
Functional Object-Oriented Network for Manipulation Learning

David Paulius, Yongqiang Huang, Roger Milton, William D. Buchanan, Jeanine Sam, and Yu Sun

Abstract— This paper presents a novel structured knowledge
representation called the functional object-oriented network
(FOON) to model the connectivity of the functional-related
objects and their motions in manipulation tasks. The graphical
model FOON is learned by observing object state change and
human manipulations with the objects. Using a well-trained
FOON, robots can decipher a task goal, seek the correct objects
at the desired states on which to operate, and generate a
sequence of proper manipulation motions. The paper describes
FOON’s structure and an approach to form a universal FOON
with extracted knowledge from online instructional videos. A
graph retrieval approach is presented to generate manipulation
motion sequences from the FOON to achieve a desired goal,
demonstrating the flexibility of FOON in creating a novel
and adaptive means of solving a problem using knowledge
gathered from multiple sources. The results are demonstrated
in a simulated environment to illustrate the motion sequences
generated from the FOON to carry out the desired tasks.

I. INTRODUCTION

Studies in neuroscience and cognitive science on object
affordance [1] indicate that the mirror neurons in human
brains congregate visual and motor responses [2], [3], [4].
Mirror neurons in the F5 sector of the macaque ventral
premotor cortex fire during both observation of interacting
with an object and action execution, but do not discharge
in response to simply observing an object [5], [6]. Recently,
Yoon et al. [7] studied the affordances associated to pairs
of objects positioned for action and found an interesting so-
called “paired object affordance effect.” The effect was that
the response time by right-handed participants was faster if
the two objects were used together when the active object
(supposed to be manipulated) was to the right of the other
object.

Borghi et al. [8] further studied the functional relationship
between paired objects and compared it with the spatial
relationship and found that both the position and functional
context are important and related to the motion; however,
the motor action response was faster and more accurate with
the functional context than with the spatial context. The
study results in neuroscience and cognitive science indicate
that there are strong connections between the observation
of objects and the functional motions. Further, functional
relationships between objects are directly associated with
the motor actions. A comprehensive review of models of
affordances and canonical mirror neuron system can be found
in [9].

David Paulius, Yongqiang Huang, Roger Milton, William D.
Buchanan, Jeanine Sam, and Yu Sun are with the Department of Computer
Science and Engineering at the University of South Florida. Roger Milton,
William D. Buchanan, and Jeanine Sam are undergraduate students.
(Contact email: yusun@mail.usf.edu)

This interesting phenomenon can be observed in human
daily life. When humans are performing tasks, they pay
attention not only to objects and their states, but also to
object interactions caused by manipulation. The manipulation
reflecting the motor response is tightly associated with both
the manipulated object and the interacted object.

Seeking an approach that can connect and model the
motion and features of an object in the same framework is
considered a new frontier in robotics. With the boom in learn-
ing from demonstration techniques in robotics [10], [11],
[12], more and more researchers are trying to model object
features, object affordance, and human action at the same
time. Most of the research builds the relationship between
single object features and human action or object affordance
[13], [14], [15] [16], [17], [18]. Several studies obtained
and used object-action relation without considering many
low-level object features. In [19] and [20], concrete object
recognition was not considered, and objects were categorized
solely according to object interaction sequences. Objects
were segmented out from a number of video sequences, and
an undirected semantic graph was used to represent the space
interaction relationship between objects. With a sequence of
graphs, their work was able to represent temporal and spatial
interactions of objects in an event. With the semantic graphs,
they constructed an event table and a similarity matrix, and
the similarity between two sequences of object interaction
events could be obtained according to the matrix. The objects
could further be categorized according to their roles in the
interactions, and the obtained semantic graphs might be used
to represent robotic tasks. Jain et al. [21] developed symbolic
planning that coupled robot control programs with statistical
relational reasoners to arrange objects such as setting a dinner
table by statistical relational learning. Yang et al. [22], [23]
proposed a manipulation action tree bank to represent actions
of manipulations at multiple levels of abstraction.

Our recent work [24], [25] investigated object categoriza-
tion and action recognition using an object-object-interaction
affordance framework. We have developed an approach to
capitalize on the strong relationship between paired objects
and interactive motion by building an object relation model
and associating it with a human action model in the human-
object-object way to characterize inter-object affordance, and
thus use the inter-object affordance relationship to improve
object and action recognition.

