
UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Towards identification of Octopus cyanea behaviour in
its natural habitat

Martim Duarte da Costa Seco

Mestrado em Informática

Dissertação orientada por:
Professor Doutor Luís Correia, Professor Associado, Universidade de Lisboa

Professor Doutor Rui Rosa, Professor Auxiliar, Universidade de Lisboa

2019

Towards identification of Octopus cyanea behaviour in its natural habitat

Copyright © Martim Duarte da Costa Seco, Faculdade de Ciências, Universidade de

Lisboa.

The Faculdade de Ciências and the Universidade de Lisboa have the right, perpetual and

without geographical boundaries, to file and publish this dissertation through printed

copies reproduced on paper or on digital form, or by any other means known or that may

be invented, and to disseminate through scientific repositories and admit its copying and

distribution for non-commercial, educational or research purposes, as long as credit is

given to the author and editor.

This document was created using the (pdf)LATEX processor, based on the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Acknowledgements

I would like to express my gratitude to Professor Rui Rosa who encouraged me to pursue

a master degree in the computer science area. Also for supervising me and providing me

the opportunity to develop this thesis at the Laboratorio Maritimo da Guia.

I would like to offer my very great appreciation to Professor Luís Correia that accepted

from day one, the challenge of who supervised me on developing a tracking system able

to track octopuses in its natural environment.

I am particularly grateful for the friendship and all the help that Eduardo Sampaio

gave me throughout the duration of this thesis and for providing me with the opportunity

to have contact with the fieldwork beyond having the video data.

I would also like to thank my colleges at Laboratorio Maritimo da Guia for the good

work environment and all the insightful conversations.

I wish to thank to João Lourenço for designing and maintaining the LATEX template

NOVAthesis used to write this document.

I wish to thank my parents and sisters for their support, patience and encouragement

throughout this period.

Finally, I would like to give my special thanks to my girlfriend Julia Mallen for en-

couraging me in doing what I like, for the patience during all this time and especially for

never giving up.

v

Abstract

Octopuses are known to hunt together with fish and the quantification of such inter-

specific interactions has been performed with manual processing of single video record-

ings. Besides being a very time-consuming task it also does not provide a reliable way

of registration for data analysis, especially in unstructured environments. Within this

context, this dissertation aims to develop a semi-automated tracking system to observe

and record cooperative behaviour events of a tropical invertebrate mollusc - the big blue

octopus (Octopus cyanea). This dissertation also includes fieldwork for capturing stereo-

scopic videos of octopuses’ behaviours with a pair of underwater cameras, and extracted

three-dimensional location information from them with an intelligent tracking system.

A central component of the solution is an already existing tracking system specialized in

structured subjects, with well-defined body parts, — the DeepLabCut (DLC). DLC was

never used on octopuses, a kind of animal that easily changes shape, colour, and texture.

Thus, a significant part of this dissertation is directed at the identification of parameter

values for the tracking algorithm. A successful usage pipeline and parametrization of a

neural network (of DLC) that automatically tracks an octopus in a variety of situations

in several minutes of video was achieved, requiring only the manual labelling of a small

part of its frames.

Keywords: Octopus cyanea, Neural-Network, Tracking Systems, DeepLabCut, Underwa-

ter Video, Natural environment.

vii

Resumo

Octopus cyanea é uma espécie de polvos cujas capacidades de camuflagem evoluiram

durante 270 milhões de anos no sentido de desenvolver uma técnica de caça bastante

eficaz e evitar ser detectado e perseguido por predadores. Os polvos são conhecidos por

mudar de cor, forma e textura consoante as condições ambientais e o contexto (alerta,

ameaça ou alimentação). Estes animais têm também uma extraordinária flexibilidade

corporal, permitindos passar por orifícios tão pequenos como 17mm Embora este animais

sejam conhecidos por serem solitários exibem também comportamentos cooperativos

com peixes em situação de caça. Alguns dos comportamentos que podem ser observados

aquando da caça cooperativa são o comportamento Web Over, o comportamento Crawl, o

comportamento Jump, e o Punch (um comportamento novo observado no decurso deste

trabalho). Estes comportamentos notavelmente influencia a cor, a forma e a textura dos

polvos, condições que precisam de ser tidas em conta aquando da análise de imagens e

vídeos.

Tanto quanto nos é dado a conhecer, não há ferramenta open-source que sejam capa-

zes de seguir polvos de forma não intrusiva no seu ambiente natural. A maior parte dos

trabalhos na literatura atual baseiam-se na interpretação e medidas feitas manualmente

sobre vídeos singulares. O maior problema com este método é a sua morosidade e sub-

jectividade. Tais métodos não fornecem uma forma fiável de registo e análise de dados.

Ainda mais se a análise de depender da localização de marcos no ambiente ou na trajetó-

ria de sujeitos em ambientes não estruturados. Para além disso, as condições necessárias

para observar um comportamento coletivo entre um polvo e peixes são muito difíceis de

replicar em ambientes controlados como aquários. Para capturar tais comportamentos

em vídeo, é necessário trabalhar no ambiente natural dos polvos, usando equipamento de

mergulho e um equipamento de filmagem móvel.

No que diz respeito aos sistemas identificação e seguimento foram desenhados para

trabalhar em ambientes estéreis e estruturados onde existe um fundo claro e simples e o

animal pode ser seguido é escuro e com uma forma elíptica. No entanto, no seu habitat

natural, muitas das características usadas na visão por computador como a cor e a forma

são altamente variáveis. Ao fornecer uma ferramenta semi-automática que acelera este

processo, e que automaticamente segue polvos num ambiente tridimensional, permite-se

uma reconstrução de trajetória e análise de comportamentos mais rápida e automática. A

ix

utilização de ferramentas tais a descrita neste documento poderá ajudar investigadores

no estudo de animais marinhos no seu contexto natural, sem recurso a técnicas invasivas e

onde a tecnologia de identificação e seguimento nunca foi aplicada. Esta solução permite

que a análise do comportamento seja feita com um número muito mais reduzido de

frames do que originalmente seria.

Os desafios com que nos deparamos ao longo deste trabalho advêm de estarmos a

trabalhar com um animal como o polvo, um animal que se desenvolveu ao longo de mi-

lhões de anos para conseguir enganar os sistemas de identificação natural dos predadores

naturais. Estes mecanismos não só enganam os predadores como também enganam as

redes neuronais.

O principal objetivo deste trabalho é usar visão por computador para seguir um polvo

(Octopus cyanea) no seu ambiente natural. O projeto onde este trabalho se encontra

inserido tem por objetivo explorar o problema aberto de desenvolver um sistema semi-

automático de seguimento que melhora o comportamento de análise de comportamento,

para que este seja mais eficaz e rápido. Este objetivo é incorporado num sistema que

reconstrói trajetórias de peixes e polvo, por sua vez este resultado pode ser usado como

dado de entrada para uma análise de comportamento da dinâmica colaborativa do con-

junto polvo, peixes. A visão final consiste num sistema completo cujos dados de entrada

são vídeos tridimensionais subaquáticos e cujos resultados são etogramas representando

o comportamento colaborativo de polvos e peixes.

Esta dissertação foca-se na parte inicial da análise completa descrita acima, no dese-

nho de uma pipeline e a parametrização de uma rede neuronal que segue automatica-

mente um polvo numa variedade grande de situações durante alguns minutos de vídeo,

requerendo para tal apenas a anotação de uma pequena parte das suas imagens. É objetivo

deste trabalho a identificação de ferramentas base, e a respetiva seleção e parametrização,

para se atingir os objetivos. Como resultado, obtém-se uma ferramenta, ou a configuração

de uma ferramenta existente que ajudará investigadores na área da análise dos compor-

tamentos subaquáticos, em particular, do comportamento do O. cyanea. Como um outro

produto deste trabalho espera-se disponibilizar uma base robusta para desenvolvimentos

futuros de sistemas de análise comportamental de animais.

No decurso deste trabalho foi efetuado trabalho de campo, onde foram utilizados dois

tipos de câmaras subaquáticas, uma câmara tridimensional composta por duas câmaras

num suporte fixo e uma câmara solta, potenciando vídeos com mais pormenor sobre os

indivíduos. Foram registados 30 eventos isolados de comportamento cooperativo de caça,

dos quais 8 foram anotados e analisados no decurso deste trabalho. Para cada um destes, a

rede neuronal foi treinada e analisada tendo sido obtidos resultados que estão muito perto

do erro humano existente no processo de anotação de vídeos. Foram estudadas estratégias

de anotação de vídeo que vão desde anotar centenas de imagens num vídeo até a anotação

de poucas dezenas de imagens para vídeos de 2 a 30 minutos. É de notar que os fatores de

confiança da rede claramente apontam para resultados com muita precisão, sendo que foi

também analisada a progressão de aprendizagem da rede neuronal, analisando snapshots

x

da rede em intervalos de algumas centenas de milhar de iterações.

Este trabalho contribui para a comunidade científica com uma base de dados de vídeos

raw e de vídeos manualmente anotados de polvos, de polvos a cooperar com diferentes

espécies de peixes diferentes. Estes vídeos poderão ser utilizados para testar novas aborda-

gens de identificação e seguimento automático de polvos, tanto como conjunto de dados

de treino mas também como conjunto de validação de verdade absoluta.

Além disto, contribuímos também com uma pipeline de processamento e análise de

imagens e de vídeos. Esta pipeline é baseada na ferramenta DeepLabCut, desenhada para

trabalhar com animais vertebrados em ambientes estruturados. São ainda apresentados

neste documento o resultado da análise de vídeos em vários ambientes com a caracte-

rização dos cenários onde se obtêm bons resultados e alertas para as situações onde os

resultados são menos satisfatórios.

Como trabalho futuro vamos querer aplicar a rede neuronal e a pipeline descrita acima

aos peixes que fazem parte do comportamento cooperativo alvo. Com isto pretendemos

obter a identificação e o seguimento de todos os envolvidos nesta interação e futuramente

através de um outro software fazer a reconstrução 3D do fundo do mar onde é decorrida

esta interação. Quando obtivermos ambos vamos sobrepor os movimentos do polvo e dos

restantes intervenientes, os peixes, no fundo do mar.

Pretendemos futuramente ser capazes de analisar o comportamento cooperativo como

um todo e não como comportamentos individuais de cada animal. Pretendemos estudar

quem é o leader da cooperação, se há preferência de indivíduos em detrimento de outros.

Seria também interessante ser desenvolvido um software que fosse capaz de analisar os

movimentos de todos os intervenientes e que tivesse como output final o comportamento

de cada um dos intervenientes.

Palavras-chave: Octopus cyanea, Rede Neuronal, Identificação Automática , DeepLabCut,

Video Subaquático, Ambiente Natural.

xi

Contents

List of Figures xvii

List of Tables xix

Acronyms xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Structure of the Dissertation . 3

2 State of the Art 5

2.1 Open Vision Control . 6

2.2 Tracktor . 7

2.3 IdTracker . 8

2.4 DeepLabCut . 9

3 Detailed Problem Description 11

3.1 Problem Statement . 11

3.2 Challenges . 11

3.2.1 Natural environment . 12

3.2.2 Underwater images . 12

3.2.3 Moving camera . 13

3.2.4 Octopus . 14

3.3 Requirements . 14

4 Materials and Methods 17

4.1 Video Acquisition and Video Analysis . 17

4.1.1 Fieldwork Location . 17

4.1.2 Hardware tools for video acquisition 18

4.1.3 Hardware tools for video analysis 18

4.2 Tracking Tool Testing . 19

4.3 DeepLabCut based Pipeline . 19

xiii

CONTENTS

4.3.1 Ffmpeg . 20

4.3.2 Fiji . 20

4.3.3 Pipeline . 20

4.3.4 DLC Parameters . 21

4.3.5 Frame Labelling Strategies . 25

4.3.6 Human labelling error . 26

4.3.7 Validation . 27

4.3.8 Zoomed-in Tracking . 27

5 Results 29

5.1 Filmed Events . 29

5.2 Tracktor Results . 30

5.3 DeepLabCut Parameter Comparison . 31

5.3.1 Neural Network . 31

5.3.2 Global Scale . 31

5.3.3 Maximum Image Size . 32

5.3.4 Cropped Images . 33

5.3.5 P-Cutoff . 33

5.4 Results of Strategy 1 . 35

5.4.1 MartimPedras1 . 36

5.4.2 MartimCorais . 38

5.5 Results of Strategy 2 . 40

5.5.1 ZeSimao . 40

5.5.2 ZeSousa . 42

5.5.3 ZeManuel . 44

5.5.4 ZeMarco . 46

5.6 Results of Strategy 3 . 49

5.6.1 MartimPedras30 . 49

5.6.2 ZeSimao30 . 51

5.7 Two videos, one NN . 52

5.8 Results of The Other Potentials Usages . 54

5.8.1 MartimZoom . 54

5.8.2 ZeBrunoZoom . 56

6 Conclusions 59

6.1 Future Work . 60

References 61

Annexes 65

I Program used to extract random frames for validation 65

xiv

CONTENTS

II Validation Process 67

xv

List of Figures

2.1 Example of Open Vision Control following an object in video. 7

2.2 Example of tracktor following a fish in a noisy environment video. 8

2.3 Example of applying IdTracker on drosophila video. 9

3.1 Sterile Video Frame (left) vs. Non-sterile Video Frame (right). 12

3.2 Octopus occlusion due to a fish. 13

3.3 Octopus with different colours, shape and texture. 14

4.1 Stereocamera Rig used for dual acquisition of interspecies events in Eilat,

Israel and in El Qoseir, Egypt. 18

4.2 Adopted DLC pipeline . 20

5.1 ScreenShot of Tracktor running successfully 30

5.2 Comparison of Train and Test error of ResNet50 (left) and ResNet101 (right). 31

5.3 Comparison of Train and Test error of GS = 0.8 and MIS = 1000 (left) with

GS = 0.6 and MIS = 3200 (right). 32

5.4 Comparison of Train and Test error of MIS = 1000 and MIS = 3200 33

5.5 Comparison of Train and Test error of CROP = TRUE (left) and CROP = FALSE

(right) . 34

5.6 Comparison of Train and Test error and Train and Test error with p−cutoff = 0.1 34

5.7 Comparison of Train and Test error and Train and Test error with p−cutoff = 0.95 35

5.8 Comparison between manually labelled (+) and DLC labelled (•) in MartimPe-
dras1 frame. The detail is zoomed in on the right. 36

