
Anytime Learning of Sum-Product and Sum-Product-Max Networks

Swaraj Pawar SWARAJ.PAWAR@UGA.EDU

Prashant Doshi PDOSHI@UGA.EDU

THINC Lab, School of Computing, University of Georgia, Athens, GA 30602, USA.

Abstract
Prominent algorithms for learning sum-product networks (SPN) and sum-product-max networks

(SPMN) focus on learning models from data that deliver good modeling performance without re-
gard to the size of the learned network. Consequently, the learned networks can get very large,
which negatively impacts inference time. In this paper, we introduce anytime algorithms for learn-
ing SPNs and SPMNs. These algorithms generate intermediate but provably valid models whose
performance progressively improves as more time and computational resources are allocated to the
learning. They flexibly trade off good model performance with reduced learning time, offering the
benefit that SPNs and SPMNs of small sizes (but with reduced likelihoods) can be learned quickly.
We comprehensively evaluate the anytime algorithms on two testbeds and demonstrate that the net-
work performance improves with time and reflects the expected performance profile of an anytime
algorithm. We expect these anytime algorithms to become the default learning techniques for SPNs
and SPMNs given their clear benefit over classical batch learning techniques.

Keywords: Anytime algorithms; decision making; flexible; probabilistic graphical models.

1. Introduction

Sum-product networks (SPN) (Poon and Domingos, 2011) are probabilistic graphical models with
tractable inference that is linear in the size of the network (number of nodes) for most types of
inferences. Multiple algorithms have been presented in the past for learning the structure of SPNs,
which target improvement in the likelihood of the learned networks. Another model, sum-product-
max networks (SPMN) (Melibari et al., 2016) was introduced for tractable decision making by
adding decision and utility nodes to generalize the SPNs. However, for complex or sequential
domains the structure learning algorithm for SPMNs could fail to learn the networks in a reasonable
amount of time (Tatavarti et al., 2021).

Applications that require the generative modeling of data with many variables may settle for
learned SPNs of smaller sizes that offer faster inference time. This motivates a need to design
algorithms that can learn smaller-sized and possibly less expressive networks in less time, if needed.
But, the prominent structure learning algorithms for SPNs and SPMNs (Gens and Domingos, 2013;
Melibari et al., 2016; Kalra et al., 2018) are unable to control the size of the learned networks. While
some work exists that seeks to reduce network complexity or the learning time (Vergari et al., 2015;
Di Mauro et al., 2017), algorithms that flexibly trade off model performance for reduced learning
time by learning networks of smaller sizes are preferred.

Anytime or flexible algorithms showcase a progressive increase in the quality of the models
as the computation time increases (Zilberstein and Russell, 1995; Zilberstein, 1996). These algo-
rithms return a series of models of increasing accuracy and improve the models as the algorithm
progresses. In this paper, we present the first anytime algorithms for learning SPNs and SPMNs
by progressively relaxing the crucial operations of clustering and independence testing. These al-

1



gorithms learn the networks from data and return intermediate valid models of improving quality
and increasing complexity until convergence. The model quality is measured using log-likelihood
for the SPNs and additionally using average rewards for the SPMNs. These measures are used to
generate the performance profiles for the algorithms over known testbeds. We observe an increase
in the network size and the computation time as the algorithm progresses towards convergence. We
also show that the performance of the models returned by the anytime algorithms moves toward
optimality, and eventually often improves on the log-likelihoods returned by the previous structure
learning techniques (Gens and Domingos, 2013).

2. Background

We briefly review SPNs and their generalization to decision-making SPMNs in this section.