Similar to the mirror neurons in human brains that con-
gregate the visual and motor responses, a novel FOON is
presented in this paper which connects interactive objects
with their functional motions to represent manipulation tasks.
The proposed novel FOON focuses on the core of a manipu-

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea

978-1-5090-3761-2/16/$31.00 ©2016 IEEE 2655

lation task that is determined by both the objects’ states and
the objects’ functional motions, which are represented in the
FOON as connected nodes. The connections between them
represent two-way dependencies that are the functional mo-
tions depending on the objects’ states and the resulting state
depending on the functional motion. The FOON provides
structured knowledge about not only the objects and their
states, but also about the relationship between the functional
motions and the states. From a manipulation goal, the FOON
can be searched to find the objects involved, their desired
states, and the functional motions to achieve those states.

II. FUNCTIONAL OBJECT-ORIENTED NETWORK

The proposed FOON is a bipartite network that contains
motion nodes and object state nodes. In general, an interac-
tive manipulation motion of multiple objects would cause
their states to change from so-called input objects states
to outcome objects states. Therefore, we connect the input
object state nodes to the outcome object state nodes through
the manipulation motion node. This arrangement would only
allow the object state nodes to be connected to motion nodes
and the motion nodes to be connected to object nodes, which
forms a bipartite network.

A. Nodes

The nodes in a bipartite FOON have two types: object state
O or motion M. In a manipulation task, an object state node
NO represents an object in a certain state, which is either
manipulated by a manipulator or is passively interacting with
another object. For example, in a cooking task, a person
chops a tomato with a knife. Here, both the tomato and the
knife are objects. Initially, the tomato has a state “whole” and
the knife has a state “clean”. After a chopping motion, which
is a motion node, the outcome object states are chopped
tomato and dirty knife. A motion node NM contains the
type of the manipulation. From this point, we use “object
node” that is short for “object state node.” Objects may also
be seen as containers of other objects, typically ingredients.
These would cover objects such as bowls, pans or ovens
which are manipulated with objects within it.

In a FOON, no two object nodes are the same and each
object node in the graph is unique in terms of its name and
attributes. However, a motion node of the exact same type
could appear at multiple locations in the graph, allowing
FOON to contain more information than a regular bipartite
network.

B. Edges

A FOON is identified as a directed graph, as some nodes
are the outcomes of the interaction between other nodes.
An edge is denoted by E that connects two nodes. Edges
are drawn from either an object node to a motion node, or
vice-versa, but no two objects or two motions are usually
connected to each other. FOON can also be represented as
a bipartite graph which can be transformed into a one-mode
projected graph [26]. These representations are required for
network analysis which will be discussed further in the paper.

In addition, if several object nodes have edges connected
to a motion node, it indicates that the objects are interacting
with the motion. If a motion node has edges directed to object
nodes, it indicates that the objects are the outcomes of the
motion.

A FOON can be called a directed semi-acyclic graph; this
means that there may be some instances of loops where a
motion does not necessarily cause a change in an object, as
certain objects will remain in the same state.

Fig. 1: A basic functional unit with two input nodes and two
output nodes connected by an intermediary single motion
node.

C. Functional Unit

A functional unit is considered as the minimum learning
unit in a FOON. It represents the relationship between one or
several objects and one functional motion associated to the
objects. Each unit represents one action which is part of an
activity. As shown in Figure 1, the object nodes connected
with the edges pointing to the functional motion node are
called input object nodes, while the object nodes connected
with the edges pointing from the functional motion node are
called output object nodes.

D. Network Data Structure

A FOON is represented by conventional graph repre-
sentations, namely adjacency matrices and adjacency lists.
We use an adjacency matrix to represent the network for
its simplicity in representing a digraph and for performing
network analysis. Each node is represented by a row, and
its relation to other nodes is given by the columns of the
matrix. An edge from a node Ni to Nj is denoted by a
value of 1, preserving directionality of edges; if two nodes
are not connected, then an index has a value of 0.

Accompanying the adjacency matrix is a node list which
keeps track of all object and motion nodes found in the
graph. This list is needed to map each node to its row/column
representation. Each node also maintains its own list which
provides directional information to other nodes that it is
connected to.