5.9 Train and Test error, Train and Test error with p−cutoff of MartimPedras1. . . 37

5.10 Comparison between manually labelled (+) and DLC labelled (•) in Martim-
Corais frame. 38

5.11 Train and Test error, Train and Test error with p−cutoff of MartimCorais. . . . 39

5.12 Comparison between manually labelled (+) and DLC labelled (•) in ZeSimao
frame. 41

5.13 Train and Test error, Train and Test error with p−cutoff of ZeSimao with Stratagy

2. 41

5.14 Comparison between manually labelled (+) and DLC labelled (•) in ZeSousa
frame. 43

xvii

List of Figures

5.15 Train and Test error, Train and Test error with p−cutoff of ZeSousa. 43

5.16 Comparison between manually labelled (+) and DLC labelled (•) in ZeManuel
frame. 45

5.17 Train and Test error, Train and Test error with p−cutoff of ZeManuel. 46

5.18 Comparison between manually labelled (+) and DLC labelled (•) in ZeMarco
frame. 47

5.19 Train and Test error, Train and Test error with p−cutoff of ZeMarco. 48

5.20 Train and Test error, Train and Test error with p−cutoff of MartimPedras30. . 50

5.21 Train and Test error, Train and Test error with p−cutoff of ZeSimao30. 51

5.22 Train and Test error, Train and Test error with p−cutoff of ZeTudo. 53

5.23 Comparison between manually labelled (+) and DLC labelled (•) in Martim-

Zoom frame. 54

5.24 Train and Test error, Train and Test error with p−cutoff of MartimZoom. . . . 55

5.25 Comparison between manually labelled (+) and DLC labelled (•) in ZeBruno-
Zoom frame. 57

5.26 Train and Test error, Train and Test error with p−cutoff of ZeBrunoZoom. . . 58

xviii

List of Tables

2.1 DLC parameters . 10

4.1 Summary of the different strategies of frame labelling. 26

4.2 Human Labelling Average Error in pixels. 26

5.1 Events and Corresponding MetaData. 29

5.2 Best values found for Tracktor parameters. 30

5.3 Standard Values for DLC Parameter Comparison. 31

5.4 Iteration 750000 of MartimPedras1 - Train, Test and Validation Error Summary 37

5.5 Iteration 1030000 of MartimCorais - Train, Test and Validation Error Summary 39

5.6 Iteration 800000 of ZeSimao - Train, Test and Validation Error Summary. . . 42

5.7 Iteration 800000 of ZeSousa - Train, Test and Validation Error Summary. . . . 44

5.8 Iteration 500000 of ZeManuel - Train, Test and Validation Error Summary. . . 45

5.9 Iteration 1030000 of ZeMarco - Train, Test and Validation Error Summary. . . 48

5.10 Iteration 1000000 of MartimPedras30 - Train, Test and Validation Error Sum-

mary. 50

5.11 Iteration 1030000 of ZeSimao30 - Train, Test and Validation Error Summary. 52

5.12 Iteration 1030000 of ZeTudo - Train, Test and Validation Error Summary . . 53

5.13 Iteration 850000 of MartimZoom - Train, Test and Validation Error Summary. 56

5.14 Iteration 950000 of ZeBrunoZoom - Train, Test and Validation Error Summary. 57

II.1 Validation process of MartimCorais in order to explicate the process of vali-

dation of all the videos . 68

xix

Acronyms

CO - Individuals that cross and overlap each other

DLC - DeepLabCut

DNN - Deep Neural NetWork

KLT - Kanade–Lucas–Tomasi feature trackers

NN - Neural NetWork

ResNet - Residual Neural NetWork

xxi

C
h
a
p
t
e
r

1
Introduction

1.1 Motivation

Octopus cyanea is an octopus species whose camouflage skills have evolved in the last

270 million years [2] towards an effective hunting technique, and to avoid being spotted

and tracked by predators. Octopuses are known to change colour, shape and texture

depending on the environmental conditions and its current situation (alerting, threat

and feeding) [1]. Although these animals are known to be solitary animals, they are also

known to cooperate with fish when hunting. Some behaviours that may be observed in

cooperative hunting are the Web Over, the Crawl [10], the Jump, and the Punch (a newly

observed behaviour, identified during the course of this work1). These behaviours notably

influence the colour, shape and texture of the octopus, so we need to have them in mind

when analysing images and videos.

To the extent of our knowledge, there are no open-source software tools that are able

to track octopuses in its natural habitat. Most literature that targets octopuses and their

behaviour is based on manual video interpretation and measurement. The main problem

with this method is that manual video analysis is slow, subjective, and time-consuming.

Such methods do not provide a reliable way of registration and analysis of data. More so,

if the analysis depends on location of landmarks or trajectory of subjects in unstructured

surroundings.

Moreover, the conditions necessary to observe a collective behaviour between an oc-

topus and fish are very hard to replicate in the controlled environment of an aquarium.

To be able to capture such behaviour events in video, it was mandatory to work in the

natural environment, using scuba equipment and with a moving camera setup.

Most tracking systems have been designed to work in a sterile environment where

1https://youtu.be/088a8c5JJdE

1

CHAPTER 1. INTRODUCTION

there is a plain and bright background and the animal to be tracked is dark and of ellipti-

cal shape [14]. In this natural scenario, however, many of the features that are commonly

used to track objects through computer vision such as colour and shape are highly vari-

able.

By providing a semi-automated tool that speeds up this process, and automatically

tracks octopuses in a three-dimensional environment, we allow for the faster and auto-

matic reconstruction of trajectories and analysis of behaviours. The use of tools such

as the one described in this document will help researchers studying marine animals

behaviour in a natural context, without invasive techniques and where no tracking tech-

nology was ever applied.

1.2 Objectives

The main goal of this project is to use computer vision to track an octopus (Octopus cyanea)

in its natural environment. The project where this work is contained aims to explore the

open problem of developing a semi-automated tracking system that improves behaviour

analysis work to be more effective and timely. This is embodied in a system that automat-

ically reconstructs trajectories using a tracking system for both octopus and fish, which

in turn can then be used as input for an analysis on collective dynamics, cooperative

behaviour. We envision a fully functional system whose input is a three-dimensional un-

derwater video and whose output is an ethogram representing the cooperative behaviour

between octopus and fish.

This dissertation focuses on the initial part of the complete analysis, a successful usage

pipeline and parametrisation of a neural network that automatically tracks an octopus in

a variety of situations in several minutes of video, requiring only the manual labelling of

a small part of its frames.

It is the goal of this work to identify existing tools, select the most appropriate ones,

and parametrize and adapt one to be able to track the movements of an octopus, from

recordings of stereo underwater camera videos.

As a result we will provide a tool (or a configuration setting for an existing tool)

that will help researchers in the area of underwater behaviour, in particular, of O. cyanea
behaviour. As a by-product of this work, we hope to provide a robust base for the future

development of the animal behaviour analysis systems, in particular for octopus species.

1.3 Contributions

By providing our results to the community (raw and labelled data, tests, and results) we

hope to contribute with material beneficial to communities both in the computer science

to improve on video and image processing and analysis algorithms, and to the biology

community with a pipeline of software tools that contains both a method and a successful

starter configuration.

2

1.4. STRUCTURE OF THE DISSERTATION

In summary, our contributions consist on:

• A benchmark for tracking tools, in the form of raw and labelled videos, that can be

used in other related studies on tracking in unstructured environments.

• A pipeline of video and image processing and analysis tools consisting on the steps

and tools used during the process. The configuration of all the tool parameters used

and their refinement to analyse underwater videos obtained in similar conditions

to our videos.

• Tracking information that can be used in 3D reconstruction algorithms in the sub-

sequent task of identifying behaviours based on the movement of a single animals

or groups of animals.

1.4 Structure of the Dissertation

This thesis is divided into six chapters. In this chapter (the first one) we motivate the

work and describe the objectives and the contributions of the project.

Chapter 2 describes the State of the Art on tracking systems for animals.

In chapter 3 we present the main problems and challenges to be overcome or solved

in order to reach the objectives laid out in section 1.2.

In chapter 4 we present the approach to the identified problem, we also present the

analysis performed on the parameters and respective justification for its use. We also

present the pipeline, the validation of the whole process that we use and the complemen-

tary tools that were used in the course of this project.

The chapter 5 contains an analysis and discussion of the obtained results. We present

the different tests that were performed in order to choose the best parameters to the video

analysis. This chapter also presents the results of the tracking system.

In chapter 6 we present the main conclusions of this work, as well as the future work

that is enabled by this project.

3

C
h
a
p
t
e
r

2
State of the Art

Video tracking systems have several usages apart from tracking animals for research

reasons. Common usages go from surveillance systems based on cameras, to video games

based on motion capture, to systems at the core of self-driving cars. The use of video

tracking systems goes back to 1980 with simple Kanade–Lucas–Tomasi feature trackers

(KLT). KLT trackers [4] simply apply a feature extraction algorithm to images and then

follow those features around on every frame of a video. When compared with current

tracking technology, KLT trackets are very simple. Recent approaches are usually based in

DNN, which represent a more powerful and expressive response to the tracking challenge.

In the recent years, numerous benchmarks have been developed with the aim of

helping visual tracking research, but it is yet very challenging to compare and evaluate

tracking systems because each system is very specific to a certain type of videos. Some

approaches may be well suited for objects that change colour, but cannot cope with objects

that change shape, and vice-versa. Tracking systems that focus on objects that do not

change form like systems that track cars will not be able to successfully track an object

that changes form constantly like the octopus. Having this in mind, we have analysed

tracking systems that are specifically aimed to animal video tracking. However, many

of the existing tracking systems cannot be used in the area of video tracking animals in

the wild, due to the requirements imposed in the surrounding environment. Our setting,

composed by underwater reef images, is particularly challenging. It is composed by an

unstructured background (sand, rocks or reef wall), the octopus as the subject of interest,

and fish that circle the octopus and interfere with the detection process.

In order to decide which base system would be more helpful to extract octopuses’

trajectories in their natural habitat from field videos, we analysed some existing open-

source tracking solutions. We next present all the systems that were tested and the one

that we actually used in this project.

5

CHAPTER 2. STATE OF THE ART

We start by describing two representative examples of tracking systems that use colour

transformations and feature extraction to convert coloured images to black and white

images and detecting thresholds for certain levels. These trackers then follow the chosen

black or white areas that correspond to the selected feature in a video. Open Vision

Control [21] and Trackor [23] are the chosen examples for this kind of tracking algorithms.

Other tracking systems use Neural Networks (NN) and Deep Neural Networks (DNN)

at their core to distinguish the animals from their background. In this category we dis-

tinguish IdTracker [14] and DeepLabCut(DLC) [13]. All solutions presented below are

open-source and are developed in python, thus allowing us to modify and adapt their

source code to our advantage. In our case, we needed to change some initial and default

configurations that were hardcoded in the source program.

2.1 Open Vision Control

Open Vision Control was initially developed to be an auxiliary tool for diverse university

projects that have the need for a tracking solution [21]. The project was developed to be a

general tracking software with various features, instead of a specific tracking program. So

it would be possible to adapt it and allow it to be used in several controls and automation.

However, the problem is that for each project it was needed a different control code,

so this platform allows the user to write his code and use the platform as a kind of sensor

that can be integrated with the users’ python code. In this way, every project can use the

same platform changing only the control code to solve the specific problem. The software

itself is open-source, which enables the user to modify and improve the source code. The

system was designed to allow to follow movements, objects, colours, to measure distances

and to recognize people. It has a useful tool that can follow objects of choice, the fast and

slowest objects in the video, the biggest and the smallest objects or even a specific colour

of choice.

To make the software more robust, it uses Gaussian filters as size-based objects filters

and region of interest filters. We give some examples below in order to illustrate this

program’s capabilities.

• Detect movements on a room;

• Servo motor control for automated turret type application;

• Follow an object in a video;

• Control the mouse cursor through hand movement.

The feature that we found more interesting in Open Vision Control was the capability

to follow a designated object as showed1 in Figure 2.1.

1https://www.youtube.com/watch?v=ECa4lUD-WFs

6

https://www.youtube.com/watch?v=ECa4lUD-WFs

2.2. TRACKTOR

Figure 2.1: Example of Open Vision Control following an object in video.

On the other hand, the disadvantage that we found in this program was that it is

relatively old since the last update was in 2011 and the last comment about the program

in 2012, which means it is not supported by today’s technologies. If other solution hadn’t

appeared and we decide to improve this program, it would be necessary to know if there

is a modern version of the same tool, or we would have to adapt the program to today’s

technologies.

2.2 Tracktor

The Tracktor software is an object tracking system based on OpenCV code [23]. The

software as presented can be used to perform single object tracking under noisy environ-

ments as showed in Figure 5.1 or multi-object tracking under uniform environments. It is

able to keep individual identities while performing multi-objects tracking. The software

does not have a graphical user interface, and all its functions are accessible through a

command line interface. It has four key parameters whose values can be adjusted change

according to the video that is being analysed. These parameters are:

• Block size→ Determines the size of the neighbourhood;

• Offset→ Determines where to set the threshold relative to the mean of the neigh-

bourhood;

• Minimum area→ Is the minimum area possible that the subject can occupy in any

frame of the video;

• Maximum area→ Is the maximum area possible that the subject can occupy in any

frame of the video.

An advantage of this software is that the code is already prepared to take into account

the noise of the environment. Also, although it is not able to track the octopus with all

7

CHAPTER 2. STATE OF THE ART

Figure 2.2: Example of tracktor following a fish in a noisy environment video.

the changes of colour and shape itself, with the right parameters, the program can follow

the octopus for some moments.

Its disadvantages are that the problem of finding the right parameter values is not

solved by an systematic and logical method but by successive trial and error manual

processes.

2.3 IdTracker

This program [14] is used to follow schools of up to one hundred individuals. It has the

particularity of identifying individuals through visual characteristics instead of just keep-

ing track of each one individually. An example of the software is presented in Figure 2.3

where 72 drosophila are individually marked and tracked over a period of time2.

This difference makes this program much more precise over big periods of time, when

compared to the ones that only keep track of regions of interest. Most of the times the

program can perform at an accuracy of over 99.9%. It is an advantage when you are

trying to track many individuals that cross and overlap each other (CO). To achieve this,

the program uses two different DNNs.

The first DNN is used to scan the video frame by frame and to determine if the "black

dots" are individuals or CO, it uses the elliptical form of the individuals to distinguish

between separated individuals and CO. The other DNN is used after the first one to

identify the visual features of each individual, and it uses the training set to attribute

an identification to all the objects. Then, the trained DNN is applied to track all the

individuals identified by the first DNN.

2https://www.youtube.com/watch?v=_M9xl4jBzVQ

8

https://www.youtube.com/watch?v=_M9xl4jBzVQ

2.4. DEEPLABCUT

Figure 2.3: Example of applying IdTracker on drosophila video.

2.4 DeepLabCut

DeepLabCut (DLC) [13] is an open-source toolbox that allows the user to extract poses of

an animal without the use of physical markers on the individuals.

DLC was developed based on an algorithm called DeeperCut [7], one of the best

algorithms for human pose estimation benchmark in our days. Particularly DLC uses

DNN and Residual Neural Networks (ResNets) with both 50 and 101 layers, as well as

deconvolutional layers as developed in DeeperCut. Some functions of DeeperCut were

not considered to turn the process faster. Other functions were implemented so that the

reliability was not affected.

To track humans there are better pose-estimation algorithms than DLC, such as Deep-

erCut [7] or ArtTrack [8]. But DLC stands out from the other pose-estimation of humans

when we add features that are apart from the pre-train body parts. For this reason, DLC

is the best and first option to pose-estimation of non-human animals. Recently another

deep learning package called LEAP was described. LEAP also has good results but re-

quire a huge training data set compared to DLC to achieve the same results. Using the

same training conditions LEAP relative error is documented to have 4 times bigger than

DLC error [13]. In terms of inference speed, LEAP may be faster due to the difference of

layers of the network compared with DLC. Apart from this, both can achieve real-time

processing. The advantages of DLC compared with all the other programs presented

above are the following:

1. The existing documentation guides the user through the whole process step-by-step;

2. It has been tested to a range of animals and diverse background

9

CHAPTER 2. STATE OF THE ART

3. It has a minimum manual cost to achieve human-level accuracy;

4. There is no need for physical markers on the object;

5. It can be easily adapted to analyse behaviours across species;

6. It is open-source and free.

One of the major improvements of DLC compared with other non-human animal

tracking programs (i.e IdTracker), is that DLC can handle an entire variety of distinct

backgrounds. This allows the researcher to focus on their scientific questions, rather than

constraints imposed by the tracking system. Another advantage of DLC is not having the

demand for images of fixed frame size, the training process rescales the images to increase

the performance of the algorithm. DLC also don’t have any special camera requirement.

Any commercial or scientific camera, colour or grey-scale, can capture suitable images to

feed the algorithm.

DLC also does not need a supercomputer to get results. Any GPU with 8GB memory

like NVIDIA GeForce 1080 is enough.

The software is robust so that it do not require any special camera or any apriori
camera definitions require. If the features to track are visible to manual labelling, DLC

should be able to label the body parts as well.