2.1 Sum-Product Networks

An SPN S (Poon and Domingos, 2011) is a rooted directed acyclic graph that represents a prob-
ability distribution over random variables X1, . . . , Xn. These models consist of sum and product
nodes as their internal nodes and univariate distributions over variables as their leaf nodes. Recent
enhancements allow for multivariate leaf distributions as well (Rooshenas and Lowd, 2014). The
outgoing edges of the sum nodes have non-negative edge weights. Thus, the value of a sum node
is the weighted sum of its children’s values, while the value of a product node is the product of
its children. The value at the root of S is the value of the network polynomial that it represents.
An SPN is valid iff the normalized network polynomial represents the joint distribution over the
variables and it gives correct marginals. Validity thus constrains the structure of the SPN as follows:

Theorem 1 (SPN validity (Poon and Domingos, 2011)) An SPN is valid if it is sum-complete and
decomposable.

Both completeness and decomposability impose conditions on the scope of a node, where the scope
is recursively defined as:

Definition 1 (Scope) The scope of a node is a union of the scopes of its children, where the scope
of a leaf node is the set of random variables whose distribution it holds.

Subsequently, completeness and decomposability are defined as:

Definition 2 (Sum-complete) An SPN is sum-complete iff all children of a sum node have the same
scope.

Definition 3 (Decomposable) An SPN is decomposable iff no variable appears in the scope of more
than one child of a product node.

2.2 Sum-Product-Max Networks

SPMNs (Melibari et al., 2016) generalize SPNs to have decision-making capabilities. An SPMN
S+ over decision variablesD1, ..., Dm, random variablesX1, ..., Xn and utility functions U1, ..., Uk
has max and utility nodes for the decision variables and utility functions respectively, along with the
sum and product nodes. The leaf nodes are either univariate distributions over variables or utility

2



nodes. The internal nodes consist of sum, product and max nodes. The outgoing edges of a max
node are labeled with the decision choices of the corresponding decision variable. The value of the
max node is the maximum expected value among its children and the choice on the edge that yields
the maximum value is the optimal decision to be taken for that variable. Let σ denote an assignment
of a decision choice to each max node in S+, which we refer to as a policy, and S+(x, σ) denote the
expected utility of a policy σ for some state x obtained as, S+(x, σ) = Φ(x) ·U(x, σ). Here, Φ(x)
is the probability distribution over the state x and U(x, σ) is the sum of all the utility functions.
Furthermore, S+(x) = max

σ
S+(x, σ). Then, an SPMN S+ is valid iff S+(e) =

∑
x∼e

S+(x) for

evidence e and x ∼ e denotes states consistent with evidence e. Proposition 1 then follows from
this definition of validity.

Proposition 1 The value of a valid SPMN for evidence e is identical to the maximum expected
utility (EU) of that evidence, S+(e) = max

σ
EU(e, σ), where σ is the policy.

Proof of the proposition is given in the Appendix included in the supplementary material at http:
//thinc.cs.uga.edu/files/pdPGM22-appendix.pdf. Melibari et al. (2016) notes that an SPMN is valid
if it satisfies Defs. 2, 3, and two new additional properties:

Definition 4 (Max-complete) An SPMN is max-complete iff each child of a max node has the same
scope.

Definition 5 (Max-uniqueness) An SPMN is max-unique iff each max node corresponding to a
decision variable appears at most once in every path from the root to the leaves.

A partial order denoted by P≺ gives the order between information sets and the decision vari-
ables. More specifically, it is given as I0 ≺ D1 ≺ I1 ≺ ... ≺ Dm ≺ Im, where the random
variables within the information set Ii−1 are observed prior to the decision associated with variable
Di, 1 ≤ i ≤ m, is taken. This is a partial order because variables within each information set may
be observed in any order. Learned SPMNs must respect the partial order such that no variables from
the information set Ii−1 should be within the scope of the decision variableDi, but it should contain
the variables from the information sets Ii, Ii+1... within its scope.

3. Anytime Learning of SPNs and SPMNs

The popular LEARNSPN and LEARNSPMN algorithms do not control the size of the learned net-
works. For a given data set, both methods utilize the default of two clusters resulting in two children
for a sum node and all variables within the scope are used for splitting for the product nodes. As
such, these methods do not regulate their learning times and often learn complex networks contain-
ing hundreds of nodes even for simple domains (Vergari et al., 2015).

