
MSP430 Workshop

STUDENT GUIDE

MSP430 Workshop
Revision 3.01
November 2013

Important Notice

Important Notice
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or
to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on is
current and complete. All products are sold subject to the terms and conditions of sale supplied at
the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time
of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all
parameters of each device is not necessarily performed, except those mandated by government
requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be or
are used. TI’s publication of information regarding any third party’s products or services does not
constitute TI’s approval, warranty or endorsement thereof.

Copyright 2013 Texas Instruments Incorporated

Revision History
July 2013 – Revision 2.22 (based on MSP430G2553 Value-Line Launchpad)

October 2013 – Revision 3.0 (based on MSP430F5529 USB Launchpad)

November 2013 – Revision 3.01

Mailing Address
Texas Instruments
Training Technical Organization
6500 Chase Oaks Blvd Building 2
M/S 8437
Plano, Texas 75023

ii MSP430 Workshop - Introduction

Introduction to MSP430

Introduction
Welcome to the MSP430 Workshop. This workshop covers the fundamental skills needed when
designing a system based on the Texas Instruments (TI) MSP430™ microcontroller (MCU). This
workshop utilizes TI’s integrated development environment (IDE) which is named Code
Composer Studio™ (CCS). It will also introduce you to many of the libraries provided by TI for
rapid development of microcontroller projects, such as MSP430ware™.

Whether you are a fan of the MSP430 for its low-power DNA, appreciate its simple RISC-like
approach to processing, or are just trying to keep your system’s cost to a minimum … we hope
you’ll enjoy working through this material as you learn how to use this nifty little MCU.

MSP430 Workshop - Introduction to MSP430 1 - 1

Administrative Topics

Chapter Topics
Introduction to MSP430 .. 1-1

Administrative Topics .. 1-3
Workshop Agenda ... 1-4
TI Products .. 1-6

TI’s Entire Portfolio .. 1-6
Wireless Products ... 1-7

TI's Embedded Processors ... 1-8
MSP430 Family ... 1-10
MSP430 CPU .. 1-13
MSP430 Memory .. 1-17

Memory Map ... 1-17
RAM .. 1-18
TLV .. 1-18
FRAM .. 1-19

MSP430 Peripherals ... 1-22
GPIO ... 1-22
Timers ... 1-23
Clocking and Power Management .. 1-24
Analog ... 1-25
Communications (Serial ports, USB, Radio) ... 1-26
Hardware Accelerators .. 1-27
Summary ... 1-28

ULP ... 1-29
Profile Your Activities .. 1-30

Launchpad’s .. 1-34
Lab 1 – Out-of-Box User Experience Lab ... 1-35

1 - 2 MSP430 Workshop - Introduction to MSP430

 Administrative Topics

Administrative Topics
A few important details, if you’re taking the class live. If not, we hope you already know where
your own bathroom is located.

MSP430 Workshop - Introduction to MSP430 1 - 3

Workshop Agenda

Workshop Agenda
Here’s the outline of chapters in this workshop.

Chapter 1: “Intro” Provides a quick introduction to TI, TI’s Embedded Processors, as well
as the MSP430 Family of devices.

Chapter 2: “CCS” introduces TI’s development ecosystem. This includes:
− Code Composer Studio (CCSv5)

− Target software, such as MSP430ware and TI-RTOS

− TI’s support infrastructure, including the embedded processors wiki and
Engineer-to-Engineer (e2e) forums.

Chapter 3: “GPIO” This is our introduction to programming with MSP430ware; specifically,
the DriverLib (i.e. driver library) part of MSP430ware. We start out by using it
to program GPIO to blink an LED (often called the “embedded systems version
of ‘Hello World’”). The second part of the lab reads a Launchpad pushbutton.

Chapter 4: “Clocks” This chapter starts at reset – in fact, all three resets found on the
MSP430. We then progress to examining the rich and robust clocking options
provided in the MSP430. This is followed by the power management features
found on many of the ‘430 devices. The chapter finishes up by reviewing the
other required system initialization tasks … such as configuring (or turning off)
the watchdog timer peripheral.