III. LEARNING FOON

Ideally, a FOON can be automatically trained from ob-
serving human activities. However, due to the complexity of
object, state, and motion recognition, we currently construct
many small sets of functional units by labeling instructional
videos. We manually input these functional units by hand
which are then merged together automatically into a single

2656

Fig. 2: A FOON subgraph based on an instructional video on
making a watermelon-strawberry smoothie. The green solid
circles are object nodes and the red solid squares are motion
nodes. The object nodes are labeled with object name and
their states in parentheses. The motion nodes are labeled with
their manipulation motion types.

subgraph for each video. All subgraphs from each video
gathered are then merged into a large universal FOON.

Although the functional units are constructed by humans,
the process of combining the knowledge together is done
algorithmically. The creation of a FOON can thus be seen
as a semi-automatic process in this sense.

A. Creating Subgraphs

We have recruited five volunteers to manually label the
input object states, manipulation motion, and output object
states in instructional videos through an annotating interface
that we have developed. This interface displays the potential
graph which would be made from a given set of functional
units. The annotations are then converted into functional
units with time sequence labels. These functional units are
then connected and combined into a subgraph automatically
using the time sequence labels. For each video, its FOON
subgraph is visualized and verified manually.

Each subgraph provides the essential structured knowledge
needed to prepare the dish including objects (ingredients and
utensils), their states, and their interactive motions. Figure
2 illustrates the FOON subgraph obtained from an online
instructional video.

B. Merging Subgraphs

The universal FOON can be expanded by merging new
subgraphs when many videos are processed. The merging
algorithm is described in Algorithm 1.

Fig. 3: Our current universal FOON that is constructed from
60 videos.

Since subgraphs are created separately by different volun-
teers, they are prone to inconsistencies from different labels.
Therefore, a parser was developed to preprocess all labeled
subgraph files to keep all labeling consistent. The parser has
three main functions: create a main index with a list of all the
objects, updating the input file by relabeling all of the objects
so they are consistent throughout, and creating a records file
that records all changes in any modified files. To keep track
of all data elements, we create a records file that contains
the object name, its old identifier, its new identifier, initial
state, final state, file name, and motion. The parser also finds
possible duplicates in objects or motions through the use of
the WordNet lexical database [27] by comparing the stem
word with the current object index.

Algorithm 1 Merging functional unit FUnew with GFOON

let FUnew be functional unit to merge
found = false;
for all functional unit FUi in GFOON do

if FUi == FUnew then
found = true

end if
end for
if found is true then

Add FUnew to GFOON

Add input nodes NInput to node list
Add output nodes NOutput to node list
Add motion node NMotion to node list

end if

After the nodes are made consistent within all the sub-
graphs, we run the union operation to merge all subgraphs

2657

into a universal FOON graph, one at a time. The universal
FOON is initially empty. The union operator first checks if
the functional unit is already present in FOON. Functional
units are kept unique, and similar units will have almost the
same objects and states found within them. After this process,
objects in the new unit will be added as if they did not exist
in the universal node list; if they exist, a reference is made
to those existing nodes and then the edges are connected to
a new motion node.

So far, we have processed 60 instructional videos on
food preparation. Our universal FOON presently has 2169
nodes (broken down into 1229 object nodes made unique
by states and 792 instances of 57 possible motion nodes)
with 3223 edges after the merging process. These numbers
gradually increase as more subgraphs are continuously being
generated. The low resolution compressed visualization of
the generated universal FOON is shown in Figure 3. The
high resolution image of the FOON is exceptionally large
with a size of more than 200 MB. The full list of videos
and their functional unit subgraphs along with the universal
FOON graph are all available for download at [28].

IV. MOTION LEARNING

For motion generating purpose, the motion type in the
FOON is represented using motion harmonics [29], which
are extracted from demonstrated data using functional prin-
cipal component analysis (fPCA) [30].

We collected the manipulation data used for motion learn-
ing purpose using an OptiTrack 3D motion capture system
in our lab (Figure 4). Although processing an online 2D
video can also produce motion data, those data are 2D and
do not contain enough information for generating executable
motions in the 3D world. With our 3D motion capture
system, we collected the position and orientation of the
objects.