An anytime approach (Zilberstein and Russell, 1995; Zilberstein, 1996) for learning the net-
works allows flexible control over the size and performance of the learned networks. This approach
initially generates smaller and approximate networks, though still valid, in less run time. As more
resources are allocated, the size of the networks increases until convergence, which typically corre-
lates with their modeling performance.

3

http://thinc.cs.uga.edu/files/pdPGM22-appendix.pdf
http://thinc.cs.uga.edu/files/pdPGM22-appendix.pdf


3.1 Anytime Structure Learning for SPNs

A new learning method ANYTIMESPN is presented in Algorithm 1, which yields valid SPN struc-
tures at each iteration, and these can be flexibly improved with more iterations. It takes as input
the dataset D and a list V of the random variables in the domain. At any time, the algorithm may
be halted and it outputs a valid SPN; the algorithm yields SPNs with improved likelihoods when
allowed more iterations.

Algorithm 1: ANYTIMESPN
Input: D: Dataset, V : Variables
Output: Series of learned valid SPNs

1 Set κ← 2 . limit on number of clusters
2 Set η← ceil(

√
|V |) . number of variables

for independence testing
3 do
4 S ← LearnSPN*(D,V, sum)
5 Set κ← κ+ 1 . Increment parameters
6 Set η ← η + 1 until η reaches |V |
7 until log likelihood converges

Algorithm 2: ANYTIMESPMN
Input: D: Dataset, V : Variables, P≺:

Partial order
Output: Series of learned valid SPMNs

1 κ← 2, η← ceil(
√
|V |), d← 2, dmax ← 1

2 do
3 S+ ← LearnSPMN*(D, V , 0, null)
4 Set κ← k + 1
5 Set η ← n+ 1 until n reaches |V |
6 Set d← d+ 1 until d reach |D|
7 Set dmax ← dmax + 1

8 until log likelihood converges

ANYTIMESPN has two parameters: the upper limit κ on the number of clusters to be formed
and the number of variables η used for independence testing. 1 Parameter κ controls the branching
and the complexity at the sum node, while the parameter η reduces the run time and generates
approximate networks in the initial iterations. Parameter κ is initialized to yield at most two clusters
while η is set to

√
|V | initially. At each iteration, a valid usable SPN is generated after which the

parameters κ and η are incremented. This continues until the value of η increments to |V | and the
log-likelihood of the learned networks converges. The SPNs (in each iteration of ANYTIMESPN)
are generated by LEARNSPN* outlined in Algorithm 3. Along with the parameters κ and η, the
algorithm takes as input the dataset D, the scope variables V and a current operation indicator
curOp, which is sum in Algorithm 1. The algorithm returns a learned SPN given the parameters.

Whereas similar to LEARNSPN, LEARNSPN* uses RDC independence testing (Molina et al.,
2018) to generate the product nodes and its children, this operation differs from LEARNSPN in
that only the first η variables in the scope are used for splitting into the independent subsets Vj .
We avoid randomly selecting these η variables as it might lead to a sudden drop in the likelihood.
Instead, we use the first η variables using the ordering presented in the data set. If all η variables
are grouped into one subset, another subset is created with an equal number of variables picked
from the remaining |V | − η variables. The variables not yet assigned are distributed evenly among
the subsets. The sub-SPN learned from each subset is assigned as the child of a product node.

Next, we use the X-MEANS clustering algorithm (Pelleg and Moore, 2000) to form the clusters
pertaining to the sum nodes and its children. This algorithm differs from the k-means used in
LEARNSPN by allowing a variable number of clusters up to the limit of κ clusters. The algorithm
aims to initially partition the data set into two clusters. If the clusters are found, in its next iteration it
aims to divide each of those clusters again into two. If the new SPN model improves on the previous
one using a metric such as the well-known Bayesian information criterion (Schwarz, 1978), then the
clustering is continued. Otherwise, the algorithm is terminated and the clusters from the previous
iteration are returned. This iterative expansion process continues while the number of clusters found

