
40

A Survey on NoSQL Stores

ALI DAVOUDIAN and LIU CHEN, Carleton University

MENGCHI LIU, Carleton University and Wuhan University

Recent demands for storing and querying big data have revealed various shortcomings of traditional relational

database systems. This, in turn, has led to the emergence of a new kind of complementary nonrelational data

store, named as NoSQL. This survey mainly aims at elucidating the design decisions of NoSQL stores with

regard to the four nonorthogonal design principles of distributed database systems: data model, consistency

model, data partitioning, and the CAP theorem. For each principle, its available strategies and corresponding

features, strengths, and drawbacks are explained. Furthermore, various implementations of each strategy are

exemplified and crystallized through a collection of representative academic and industrial NoSQL technolo-

gies. Finally, we disclose some existing challenges in developing effective NoSQL stores, which need attention

of the research community, application designers, and architects.

CCS Concepts: • Information systems → Data management systems; Database design and models;

Parallel and distributed DBMSs;

Additional Key Words and Phrases: NoSQL, data model, consistency model, partitioning, CAP theorem, repli-

cation, elasticity, ACID

ACM Reference format:

Ali Davoudian, Liu Chen, and Mengchi Liu. 2018. A Survey on NoSQL Stores. ACM Comput. Surv. 51, 2, Article

40 (April 2018), 43 pages.

https://doi.org/10.1145/3158661

1 INTRODUCTION

Database technologies have so far experienced several major generations including hierarchical
and network, relational, object-oriented, NoSQL, and NewSQL in chronological order. Figure 1
illustrates the continuous development of major database technologies and some representative
database systems.

• The first generation occurred in the mid-1960s and early 1970s. It aims at providing a con-
venient and efficient way to store and access persistent data through developing general-
purpose database management systems. These early systems are based on the hierarchical

This work was partly supported by the Natural Sciences and Engineering Research Council of Canada Discovery grant and

the Natural Science Foundation of China under grant no. 61672389.

Authors’ addresses: A. Davoudian and L. Chen, Advanced Database Laboratory, School of Computer Science, 1125 Colonel

By Dr, Carleton University, Ottawa, ON, Canada, K1S 5B6; emails: {alidavoudian, liuchen}@cmail.carleton.ca; M. Liu (cor-

responding author), Advanced Database Laboratory, School of Computer Science, 1125 Colonel By Dr, Carleton University,

Ottawa, ON, Canada, K1S 5B6; School of Computer, 299 Bayi Road, Wuhan University, Wuhan, Hubei, China, 430072; email:

mengchi@scs.carleton.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 0360-0300/2018/04-ART40 $15.00

https://doi.org/10.1145/3158661

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

https://doi.org/10.1145/3158661
mailto:permissions@acm.org
https://doi.org/10.1145/3158661
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3158661&domain=pdf&date_stamp=2018-04-17

40:2 A. Davoudian et al.

Fig. 1. The continuous development of major database technologies and some corresponding database

systems.

(Tsichritzis and Lochovsky 1976) and network (DBTG Codasyl 1971; Taylor and Frank 1976)
data models that are exemplified by IDS (network), IMS (hierarchical) (Meltz et al. 2004), and
IDMS (network). These systems store data as records linked together so that the database
has either a hierarchical or network structure. They bring high performance and through-
put by providing low-level procedural operations for navigating through the maze of linked
records until the target is found. As a result, data access is tied closely to how it is processed.
Owing to no or limited data independence, application programs are complex to write and
modify, even for simple queries.

• The second generation occurred in the early 1970s, based on the relational data model pro-
posed by Codd (1970). This model represents structured data as tuples that are grouped into
relations with a strong mathematical foundation to naturally describe data and therefore
provides a substantial degree of data independence by decoupling the logical and physical
representations of data. It allows people to solve various problems by means of logical and
mathematical tools. Subsequently, set-oriented declarative query languages can be defined
whereby application developers get rid of the burden of programming navigational access
to data. Since then, Structured Query Language (SQL) (Chamberlin and Boyce 1974) has be-
come the standard, paradigmatic language for defining, manipulating, and querying data.
Due to their ease of use, these systems have replaced hierarchical and network ones and
have become dominant, now widely used for various business data processing applications.

• In the early 1980s, programmers of complex database applications in domains such as Com-
puter Aided Design/Manufacturing (CAD/CAM), Geographical Information Systems (GIS),
and many other applications with complex data structures and specific operations were
facing two issues. First, the relational data model has very limited modeling capabilities.
Second, with regard to the increasing use of object-oriented programming languages for

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

A Survey on NoSQL Stores 40:3

application programs, software developers encountered impedance mismatch1 (Maier 1989;
Zaniolo et al. 1985), which requires mapping class objects to one or more flat relational tu-
ples during data manipulation and many costly join operations during query processing.
These issues led to the emergence of object-oriented database systems (Beeri 1990; Kim
1990) that store data as true objects identified by OIDs and classified into classes, which
can be organized hierarchically so that encapsulated class structures and operations can
be inherited by subclasses. In this way, the application program and the database are inte-
grated seamlessly. However, these systems failed to become dominant due to the enormous
investments put into the relational ones.

On the other hand, relational advocates tried to extend relational database systems by in-
corporating key object-oriented features, which resulted in object-relational database sys-
tems (Stonebraker and Moore 1995). Major relational database systems, such as Oracle and
DB2, have adopted such extensions by still storing data as flat relations instead of true ob-
jects, but the mapping and joins are done automatically.

• Since the early 2000s, the advances in web technology, social networking, mobile devices,
and Internet of Things have resulted in the sudden explosion of structured, semistructured,
and unstructured data generated by global-scope applications. Such applications have a
variety of requirements from database systems, including horizontal scalability2 to linearly
adapt to the massive amounts of data and the increasing rate of query processing by making
use of additional resources, high availability and fault tolerance to respond to client requests
even in the case of hardware/software failure or upgrade events, transaction reliability to
support strongly consistent data, and database schema maintainability to reduce the cost of
schema evolution.

Achieving the above requirements through the traditional relational database systems
(RDBMSs) is very difficult or even unattainable. First, the predefined relational schema
makes the evolution of relational databases costly due to complex data transformation/
migration; thus, this technology cannot satisfy agile and highly iterative application devel-
opment approaches required by the existing processing scenarios of big data (McAfee et al.
2012). Second, scaling up these systems necessitates their movement to standalone servers
with more enhanced hardware; this is a costly process and causes significant system un-
availability during each movement. Third, by scaling out (i.e., employing more commodity
servers) these systems even in a single datacenter, the complexity and overhead of joining
distributed normalized data are increased; in addition, these systems encounter availability
and performance issues owing to the use of distributed ACID transactions (Gray et al. 1996;
Helland 2007).

According to recent publications, the above mutually exclusive requirements can be tack-
led through making trade-offs or sacrificing the ones that are not necessary from the appli-
cations’ point of view (Abadi 2012; Brewer 2000; Stonebraker 2010b). This has resulted in
the fourth generation of database technologies and a new emerging trend of nonrelational
data stores3, called NoSQL4 stores (Cattell 2011), which aim at satisfying the high availabil-
ity and scalability requirements of global-scope applications. NoSQL stores have a number
of design characteristics in common:

1This denotes the problems resulting from the difference between the programming language model and database model.

This necessitates the expensive back and forth binding of data structures between applications and storage layer.
2It is viable through data partitioning.
3According to Cattell (2011), contemporary database systems are referred to as “data stores” in which more flexible data

models are used and DBMS functionalities may not be fully provided.
4It is an acronym for “Not Only SQL,” since some of these systems support SQL-like queries.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

40:4 A. Davoudian et al.

—In contrast to the above database technologies that support schema-full data models,
NoSQL stores adopt more flexible data models that can be schemaless5, and data may
need to be interpreted at the application level.

—Weak consistency transaction models are allowed by relaxing the strict ACID proper-
ties. This allows NoSQL stores to scale out while achieving the high availability and low
latency required by web-based applications.

—By placing relevant data items together in the same storage node and using lots of data
duplication, NoSQL stores facilitate joining data as there is no need to move related data
over the network, which allows them to achieve better query performance. However, this
may lead to costly updates on duplicated data.

—There is a clever use of distributed indices, hashing and caching for data access and
storage.

—Most of them are cluster and datacenter friendly. In other words, data can easily be repli-
cated and horizontally partitioned across local and remote servers.

—They provide a web-friendly access through a simple client interface or protocol to query
data.

These features make NoSQL stores not as a revolutionary replacement for the current rela-
tional database systems, but as a remedy for their shortcomings in handling big data.

• The fifth generation happened in the late 2000s by a new emerging category of relational
data stores that aim to tackle the high scalability and reliability requirements of modern
OLTP applications (that handle high volumes of data beyond a single datacenter) by pro-
viding a new architecture whereby scalability and performance are improved. They are
called NewSQL data stores (Stonebraker 2012), as they provide some functionalities of rela-
tional technology, such as multikey ACID transactions and SQL query language; however,
the join operation is superfluous.

So far, more than 200 different NoSQL stores have been reported and the list is still growing6.
This is a big challenge for application designers and architects who want to migrate successfully
from current enterprise data management systems to large-scale ones. They need to have an
in-depth understanding of existing NoSQL stores and their various features in order to select an
appropriate one for satisfying their application requirements. On the other hand, by taking into
account the ongoing and intense debate between relational technology and NoSQL advocates
(Stonebraker 2011), NoSQL researchers, designers, and developers educate themselves about the
challenges of existing NoSQL stores through determining how much they meet the expectations
of contemporary, global-scope applications, and improve them to make effective data stores.

In this survey, we reflect on the work conducted with respect to the following four design as-
pects of NoSQL stores: data model, consistency model, data partitioning, and the CAP theorem. By
taking into account their various design decisions, we have selected a collection of representative
academic and industrial NoSQLs in order to exemplify and crystallize the implementations of dif-
ferent strategies, their strengths, limitations, and some suggested improvements. However, there
are other core concepts, such as security and privacy models, that are not covered by the survey
owing to space limitation. Also, graph stores (Angles and Gutierrez 2008; McColl et al. 2014) have
encountered such progressive research, which necessitates a separate survey on their underlying
features7. In addition, NewSQL is beyond the scope of this article, as we focus on NoSQL stores.

5A schemaless data model allows data to have arbitrary structures as they are not explicitly defined by a data definition

language (schema-on-write). Instead, they are implicitly encoded by the application logic (schema-on-read).
6https://nosql-database.org/.
7This survey covers the graph data model and their partitioning strategies.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

https://nosql-database.org/.

A Survey on NoSQL Stores 40:5

The rest of this survey is organized into six sections and three Appendices. Section 2 provides
a classification of NoSQL stores by taking into account their underlying data models. Sections 3
and 4 categorize and explain different protocols of data consistency and partitioning, respectively.
Section 5 illustrates the CAP theorem and categorizes the representative NoSQL stores based on
it. We present our conclusions in Section 6. Owing to space limitation, the exemplifications of
the discussed core strategies are provided in Appendix A, a review of different data replication
protocols are provided in Appendix B, and well-known partitioning schemes are presented in
Appendix C.

2 NOSQL DATA MODELS

A data model specifies how real-world entities and their relationships are represented and operated
(Silberschatz et al. 1996). Accordingly, NoSQL stores are mainly categorized into key-value, wide-
column, document, and graph stores. Each of these models is characterized by a number of features
that make the corresponding stores suited to specific application scenarios.

2.1 Key-Value Stores

These are the simplest and most popular NoSQL stores, in which data are managed and repre-
sented as (key, value) pairs stored in efficient, highly scalable, key-based lookup structures such as
Distributed Hash Tables (DHTs) (see Section 4.1.3) and Log-Structured Merge-trees (LSM-trees)8

(O’Neil et al. 1996). A key is either simple (e.g., a URI, hash, or filename) or structured (e.g., com-
posite keys in Oracle NoSQL9). It may also be system generated or application defined. A value

represents data with an arbitrary type, structure, and size (e.g., a string, document, or image) that
is uniquely identified by an indexed key. The value is encoded as a byte array (e.g., BLOB) in which
its serialization/deserialization is left to the client application. Owing to the schemaless structure
of stored values, indexing and querying based on values are not supported by the system. Any
scenario that requires querying on the internal structure of data values needs to be implemented
by the client application. Therefore, key-value stores are suitable solely for applications that only
use a single key to access data, such as an online shopping cart, user profile/configuration, and web
session information. This simple data model results in the easy partitioning and efficient querying
of data, which, in turn, leads to the high scalability of key-value stores.

In practice, since many applications require a value-based lookup of data, (advanced) key-value
stores provide additional functionalities, such as indexing and querying the content of values of
specific data types. For example, Redis10 and Aerospike11 support the list data type. They allow
performing atomic operations on list values, such as pushing into a list without replacing the entire
value. IBM Spinnaker (Rao et al. 2011), HyperDex (Escriva et al. 2012), and Yahoo Pnuts (Cooper
et al. 2008) support tabular data types with either a fixed or flexible schema, in which each table
row is uniquely identified by a key. In addition, Riak KV12 supports document types such as JSON.

8B+-tree (Comer 1979) is also one of the popular key-based lookup structures that is commonly used as the physical layout

of relational database systems and some NoSQL stores and libraries such as MongoDB, Tokyo Cabinet/Tyrant, and Berkeley

DB. High fanout (i.e., the number of (key, value) pairs in a tree node) of the tree reduces the number of I/O operations for

a query. Although B+-trees are efficient for read operations, write-intensive workloads may result in a costly tree main-

tenance. In addition, random write operations cause a lot of costly disk seeks and lead to a highly degraded performance.

Despite providing a better write optimization by some variations of B+-tree (Ahn et al. 2016), an increasing number of

NoSQL stores have used LSM-trees (that are optimized from the beginning) whereby random writes are transformed into

sequential ones.
9https://oracle.com/database/nosql/index.html.
10https://redis.io.
11https://aerospike.com/.
12https://basho.com/products/riak-kv/.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

https://oracle.com/database/nosql/index.html.
https://redis.io.
https://aerospike.com/.
https://basho.com/products/riak-kv/.

40:6 A. Davoudian et al.

On the other hand, Oracle NoSQL9 supports multi-key operations. These extra functionalities have
blurred the border between key-value stores and other kind of NoSQL stores. For example, Riak
KV12 can be considered as a document store (see Appendix A).

Based on data persistence, key-value stores can be classified into the following three kinds:

• In-memory key-value stores, such as Memcached13, provide an extremely fast access to in-
formation by keeping it in memory. They are suitable for managing transient information
that is needed for a limited time period. For example, transient user session information
is accessed by application servers. These stores are commonly used as a caching layer in
cloud applications in which the processing results of intensive requests—such as API calls,
database queries, and page rendering—are stored (Petcu et al. 2013; Vaquero et al. 2011). For
example, a cluster of MySQL servers14 in Facebook uses Memcached13 as a caching layer
(Borthakur et al. 2011). In addition, Project Voldemort15 is used as a caching layer on top of
LinkedIn’s primary storage (Auradkar et al. 2012).

• Persistent key-value stores, such as Riak KV12 and Oracle NoSQL9, provide a highly available
access to nontransient information by storing it in HDD/SSD.

• Hybrid key-value stores, such as Redis10 and Aerospike11, first keep data in memory and
then persist them when some conditions are satisfied.

A typical key-value store provides a simple set of key-based query operations, such as get(key),
put(key,value) and delete(key). Get(key) retrieves a value (or a list of values with different
versions) associated with the key. Put(key,value) adds the key-value pair to the store only if
the key is not present in it. Otherwise, the stored value is updated with a new version. Note that
updating even a part of a stored value requires replacing the whole value. Delete(key) removes
the key and its associated value(s). The details of the above operations depend on factors such as
consistency model and indexing. These single-key operations do not allow manipulating multiple
values with one operation. These operations can be easily performed through REST (Massé 2012),
or Lucene16 interfaces. Figure 2(a) shows a sample basic key-value store used by a health informa-
tion management system, assuming that the medical records of patients are mainly queried based
on their Social Security Numbers (SSNs), and patient’s data are rarely modified.

Representative systems of key-value stores include Redis10, Riak KV12, Oracle NoSQL9, Hy-
perdex (Escriva et al. 2012), Yahoo Pnuts (Cooper et al. 2008), Oracle Berkeley DB17, and Project
Voldemort15, in the order of highest to lowest rank according to DB-Engines ranking18. It ranks
database systems and stores based on parameters such as general interest according to Google
Trends, the number of job offers, and the number of mentions on websites. In addition, six aca-
demic key-value stores—including Amazon Dynamo (DeCandia et al. 2007), Scalaris (Schütt et al.
2008b), Spinnaker (Rao et al. 2011), Scatter (Glendenning et al. 2011), Walter (Sovran et al. 2011),
and COPS (Lloyd et al. 2011)—are investigated.

