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A thermodynamic formalism is exhibited that is the canonical version of Halsey
t'l aCS microcanonical formulation. This formalism is applied to a four·scalc
Cantor sct and it is shown thai the singularity spectrum fails to uniquely encode
the underlying dynamics.
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Some Characterizations of Strange Sets

'Iilchell J. Feigenbaum I

1. INTRODUCTION

Halsey {'{ 0/'" have introduced a method of extracting a speclrum of
sealings from experimentally or numerically generated slrange sets. We
shall show that this method is the microeanonical version of the canonical
Ihermodynamie formalism of Ruelle 'I 01. ," Hereafter we shall refer 10
Halsey e1 al. as MP (microcanonical paradigm). and to Ruelle e1 al. as CP
Icanonieal paradigm).

aUf presentation consists in constructing the canonical ensemble in a
form suitable for theoretical calculations on a dynamical system. relating it
10 Ihe microcanonical formulation. and producing a conversion dictionary
between the standard CP vocabulary and the M P functions as defined in
Ref. I. We Ihen demonstrate that in the simplest nontrivial example, the
Cantor sci characterized by four scales, MP depends only upon three
independenl combinations of scales, and thus fails to uniquely characterize
Ihe sel.
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2. THE SINGULARITY SPECTRUM ACCORDING TO CP

Consider a dynamical system whose attractor can be hierarchically
presented as a set of N" intervals W', k = I,.... N,,, of lengths Ai"' at the 11th
level.

'.

'.•
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(3.3 )

Observe that
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.1,

(3.4 )

(3.6 )

£,=0, 1(3.5)
,
£,£,. I,

=a~"[ t (a,/a,)a,]"
,-0

= (a~ + aW

T = (a~ a~)
a~ C1~

..
F({3) = -In(a~ + a~)f1n 2

e-f1fllJlln2=af" L (a2/u t)IlI:.7£

r'I.··..[.1

(.1'"'/.1'"- ")'1 = a/l(c C ) = a'l(o c') - T," ,,- I - <-, - c',

£1(111(£....... £:,}

= a7(a2!a I )r:~[(C1 Jla I fE;- I[(a I a.da2(T J):[~

As in (3.3),

,Equation (3.4) together with (2.2) and (2.3) reproduces the graph of I(a)
ofMP.

. where

Denoting the number of iterates of the critical point by
1=£, + ... +2"-'£", we have that £,,=0 denotes the first quarter of 1

through N", " and £" = I the second. Thus. a, and a, represent the leading
two-scale approximation to the scaling function of Ref. 3, hereafter referred

': to as SP (the scaling paradigm).
By (2.1),

.~ ~.:

: ••" ..., a4 is just the leading four-scale approximation to the SP scaling
.' dunetion a(I), with a taken as constant at a; on intervals of 1/8 of N". ,.
t

(111

(3.2)

(2.1 )

£,.=0, I

N; ""'= L IAi"'I~,

<X = 1/P({3) (2.2)

[= (3 - F({3)fF({3) (2.3 )

q = -F({3) (2.4 )

r = -(3 (2.5) or

D,={3/[1 +F({3)] (2.6)

A''''( ) _ "( I )I:;'a £,"""£1 -U I U 2l G••

N,,=2 tl

Recipe. Construct the canonical "free energy" according to the
definition

3.1. Two-Scale Cantor Set

Consider a Cantor set whose 11th level consists of intervals

3. EXAMPLES

where we understand that asymptotically in II, F becomes independent of II.

The relation of the M P functions defined by Halsey el al. to the CP quan·
tities is given by the following dictionary:

By (2.2) and (2.3) we mean that [(<x) implicitly parametrized by (3 is [(<x) of
M P. By (2.4) and (2.5), a plot of q versus r(q) is precisely F({3). Since q ver
sus r is what is experimentally available, and F is the natural theoretical
object, one could probably dispense with [ and use (2.2) to talk about the ,- . 32 F S I.... .. our ca e Contor Set
"range of scales."

Observe in (2.1) that, since 1.11 < 1, F({3) is a monotonic increasing Consider a Cantor set whosc Illh lcvel consists of intervals charac-
function diverging with (i at ±co. It has a unique zero, which is an upper "terized by four scales
bound to, or the HausdorlT dimension itsclf. By (2.4) and (2.6) this is Do·
By (2.2) and (2.6), D±~=<x±7.'