1. These degrees of freedom are not available in LEARNSPN.

4



Algorithm 3: LEARNSPN*
Input: D: Dataset, V : Variables, curOp: current operation
Parameters: κ: maximum cluster limit, η: number of variables for independence testing, ι:

minimum number of instances to allow a variable split
Output: learned SPN structure

1 if |V | = 1 then
2 return univariate distribution over V with Laplacian smoothing

3 if |D| < ι then
4 return a product node with univariate distribution of each variable in V as its child

5 if curOp = prod then
6 Partition variables V [: n] into independent subsets Vj
7 Distribute the remaining variables V [n :] evenly among the subsets Vj
8 return Πj LearnSPN*(Dj , Vj , sum)
9 else

10 partition D into max. number of clusters Dj of similar instances such that j ≤ k
11 return Σj

|Dj |
|D| × LearnSPN*(Dj , V, prod)

is less than κ. The sub-SPN structures learned from each of the clusters form the children of the sum
node. If only one variable remains in the scope, then LEARNSPN* returns a (Laplacian) smoothed
univariate distribution over that variable to form a leaf node.

Theorem 2 The SPNs learned at each iteration of the ANYTIMESPN algorithm are valid where
validity is as defined in Theorem. 1.

Proofs of all theorems are given in the Appendix included in the supplementary material. A valid
SPN can be evaluated using the standard bottom-up traversal to obtain S(e).

3.2 Anytime Structure Learning for SPMNs

Algorithm 2 ANYTIMESPMN gives the procedure for learning SPMNs using the anytime tech-
nique. A data set D, the list of variables V (comprised of random, decision, and utility variables)
present in the scope of the domain, along with the partial ordering of the random and decision
variables P≺ is given as input to the algorithm. It learns a series of SPMNs such that there is
improvement in the performance after each iteration.

The algorithm utilizes parameters d and dmax in addition to κ and η, which are similar to those
utilized by ANYTIMESPN. The parameter d represents the limit on the branching of the decision
node. Each branch of the decision node may correspond to multiple decision choices. During
evaluation, the actual decision for a decision variable is selected randomly from the set of choices
assigned to the edge that gives the maximum expected utility. The value of dmax gives the maximum
possible depth allowed from the point where no decision variables appear in the scope of the branch.

The algorithm first initializes these parameters to their lowest feasible values: at most clusters
for the sum nodes, η =

√
|V |, two branches for every max node, and dmax = 1. On learning an

SPMN, κ, d, η and dmax are incremented. In particular, η is gradually increased until it equals to
|V |, while d is incremented until it reaches the number of decision choices possible for the decision
variables. Parameters κ and dmax are increased unbounded. This process stops when the log-
likelihoods of the generated networks converge after the values of η and d reach their maximums.

5



Figure 1: An illustration of depth control using the parameters dmax and dcur.

Algorithm 4 LEARNSPMN* is used for flexibly learning the SPMN structures at each iteration.
Along with the data set D, scope variables V and the partial order P≺, the method requires the
current information set i in P≺ as the input. Another input parameter dcur gives the depth at which
the algorithm currently is after the point where no decision variables are found in the scope. Initially
i is set to 0 and dcur is null.

If the scope V contains one variable only, then Algorithm 4 returns a utility node if the variable
in V is a utility, otherwise it returns a smoothed univariate distribution over the single random
variable. The information set index i is incremented if there are no variables from P≺[i] in V . If
there are no decision variables in the scope V and parameter dcur is still null, the current branch
can be truncated from this point onward. At this point the value of dcur is set to 1. Otherwise,
dcur is incremented by 1 to indicate increase in the level of depth of the branch. If dcur exceeds the
limit given by dmax, then the algorithm returns a product node having |V | children created by naı̈ve
factorizing the scope variables V . This gives an approximate distribution over the variables once
the allowed depth is reached. This depth control procedure is illustrated in Figure 1. After this, all
remaining variables from the next information set in P≺ and those that follow are stored in VR.