1 - 4 MSP430 Workshop - Introduction to MSP430

http://processors.wiki.ti.com/index.php
http://e2e.ti.com/

 Workshop Agenda

Chapter 5: Interrupts … do you use interrupts? Yep, they’re one of the most fundamental
parts of embedded system designs. This is especially true when your
processor is known as the king of low-power. We examine the sources, how to
enable, and what to do in response to … interrupts.

Chapter 6: Timers are often thought of as the lifeblood of a microcontroller program. We
use them to generate periodic events, as one-shot delays, or just to wake
ourselves up every once in a while to read a sensor value. This chapter
focuses on Timer_A – the primary timer module found in the MSP430.

Chapter 7: USB – Universal Serial Bus is an ideal way to communicate with host
computers. This is especially true as most PC’s have done away with
dedicated serial and parallel ports. We attempt to explain how USB works as
well as how to build an application around it. What you’ll find is that the
MSP430 team has done an excellent job of making USB simple.

Chapter 8: Energia is also known by the name “Arduino”. Energia was the name given to
Arduino as it was ported to the TI MCU’s by the open-source community. Look
up the definition of Energia – and let it ‘propel’ your application right off the
Launchpad.

MSP430 Workshop - Introduction to MSP430 1 - 5

TI Products

TI Products

TI’s Entire Portfolio
It’s very difficult to summarize the entire breadth of TI’s semiconductor products – it’s so far
reaching. But, maybe that’s not to be unexpected from the company who invented the integrated
circuit.

Whether you are looking for embedded processors (the heart of following diagram) or all the
components that sit alongside – such as power management, standard logic, op amps, data
conversion, display drivers, or … so much more – you’ll find them at TI.

Before taking a closer look at embedded processors, we’ll glance at one of the hottest growing
product categories … TI’s extensive portfolio of wireless connectivity.

1 - 6 MSP430 Workshop - Introduction to MSP430

 TI Products

Wireless Products
Wireless devices let us talk through the air. Look ma, no wires.

What protocol or frequency resonates with you and your end-customers? Whether it’s: near-field
communications (NFC); radio-frequency ID (RFID); the long range, low-power sub 1-GHz;
ZigBee®; 6LoPan; Bluetooth® or Bluetooth Low Energy® (BLE); ANT®; or just good old Wi-Fi –
TI’s got you covered.

Many low-end, low-cost MCU designers have longed for a way to connect wirelessly to the rest of
the world. TI’s wireless devices and modules make this possible. No longer do you need a
gigahertz processor to run the various networking stacks required to talk to the outside world –
the TI SimpleLink line handles this for you … meaning that any processor that can communicate
via a serial port can be networked. Drop a CC3000 module into your design and you’ve enabled it
to join the Internet of Things revolution.

Check out TI’s inexpensive, low-power and innovative wireless lineup!

MSP430 Workshop - Introduction to MSP430 1 - 7

TI's Embedded Processors

TI's Embedded Processors
Whether you are looking for the MSP430, which is the lowest power microcontroller (MCU) in the
world today … or the some of the highest performance single-chip microprocessors (MPU) ever
designed (check out Multicore) … or something in between … TI has your needs covered.

To start with, look at the Blue/Red row about ⅓ the way down the slide. The columns with Red
signify devices utilizing ARM processor cores. If you didn’t think TI embraces the ARM lineup of
processors, think again. TI is one of the leaders in ARM development, manufacturing and sales.

Jumping to the 3rd column, the Tiva C (Tiva Connected) processors are probably the best all-
around MCU’s in use today. The 32-bit floating point ARM Cortex-M4F core can be connected to
the real-world by a dizzying array of peripherals. They provide a near-perfect balance of
performance, power, and connectivity.

On the other hand, if you’re building safety critical applications, the Hercules family of processors
is what you should key in on. Whether your customers appreciate the safety of dual-core,
lockstep processing or the SIL3 certification, these processors are a unique mix of ARM Cortex-
R4 performance combined with TI’s vast SafeTI® knowledge.

Moving up to what ARM calls their ‘Application’ series of processors, TI set the processing world
on fire (figuratively) when they introduced the Sitara AM335x. That you could get a $5 processor
which runs Linux, Android or other high-level operating systems was jaw-dropping. We probably
didn’t make some PC manufactures happy – we’ve seen many of our customers replace bulky,
power-hungry embedded PC’s with small, low-power BeagleBoard-like replacements. This device
was the inflection point – it’s started a new direction for embedding high-level host systems.