We shall show that (2.2) and (2.3) arc the quantities defined in MP,
while (2.4)-(2.6) arc internal consequences of MP. However, first we shall
explore CP with two examples.



to specify a definite value of h. and so .d.
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(4.6 )

(4.3 )

(4.5 )

(4.4 )

where fJ = s(M

1= s(ji)lji

hi""''"' II

N;;FI~I=L NJ hd-f1Jl

"

a = liji.

F= (iji - s(ji).

Consider the microcanonical ensemble in (4.1):
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defining the microcanonical entropy S(Il). Thus, (4.1) becomes

The microcanonical version of F is then

and Legendre transformation.
It is now easy to see that a and I of (4.6) arc just those of MP. At

h=ji. the length of an interval by (4.2) is /= N;;". Since each piece is
visited with probability N;; '. this is p(/) =/'''' '" I'. The microcanonical sum
in (4.3) is the number of intervals with a = liji. which in MP is /-JI>'. This
verifies the second part of (4.6). Thus, M P =CP.

5. CONCLUSION

determines the maximizing ji(fJ). Properties (2.2) and (2.3) now follow from
the identifications

In practice. MP is a convenient tool for extracting three numbers
, characterizing a strange set: the Hausdorff dimension, the minimal scaling,

and the maximal scaling. While we, too, believe, along with Halsey el 0/.,
'.. that MP represents a significant breakthrough in numerical analysis of

strange sets, M P encodes only a small part of the metrical structure of the
underlying dynamics.

The standard thermodynamic CP formalism is the correct machine for
the theoretical detrmination of M P quantities; formula (3,8) would have
been very hard to come by if computed in M P. CP makes it very clear that

• afull metric invariant. such as the SP scaling function <1(t). is the necessary
theoretical ingredient for CP to transform into M P. Whether or not <1 is
ugly and perverse turns on one's viewpoint. Since <1 is defined only on the
Cantor set-which is all that we arc describing-it is perhaps worth noting
that <1 here is not only continuous. but quite differentiable on the strange
set S.

In this connection Ref. 4 might also be of interest.

(4.1 )

(3.8!

(4.2)

(3.7)
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I ,,- I

- L CiC i + l
/I I

and

F({i) = -In i.({i)/ln 2

I "- Le;
/I ,
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where

-In.d~"'/lnN" - h(m, •... ,m,)
"- ~

We see by (3.6) that T. i.e.• the SP scaling function. is simply the transfer
matrix of the Ising model that (3.5) produces in canonical ensemble when
substituted in (2.1).

Denoting the larger eigenvalue of T by i.({i), it follows from (2.1) that

4. THE CONNECTION OF CP TO MP

Starting with (2.1). write

N"-fHI>=LN-P"( L )
II I.:

Ir!ml ...·.m/l_'.

Thus. the theoretical I(a). D q or whatever. is now available for this four
scale Cantor set. The reader must realize that period doubling dynamics
does produce four measurable scales. The thermodynamic quanity F.
however. depends on <1, and <1, only through the comhil/atiol/ <1,<1,.

That is. the MP description I(a) of scalings of strange sets other than
the trivial two·scale Cantor set is infinitely deg('nerate over internal scales:
already in the four-scale approximation to the period doubling atlractor.
MP fails to distinguish the period doubling atlractor from the one-dimen
sional family of other strange sets with the same product <1,<1,. None of
this massaging of experimental data can justify the claim that a definite
dynamics qua metric has been observed.

where we have defined

with mI •...• 111, a sufficient set of ;1Jlellsive variables that label the kth inter·
val I~"'. We expect in (4.2) that .d~"' and N" have exponential dependence
on 1/. The relation (4.2) defines h to be the Hamiltonian per "site" 1/. In the
example (3.5) we see that h is an Ising Hamiltonian, and requires two
intensive parameters

,



924 Feigenbaum Journal of Stolutical Physics. Vol. 46. Nos. j/6. /987

..~ "'
. ;;11

'1'"
~lt
"

ACKNOWLEDGMENTS

This work was done at the Chalmers Technical University. I lhank
P. Cvitanovie for hospitalily, mashed pOlatoes, and lhal alternating
encouragement that eomplemenled my nagging will lo produce lhis paper.

"

REFERENCES
.,

I. T. C. Halsey. M. H. Jensen. L. P. KadanofT. I. Procaccia. and B. I. Shraiman, (0 be
published.

2. D. Ruelle. Statisrical A!t'chaflics. Thermod)'fItmric Formuli.ml (Addison-Wesley, Reading,
Massachusetts. 1978); E. B. Vul, Va. G. Sinai. and K. M. Khanin. Uspekhi Mar. NOllk 39:3
(1984) [Russ. Ma/h. Sun'. 39:1 (1984)].