If the current information set contains a decision variable, then the decision choices for that
variable present in D are uniformly distributed among d groups. For each group vg, the subset Dvg

of D where the decision variable has a value present in the group is formed. A max node having d
children is returned, where each child is a sub-SPMN learned from the data subset having scope VR.
On the other hand, if P≺[i] does not have a decision variable, then variable splitting is performed
using the first η variables from V as explained for SPNs. The subsets having variables also present
in VR are merged together. Now, if there is more than one subset, a product node is created having
SPMN structures that are learned from the subsets as its children. Otherwise, the data set D is
partitioned into a maximum of κ clusters of similar instances using X-MEANS by only considering
the variables in the current information set, to form a sum node and its children. SPMNs generated
by ANYTIMESPMN exhibit an important property:

Theorem 3 The SPMNs returned at each iteration of the ANYTIMESPMN algorithm are valid
where the validity is as defined in Section 2.2.

As an example, consider the Export Textiles domain (Er and Lezki, 2012) having one random
variable Economical State (ES), a decision variable Export Decision (ED) and a utility value
Profit (Pr). The task is to select a decision for ED that maximizes the utility Pr. The decision

6



Algorithm 4: LEARNSPMN*
Input: D: Dataset, V : Variables, i: Information set index, dcur: Current depth after decision

nodes
Parameters: P≺: Partial order, κ: Maximum cluster limit, d: Maximum decision node

branches, η: # variables for independence testing, dmax: Maximum depth after
decision nodes

Output: learned SPMN
1 if |V | = 1 then
2 if variable v ∈ V is utility then
3 u← estimate Pr(V = True) from D
4 return utility node with value u

5 else
6 return univariate distribution over V with Laplacian smoothing

7 Update i← i+ 1 and dcur ← dcur + 1
8 if dcur ≥ dmax then
9 return a product node with univariate distribution of each variable in V as its child

10 VR ← P≺[i+ 1] ∪ P≺[i+ 2] ∪ P≺[i+ 3]...
11 if P≺[i] contains a single decision variable then
12 vgroups ← distribute decision values in d groups
13 for vg ∈ vgroups do
14 Dvg

← subset of D where P≺[i] ∈ vg
15 return MAXvg LearnSPMN*(Dvg , VR, i+ 1, dcur)
16 else
17 Z ← Partition variables V [1 : η] into subsets Vj that are statistically independent
18 Dj ← subset of data having values of variables in Vj
19 Distribute the remaining variables V [η : n] among the subsets Vj ∈ Z
20 Merge together subsets having variables ∈ VR
21 if |Z| > 1 then
22 return Πj LearnSPMN*(Dj , Vj , i, dcur)
23 else
24 partition D into clusters Dj of similar instances based on the values in P [i] such that j ≤ κ
25 return Σj

|Dj |
|D| × LearnSPMN*(Dj , V, i, dcur)

Figure 2: SPMNs from ANYTIMESPMN for Export Textiles. (left) Initial, (middle) an intermediate, (right)
the final learned network. All SPMNs are valid and present increasingly improved modeling.

7



variable has three choices and the variable ES is discrete having three values. Some of the SPMNs
generated by ANYTIMESPMN for the domain are shown in Fig. 2. Notice that the max node has
two branches in Fig. 2 (left) and the depth of the subtrees following the decision node is limited
to one. The final network exhibits the optimal MEU. All the SPMNs are valid and the number of
nodes and the accuracy of the models increases as expected over the iterations of the algorithm.

Dataset |V | # Instances

NLTCS 16 19417
MSNBC 17 349591
KDDCup 2K 65 215047
Jester 100 13116
Audio 100 18000
Netflix 100 18000

(a)

Dataset |X| |D| |d| Optimal MEU

Elevator 35 6 4 0.5
Navigation 36 5 4 -4.047
Game of Life 36 3 9 10.808
Skill Teaching 72 5 4 -7.181
Crossing Traffic 72 5 4 -4.0

(b)

Table 1: (a) Data sets for evaluating ANYTIMESPN. |V | indicates the number of random variables in the
data set, each is binary. (b) Data sets for evaluating ANYTIMESPMN. Here, |X| is the number of random
variables, |D| is the number of decision variables, and |d| is the number of decision choices per decision
variable. Each data set has 500K instances.