2.2 Wide-Column Stores

These stores (also known as column-family stores) are inspired by Google Bigtable (Chang et al.
2008), in which data are represented in a tabular format of rows and (a fixed number of) column-

13https://memcached.org/.
14https://mysql.com/.
15https://project-voldemort.com/voldemort/.
16https://lucene.apache.org.
17https://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html.
18https://db-engines.com/en/.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

https://memcached.org/.
https://mysql.com/.
https://project-voldemort.com/voldemort/.
https://lucene.apache.org.
https://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html.
https://db-engines.com/en/.

A Survey on NoSQL Stores 40:7

Fig. 2. Four major categories of NoSQL stores according to the supported data model.

families. A column-family is constructed by an arbitrary number of columns that are logically
related to each other and usually accessed together. This justifies why data in a wide-column store
are physically stored per column-family instead of row. The schema of a column-family is flexible
as its columns can be added or removed at runtime. In addition, a column (or cell) has a name and
a value with a simple or complex structure. By taking into account column and column-family

structures, each row represents a highly structured data item that is uniquely identified by a string
row-key. In other words, wide-column stores are extended key-value stores in which the value is
represented as a sequence of nested (key, value) pairs.

Wide-column stores usually allow storing of a configurable number of versions of each
cell value, indexed by timestamps; a value is retrieved through a triple <row-key, column-key,

timestamp>. A timestamp is either automatically assigned by the store or explicitly specified by

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

40:8 A. Davoudian et al.

the client application. Some wide-column stores provide additional aggregates (or embedded data
structures). For instance, Apache Cassandra (Lakshman and Malik 2010) allows a column-family

to be nested by other column-families called super column-families. Wide-column stores offer
more extended client interfaces than key-value stores, as their indexing and querying facilities
are based on various aggregates, such as rows, column-families, and columns.

With respect to the above concepts, wide-column stores support diverse modeling structures
such as rows, column-families, and nested column-families. These structures can be used to cre-
ate a hierarchy of aggregates based on query workload whereby query performance is increased
by accessing collocated data. Storey and Song (2017) explain and exemplify how to design such
hierarchies of aggregates based on query requirements. Figure 2(b) shows an example of how Face-
book used the wide-column data model for its Inbox Search service. This service enables the user
to search through one’s sent/received messages based on either a keyword (called term query)
or the name of a sender/receiver (called interaction query). These query requirements are facili-
tated by creating different aggregates. More precisely, for both term and interaction queries, the
user-ID is the row-key. Two column-families, Sent-received and Sender-recipient, represent two
different aggregates (with regard to the same user) that satisfy the requirements of term and in-
teraction searches, respectively. For the Sent-received column-family, the keywords that make up
the user’s messages become super column-families. For each super column-family, the individual
message-IDs (or links to messages) become the columns, which, in turn, minimizes redundancy.
Similarly, for the Sender-recipient column-family, the user-IDs belonging to all senders/recipients
of the user’s messages become super column-families. Also, for each super column-family. the
individual message-IDs become the columns.

Data in wide-column stores can be efficiently partitioned horizontally (by rows) and vertically
(by column-families), which make them suitable for storing huge datasets. Note that many wide-
column-stores, such as Apache Cassandra (Lakshman and Malik 2010), Apache Hbase19 and Google
Bigtable (Chang et al. 2008), use an LSM-tree data structure (O’Neil et al. 1996) to implement
a highly efficient storage backbone per column-family. Figure 3 illustrates the simplest form of
LSM tree architecture, including an in-memory tree (or buffer) and a number of on-disk trees (or
stored files) that are immutable copies of the buffer. In this architecture, incoming written (key,
value) pairs are efficiently stored and sorted (based on their keys) in the buffer (called MemTable

in Apache Cassandra/Google Bigtable and referred to as MemStore in Apache Hbase19). When the
buffer passes a threshold, such as data size, data are flushed to a stored file (called SSTable in Apache
Cassandra/Google Bigtable and referred to as StoreTable in Apache Hbase) in append-only batches,
which is the main reason for fast-write operations. (key, value) pairs in a stored file are sorted and
indexed based on their key values. Over time, many stored files may be created (e.g., stored files 1
to n in Figure 3). Thus, in order to save the disk space and improve the performance of read oper-
ations, they are periodically compacted to a single file. This I/O-intensive compaction20 removes
deleted table rows and consolidates those rows that have the same row-key and scattered across
multiple stored files. LSM-trees also support efficient random read operations. More precisely, read
operations are first applied on the buffer before applying on files on disk. In order to find the latest
version of a value, stored files are looked up in the order of latest to oldest. In addition, buffered
data are first written in a commit log in order to prevent their loss in the case of node failure.
Each stored file is also equipped with a Bloom filter (Bloom 1970) that prevents looking up the file
for a key that does not exist in it (e.g., in Figure 3, a read operation finds a required value in the
nth stored file). Note that owing to the immutability of stored files, updating a value just needs

19https://hbase.apache.org/.
20Some variations of LSM-tree enhanced the compaction process (Wu et al. 2015).

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

https://hbase.apache.org/.

A Survey on NoSQL Stores 40:9

Fig. 3. The use of a simplified LSM-tree architecture per column-family in wide-column stores.

appending its new value. Therefore, reading a value necessitates accessing the most recent value.
In addition, reading a whole table row may incur reading several stored files.

The high scalability and flexibility along with the support of MapReduce tasks (Dean and
Ghemawat 2008) (for the parallel processing of large aggregated datasets) make wide-column
stores suitable for analytical applications. Web analytics application is an example, in which pages
are instrumented (by webmasters) for keeping track of their visitors’ actions. More precisely, after
storing all user actions to the database, they are aggregated and transformed by a MapReduce task.
The resulting statistical data are suitable for the webpage administrator. However, any change in
the application-level features will significantly impact the design. It limits the ability for ad-hoc
querying. Also, the predefined set of column-families makes it difficult to use wide-column stores
for applications with evolving schemas (Corbett et al. 2013; Stonebraker 2011).

Representative systems in this category include Apache Cassandra (Lakshman and Malik 2010),
Apache Hbase19, Hypertable21, and Google Cloud Bigtable22 in the order of highest to lowest rank.

2.3 Document Stores

These are extended key-value stores in which the value is represented as a document encoded in
standard semistructured formats such as XML, JSON, or BSON (Binary JSON). A document has a
flexible schema through adding or removing its attributes at runtime, when an attribute has a name
along with one or more values. Unlike the opaque content of values in key-value stores, document
stores know the format of documents and support indices and search functionalities based on their
attribute names and values.

Document stores fit applications whose data can be simply represented in a document format
such as Content Management Systems (CMS) and blogging platforms. For example, a blog post
including various (nested) attributes—such as tags, comments, images, and videos—can be easily
represented in a document format. These stores are also suitable for the high development

21http://hypertable.org/.
22https://cloud.google.com/bigtable/.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

http://hypertable.org/.
https://cloud.google.com/bigtable/.

40:10 A. Davoudian et al.

productivity and low maintenance cost of modern Web 2.0 applications, for two main reasons.
First, these applications have a constant evolution of data schema and benefit from the flexible
data model of document stores. For example, consider a monitoring application that stores and
analyzes log data from various sources, with each source generating different data. Evolution
to new log formats can be easily enabled by the flexible schema of documents. However, such
an extension would be costly in relational databases, as it needs the creation of new tables for
new formats or the addition of new columns to the existing tables. Second, Web 2.0 applications
support data models such as JSON with a tight integration with popular programming languages
such as Python, JavaScript, and Ruby. This has radically decreased the impedance mismatch
(Maier 1989; Zaniolo et al. 1985) between these programming languages and document stores, as
object-oriented constructs can be easily mapped to documents.

Some document stores, such as MongoDB23 and Couchbase Server24, provide an additional ag-

gregate called collection or bucket that contains a set of documents representing the same category
of information. These collections look like tables in relational databases, with each row being a
document with a unique key, but not necessarily the same schema as others. By using buckets,
features such as resources, replication, persistence, and security can be managed for each group
of documents instead of individual ones. Figure 2(c) shows an example of how McGraw-Hill Ed-
ucation (MHE) used the document data model for building a self-adapting, interactive learning
portal that delivers personalized search results25. It integrates Couchbase Server24 and Elastic-
Search (ES)26 (to handle the full-text search and content discovery). The vision of MHE divides a
textbook into media objects including articles, images, and videos. Data are stored in JSON docu-
ments and categorized in several buckets, including (1) the Content_Metadata bucket, which stores
media objects’ metadata along with the content of text articles; (2) the User_Profiles bucket, which
stores user view details per media object, used for customizing ES search results based on user
preferences; and (3) the Content_Stats bucket, which stores the view details of each media object,
used for boosting ES search results based on document popularity.

Document stores allow querying data inside a document without having to retrieve the whole
document (via its key) and then inspect it. The following query (based on Figure 2(c)) shows how
to use the SQL-like Non-first normal form Query Language (N1QL)27 in CouchBase to search for
the documents of bucket Content_MetaData. This query filters the documents by attribute title,
which has the value “Vince Shields,” and then returns the value of attributes url and categories.

SELECT c.url, c.categories FROM Content_MetaData c WHERE title = 'Vince Shields'

Database designers may use either embedding or referencing documents in order to model the
relationship between documents. Through embedding one-to-one or one-to-many relationships in
a single document, the client application does not need to join data across documents; a single op-
eration can retrieve all data. More precisely, a one-to-one relationship can be modeled as a flat list
of attributes. On the other hand, a one-to-many relationship can be modeled either by embedding
the “one” side in “many” side or embedding “many” side in “one” side. However, embedding results
in the denormalization and duplication of data; this, in turn, may lead to data redundancy and con-
sistency problems, especially in write-intensive scenarios. Thus, many-to-many relationships are
usually modeled via links and require joins. In other words, multiple documents are linked via their
document identifiers just like using foreign keys to relate rows of tables in relational databases.

23https://mongodb.org/.
24https://couchbase.com/nosql-databases/couchbase-server.
25https://youtube.com/watch?v=0mQt5gEOIhI.
26https://github.com/elastic/elasticsearch.
27https://www.couchbase.com/products/n1ql.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

https://mongodb.org/.
https://couchbase.com/nosql-databases/couchbase-server.
https://youtube.com/watch?v$=$0mQt5gEOIhI.
https://github.com/elastic/elasticsearch.
https://www.couchbase.com/products/n1ql.

A Survey on NoSQL Stores 40:11

Some document stores, such as ArangoDB28 and OrientDB29, use referencing documents to im-
plement a hybrid graph/document data model. These multimodel NoSQL stores aim at tackling ap-
plications with polyglot persistence (Sadalage and Fowler 2012; Schaarschmidt et al. 2015). These
applications have a complex implementation, as they need to query and store their data using
several data models simultaneously. For example, a bookstore application that requires querying
books based on both their fields and the deep levels of their similarities needs to be modeled using
both document and graph stores. Multimodel NoSQL stores mitigate this complexity by integrat-
ing multiple NoSQL data models into a single unique system in which a single query language and
API is used.

Note that native XML stores (e.g., Marklogic Server30 and Virtuoso31) are the predecessors
of modern JSON document stores. They implement a variety of XML tools and standards (e.g.,
XQuery32) for XML view, storage, keyword search (Le and Ling 2016), and query processing and
optimization. However, some applications have preferred JSON as an alternative to XML owing to
its relative compactness, simplicity, and tight interaction with popular programming languages.
In this respect, XML and JSON stores support different applications and use cases. XML stores
are usually used for organizing and maintaining a collection of XML files in content management
applications such as health care, science, and digital libraries, whereas JSON stores are used by
more interactive and dynamic web applications.

Representative systems in this category include MongoDB23, Amazon DynamoDB33,
Couchbase24, Apache CouchDB34 and ArangoDB28 from the highest to the lowest rank.

2.4 Graph Stores

The focus of the above data models is to store information about entities as either binary values,
rows in multidimensional tables, or documents. However, the increasing number of graph-oriented
datasets—such as Semantic Web (Berners-Lee et al. 2001), Web Mining (Schenker et al. 2005), and
the interaction of proteins in biological systems (Eckman and Brown 2006; Knisley and Knisley
2007)—has generated the need for efficient entity relationship traversals. This has motivated the
emergence of graph stores for storing these datasets in an efficient manner and providing effective
operations for their querying and analyzing. These stores are based on the strong graph theoret-
ical foundation, in which a graph consists of vertices representing entities and edges representing
relationships between them.

Table 1 shows a list of graph structures that are not usually mutually exclusive. For exam-
ple, property graphs are an amalgam of directed, labeled, attributed, and multigraphs, which are
widely adopted in practice. The popularity of property graphs is due to their flexibility to express
other structures. For instance, by not using attributes in property graphs, a Resource Description
Framework (RDF)35 or semantic graphs are generated. Similar to edges in a graph database, an
RDF graph is a set of RDF statements (or triples), each of which represents a simple relationship
between two entities.

28https://arangodb.com.
29http://orientdb.com/.
30https://marklogic.com—Since 2014, Marklogic has started extra support for JSON documents and is considered to be a

multimodel store.
31https://virtuoso.openlinksw.com.
32https://w3.org/TR/xquery-30/.
33https://aws.amazon.com/dynamodb/.
34https://couchdb.apache.org/.
35https://w3.org/RDF/.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

https://arangodb.com.
http://orientdb.com/
https://marklogic.com
https://virtuoso.openlinksw.com.
https://w3.org/TR/xquery-30/.
https://aws.amazon.com/dynamodb/.
https://couchdb.apache.org/.
https://w3.org/RDF/.

40:12 A. Davoudian et al.

Table 1. Various Graph Structures

Graph structure Description

Undirected/directed
graphs

All relationships in an undirected graph are symmetric. On the other hand, in a directed graph,
each edge e from vertex src to vertex des is a directed tuple, such that (1) edge e is an in-edge of
des and an out-edge of src, (2) vertex des is the src’s out-neighbor and vertex src is the in-neighbor
of des, and (3) the number of incoming/outgoing edges of a vertex determines its (in/out) degree.

Labeled graphs Vertices and edges are tagged with scalar values (labels or types) that may represent either their
roles in different application domains or some attached metadata.

Attributed graphs A variable list of attributes as (key, value) pairs are attached to vertices and edges, representing
their properties. It is suitable for social networking sites that involve social interaction of
individuals.

Multigraphs Multiple edges (even with the same labels) between the same two vertices as well as self-loops
are allowed.

Hypergraphs These graphs can represent N-ary relationships through hyperedges that can connect any
number of vertices (Bretto 2013). An undirected hyperedge can be represented by a subset of
nodes (vertices) (Berge 1973); and a directed hyperedge can be represented by a tuple (ordered
set) of nodes (Boley 1992) or head-and-tail sets (Gallo et al. 1993; Nguyen and Pallottino 1989).
Hypergraphs are used to represent complex relationships in areas such as Artificial Intelligence.
HyperGraphDB (Iordanov 2010) is based on hypergraphs and supports N-ary relationships by
representing a link as a tuple (ordered set) of nodes. Figure 4 shows a simple hypergraph.

Nested graphs Each vertex, in turn, can be a graph. At this time, no store supports nested graphs.

Fig. 4. Assume that I is an institute with 5 classes (C1, . . . ,C5) and 11 students (S1, . . . , S11). Also, assume that

each class is attended by at least one student. The set of vertices is the set of students; the set of hyperedges

is (ei), i ∈ {1, 2, . . . 5}, where ei is the subset of students who attend Ci . There are two isolated vertices (s9

and s11), as they do not belong to any hyperedge. Incident hyperedges, such as e1 and e2, have some common

vertices. Adjacent vertices, such as s1 and s2, belong to the same hyperedge.

In terms of storage techniques used by graph stores, they are categorized into nonnative and na-

tive graph stores. The logical model of a nonnative graph store is implemented on top of a nongraph
data store, such as a document store or a relational database system, which, in turn, needs to use in-
dices to navigate graph traversals. However, index lookups may lead to performance degradation,
specially for deep traversals36. For example, OrientDB29 and ArangoDB28 use a document-storage

36A graph can be easily represented on top of a relational data model. However, the modelling of very large graphs may en-

counter performance issues, as traversing graph data requires complex join operations and the overhead of index lookups.

In addition, graph traversals cannot be easily performed in SQL, specially for traversals whose depth is unbounded or

unknown. Sun et al. (2015) tackle this issue by translating Gremlin graph traversal queries into SQL statements instead of

directly using SQL for graph processing.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

A Survey on NoSQL Stores 40:13

Fig. 5. Compressed Sparse Row (CSR) representation. Every graph can be represented as an adjacency ma-

trix, which can be encoded using the CSR representation.

approach. In addition, Titan37 allows two storage options (i.e., wide-column and key-value). Non-
native stores may not use a graph-specific partitioning strategy since data partitioning is inherited
from their underlying stores. For example, OrientDB29 uses a typewise data partitioning in which
vertices are considered as typed documents. By contrast, in a native graph store, the storage is
adapted based on the features of graph data models. For example, Neo4j (Webber 2012) provides
efficient real-time graph processing via a direct index-free access of adjacent nodes from a given
node.