1 M. 1. Feigenbaum, Commun. Math. Phy.t. 77:65 (1980).
4. M. J. Feigenbaum and D. SuJlivan. to be published.

;

Scaling Spectra and Return Times of
Dynamical Systems

Mitchell J. Feigenbaum'

Re{'fj~d December 5. /986

The grand canonical version of the spectrum of singularilies formalism is
presented. relying naturally upun certain Markov transition graphs. The struc
ture of a graph is simply determined by the close return times of the dynamical
systcm described. Thus. an intimate connection exists betwcen the shape of the
singularity eurve and a small but inlt:resting set of dynamical properties.

KEY WORDS: Spectrum of singularities; Markov graphs: return times;
scaling function; dynamical systems: thermodynamic formalism.

1. INTRODUCTION
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In a previous note,'" hereafler referred to as CPo we realized lhal the forI.' malism of Halsey el al. ,,, is a mieroeanonieal version of a canonical for

. mal ism intimately related to HausdorlT measure. In CP we discovered lhat
,a the scaling function or Ref. 3 for period doubling serves as the lransfer

matrix for a ID Ising model. The number of siles II in CP is the level or
.\1, recursive eonstruelion of the atlraetor,' so lhat one lakes the lherI? modynamic limit 11 -+ co to exactly recover the attractor. Since com
; .- putations performed at finite Il can have constraints on relevant com-

I, binatories, it is natural to follow tradition and eonstruel a grand canonical
: formulalion. We do so, and immediately realize lhat the grand sum is
~ obtained by summing all paths on a graph with directed Iinks-thal is, on
". a Markov transition graph. It is easiest to fix the ideas through example.

,'I,; We choose golden mean rotation for this purpose.

'''i.,
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(6)

,

18 J

19)

(7)

G;,I = In : + lim (- ~ II In /I) = In :
I, ~ II ::11

In a F(/IJ = In : + lim
,,- ,

F(/II = In :1/1) 1n II

= L:" L ILl''''I''" ..... c,)I"
" "'1·· ..·'.,

III/i. :1/111=0

Next. substitute (I) in 12):

/I1/f. : I = 0
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With N,,-a", (3) becomes

and 1/ - 0 as " - x. i.e.,

so that (4) becomes

Together with (6). we thus he,,·e the rccipe

where

where a logarithmic basis c, ..... 1:" labels the index t of a particular 11th level
Interval. For the case of a dynamical system. t is simply the number of time
steps required to image some one d:t ' into A:"'. and we write

I

(I)
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where F,,(fl) - F({I)
,,_ I.

From CP,

2. GRAND CANONICAL FORMALISM

Let me summarize what will be done. The exponential of the free
energy at the I/th level of construction is a sum of interval Icngths raiscd to
power {I. Each such length is the product of /I appropriatc scaling factors.
This sum is multiplied by:". and /I summed over. This mcans each scaling
factor is to be multipled by:, and arbitrary products of successive scalings
formed. In successively more exact approximations there arc a finite num
ber of distinct scalings which can follow one another by well-defined rules.
Thus, we have a graph whose nodes arc to be correctly linked by directed
links, each link having weight: times a scaling (a definite number) to the p
power. All paths through the graph arc to be formed and summed. thereby
producing one over a characteristic determinant which must vanish for
/I - 00. This occurs for the zero :(fl). which is simply the inverse of the
leading eigenvalue of the transfer matrix, and so provides the free energy.
Elementary circuit manipulations make calculations trivial to perform.

Through example, we will observe that the number of nodes and
allowed links on a graph arc determined by the structure of close return
times. The most prominent properties of the free energy (or f versus.
curve; for example. a mm and Cl ma • of Ref. 2) turn oul to depend upon the
lowest order cycles on the graph. Thus, a deep connection is seen to exist
between the nature of close return times and the ensuing / versus a curve.
That is, with no morc theoretical information than the form of close
returns, phenomonologically correct f versus a curves arc determined.
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(10)

III)

T 1 < .. < T"

(1 ,,( I:" •...• I:. I
J ..... I:I)

1 ..... 1:.)

where the T, are successively longer close return times.
Let us write

" The poin! of Ref. 3 is that the sealings (J" depend successively (exponen
.. t,ally) more weakly on the lower ,,·s. and become independent of /I

'; . asymptotically. Just how many of "". "" , .... arc to be kept determines sue
.. cessive approximations. By Refs. 3 and 4 for period doubling and Ref. 5 for

~ : golden mean rotation, very few of the /;'5 determine excellent
(S) '. ·'·approximations.