1 - 8 MSP430 Workshop - Introduction to MSP430

 TI's Embedded Processors

And if you’re looking for the high-end ARM Cortex-A15, we’ve got that too. Take your pick: do
you want one … or up to 4 A15 cores on a single device? And these multi-core devices also pack
the number crunching of TI’s C66x line of DSP cores. When high-end performance processing is
critical to your systems, look no further than TI Multicore.

But as one student asked, “If ARM is so great, why do you make other types of processors?”

While ARM is probably thought of today as the best all-around set of processor cores, there are
areas where it can be improved upon.

Driving to the lowest-power dissipation is one of those areas. In the end, the venerable MSP430
is not to be outdone on the low end. As the MSP430 teams says, Ultra Low-Power (ULP) is “in
our DNA”. You know you’re doing something right when the 10-year shelf-life of the battery ends
up self-dissipating before you run it dry with your MSP430 design. It’s just hard to beat an MCU
designed from the ground up as a low-power CPU. That said, it’s also hard to beat the MSP430’s
simple, inexpensive, high-performance RISC engine.

The C2000 family has set the standard for control applications. Whether it’s digital motor control,
power control or one of the many other control-oriented MCU applications, this CPU really
crunches the data. You might also see a little Red in this column. That’s to indicate that even a
good DSP-based microcontroller can use a little bit of ARM to get a leg-up in the industry. We’ve
coupled an ARM Cortex-M3 along with the C28x core to make a stellar processing duo. Use the
ARM to run your networking and USB stacks – all the while the C28x core is taking care of your
system’s real-time processing needs. Sure, you could buy two chips to implement your systems
(we’ll happily sell you a C28x along with Tiva C), but these devices integrate them both into a
singular device.

Finally, TI is known by many as the center of DSP excellence. While these CPUs often get lost in
all the hoopla surrounding ARM today, when it comes to real-time systems, a good DSP is hard
to beat. Whether you’re implementing a low-power system (look to C5000 DSP’s) or need the
number crunching performance of the C6000, these devices still cannot be bested in the world of
hard real-time, low-latency, highly deterministic applications. As mentioned earlier, the highest
performing C6000 DSP cores have been combined into the awesome performance of Multicore.
You can get up to 8 CPU’s on a single device; make them all C66x DSPs – or match four C66x
CPU’s up with four of ARM’s stunning Cortex-A15’s for a performance knock-out punch.

MSP430 Workshop - Introduction to MSP430 1 - 9

MSP430 Family

MSP430 Family
As stated, low-power is ‘in our DNA’. That said, it’s not all the MSP430 is known for.

One vector of new products has continued to integrate a wide range of low-power peripherals into
the MSP430 platform. Look for the products in the MSP430 F5xx, F6xx and FR5xxx families.
Also, the CC430 family adds the unique touch of on-chip integrated RF radios.

1 - 10 MSP430 Workshop - Introduction to MSP430

 MSP430 Family

A second vector of development is driving the cost out of your designs. Look no further than the
'Gxxx Value Line series of devices. The goal is to provide highly integrated, low-power, 16-bit
performance in an inexpensive device – giving you a new choice versus those old 8-bit micros.

And finally, the new MSP430 Wolverine series of devices is once again setting new standards for
low-power processing. Sure, we’re only topping our own products, but who else is better suited to
enable your lowest power processing needs? Utilizing the FRAM memory technology, the FR5xxx
Wolverine devices combine the lowest power dissipation with a rich integration of peripherals.

MSP430 Workshop - Introduction to MSP430 1 - 11

MSP430 Family

Here’s a quick overview of the device we’ll be using in this workshop. The MSP430F5529 is part
of the F5xx series of devices and is found on the new ‘F5529 USB Launchpad.

This is one of TI’s line-up of MSP430 devices featuring highly integrated set of peripherals. We
will be exploring quite a bit more about this device as we progress through the workshop.

1 - 12 MSP430 Workshop - Introduction to MSP430

 MSP430 CPU

MSP430 CPU
As stated earlier, the MSP430 is an efficient, simple 16-bit low power CPU. Its orthogonal
architecture and register set make it C-compiler friendly.

The original MSP430 devices were true 16-bit processors. While 16-bits are quite ideal from a
data perspective, it’s limited from an addressing perspective. With 16-bit addresses, you’re limited
to only 64K of memory – and that really isn’t acceptable in many of today’s applications.