Three well-known techniques for graph-optimized storage are Compressed Sparse Row (CSR),
adjacency list, and edge list:

• Compressed Sparse Row (CSR). CSR is one of the most widely used graph representations.
Assuming a graph with n vertices and m directed edges, CSR is composed of two integer
arrays: (1) Edge-array (E), with size m, that is formed from the concatenation of the adja-
cency lists of all vertices. It maps an edge ID (between 0 to m − 1) into its corresponding
destination vertex ID. Accordingly, all edges of a graph are stored continuously; this, in turn,
improves locality as outgoing edges of a vertex are stored together and facilitates their rapid
identification. (2) Vertex-array (V), with size n + 1, is an index to the array E, as it maps a
vertex ID (between 0 to n − 1) into the ID of its first outgoing edge. The number of ver-
tices of the ith adjacency list, where i ∈ {0...n − 1}, is V [i + 1] −V [i]. The last element in
the array V is set to m. Note that, for undirected graphs, each edge is stored twice, one for
each direction. As a drawback, the cost for edge insertion or removal is O (m). By default,
CSR allows storing outgoing edges; however, a compressed sparse column (CSC) that is an
identical representation can be used to store incoming edges of each vertex. Many graph
engines, such as GraphChi (Kyrola and Guestrin 2014) and Grace (Prabhakaran et al. 2012),
use CSR or one of its variants. Figure 5 illustrates a sample CSR data representation.

• Adjacency list. In this representation, each graph is represented by a set of lists. More specif-
ically, each vertex of an undirected graph is associated with a list of its neighboring vertices
and each vertex of a directed graph is associated with two lists of its (in/out)-neighbors. This
representation reduces the storage overhead of storing sparse graphs, and large adjacency
lists are usually compressed. In addition, via creating efficient index structures over edges
and vertices, random accesses to data elements can be extremely fast (Wang et al. 2004;
Zeng et al. 2007). However, adjacency lists incur data redundancy, as each edge is stored
twice (one instance for each vertex). Therefore, for a graph of n edges, the space complex-
ity of this representation is 2n nodes and 2n pointers. This redundancy necessitates graph
stores to automatically enforce the consistency of data when the graph data is updated. In
addition, there may be a costly access to the list of neighbors when they are not sequentially

37https://thinkaurelius.github.io/titan/.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

https://thinkaurelius.github.io/titan/.

40:14 A. Davoudian et al.

stored on disk. By storing adjacency lists in separate (growable) arrays, this graph repre-
sentation suits those systems that prioritize updates and/or optimize for online transaction
processing (OLTP) workloads. Some graph engines, such as TurboGraph (Han et al. 2013),
improve the locality of access by assigning the adjacency lists to pages with some extra
empty space. However, there is still a need to add new pages when all the extra space is as-
signed. In some graph engines, such as Microsoft Trinity (Shao et al. 2013), adjacency lists
are stored in a key-value store. As another example, Twitter FlockDB38 stores its adjacency
list in MySQL14.

• Edge list. In the above adjacency lists, for any vertex src, an outgoing edge to a vertex
des is represented just by des. In addition, all the information associated with the edge
is stored along with des. However, there are some situations (such as the representation
of hypergraphs in which an edge is associated with a set of vertices) that necessitate
representing a graph as a list of edges instead of adjacency lists. This data structure can
be simply represented by a relational table with two columns, in which each row indicates
an edge and the IDs of corresponding incident vertices are stored in its columns. Through
creating B-tree (Comer 1979) indices over these columns, all incoming/outgoing edges of
a vertex can be quickly accessed. This has some advantages, as the modification of an
edge requires a single access since it is stored only once. However, there are also some
drawbacks, as the addition or removal of edges incurs the costly update of indices, and
the space required for indices is usually more than the space needed by the table of edges.
Some graph stores, such as Neo4j (Webber 2012), use this representation of graph data.

Some graph stores use more complicated representations of graph data, such as compressed bitmap

indices in DEX39, in which compressed, partitioned bitmaps are used to enable the efficient com-
bination of multiple adjacency list through set operations. Figure 2(d) illustrates an example of
how Facebook uses the graph data model for its social network, in which users, physical loca-
tions, relationships (such as users’ friendships) and actions (such as liking, writing a comment,
and checking-in to a location) are encoded with typed nodes and typed directed associations of
a graph. Each node is uniquely identified by a node identifier and each association by a triple of
source and destination node identifiers plus the association type. In addition, each association type
is accompanied by a set of properties (including the time property) as key-value pairs. Note that
all associations in Figure 2(d) are bidirectional (either symmetric such as FRIEND or asymmetric
such as AUTHORS/AUTHORED_BY) except for the association whose type is COMMENT, because
there is no need to traverse from the COMMENT to the CHECKIN object. Facebook implemented a
distributed graph data store named TAO (Bronson et al. 2013) in which for each node a list of asso-
ciations (of a given type) are stored in descending order by their time property. TAO uses sharded
MySQL14 databases for the persistent storage of the social graph. However, it acts as a geographi-
cally distributed graph-aware caching layer and mediates all graph accesses. TAO also keeps each
bidirectional association in synch with its inverse. TAO API provides efficient access to its social
graph. It supports operations for the definition and manipulation of nodes and associations. It also
allows simple queries, such as reading data of a given node, and reading the most recent outgoing
edge (or all edges). For example, in Figure 2(d), the CHECKIN object can be displayed by accessing
all tagged users and the most recent comments.

38https://github.com/twitter/flockdb.
39https://sparsity-technologies.com/.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

https://github.com/twitter/flockdb.
https://sparsity-technologies.com/.

A Survey on NoSQL Stores 40:15

Fig. 6. A graph pattern finding the person names who are in John’s network of friends and visited the Eiffel

Tower.

Graph data models allow deep and complex queries over highly connected entities to be eas-
ily expressed and quickly processed. Common graph query workloads can be divided into two
categories:

—Online graph navigations, in which small fractions of vertices and edges of the entire graph
are explored and a fast response time is required. Online graph queries can be classified
into two major types (Angles 2012; Angles et al. 2016): path queries and pattern matching

queries.
• A basic path query is used to determine the existence of a path connecting two nodes of a

property graph regardless of edge labels. However, in practice, path queries may specify
conditions on the retrieved paths, such as specifying a regular expression over the set of
(edge/vertex) labels of retrieved paths when concatenated. For example, in Figure 2(d),
assume that we like to see the name of all users in John’s network of friends (and friends
of a friend, and so on). This can be expressed with the following regular path query:

John
FRIEND+−−−−−−−→ x

Here, the symbol ‘+’ denotes “one-or-more,” in which the regular expression FRIEND+

is used to specify all paths from a sequence of one-or-more forward-directed edges with
the label FRIEND. The endpoint x is matched to any node in the graph connected to John

by such a path. Due to the possibility of having paths involving cycles, there may be
an infinite number of paths. In order to prevent this situation, some semantics—such as
looking for just the existence of a path, shortest path, no-repeated node, or no-repeated
edge—are used.

• A pattern matching query is used to find all subgraphs of a data graph that are isomorphic
(i.e., equivalent in both structure and labels) to a given pattern graph. For example, in
order to find the names of all users in John’s network of friends who have visited the
Eiffel Tower in Figure 2(d), a tree-shaped pattern in Figure 6(a) can be used. This pattern
is closely related to graph patterns identified by Angles et al. (2016), in which a single

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

40:16 A. Davoudian et al.

edge in the pattern matches a single edge in the graph with the same label; a double edge
matches a path in the graph whose edges have the same label as in the pattern (e.g., the
FRIEND edge in the pattern matches any of the following paths: Jack to John, Sara to John,
and David to John); the solid nodes in the pattern are output nodes; and the dashed nodes
are ordinary nodes. The pattern shows a variable X. By evaluating the pattern on the
graph in Figure 2(d), matches of the pattern to the graph are found; for each such match,
the values matched by the variable X are returned. This evaluation returns David. Note
that graph-pattern matching is an NP-Complete problem (Gallagher 2006); however, tree-
shaped patterns can be evaluated in polynomial time (Czerwinski et al. 2017). A detailed
classification of graph queries can be found in Angles et al. (2016).
SPARQL40, Neo4j Cypher41 and Gremlin42 are the three most prominent graph query

languages, having graph-pattern matching capability. SPARQL is designed to query RDF
graphs. It has been officially standardized by W3C since 2008. Both SPARQL and Cypher
support declarative querying. On the other hand, Neo4j Cypher and Gremlin are designed
to query property graphs. Gremlin is a major part of the Apache TinkerPop graph comput-
ing framework. It supports both imperative and declarative querying. Gremlin is designed
more for graph traversal rather than graph-pattern matching. Figure 6(b) shows the corre-
sponding pattern query in Cypher.

—Offline analytical graph computations in which significant fractions of vertices and edges
of the entire graph are accessed (e.g., the investigation of graph topology and finding
connected components). However, their corresponding algorithms often require itera-
tive computations that are not supported by the basic MapReduce framework (Dean and
Ghemawat 2008), as this is used for one-pass batch data processing. Instead, efficient pro-
cessing of graphs is performed through graph processing tools such as Google Pregel
(Malewicz et al. 2010), Apache Giraph43, GraphLab (Low et al. 2010), and Pegasus (Kang et al.
2009). These tools prioritize high-throughput, offline graph computations over low-latency,
online graph navigations. Graph analytical tools provide limited support for online database
features, such as fast inserts/updates, or are immutable. However, they are designed for the
fast traversal of a huge number of edges and vertices of graphs. By contrast, graph stores
allow high-throughput updates on small portions of graphs by a lot of concurrent users. In
general, graph analytical tools and graph stores provide different internal data structures
for storing graphs. However, a few graph engines (either graph stores or analytical tools)—
such as GraphChi-DB (Kyrola and Guestrin 2014), MAGS (Das et al. 2016), Microsoft Trinity
(Shao et al. 2013), and Kineograph (Cheng et al. 2012)—support both analytical computation
and database functionality.

Representative systems in graph stores include Neo4j (Webber 2012) and Titan37 from the high-
est to the lowest rank. In addition, two academic graph stores, including Microsoft Trinity (Shao
et al. 2013) and TAO (Bronson et al. 2013), will be investigated. Table 2 summarizes the character-
istics of the discussed NoSQL data models.

3 CONSISTENCY MODELS

A consistency model determines the effect of concurrent operations on shared data as viewed by
different clients of the system. This may dictate an ordering over the operations whether they

40https://w3.org/TR/sparql11-query/.
41https://neo4j.com/docs/developer-manual/current/cypher/.
42https://github.com/tinkerpop/gremlin/wiki.
43http://giraph.apache.org/.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

https://w3.org/TR/sparql11-query/.
https://neo4j.com/docs/developer-manual/current/cypher/.
https://github.com/tinkerpop/gremlin/wiki.
http://giraph.apache.org/

A Survey on NoSQL Stores 40:17

Table 2. Comparison of NoSQL Data Models

Fit scenario(s) Strength(s) Limitation(s)

Key-value Objects are only
accessed via a single
Key, object caching,
and where objects are
not related.

Scalable, a very fast random access
via Key, and ease of data partitioning

The responsibility of applications for
the modeling of values, the indexing
and querying of objects just by their
Keys, and the user needs to have the
key of an object in order to query it.

Wide-
column

Batch-oriented
parallel processing of
large aggregated
datasets

With regard to query workload, a
hierarchy of aggregates, such as
column-families, are designed that,
in turn, increase the performance of
queries. A suitable model for storing
huge amounts of data, as it can be
efficiently partitioned horizontally
(by rows) and vertically (by
column-families).

Limited ad-hoc querying as any
change in the application-specific
access patterns will impact the
design to a large degree; the
predefined set of column-families
makes it difficult to use
wide-column stores for applications
with evolving schemas.

Document Data can be easily
interpreted as
documents and are
constantly evolving.

A rich data model to store data with
arbitrary complexity, such as nested
structures, arrays, and scalar values;
each component of a document can
be accessed via secondary indices.

There is no standard API or query
languages.

Graph There is the need to
traverse several levels
of relationships
among intensely
related data.

Fast and simple querying of linked
datasets, and easy mapping of
entity-relationship diagrams

There is no standard API or query
languages. Partitioning of large
graphs reduces the performance
owing to high amount of internode
communications.

are individual reads and writes in a nontransactional system or transactions enclosing multiple
reads and writes in a transactional system. In a distributed storage system, there is a wide range
of consistency models with different guarantees for maintaining semantical relationships between
data items as well as their replicas (Viotti and Vukolić 2016). In this section, we explain various
consistency models enforced by NoSQL stores. In addition, existing attempts to support multikey
ACID transactions in some NoSQL stores are discussed.

3.1 Linearizability44

Linearizability dictates a total, real-time ordering of all operations in a nontransactional system in
which a read operation observes the result of the most recent updates (Herlihy and Wing 1990;
Lipton and Sandberg 1988). Likewise, strict serializability (Papadimitriou 1979) (or external consis-
tency (Gifford 1981))—which is the ultimate amount of isolation in transactional systems—ensures
the same ordering as linearizability, but on transactions. Both linearizability and strict serializabil-
ity are the strongest form of consistency in nontransactional and transactional systems, respec-
tively. With regard to replicated and/or partitioned data, these models provide an abstraction of
a single, consistent image of the system. In other words, the behavior of operations makes the
illusion of a single copy of data. This abstraction simplifies distributed systems’ programming and
prevents anomalous behaviors of applications, such as dirty reads, lost updates, and nonrepeatable
reads (Gray and Reuter 1992). However, it necessitates using hard-to-scale and expensive strategies
either for the commit of updates among replicas (via consensus protocols, such as 2-Phase Commit

(2PC) (Gray and Reuter 1992; Skeen 1981) and Paxos commit protocol (Gray and Lamport 2006)) or
pessimistic concurrency control (such as Strict 2-Phase Locking (S2PL) (Eswaran et al. 1976)). These

44This is informally referred to as strong consistency.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

40:18 A. Davoudian et al.

Fig. 7. Normalized data scattered in users’, albums’, and photos’ tables are denormalized and represented via

aggregates.

strategies severely impact availability and performance, especially in wide-area networks (Abadi
2012; Brewer 2012).

Likewise, sequential consistency enforces a total ordering of all operations in a nontransac-
tional system, along with providing a single, consistent image of the system (Attiya and Welch
1994; Lamport 1979). However, it is weaker than linearizability, as a read operation may observe
a stale value. Serializability (Papadimitriou 1979)—which is a weaker form of transaction isolation
compared to strict serializability—ensures the same ordering as sequential consistency. It is typi-
cally implemented using optimistic reads and writes based on Multi-version Concurrency Control

(MVCC) (Reed 1978), which increases the concurrency of transactions. However, the monotonic
ordering of operations necessitates using a global sequencer mechanism, which can be a perfor-
mance bottleneck in wide-area environments.

As providing a single, consistent image of the whole data in a distributed storage system is highly
expensive, some NoSQL stores enforce a limited transactional support by introducing atomic ag-

gregates. As discussed in Section 2, aggregates allow storing denormalized data together rather
than having scattered normalized data. A single business entity can be represented by an aggre-

gate such as a key-value pair in key-value stores, a column-family, super column-family, the whole
row of a table in column-family stores, or a document in document stores. With regard to atomic

aggregates, some NoSQL stores—such as Scatter (Glendenning et al. 2011), IBM Spinnaker (Rao
et al. 2011), and HyperDex (Escriva et al. 2012)—enforce the strict serializability of transactions
over individual data items (see Appendix A). In addition, Google Bigtable (Chang et al. 2008), pre-
serves the serializability of transactions over individual rows of tables (see Appendix A).

For example, Figures 7(a) and 7(b) depict how users’, albums’, and photos’ data accessed by a
photo application are logically and physically represented in both traditional relational and clus-

tered hierarchical schemas, respectively. Both schemas have the same collection of three schema-
tized tables at the logical level: User with primary key (UserID), Album with primary key (AlbumID),
and Photo with primary key (PhotoID). The traditional relational schemas are in 3rd normal form.
However, the clustered hierarchical schema incurs data redundancy in order to take into account
the locality relationships among ancestor and child tables, in which a child table references its

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

A Survey on NoSQL Stores 40:19

parent and ancestor table(s) (via foreign keys). Accordingly, table Album has a foreign key (UserID)
referencing its parent table User. In addition, table Photo has two foreign keys (UserID) and (Albu-

mID) referencing its ancestor table User and its parent table Album, respectively. At the physical
level, rows from a child table and its parent and ancestor tables are joined using a simple ordered
merge. Based on the traditional relational schema, fetching all albums and photos corresponding
to a given UserID would take two sequential steps, as there is no way to retrieve photo records by
UserID. On the other hand, in the clustered hierarchical schema, each user—along with its related
albums and photos—are clustered in the same aggregate. Each aggregate is stored in a single node
and is read in a single request. Although this denormalized redundant data may incur some update
anomalies, they have tackled the latency effects of having remote data.