(2)

(4 )

(3)

G = In II

,iG/iJ: = -,1/:

(' Cil :./11 =. L z"N ,; F.lfll

For ii - co, write

Defining

G = -,lin: + F" In Nn

with 0 = iJG/,),1 determining 11(z). Thus,

we obtain the canonical value of G as the summand, for II = ii, that is
stationary in II. That is,
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(14 )

(15 )

(16 )

( 18)

1-"

Figure I

Figure 2

it

iiI
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The transition graph is shown in Fig. I. Our goal is to find the sum of
paths in Fig. I starting and ending at anyone node. since the denominator
is always u of (12) independent of the node. The graph is manipulated by
the elementary rules shown in Fig. 2.

It follows by inspection that

where u, denotes the first approximation. Observe that '" depends on just
two parameters, 0'1 and C12C1J. In fact, it depends on just 0"1' To see this,
recall that

where d H is the Hausdorff dimension. Since rotation covers the entire
circle. dH = I. According to (7). (15) implies that (14) is satisfied with

·P=z= I. so that

'.

(12)
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u(I.O)=u,u{O. I) = u,.

II = del( I - zT)

By (8). z-'((I) is an eigenvalue of T. and (7) is the canonical result. .,
Thus, once the transition graph is drawn. F is determined within eom- '

binations of a sel of parameters that are the values 0'(£" .... , e,,_,) in the rth ~,., d:. an (14) becomes
approximation. If a theory for u exists. F is determined. If not. we have a .~.

phenomenological theory of appropriate Fs parametrized by combinations ',\ ';" 0 = I - zu~ - z'( I - un (17)

of the unknown u's. ;.~ ~_Denoting the golden mean by p [=( 15-1)/2] N =F _p-n and by
~.'i ~. (7), v J • If ,,+ I •

".l" ..

,1 .' F'(P)=pll:up'+lnlpln({1 +[1 +4 (1:,2U ,)PJ'I'}/2)
Let us compute F for golden mean rotation. This means thaI in."; u

Eq. (10). .~

where 0 stands for the state 0..... O. and so

L (I - zT);..! ex: I/det( I -:T)
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Equation (II) then says that d'n, is a product of" u's. with each suc
cessive u depending on all but the leftmost' of its predecessor. The u's thus
are transition amplitudes between one set of ttl ..... t" _, in the rth
approximation and all those 'n _\..... 'n _" " allowed under the return time
parametrization of (10). The final r factors can. with impunity. be taken to
right fill with " = O.

Equation (9) now says that each such amplitude is raised to power P.
multiplied by z. and every allowed set of such products on a graph express
ing "legal" transition is to be formed and summed. The result is then I/u.
where u is that polynomial in z so constructed. Formulas (7) and (8) now
determine F(P).

The graph depicts a transition matrix T labeled by the allowed states
of en ...., c" _,' The sum of successive products of n factors now produces
(zT)". The sum over" is thus

3. GOLDEN MEAN ROTATION

It follows that a unique representation of 1 in (10) is
where Cj + I = I -+ (;j = O.

The first approximation to u consists of two ,·s. and the values

where
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For subcritical rotation, Ref. 5 shows Ihat our first approximation is

exact with WI = p, so thai
unique cycle of lenglh 2 for 0, 1,0, I .... - I. O. I. 0..... Thus,s, and 5, can
be wrillen down 10 any order. By RG calculations of Ref. 5,

.J
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.',

(24)

(25)

(26)
In 1/2

CC mu = -1-
n G 2

and

Figure 4

In 1/2
C1 mm = In u, .

5, -1"1 -,

wilh ,,-I = -0.77... in criticality.

It is inleresting in (24) thai F, -1"1-' as 1/ - 00, because 5, is always
the product of two a's, where, by Ref. 5, " -, is I/a/ a dynamical scaling fac
lor. That is, a is well approximated as having Ihree constant values so that
(16) is satisfied, and -', - ,,-', 5, -" -', wilh ,,-' I/O/ a level-to-Ievel suc
cessive refinement. II is precisely the degeneracy of F over internal scales
Ihat produces the intuitive maximum scale at ,,- '. BUI this is a real
phenomenon: with finite data of F" .. I points, there are II scaling actions,
with Ihe maximum scale set by Ihe I/-epsilon approximation. One can verify
Ihal al this level,s, has converged 10 ,,- , to within" -no Since" -, _ 0.77,
am,. of Ref. 2 for relatively large data sels will be measurably below the
asymptolic prediction, and ils f versus , curve that of lin and not that
Or!lcc .