Let X = {x1, x2, ..., xN} represent the data that includes
N trials, where xi(d, t) ∈ R denotes the value of degree d
of trial i at time step t, d = 1, 2, . . . , D, t = 1, 2, . . . , Ti. We
assume that six degrees are used: {x, y, z, φ, θ, ψ}, in which
x, y, z refer to location coordinates and φ, θ, ψ refer to Euler
angles.

Unlike location coordinates, Euler angles invariably have
ranges, such as [−π, π]. For simplicity, we assume the
range is [−1, 1]. Thus, to facilitate optimization for motion
generation, we apply inverse hyperbolic tangent on the angle
trajectory data:

xi(d)← atanh(xi(d)), d ∈ Dq (1)

where Dq represents the set of angular degrees.
We use batch Dynamic Time Warping (DTW) [31] to

align the trials and obtain Y = {y1, y2, ..., yN}, where
yi(d, t) ∈ R corresponds to xi, t = 1, 2, . . . , T , and T is
the common trajectory length. Applying fPCA to data Y , we
obtain the mean trajectory ḡ(d, t) ∈ R, the motion harmonics
g(d, t) ∈ RM where M is the number of motion harmonics,
and the weights ci(d) ∈ RM , i = 1, 2, . . . , N . We assume the

Fig. 4: The OptiTrack motion capture system with which we
collect data for motion learning. The system consists of six
motion capture cameras on tripods. Within the blue area on
the desk are two objects with reflective markers attached to
them.

weights are produced from a Gaussian distribution, whose
maximum likelihood parameters equal the sample mean
µ(d) ∈ RM and sample covariance Σ(d) ∈ RM×M of the
weights. Thus the Gaussian is denoted by N (µ(d),Σ(d)).

To summarize, the motion demonstrated in the data is
represented by

Θ = (g(d, t), ḡ(d, t),N (µ(d),Σ(d))) , d = 1, 2, . . . , D
(2)

We direct readers to [29] for more detail of motion harmonics
as a motion representation.

V. ANALYSIS OF FOON

We primarily focus on determining the most central or
important nodes in our network. The importance of the node
will lie in the frequency of this node in the interaction of one
node with many other nodes. This measure of importance in
networks is referred to as centrality, and this is a computed
value that is assigned to each node. There are many ways of
computing the centrality, and the measures we have applied
to FOON were degree centrality, eigenvector centrality and
Katz centrality [26]. The one-mode projected network is used
specifically for centrality analysis on objects to observe the
relationship between tools and ingredients used in a FOON.

We can apply the information obtained to our specific
application, where we can determine from the object nodes
which objects need to be frequently used by the robot, and
from the motion nodes which manipulation skills are the
most important for the robot to learn well.

A. Object Centrality

We chose to look at the relationship between objects
by converting it into a one-mode projected network [26].
The one-mode projection removes all intermediary motion
nodes and so all object nodes are directly connected to one

2658

Fig. 5: Graph showing the objects found with the ten (10)
highest and lowest centrality values. The higher the value,
the more important a node is. Objects are also classified as
utensils (shown in blue) and ingredients (shown in red).

another; in this way, we can also investigate object-object
relationships. Objects are connected to each other based on
the direction of edges in all functional units in FOON.

These values are not integer values, as the computations
involve more than simply counting the node’s degree. We
should not only be concerned with the degree of each node,
but we also ought to consider the influence of all nodes
connected to every other node.

Our findings for the most important nodes when using
these three measures were the same when not considering
states; the bowl object was found to be the most important
object with a total of 72 edges. Other objects along with their
Katz centrality values are illustrated in Figure 5.

We can use this information in determining the objects
which require the most attention in mastery and skill in
manipulating them. The centrality values also let us know
which objects are in high demand in recipes across the entire
network; this is important for us to know so that we ensure
that these objects are available in our working environment.

B. Motion Frequency

We also consider the frequency at which objects and
motions appear in our network, which we can use for
determining the most likely action to occur at a given time
and with a given object. We do this by counting the number
of instances of each motion belonging to a functional unit
that were found in the network.