4. Experiments

Both Algorithms 1 and 2 were implemented in the open-source SPFlow library (Molina et al., 2019)
and are available on GitHub. 2 We evaluate ANYTIMESPN on a testbed of 6 data sets available as
part of the SPFlow library. The number of domain variables and the total number of instances
are listed in Table 1 (a). ANYTIMESPMN is tested on data sets generated from the RDDLSim
domains (Sanner, 2011) whose specifications are shown in Table 1 (b). The sequential RDDLSim
domains were modeled as decision-making domains for a finite number of steps. Each decision-
making data instance is generated by simulating a random agent in the environment for the given
steps |D|. The instances respect the partial order, since Ii is the state observed after an action di at
the time step i. We record the total reward gained as the utility U .

4.1 Performance Profiles of ANYTIMESPN

We measure the log-likelihoods of the learned SPNs from the ANYTIMESPN algorithm to build
the anytime technique’s performance profiles. These profiles show the change in the measure as
iterations progress (and therefore there is more resource allocation) for an anytime technique. We
use 3-fold cross validation for evaluating each of the learned SPNs. We compare the SPNs with
that learned by the batch LEARNSPN algorithm. Additionally, we compare with the model learned
without any constraints on the parameters κ and η. Consequently, this model is expected to show
case the best representation and serves as the upper bound for our results; we denote it as Upper
Limit. ANYTIMESPN is considered to reach convergence when the standard deviation in the log-
likelihood of the past three models is less than 10−3.

The results in Figure 3 for three of the six domains show that the log-likelihoods follow the ex-
pected performance profiles of an anytime technique. The models improve at a higher rate in the ini-

2. The implementation of ANYTIMESPN is available at https://github.com/SwarajPawar/SPFlow/tree/anytime spn and
that for ANYTIMESPMN is available at https://github.com/SwarajPawar/SPFlow/tree/anytime spmn.

8

https://github.com/SwarajPawar/SPFlow/tree/anytime_spn
https://github.com/SwarajPawar/SPFlow/tree/anytime_spmn


Figure 3: Performance profiles of ANYTIMESPN on 3 of the 6 data sets. Left column shows the log
likelihoods, middle column the number of nodes in the SPNs, and the right column presents the run time of
each iteration of the algorithm in seconds. Results for the remaining data sets are given in the supplementary
file at http://thinc.cs.uga.edu/files/pdPGM22-appendix.pdf. All experiments were run on a Red Hat Linux 8
system with Intel Xeon 12 cores 1.63 GHz each and 16 GB of RAM.

tial iterations, which then starts to flatten out toward convergence yielding a nearly non-decreasing
log-likelihood, while the network size increases linearly. Notice that the anytime algorithm for
SPNs is able to learn models whose performance approaches that of the Upper Limit model while
using significantly less nodes. Such performance is achieved with smaller network sizes in less or
equivalent run times as compared to the Upper Limit. Furthermore, the anytime approach learns
models that are much better fits as compared to the previous LEARNSPN models in less run times.

4.2 Performance Profile of ANYTIMESPMN

For SPMNs, we measure both the log likelihoods and the MEUs. While the former was evaluated
using 3-fold cross-validation, the latter was measured as the total reward from simulating the SPMN
decisions in the domains averaged over 25 batches of 20,000 runs each. We compare these results
with the previous batch algorithm LEARNSPMN. Additionally, we compare the average rewards
obtained with the optimal MEU and the average reward given by a random policy. The optimal
MEU is obtained from the policy given by the value iteration solver in RDDLSim.