4. DISCUSSION AND CONCLUSIONS

To all orders, Ihis process always has two I-cycles, Ihat of 0000.00... and
11...1..., so Ihal / versus" is fundamenlally symmelric in its small- and

'.large-scale behaviors. In contrast, Ihe large scale in (14) is determined by
~.Ihe z' square term from its 2-cycle, and is hence asymmetric in its behavior.

'"With a, < a"

Selling -', and 5, in (21) to Ihe asymplotic values (24) pre·duces an
fversus" curve that changes within 1% 10 Ihe next level of calculalion,

. and in excellent agreement wilh the numerical curve in Ref. 2. We can
, obviously compute it 10 any degree of accuracy, However, Fig. I produces

a qualilalively correct result already. Lei us say why Ihis is so.
The lowest order period doubling calculation is shown in Fig. 4, so

Ihal

"

(20)

(21 )
<

"

(22) n

;'
"

. it:

(23) "

n,

By Ref. 5, 5,>5" and 5,5,> (l-s,)(I-s,), so that

~-I __ srI :-1 ..... (~)/J
1/ - -:I.. /1- + "'.

According to the notalion of Ref. 2, we thus have

In p _? In p
Ct min = In " • ):rn>lA - - I

.J n '\'2 ,
One can now go ahead to successively higher order. Rather, let us J

quickly state results about arbitrary (infinite) order. It is easy to sec from'
(12) Ihat Ihe coefficient of zn in II is the sum of all independentl/-cycles 00 "

the graph Ihat arc not decomposable inlo producls of lower-order cycles.
This contribution receives a minus sign. In addition, one adds the products .<
of all lower-order disjoint cycles (each with a minus sign to form the
product) for which the sum of lengths is 1/. From the form of legal stales, it ;'
is easy 10 sec Ihat Ihere is a unique cycle of lenglh I for 0,0,...,0,... , and a .:i:

Ot

F"b(P) =P - I

0=11,= (1-=s~)(I-='s~)-='(I-s,)~(I--,,)~

000,001,010,100,101 - ai' a" a" a" a,

and the transition graph (dual to Fig. I) is depicled in Fig. 3. Manipulation
produces

0=11,= I-za~-='(a,a,)~-:'[(a,a,a,)~-(a,a,a,)~] (19)

0,

Figure 3

Employing 0 =11,( I, I), and defining

and Ihe f versus" curve degenerales to a point f =" = I. For criticality
UI ~ 0.47 and F is nontrivial, with a qualitatively correct / versus cr curve.
Let us write down Ihe second approximalion before commenting.

We now have the legal lransilions

.1

,,

•,

,
j
1

j
I
I,
)
1

1
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All [versus a. curves loosely resemble one another. They qualitatively
differ most noti~eably through the differences in small and large scales. It
takes just a few numerical parameters to quantitatively fit experiment,i1
data once the parametric form of F is available. We now see that the crux
of this form is set by the short-length cycles on the Markov graphs. This
cycle distribution, however, is determined by the properties of close return
times. Thus.! versus a. is a data processing that principally comments upon
return time properties of dynamical systems. Knowledge of return times
determines the form of[versus a. with parameters that can then be extrac
ted. It would be most interesting to reverse this inference for more poorly
understood systems.

In some perspective, the return time expansion of (10) determines at
level II a quite large graph. The graph in good approximation reduces in
size if well-behaved scalings can approximate (II). Now it is quite clear
that low c's cannot be very significant, since they represent a small number
of iterates of the smooth dynamical process, which thus preserves the ratio
of the small differences of (II). That there should be an exponential
decrease, while true for period doubling and golden mean rotation, need
not be generally true. However, there can still be a large class of interesting
problems for which the short cycles on the graph predominantly mark the
form of F({J). With positive Liapunov exponents, there is an effective noise.
which can move an orbit to a nearby point with different scaling propenies.
One might incorporate this by adding "stochastic" links on the graph thai
differ from the scaling links by having no z weights. It will thus be very
interesting to see which-if any-of these ideas can be extracted from
numerics on quite chaotic systems.
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