The most frequent motion observed out of 57 possible
motion types is the pick-and-place motion. This makes
sense as there is much translation and movement of objects
when preparing meals. For us, this means that robots used
for cooking tasks should have mastered the pick-and-place
motion for different objects.

The next motion found to be frequent is the pour motion.
We believe this is due to the nature of cooking, where items
are usually mixed together or put into containers from other
objects. The top 10 motion frequencies can be found in
Figure 6. These values were found after the merging process,
and so these are the most frequent nodes after compression

Fig. 6: Graph showing the top 10 motions observed in our
universal FOON (out of 798 motion instances).

of the network. We can say that these do reflect the reality
of cooking in the kitchen.

With these probabilities, we hope to improve our structure
to behave more like a typical probabilistic graphical model
within the next phases of our project. The frequencies can
be used for compressing FOON even further by possibly
removing the need for duplicate motion nodes. When paired
with the objects, our system would be able to determine the
next likely outcome for each object and thus making robot
manipulations easier to perform.

VI. MANIPULATION KNOWLEDGE RETRIEVAL

The universal FOON can be considered as a structured
knowledge representation that can be used for solving ma-
nipulation tasks. Given a desired goal and a set of available
objects, formally, there are two steps in generating manipu-
lations from the FOON: retrieving a task tree and generating
the motions needed to accomplish the task. The approach is
a combination of the breadth-first search and the depth-first
search as a specialized application of the branch-and-bound
algorithm.

A. Retrieving Task Tree

First, a goal node NGoal in the FOON is identified as a
desired goal. The initial task tree Ttask will be empty. Ttask
will be populated with functional units which make NGoal.
To guide our searching process, we require a set of lists: a list
of all items in the environment (Lscene), a list of items we
do not know how to make (Lsearch), and a list of functional
units which produce nodes in Lsearch (S).

We begin by adding NGoal to our list of items to search
Lsearch. We then search the universal FOON GFOON for all
procedures which make the head of Lsearch which is denoted
as NCurrent; we would add these units to list S. Once this
list is fully populated, we then search for the functional
unit FUi in S which we can execute in its entirety. This is
determined by the availability of objects in each functional
unit as listed in Lscene. If we find all input objects NInput in
any unit, we can add this unit to Ttask and mark NCurrent

as seen. However, if we cannot find any functional unit that

2659

can be executed fully due to missing objects, then we add
the items NInput to Lsearch so we can figure out how to
make them.

We repeat the search for functional units that make
NCurrent instances as long as there are items in Lsearch

that we need to know how to make, especially NGoal. We
do this process entirely until it has been determined that there
is no possible way of solving the manipulation task (due to
shortage of items) or we have found an executable task tree.
We will know that a task tree sequence is found when NGoal

has been marked as being “solveable”.

Algorithm 2 Retrieval of task tree using branch-and-bound

let NGoal be the desired output node, Lscene be list of
objects in scene, Lsearch be list of objects to search, Ttask
be final task tree, NCurrent be head of Lsearch, S be list
of functional units that make NCurrent

Lsearch = {NGoal}
while NGoal not found do
NCurrent = Lsearch[0]
for all FUi in GFOON do

if NCurrent in NOutput of FUi then
Add FUi to S

end if
end for
for all FUi in S do

for all NInput in FUi do
if NInput not in L then
Lsearch = {Lsearch, NInput}

end if
end for
if all NInput of FUi in L then
Ttree = {Ttree, FUi}
remove all FU in S that make NCurrent

end if
end for

end while

This searching procedure can also be adjusted to make
use of weights which act as heuristics and constraints on the
creation of a task tree. These heuristics can be a cost value
that is associated with each motion, influencing the selection
of functional units which are added to Ttask. We hope to
improve the quality of our search through the use of cost
values reflecting the complexity of motions or finding the
shortest path to accomplishing a goal.

We now demonstrate an example of task tree searching
with an example FOON shown in Figure 7. One example
task tree we obtained by searching this case is shown in
Figure 8. For emphasis, the graph has been color-coded to
distinguish between functional units of two subgraphs; video
1 is denoted by the lime-green object nodes and the red
motion nodes, video 2 is denoted by the dark-green object
nodes and the indigo motion nodes, and the overlapped
functional units are denoted by the yellow object nodes
and orange motion nodes. The goal is to make cooked ribs

Fig. 7: Example of a FOON merging two ways of preparing
cooked ribs barbecued ribs (node in purple) using available
objects (in blue).