Figure 4 shows the average reward and log likelihood performance profiles of the ANYTIME-
SPMN algorithm, as well as the number of nodes in the learned SPMNs and the learning run times.
Observe that both the average rewards and the log likelihoods of the models generally increases
given more iterations and is consistent with the increase in the network sizes. A slight exception is

9

http://thinc.cs.uga.edu/files/pdPGM22-appendix.pdf


Figure 4: Performance profiles of the ANYTIMESPMN algorithm on three of the five decision-making data
sets. Results for additional data sets are shown in the Appendix in the supplementary material. We show, in
order from left to right columns, the average rewards (with standard deviations), log likelihoods, number of
nodes in the learned SPMNs, and the learning run time in seconds.

the Game of Life domain where the SPMN on the third iteration shows a drop in reward and log
likelihood. However, the average rewards reach the optimal values by about the tenth iteration for
the domains that are shown indicating that the later SPMNs are yielding the optimal decisions. The
learning time for the models (shown in seconds) also generally increases over the iterations (though
we note some localized exceptions). Most of the models yielded by the algorithm perform better
than a random policy. As such, ANYTIMESPMN produces optimal models in lesser learning times
than the batch LEARNSPMN algorithm.

5. Related Work

Multiple methods exist for learning the structure of SPNs such as the cluster architecture algo-
rithm (Dennis and Ventura, 2012), the popular LEARNSPN (Gens and Domingos, 2013) for tree
SPNs with leaves as univariate distributions, ID-SPNs (Rooshenas and Lowd, 2014) having leaves as
multivariate distributions, a bottom-up greedy approach (Peharz et al., 2013), and SPN-SVD (Adel
et al., 2015) based on rank-one submatrices. These algorithms aim to learn SPNs that improve the
log-likelihood of the data with no way of regulating the learned network size.

Vergari et al. (2015) modifies LEARNSPN by suggesting binary splits for the sum nodes to allow
deeper SPNs. To yield simpler SPNs with fewer edges, it suggests Chow-Liu Trees (Chow and Liu,
1968) instead of naı̈ve factorization. However, reductions in the number of edges were found only
for few cases, while additional computation time is required for such trees. The RGVS approach
(Di Mauro et al., 2017) randomly picks a subset of variables from the scope for variable splitting.

10



Unlike our variable splitting, the number of independent subsets is limited to two groups only which
may not be practical. It shows reduction in the learning time and in the performance of the model.
But, the likelihood may not progressively improve when the size of the subset used for splitting is
increased because the remaining variables are assigned randomly to one of the independent subsets.

Melibari et al. (2016) introduces LEARNSPMN for learning the structure of SPMNs from
decision-making data with a given partial order. Extensions of SPMNs for sequential domains,
recurrent SPMNs (Tatavarti et al., 2021) and state-based recurrent SPMNs (Hayes et al., 2021), use
template networks that reduces the network size as compared to SPMNs. While these methods learn
models of good quality in sequential domains, the template network size remains unbounded and
there is a clear need for a flexible approach that trades off quality for network size.

6. Concluding Remarks

Previously introduced structure learning algorithms for SPNs and SPMNs yielded models having no
bound over the network size or the computation time. In this paper, we presented anytime or flexi-
ble algorithms for the structure learning of valid SPNs and SPMNs. To achieve this, we replace the
existing batch steps with flexible techniques for generating the sum and product nodes and their chil-
dren of increasing complexity. Our empirical results show that these algorithms successfully trade
off the quality of the models for reduced network complexity and learning time. As these methods
can generate models that display very good fits and optimal expected utilities and coupled with the
flexibility, we expect ANYTIMESPN and ANYTIMESPMN to become the default algorithms for
structure learning. For instance, if the available time is less than that required by LEARNSPN, we
may instead let ANYTIMESPN run until the given time elapses and use the most recently learned
SPN. Recurrent SPMNs (Tatavarti et al., 2021) and state-based recurrent SPMNs (Hayes et al.,
2021) have been recently presented to model sequential decision-making data, but the sizes of the
recurrent network templates remain unbounded. A future direction for this work would be to extend
the anytime technique for learning the template structures for wider applicability.