The installation of DLC is also very easy since they provide an Anaconda environ-

ment3 with all the dependencies needed already instaled. After the installation of the

packages and the environment, we can follow a step-by-step procedure, which was finaly

presented in a pipeline described in chapter 4.

We need to configure several parameters that will influence the training step. The

parameters that we need to configure are presented in Table 2.1. The effects of these

parameters are explained in detail in subsection 4.3.4.

Table 2.1: DLC parameters

display_iters save_iters global_scale
scale_jitter_lo scale_jitter_up pos_dist_thresh

mirror cropping cropratio

3https://github.com/AlexEMG/DeepLabCut/blob/master/conda-environments/README.md

10

C
h
a
p
t
e
r

3
Detailed Problem Description

3.1 Problem Statement

The class Cephalopoda has been targeted by scientific research for more than one hun-

dred years [5], both in controlled environments and in its natural habitat. This class

presents several interesting features, from their complex behaviour to their camouflage

techniques. The focus of this work is the species O. cyanea and our problem statement

can be summarised in the following problem question:

Is it possible to improve research methods involved in analysing the behaviour of O. cyanea,
by tracking the behaviour of an octopus in its natural environment, extracting accurate infor-
mation about its position, in a three-dimensional video in a semi-automated way, with low
labelling effort?

The purpose of this chapter is to highlight all the challenges that are involved in an-

swering the research question above. The outcome of this work is a system that aims at

making the data analysis phase of experimentation an easier, faster, and more objective

and precise process. From a technical point of view, we build on available open-source

software tools, and provide a software pipeline, comprising tool combination and con-

figuration data and respective data flow. By using these tools one is able to follow an, so

far, ’untraceable animal’. This also constitutes a first step to track animals that naturally

evolved to trick with camouflage the natural visual tracking processes, such as octopuses.

3.2 Challenges

The implementation of this project is itself a big challenge due to the novelty of the

domain of application. In this section we divide it into smaller challenges that can be

addressed separately, and whose (sub)solutions compose the final result.

11

CHAPTER 3. DETAILED PROBLEM DESCRIPTION

The depicted challenges comprise data acquisition, capturing underwater images

suitable for treatment. There are several factors that must be handled in this regard. The

unstructured nature of the environment, the limited visibility of underwater images, the

fact that we have a moving camera, and the octopus’ behaviour.

3.2.1 Natural environment

Working in a natural environment is intricately difficult. The videos produced in the

natural environment are not sterile and predictable like the videos produced in laboratory

aquariums. Sterile videos have little noise, and have, in general, a white and well lit

background with dark objects moving and no unpredictable obstacles.

On the other hand, non-sterile videos have high levels of noise and unpredictable

obstacles. These is the kind of video we propose to analyse. For illustration, Figure 3.1

shows a frame of a sterile video1 (left) and a frame of non-sterile video (right) of one of

our samples. When examined, an octopus can be seen in the middle but the resemblance

of the textures between rock and animal are evident.

Figure 3.1: Sterile Video Frame (left) vs. Non-sterile Video Frame (right).

Our input videos are filmed in the natural environment so, we deal with a very signifi-

cant amount of noise, Figure 3.1 (right). Noise can be caused by corals in the background,

the sandy seabed, and objects/obstacles in the front or behind the octopus, such as fish

moving and rocks. Our samples are therefore classified as non-sterile.

Figure 3.2 shows a high noise situation, where the octopus is barely visible, and for a

moment there is the occlusion of the octopus by a fish passing between the camera and

the octopus. Our system needs to be able to distinguish the octopus from the rest of the

environment and needs to be capable of spotting the octopus after an occlusion.

3.2.2 Underwater images

Underwater images is very limited when compared to their surface equivalents. Since

water absorbs different wavelengths of light depending on depth [6], the same object will
1Image from DLC examples, URL: https://raw.githubusercontent.com/AlexEMG/DeepLabCut/

master/examples/openfield-Pranav-2018-10-30/labeled-data/m4s1/img0014.png

12

https://raw.githubusercontent.com/AlexEMG/DeepLabCut/master/examples/openfield-Pranav-2018-10-30/labeled-data/m4s1/img0014.png
https://raw.githubusercontent.com/AlexEMG/DeepLabCut/master/examples/openfield-Pranav-2018-10-30/labeled-data/m4s1/img0014.png

3.2. CHALLENGES

Figure 3.2: Octopus occlusion due to a fish.

have different apparent colours at different depths. This makes it even more difficult to

track by an automatic system. The colour red is the first colour to be absorbed, followed

by orange, yellow, in order according to the light spectrum. The depths where primary

colours disappear are shown in the following list:

1. RED→ 4.5 meters;

2. ORANGE→ 7.5 meters;

3. YELLOW→ 10 to 14 meters;

4. GREEN→ 21 to 23 meters.

Additionally, we must take into account that the light reflected from a certain object

has to travel the water mass correspondent to the object’s depth, plus the water mass that

separates the camera from the object, which acts as a further limitation. In essence, the

closer to the object the observer is, the more colourful the object will appear.

This also indicates that the deeper the video, the harder it will be for the NN to use

colour information in the training method.

3.2.3 Moving camera

Octopuses are wild animals and don’t stay in a specific spot for a long time. Taking this

into account, the hunt episodes are not stationary, so we adopted a search-and-follow

procedure to capture these cooperative hunting events. In contrast to the stationary

record, we will not be able to control on-line the movement of the camera. The diver

who is filming is aware that he should have the octopus close and in the centre of the

screen to help the tracking software. Nevertheless, this is not always possible because of

octopus behaviours that can not be predicted beforehand. Some times the octopus may

13

CHAPTER 3. DETAILED PROBLEM DESCRIPTION

move faster that the diver and can get too far to get a good image, or the octopus can hide

behind a rock or coral faster than the diver can go around the same rock. This is one of

the reasons that some videos are easier than others to analyse.

3.2.4 Octopus

Finally, the octopus itself is a challenge. Since it is being filmed in the wild we cannot

control or predict his movements. Second, and most importantly, it is an animal that

displays huge degrees of body shape flexibility, being able to pass through 17 millimetres

holes [24] in extreme cases of whole body modification. Moreover, it can also change

his texture and body colour due to chromatophores cells [12] that cover all the body. In

other words, it can change all the visual features that common tracking systems use. In

Figure 3.3 we have two octopus, the one on the left is presenting light spotted colours,

and spiny texture, the one on the right is presenting a dark brown colour without white

spots and smooth texture. This is just a example of the variation that the octopus skin

can have, other combinations of these features are also possible.

In addition to this, the octopus cannot be physically marked. The skin is one of the

sensory mechanisms of the octopus and it is covered with nerve cells, making impossible

to mark the octopus without compromising his natural behaviour.

Figure 3.3: Octopus with different colours, shape and texture.

3.3 Requirements

The main requirement of this work is to have a tracking solution that works underwater

and that can track the species O. cyanea in his natural environment. This solution aims

to help research on decision-making, communication, and cognition during inter-specific

collaborative hunting between the octopus and multiple fish species.

With this in mind, the solution for the problem described does not need to work

on-line and has no real-time concern, it is only evaluated by its accuracy.

14

3.3. REQUIREMENTS

Other requirements are based on the video input. The software needs to be able to

work with the videos from the stereo cameras so that after there is the possibility of

overlapping the tracks with the background. Some times, the octopus is far, occluded, or

change shape and colour, the tracking system needs to satisfy these requirements.

15

C
h
a
p
t
e
r

4
Materials and Methods

In this chapter we present the methodology followed to address the problem enunciated

in chapter 3. The first steps taken in this process targeted the exploring of existing

tracking systems, focusing on the ones that were able to analyse videos from non-sterile

environments, and the ones that use NN or DNN for tracking. These particular systems

were studied with bigger detail because they analyse videos with similar features to what

can be found in an underwater video.

4.1 Video Acquisition and Video Analysis

The first benchmark videos used in this work were collected images on prior fieldwork

performed by Eduardo Sampaio and Simon Gingins at Eliat, Israel. All other images were

produced in fieldwork during the course of this dissertation work together with Eduardo

Sampaio. In this section, we describe the location, hardware of this fieldwork period.

4.1.1 Fieldwork Location

The core fieldwork for this dissertation was performed in the Roots Red Sea house reef,

El Qoseir, Egypt, where we collected more hours of video of the collective behaviour

between the octopus and the fish. This location was chosen due to is close connection

to the Open Ocean Science Centre1, that provided us with a proper workspace during the

expedition. Additionally, this location provides diverse diving spots which allowed us to

film in different backgrounds, leading to a heterogeneous collection of videos2.

1https://openoceanproject.org
2In terms of complexity we divided the collected videos in two categories: the simple ones, that have

the background all made of the same material and with the same colours (e.g. Rocks or Sand background)
and the complex ones, that are the ones that the background is made of different materials and colours (e.g.
Coral background).

17

CHAPTER 4. MATERIALS AND METHODS

4.1.2 Hardware tools for video acquisition

To be able to film three-dimensional images, two full-frame Sony Alpha 7SII with Zeiss

Batis f/2 25mm lenses were mounted on an aluminium structure as a stereo camera setup

(hereafter “Stereocamera Rig”), see Figure 4.1.

This approach allowed us to film at a mean distance of approximately 5 meters while

collecting high-resolution videos. Both cameras were synchronized by sound. To film the

close up videos we used one full-frame Sony Alpha 7SII with Zeiss Batis f/4 24/70mm

(hereafter “Zoom Camera”). This camera was also synchronized by sound with the other

two cameras and allowed us to follow the octopus movements with much more detail

than the others.

Figure 4.1: Stereocamera Rig used for dual acquisition of interspecies events in Eilat,
Israel and in El Qoseir, Egypt.

4.1.3 Hardware tools for video analysis

We start by using Google Colab but this solution had several drawbacks. It only allows

a low-quality images, global_scale needs to be 0.4 or low to work. Google Colab would

unpredictably stop the train several times and the time needed to run the 1030000 it-

erations was of 10 days non-stop, because of the unpredictable Colab stops we usually

needed 13 days to run the whole train.

We then used an HP Z8 G4 Workstation with 32 GB of RAM, installed with Microsoft

Windows 10 Pro for Workstations. The Workstation processor is an Intel(R) Xeon(R) Gold

18

4.2. TRACKING TOOL TESTING

5120 CPU @ 2.20GHz, 2195 Mhz with 14 Core(s) and 28 Logical Processor(s). We also

integrate with NVIDIA TITAN V. It has the power of 12 GB HBM2 memory and 640

Tensor Cores, delivering 110 teraflops of performance. Plus, it features Volta-optimized

NVIDIA CUDA for maximum results.

This configuration allows to run the train function non-stop in approximately 5 days.

4.2 Tracking Tool Testing

The preliminary literature research indicated that the Tracktor [23], an adaptive thresh-

old based tool, was probably the most suitable tool for our setting. Tracktor allows the

analysis of videos based on a core configuration of four parameters. The first two, named

min_area and max_area, define the area that an object to be tracked can have in the image.

The remaining two are named block size and offset. The block size parameter determines

the neighbourhood size and the offset determines where to set the threshold relative to the

neighbourhood mean. These two parameters combined control the adaptive threshold

for the grey scale obtained.

Finding the right combination of values for these parameters is a trial and error pro-

cess. We started by using a video from the Zoom Camera to test Tracktor and by trying

out several ranges of parameter values. We measured the area occupied by the octopus

in some frames of the video and then we defined the min_area and max_area according to

that. The block size and the offset were based all in trial and error.

These experiments showed to no satisfactory results, shown in chapter 5, which led

to a renewed effort of looking for an alternative approach. The elected alternative is DLC

which is described in the subsequent sections.

4.3 DeepLabCut based Pipeline

Our alternative, and definitive approach, is based on DLC, a DNN based tool. To perform

an evaluation of this tool, we followed the prescribed processing pipeline and protocol

made available by the authors in the tool website [13]. We used a selected part of a

video, filmed with the Zoom Camera, which was also used to test Tracktor, as referred

above. The concrete steps taken were the ones referred in section 2.4. Our work then

proceeded to build a pipeline (tools and parameters) suitable to our domain. A deeper

understanding of the labelling strategies and of the parameters of DLC are next presented

in subsection 4.3.5 and in subsection 4.3.4.

When we understood which parameters we needed to change and their meaningful

range of values, we started to systematically applying the analysis to the videos from the

Stereocamera Rig to train the NN instead of the videos from the Zoom Camera, primarily

used for tool assessment. These images are used in the end of the process again to obtain

finer-grained results (subsection 4.3.8).

In order to preprocess videos and images we used to auxiliary tools, Ffmpeg and Fiji.

19

CHAPTER 4. MATERIALS AND METHODS

4.3.1 Ffmpeg

’FFmpeg is the leading multimedia framework, able to decode, encode, transcode, mux,

demux, stream, filter and play pretty much anything that humans and machines have

created.’ [3] We used FFmpeg to extract the frames that we need from the videos with the

necessary rate of images per second.

After a quick installation, we can choose how many frames we want per second and

the quality of the image obtained.

We use this program to extract the frames for the data set and to extract the frames

for the validation.

For the data set we use the following command:

1 ffmpeg -i input.mp4 -qscale:v 1 -r f/s img%03d.jpg

Being f/s the number of frames extracted per second and img%03d.jpg the formating

string for producing the output file names.

For the validation, we wrote a python script that uses FFmpeg to randomly extract

the number of frames we desire from both cameras. This script is available in Annex I

4.3.2 Fiji

We use Fiji [20] to label the body parts. This program has very good usability and allows

us to select which body part we want to label and label it in all frames. This feature

allows us to label faster since we do not need to move the zoom window a lot. Labelling

an octopus that is far away in the frames is not an easy task so this kind of help reduce

significantly the time spent labelling each body part. In the end, we export the labels and

format into the DLC format and we can continue the training process.

4.3.3 Pipeline

ffmpeg Fiji DLC Train DLC Evaluate DLC Analyse Video
Validation

Extracted video
framesVideo files Labelled video

frames Trained NN Train & Test
 Error analysis

Labelled video
Body parts data
Confidence data

Validation Error

Figure 4.2: Adopted DLC pipeline

The adopted DLC pipeline follows the steps in Figure 4.2 that starts by using tools

like ffmpeg and Fiji to extract the video frames from the input videos and to manually

label selected frames as the source data set. Then, different DLC functions are used

to train a neural network, analyse the results, and join analysis and original video in a

single output. The final output of our pipeline is a labelled video where all tracked body

20

4.3. DEEPLABCUT BASED PIPELINE

parts are graphically and analytically identified. The numerical data given, as output,

identifies the featured body parts (their location in the picture) and the confidence level

of the identification.

The first step of the whole process is to select the video files to be analysed and extract

video frames from it using ffmpeg. Extraction of video frames may follow different

strategies, which are described in subsection 4.3.5. The extraction process is detailed in

subsection 4.3.1.

The second step is the manual labelling of frames. For this task, we choose to use tool

Fiji, described in subsection 4.3.2. The output of this stage is a set of manually labelled

video frames. This step also includes the visual verification of the labelling process using

the appropriate DLC function. These tool choices were made due to the usability of both

programs. In the case of Fiji, it allows us to label each animal body part in all the frames,

individually, and DLC default functionality require us to label all the body parts in each

frame at once.

The third step of the pipeline is to create the training dataset to feed to the training

functionality of DLC. This step divides the dataset into train and test dataset with the

percentage defined in the global configuration file. The output of this stage are the

iteration snapshots of the trained NN.

The fourth step is the evaluation of the NN. It uses the train and test data sets to

measure the train and test error, and the train and test error with p− cutoff . We run this

step for all the snapshots saved in the previous step. In the end, we will analyse the values

for train and test error and draw the curve of the error during the train process.