(highlighted in purple) given a set of objects observed in the
scene (highlighted in blue). We can start at these blue nodes
to arrive to our goal. These nodes can be viewed as root
nodes in basic tree structures, except that a tree does not
typically have multiple roots. The path we take is entirely
dependent on the availability of the objects in the robot’s
environment.

The ability to merge and combine knowledge into one
single network makes our network very powerful and useful.
Within a universal FOON lies many possible task trees for
different scenarios. These possibilities can be an entirely
novel way of executing a task, as there may be several ways
of creating a particular meal. Our task sequences therefore
will not necessarily follow the entire procedure from a
single video source. For example, there are many ways to
prepare a sauce for meat, and by using the knowledge on
how to prepare sauces with a variety of ingredients we can
compensate for the unavailability of certain items needed if
we instead followed one recipe. The novelty not only comes
from the possibility of different task sequences, but also in
the flexibility in how we prepare the meals.

B. Motion Generating

The task tree is then used to generate a task sequence that
contains a series of motions, objects, and their states, which
provides step-by-step commands executable by a robot. After
a functional unit in the task tree is provided and the involved
objects are identified in an environment, a new trajectory of
the motion needs to be generated using the locations of those
objects as constraints. The new trajectory is generated using
motion harmonics, given by:

2660

Fig. 8: Task tree showing the steps needed to prepare
barbecued ribs (highlighted in purple) using available objects
(in blue) to create objects of other states.

ynew(d, t) =

{
ḡ(d, t) + c(d)>g(d, t) + c0(d) d /∈ Dq

tanh
(
ḡ(d, t) + c(d)>g(d, t) + c0(d)

)
d ∈ Dq

(3)
where weights c(d) and c0(d) are the variables, and >
denotes transpose. Let De denote the set of degrees on
which constraints are imposed. Let es(d) represent the s-
th constraint on degree d ∈ De, and ts be the time stamp of
es(d), s = 1, 2, . . . , S. The new trajectory tries to resemble
the demonstrated data as well as meeting the constraints. For
d /∈ De, c(d) = µ(d) and c0(d) = 0. For d ∈ De, we define
the loss function as:

L =
1

2

∑
s

(
es(d)− ḡ(d, ts)− c0(d)− c(d)>g(d, ts)

)2
+
λ

2
(c(d)− µ(d))

>
Σ(d)−1 (c(d)− µ(d)) , (4)

where λ is a hyperparameter chosen by the user. The optimal
weights that minimize L are obtained by first computing c(d)
by solving Ac(d) = b, where

A =
∑
s

g′(d, ts)g
′(d, ts)

> + λΣ(d)−1 (5)

b =
∑
s

f ′s(d)g′(d, ts) + λΣ(d)−1µ(d), (6)

g′(d, ts)
def
= g(d, ts)− 1

S

∑
s g(d, ts),

f ′s(d)
def
= fs(d)− 1

S

∑
s fs(d), and fs(d)

def
= es(d)− ḡ(d, ts);

and then use c(d) to compute c0(d):

c0(d) =
1

S

(∑
s

fs(d)− c(d)>
∑
s

g(d, ts)

)
. (7)

Fig. 9: In degree x and y, the new trajectory meets the
constraints well. Without constraints, the rest degrees of the
new trajectory equal the mean of the data. The ‘data traj’ (in
dark yellow) have been aligned using DTW.

Figure 9 shows one example: a generated pouring motion
trajectory in a new environment with a new relative start and
target positions between a cup and a teapot. The pouring
motion was learned from twenty trials of pouring instances.
According to the new relative position of pair, we applied two
constraints to x and y, which represent the start and target
of the new pouring motion: e1 = [1, 0.5]>, e2 = [0.3, 0.3]>,
t1 = 1, t2 = 490. We set λ = 1e − 6. From the results in
Figure 9, we can see that the generated trajectory resembles
the learning and satisfies the new constraints. Currently our
motion generation process does not consider dynamic or
kinematic constraints of the actual robot.