Some modern data stores, such as Google Spanner45 (Corbett et al. 2013), provide ACID trans-
actions over multiple aggregates (called tablets). Spanner allows strictly serializable transactions
over multiple tablets. It isolates update transactions via S2PL. However, concurrency is enhanced
through a lock-free execution of read-only transactions in which data versioning is used to pre-
vent them facing inconsistent snapshots. More specifically, Spanner uses an accurate physical clock
(TrueTime) whereby update transactions are globally ordered based on the order of their commits.
Thus, a read-only transaction can respect strict serializability by asking for the latest snapshot
whose upper bound is TrueTime’s current clock. Spanner replicates the commit logs of a cross-
datacenter update transaction through running 2PC on top of the Multi-Paxos protocol (Chandra
et al. 2007). Likewise, Scalaris (Schütt et al. 2008b) enforces the serializability of transactions over
multiple data items (see Appendix A).

Since distributed systems cannot avoid network partitions in practice, they focus only on the
trade-off between (strong) consistency with either availability (stated by CAP (Brewer 2000; Gilbert
and Lynch 2002)) or low latency (stated by PACELC (Abadi 2012)). This results in adapting weaker
models of consistency by NoSQL stores. These models require less coordination between replicas;
this, in turn, decreases the latency of operations. In the following, some of the well-known weak
consistency models are described.

3.2 Eventual Consistency

Eventual consistency does not dictate any ordering of operations but rather ensures the grad-
ual and eventual convergence of replicas to identical values after receiving the same set of asyn-
chronously propagated updates (Fekete et al. 1996; Vogels 2009). According to Vogels (2009), when
there is no failure, factors such as the number of replicas in the replication scheme, system load
and communication delays determine the length of inconsistency window. This notion of consis-
tency suffices for those applications for whom the high availability of data requests is so critical
that even a tiny impact on it causes user dissatisfaction and loss of revenue (e.g., advertisement
records or social media). On the other hand, eventual consistency allows anomalous behaviors of
applications; this, in turn, increases the complexity of application design, testing, and debugging.
It also suffers from conflicting write operations on the same data item. This necessitates using con-

flict detection and resolution mechanisms in order to prevent the permanent divergence of replicas
by applying an identical sequence of updates on them. Three common strategies are as follows:

• Client-driven semantic reconciliation, whereby an application-specified reconciliation is
performed on divergent versions. For example, a shopping cart service merges the differ-
ent versions of a shopping cart. However, the generalization of such reconciliation func-
tions is hard as various applications require different customized reconciliation. In addition,

45It is one of the NewSQL stores.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

40:20 A. Davoudian et al.

the complexity of client applications and their performance overhead are increased. Some
NoSQL stores, such as Voldemort15, use this strategy.

• Timestamp-based syntactic reconciliation, such as last-write-wins (also called Thomas’s
write rule (Thomas 1979)), whereby a timestamp is assigned to each modified replica. Ac-
cordingly, the conflict of peer replicas is resolved by selecting the one with the best times-
tamp (i.e., the most recent and accurate). A potential drawback is that this strategy may
cause some lost updates, especially when modifying large objects. Lost updates may en-
danger data correctness and make last-write-wins inappropriate for most OLTP applica-
tions. For an example of lost updates, suppose that an object has two attributes a and b and
has two replicas R1 and R2. If a client modifies a in R1 and another client modifies b in R2,
then by detecting the conflict, one of the replicas overwrites the other; hence, one of the
modifications is lost. This issue can be solved by reducing the unit of conflict detection and
resolution (Lakshman and Malik 2010). Continuing with the above example, by assigning
timestamps to the individual modified attributes (instead of the whole modified objects), the
conflict is resolved while keeping the modifications on both a and b. Some NoSQL stores—
such as Apache Cassandra (Lakshman and Malik 2010), Amazon Dynamo (DeCandia et al.
2007), COPS (Lloyd et al. 2011), and CouchDB34—use this resolution.

• Vector clocks (or version vectors) syntactic reconciliation (Lamport 1978; Mattern 1989;
Parker et al. 1983), whereby a partial ordering across the write operations of each data
item is established by capturing their potential happens-before relationships. Therefore,
the system is relieved from the burden of clock synchronization across all servers. More
specifically, for a data item D with r replicas stored on different physical nodes, a vector
V D

i of logical clocks represents the last version of D that is known by a node Ni , where

i ∈ {1...r }. V D
i = [<N1,C

i
1>, . . . , <Nr ,C

i
r>] is a list of pairs where Ci

k
is the clock value of

node Nk when D is last updated on it. A node’s clock value can be derived from its local
clock or some ordinal values. As an implementation of the latter, Ci

k
starts at zero, and is

incremented by subsequent modifications of D at Nk . Data item D may have different vec-
tor clocks on different nodes. Through comparing vector clocks V D

i and V D
j (i <> j), it is

determined whether there is a conflict or not. More precisely, ifV D
i = V

D
j , then no action is

taken; if V D
i < V

D
j (or ∀ k ∈ {1...r },Ci

k
< C j

k
), it means that Ni does have the stale version;

thus,V D
i is replaced withV D

j , along with sending the value of D to node Ni (and vice versa).

Otherwise, there is a conflict that may be handled at the application level. As a challenge,
by growing the number of replicas, along with their addition and removal, the maintenance
cost of vectors is increased. Some NoSQL stores, such as Amazon Dynamo (DeCandia et al.
2007) and Riak KV12, use this strategy.

• Commutative Replicated Data Types (CRDT) syntactic reconciliation, in which the conver-
gence of replicas of certain data structures is guaranteed irrespective of the execution order
of operations (Letia et al. 2010). Therefore, concurrent updates commute and there is no
need to perform conflict detection and resolution. For example, Sovran et al. (2011) design
a commutative data structure called counting set (cset), which is like a multiset, and a count
is kept for each element. Unlike multisets, the count could be negative. Accordingly, a cset

supports two commutative operations add(x) and rem(x) to add and remove an element x,
respectively. The former increments the counter of x and the latter decrements it. They uses
csets to store message timelines, photo albums, friend lists, and message walls. Some NoSQL
stores, such as Walter (Sovran et al. 2011) and Riak KV12, use this strategy.

Note that none of the above concurrency control strategies can satisfy OLTP applications, as they
cannot handle the well-known critical section problem. For example, two concurrent transactions

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

A Survey on NoSQL Stores 40:21

can modify the same data item at the same time. The convergence of replicas can also be ensured
using repairing strategies. Three common strategies are as follows:

—Read-repair (DeCandia et al. 2007), in which the coordinator of a read operation (on a data
item) initially sends it to all corresponding replicas. It waits until receiving responses from
a configurable number of replicas. It then determines the latest version of returned val-
ues and returns it to the user. In addition, obsolete replicas are asynchronously updated.
Some NoSQL stores—such as Amazon Dynamo (DeCandia et al. 2007), Apache Cassandra
(Lakshman and Malik 2010), Voldemort 15, and Riak KV12—use this strategy.

—Hinted-handoff (DeCandia et al. 2007), which ensures that all write requests are eventually
applied to their intended target replicas. Assume that the coordinator of a write operation
notices the temporary failure of a replica. It then stores all the updates (related to the replica)
on a local hinted-handoff table. By recovering the replica, all updates are pushed back to it.
However, in the case of a memory crash, the table may be lost. Some NoSQL stores, such
as Amazon Dynamo (DeCandia et al. 2007) and Apache Cassandra (Lakshman and Malik
2010), use this strategy.

—Anti-entropy (Demers et al. 1987) using Merkle-trees (Merkle 1989), in which each member
of a replica group periodically creates a Merkle-tree and sends it to other members. The
tree received by a replica node can be efficiently compared with its own tree to determine
out-of-synch data portions along with sending them to obsolete replicas. However, this
strategy requires network bandwidth owing to transferring of trees over the network. In
addition, leaving or joining nodes may invalidate some Merkle-trees (DeCandia et al. 2007).
Gonçalves et al. (2015) introduce a lightweight anti-entropy mechanism without the use
of Merkle-trees. Some NoSQL stores, such as Amazon Dynamo (DeCandia et al. 2007) and
Apache Cassandra (Lakshman and Malik 2010), use this strategy.

A majority of NoSQL stores—such as Apache Cassandra (Lakshman and Malik 2010), Amazon
Dynamo (DeCandia et al. 2007), Riak KV12, Voldemort (Feinberg 2011), CouchDB34, Couchbase
Server24, MongoDB23, Neo4j (Webber 2012), and Amazon DynamoDB33—preserve this consistency
model.

3.3 Regular Causal Consistency

The infeasibility of global clocks in distributed systems, as emphasized by Lamport (1978), moti-
vated systems to consider partially ordered operations. Accordingly, causal consistency enforces a
partial order (called happens-before relation) among causally dependent operations. More precisely,
an operation b is causally dependent on an operation a if one of the following three conditions
holds: (1) a and b are issued by the same client and b happens after a (a.k.a. session order), (2) b

is a read operation that returns the value written by a (a.k.a. read-from order), and (3) they are
transitively dependent. Intuitively, causal consistency guarantees that when committing a write

operation at a replica, all write operations causally preceding it have already been committed at
the replica (Ahamad et al. 1995; Birman 1985; Lamport 1978; Raynal and Schiper 1995).

For example, consider a scalable instant messaging service that allows creating different message
groups. Users can use the service by joining one or more groups and sending messages to the
members of each group, as well as reading messages posted by others. Due to the availability and
scalability requirements of the service, key data (such as the timeline of each group) are replicated
on several application servers around the world. Suppose that usersu1,u2, andu3 are the members
of a message group G whose timeline has three replicas and these users have been redirected to
different application servers. Now, consider the following sequence of actions: (1)u1 sends message
m1: “I lost my wallet at the university ”; (2) both usersu2 andu3 readm1; (3) after a while,u1 sends

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

40:22 A. Davoudian et al.

Fig. 8. An invalid scheduling of operations with regard to the causal consistency since by the (local) commit

of W3 at a G’s replica (occurred at point X), W2—which is causally preceding W3—has not been (locally)

committed at the replica yet. According to causality, this schedule can be legalized by committingW3 after

point Y .

m2: “I found it”; (4)u2 readsm2; and (5)u2 sendsm3: “That’s great ”. As Figure 8 shows, if causality
is not respected, u3 could read m3 before reading m2. Therefore, she may think that u2 is pleased
about the loss of u1’s wallet! However, with regard to causality, it is impossible for u3 to read m3

before readingm2 because the write ofm3 on a replica of G’s timeline is causally dependent to the
write ofm2 on the same replica.

Since this consistency does not guarantee any ordering between causally independent concur-
rent operations, the efficiency of implementation is increased, as there is no need to determine a
serialization point between unrelated concurrent write operations so that they can be replicated
in any order. For example, in the above messaging service, if users u1 and u2 send two messages
concurrently, they can appear in any order on the replicas of G’s timeline. However, there is a
conflict when the same data item is updated by concurrent operations. This is undesirable, as the
conflict may result in the continuous divergence of replicas (Ahamad et al. 1995). In addition, read

operations may not always access the latest versions of read data items. Conflicting writes are
usually handled using the above conflict-handling strategies.

Causal consistency is typically enforced by the following three steps: (1) committing the up-
dates on corresponding local replicas, (2) asynchronous propagation of updates to remote replicas,
and (3) performing causal dependency checking to determine when each update can be applied
on a corresponding replica. It needs carrying some causal dependency metadata that is propagated
through distinct messages or along with the updates (Belaramani et al. 2006; Lloyd et al. 2011, 2014;
Petersen et al. 1997). However, there is a challenge of communication overhead due to transferring
dependency metadata, which, in turn, affects the throughput. There are various representations of
dependency metadata, such as vector clocks (Almeida et al. 2013; Birman et al. 1991; Du et al. 2014a;
Ladin et al. 1992; Terry et al. 1994; Zawirski et al. 2013), real-time clocks (Akkoorath et al. 2016; Du
et al. 2013, 2014b), or a hybrid of physical/logical clocks (Didona et al. 2017). Note that real-time

clocks have the problem of clock skew among different servers.
Causal consistency makes a trade-off between performance and ease of programming as it al-

lows data to be replicated asynchronously and avoids some of the anomalous behaviors of eventual
consistency. Mahajan et al. (2011) prove that causal consistency is one of the strongest notions of
consistency that are compatible with low latency, high availability, and partition tolerance. It also
enforces all the following session guarantees in which a session denotes the sequence of operations
issued by a given client on the store (Brzezinski et al. 2004).

—Monotonic-Reads (MR), in which successive read operations (of a session) issued on a data
item observe a nondecreasing order of the item’s versions. For example, consider a social
network application in which the posts of each user are written to both the user’s own wall

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

A Survey on NoSQL Stores 40:23

and friends’ walls. According to MR, when a user observes a post in the user’s wall, then
that user’s succeeding read operations will certainly include the same post (unless the post
was removed).

—Monotonic-Writes (MWs), in which successive write operations (of a session) issued on a data
item take effect in the same order. According to MWs, when a social network user performs
two consecutive writes, any successive read operation that contains the second post also
contains the first one.

—Read-My-Writes (RMWs), in which read operations (of a session) issued on a data item always
see the effect of the most recent write operation (of the session) issued on the same item.
According to RMW, when a social network user reads one’s wall, the user observes one’s
latest posts (unless having already removed them).

—Writes-Follow-Reads (WFR), in which write operations (of a session) issued on a data item
take effect on versions of the item that are equal to or newer than versions seen by preceding
read operations (of the session) issued on the same item. According to WFRs, when a social
network user replies to a post, any successive read operation that contains the reply also
contains the original post.

Causal consistency is preserved in a lot of academic geo-replicated data stores (Akkoorath et al.
2016; Almeida et al. 2013; Bailis et al. 2013b; Didona et al. 2017; Du et al. 2014b; Lloyd et al. 2011,
2013; Zawirski et al. 2015), which use various strategies for representing causal relationship meta-
data and dependency tracking. These strategies make the implementation of causal consistency
more expensive than eventual consistency, such that no existing commercial data store preserves
it.

3.4 Per-Object Timeline Consistency

Per-object sequential, or prefix, consistency ensures a total ordering of all operations on each data
item along with respecting their order as issued by each client (Cooper et al. 2008; Lamport 1979;
Terry 2013; Terry et al. 1994). It was initially used for the design of Yahoo! Pnuts (Cooper et al.
2008), the storage system used for Yahoo! web applications. It avoids using transaction serializ-
ability (on multiple data items) because of the tendency of web applications to issue operations on
single data items. Using this consistency, concurrent updates on the same data item are serialized
at the corresponding primary replica. It can perform this ordering by assigning monotonically
increasing numbers to the updates. Then, the updates (along with their associated sequence num-
bers) are asynchronously replicated on all corresponding replicas. These sequence numbers are
required to ensure the order-preserving delivery of updates. In this model, all write operations
and strongly consistent reads on a data item are forwarded to the corresponding master replica.
However, timeline consistent read operations on a data item are answered locally. This may result
in observing stale data. However, a client’s read operation never returns a new version before an
old one. Some NoSQL stores, such as Yahoo Pnuts (Cooper et al. 2008), preserve this consistency.

3.5 Parallel Snapshot Isolation (PSI)

This notion of consistency relaxes Snapshot Isolation (SI) (Berenson et al. 1995) over fully geo-
replicated data stores. More precisely, PSI does not impose a global commit ordering of transac-
tions (Sovran et al. 2011). Instead, it locally enforces SI on transactions executed in each datacenter
where a local sequence number is used. It also preserves the causal ordering of transactions exe-
cuted across datacenters. This relaxation allows the asynchronous propagation of updates across
datacenters and improves the scalability and performance of the system. By starting a transaction
Ti at a datacenter D, it takes a consistent snapshot that does not necessarily reflect the outcome

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

40:24 A. Davoudian et al.

of all transactions committed before startingTi . This strategy guarantees to reflect the outcome of
those transactions that are causally precededTi as well as the ones that have locally committed at
D, beforeTi . The causality means that ifTi reads fromTj committed at D, thenTi ’s commit should
be ordered afterTj ’s commit at any other datacenter. After the local commit ofTi at D, its updates
are asynchronously propagated to and committed at remote datacenters. Some NoSQL stores, such
as Walter (Sovran et al. 2011), enforce PSI over transactions.

Table 3 summarizes the characteristics of the discussed consistency models46. Note that mod-
ern applications interact with a mix of weakly and strongly consistent data. For instance, in the
discussed messaging service example, the timeline of each message group is causally consistent
data and the membership information is strongly consistent data as servers must agree about
the receivers of each sent message. One strategy is to store data in a single data store that pro-
vides tunable consistency guarantees—such as Oracle NoSQL9, MongoDB23, Yahoo Pnuts (Cooper
et al. 2008), Apache Cassandra (Lakshman and Malik 2010), and Amazon Dynamo (DeCandia et al.
2007)—whereby the application programmer can select an appropriate level of consistency for each
operation. However, accessing a piece of data that needs the interaction between different consis-
tency levels makes programming difficult and error prone. Another strategy is to store data on a
mix of data stores with heterogeneous consistency guarantees. However, the application program-
mer needs not only to reason about native consistency guarantees preserved by each individual
store but also about the behavior when accessing a piece of data across these stores. In order to
tackle this situation, Milano and Myers (2016) introduce a mixed-consistency programming model
whereby programmers can choose the level of consistency on a per-object basis. Recently, there
have been some studies on relieving the application programmer of the manual and error-prone
selection of the correct level of consistency, whereby the decision process is automatically per-
formed by the application (Li et al. 2014; Liu et al. 2014; Terry et al. 2013).