Acknowledgments

This research was supported in part by NSF grant #1815598. We thank Daniel Redder for his
editorial and technical feedback and the anonymous reviewers for their comments.

References

T. Adel, D. Balduzzi, and A. Ghodsi. Learning the structure of sum-product networks via an SVD-
based algorithm. In Conference on Uncertainty in Artificial Intelligence, pages 32–41, 2015.

C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE
Transactions on Information Theory, 14(3):462–467, 1968.

A. Dennis and D. Ventura. Learning the architecture of sum-product networks using clustering on
variables. In Advances in Neural Information Processing Systems, volume 25, 2012.

N. Di Mauro, F. Esposito, F. G. Ventola, and A. Vergari. Alternative variable splitting methods to
learn sum-product networks. In AI*IA Advances in Artificial Intelligence, pages 334–346, 2017.

11



F. Er and S. Lezki. The usage of influence diagram for decision making in textiles. Asian Social
Science, 8(11):163–169, 09 2012.

R. Gens and P. Domingos. Learning the structure of sum-product networks. In 30th International
Conference on Machine Learning, pages 873–880, 2013.

L. Hayes, P. Doshi, S. Pawar, and H. T. Tatavarti. State-based recurrent spmns for decision-theoretic
planning under partial observability. In Thirtieth International Joint Conference on Artificial
Intelligence (IJCAI), pages 2526–2533, 2021.

A. Kalra, A. Rashwan, W.-S. Hsu, P. Poupart, P. Doshi, and G. Trimponias. Online structure learn-
ing for feed-forward and recurrent sum-product networks. In Advances in Neural Information
Processing Systems, volume 31, 2018.

M. Melibari, P. Poupart, and P. Doshi. Sum-product-max networks for tractable decision making.
In International Joint Conference on Artificial Intelligence (IJCAI), pages 1846–1852, 2016.

A. Molina, S. Natarajan, A. Vergari, F. Esposito, N. D. Mauro, and K. Kersting. Mixed sum-product
networks: A deep architecture for hybrid domains. In AAAI Conference on Artificial Intelligence,
2018.

A. Molina, A. Vergari, K. Stelzner, R. Peharz, P. Subramani, N. D. Mauro, P. Poupart, and K. Ker-
sting. SPFlow: An easy and extensible library for deep probabilistic learning using sum-product
networks. arXiv preprint arXiv:1901.03704, 2019.

R. Peharz, B. C. Geiger, and F. Pernkopf. Greedy part-wise learning of sum-product networks. In
Machine Learning and Knowledge Discovery in Databases, pages 612–627. Springer, 2013.

D. Pelleg and A. Moore. X-means: Extending k-means with efficient estimation of the number of
clusters. In International Conference on Machine Learning, pages 727–734, 2000.

H. Poon and P. Domingos. Sum-product networks: A new deep architecture. In Conference on
Uncertainty in Artificial Intelligence (UAI), pages 2551–2558, 2011.

A. Rooshenas and D. Lowd. Learning sum-product networks with direct and indirect variable inter-
actions. In 31st International Conference on Machine Learning (ICML), pages 710–718, 2014.

S. Sanner. Relational dynamic influence diagram language (RDDL): Language description, 2011.

G. Schwarz. Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461–464, 1978.

H. T. Tatavarti, P. Doshi, and L. Hayes. Recurrent sum-product-max networks for decision making
in perfectly-observed environments. In International Conference on Automated Planning and
Scheduling (ICAPS), 2021.

A. Vergari, N. Di Mauro, and F. Esposito. Simplifying, regularizing and strengthening sum-product
network structure learning. In Machine Learning and Knowledge Discovery in Databases, pages
343–358, 2015.

S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17:73–83, 1996.

S. Zilberstein and S. Russell. Approximate reasoning using anytime algorithms. In Imprecise and
Approximate Computation, pages 43–62. Springer US, 1995.

12