We have developed a simulated kitchen environment using
Unity to demonstrate the results of the task sequences and
the motion generating approach. We have generated several
manipulation simulations and attached two simulation videos
with this paper.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a FOON representation of
manipulation tasks, which connects interactive objects with
their functional motions. The FOON provides structured
knowledge about the relationship between the object states
and functional object motions, which is valuable for not only
learning manipulation tasks, but also understanding human
activities.

We have developed an approach to construct functional
units using abstracted knowledge of online instructional
videos, mainly cooking videos; this information is extracted
by human users tasked with annotating these functional
units manually. The functional units are then connected into
subgraphs and then merged into a universal FOON through
an automatic process. A large universal FOON is constructed
from 60 online videos which has been made available online.
It has been analyzed to obtain insights of the structure of the
network using centrality measures.

Manipulation knowledge can be retrieved from the FOON
given a manipulation goal using our searching algorithm. The

2661

manipulation knowledge is stored in a task tree sequence
with a series of involved objects, manipulation motions,
and immediate goals. These task trees will not necessarily
follow the same exact procedure as described by a single
recipe or video, making them a flexible and novel way of
manipulating objects based on the knowledge acquired from
several sources.

The motion nodes in FOON are described as a combina-
tion of motion harmonics. With the parameterized represen-
tation, a new motion of a learned type can be generated to
accommodate new constraints in different environments and
motion contexts. Based on the obtained task tree, a sequence
of manipulation motions is generated properly to perform
the desired task. In addition to the examples illustrated
in the paper, generated manipulation motion sequences are
demonstrated in a simulated kitchen environment and two
demo videos are attached with this paper and additional demo
videos are available at [28].

In the future, we plan to perform more network analyses,
such as computing connection strength and efficiency, on
the universal FOON to better understand the dynamics of the
network. Additionally, we hope to integrate probabilities into
our representation using the findings we obtained from the
analyses we have done as well. We are also exploring means
of making FOON more “intelligent” by making inferences
based on object similarity. For instance, even though we have
not seen how certain objects are used or manipulated, we
can instead use the knowledge we know and apply it to an
unknown problem. Missing information such as quantities
will also be considered. We are also seeking methods to
which we can solve the problem of automatically generating
a FOON from instructional videos.

ACKNOWLEDGEMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1421418.

REFERENCES

[1] J.J. Gibson. The theory of affordances. In R. Shaw and J. Bransford,
editors, Perceiving, Acting and Knowing. Hillsdale, NJ: Erlbaum,
1977.

[2] G. Rizzolatti and L. Craighero. The mirror neuron system. Ann. Rev.
Neurosci., 27:169–192, 2004.

[3] G. Rizzolatti and Craighero L. Mirror neuron: A neurological approach
to empathy. In Jean-Pierre Changeux, Antonio R. Damasio, Wolf
Singer, and Yves Christen, editors, Neurobiology of Human Values.
Springer, Berlin and Heidelberg, 2005.

[4] E. Oztop, M. Kawato, and M. Arbib. Mirror neurons and imitation: a
computationally guided review. Epub Neural Networks, 19:254–271,
2006.

[5] G. Di Pellegrino, L. Fadiga, L. Fogassi, V. Gallese, and G. Rizzolatti.
Understanding motor events: A neurophysiological study. Exp Brain
Res, 91:176–80, 1992.

[6] V. Gallese, L. Fogassi, L. Fadiga, and G. Rizzolatti. Action represen-
tation and the inferior parietal lobule. In W. Prinz and B. Hommel,
editors, Attention and Performance XIX. Common mechanisms in
perception and action. Oxford University Press, Oxford, 2002.

[7] E.Y. Yoon, W.W. Humphreys, and M.J. Riddoch. The paired-object
affordance effect. J. Exp. Psychol. Human, 36:812–824, 2010.

[8] A.M. Borghi, A. Flumini, N. Natraj, and L.A. Wheaton. One hand, two
objects: emergence of affordance in contexts. Brain and Cognition,
80(1):64–73, 2012.

[9] S. Thill, D. Caligiore, A.M. Borghi, T. Ziemke, and G. Baldassarre.
Theories and computational models of affordance and mirror systems:
An integrative review. Neuroscience and Biobehavioral Reviews,
37(3):491–521, 2013.

