WiUI the (ollowing
conclusion. Denote, for each k, by (. tile independent
ranclom variables with mean zero and density p. Let

f/J be a one-parameter family of maps of the interval,
WWl 1.1. 50 chosen that the accumulation of period
doublings is at IJ. ~11.- =0. COllsiclC'(· the stochastic
iteration equation

x t +' =(II(X.)"'~ •.
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with ~ .0.39953...• 0=4.66920•..•• =6.619•... In
words, tn order to see twice the period, the noise
must have a v:lrlance about I( times smaller. lNote
that this is very close to the ratio of the amplitudes
between a frequency and its 8ubharmonic, which has
been estimated by Fcl~cnbaum (I 979b) to be aboul
6.60..•. 1

In the Pomeau-MannevUle scenario, the influence or
noise can be modeled as follows (Eckmann et al .• 1981).
In the "laminar" TE'gion, Le" whE'n the iteration steps
arc small, one can model the iteration scheme

I

where w ls white noise, and &' :::!&, 0' aaExp((2)1/J. The
estimated time to cross the laminar region La then easI­
ly seen to bc a slopping Ume lor the dlllercntial equa­
tion, and an analysis of its solution shows that the
fraction of time spent in the laminar region scales
approximately as [. -thT(o'/c."lt), where T is a universal
function.

See Table II for a summary of these titree scenarios~
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