The fifth step is the video analysis and creation of a labelled video. In this step, we

choose the snapshot with better results with train and test data sets and analyse the whole

video with the NN trained with that snapshot weights. The result of this step is a file with

the X, Y coordinates and the likelihood value of each body part in each frame. With this

file, we create a labelled video that allows the visual analysis of the success of the NN.

The sixth and final step is the validation of the labelling accuracy of the NN by com-

paring unused labelled images and the DLC results (body part data). The output is the

validation error, that certifies the final output; a completely labelled video and the body

part data produced in the fifth step.

An important part of the pipeline are the configuration files that specify the whole

process. The set of parameters and corresponding values are detailed in the subsequent

sections below.

4.3.4 DLC Parameters

In this section we discuss the fundamental parameters of DLC configuration. As expected,

there are parameters with higher impact on the results than others. The challenge here

is to obtain a suitable combination of values for such parameters that better performs in

the domain in hand.

21

CHAPTER 4. MATERIALS AND METHODS

4.3.4.1 Neural Network

DLC uses multiple types of neural networks. It uses DNNs, ResNets, and deconvolutional

layers as initially developed in DeeperCut [7]. The initial DLC configuration is targeted

to identify bodyparts in video frames, the available network configuration lets us choose

between alternative ResNet configurations. DLC offers the possibility to choose between

pre-weighted ResNets with 50 or 101 layers. It also allows for reusing already trained

networks. We need to set the parameters net_type and init_weights (a file with a weighted

network and the given layout). We tested both layouts available and decided to use

ResNet 50 in most of our training and analysis work. The results supporting this decision

are shown in subsection 5.3.1.

4.3.4.2 Global Scale - GS

The parameter global_scale defines a scale factor applied to the images that are fed to the

NN. The values assigned to this parameter range between 0 and 1 (the default value for

this parameter is 0.8). This basically defines the resolution of the images being analysed,

the higher the value the higher the image size, the lower value the faster the NN. This

parameter allows us to compromise between resource usage (mainly used memory) and

the resolution of the input.

This parameter also allows to address different kinds of images fed to the NN. If, on

the one hand, images fed have low-resolution this parameter needs to be higher. On the

other hand, when using high-resolution images this parameter may be slightly lower, or

needs to be lower because of resource exhaustion.

Since we are using 4K videos3, we are dealing with images with very high level of

detail, therefore, even if we set this parameter to 0.33(3) we still have HD videos4. As

recommended by the authors of DLC, we try to maximise value of this parameter in order

to have the best result possible.

We tested the differences in the results of training the NN with this parameter set to

values 0.8, 0.7 and 0.6. Based on the results, shown in subsection 5.3.2, we decided to use

the value 0.6 on all our videos.

4.3.4.3 Data Augmentation

DLC uses data augmentation methods by randomly varying the scale of images, and also

randomly mirroring and cropping them.

The resolution of the images fed to the NN is defined by the global scale parameter

above. However, on each iteration, the actual scale used on the images is changed ac-

cording to parameters scale_jitter_lo and scale_jitter_up. The training function scales the

images by the factor global_scale randomly modified by a factor between the values of

the two parameters. The default values for these parameters are 0.5 and 1.25 respectively.

3frames with 4096× 2160 pixels.
4frames with 720× 1280 pixels

22

4.3. DEEPLABCUT BASED PIPELINE

To configure the mirroring behaviour, we have parameter mirror, which is a boolean

parameter that allows DLC to invert (or not) the symmetry of images in the vertical axes.

In our case, the focus of the tracking is an octopus, that itself is symmetric around the

vertical axis. So, in theory, we should set this parameter to TRUE. However, we need to

remember that the camera and the octopus are moving during the video in all directions.

So, we already have a high level of symmetry of the octopus included in the training sets.

We also identified left-hand-side and right-hand-side features (eyes) in some videos. So,

we wanted to avoid interference in those results that may be introduced by this process.

So, we set this parameter to FALSE in all our samples.

The boolean parameter crop defines the application of a cropping mechanism per-

formed during the training, and the associated and cropratio parameter defines the size

ratio of cropped images. We can also define the boundaries of the crop with the param-

eters leftwidth, rightwidth, bottomheight, topheight, and the parameter minsize will deter-

mine the minimum size of the cropped image. The images will be randomly cropped

within these boundaries.

In our trials we tested the NN with parameter cropping for both TRUE and FALSE values.

After this test, we determined that it had a good effect on the results, and for all the

analysis therefore we set this parameter to TRUE.

4.3.4.4 Maximum Image Size - MIS

During the data augmentation phase, the size of the images is randomly changed. The

max_input_size parameter is used to filter down the number of images fed to the NN, The

square of the parameter max_input_size defines the maximum area that a frame can have.

If a frame occupies more area than this parameter, the image will be discarded in this

iteration.

The default value for this image is 1000, which is enough to accept HD images of

1280 × 7205. Since we are using 4K images, whose resolution is 4096 × 2160, the area

considered was always bigger than the default parameter value6. For our experiments

we needed to consider an increased value of 32007. In combination with the global scale

set to 0.6 we guarantee that the jitter process stays within the bounds and all images are

accepted.

4.3.4.5 Iterations

We use the parameter display_iters to check if the training is running at the normal rate,

between 2 and 5 iterations per second. At first, this parameter was set to 1, meaning

that at every iteration the iteration number of the NN was printed on the command line

console. When we were running sequentially all the videos we set this parameter to 1000

since we trust that the training process was occurring without errors.

51000× 1000 = 1000000 > 921× 600 = 1280× 720
61000 ∗ 1000 = 1000000 < 8847360 = 4096× 2160
73200× 3200 = 10240000 > 8847360 = 4096× 2160

23

CHAPTER 4. MATERIALS AND METHODS

We use the parameter save_iters to set the period of iterations in which we save the

weights of the NN to a separate file, called snapshots. Allowing one to restart training at

any saved point.

In some cases, we set this value to 50000, since we are running 1030000 iteration we

end up with 21 snapshots of that NN to evaluate. In this way, we can observe and analyse

in detail the training progress, for example analyse if there are local minimums or if there

are any strange behaviour in the training.

However in the most of our cases, we set this parameter to 200000, with 6 intermediate

snapshots to evaluate and choose which is the best snapshot to analyse the videos later.

4.3.4.6 Distance Threshold - DT

The parameter pos_dist_thresh defines the radius of the distance threshold, in pixels. This

threshold determines if the training samples are considered positive for the detector or

discarded.

If this parameter is set too small, too few images would be accepted for training, if the

value is set too high, too much error (noise) would pass into the detector phase.

The discussion about how to get to this value is presented in [11] and we choose to

accept this value based on that.

4.3.4.7 Likelihood Threshold - p-cutoff

During the training process, for each frame and for each body part, the NN produces 3

values. The X and Y values and the likelihood of the point corresponding to that body

part (ranging from 0 to 1).

The likelihood value is then compared to the parameter p-cutoff, which defines the

likelihood threshold. It helps to distinguish the uncertain body parts from the more likely

ones.

In this way, we obtain a NN where the uncertain body parts can be put aside and only

considered the more likely ones to construct the labelled video.

The default value for the parameter p− cutoff is 0.1, which means that all frames with

a likelihood bellow 0.1 are discarded.

The accepted error in each area is different: some cases, the task may be so difficult

than 0.1 of error or higher is accepted and in others, errors bigger than 0.1 may be too

high.

In the scientific community, there is no written consensus about what is an acceptable

error value. In general an acceptable error rate is 0.05. This means that likelihood needed

in our case would be 0.95.

DLC set the default of this value to 0.1 and this lack of consensus and big differences

between concrete cases, lead us to compare the results of both likelihood values.

24

4.3. DEEPLABCUT BASED PIPELINE

4.3.5 Frame Labelling Strategies

Labelling is an activity that identifies featured points in an image, in our case the feature

were octopus and fish body parts. We identified 3 distinguished points on each eye, 3

distinguished points on the siphon8, 4 distinguished points on the mantel and body, tail

and eye points on some fish cooperating with the octopus.

The labelling process starts by selecting a small data set from the huge amount of

video frames present in a full video to train the NN. In this section, we present several

strategies that we use in our work. Strategies vary in terms of frequency of frames per

second, in terms of the number of frames, and on the length of the video analysed. For

each strategy, we reduce the number of frames manually labelled per minute of video,

therefore reducing the overall time consumed per video, up to the point where results are

still satisfactory. The different approaches are systematically presented in the Table 4.1

and the results of this different approaches are presented in chapter 5.

4.3.5.1 Strategy 1

At the beginning of the training, we started with small videos of 2 minutes to understand

the performance of the NN. These 2 minutes are a selected part of the original videos

that we found more suitable for the NN. We selected these 2 minutes because there were

little or no moments where the octopus disappears or gets in low-light places. For these

2 minutes of video, we have extracted and labelled 3 frames per second, every second

during the whole video. This leads in terms of the size of the data-set that we start to train

the NN with approximately 750 manually labelled frames, 375 from each camera. In this

way, we gather a very robust dataset with almost all poses, colourations and textures that

the octopus assume during those videos.

4.3.5.2 Strategy 2

After we have good results with strategy 1 we started to train and analyse the original

videos. These videos have different lengths from 20 to 30 minutes each. Since they are

the original videos, they are not treated or trimmed so there are parts where the octopus

is occluded, the light is low or where the angle of the cameras is not the best for analysis.

Therefore these videos are harder to analyse than the ones in subsubsection 4.3.5.1. The

previous data set was robust and achieved good results. But now we are dealing with

videos 10 to 15 times bigger so to continue the same frequency of frames per second

manually labelled, the effort would be huge9. Hence, we decrease the frequency of the

frame extraction to 1 frame every 5 seconds instead of 3 frames each second. With

this change, we moved to train the NN with datasets containing between 480 and 720

manually labelled frames each, depending on the duration of the video.

8A tube shaped body part of aquatic molluscs that makes water flow through their breathing system.
930min× 60sec× 3frames× 2cameras = 10800 manually labelled frames compared to 750 in strategy 1.

25

CHAPTER 4. MATERIALS AND METHODS

4.3.5.3 Strategy 3

To test the limits of the NN, we reduce drastically the number of frames manually labelled

and we try to train the NN with just 60 manually labelled frames, 30 from each camera.

3.1 We first test this approach to the subsubsection 4.3.5.1 videos, and use the first 30

labelled frames of each camera, corresponding to the first 10 seconds of the video.

3.2 Then we test this approach to the subsubsection 4.3.5.2 videos, where we use as

well the first 30 labelled frames of each camera, but this time corresponding to the

first two and a half minutes.

Table 4.1: Summary of the different strategies of frame labelling.

Parameters S1 S2 S3.1 S3.2

Length of the video(Minutes) 2 30 2 30
Data set size(Frames) 750 720 60 60
Frequency of frame extraction(F/S) 3 1/5 3 1/5
Frames per minute of video 375 24 30 2

In terms of human effort strategy 3.2 is without a doubt the one with more benefit.

We will have to evaluate the error of DLC associate with a small dataset compared to the

error associated with a big dataset, then we need to decide which is more beneficial and

establish a ratio between human effort and accuracy of the NN.

4.3.6 Human labelling error

We also tested for the possibility that human labelling is introducing errors in the process.

To measure it we labelled the same feature in a set of frames twice. Then, we measured

the Euclidean distance between the featured points. We then compute the average error

in the labelling to extrapolate the amount of error that the human labelling process may

introduce in the training process.

We did the same test in five different videos, with different body parts, and with a

different number of frames per video, with a total of 300 frames tested. The computed

values, for the differences in the x and y axis and the average Euclidean distance, are

presented in Table 4.2. This establishes a lower bound to what to expect a NN can achieve

(3.16 pixels).

Table 4.2: Human Labelling Average Error in pixels.

pixels

∆X 2.96
∆Y 1.76
d 3.16

26

4.3. DEEPLABCUT BASED PIPELINE

4.3.7 Validation

In order to validate our results we have can take into account several aspects. The first

and more obvious is looking at the labelled video and check if the dots placed in the

features by DLC correspond to the actual features. This is a good way to analyse the video

qualitatively, give us the first impression about how good the results are. Yet we can not

compare videos this way.

Another method we can use is looking at the likelihood of the DLC predictions. In

each feature of each frame, DLC presents the likelihood of the label. Then we can analyse

the average likelihood of each feature and assume that if all features have values over

0.95 the train was a success. If there is one feature with a value lower than that, we can

remove that feature from the analysis. We can then compute the average of the likelihood

of all features in that video, and extrapolate the average global likelihood of the video

(for all features). We will call this measure, the confidence of the NN. Videos with high

values, over 0.95 of confidence, are likely well labelled when compared to the ones with

lower values, under 0.95 of likelihood.

The third and more reliable method of validation is the manual label validation. We

use a python script, Annex I, that selects and extracts 30 random frames from both

cameras of the original video. We then label those frames manually and save the X and Y

coordinates for each frame. We next select those frames from the DLC labelled video and

extract the X and Y coordinates and the likelihood for each one of them. We determine

the average Euclidean distance between the DLC labelled frames and the manual labelled

frames, to this distance we call DLC error. If the likelihood of DLC label in under 0.95 we

consider that the label is not good enough, so we compute a DLC error with confidence

higher than 0.95 to remove all the possible wrong labels. This value indicates how many

pixels the correct solution is from that feature in the DLC labelled image.

Knowing this, a small value for the euclidean distance indicates that the error is small

so the video was well labelled, a larger value indicates the video was badly labelled. We

need to keep in mind that the error is measured in pixels and not in percentage and that

the frame size is 3840 per 2160 pixels An example of how all of these values are analysed

is in Annex II.

4.3.8 Zoomed-in Tracking

After several successful trials with the videos from the Stereocamera Rig, we decided

that was worth it to try a neural network to analyse also the Zoom Camera videos and

determine how accurate the neural network was. In order to do this test, we labelled three

points in the eye, three points on the siphon, three points on the mantel and one point

on the beginning of the third right arm. After we testing two videos with these charac-

teristics, we observed that both were successful. The results of these trials are presented

in section 5.8. Once this was not the focus of our study, we do not have enough data

to analyse and we did not invest a lot of time and resources in these NNs. Nevertheless,

27

CHAPTER 4. MATERIALS AND METHODS

these NNs could be used in future projects to analyse, for example, breathing rates during

several tests, body movements or any other specific detail observed in the octopus body.

28

C
h
a
p
t
e
r

5
Results

In this chapter we present the results associated to the questions raised in the previous

chapter (chapter 4). We follow a similar structure and provide results and answers/deci-

sions to those questions.

5.1 Filmed Events

In the fieldwork described in section 4.1, we were able to film 30 different events, which

correspond to approximately 38 hours or 2300 minutes of videos and over 1.5TB of data.

In this chapter, we present results regarding 8 events representative of the whole collec-

tion.

We analyse 6 events filmed with the Stereocamera Rig and 2 events filmed with the

Zoom Camera. ConsiderTable 5.1 that contains the information about the events names,

corresponding video duration and source camera.

Table 5.1: Events and Corresponding MetaData.

Event Name Duration (min) Source Camera

MartimPedras1 2 Stereocamera Rig
MartimCorais 2 Stereocamera Rig
ZeSimao 30 Stereocamera Rig
ZeSousa 25 Stereocamera Rig
ZeManuel 13 Stereocamera Rig
ZeMarco 14 Stereocamera Rig

MartimZoom 1 Zoom Camera
ZeBrunoZoom 29 Zoom Camera

29

CHAPTER 5. RESULTS

Figure 5.1: ScreenShot of Tracktor running successfully

5.2 Tracktor Results

This section describes the best results obtained on the tests described in section 4.2 on

the open-source tool Tracktor, based on OPEN CV. Given the base configuration, we did

trials that were able to improve the number of frames tracked by the program without

any error, the precision and accuracy of the tracking. The best parameter values we could

find are presented in Table 5.2.

