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Problem 1

To screen blood donors for HIV, the American Red Cross often implements pool testing, where
pools are formed by compositing a set of individual donations and then the pooled samples
are tested for the presence or absence of HIV; see Figure 1. A pool is positive when at least
one individual in the pool has disease; however, a pool is negative when all individuals in the
pool are free of disease. Unfortunately, the assay being used for diagnosis is subject to errors.
When a positive pool is tested, there is a 97% probability that the test result is positive (a
correct result). When a negative pool is tested, there is a 98% probability that the test result
is negative (also a correct result). Assume that the individuals are independent and have an
identical probability of 1% to be HIV positive. Also, assume that the test accuracy does not
depend on the pool size. Suppose a pool comprised of 3 individuals is tested for HIV.

a. What is the probability that the pool tests positive?

b. Write an algorithm to approximate the probability in 1(a) by simulation.
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Figure 1: Pool testing to screen blood donors for HIV.



Solution:

a. Let A be the event that a pool is truly positive so that the complement of A, denoted by
A% refers to the event that a pool is truly negative. Note that a pool is negative when
all individuals in the pool are negative. Thus, for a pool of 3 independent individuals,

P(A%) = 0.99 x 0.99 x 0.99 = 0.9703, and P(A) =1 — P(A®) = 0.0297.

Suppose B is the event that a pool tests positive. We need to calculate P(B). Possible
partitions of the sample space are shown in Figure 2, where the event B is highlighted
in pink. It is easy to observe that P(B) = P(Band A) + P(Band A®) = 0.0482. The
tree diagram in Figure 3 depicts the calculation of P(Band A) and P(B and A®).
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Figure 2: Partitions of the sample space.
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Figure 3: Tree diagram to calculate the probability in 1(a) that a pool is diagnosed as positive.



b. To approximate P(B), a sample of pool testing results are simulated. When sample size
is sufficiently large (e.g., 10,000), the sample mean will be a good approximate for P(B).
The flowchart in Figure 4 describes the steps to simulate one pool testing result. The
steps can be repeated to obtain a large sample using any statistical software including
R, Minitab, and Matlab. An example of R codes is shown below.
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Figure 4: Flowchart to approximate the probability in 1(a) by simulation.

Note that accuracy of the approximation depends on the simulated data sample size.
The law of large numbers states that sample mean converges to population mean as the
sample size increases; thus, with very large sample size, the true value of P(B) and its
estimate will be nearly equal.

To illustrate how sample size affects the accuracy, we perform a simulation study with
sample size N = 100, 1000, 10000. For each N, the probability P(B) is estimated 2000
times. The mean and standard deviation of these estimates are shown in Table 1.
The mean estimate with each sample size is close to the true value. However, the
estimates with larger sample are more precise (less variable). The estimates are also
presented in Figure 5, where the true value, P(B) = 0.0482, is shown by the horizontal
line for comparison. The boxplots in Figure 5 reiterate the findings discussed above.
In practice, exact calculation of some probabilities or integrations can be very hard
or impossible. However, implementing the approximation technique can simplify the
problem dramatically and work well for nearly all problems.



Table 1: Mean and standard deviation of 2000 estimates of P(B) with sample size V.

N =100 N =1000 N = 1000

Mean 0.0477 0.0481 0.0483
Standard deviation 0.0214 0.0068 0.0022
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Figure 5: Boxplots of 2000 estimates of P(B) with sample size N.

R codes to approximate P(B):

Z <- NULL # Note: Z is the pool testing result
for(j in 1:10000){
Y <- rbinom(3, 1, .01)
T <- ifelse(max(Y)==1, 1, 0)
prob <- ifelse(T==1, 0.97, 1-0.98)
Z[j] <- rbinom(1, 1, prob)
}
# An approximate of P(B):
mean (Z)

Note: R is a free software and widely used in research and applications. R can be downloaded
from the link https://www.r-project.org.



Problem 2

In statistics, maximum likelihood is a procedure of estimating the parameters of a probabilistic
model. In the context of pool testing, the maximum likelihood technique is used to estimate
individual-level disease prevalence using data observed from pools; see Problem 1 for more
details about pool testing.

Consider a pool testing application, where p denotes the probability that an individual
has HIV. Suppose J pools, each of which is comprised of n individuals, are tested for HIV. Let
zj, for 7 = 1,2, ..., J, denote testing responses, where z; = 1 if a pool tests positive and z; = 0
if otherwise. Finding maximum likelihood estimate of the parameter p involves maximizing
L(p) = H;.Izl 67 (1 —0)'=% as a function of pu, where =1 — (1 —p)" and p € (0,1); i.e., if 1
denotes the maximum likelihood estimate of pu, then i = arg ml?x L(p). Show that

1/n
~ Zt‘]fl <i

and find 1 for the following data, where J = 10 and n = 4.

Pool testing data
z 101 00 1 1 1 11

Solution:

For the given data, the likelihood function L(u) is shown in Figure 6. One easily finds that
a unique maximum exists and the maximizer of L(u) is between p = 0.2 and p = 0.4. To
calculate the exact value, we will prove and use the formula for the maximum likelihood
estimator j1. In practice, it is instructive to plot a function when its optimal value is searched
over a one-dimensional parameter space.

Note that 6 = 1 — (1 — )™ # 0 and j—z =n(l — )"t #£0, for p € (0,1), so that
ﬁ% # 0. For the proof, it is more convenient to use In L(x) instead of L(u). Because
natural logarithm is strictly increasing, the maximum value of L(u) and In L(u) will occur at
the same point. We have In L(p) = 27, z;In 6 + ijl(l — 2;)In (1 — 0). Taking derivative

j=1
with respect to p yields

dinL(y)  df (Z;-’l 5 J=20 Zj>
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Setting 4L — ( and solving for p result in

dup
1/n
~ Z"]fl <i
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To emphasize that the solution is an estimator, the notation ji is used in place of u in the final
step. When J is sufficiently large, the global maximum of L(u) occurs at fi. For the given
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data, we find ;1 = 0.26. A close inspection reveals that the likelihood function L(u) in Figure
6 is maximum at 1 = 0.26.
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Figure 6: The likelihood function L(p) with the given pool testing data.