As already mentioned, implementing distributed ACID transactions using heavyweight coordi-
nation protocols, such as 2PC (Gray and Reuter 1992; Skeen 1981) and Paxos commit (Gray and
Lamport 2006), makes it difficult to build scalable and available distributed data stores. Therefore,
many NoSQL stores avoid supporting distributed transactions that access data spanning multiple
nodes. However, many web applications (such as online gaming and collaborative editing) require
an atomicity guarantee at multikey granularity. Recently, there have been many attempts at sup-
porting ACID transactions in NoSQL stores without sacrificing scalability.

Levandoski et al. (2011) provide an architecture called Deuteronomy for scaling databases and
supporting ACID transactions (using a lock-based approach). Contrary to the classical data stores
whose data storage and transaction execution logic are tightly coupled, Deuteronomy decomposes
data store engine functions into separate data storage component DC and transaction manage-
ment component TC. The former is responsible for the physical data organization (such as data
storage and indexing) and caching, along with supporting an interface with atomic operations to
access data. The latter is responsible for transaction concurrency control and recovery (e.g., log-
ging/locking). Applications submit their requests to TC that, in turn, guarantees to pass the non-
conflicting concurrent requests to the appropriate DC. Upon completion, TC commits the trans-
action and tells DC to persist data items. In this architecture, if TC fails, a new one is instantiated
and performs recovery using the log. This architecture is scalable since, by growing data volume,
more DCs can be added while the functionality of TC remains isolated from scaling decisions at
the DC layer. On the other hand, it is flexible, as multiple DCs and TCs can be deployed in differ-
ent ways from mobile devices to clusters or cloud environments. However, in order to prevent TC

46Note that the consistency model preserved by a distributed storage system has a tight relation with the choice of repli-

cation strategy.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

A Survey on NoSQL Stores 40:25

Table 3. Comparison of Well-Known Consistency Models Preserved in NoSQL Stores

from being a performance bottleneck for high loads, they propose using multiple TCs instantiated
on separate machines, assuming that each transaction is serviced by a specific TC. To do so, users
need a kind of partitioning technique to divide the database across multiple TCs. In addition, they
need to synchronize the transactions on different TCs using a distributed transaction protocol such
as 2PC.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

40:26 A. Davoudian et al.

Recently, Levandoski et al. (2015) improved the TC component by using modern MVCC tech-
niques to reduce transaction conflicts along with batching techniques to reduce the cost of TC/DC

traffic. They are also working on fault-tolerant scale-out transactional stores using multiple TCs

and DCs, which can fail over with minimum downtime.
Warp (Escriva et al. 2014) is a transactional library that provides support for distributed ACID

transactions using a commit protocol named linear transactions. This protocol uses a dependency
tracking technique in which, instead of computing a total order on all transactions, which is costly,
it orders those transactions that have some data items in common. Some NoSQL stores, such as
Scalaris (Schütt et al. 2008b), use the Paxos commit protocol to support multikey ACID transactions
whose performance is less than Warp transactions. The reason is that Paxos requires a server to
perform a broadcast followed by waiting for a quorum of servers, which divides overall throughput
by the number of servers involved. Warp is used as an add-on for the HyperDex NoSQL store
(Escriva et al. 2012).

4 DATA PARTITIONING

Data partitioning includes solutions whereby data in a database are split into some disjoint parti-
tions and spread over different storage nodes. This can be achieved either horizontally (also called
sharding) or vertically. Horizontal partitioning, which is typically used by NoSQL stores, divides
data at the row level (e.g., rows in a wide-column table or documents in a collection) into disjoint
partitions (or shards). Vertical partitioning divides data based on predefined groups of columns
that are accessed together (e.g., column-families in wide-column stores) into disjoint partitions.

Data partitioning has some advantages. First, it improves the scalability of a system as it tackles
the situations when large volumes of data and high request rates overwhelm the storage and pro-
cessing capacity of any single server. Second, it improves the performance of a system by increas-
ing the degree of parallel processing on multiple partitions. Finally, it works well for geographically
dispersed data, whose reads and writes are primarily within one geographic location47.

There are several studies (Chen et al. 2013; Huang et al. 2015; Schall and Härder 2015; Turk et al.
2014) on enhancing the partitioning strategies used by NoSQL stores. However, there are still some
challenges that affect the efficiency of a partitioner with regard to the throughput and latency of
user requests. First, the number of multi-partition requests (i.e., the processing of a query requires
contacting several partitions) should be decreased. This reduces the amount of data transferred
over a network during query processing. Second, the distribution of processing and storage load
should be uniform with regard to the capacity of nodes (e.g., processing power, disk speed, and
network capabilities). Third, the amount of data transferred during repartitioning events (e.g., a
node addition or removal) should be reduced. Finally, the storage, retrieval, and manipulation of
mapping between partitions and storage nodes should be efficient (Stonebraker 1986; Stonebraker
et al. 2013).

In NoSQL stores, data commonly accessed together are aggregated in the value of a key-value
pair in the columns of a column family and in each document. This is how data are clumped up
as data items by different NoSQL stores. Sharding can be either key oriented as data lookup is just
based on some (shard) keys or traversal oriented as data lookup is based on analyzing the relation-
ships of data items. Data models have a significant effect on selecting the strategy of partitioning.
Graph stores use traversal-oriented sharding strategies, whereas other data models use key-oriented

strategies. Key-oriented hashing partitioning strategies are applicable for applications, such as
shopping cart and product catalog, where data are represented by key-value pairs or documents
and each data item can be accessed independently. Traversal-oriented strategies, which partition

47In order to avoid any single point of failure, partitioning strategies are supplemented with replication mechanisms.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

A Survey on NoSQL Stores 40:27

less connective nodes and group highly related nodes, are suitable for applications such as recom-
mendation, in which objects are linked as graphs and links between friends, product purchases,
and ratings are traversed rapidly. Both vertical and horizontal partitioning can be provided by the
wide-column stores; for other kinds of NoSQL stores, only horizontal partitioning (sharding) is
being studied for now. In this section, some of well-known sharding strategies are explained.

4.1 Key-Oriented Static Sharding

This kind of sharding aims at balancing the utilization of static space, while dynamic data and
query workloads are entirely disregarded. Some of the corresponding strategies are as follows.

4.1.1 Range-Based. Data items are clustered according to the contiguous intervals of (shard)
keys, such as the range of a unique identifier. An advantage is that range queries on short intervals
are handled efficiently as they involve communicating with only a single node or a few nodes. In
other words, the number of multi-partition requests is decreased. This kind of partitioning is very
useful for applications such as data warehousing (Lee et al. 2000), Web servers (Luo and Naughton
2001), and online games (Knutsson et al. 2004), which involve distributed order-preserving data
structures. However, there are some drawbacks. First, popular keys (e.g., ‘E’) cause query workload
to be skewed so that a single or a few nodes receive a larger fraction of requests than others. Second,
nonuniform distribution of inserting data items’ keys causes data workload to be skewed so that
storage nodes become unbalanced. Finally, it needs to maintain a central lookup table or directory to
store the mapping of partitions to storage nodes. The directory service may decrease performance
and scalability, as a round-trip delay is added to the critical data access path. This strategy is used
by some NoSQL stores, such as Google Bigtable (Chang et al. 2008), Apache Hbase19, MongoDB23,
Yahoo Pnuts (Cooper et al. 2008), and IBM Spinnaker (Rao et al. 2011).

4.1.2 Simple Hashing. Data items’ keys are randomly hashed to their hosting nodes via simple
hashing schemes, such as modulo hashing, where:

HostingNodeNumber = Key modulo NumberOfNodes

Relying on hash functions results in efficient data lookups, as they are performed locally (DeCandia
et al. 2007). However, in simple hashing, adding or removing a node necessitates redistributing a
lot of data items as the hash of keys severely reshuffles. This incurs a high cost for regularly
expanding datasets. Furthermore, there is poor data locality and the number of multi-partition
requests is increased as relevant data items are randomly spread over different nodes.

4.1.3 Consistent Hashing. Consistent hashing considers the scope of a hash function as a “ring”
in which both nodes’ IDs (e.g., IP addresses) and data items’ keys are randomly hashed to its posi-
tions (Karger et al. 1997; Lewin 1998). The hosting node of a data item is the first node encountered
when walking clockwise from the data item’s position on the ring. Therefore, a node with position
p is responsible for an individual set of data items whose keys are hashed to an arc (or partition)
of the ring between p.predecessor48 and p. When a new node joins and is hashed at position q,
the old arc corresponding to its immediate successor is split into two new adjacent arcs between
q.predecessor and q, as well as q and q.successor. On the other hand, by leaving or failing a node,
the old arcs corresponding to the node and its successor are merged with each other.

As a result, in contrast to simple hashing, the addition or removal of a node in consistent hashing
incurs only a redistributing O (1/N) fraction of data items that are hosted on the node’s successor,
where N is the number of existing nodes. This means that consistent hashing scales much better

48Assume that, for a given node hashed at position p , the positions of its immediate predecessor and successor are specified

by p .predecessor and p .successor, respectively.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

40:28 A. Davoudian et al.

than simple hashing. However, there are some drawbacks. First, it still suffers from poor data
locality. Second, for a uniform distribution of data items over the key space, there is an O (logN)
imbalance factor between N nodes in terms of stored data items and query workload (Stoica et al.
2001). Third, the performance heterogeneity of nodes is not taken into account, as it may result in
data and query workload imbalance. Finally, by a node joining or leaving, data redistribution may
overwhelm the load capacity of its successor.

Most of these issues can be addressed through using virtual nodes or shards (Dabek et al. 2001;
Stoica et al. 2001) by which multiple noncontiguous positions in the hash ring can be assigned
to a physical node. The number of positions or virtual nodes corresponds to the capacity of the
node. More specifically, the stronger physical server will split into more virtual nodes. However,
some systems (e.g., Apache Cassandra (Lakshman and Malik 2010)) put a limit on the number of
virtual nodes, as they have several side-effects (Hogqvist et al. 2008), such as increased agitation
owing to the failure of a physical node and increasing state maintenance. Huang et al. (2015) pro-
pose a method to compute the optimal positions of joining nodes (or virtual nodes) in the hash
ring, with no impact on load balance. Chen et al. (2013) present a hybrid partitioning approach by
combining consistent hashing and range-based strategies with regard to heterogeneity of nodes. In
this method, a cluster with a set of N nodes is divided into k subsets or virtual nodes, in which
consistent hashing and range-based strategies are used for intercluster and intracluster data parti-
tioning, respectively. Some NoSQL stores—such as Apache Cassandra (Lakshman and Malik 2010),
Amazon Dynamo (DeCandia et al. 2007), Voldemort (Feinberg 2011), Infinispan (Marchioni 2012),
Scatter (Glendenning et al. 2011), COPS (Lloyd et al. 2011), Riak KV12, and Microsoft Trinity (Shao
et al. 2013)—use this strategy.

Variants of consistent hashing are commonly used in DHTs (Ratnasamy et al. 2001; Rowstron and
Druschel 2001; Stoica et al. 2001), in which data are stored and looked up in a totally decentralized
manner. DHT nodes maintain a structured P2P overlay network in which they are organized in
predefined topologies in order to support a fast, scalable routing. A key lookup issued in one of
the nodes is reliably routed through the overlay network to a node storing a data item related to
the key. A variety of topologies and routing protocols are used by different DHTs, such as Chord
(Stoica et al. 2001), CAN (Ratnasamy et al. 2001), Pastry (Rowstron and Druschel 2001), Tapestry
(Zhao et al. 2001), Plaxton (Plaxton et al. 1999), Apache Cassandra (Lakshman and Malik 2010) and
Amazon Dynamo (DeCandia et al. 2007). Most DHTs take more than one hop to locate data, along
with maintaining a small routing state per node. More precisely, for a network with N nodes, each
node possesses a limited view of the network and usually maintains the information of O (logN)
neighbor nodes (consisting of its 1-hop distant nodes and closest successors). In addition, the lookup

operation mostly takes O (logN) hops. Table 4 shows a specification of Chord DHT. For more
information on existing DHT-based routing protocols, see Abid et al. (2015) and Lua et al. (2005).

Some DHTs, such as Apache Cassandra (Lakshman and Malik 2010) and Amazon Dynamo
(DeCandia et al. 2007), are one-hop (a.k.a. zero-hop) DHTs: through providing enough state at
each node, its requests can be directly routed to destination nodes. Note that maintaining the full
routing state per node simplifies routing. However, with regard to the high churn (arrival and
planned/unplanned departure) of nodes, maintaining the consistency of all nodes’ routing states
may impact the scalability of the system. As consistent hashing spreads adjacent keys over par-
ticipant nodes, range queries are not efficiently supported. One of the approaches to tackle this
drawback is the use of key-order preserving mapping functions, in which adjacent ranges of keys
are mapped to contiguous ranges of nodes (Schütt et al. 2006, 2007, 2008a). This strategy is used in
some NoSQL stores, such as Scalaris (Schütt et al. 2008b) and Apache Cassandra (Lakshman and
Malik 2010).

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

A Survey on NoSQL Stores 40:29

Table 4. The Specification of Chord DHT

4.1.4 Hyperspace Hashing. The above partitioning strategies partition data based on the single
dimension of data items’ keys. These strategies result in inefficient queries on properties other
than primary keys, as all partitions must be searched. This problem can be tackled by partitioning
on multiple dimensions. As such, hyperspace hashing is an extension to consistent hashing, in
which several attributes (instead of just a key attribute) are taken into account for the mapping of
data items to nodes (Almeida et al. 2013). More specifically, a data item with a set of attributes is
mapped into a multidimensional space (called hyperspace) in which each dimension is defined by
an attribute of the data item. Accordingly, the data item’s position (in the hyperspace) is determined
through the hashing of each attribute value along its corresponding dimension.

A coordinator separates hyperspace into disjoint zones; each zone is assigned to a virtual node.
Therefore, a set of (zone, node) pairs, called a hyperspace map, is maintained for each hyperspace

and is distributed to clients and servers that use it for the insertion, removal, and search of data
items. This map may be changed by joining or leaving nodes. Through this geometric reasoning,
adding more search terms to a query potentially restricts the search space to a smaller set of nodes,
increasing query efficiency.

However, hyperspace’s volume grows exponentially with the number of attributes (or dimen-
sions); thus, its coverage may not be feasible even for large datacenters. An efficient search on
a hyperspace with n dimensions requires at least 2n zones (and corresponding nodes). This nulli-
fies the advantage of hyperspace hashing since a partial search operation incurs contacting a lot
of nodes containing irrelevant data for the search. This exponential growth is avoided through
partitioning of hyperspace into smaller independent subspaces with lower dimensionality. Then,
each search is issued on a subspace that necessitates contacting the smallest number of nodes.
The system administrator can configure the hyperspace hashing through defining different sets of
subspaces along with selecting their used attributes. As this configuration may affect system per-
formance (by changing both the efficiency of search and cost of maintaining consistent subspaces),
Diegues et al. (2014) present an approach for automatic selection of the optimal configuration for
a given workload. Another issue is that a key lookup in hyperspace hashing is inefficient, as it
is a partial search and likely incurs contacting multiple servers. This is solved through the above
subspace partitioning by constructing an individual key subspace containing only the key of the
data item, as it can be assigned to one node.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

40:30 A. Davoudian et al.

Like hyperspace hashing, a Content-Addressable Network (CAN) (Ratnasamy et al. 2001) maps
nodes onto N-dimensional coordinate space and the entire hash table is divided into chunks (called
zones) stored on CAN nodes. A key is mapped to a point in the coordinate space; then, the cor-
responding entry is stored on the node to whom the chunk containing the point belongs. The
purpose of a CAN is to provide efficient overlay routing. Each node keeps the coordinates of its
immediate neighbors; thus, it can directly route through its neighbors to destination coordinates.
To take advantage of single-key DHTs for multi-attribute queries, techniques such as Space Fill-
ing Curve (SFC) (Sagan 1994) and pyramid technique (Berchtold et al. 1998) can be used to reduce
the dimensions of the multi-attribute point in a high-dimensional space to a single value in the
one-dimensional index (e.g., Schmidt and Parashar (2008) and Sen et al. (2015)).

4.2 Key-Oriented Workload-Aware Sharding

In the above sharding strategies, dynamic query and data workloads are not taken into account.
For example, the static hash function used in consistent hashing cannot tackle hotspots (i.e., nodes
that are heavily loaded) caused by the nonuniform query distributions of real-world workloads. A
workload-aware partitioner identifies hotspots and then dynamically adjusts the load distribution
(Kwon et al. 2010; Stonebraker et al. 2013). This dynamic adjustment must guarantee that there are
no ping-pong phenomena (Fleisch and Popek 1989) or continuous relocation of a data item across
nodes. In the following, some of the strategies and modules for elastic partitioning are explained.