Table 5.2: Best values found for Tracktor parameters.

Parameters Values (px)

Block Size 121
Offset 21
Min Area 6 000
Max Area 1 000 000

This result illustrated in Figure 5.1, is much better than the result obtained with the

predefined program values. However it was not totally satisfactory. We can observe in

the depicted frame, the centre of mass of the identified region is on the octopus. Yet, it

identifies many other regions as having the same features and during the length of video,

the centre of mass changes between the octopus and those regions. After doing multiple

trials with several videos and different values for the core parameters, we decided that

this tool was not appropriate for the task we had in hands. Therefore we started searching

for a different approach.

30

5.3. DEEPLABCUT PARAMETER COMPARISON

5.3 DeepLabCut Parameter Comparison

In this section we show a thorough comparison of parameter values, showing their impact

on the results. To narrow the search space, we performed comparisons by changing just

one selected parameter and maintaining all the other parameters configured with the

initial values determined as a good starting point and hereafter named standard values

and showed in Table 5.3. In this way, we hope to reduce the variability of the comparisons

and present more objective results.

Table 5.3: Standard Values for DLC Parameter Comparison.

Parameters NN GS MIS DT p-cutoff MIRROR CROP

Values 50 0.6 3200 17 0.1 False True

5.3.1 Neural Network

To be able to compare ResNet 50 with ResNet 101 we use the video ZeBrunoZoom which

resulted in the train and test errors compared in Figure 5.2. Both alternatives had a good

results in the train error, but in the test error the ResNet50 presented better and steadier

results. So, we use ResNet 50 for the rest of the trials and tests.

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

0	 200000	 400000	 600000	 800000	 1000000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

0	 200000	 400000	 600000	 800000	 1000000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

Figure 5.2: Comparison of Train and Test error of ResNet50 (left) and ResNet101 (right).

5.3.2 Global Scale

We started our tests with default value 0.8 for the global_scale (GS). However, values 0.8

and 0.7 easily exhaust all the resources of our Workstation and stop the training process.

To avoid this from happening we use the value 0.6 and adopted it as the standard value

for this parameter. In this way, we still have good quality images and we can run the train

without setbacks.

31

CHAPTER 5. RESULTS

However we were able to test the combination of GS = 0.8 with MIS = 1000 and

compare it to the combination of GS = 0.6 and MIS = 3200. The results are presented in

Figure 5.3

0	

5	

10	

15	

20	

25	

30	

35	

40	

0	 200000	 400000	 600000	 800000	 1000000	 1200000	

Er
ro
r	(
px
)	

Iterations		

	Train	Error	

	Test	Error	

0	

5	

10	

15	

20	

25	

30	

35	

40	

0	 200000	 400000	 600000	 800000	 1000000	 1200000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

Figure 5.3: Comparison of Train and Test error of GS = 0.8 and MIS = 1000 (left) with
GS = 0.6 and MIS = 3200 (right).

The video used for this test was MartimZoom, and it was filmed very close to the

octopus (i.e, the octopus occupied most of the image). With the parameter, GS = 0.8, only

on the 0.40 of iterations where cropping = True the images would be small enough to be

accepted by MIS = 1000, so very few images would be accepted for training. Since the

image selection, sizing and cropping process is random we do not know the exact number

of frames that were analysed. We correlate the good (unexpected) result of the NN to the

simplicity of the video and the fact that only a few frames were accepted both in train

and test iterations. If the video was more complex, further away from the octopus or had

a bigger duration we predict that the result would not be this good.

We want a reliable solution that is not affected this easily, so we use GS = 0.6, MIS =

3200 to run the rest of the videos.

5.3.3 Maximum Image Size

We start with this parameter set to 1000 pixels with the results, for the video ZeBruno-
Zoom, shown in the left side of Figure 5.4. The result obtained is very bad and shows

that the NN is not able to improve the performance since both train and test error remain

similar in all snapshots. We determined that the bad results are caused by discarding too

many frames due to the size threshold.

Then we run one other NN with this parameter set to 3200 pixels and the results were

very much improved, as presented on the right hand side of Figure 5.4. As expected both

train and test error decrease with the increase of the number of iterations.

32

5.3. DEEPLABCUT PARAMETER COMPARISON

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

0	 200000	 400000	 600000	 800000	 1000000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

0	 200000	 400000	 600000	 800000	 1000000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

Figure 5.4: Comparison of Train and Test error of MIS = 1000 and MIS = 3200

5.3.4 Cropped Images

In theory, this parameter in our case would be beneficial to be set to TRUE as explained in

subsubsection 4.3.4.3. Nevertheless we tested this theory and present here the results. We

trained two different NN, one with this parameter set to TRUE and one with the parameter

set to FALSE.

The results are presented in Figure 5.5 respectively. In terms of train error, the values

are similar but with the parameter crop set to TRUE, the error decays faster and continues

to decline with the increment of the iterations. This desired behaviour is not observed in

the NN with the parameter crop set to FALSE where we observe the error to stabilize with

the increment of the iterations.

In terms of test error, the differences in the results are much more visible. The NN with

the parameter crop defined as TRUE starts with high values of error and with the increment

of the iterations the error starts to decay to lower values, a result that indicates successful

training. The NN with the parameter crop defined as FALSE starts with a medium value

of error but starts to increase with the increment of the iterations.

This is a clear warning for us that the NN is not improving its performance there for

the training is unsuccessful. We want to have the best performance of the NN so we set

the parameter crop in all the other NN to TRUE.

5.3.5 P-Cutoff

When we evaluate each snapshot we obtain the train and test error and the error with

p−cutoff . The default value for the parameter p−cutoff is 0.1. We use this value to evaluate

and analyse the results of the training in all the videos, nevertheless we evaluate one video

with the value 0.95.

In Figure 5.6 we can observe that the values of both train and test decrease when the

p−cutoff = 0.1 is applied. We can also observe that the test error with p−cutoff continues

33

CHAPTER 5. RESULTS

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

0	 100000	 200000	 300000	 400000	 500000	 600000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

0	 100000	 200000	 300000	 400000	 500000	 600000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

Figure 5.5: Comparison of Train and Test error of CROP = TRUE (left) and CROP = FALSE

(right)

to decrease after iteration 600000, even though the test error without p−cutoff starts to

increase. This is a clear indication that the NN with the increment of iterations is getting

confident of the correctness of the results and start to exclude the body parts that it is not

able to track in each frame. At the same time, it indicates that the NN is getting over fitted

to the train data set. The increase of the test error after the 600000 iterations indicate that

the test data set have some frames where the NN is not able to perfectly label some body

parts. With the over fit of the train data set this prediction gets worse with each iteration.

0	

20	

40	

60	

80	

100	

120	

140	

0	 200000	 400000	 600000	 800000	 1000000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

0	

20	

40	

60	

80	

100	

120	

140	

0	 200000	 400000	 600000	 800000	 1000000	

Er
ro
r	(
px
)	

Iterations	

Train	Error	with	p-cutoff	=	0.1	

Test	Error	with	p-cutof	f=	0.1	

Figure 5.6: Comparison of Train and Test error and Train and Test error with p−cutoff =
0.1

We also run one NN with this parameter set to 0.95, meaning that only the body parts

with a value higher than 0.95 of likelihood in each frame are considered likely ones to

construct the labelled video.

The results of this test are presented in Figure 5.7. In the first iterations, the contrast

between results could not be clearer, the error with p−cutoff = 0.1 decreases with the

34

5.4. RESULTS OF STRATEGY 1

0	

20	

40	

60	

80	

100	

120	

140	

0	 200000	 400000	 600000	 800000	 1000000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

0	

20	

40	

60	

80	

100	

120	

140	

0	 200000	 400000	 600000	 800000	 1000000	

Er
ro
r	(
px
)	

Iterations	

Train	Error	with	p-cutoff	=	0.95	

Test	Error	with	p-cutoff	=	0.95	

Figure 5.7: Comparison of Train and Test error and Train and Test error with p−cutoff =
0.95

increment of the iterations unlike the error with p−cutoff = 0.95 that increase. After

iteration 800000 the behaviour of test error with both p−cutoff is the same. The train

error is still a bit different between values of p−cutoff , but the p−cutoff = 0.95 had better

results.

We want to analyse our videos and have the best output as possible so we could simply

choose to set this parameter to 0.95 but, since the likelihood or confidence is an output of

the NN the same way as the X and Y of the body part, the confidence will improve with

the increment of the iterations. If we use a high value of p−cutoff our train and test error

with p−cutoff of the first iterations would always be inaccurate and low, which could lead

to mistakes.

The number of images that had been well labelled but was discarded with the p−cutoff
of 0.95 will be higher than the number well labelled frames discarded with the p−cutoff
of 0.1. To be able to fully understand the true behaviour of our NNs, regardless of with

more error, we decide to keep this value in 0.1.

Notice that the p−cutoff used in validation error is different from the one used in the

train and test error in the strategies results sections. The p−cutoff used in validation error

is 0.95. The p−cutoff used in train and test error is 0.1.

5.4 Results of Strategy 1

We tested two videos with Strategy 1, MartimPedras1 and MartimCorais, both from the

Stereocamera Rig. Both videos were analysed with this strategy were a success. We

present the results of each situation individually on the following subsections.

35

CHAPTER 5. RESULTS

5.4.1 MartimPedras1

We chose this video from the Stereocamera Rig because it was an easy video. We can

notice that almost all the background is made of small identical rocks. We know from

the dive that this video was filmed at low depth, which is also proven by the colour of

the video. The octopus, during almost all the video, has a reddish vivid colour, which

should help the NN to distinguish it from the grey rocks. In Figure 5.8 we can observe

the difficulty, the features of this video and the differences between manually labelled (+)

and DLC labelled (•) in MartimPedras1 frame. The detail of the image, zoomed in, can be

observed on the right.

Figure 5.8: Comparison between manually labelled (+) and DLC labelled (•) in MartimPe-
dras1 frame. The detail is zoomed in on the right.

In Figure 5.9 we can observe the result of the training process. In this video, we save

snapshots every 50000 iterations with the intention of understanding better the behaviour

of the NN. We can observe that both train error and train error with p−cutoff behave the

same way, pointing that the NN can easily identify the body parts in the train data set

with high confidence. We infer that this behaviour is linked to the similarity of the frames

of the video.

In terms of test error and test error with p−cutoff , the behaviour is more distinct.

The test error in the first 350000 iterations decreases but then in the 400000 iterations

the error increases dramatically. Between the 450000 and 850000 iterations, the error

declines slowly until a new jump, fall and jump.

In the test error with p−cutoff , the error is dropping slowly with the increment of

iterations. This indicates that the NN is tuning the weights of the net in order to improve

the label of the body parts. The error will never drop significantly more because it had

36

5.4. RESULTS OF STRATEGY 1

reached the values of the human labelling error.

These sudden jumps and falls in the test error along with the slow drop of the test

error with p−cutoff indicates over fit of the NN. To try to analyse the video without an

over fitted NN we choose the iteration 750000 to do it.

0	

5	

10	

15	

20	

25	

30	

35	

40	

0	 200000	 400000	 600000	 800000	 1000000	 1200000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

Train	Error	with	p-cutoff	

Test	Error	with	p-cutoff	

Figure 5.9: Train and Test error, Train and Test error with p−cutoff of MartimPedras1.

Then we run the DLC functions, analyse and create labelled video, and we obtained

the labelled video along with the positions of each body part in each frame. After the

validation process we get the results present in Table 5.4

Table 5.4: Iteration 750000 of MartimPedras1 - Train, Test and Validation Error Summary

Train Test Validation

Error 3.26 6.96 4.18
Error with p−cutoff 3.26 2.51 4.09

We can verify that the train error and train error with p−cutoff are the lower of the

three categories as expected. We can compare the test error with the validation error, both

values are low but the validation error is slightly better. In the end we compare the error

with p−cutoff of both test and validation, we observe the opposite of what happened in

the test and validation error. We attribute this difference to the low number of images

analysed in both test and validation process. One frame with a slightly off prediction may

lead to a big difference in the average error. To make this value more robust we would

need to manually label even more frames, what would be a big human effort.

The average confidence during the whole video is approximately 0.99.

37

CHAPTER 5. RESULTS

We visualize the labelled video and taking into account the values presented in Ta-

ble 5.4 we consider that this video was labelled with human level precision.

5.4.2 MartimCorais

We chose this video from the Stereocamera Rig because it was harder than MartimPedras1
and it has multiple fish around the octopus. We can notice that the background is diverse

in colour and shape, (i.e. with increased complexity). As MartimPedras this video was

filmed at low depth, we can clearly distinguish the red colour in some corals and all

the other colours look lucid. The octopus during the video changes of colour and shape

several times. In this video, we ask the NN to identify the 3 octopus body parts, the two

eyes and the mantel but also 3 different fish in the eye and the tail. This video could be

harder for the NN to label than the previous one.

In Figure 5.10 we can observe the difficulty, the features of this video and the differ-

ences between manually labelled (+) and DLC labelled (•) in MartimCorais frame.

Figure 5.10: Comparison between manually labelled (+) and DLC labelled (•) in Martim-
Corais frame.

In Figure 5.11 we can observe the result of the training process. In this video, we

save snapshots every 200000 iterations with the intention of selecting the best one for the

video analysis. We can observe that both train error and train error with p−cutoff behave

the same way but, the train error with p−cutoff having lower values. This result indicates

that the NN is identifying well most of the body parts but do not have high confidence in

all.

In terms of test error and test error with p−cutoff , the behaviour is more distinct. The

test error increases until reaches the 400000 iterations and then it starts to drop until

38

5.4. RESULTS OF STRATEGY 1

the 600000 iterations. The iteration where the NN start to over fit and the error start to

increase again.

In the test error with p−cutoff , the error is dropping slowly with the elapse of iterations.

The NN is getting more confident about the predictions of the body parts.

We assume that the best snapshot to analyse the video based on the analysis of the

error is the iteration 600000, where the test error is lower

0	

20	

40	

60	

80	

100	

120	

140	

0	 200000	 400000	 600000	 800000	 1000000	

	Train	Error	

	Test	Error	

Train	Error	with	p-cutoff	

Test	Error	with	p-cutoff	

Figure 5.11: Train and Test error, Train and Test error with p−cutoff of MartimCorais.

Then we run the DLC functions, analyse and create labelled video, and we obtained

the labelled video along with the positions of each body part in each frame. After the

validation process we get the results present in Table 5.5

Table 5.5: Iteration 1030000 of MartimCorais - Train, Test and Validation Error Summary

Train Test Validation

Error 49,29 82,68 128.18
Error with p−cutoff 19.68 32.21 4.24

We can verify that in all categories the error with p−cutoff is lower than the error, this

is expectable since the NN is more likely to get the perditions right when having high

confidence.

In the train and test the difference between errors is significant and understandable

but is in the validation that the difference of errors is bigger and more interesting. This

big difference is due to the variability of this video in particular. Having a high number

of frames and iterations to train the NN gain a lot of confidence in its predictions. If the

NN shows high values of confidence the prediction of the body part is highly probable to

39

CHAPTER 5. RESULTS

be correct. So, even thought we have a big validation error if we do not count with low

confidence frames so the validation error is minimal.

The average confidence during the whole video is approximately 0.56.

We also visualize the labelled video and consider that this video was also labelled

with a human level precision. Both videos analysed with strategy 1 were considered well

labelled, in spite of one being of low complexity and one being of high complexity. As a

conclusion, we can say that Strategy 1 is a time-consuming strategy but reliable.