[10] G. D. Konidaris, S.R. Kuindersma, R.A. Grupen, and A.G Barto.
Robot learning from demonstration by constructing skill trees. Intl
J Robotics Research, 31(3):360–375, 2012.

[11] B. D. Argall, S. Chernova, and et al. A survey of robot learning from
demonstration. Robotics and Autonomous Systems, 57(5):469–483,
2009.

[12] S. Schaal, S. Ijspeert, and et al. Computational approaches to motor
learning by imitation. Philosophical Transactions of the Royal Society
of London Series B- Biological Sciences, 358(1431):537–547, 2003.

[13] A. Gupta and L. Davis. Objects in action: An approach for com-
bining action understanding and object perception. In Conference on
Computer Vision and Pattern Recognition, pages 1–8, 2007.

[14] H. Kjellstrom, J. Romero, and D. Kragic. Visual object-action
recognition: Inferring object affordances from human demonstration.
Computer Vision and Image Understanding, 115:81–90, 2010.

[15] J. Gall, A. Fossati, and L Gool. Functional categorization of objects
using real-time markerless motion capture. In Conference on Computer
Vision and Pattern Recognition, pages 1969–1976, 2011.

[16] Cornelia Fermüller Yezhou Yang, Yiannis Aloimonos and Eren Erdal
Aksoy. Learning the semantics of manipulation action. CoRR,
abs/1512.01525, 2015.

[17] Alessandro Pieropan, Carl Henrik Ek, and Hedvig Kjellström. Rec-
ognizing object affordances in terms of spatio-temporal object-object
relationships. In 2014 IEEE-RAS International Conference on Hu-
manoid Robots, pages 52–58. IEEE, 2014.

[18] Yifan Shi, Yan Huang, D. Minnen, A. Bobick, and I. Essa. Propagation
networks for recognition of partially ordered sequential action. In
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Pro-
ceedings of the 2004 IEEE Computer Society Conference on, volume 2,
pages II–862–II–869 Vol.2, June 2004.

[19] E. Aksoy, A. Abramov, F. Worgotter, and B. Dellen. Categorizing
object-action relations from semantic scene graphs. In IEEE Intl.
Conference on Robotics and Automation, pages 398–405, 2010.

[20] Eren Erdal Aksoy, Alexey Abramov, Johannes Dörr, Kejun Ning,
Babette Dellen, and Florentin Wörgötter. Learning the semantics of
object-action relations by observation. Int. J. Rob. Res., 30(10):1229–
1249, September 2011.

[21] Dominik Jain, Lorenz Mosenlechner, and Michael Beetz. Equipping
robot control programs with first-order probabilistic reasoning capabil-
ities. In Robotics and Automation, 2009. ICRA’09. IEEE International
Conference on, pages 3626–3631. IEEE, 2009.

[22] Yezhou Yang, Anupam Guha, Cornelia Fermuller, and Yiannis Aloi-
monos. Manipulation action tree bank: A knowledge resource for
humanoids. In Humanoid Robots (Humanoids), 2014 14th IEEE-RAS
International Conference on, pages 987–992. IEEE, 2014.

[23] Yezhou Yang, Cornelia Fermuller, and Yiannis Aloimonos. Detection
of manipulation action consequences (mac). In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2013.

[24] Y. Sun, S. Ren, and Y. Lin. Object-object interaction affordance
learning. Robotics and Autonomous Systems, 2013.

[25] Shaogang Ren and Yu Sun. Human-object-object-interaction affor-
dance. In Workshop on Robot Vision, 2013.

[26] M. E. J. Newman. Networks: An Introduction. Oxford University
Press, USA, 2010.

[27] Christiane Fellbaum. WordNet: An Electronic Lexical Database.
Bradford Books, 1998.

[28] Online FOON graphs and videos. http://www.foonets.com.
Accessed: 2016-07-07.

[29] Y. Huang and Y. Sun. Generating manipulation trajectories using mo-
tion harmonics. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4949–4954, 2015.

[30] J.O. Ramsay and B.W. Silverman. Functional Data Analysis. Springer,
2005.

[31] Athanassios Kassidas, John F. MacGregor, and Paul A. Taylor. Syn-
chronization of Batch Trajectories Using Dynamic Time Warping.
AIChe, 44(4):864–875, April 1998.

2662