4.2.1 Migration of Virtual Nodes. This strategy assumes that each physical node can accommo-
date several virtual nodes according to both its capacity and query distribution (Chen and Tsai 2008;
Godfrey et al. 2004; Rao et al. 2003; Stoica et al. 2001). It alleviates detected hotspots through reas-
signing some of their virtual nodes to light nodes. A set of centralized directory nodes is maintained
by the system. They periodically receive the load information of different nodes and, based on
that, assign virtual nodes to physical servers. Rao et al. (2003) propose three partitioning schemes
whereby virtual nodes are exchanged through periodic contacts between physical nodes. With the
first strategy, called one-to-one, a contact between a hotspot and a light node initiates a virtual node
transfer. With the second strategy, called one-to-many, a light node randomly selects a directory
node and reports its load to it. Likewise, a hotspot randomly selects a directory node and finds
the most appropriate light node where a virtual node is transferred. With the third strategy, called
many-to-many, every node (hotspot or light loaded) reports its load to a subset of directories. Then,
each directory determines and initiates the most efficient virtual node migration based on its local
information. This strategy does a greedy allocation, and load is not distributed evenly.

4.2.2 Item Balancing. Karger and Ruhl (2006) propose a strategy in which each node Ni pe-
riodically contacts other nodes such as Nj at random. Assume that Li and Lj denote the load of

nodes Ni and Nj , respectively; and Lj ≤ αLi , where 0 < α < 1
4 . There are two cases: (1) Nj is the

predecessor of Ni , then the address of Nj is increased such that
Li−Lj

2 data items are transferred
from Ni to Nj ; (2) Nj is not the predecessor of Ni ; thus, if Lj+1 ≤ Li , then Nj ’s data items are taken
up by its successor (Nj+1). Also, Nj migrates as the predecessor of Ni by accepting half of Ni ’s data
items; otherwise, set i = j + 1, and goto case 1.

DBalancer (Konstantinou et al. 2013) is a generic configurable load-balancing module that can
be installed on top of a typical NoSQL store. It is fed by an expandable suite of various range-

based partitioners that support data item balancing methods proposed by Karger and Ruhl (2006)
and Konstantinou et al. (2011). It includes Neighbor Item eXchange (NIX), Node MIGration (MIG), a
hybrid method (NIXMIG), and Item Balancing (IB). Assume that storage nodes (with unique iden-
tifiers) are organized as a ring in which neighboring nodes host adjacent key ranges with the

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

A Survey on NoSQL Stores 40:31

increased order of their values in the clockwise direction and each node keeps pointers to its suc-
cessor and predecessor nodes in clockwise and counterclockwise directions, respectively. Then,
through MIG, a less loaded node Ni with load Li helps a remote overloaded node Nj with load Lj

by migrating to a position between Nj−1 and Nj to capture half of the Nj ’s data items. This migra-
tion incurs the transfer of Li to Ni+1 and then transferring a portion of Lj to Ni . MIG causes a fast
convergence to data load balance. However, it is not cost-effective, as it may incur transferring a
lot of data items; as with NIX, an overloaded node transfers its data items with largest keys to its
successor or its data items with smallest keys to its predecessor. Still, it acts poorly for overloaded
neighborhoods where several adjacent nodes suffer from similar load stress. NIXMIG is a fast and
cost-effective hybrid of the above methods that alleviates the load in overloaded neighborhood
situations by adding a MIG phase (Konstantinou et al. 2011).

4.2.3 Self-Tuning Data Placement – Autoplacer. This strategy aims at maximizing the locality
of dynamically changing data access patterns in a NoSQL key-value store by placing data closer
to clients (Paiva and Rodrigues 2015; Paiva et al. 2015). Each node tracks and identifies its hotspot
data items (that have the largest number of remote read/write requests) using a stream analysis
algorithm. Then, a scalable Integer Linear Programming (ILP) solver redistributes the replicas of
detected hotspots into appropriate nodes with regard to their capacity. Fast data lookup is pre-
served using a hybrid approach of a highly efficient directory service replicated on each node and
consistent hashing. The former is used to encode the location of repartitioned hotspot items and
the latter is used to define the placement of remaining noncritical ones. This strategy was inte-
grated into the Infinispan (Marchioni 2012) key-value store; the obtained throughput is reportedly
six times better than the original one (Paiva et al. 2015).

4.3 Traversal-Oriented Partitioning

By taking into account the high connectivity of data items in a graph store, the partitioning of data
may create some interpartition dependencies that, in turn, increase network latency during cross-
partition graph traversals. As a result, graph traversal execution time is increased. A sophisticated
graph partitioner aims at achieving the following major goals:

—Minimizing the number of cross partition links (i.e., edge cuts) as well as the required state
synchronization of data replicas.

—Maintaining a balanced distribution of data and query workload across partitions with re-
gard to the capacity constraints of servers.

—Preserving the quality of partitions assuming the modifications of graph topology in dy-
namic graphs and changes of elastic system capacity and query access patterns. Vertex
and edge weights determine the amount of computational requirements (e.g., frequency of
queries) for each vertex and the traversal rate of edges, respectively. These patterns cause
vertices and edges to have different weights. For example, low-degree vertices in social
networks have less query frequencies than high-degree ones. Workload-aware partitioners
improve the quality of partitions by preventing heavyweight edge cuts and by considering
an equal aggregate weight of vertices.

—Reducing the memory and time requirements by making no assumption about the entire
view of the graph. In other words, it is desirable to have a local partitioning in each server
as there is no need to synchronize a shared global state between servers.

Satisfying the above conflicting goals is a challenge to graph stores and processing tools, as
graph partitioning is an NP-hard problem (Garey et al. 1974). This resulted in lots of heuristic
approaches (Kim and Candan 2012; Rahimian et al. 2015; Schloegel et al. 2000; Stanton and Kliot

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

40:32 A. Davoudian et al.

2012; Tsourakakis et al. 2014). Standalone graph engines—such as Neo4j (Webber 2012), Graphchi-
DB (Kyrola and Guestrin 2014), HypergraphDB (Iordanov 2010), DEX39, MAGS (Das et al. 2016),
and Graphchi (Kyrola et al. 2012)—avoid the partitioning of graph data. Owing to lack of space,
common graph partitioning schemes are presented in Appendix C.

5 CAP PRINCIPLE

Assume a distributed storage system that stores a data itemD replicated on three nodes N1, N2, and
N3, and a communication fault that splits the network (of the nodes) into two subnetworks: {N1,N2}
and {N3}. If a modification request on D is submitted to N3, then there are two possible scenarios.
First, the request is successfully completed, knowing that by healing the partition the modified
value of D is propagated to its replicas in N1 and N2. This scenario chooses the availability of the
request. However, it may result in inconsistent values ofD. Second, the request is aborted, knowing
that contacting with N1 and N2 is not possible until healing the partition. This scenario chooses
the strong consistency of data item D. However, it results in the unavailability of the request (Hale
2010). This simple example raises the question of whether both the strong consistency of data and
availability of requests can be achieved simultaneously.

This trade-off was first observed by Rothnie and Goodman (1977). However, the increasing com-
mercial popularity of the Web along with the growing demand for the geographic replication of
data and high availability of operations motivated Fox and Brewer (Brewer 2000; Fox and Brewer
1999) to reclaim this trade-off as the CAP principle. This principle indicates that at most two of
the three desirable properties (Consistency, Availability, and Partition tolerance) can be achieved
simultaneously by a distributed data store. Later, Gilbert and Lynch (2002, 2012) formalized and
proved CAP, which became known as the CAP theorem. In this context, the CAP properties are
defined as follows:

—Consistency is viewed as a qualitative property denoting linearizability. Based on this defi-
nition, CAP consistency is not a dynamically observed metric determined by the operational
status of the system. Instead, it is statically determined with regard to the system’s employed
algorithms whether they guarantee linearizability or not.

—Availability is viewed as a qualitative property denoting that every request sent by a client
eventually (within a finite time) receives a successful (nonerror) response. Based on this
definition, the “availability” or “unavailability” of a system is statically determined with
regard to its used algorithms. However, this definition has some ambiguities. First, some
systems that are highly available owing to their high uptime may not be considered as CAP

available. For example, a distributed data store that uses a quorum-based (see Appendix B)
or Paxos-driven (see Appendix B) synchronous replication is not CAP available because,
during a network partition, read/write operations on the minority side of the partition may
not be able to successfully complete. Second, there is no bound on the response time. For
instance, an operation that is successfully completed after one week is considered CAP-

available. However, such an operation is unavailable according to the instinctive notion of
availability. In other words, “latency” (response time), which is practically an important
feature, is not taken into account in this definition.

—Partition tolerance is viewed as a qualitative property (of a system’s employed algorithms)
denoting that even in the presence of a network partition, the system continues providing
its CAP-availability or CAP-consistency guarantee. This definition is also fuzzy and unclear,
as network partitions are not the only failures in a distributed system. In other words, there
are also other failures, such as lost messages and node failures.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

A Survey on NoSQL Stores 40:33

Accordingly, by forfeiting any one of the discussed CAP properties, distributed data stores are
categorized as follows:

—Consistency + Availability – CA systems. The algorithms used by CA systems do not have
any assumption about network partitions. Consequently, achieving this combination is
practically impossible in distributed systems, as the occurrence of network partitions is in-
evitable (Hale 2010). Therefore, the fundamental CAP trade-off is between consistency and
availability. This trade-off became a justification for supporting weak consistencies and
justifying the design decisions of distributed data stores, especially NoSQL stores in which
consistency is sacrificed more than availability (Vogels 2009; Wada et al. 2011).

—Consistency + Partition tolerance – CP systems. This combination is achieved by distributed
data stores that preserve CAP-consistency. However, in the case of a network partition, a
read/write request may not be responded to owing to avoiding the risk of inconsistency.
Therefore, CP makes sense for systems designed to operate in a reliable network, such as a
single datacenter, owing to the infrequency of network partitions (Gilbert and Lynch 2012).
This combination is achieved in some systems, such as Scalaris (see Table 5), Google’s
Chubby lock service (Burrows 2006), and Spanner (Corbett et al. 2013), where the strong
notion of consistency along with Paxos-driven synchronous replication are provided.

—Availability + Partition tolerance – AP systems. This combination is achieved by distributed
data stores that enforce a weak notion of consistency. However, the execution of conflicting
writes is allowed, which may result in the divergence of replicas and necessitates imple-
menting a conflict-resolution mechanism. These systems are typically used by applications
whose users are geographically scattered in a wide-area network and require a high
level of availability along with a fast response time (instead of strong consistency), such
as web caching. Many NoSQL stores—such as Amazon Dynamo (DeCandia et al. 2007),
CouchDB34, and Apache Cassandra (Lakshman and Malik 2010)—achieve this combination.

Brewer (2012) criticizes the misleading interpreted limitations of the CAP principle, in which a sys-
tem is designed by taking into account a black-white trade-off between consistency and availability.
He stated that a system should be designed in such a way as to provide continuous CAP properties.
The weights of these properties can be tuned against each other in order to optimize them for dif-
ferent application requirements. It requires using a strategy for the detection of network partitions
and management of a service’s invariants and operations. For example, in an airline reservation
application (Yu and Vahdat 2002), as long as there are many available seats in the airplane, the
application can rely on inconsistent data. However, as the plane gradually gets filled, the level of
data consistency should be increased in order to prevent flight overbooking. An application may
impose various levels of CAP requirements in many dimensions, as outlined in Gilbert and Lynch
(2012):

—Different types of maintained data. For example, product information managed by an online
shopping cart application may be inconsistent. However, checkout, billing, and shipping data

are strongly consistent.
—Different types of operations. For example, Yahoo Pnuts (Cooper et al. 2008) provides

strongly consistent read/write operations that access data in a primary replica as well as
timeline consistent read operations that access data in local replicas (see Appendix A).

—Correlation between data whereby data that are more likely to be accessed together are
placed in a common partition. It increases the availability of operations among correlated
data, as they are less vulnerable to unavailability in network partitions. For example, social
network users belonging to the same group of friends may be placed in the same partition.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

40:34 A. Davoudian et al.

Table 5. Categorization of the Representative NoSQL Stores Based on the CAP Theorem

CAP
principle NoSQL store The sacrifice of CAP consistency The sacrifice of CAP availability

CP Scalaris No sacrifice It is sacrificed during the DHT-based Paxos commit,
when the majority of participants or transaction
managers are not available.

AP Amazon Dynamo It supports a tunable eventual
consistency.

No sacrifice

Apache Cassandra It supports a tunable eventual
consistency.

No sacrifice

COPS It supports only causal+ consistency
across clusters.

No sacrifice

CouchDB There is no support for multi-document
transactions

No sacrifice

P Yahoo PNUTS Lack of bundled write operations
that span multiple data items.

Unavailability of the primary copy during the
primary election.

Google Bigtable Lack of cross-row, multikey
transactions.

Bigtable relies on the replication strategy of GFS,
which is restricted within a datacenter. In addition,
since Chubby is a CP system, in the case of network
partitioning, clients in the minority side of the
partition may not have access to data.

IBM Spinnaker Lack of cross-row, multikey
transactions.

Due to the use of Paxos-based replication, in the
case of network partitioning, writes and strongly
consistent reads are unavailable for clients in the
minority side of the partition.

HyperDex Lack of cross-row, multikey
transactions.

When the number of replica node failures (in the
block of replicas corresponding to each subspace) is
more than a threshold.

Scatter Lack of cross-row, multikey
transactions.

Owing to the use of Paxos-based replication.
However, as long as a majority of nodes of a group
remains alive, the used 2PC protocol is not blocking.

Walter Causal consistency is enforced on
transactions across datacenters.

Failure of a datacenter D causes unavailability of
writes on those objects whose preferred datacenter is
D .

MongoDB Lack of cross-document, multikey
transactions.

In the case of network partitions, nodes belonging
to the minority side of a partitioned replica set are
not available for write operations.

Couchbase There is no support for
multi-document transactions

Similar to MongoDB.

Microsoft Trinity Lack of multikey transactions. It is vulnerable to loss of data in the case of the
failure of the datacenter where the Trinity cluster is
deployed.

Neo4j Eventual consistency is enforced
on operations across datacenters.

In the case of network partitions, nodes belonging
to the minority side of the network are not available
for write operations.

Accordingly, a mix of both weaker CAP consistency and weaker CAP availability is provided by
many NoSQL stores in varying ways. These systems can be classified as P category. Table 5 cate-
gorizes the representative NoSQL stores based on CAP.

Despite the influential role of CAP formulation in justifying the design decisions of distributed
data stores, there are some reasons that motivated researchers to propose alternative frameworks
or formulations.

—The lack of correct and formal definitions of CAP features led to many ambiguities and
different interpretations around it. According to Abadi (2012), CAP focuses just on the trade-
off between consistency and availability. However, when there is no network partition (as

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

A Survey on NoSQL Stores 40:35

Table 6. Open Research Challenges of NoSQL Stores

its probability is really low (Stonebraker 2010a)), availability can be perfectly provided.
In this situation, CAP ignores an arguably more influential trade-off between consistency

and latency (which specifies a response time less than the topmost delay across replicas
(Lloyd et al. 2011)). Abadi (2012) proposes to unify this trade-off with the fundamental CAP

trade-off in a formulation called PACELC, in which PAC represents the inherent trade-off of
CAP and ELC reasons about a trade-off between consistency and latency. Kleppmann (2015)

49https://hive.apache.org.
50https://pig.apache.org.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

https://hive.apache.org.
https://pig.apache.org.

40:36 A. Davoudian et al.

proposes a delay-sensitivity framework in which availability is modeled based on the latency
of operations. For instance, it is measured as the proportion of operations that satisfy the
distinctions of latency defined by a Service Level Agreement (SLA). A probabilistic variation
of CAP theorem is formulated and proved by Rahman et al. (2017).

—The existing resurgence of transactional data stores, such as NewSQL stores (Stonebraker
2012). Bailis et al. (2013a) explore the connection between consistency, availability, and
transaction semantics by analyzing the weak levels of transactional isolation in order to
provide Highly Available Transactions (HAT). Ahsan and Gupta (2016) formulate the trade-
offs between the Abort rate, Contention, and Throughput of transactions in a new framework
called CAT.

6 CONCLUSION AND OPEN RESEARCH CHALLENGES

We are currently working with a complementary technology in database management called
NoSQL. These systems are used not as a revolutionary replacement for the relational database sys-
tems but as a remedy for certain types of distributed applications involved with a massive amount
of data that need to be highly scalable and available. This survey presents a comprehensive study of
various design decisions of NoSQL stores with regard to their data model, consistency model, data
partitioning, and the CAP theorem. In addition, the strengths and drawbacks of each choice are
explained in depth, along with exemplifying them in a set of cutting-edge NoSQL stores in Appen-
dix A. Furthermore, we have discussed some existing challenges that have been emerged through
relying on NoSQL stores and have been confronted by their developers and designers, which need
to be addressed through alternative design decisions. Table 6 summarizes some of these open re-
search challenges. The article should be beneficial to the research and industrial communities to
achieve effective NoSQL stores, as well as NoSQL store users to select a suitable store to fulfill their
specific application requirements. Tackling this situation necessitates an in-depth understanding
of existing NoSQL technologies.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their critical reading of the article
and their valuable feedback. Their many valuable comments and suggestions have substantially
helped to improve the quality and accuracy of this survey.