5.5 Results of Strategy 2

We test four videos with Strategy 1, ZeSimao, ZeSousa, ZeManuel, ZeMarco, all from the

Stereocamera Rig. These videos have different background complexities and were filmed

from different distances to the octopus. Some were a success others, due to complexity or

distance, no so much.

We present the results of each individually in this following section.

5.5.1 ZeSimao

We chose this video from the Stereocamera Rig to test in first place strategy 2 because it

was an easy video and similar to MartimPedras. By visually analysing the video we can

notice that almost all the background is made of small rocks and have some small coral

patches. We know from the dive that this video was filmed at low depth, so the colours

of the video are very similar to the original ones. This video has the difficulty of having

a lot of light reflexes and some visual effect due to temperature gradients, thermoclines.

The octopus during almost all the video has a reddish vivid colour, which should help

the NN to distinguish from the green water and yellowish rock sandy bottom.

In Figure 5.12 we can observe the difficulty, the features of this video and the differ-

ences between manually labelled (+) and DLC labelled (•) in ZeSimao frame.

In Figure 5.13 we can observe the result of the training process. In this video, we save

snapshots every 200000 iterations to select the best snapshot to analyse the video with

the NN. We can observe that both train error and train error with p−cutoff behave the

same way, showing that the NN easily identify the body parts in the train dataset with

high confidence. We infer that this NN behaviour is linked to the similarity in terms of

colour and shape of the octopus during the whole video.

In terms of test error and test error with p−cutoff , the behaviour is notably more

distinct. The test error in the first 800000 iterations decreases but then the error increases

again without stabilize.

In the test error with p−cutoff , the error is steady around 5 pixels of error, with the

increment of iterations. This indicates that the NN can label the likely body parts with

high confidence but is having problems labelling body parts where the confidence is low.

The error with p−cutoff will never descend significantly more because it had reached the

values of the human labelling error.

40

5.5. RESULTS OF STRATEGY 2

Figure 5.12: Comparison between manually labelled (+) and DLC labelled (•) in ZeSimao
frame.

The jump after iteration 800000 in the test error indicates over fit of the NN. To try

to analyse the video without an over fitted NN we choose the iteration 800000 to do it.

0	

10	

20	

30	

40	

50	

60	

70	

0	 200000	 400000	 600000	 800000	 1000000	 1200000	

Er
ro
r	(
px
)	

Iterations	

Train	Error	

Test	Error	

Train	Error	with	p-cutoff	

Test	Error	with	p-cutoff	

Figure 5.13: Train and Test error, Train and Test error with p−cutoff of ZeSimao with
Stratagy 2.

Then we run the DLC functions, analyse and create labelled video, and we obtained

the labelled video along with the positions of the body part in each frame. After the

41

CHAPTER 5. RESULTS

validation process, we get the results present in Table 5.6.

Table 5.6: Iteration 800000 of ZeSimao - Train, Test and Validation Error Summary.

Train Test Validation

Error 10.05 7.45 8.88
Error with p−cutoff 8.96 4.95 8.24

We can verify that the error with p−cutoff in all categories is the lower that the error

as expectable. All categories have a low error with insignificant differences between them.

The only value that stands is the test error with p−cutoff , probably due to a low number

of test images with confidence over 0.95.

The average confidence during the hole video is approximately 0.96. We attribute this

difference to the low number of images analysed in both test and validation process.

We visualize the labelled video and taking into account the values presented in Ta-

ble 5.6 we consider that this video was labelled with human level precision.

5.5.2 ZeSousa

We chose this video from the Stereocamera Rig because it was similar to MartimCorais
but it has 25 minutes. Visually analysing the video we can notice that the background is

diverse in colour and shape, it is a complex background. We can also notice that there

are some shadows areas and that the octopus besides changing colour and shape it also

hides in those areas several times during the length of the video. This video was filmed at

medium depth, approximately 10 meters, we can observe that the colour in some corals

is already looking different from their original colour.

In this video, we ask the NN to identify one octopus eye. This video is harder for the

NN to label, it has a more complex background than ZeSimao, is longer than MartimCorais
and it only has one labelling point, the right eye.

In Figure 5.14 we can observe the difficulty, the features of this video and the differ-

ences between manually labelled (+) and DLC labelled (•) in ZeSousa frame.

In Figure 5.15 we can observe the result of the training process. In this video, we save

snapshots every 200000 iterations to select the best snapshot for the video analysis. We

can observe that train error starts to drop after the 400000 iterations and until the 600000

iteration where it stabilizes near the 130 pixels of error. Train error with p−cutoff behaves

differently, being stable at 30 pixels with the increment of iterations. This result indicates

that the NN is improving the labelling for non-likely body parts but keeping good results

in the likely ones.

In terms of test error and test error with p−cutoff , the behaviour is similar in both.

The error increases until reaches the 400000 iterations and then it starts to drop until

the 600000 iterations for test error with p−cutoff and until the 800000 iterations for test

error.

42

5.5. RESULTS OF STRATEGY 2

Figure 5.14: Comparison between manually labelled (+) and DLC labelled (•) in ZeSousa
frame.

This behaviour is starting to be common in the test results, the error drops until a

certain iteration, the test error with p−cutoff stabilizes and the test error increases again,

overfitting the NN. The iteration where the NN starts to overfit and the error starts to

increase again in this video is iteration 800000, so we assume that the best snapshot to

analyse the video is that iteration, where the test error is lower.

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

0	 200000	 400000	 600000	 800000	 1000000	 1200000	

Er
ro
r(
px
)	

Iteration	

	Train	Error	

	Test	Error	

Train	Error	with	p-cutoff	

Test	Error	with	p-cutoff	

Figure 5.15: Train and Test error, Train and Test error with p−cutoff of ZeSousa.

43

CHAPTER 5. RESULTS

Then we run the DLC functions, analyse and create labelled video, and we obtained

the labelled video along with the positions of the body part in each frame. After the

validation process we get the results present in Table 5.7.

Table 5.7: Iteration 800000 of ZeSousa - Train, Test and Validation Error Summary.

Train Test Validation

Error 128.65 130.89 333.47
Error with p−cutoff 29.03 3.56 147.54

We can verify that in all categories the error with p−cutoff is lower than the error, this

is expectable since the NN is more likely to get the perditions right when having high

confidence.

In the train and test, the difference between errors is significant and understandable,

the error value in both is very low for this type of complex video. Since we are dealing

with a very complex video we were expecting that the validation error to be big, but the

validation error with p−cutoff is much higher than expected.

The average confidence during the whole video is approximately 0.62.

We also visualize the labelled video and consider that this video was not labelled with

a human level precision. During the video, some parts were in fact labelled with human

level precision but others are not acceptable. We can compare this video to MartimCorais
because the important features of the videos are similar. MartimCorais NN had very good

results unlike ZeSousa so we can blame the Labelling strategy of the bad results. With

the increase of complexity, we need to increase the number of labelled frames per video.

5.5.3 ZeManuel

We chose this video from the Stereocamera Rig because it was different from the other two,

have both sandy areas and coral patches, and have a smaller and more difficult octopus

to track. Visually analysing the video we can notice that the background is mainly sand

but that the octopus spends the majority of the video moving in the coral patches, it is a

complex background. We can also notice that beneath the coral there are some shadows

areas and that the octopus besides changing colour and shape it also hides in those areas

several times during the video. This video was filmed at medium depth, approximately

12 meters, we can observe that the colour in some corals is already looking different from

their original colour and that the octopus is very dark compared to the previous analysed

videos.

In this video, we ask the NN to identify both octopus eyes. This video is hard for the

NN to label, it has a complex background, is filmed from a big distance and the octopus

is small making the octopus occupying fewer frames than usual and the octopus spend a

lot of time inside the coral patches and appearing in the opposite side of it.

44

5.5. RESULTS OF STRATEGY 2

In Figure 5.8 we can observe the difficulty, the features of this video and the differences

between manually labelled (+) and DLC labelled (•) in ZeManuel frame.

Figure 5.16: Comparison between manually labelled (+) and DLC labelled (•) in ZeManuel
frame.

In Figure 5.17 we can observe the result of the training process. In this video, we save

snapshots every 50000 iterations to select the best snapshot for the video analysis and to

be able to understand the behaviour of the NN since we consider this a difficult video.

We can observe that all errors are bouncing until the 450000 iterations, iteration where

all start to stabilize.

After the stabilization of the error, the train error is preserved with 60 pixels of error

and the train error with p-cut off approximately 20 pixels better at 40 pixels of error.

Test error is kept steady at 300 pixels of error and test error with p−cutoff in the 180

pixels of error.

This abrupt break in the bounce indicates that the NN reached a balanced point.

Any snapshot between the iteration 400000 and 1000000 should have similar results

when analysing the video. We chose iteration 500000 to analyse our video.

Then we run the DLC functions, analyse and create labelled video, and we obtained

the labelled video along with the positions of the body parts in each frame. After the

validation process we get the results present in Table 5.8.

Table 5.8: Iteration 500000 of ZeManuel - Train, Test and Validation Error Summary.

Train Test Validation

Error 94.98 313.48 490.17
Error with p−cutoff 42.24 170.72 92.63

45

CHAPTER 5. RESULTS

0	

100	

200	

300	

400	

500	

600	

0	 200000	 400000	 600000	 800000	 1000000	 1200000	

Er
ro
r	(
px
)	

Iteration	

	Train	Error	

	Test	Error	

Train	Error	with	p-cutoff	

Test	Error	with	p-cutoff	

Figure 5.17: Train and Test error, Train and Test error with p−cutoff of ZeManuel.

We can verify that in all categories the error with p−cutoff is lower than the error, this

is expectable since the NN is more likely to get the perditions right when having high

confidence.

In the train and test, the difference between errors is significant and understandable,

the error is in both low for this type of complex video. Since we are dealing with a difficult

video we were expecting the validation error and the validation error with p−cutoff to

be big. In this case, the validation error with p−cutoff is actually smaller than what we

predict.

The average confidence during the whole video is approximately 0.55.

We also visualize the labelled video and consider that this video was not labelled with

a human level precision. During the video, some parts were labelled with human-level

precision but in particular, when the octopus is hiding the label turns very bouncing

between different points.

Since we are dealing with a complex video we might have to expand the manually

labelled dataset by increasing the frequency of frames per second.

5.5.4 ZeMarco

We chose this video from the Stereocamera Rig because it was the video where we caught

one of the more interesting cooperations between the octopus and other fish.

The video background has both sandy areas and coral patches, the octopus is one

of the bigger that we film in cooperation with other fish but it was filmed from a really

big distance from the octopus. Visually analysing the video we understand that the

46

5.5. RESULTS OF STRATEGY 2

background is mainly sand but that the octopus prefers to hunt in the coral patches on top

of the sand. It is a complex background. We can also notice in this video clear cooperation

indications of a Yellow-edged lyretail grouper (Variola louti) toward the octopus and the

octopus following those indications. This video was filmed at hight depth, approximately

30 meters, we can observe that the colours are already very different from the originals.

Octopus, corals, stones and sand all look the same colour with different shades.

In this video, we ask the NN to identify both octopus eyes. This video is very hard

for the NN to label, it has a complex background, is filmed from a big distance and the

octopus is almost the same colour as the coral and rocks, making the octopus harder to

identify and beyond that the octopus spend a lot of time under or inside the coral patches

and does not always come out from the same spot it enter .

In Figure 5.18 we can observe the difficulty, the features of this video and the differ-

ences between manually labelled (+) and DLC labelled (•) in ZeMarco frame.

Figure 5.18: Comparison between manually labelled (+) and DLC labelled (•) in ZeMarco
frame.

In Figure 5.19 we can observe the result of the training process. In this video, we save

snapshots every 200000 iterations to select the best snapshot for the video analysis. We

can observe that train error and error with p−cutoff have similar behaviour with approxi-

mately 100 pixels of difference. Both errors start to drop until the 600000 iteration where

it stabilizes near the 200 pixels of error and near 60 pixels of error with p−cutoff . This

result indicates that the NN reached a plateau level and that train errors will not decrease

more.

In terms of test error and test error with p−cutoff , the behaviour very interesting. The

error increases until reaches the 400000 iterations and then it starts to drop until the

600000 iterations for test error and for test error with p−cutoff .

47

CHAPTER 5. RESULTS

This behaviour is starting to be common in the test results, the error drops until a

certain iteration, the test error with p−cutoff stabilizes and the test error increases again,

overfitting the NN. In this case, we have the particularity that the error drops again after

the 800000 iteration, this difference may be due to the difficulty of the video and that the

NN is still improving even at those iterations.

This video also has the particularity that until the iteration 400000 the test error with

p−cutoff has a higher value than the test error. This may be linked to low confidence at

the beginning of the iterations and that p−cutoff is excluding several good labelled frames

because it has low confidence in them and is accepting badly labelled frames with high

confidence.

We assume that the best snapshot to analyse the video based on the analysis done

above is iteration 1030000, where the test error is lower.

0	

100	

200	

300	

400	

500	

600	

700	

800	

0	 200000	 400000	 600000	 800000	 1000000	 1200000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

Train	Error	with	p-cutoff	

Test	Error	with	p-cutoff	

Figure 5.19: Train and Test error, Train and Test error with p−cutoff of ZeMarco.

Then we run the DLC functions, analyse and create labelled video, and we obtained

the labelled video along with the positions of the body part in each frame. After the

validation process we get the results present in Table 5.9.

Table 5.9: Iteration 1030000 of ZeMarco - Train, Test and Validation Error Summary.

Train Test Validation

Error 248.1 405.57 990.29
Error with p−cutoff 67.7 220.91 17.15

We can verify that in all categories the error with p−cutoff is lower than the error, this

48

5.6. RESULTS OF STRATEGY 3

is expectable since the NN is more likely to get the perditions right when having high

confidence.

In the train and test, the difference between errors is significant and understandable,

the error value in both is very low for this type of complex video. Since we are dealing

with a very complex video we were expecting that the validation error to be big, but the

validation error with p−cutoff is much higher than expected.

The average confidence during the whole video is approximately 0.52.

We also visualize the labelled video and consider that this video was not labelled with

a human level precision. During the video, some parts were well labelled but we can

not say that the video is well labelled due to de presence of too much mislabelled frames.

With the complexity of this video, we probably need to increase the number of labelled

frames per video.

5.6 Results of Strategy 3

We test two videos with Strategy 3, MartimPedras1 and ZeSimao, both from the Stereocam-

era Rig, we rename this videos to MartimPedras30 and ZeSimao30 respectively to simplify

identification. These videos have similar background complexities but different lengths

so different number of manually labelled frames per minute of video.

We present the results of each individually in this section.

5.6.1 MartimPedras30

We chose this video to retest because it had really good results with Strategy 1 so we

wanted to test how much we could reduce the dataset without compromising the good

results. In Figure 5.20 we can observe the result of the training process with only 30

manually labelled frames from each camera. In this video, we save snapshots every

200000 iterations since we already know what the NN is cable in this video. First of all,

we verify that the result is outstanding and that the NN was able to have the same error

with and without the p−cutoff , meaning that the NN is very confident of the predictions.

We can observe that both train and test error behave the same way, getting smaller

with the increment of iterations.

Pointing that the NN was improving the label of not only the train frames but also of

the test frames.

To try to analyse this video we choose the iteration 1000000 to do it.

Then we run the DLC functions, analyse and create labelled video, and we obtained

the labelled video along with the positions of each body part in each frame. After the

validation process, we get the results present in Table 5.10.

We can verify that the train error and train error with p−cutoff , are the same as ex-

plained above. The same occurs with test error and test error with p−cutoff . The important

part, in this case, is the validation errors. We can observe that the validation errors are

much higher than the train and test errors. We link this to the low number of frames to

49

CHAPTER 5. RESULTS

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

0	 200000	 400000	 600000	 800000	 1000000	 1200000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

Train	Error	with	p-cutoff	

Test	Error	with	p-cutoff	

Figure 5.20: Train and Test error, Train and Test error with p−cutoff of MartimPedras30.

