PROBLEM CORNER

Provided by Zoltán Kovács and Edith Steininger,
Linz School of Education, E-mail: ed.steininger@eduhi.at and zoltan@geogebra.org

Problem 1

Little John suggests a new method on constructing a regular 13-gon by using a compass and a ruler (see Figure 1):

1. Draw a circle c of radius 100 mm .
2. Choose an arbitrary point A on circle c.
3. Draw a circle d of radius 187 mm with center A.
4. Mark the intersection points B and M of circles c and d.
5. Draw a circle e of radius 187 mm with center B.
6. Mark the other intersection point C of circles c and e.
7. Draw a circle f of radius 187 mm with center C.
8. Mark the other intersection point D of circles c and f.
9. And so on, mark further intersection points E, F, G, H, I, J, K and L.
10. Now AIDLGBJEMHCKF is a regular 13-gon.

We have the feeling that this cannot be accurate. Why? Explain the situation.

Figure 1 - Little John's method to construct a regular 13-gon

Problem 2

Assume we would like to use Little John's method to construct exact regular n-gons by considering two numbers as input radii, r_{1} and r_{2} (in Problem 1, $r_{1}=100, r_{2}=187$, $n=13$). Find all natural numbers n and all associated integer numbers r_{1} and r_{2} that indeed produce an exact regular n-gon with this method.