REFERENCES

Daniel J. Abadi. 2012. Consistency tradeoffs in modern distributed database system design: CAP is only part of the story.

Computer 2, 37–42.

Shahbaz Akhtar Abid, Mazliza Othman, and Nadir Shah. 2015. A survey on DHT-based routing for large-scale mobile ad

hoc networks. ACM Computing Surveys 47, 2 (2015), 1–46.

Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. 1995. Causal memory: Definitions,

implementation, and programming. Distributed Computing 9, 1, 37–49.

Jung-Sang Ahn, Chiyoung Seo, Ravi Mayuram, Rahim Yaseen, Jin-Soo Kim, and Seungryoul Maeng. 2016. ForestDB: A fast

key-value storage system for variable-length string keys. IEEE Transactions on Computers 65, 3, 902–915.

Shegufta Bakht Ahsan and Indranil Gupta. 2016. The CAT theorem and performance of transactional distributed systems.

ACM Press, 1–6.

Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, Zhongmiao Li, Tyler Crain, Annette Bieniusa, Nuno

Preguiça, and Marc Shapiro. 2016. Cure: Strong semantics meets high availability and low latency. In 36th International

Conference on Distributed Computing Systems (ICDCS’16). IEEE, 405–414.

Sérgio Almeida, Joåo Leitåo, and Luis Rodrigues. 2013. ChainReaction: A causal+ consistent datastore based on chain

replication. In Proceedings of the 8th ACM European Conference on Computer Systems. ACM, 85–98.

Renzo Angles. 2012. A comparison of current graph database models. In 28th International Conference on Data Engineering

Workshops (ICDEW’12). IEEE, 171–177.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

A Survey on NoSQL Stores 40:37

Renzo Angles, Marcelo Arenas, Pablo Barcelo, Aidan Hogan, Juan Reutter, and Domagoj Vrgoc. 2016. Foundations of mod-

ern graph query languages. arXiv preprint arXiv:1610.06264.

Renzo Angles and Claudio Gutierrez. 2008. Survey of graph database models. ACM Computing Surveys 40, 1, 1.

Hagit Attiya and Jennifer L. Welch. 1994. Sequential consistency versus linearizability. ACM Transactions on Computer

Systems 12, 2, 91–122.

Aditya Auradkar, Chavdar Botev, Shirshanka Das, Dave De Maagd, Alex Feinberg, Phanindra Ganti, Lei Gao, Bhaskar

Ghosh, Kishore Gopalakrishna, Brendan Harris, and others. 2012. Data infrastructure at LinkedIn. In 28th International

Conference on Data Engineering (ICDE’12). IEEE, 1370–1381.

Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013a. Highly available trans-

actions: Virtues and limitations. Proceedings of the VLDB Endowment 7, 3, 181–192.

Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013b. Bolt-on causal consistency. In Proceedings of the ACM

SIGMOD International Conference on Management of Data. ACM, 761–772.

Catriel Beeri. 1990. A formal approach to object-oriented databases. Data & Knowledge Engineering 5, 4 (1990), 353–382.

Nalini Moti Belaramani, Michael Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani, Praveen Yalagandula, and Jiandan

Zheng. 2006. PRACTI replication. In NSDI, Vol. 6.

Stefan Berchtold, Christian Böhm, and Hans-Peter Kriegal. 1998. The pyramid-technique: Towards breaking the curse of

dimensionality. In ACM SIGMOD Record, Vol. 27. 142–153.

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. 1995. A critique of ANSI SQL

isolation levels. In ACM SIGMOD Record, Vol. 24. ACM, 1–10.

Claude Berge. 1973. Graphs and hypergraphs. North-Holland Publishing Company, Amsterdam.

Tim Berners-Lee, James Hendler, Ora Lassila, and others. 2001. The semantic web. Scientific American 284, 5, 28–37.

Kenneth Birman, Andre Schiper, and Pat Stephenson. 1991. Lightweight causal and atomic group multicast. ACM Transac-

tions on Computer Systems 9, 3 (1991), 272–314.

Kenneth P. Birman. 1985. Replication and fault-tolerance in the ISIS system. In Proceedings of the 10th ACM SOSP. ACM.

Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13, 7,

422–426.

Harold Boley. 1992. Declarative operations on nets. Computers & Mathematics with Applications 23, 6–9, 601–637.

Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang,

Karthik Ranganathan, Dmytro Molkov, Aravind Menon, Samuel Rash, and others. 2011. Apache Hadoop goes realtime

at Facebook. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data. ACM, 1071–1080.

Alain Bretto. 2013. Hypergraph Theory. Springer International Publishing.

Eric Brewer. 2012. CAP twelve years later: How the “rules” have changed. Computer 45, 2, 23–29.

Eric A. Brewer. 2000. Towards robust distributed systems. In PODC, Vol. 7.

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo,

Sachin Kulkarni, Harry C. Li, and others. 2013. TAO: Facebook’s distributed data store for the social graph. In USENIX

Annual Technical Conference. 49–60.

Jerzy Brzezinski, Cezary Sobaniec, and Dariusz Wawrzyniak. 2004. From session causality to causal consistency. In PDP.

152–158.

Mike Burrows. 2006. The chubby lock service for loosely-coupled distributed systems. In Proceedings of the 7th Symposium

on Operating Systems Design and Implementation. USENIX Association, 335–350.

Rick Cattell. 2011. Scalable SQL and NoSQL data stores. ACM SIGMOD Record 39, 4, 12–27.

Donald D. Chamberlin and Raymond F. Boyce. 1974. SEQUEL: A structured English query language. In Proceedings of the

ACM SIGFIDET (now SIGMOD) Workshop on Data Description, Access and Control. ACM, 249–264.

Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos made live: An engineering perspective. In Pro-

ceedings of the 26th Annual ACM Symposium on Principles of Distributed Computing. ACM, 398–407.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew

Fikes, and Robert E. Gruber. 2008. Bigtable: A distributed storage system for structured data. ACM Transactions on

Computer Systems 26, 2, 4.

Chyouhwa Chen and Kun-Cheng Tsai. 2008. The server reassignment problem for load balancing in structured P2P systems.

IEEE Transactions on Parallel and Distributed Systems 19, 2, 234–246.

Zhikun Chen, Shuqiang Yang, Shuang Tan, Ge Zhang, and Huiyu Yang. 2013. Hybrid range consistent hash partitioning

strategy—A new data partition strategy for NoSQL database. In 12th IEEE International Conference on Trust, Security and

Privacy in Computing and Communications (TrustCom’13). IEEE, 1161–1169.

Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and

Enhong Chen. 2012. Kineograph: Taking the pulse of a fast-changing and connected world. In Proceedings of the 7th

ACM European Conference on Computer Systems. ACM, 85–98.

DBTG Codasyl. 1971. CODASYL data base task group report. In Conference on Data Systems Languages, ACM, New York.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

40:38 A. Davoudian et al.

Edgar F. Codd. 1970. A relational model of data for large shared data banks. Communications of the ACM 13, 6, 377–387.

Douglas Comer. 1979. Ubiquitous B-tree. ACM Computing Surveys 11, 121–137.

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick

Puz, Daniel Weaver, and Ramana Yerneni. 2008. PNUTS: Yahoo!’s hosted data serving platform. Proceedings of the VLDB

Endowment 1, 2, 1277–1288.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, Jeffrey John Furman, Sanjay Ghemawat,

Andrey Gubarev, Christopher Heiser, Peter Hochschild, and others. 2013. Spanner: Google’s globally distributed data-

base. ACM Transactions on Computer Systems 31, 3, 8.

Wojciech Czerwinski, Wim Martens, Matthias Niewerth, and Pawel Parys. 2017. Optimizing tree patterns for querying

graph- and tree-structured data. ACM SIGMOD Record 46, 1, 15–22.

Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. 2001. Wide-area cooperative storage with

CFS. In ACM SIGOPS Operating Systems Review, Vol. 35. ACM, 202–215.

Mahashweta Das, Alkis Simitsis, and Kevin Wilkinson. 2016. A hybrid solution for mixed workloads on dynamic graphs.

In Proceedings of the 4th International Workshop on Graph Data Management Experiences and Systems. ACM.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data processing on large clusters. Communications of the

ACM 51, 1, 107–113.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-

nathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-value store.

In ACM SIGOPS Operating Systems Review, Vol. 41. ACM, 205–220.

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug

Terry. 1987. Epidemic algorithms for replicated database maintenance. In Proceedings of the 6th Annual ACM Symposium

on Principles of Distributed Computing. ACM, 1–12.

Diego Didona, Kristina Spirovska, and Willy Zwaenepoel. 2017. Okapi: Causally consistent geo-replication made faster,

cheaper and more available. arXiv preprint arXiv:1702.04263.

Nuno Diegues, Muhammet Orazov, João Paiva, Luís Rodrigues, and Paolo Romano. 2014. Optimizing hyperspace hashing

via analytical modelling and adaptation. ACM SIGAPP Applied Computing Review 14, 2, 23–35.

Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. 2013. Orbe: Scalable causal consistency using depen-

dency matrices and physical clocks. In Proceedings of the 4th Annual Symposium on Cloud Computing. ACM, 11.

Jiaqing Du, Calin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. 2014a. Closing the performance gap between causal

consistency and eventual consistency. Proceedings of the 1st Workshop on Principles and Practice of Eventual Consistency

(PaPEC’14).

Jiaqing Du, Calin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. 2014b. Gentlerain: Cheap and scalable causal consis-

tency with physical clocks. In Proceedings of the ACM Symposium on Cloud Computing. ACM, 1–13.

Barbara A. Eckman and Paul G. Brown. 2006. Graph data management for molecular and cell biology. IBM Journal of

Research and Development 50, 6, 545–560.

Robert Escriva, Bernard Wong, and Emin Gun Sirer. 2012. HyperDex: A distributed, searchable key-value store. ACM

SIGCOMM Computer Communication Review 42, 4, 25–36.

Robert Escriva, Bernard Wong, and Emin Gün Sirer. 2014. Warp: Lightweight multi-key transactions for key-value stores.

Technical Report, Cornell University.

Kapali P. Eswaran, Jim N. Gray, Raymond A. Lorie, and Irving L. Traiger. 1976. The notions of consistency and predicate

locks in a database system. Communications of the ACM 19, 11, 624–633.

Alex Feinberg. 2011. Project Voldemort: Reliable distributed storage. In Proceedings of the 10th IEEE International Conference

on Data Engineering (ICDE’11). IEEE.

Alan Fekete, David Guptab, Victor Luchangcob, and Nancy Lynchb. 1996. Eventually-serializable data services. In Proceed-

ings of the 15th Annual ACM Symposium on Principles of Distributed Computing. ACM, 300–309.

Brett Fleisch and Gerald Popek. 1989. Mirage: A coherent distributed shared memory design. In Proceedings of the 14th

ACM Symposium on Operating System Principles. ACM, 211–223.

Armando Fox and Eric A. Brewer. 1999. Harvest, yield, and scalable tolerant systems. In Proceedings of the 7th Workshop

on Hot Topics in Operating Systems. IEEE, 174–178.

Brian Gallagher. 2006. Matching structure and semantics: A survey on graph-based pattern matching. AAAI FS 6, 45–53.

Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. 1993. Directed hypergraphs and applications. Discrete

Applied Mathematics 42, 2–3, 177–201.

Michael R. Garey, David S. Johnson, and Larry Stockmeyer. 1974. Some simplified NP-complete problems. In Proceedings

of the 6th Annual ACM Symposium on Theory of Computing. ACM, 47–63.

David Kenneth Gifford. 1981. Information Storage in a Decentralized Computer System. Ph.D. Dissertation. Stanford Univer-

sity, Stanford, CA.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

A Survey on NoSQL Stores 40:39

Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web

services. ACM SIGACT News 33, 2, 51–59.

Seth Gilbert and Nancy Ann Lynch. 2012. Perspectives on the CAP theorem. IEEE Computer Society 45, 2 (2012), 30–36.

Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas Anderson. 2011. Scalable consistency in Scatter.

In Proceedings of the 23rd ACM Symposium on Operating Systems Principles. ACM, 15–28.

Brighten Godfrey, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp, and Ion Stoica. 2004. Load balancing in dy-

namic structured P2P systems. In 23rd Annual Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM’04), Vol. 4. IEEE, 2253–2262.

Ricardo Gonçalves, Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. 2015. Concise server-wide causality manage-

ment for eventually consistent data stores. In IFIP International Conference on Distributed Applications and Interoperable

Systems. Springer, 66–79.

Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. 1996. The dangers of replication and a solution. In ACM SIGMOD

Record, Vol. 25. ACM, 173–182.

Jim Gray and Leslie Lamport. 2006. Consensus on transaction commit. ACM Transactions on Database Systems 31, 1, 133–

160.

Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts and Techniques. Elsevier.

Venkat N. Gudivada, Ricardo Baeza-Yates, and Vijay V. Raghavan. 2015. Big data: Promises and problems. Computer 48,

20–23.

Coda Hale. 2010. You can’t sacrifice partition tolerance. Retrieved February 20, 2018 from https://codahale.com/you-

cant-sacrifice-partition-tolerance/.

Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim, Jinha Kim, and Hwanjo Yu. 2013. Turbo-

Graph: A fast parallel graph engine handling billion-scale graphs in a single PC. In Proceedings of the 19th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM, 77–85.

Pat Helland. 2007. Life beyond distributed transactions: An apostate’s opinion. In CIDR. 132–141.

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A correctness condition for concurrent objects. ACM

Transactions on Programming Languages and Systems 12, 3, 463–492.

Mikael Hogqvist, Seif Haridi, Nico Kruber, Alexander Reinefeld, and Thorsten Schutt. 2008. Using global information for

load balancing in DHTs. In 2nd IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops

(SASOW’08). IEEE, 236–241.

Xiangdong Huang, Jianmin Wang, Yu Zhong, Shaoxu Song, and Philip S. Yu. 2015. Optimizing data partition for scaling

out NoSQL cluster. Concurrency and Computation: Practice and Experience 27, 18, 5793–5809.

Borislav Iordanov. 2010. HyperGraphDB: A generalized graph database. In International Conference on Web-Age Information

Management. Springer, 25–36.

U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. 2009. Pegasus: A peta-scale graph mining system implemen-

tation and observations. In 9th IEEE International Conference on Data Mining (ICDM’09). IEEE, 229–238.

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel Lewin. 1997. Consistent hashing

and random trees: Distributed caching protocols for relieving hot spots on the World Wide Web. In Proceedings of the

29th Annual ACM Symposium on Theory of Computing. ACM, 654–663.

David R. Karger and Matthias Ruhl. 2006. Simple efficient load-balancing algorithms for peer-to-peer systems. Theory of

Computing Systems 39, 6, 787–804.

Mijung Kim and K. Selçuk Candan. 2012. SBV-Cut: Vertex-cut based graph partitioning using structural balance vertices.

Data & Knowledge Engineering 72, 285–303.

Won Kim. 1990. Object-oriented databases: Definition and research directions. IEEE Transactions on Knowledge and Data

Engineering 2, 3, 327–341.

Martin Kleppmann. 2015. A critique of the CAP theorem. arXiv preprint arXiv:1509.05393 (2015).

Debra Knisley and Jeff Knisley. 2007. Graph theoretic models in chemistry and molecular biology. Handbook of Applied

Algorithms. Wiley-IEEE Press, 85–113.

Bjorn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins. 2004. Peer-to-peer support for massively multiplayer games. In

23rd Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’04), Vol. 1. IEEE.

Ioannis Konstantinou, Dimitrios Tsoumakos, and Nectarios Koziris. 2011. Fast and cost-effective online load-balancing in

distributed range-queriable systems. IEEE Transactions on Parallel and Distributed Systems 22, 8, 1350–1364.

Ioannis Konstantinou, Dimitrios Tsoumakos, Ioannis Mytilinis, and Nectarios Koziris. 2013. DBalancer: Distributed load

balancing for NoSQL data-stores. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of

Data. ACM, 1037–1040.

YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. 2010. Skew-resistant parallel processing of feature-

extracting scientific user-defined functions. In Proceedings of the 1st ACM Symposium on Cloud Computing. ACM, 75–86.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

https://codahale.com/you-penalty -@M cant-sacrifice-partition-tolerance/

40:40 A. Davoudian et al.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-scale graph computation on just a PC. In Presented

as Part of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI’12). 31–46.

Aapo Kyrola and Carlos Guestrin. 2014. GraphChi-DB: Simple design for a scalable graph database system–on just a PC.

arXiv preprint arXiv:1403.0701.

Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. 1992. Providing high availability using lazy replication.

ACM Transactions on Computer Systems 10, 4, 360–391.

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A decentralized structured storage system. ACM SIGOPS Operat-

ing Systems Review 44, 2, 35–40.

Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 21, 7,

558–565.