Table 5.10: Iteration 1000000 of MartimPedras30 - Train, Test and Validation Error Sum-
mary.

Train Test Validation

Error 2.21 2.79 53.97
Error with p−cutoff 2.21 2.79 19.32

evaluate, we think that the NN got really fitted to the train frames and because of that,

the train errors is very small. Moreover, since we had a small data set the test dataset

would be even smaller, in this case, the test dataset only had 3 images to evaluate. The

validation error is high but acceptable since this NN was trained with limited manually

labelled frames. The validation error with p−cutoff is a very good result, meaning that

even that the NN is making some bad predictions the NN is able to give low confidence

to those predictions.

The average confidence during the whole video is approximately 0.95.

We visualize the labelled video, compare it to MartimPedras1 video and taking into

account the values presented in Table 5.4 we consider that this video was labelled with

human level precision with low manual labelled effort.

We need to keep in mind that this video is considered simple and have a short length.

MartimPedras30 was analysed with 30 manually labelled frames per minute of video.

ZeSimao was with 24 manually labelled frames per minute of video. So with these results,

we aspired to apply the same strategy to ZeSimao, the other simple video.

50

5.6. RESULTS OF STRATEGY 3

5.6.2 ZeSimao30

We chose this video to retest because it also had really good results with Strategy 2 and

is very similar to MartimPedras so we wanted to test if we could reduce the dataset even

without compromising the good results. In Figure 5.21 we can observe the result of the

training process with only 30 manually labelled frames from each camera. In this video,

we save snapshots every 200000 iterations since we also know what the NN is cable in

this video. We notice that the results were very similar to the other results of strategy

3. We verify that the NN was able to have the same error with and without the p−cutoff ,

meaning that the NN is very confident of the predictions.

We can observe that both train and test error behave the same way as well, test errors

had a bigger descend at the beginning but the general behaviour is getting smaller with

the increment of iterations.

To try to analyse this video we choose the iteration 1030000 to do it.

0	

1	

2	

3	

4	

5	

6	

0	 200000	 400000	 600000	 800000	 1000000	 1200000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	
	Test	Error	
Train	error	with	p-cutoff	
Test	error	with	p-cutoff	

Figure 5.21: Train and Test error, Train and Test error with p−cutoff of ZeSimao30.

Then we run the DLC functions, analyse and create labelled video, and we obtained

the labelled video along with the positions of each body part in each frame. After the

validation process, we get the results present in Table 5.11.

We can verify that the train error and train error with p−cutoff , are the same as ex-

plained above. The same occurs with test error and test error with p−cutoff . The impor-

tant part, in this case, is the validation errors. As we observed in MartimPedras30, we can

observe that the validation errors are much higher than the train and test errors.

We give the same explanation to this video as we did to MartimPedras30. We link this

51

CHAPTER 5. RESULTS

Table 5.11: Iteration 1030000 of ZeSimao30 - Train, Test and Validation Error Summary.

Train Test Validation

Error 2.96 4.23 971.93
Error with p−cutoff 2.96 4.23 845.89

to the low number of frames to evaluate, we think that the NN got really fitted to the

train frames and because of that, the train errors is very small. Also since we had data

set of the same size the test dataset would only have 3 images to evaluate as well. The

validation error is too high to be acceptable and the validation error with p−cutoff is also

too high, meaning that even with the p−cutoff the NN is making to many bad predictions.

The average confidence during the whole video is approximately 0.89

We visualize the labelled video and compared it to ZeSimao video. The differences are

obvious but nevertheless, the ZeSimao30 labelled video is not too bad as the validation

values anticipate. There are several minutes where the octopus is correctly labelled but

then there are some parts where the NN lost its track.

Taking into account the values presented in Table 5.11 we consider that this video was

labelled reasonably taking into consideration the low manual labelled effort.

We need to keep in mind that this video is considered simple, but it is a long video.

ZeSimao was analysed with 24 manually labelled frames per minute of video. ZeSimao30
was analysed with just 2 manually labelled frames per minute of video. These results

indicate us that 24 frames per minute are very good for simple videos but 2 frames per

minute it too few frames, we need to find a good balance between the results and the

manually labelled effort.

5.7 Two videos, one NN

In this section, we present the result of combining in the same NN two different videos.

We chose both videos from the Stereocamera Rig and from Strategy 1 so the videos

chosen were MartimPedras1 and MartimCorais. We chose these two videos because both

were filmed at a low depth and we can clearly distinguish octopus in the image.

We needed to adjust the labels so that both have the same body parts. We use three

points, both eyes and the tip of the mantel. We only use the manually labelled frames of

one camera in the original data set.

We wanted to test if the NN had more difficulties to label the body parts from both

videos or if on the other hand, the NN labelled the body parts with more easiness.

In Figure 5.22 we can observe the result of the training process. In this video, we

save snapshots every 200000 iterations with the intention of selecting the best one for the

video analysis. We can observe that both train and test error and train and test error with

p−cutoff behave the same way but, the train errors have lower values on the first 600000

iterations.

52

5.7. TWO VIDEOS, ONE NN

This result indicates that the NN is identifying well almost all of the body parts and

have high confidence in all.

After the 600000 iterations all four values are essentially the same and near the Hu-

man label error, around 3 pixels.

We assume that the best snapshot to analyse the video based on the analysis of the

error is the iteration 1030000, where the test error is lower.

0	

2	

4	

6	

8	

10	

12	

14	

16	

0	 200000	 400000	 600000	 800000	 1000000	 1200000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

Train	Error	with	p-cutoff	

Test	Error	with	p-cutoff	

Figure 5.22: Train and Test error, Train and Test error with p−cutoff of ZeTudo.

Then we run the DLC functions, analyse and create labelled video, and we obtained

the labelled video along with the positions of each body part in each frame. After the

validation process we get the results present in Table 5.12

Table 5.12: Iteration 1030000 of ZeTudo - Train, Test and Validation Error Summary

Train Test Validation

Error 3.48 3.52 16.74
Error with p−cutoff 3.48 3.5 16.74

We can verify that in all categories the error and the error with p−cutoff is essentially

the same, this means that the NN has high confidence in the labelling.

Train and test errors are very small and similar to the human labelled error so this

value will never drop more. The validation errors are low and very acceptable for the

NN. If we compare to the validation error of the NN that was trained with just one

video the value is the average of the two. This means that the NN had correctly the same

performance while being trained with double the information.

53

CHAPTER 5. RESULTS

The average confidence during the MartimPedras1 whole video is approximately 0.99

and the average confidence during the MartimCorais whole video is approximately 0.92.

We also visualize both labelled videos and consider that these videos were also labelled

with a human level precision.

Even though the same NN was able to label two different videos its was not able to

correctly label a different video from the two initial ones.

We try to analyse ZeSimao with this NN but the labelled video was not acceptable.

5.8 Results of The Other Potentials Usages

5.8.1 MartimZoom

We chose this video from the Zoom Camera to test how good the NN was in small details

and to see if it could follow the colour and shape changes in the octopus body. Visually

analysing the video we can notice that the background is made of small rocks with some

coral on top. We know from the dive that this video was filmed at low depth (5 meters),

so the colours of the video are very similar to the original ones. This video has the

particularity that we were filming really close to the octopus, this may interfere with his

natural behaviour but for this test it was perfect. The octopus during almost all the video

has a brownish colour with some white spots that appear and disappear. Its shape and

texture also change several times during this video

In Figure 5.23 we can observe the difficulty, the features of this video and the differ-

ences between manually labelled (+) and DLC labelled (•) in MartimZoom frame. We

can also observe which body parts we are tracking.

Figure 5.23: Comparison between manually labelled (+) and DLC labelled (•) in Martim-
Zoom frame.

54

5.8. RESULTS OF THE OTHER POTENTIALS USAGES

In Figure 5.24 we can observe the result of the training process. In this video, we save

snapshots every 50000 iterations to select the best snapshot to analyse the video with the

NN. We can observe that both train error and train error with p−cutoff behave in a very

identically, showing that the NN easily identify the body parts in the train dataset with

high confidence. There are just some minor peaks in the train error.

In terms of test error and test error with p−cutoff , the behaviour is notably more dis-

tinct. The test error with p−cutoff in the first 650000 iterations is stable ate approximately

15 pixels of error but then after a drop and a peak the error stabilize again but this time

at approximately 3 pixels of error.

In the test error, the error did not stabilize during the 1030000 iterations of the train-

ing This indicates that the NN is trying to change the weights of the layers in order to try

to predict better the body parts without high confidence. Since we are asking the NN to

label several distinct body parts the error is the average of the error of each body parts,

so if the NN is able to improve one body part but deteriorate another, the general error

will remain the same.

We associate these variations on the test error due to the high number of body parts

to label.

To analyse the video with the best results from the NN we choose the iteration 850000

to do it.

0	

5	

10	

15	

20	

25	

30	

35	

40	

0	 200000	 400000	 600000	 800000	 1000000	 1200000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

Train	Error	with	p-cutoff	

Test	Error	with	p-cutoff	

Figure 5.24: Train and Test error, Train and Test error with p−cutoff of MartimZoom.

Then we run the DLC functions, analyse and create labelled video, and we obtained

the labelled video along with the positions of the body part in each frame. After the

validation process, we get the results present in Table 5.6.

55

CHAPTER 5. RESULTS

Table 5.13: Iteration 850000 of MartimZoom - Train, Test and Validation Error Summary.

Train Test Validation

Error 7.03 16.99 3.04
Error with p−cutoff 2.9 3.2 3.04

We can verify that the error with p−cutoff in the train and in the test is the lower

that the error as expectable. In the case of validation, the error is the same in both. All

categories have a low error with insignificant differences between the error with p−cutoff .

The average confidence during the whole video and all body parts is approximately 0.96

but the confidence of the easiest point, the centre of the eye the confidence is 0.99.

We visualize the labelled video and taking into account the values presented in Ta-

ble 5.13 we consider that this video was labelled with human level precision.

5.8.2 ZeBrunoZoom

We chose this video from the Zoom Camera to test if the NN maintain the good results in

small details if the video is a lit bit further y from the octopus body. By visual analysis

of the video, we can notice that the background is slightly different, made of a big coral

patch. We know from the dive that this video was filmed at medium depth (10 meters),

so the colours of the video already start to change from the original ones. The octopus

during a big part of the video has a brownish colour with some white spots that appear

and disappear and another part where the octopus is pale.

Its shape and texture also change several times during this video usually at the same

time that the colour change.

In Figure 5.25 we can observe the difficulty, the features of this video and the differ-

ences between manually labelled (+) and DLC labelled (•) in ZeBrunoZoom frame. We

can also observe which body parts we are tracking. In the Zoomed in part we can observe

that the NN is labelling with low confidence (×) the right eye with the left eye markers

(green and light blue).

In Figure 5.26 we can observe the result of the training process. In this video, we save

snapshots every 50000 iterations to select the best snapshot to analyse the video with the

NN. We can observe that both train error and train error with p−cutoff behave in a very

identically, showing that the NN easily identify the body parts in the train dataset with

high confidence.

In terms of test error and test error with p−cutoff , they have the opposite behaviour.

In the test error, the error oscillates during the first 900000 iterations of the training

having an average value of around 180 pixels of error, and when it stabilizes the error

is still bigger than 150 pixels of error. This indicates that the NN is trying to change

the weights of the layers in order to try to predict better the body parts without high

confidence.

56

5.8. RESULTS OF THE OTHER POTENTIALS USAGES

Figure 5.25: Comparison between manually labelled (+) and DLC labelled (•) in ZeBruno-
Zoom frame.

The test error with p−cutoff during the 1030000 iterations have several local mini-

mums and several peaks. We link this behaviour to the NN trials to improve the mini-

mum error. We can also observe that the local minimums all have similar errors, around

100 pixels of error. In the 950000 iterations, we think that the test error with p−cutoff
finally stabilizes, but since we do no have more iterations this plateau may be in fact

another local minimum.

Since we are asking the NN to label several distinct body parts the error is the average

of the error of each body parts, so even if the NN is able to well label one body part but

there is one that the NN is not able to well label the error value will increase in general.

We associate these variations on the test error due to the high number of body parts

to label.

Analysing both test errors we can assume that the best snapshot to analyse the videos

is iteration 950000.

Then we run the DLC functions, analyse and create labelled video, and we obtained

the labelled video along with the positions of the body part in each frame. After the

validation process, we get the results present in Table 5.14.

Table 5.14: Iteration 950000 of ZeBrunoZoom - Train, Test and Validation Error Summary.

Train Test Validation

Error 20.3 168.25 762.65
Error with p−cutoff 9.27 99.9 3.07

We can verify that the error with p−cutoff in the train and in the test is the lower

57

CHAPTER 5. RESULTS

0	

50	

100	

150	

200	

250	

0	 200000	 400000	 600000	 800000	 1000000	 1200000	

Er
ro
r	(
px
)	

Iterations	

	Train	Error	

	Test	Error	

Train	Error	with	p-cutoff	

Test	Error	with	p-cutoff	

Figure 5.26: Train and Test error, Train and Test error with p−cutoff of ZeBrunoZoom.

that the error as expectable. In the case of validation, the error is the same in both. All

categories have a low error with insignificant differences between the error with p−cutoff .

The average confidence during the whole video and all body parts is approximately 0.38

but the confidence of both points of the right eye is more than 0.50, this eye is the one

that is facing the camera during the majority of the video, the left eye only appear in

some frames so the confidence of those two points is under 0.24. This abundance of body

parts may be misleading the train of the NN.

We visualize the labelled video and taking into account the values presented in Ta-

ble 5.13 we cannot consider that this video was labelled with human level precision. Even

though the NN is able to mark at least one body part during almost the whole video.

Although this is a video from the Zoom Camera the complexity of the background,

the occlusions of the octopus and the different luminosities during the video make us

define this video as a difficult video even for manual labelling so we consider these results

as very good ones.

58

C
h
a
p
t
e
r

6
Conclusions

In this work, we were able to train different NN to achieve human level precision in the

tracking of octopuses in stereoscopic videos in unstructured environments. This was a

long learning process, with trial and error periods. The successful tracking of an octopus

was only achieved after several unsuccessful trials. Finally, perseverance on the choice of

tools and the correct pipeline and configuration lead us to the appropriate values of the

parameters to use.

In the cases where we were not able to achieve human level precision in the tracking

process, we still manage to get some useful results. Sometimes the algorithm loses track

of the animal or some body parts, because of occlusion or dark situations, but successfully

recovers, once the (correct) circumstances are regained. In other cases, the NN was not

able to correctly label the video, as the case of ZeSimao30. In these cases, to successfully

track the animal, the solution consists on having more manually labelled frames in the

initial data set.

We also realised that labelling body parts that are not visible during a big part of the

video, may have a negative effect on labelling confidence. In future tests, both eyes of the

octopus should be labelled, and avoid to use the siphon or the tip of the mantel, since we

got low confidences in these two body parts, contrary to what was verified in the eyes.

We were able to confirm our theory that the more complex the video is, the more

frames per minute of video we have to label.

We can compare the case of MartimPedras1 and ZeSimao with the case of MartimCorais
and ZeSousa. In both pairs, the videos are very similar in all aspects of the video except

the duration. The first video of each pair only have 2 minutes, the second had more than

25 minutes. In the case of MartimPedras1 and ZeSimao, the videos are very simple so the

difference of frames per minute does not affect the results. In the case of MartimCorais
and ZeSousa, the videos are more complex and the reduction of frames per minute affect

59

CHAPTER 6. CONCLUSIONS

significantly the results.

Thus we conclude that we can achieve human level precision in all videos but we

would need to manually label more frames depending on the video complexity.