Leslie Lamport. 1979. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans-

actions on Computers 100, 9, 690–691.

Thuy Ngoc Le and Tok Wang Ling. 2016. Survey on keyword search over XML documents. ACM SIGMOD Record 45, 3,

17–28.

Sin Yeung Lee, Tok Wang Ling, and Hua-Gang Li. 2000. Hierarchical compact cube for range-max queries. In VLDB. 232–

241.

Mihai Letia, Nuno Preguiça, and Marc Shapiro. 2010. Consistency without concurrency control in large, dynamic systems.

ACM SIGOPS Operating Systems Review 44, 2, 29–34.

Justin Levandoski, Sudipta Sengupta, Ryan Stutsman, and Rui Wang. 2015. Transaction processing techniques for modern

hardware and the cloud. In IEEE Data Engineering Bulletin. 50.

Justin J. Levandoski, David B. Lomet, Mohamed F. Mokbel, and Kevin Zhao. 2011. Deuteronomy: Transaction support for

cloud data. In CIDR, Vol. 11. 123–133.

Daniel Mark Lewin. 1998. Consistent hashing and random trees: Algorithms for caching in distributed networks. Master’s

thesis, Department of EECS, MIT.

Cheng Li, João Leitão, Allen Clement, Nuno M. Preguiça, Rodrigo Rodrigues, and Viktor Vafeiadis. 2014. Automating the

choice of consistency levels in replicated systems. In USENIX Annual Technical Conference. 281–292.

Richard J. Lipton and Jonathan S. Sandberg. 1988. PRAM: A Scalable Shared Memory. Technical Report TR-180-88. Princeton

University, Department of Computer Science, Princeton, NJ.

Jed Liu, Tom Magrino, Owen Arden, Michael D. George, and Andrew C. Myers. 2014. Warranties for faster strong consis-

tency. In NSDI, Vol. 14. 503–517.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t settle for eventual: scalable

causal consistency for wide-area storage with COPS. In Proceedings of the 23th ACM Symposium on Operating Systems

Principles. ACM, 401–416.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2013. Stronger semantics for low-latency

geo-replicated storage. In NSDI, Vol. 13. 313–328.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2014. Don’t settle for eventual consistency.

Communications of the ACM 57, 5, 61–68.

Yucheng Low, Joseph E. Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E. Guestrin, and Joseph Hellerstein. 2010. Graphlab:

A new framework for parallel machine learning. In Proceedings of the Conference on Uncertainty in Artificial Intelligence

5, 8 (2010), 716–727.

Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim. 2005. A survey and comparison of peer-to-peer

overlay network schemes. IEEE Communications Surveys & Tutorials 7, 2, 72–93.

Qiong Luo and Jeffrey F. Naughton. 2001. Form-based proxy caching for database-backed web sites. In VLDB. 191–200.

Prince Mahajan, Alvisi Lorenzo, and Dahlin Mike. 2011. Consistency, Availability, and Convergence. Technical Report TR-

11-22. University of Texas at Austin.

D. Maier. 1989. Why database languages are a bad idea. In Proceedings of the International Workshop on Database Program-

ming Languages. 277–287.

Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski.

2010. Pregel: A system for large-scale graph processing. In Proceedings of the ACM SIGMOD International Conference on

Management of Data. ACM, 135–146.

Francesco Marchioni. 2012. Infinispan Data Grid Platform. Packt Publishing Ltd, Birmingham, UK.

Mark Massé. 2012. REST API Design Rulebook: Designing Consistent RESTful Web Service Interfaces. O’Reilly Media,

Sebastopol, CA.

Friedemann Mattern. 1989. Virtual time and global states of distributed systems. Parallel and Distributed Algorithms 1, 23,

215–226.

Andrew McAfee, Erik Brynjolfsson, Thomas H. Davenport, D. J. Patil, and Dominic Barton. 2012. Big data. The Management

Revolution. Harvard Business Review 90, 61–67.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

A Survey on NoSQL Stores 40:41

Robert Campbell McColl, David Ediger, Jason Poovey, Dan Campbell, and David A. Bader. 2014. A performance evaluation

of open source graph databases. ACM Press, New York, NY, 11–18.

Dean Meltz, Rick Long, Mark Harrington, Robert Hain, and Geoff Nicholls. 2004. An Introduction to IMS: Your Complete

Guide to IBM’s Information Management System. IBM Press, Indianapolis, IN.

Ralph C. Merkle. 1989. A certified digital signature. In Conference on the Theory and Application of Cryptology. Springer,

218–238.

Matthew P. Milano and Andrew C. Myers. 2016. Mixing Consistency in Geodistributed Transactions: Technical Report. Cornell

University.

Sang Nguyen and Stefano Pallottino. 1989. Hyperpaths and shortest hyperpaths. Combinatorial Optimization 1403, 258–271.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The log-structured merge-tree (LSM-tree). Acta

Informatica 33, 4, 351–385.

João Paiva and Luís Rodrigues. 2015. On data placement in distributed systems. ACM SIGOPS Operating Systems Review 49,

1, 126–130.

João Paiva, Pedro Ruivo, Paolo Romano, and Luís Rodrigues. 2015. Auto placer: Scalable self-tuning data placement in

distributed key-value stores. ACM Transactions on Autonomous and Adaptive Systems 9, 4, 19.

Christos H. Papadimitriou. 1979. The serializability of concurrent database updates. Journal of the ACM 26, 4, 631–653.

D. Stott Parker, Gerald J. Popek, Gerard Rudisin, Allen Stoughton, Bruce J. Walker, Evelyn Walton, Johanna M. Chow,

David Edwards, Stephen Kiser, and Charles Kline. 1983. Detection of mutual inconsistency in distributed systems. IEEE

Transactions on Software Engineering 3, 240–247.

Dana Petcu, Georgiana Macariu, Silviu Panica, and Ciprian Crăciun. 2013. Portable cloud applications–from theory to

practice. Future Generation Computer Systems 29, 6, 1417–1430.

Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and Alan J. Demers. 1997. Flexible update propa-

gation for weakly consistent replication. In ACM SIGOPS Operating Systems Review, Vol. 31. ACM, 288–301.

C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. 1999. Accessing nearby copies of replicated objects in a

distributed environment. Theory of Computing Systems 32, 3, 241–280.

Vijayan Prabhakaran, Ming Wu, Xuetian Weng, Frank McSherry, Lidong Zhou, and Maya Haridasan. 2012. Managing large

graphs on multi-cores with graph awareness. In USENIX (ATC’12). 41–52.

Fatemeh Rahimian, Amir H. Payberah, Sarunas Girdzijauskas, Mark Jelasity, and Seif Haridi. 2015. A distributed algorithm

for large-scale graph partitioning. ACM Transactions on Autonomous and Adaptive Systems 10, 2, 12.

Muntasir Raihan Rahman, Lewis Tseng, Son Nguyen, Indranil Gupta, and Nitin Vaidya. 2017. Characterizing and adapt-

ing the consistency-latency trade-off in distributed key-value stores. ACM Transactions on Autonomous and Adaptive

Systems 11, 4, 20.

Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp, and Ion Stoica. 2003. Load balancing in structured

P2P systems. In Peer-to-Peer Systems II. Springer, 68–79.

Jun Rao, Eugene J. Shekita, and Sandeep Tata. 2011. Using Paxos to build a scalable, consistent, and highly available data-

store. Proceedings of the VLDB Endowment 4, 4, 243–254.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. 2001. A scalable content-addressable

network, Vol. 31. ACM SIGCOMM.

Michel Raynal and André Schiper. 1995. From causal consistency to sequential consistency in shared memory systems. In

Foundations of Software Technology and Theoretical Computer Science. Springer, 180–194.

David Patrick Reed. 1978. Naming and synchronization in a decentralized computer system. Ph.D. Dissertation. Mas-

sachusetts Institute of Technology, Cambridge, MA.

James B. Rothnie and Nathan Goodman. 1977. A survey of research and development in distributed database management.

In Proceedings of the 3rd International Conference on Very Large Databases. VLDB Endowment, 48–62.

Antony Rowstron and Peter Druschel. 2001. Pastry: Scalable, decentralized object location, and routing for large-scale

peer-to-peer systems. In Middleware 2001. Springer, 329–350.

Pramod J. Sadalage and Martin Fowler. 2012. NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence.

Pearson Education.

Hans Sagan. 1994. Space-Filling Curves. Springer-Verlag, Berlin.

Michael Schaarschmidt, Felix Gessert, and Norbert Ritter. 2015. Towards automated polyglot persistence. In BTW. 73–82.

Daniel Schall and Theo Härder. 2015. Dynamic physiological partitioning on a shared-nothing database cluster. In 31st

International Conference on Engineering (ICDE’15). IEEE, 1095–1106.

Adam Schenker, Abraham Kandel, Horst Bunke, and Mark Last. 2005. Graph-Theoretic Techniques for Web Content Mining.

Vol. 62. World Scientific, Singapore.

Kirk Schloegel, George Karypis, and Vipin Kumar. 2000. Parallel multilevel algorithms for multi-constraint graph parti-

tioning. In European Conference on Parallel Processing. Springer, 296–310.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

40:42 A. Davoudian et al.

Cristina Schmidt and Manish Parashar. 2008. Squid: Enabling search in DHT-based systems. J.ournal of Parallel and Dis-

trib.uted Computing 68, 7, 962–975.

Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. 2006. Structured overlay without consistent hashing: Empirical

results. In 6th IEEE International Symposium on Cluster Computing and the Grid (CCGRID’ 06), Vol. 2. IEEE, 8–8.

Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. 2007. A structured overlay for multi-dimensional range queries.

In European Conference on Parallel Processing. Springer, 503–513.

Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. 2008a. Range queries on structured overlay networks. Com-

puter Communications 31, 280–291.

Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. 2008b. Scalaris: Reliable transactional p2p key/value store. In

Proceedings of the 7th ACM SIGPLAN Workshop on ERLANG. ACM, 41–48.

Ayon Sen, ASM Sohidull Islam, and Md Yusuf Sarwar Uddin. 2015. MARQUES: Distributed multi-attribute range query

solution using space filling curve on DTHs. In International Conference on Networking Systems and Security (NSysS’15).

1–9.

Bin Shao, Haixun Wang, and Yatao Li. 2013. Trinity: A distributed graph engine on a memory cloud. In Proceedings of the

2013 ACM SIGMOD International Conference on Management of Data. ACM, 505–516.

Avi Silberschatz, Henry F. Korth, and S. Sudarshan. 1996. Data models. ACM Computing Surveys 28, 1, 105–108.

Dale Skeen. 1981. Nonblocking commit protocols. In Proceedings of the ACM SIGMOD International Conference on Manage-

ment of Data. ACM, 133–142.

Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transactional storage for geo-replicated systems. In

Proceedings of the 23rd ACM Symposium on Operating Systems Principles. ACM, 385–400.

Isabelle Stanton and Gabriel Kliot. 2012. Streaming graph partitioning for large distributed graphs. In Proceedings of the

18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1222–1230.

Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. 2001. Chord: A scalable peer-to-peer

lookup service for Internet applications. ACM SIGCOMM Computer Communication Review 31, 4, 149–160.

Michael Stonebraker. 1986. The case for shared nothing. IEEE Database Engineering Bulletin 9, 1, 4–9.

Michael Stonebraker. 2010a. Errors in database systems, eventual consistency, and the cap theorem. Communications of the

ACM, BLOG@ACM. https://cacm.acm.org/blogs/blog-cacm/83396-errors-in-database-systems-eventual-consistency-

and-the-cap-theorem/fulltext.

Michael Stonebraker. 2010b. SQL databases v. NoSQL databases. Communications of the ACM 53, 4, 10–11.

Michael Stonebraker. 2011. Why enterprises are uninterested in NoSQL. Communications of the ACM, BLOG@ACM.

https://cacm.acm.org/blogs/blog-cacm/99512-why-enterprises-are-uninterested-in-nosql/fulltext.

Michael Stonebraker. 2012. Newsql: An alternative to NoSQL and old SQL for new OLTP apps. Communications of the

ACM, BLOG@ACM. https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-

new-oltp-apps/fulltext.

Michael Stonebraker, Jennie Duggan, Leilani Battle, and Olga Papaemmanouil. 2013. SciDB DBMS research at MIT. IEEE

Database Engineering Bulletin 36, 4, 21–30.

Michael Stonebraker and Dorothy Moore. 1995. Object Relational DBMSs: The Next Great Wave. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA.

Veda C. Storey and Il-Yeol Song. 2017. Big data technologies and management: What conceptual modeling can do. Data &

Knowledge Engineering 108 (2017), 50–67.

Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Kementsietsidis, Gang Hu, and Guotong Xie. 2015. SQLGraph: An

efficient relational-based property graph store. In Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data. ACM, 1887–1901.

Robert W. Taylor and Randall L. Frank. 1976. CODASYL data-base management systems. ACM Computing Surveys 8, 1,

67–103.

Doug Terry. 2013. Replicated data consistency explained through baseball. Communications of the ACM 56, 12, 82–89.

Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M. Theimer, and Brent B. Welch. 1994. Ses-

sion guarantees for weakly consistent replicated data. In Proceedings of the 3rd International Conference on Parallel and

Distributed Information Systems. IEEE, 140–149.

Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Marcos K. Aguilera, and Hussam

Abu-Libdeh. 2013. Consistency-based service level agreements for cloud storage. In Proceedings of the 24th ACM Sym-

posium on Operating Systems Principles. ACM, 309–324.

Robert H. Thomas. 1979. A majority consensus approach to concurrency control for multiple copy databases. ACM Trans-

actions on Database Systems 4, 2, 180–209.

D. C. Tsichritzis and Frederick H. Lochovsky. 1976. Hierarchical data-base management: A survey. ACM Computing Surveys

8, 1, 105–123.

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

https://cacm.acm.org/blogs/blog-cacm/83396-errors-in-database-systems-eventual-consistency-penalty -@M and-the-cap-theorem/fulltext
https://cacm.acm.org/blogs/blog-cacm/99512-why-enterprises-are-uninterested-in-nosql/fulltext
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-penalty -@M new-oltp-apps/fulltext

A Survey on NoSQL Stores 40:43

Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vojnovic. 2014. Fennel: Streaming graph

partitioning for massive scale graphs. In Proceedings of the 7th ACM International Conference on Web Search and Data

Mining. ACM, 333–342.

Ata Turk, R. Oguz Selvitopi, Hakan Ferhatosmanoglu, and Cevdet Aykanat. 2014. Temporal workload-aware replicated

partitioning for social networks. IEEE Transactions on Knowledge and Data Engineering 26, 11, 2832–2845.

Luis M. Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. 2011. Dynamically scaling applications in the cloud. ACM

SIGCOMM Computer Communication Review 41, 1, 45–52.

Paolo Viotti and Marko Vukolić. 2016. Consistency in non-transactional distributed storage systems. ACM Computing

Surveys 49, 1, 19.

Werner Vogels. 2009. Eventually consistent. Communications of the ACM 52, 1, 40–44.

Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. 2011. Data consistency properties and the trade-offs in

commercial cloud storage: The consumers’ perspective. In CIDR, Vol. 11. 134–143.

Chen Wang, Wei Wang, Jian Pei, Yongtai Zhu, and Baile Shi. 2004. Scalable mining of large disk-based graph databases. In

Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 316–325.

Jim Webber. 2012. A programmatic introduction to Neo4j. In Proceedings of the 3rd Annual Conference on Systems, Program-

ming, and Applications: Software for Humanity. ACM, 217–218.

Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-trie: An LSM-tree-based ultra-large key-value store for small

data. Proceedings of the 2015 USENIX Conference on Usenix Annual Technical Conference.

Haifeng Yu and Amin Vahdat. 2002. Design and evaluation of a conit-based continuous consistency model for replicated

services. ACM Transactions on Computer Systems 20, 3, 239–282.

C. Zaniolo, H. A. t Kaci, D. Beech, S. Cammarata, L. Kerschberg, and D. Maier. 1985. Object-Oriented Database and Knowledge

Systems. Technical Report DB-038-85, Microelectronics and Computer Consortium (MCC), Austin, Tex.

Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Carlos Baquero, Marc Shapiro, and Nuno Preguiça. 2013.

SwiftCloud: Fault-tolerant geo-replication integrated all the way to the client machine. arXiv preprint arXiv:1310.3107.

Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa, Valter Balegas, and Marc Shapiro. 2015. Write fast, read

in the past: Causal consistency for client-side applications. In Proceedings of the 16th Annual Middleware Conference.

ACM, 75–87.

Zhiping Zeng, Jianyong Wang, Lizhu Zhou, and George Karypis. 2007. Out-of-core coherent closed quasi-clique mining

from large dense graph databases. ACM Transactions on Database Systems 32, 2 (2007), 1–40.

Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. 2001. Tapestry: An Infrastructure for Fault-Resilient Wide-Area

Location and Routing. Technical Report UCB-CSD-01-1141. University of California Berkeley, Berkley, CA.

Received October 2016; revised October 2017; accepted November 2017

ACM Computing Surveys, Vol. 51, No. 2, Article 40. Publication date: April 2018.