6.1 Future Work

After the train of the NN for one specific video, we need to calibrate the videos from both

cameras by sound.

Once calibrated, the Stereocamera Rig allows for reliable and accurate 3D-tracking of

overall group collective movement and 3D reconstruction of habitat features.

First, using computer-vision-based methods, videos are run through a Structure-from-

Motion and Multi-View Stereo pipeline with the software colmap [22]. This allows for

a high-resolution 3D spatial reconstruction, where all habitat features across hunting

events are highly detailed [15]. More importantly, this approach also yields the position

of the camera relative to the reconstructed habitat at all times [18], thus taking in ac-

count camera movement when tracking the animals. Second, we use the already trained

NN to perform automated tracking of all players involved in the calibrated collaborative

hunting events videos [17]. Third, individual positions are triangulated from the Stereo-

camera Rig’s two viewpoints, and their movements reconstructed in 3 dimensions. After

subtracting camera motion obtained during habitat reconstruction, we obtain meaningful

trajectories in real-life coordinates.

Finally, these tracks are then superimposed on the 3D habitat, providing a reliable and

highly quantitative reconstruction of the group’s collective movement through natural

habitats [19].

Concurrently, the Zoom Camera is focused on O. cyanea movements and close-by part-

ners. This is essential to classify octopus behaviour since cephalopods have more flexible

behavioural motor expressions than fishes [16]. We will manually or with the help of

JAABA1 [9] classify behaviours and categorize movement patterns from O. cyanea and

fine-scale events (e.g. webbing over corals, “punch” to nearby fish), thus developing a for-

aging ethogram (a similar ethogram is developed for fishes, relying on body movement).

Finally, as all videos are synchronized, the outputs of both collective movement and

individual behaviour are superimposed on the tracking coordinates, providing us with

a highly quantitative, and accurate description of changes in movement due to specific

behavioural elements.

1 The Janelia Automatic Animal Behaviour Annotator (JAABA) is a system that allows researchers to
automatically calculate interpretable quantitative statistics achieved by machine learning analysis of videos
of behaving animals.

To use this system, we need to manually label small frames series and describe the animal behaviour
in those frames. This will allow the system to convert these manual labels into behaviour detectors using
machine learning techniques. These detectors will be used later to automatically classify, in a large data set,
the animal behaviour with high throughput.

The JAABA system combines an intuitive graphical user interface, a powerful and fast machine learning
algorithm and the possibility to the visualization of the classifier into an interactive, detail and usable
scientifically meaningful measurements of behavioural effects in large experiments.

60

References

[1] J. A. Mather and R. C. Anderson. “Personalities of octopuses (Octopus rubescens).”

In: Journal of Comparative Psychology 107.3 (1993), pp. 336–340. doi: 10.1037/

/0735-7036.107.3.336.

[2] C. B. Albertin, O. Simakov, T. Mitros, Z. Y. Wang, J. R. Pungor, E. Edsinger-Gonzales,

S. Brenner, C. W. Ragsdale, and D. S. Rokhsar. “The octopus genome and the

evolution of cephalopod neural and morphological novelties.” In: Nature 524 (Aug.

2015), pp. 220–224. doi: 10.1038/nature14668.

[3] F. Bellard. ffmpeg. Accessed: 2019-07-22. 2006. url: https://ffmpeg.org.

[4] T. K. Bruce D. Lucas. “An Iterative Image Registration Technique with an Appli-

cation to Stereo Vision.” In: Proceedings of the 7th International Joint Conference on
Artificial Intelligence (IJCAI ’81). Aug. 1981, pp. 674–679. url: http://dl.acm.

org/citation.cfm?id=1623264.1623280.

[5] G. Fiorito, A. Affuso, J. Basil, A. Cole, P. de Girolamo, L. D’Angelo, L. Dickel, C.

Gestal, F. Grasso, M. Kuba, F. Mark, D. Melillo, D. Osorio, K. Perkins, G. Ponte, N.

Shashar, D. Smith, J. Smith, and P. L. Andrews. “Guidelines for the Care and Wel-

fare of Cephalopods in Research –A consensus based on an initiative by CephRes,

FELASA and the Boyd Group.” In: Laboratory Animals 49.2_suppl (Sept. 2015),

pp. 1–90. doi: 10.1177/0023677215580006.

[6] S. Gietler. Underwater Lighting Fundamentals. Accessed: 2018-11-22. 2018. url:

http://www.uwphotographyguide.com/underwater-photography-lighting-

fundamentals.

[7] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele. “Deep-

erCut : A Deeper , Stronger , and Faster Multi-Person Pose Estimation Model.”

In: European Conference on Computer Vision (ECCV). Sept. 2016, pp. 34–50. doi:

10.1007/978-3-319-46466-4_3.

[8] E. Insafutdinov, M. Andriluka, L. Pishchulin, S. Tang, E. Levinkov, B. Andres, and

B. Schiele. “ArtTrack: Articulated Multi-Person Tracking in the Wild.” In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). July 2017, pp. 1293–

1301. doi: 10.1109/CVPR.2017.142.

61

https://doi.org/10.1037//0735-7036.107.3.336
https://doi.org/10.1037//0735-7036.107.3.336
https://doi.org/10.1038/nature14668
https://ffmpeg.org
http://dl.acm.org/citation.cfm?id=1623264.1623280
http://dl.acm.org/citation.cfm?id=1623264.1623280
https://doi.org/10.1177/0023677215580006
http://www.uwphotographyguide.com/underwater-photography-lighting-fundamentals
http://www.uwphotographyguide.com/underwater-photography-lighting-fundamentals
https://doi.org/10.1007/978-3-319-46466-4_3
https://doi.org/10.1109/CVPR.2017.142

REFERENCES

[9] M. Kabra, A. Robie, M. Rivera-Alba, S. Branson, and K. Branson. “JAABA: Inter-

active machine learning for automatic annotation of animal behavior.” In: Nature
Methods 10 (Dec. 2012). doi: 10.1038/nmeth.2281.

[10] J. Mather and J. S. Alupay. “An Ethogram for Benthic Octopods (Cephalopoda

: Octopodidae).” In: Journal of Comparative Psychology 130(2) (Apr. 2016). doi:

10.1037/com0000025.

[11] A. Mathis, P. Mamidanna, K. M. Cury, T. Abe, V. N. Murthy, M. W. Mathis, and M.

Bethge. “DeepLabCut: markerless pose estimation of user-defined body parts with

deep learning.” In: Nature Neuroscience 21 (Aug. 2018). doi: 10.1038/s41593-

018-0209-y.

[12] J Messenger. “Cephalopod chromatophores: Neurobiology and natural history.” In:

Biological reviews of the Cambridge Philosophical Society 76.4 (Mar. 2001), pp. 473–

528. doi: 10.1017/S1464793101005772.

[13] T. Nath, A. Mathis, A. C. Chen, A. Patel, M. Bethge, and M. W. Mathis. “Using

DeepLabCut for 3D markerless pose estimation across species and behaviors.” In:

Nature protocols 14.7 (June 2019), pp. 2152–2176. doi: 10.1038/s41596-019-

0176-0.

[14] F. Romero-Ferrero, M. G. Bergomi, R. Hinz, F. J. H. Heras, and G. G. de Polavieja.

“idtracker.ai: Tracking all individuals in large collectives of unmarked animals.” In:

Nature Methods 16 (Jan. 2019), pp. 179–182. doi: 10.1038/s41592-018-0295-5.

[15] E. Sampaio. 3D spatial reconstruction. Accessed: 2019-11-07. 2019. url: https:

//youtu.be/j4vV0jv44aE.

[16] E. Sampaio. Automated tracking body features of an octopus. Accessed: 2019-11-07.

2019. url: https://youtu.be/K9bUkN90DWw.

[17] E. Sampaio. Automated Tracking octopus, wrasse, and black tip grouper through stereo-
cameras. Accessed: 2019-11-07. 2019. url: https://youtu.be/LLzjHv18Wqs.

[18] E. Sampaio. reconstructed habitat. Accessed: 2019-11-07. 2019. url: https://raw.

githubusercontent.com/EduSampaio/OctoFishProject/master/3d_animation.

gif.

[19] E. Sampaio. Simplified 3D habitat, with animal tracks overlayed. Accessed: 2019-11-

07. 2019. url: https://youtu.be/Lf-JvAbp9c0.

[20] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S.

Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Harten-

stein, K. Eliceiri, P. Tomancak, and A. Cardona. “Fiji: an open-source platform for

biological-image analysis.” In: Nature Methods 9.7 (June 2012), pp. 676–682. doi:

10.1038/nmeth.2019.

[21] W. Schwalb. Open Vision Control. Accessed: 2018-11-22. 2011. url: http://

openvisionc.sourceforge.net.

62

https://doi.org/10.1038/nmeth.2281
https://doi.org/10.1037/com0000025
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1017/S1464793101005772
https://doi.org/10.1038/s41596-019-0176-0
https://doi.org/10.1038/s41596-019-0176-0
https://doi.org/10.1038/s41592-018-0295-5
https://youtu.be/j4vV0jv44aE
https://youtu.be/j4vV0jv44aE
https://youtu.be/K9bUkN90DWw
https://youtu.be/LLzjHv18Wqs
https://raw.githubusercontent.com/EduSampaio/OctoFishProject/master/3d_animation.gif
https://raw.githubusercontent.com/EduSampaio/OctoFishProject/master/3d_animation.gif
https://raw.githubusercontent.com/EduSampaio/OctoFishProject/master/3d_animation.gif
https://youtu.be/Lf-JvAbp9c0
https://doi.org/10.1038/nmeth.2019
http://openvisionc.sourceforge.net
http://openvisionc.sourceforge.net

REFERENCES

[22] J. Schönberger and J.-M. Frahm. “Structure-from-Motion Revisited.” In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2016. doi:

10.1109/CVPR.2016.445.

[23] V. H. Sridhar. Tracktor. Accessed: 2018-10-02. 2017. url: https://github.com/

vivekhsridhar/tracktor.

[24] J. B. Wood and R. C. Anderson. “Interspecific Evaluation of Octopus Escape Behav-

ior.” In: Journal of Applied Animal Welfare Science 7.2 (June 2004), pp. 95–106. doi:

10.1207/s15327604jaws0702_2.

63

https://doi.org/10.1109/CVPR.2016.445
https://github.com/vivekhsridhar/tracktor
https://github.com/vivekhsridhar/tracktor
https://doi.org/10.1207/s15327604jaws0702_2

A
n
n
e
x

I
Program used to extract random frames for

validation

We need to take in account the name of the video and change the input name of the video

if the video name differ from aaaaa-Cx-1.mp4

a = random text

x = number of the camera (1 or 2 if stereocameras, 3 if zoomcamera)

In python :

1 from random import *

2 from sys import *

3 import os

4 minutes = int(input("minutes�of�the�video:�"))
5 seconds = int(input("seconds�of�the�video:�"))
6 ft = int(input("number�of�frames�to�extract:�"))
7 time = minutes * 60 + seconds

8 nf = int(time*25)

9 frames = []

10 for frame in range(ft):

11 print(frame)

12 fra = randint(1, nf)

13 C = randint(1,2)

14 #Correct the input video name for each video

15 os.system(’ffmpeg�-i�Nameofthevideo-C’ + str(C) + ’-1.mp4�-qscale:v�1�-vf�"select=eq(n\,
↪→ ’ + str(fra) + ’)"�-vframes�1�C’ + str(C) + str(fra) + ’.jpg’)

16 frames.append(fra)

17 print(frames)

65

A
n
n
e
x

II
Validation Process

In all the videos we use the validation process described. We start by extracting the

frames and manually label them an then we search for the X, Y and confidence in the

DLC output file for the video we want and we fill the spaces in the excel. We get the

validation Error and the Validation Error with p-cutoff.

DLC confidence is presented with just 2 decimal numbers but the average DLC con-

fifence was obtained with the full 9 decinal numbers and only then rounded to 2 decimal

numbers for presentation purpuses.

When the octopus was not in the frame while manually labbeling we label that frame

with x = 0 and y = 0.

67

A
N
N
E
X

I
I
.
V
A
L
I
D
A
T
I
O
N

P
R
O
C
E
S
S

Table II.1: Validation process of MartimCorais in order to explicate the process of validation of all the videos

MartimCorais Manually Labelled DLC Labelled Euclidian Distance Validation Error Validation Error with p-cutoff DLC Confidence

Frame Camera x y x y x y

554 1 1179 998 1179 999 0 1 1 1 0.99
780 1 1108 918 1108 916 0 2 2 2 0.99

1310 1 1576 900 1575 898 1 2 3 0 0.10
1353 1 1549 861 1548 855 1 6 7 7 0.99
1493 1 1620 583 1622 583 2 0 2 2 0.96
1728 1 1099 934 1101 936 2 2 4 4 0.99
1938 1 1343 1043 1349 1043 6 0 6 6 0.99
1994 1 943 1065 946 1064 3 1 4 4 0.99
2036 1 1407 1178 1409 1175 2 3 5 5 0.99
2156 1 1892 1855 1900 1856 8 1 9 9 0.99
2388 1 1419 868 1428 868 9 0 9 9 0.99
2463 1 1463 1212 1466 1211 3 1 4 4 0.99
2717 1 0 0 4 3 4 3 7 0 4.99E-05
2762 1 2071 1573 2071 1569 0 4 4 4 0.99
2777 1 1908 942 1909 940 1 2 3 3 0.99

222 2 2500 797 2499 798 1 1 2 2 0.99
305 2 2724 864 2725 867 1 3 4 4 0.99
319 2 2639 833 2638 831 1 2 3 3 0.99
432 2 2336 702 2337 698 1 4 5 5 0.99
449 2 2140 941 2137 938 3 3 6 6 0.99
471 2 1884 1004 1883 998 1 6 7 7 0.99
756 2 1550 722 1547 723 3 1 4 4 0.99
808 2 1803 916 1803 919 0 3 3 3 0.99
960 2 2045 850 2042 845 3 5 8 8 0.99

1849 2 1940 934 1939 935 1 1 2 2 0.99
2129 2 0 0 4 3 4 3 7 0 2.24E-05
2301 2 2338 858 2338 856 0 2 2 2 0.99
2344 2 2440 725 2439 724 1 1 2 2 0.99
2543 2 2723 1540 2724 1535 1 5 6 6 0.99
2657 2 2763 1938 2764 1934 1 4 5 5 0.99

Averages 2.13 2.4 4.53 4.41 0.90

68

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Objectives
	Contributions
	Structure of the Dissertation

	State of the Art
	Open Vision Control
	Tracktor
	IdTracker
	DeepLabCut

	Detailed Problem Description
	Problem Statement
	Challenges
	Natural environment
	Underwater images
	Moving camera
	Octopus

	Requirements

	Materials and Methods
	Video Acquisition and Video Analysis
	Fieldwork Location
	Hardware tools for video acquisition
	Hardware tools for video analysis

	Tracking Tool Testing
	DeepLabCut based Pipeline
	Ffmpeg
	Fiji
	Pipeline
	DLC Parameters
	Frame Labelling Strategies
	Human labelling error
	Validation
	Zoomed-in Tracking

	Results
	Filmed Events
	Tracktor Results
	DeepLabCut Parameter Comparison
	Neural Network
	Global Scale
	Maximum Image Size
	Cropped Images
	P-Cutoff

	Results of Strategy 1
	MartimPedras1
	MartimCorais

	Results of Strategy 2
	ZeSimao
	ZeSousa
	ZeManuel
	ZeMarco

	Results of Strategy 3
	MartimPedras30
	ZeSimao30

	Two videos, one NN
	Results of The Other Potentials Usages
	MartimZoom
	ZeBrunoZoom

	Conclusions
	Future Work

	References
	Annexes
	Program used to extract random frames for validation
	Validation Process