As early as the second generation of MSP430 devices, the CPU was expanded to provide full 20-
bits of addressing space – which provides 1M of address reach. The new CPU cores that support
these enhancements were called CPUX (for eXtended addressing). Thankfully, the extended
versions of the CPU maintained backward compatibility with the earlier devices.

In this course, we don’t dwell on these CPU features for two reasons:
• This change was made long enough to go that all the processors engineers choose today

include the enhanced CPU.

• With the prevalence of C coded applications in world of MSP 430, and embedded processing
in general, these variations fall below our radar. The compiler, handily, manages low-level
details such as this.

MSP430 Workshop - Introduction to MSP430 1 - 13

MSP430 CPU

There are many touches to the MSP430 CPU which make it idea for low-power and
microcontroller applications, such as the ability to manage bytes, as well as 16-bit words.

Note: If you see a ‘gray’ slide like the one above and below were placed into the workbook, but
has been hidden in the slide set, so the instructor may not present it during class.

1 - 14 MSP430 Workshop - Introduction to MSP430

 MSP430 CPU

A rich set of addressing modes lets the compiler create efficient, small-footprint programs. And,
features like ‘atomic’ addressing are critical for real-world embedded processing.

The little bit of genius that is the Constant Generator minimizes code size and runtime cycle
count. These ideas save you money while helping to reduce power dissipation.

MSP430 Workshop - Introduction to MSP430 1 - 15

MSP430 CPU

A low number of instructions are at the heart of Reduced Instruction Set Computers (RISC). RISC
lowers complexity, cost and power … while, surprisingly, maintaining performance.

1 - 16 MSP430 Workshop - Introduction to MSP430

 MSP430 Memory

MSP430 Memory

Memory Map
We present the MSP430F5529 memory map as an example of what you find on most MSP430’s.
It’s certainly what we’ll see as we work though the lab exercises in this workshop.

A couple of important – and beneficial – points about MSP430’s memory map:
• The MSP430 defines a unified memory map. This means that, technically speaking, data

and program code can be located anywhere in the available memory space. (This doesn’t
mean it’s practical to locate global variables in flash memory, but the architecture does not
prevent you from doing so.)

• The MSP430, as stated earlier (see page 1-13), is implemented using 20-bit addressing;
therefore, the MSP430 can directly address the full 1M memory map without resorting to
paging schemes. (If you have ever had to deal with paging, we expect you might be cheering
at this point.)

Flash
Like most MCU’s nowadays, the processor is dominated by non-volatile memory. In this case,
Flash technology provides us with the means to store information into the device – which retains
its contents, even when power is removed. (As we’ll see next, some of the latest MSP430 devices
use FRAM technology rather than Flash.)

MSP430 Workshop - Introduction to MSP430 1 - 17

MSP430 Memory

The flash memory is In-System Programmable (ISP), which means we can reprogram the
memory without taking the chip off of our boards or using difficult bed-of-nails methods. In fact,
you can program the flash using:
• An IDE, such as CCS or IAR. These debugging tools utilize the 4-wire JTAG or 2-wire SPI-

biwire emulation connections.

• The MSP430 Boot-Strap Loader supports a variety of connections and options. For example,
you can use the serial (or USB) interfaces to reprogram your devices. These interfaces are
popular on many manufacturing work flows.

• Finally, you can reprogram all – or part – of the flash memory via your own program running
on the device itself. Check out the MSP430ware FLASH driverlib functions.

On the ‘F5529, as with most MSP430 devices, the Flash actually consists of 3 regions.

Main consists of the bulk of flash memory. This is where our programs are written to when using
the default project settings. Main flash consists of one contiguous memory; although, the Interrupt
Vectors are located inside of it at 0xFF80. If your device has more than 64K of flash, then some
will exist above and below the vectors – as shown in the diagram for the ‘F5529 (which has 128K
of flash).

Info Memory can be thought of as user data flash. Again, there are not any limitations on what
you store here, but these four segments are commonly used to hold calibration data or other non-
program items you want to store in non-volatile memory.

Boot Loader (BSL) holds the aforementioned boot loader code. This code, in turn, is used to
load new programs into Main flash. Please be aware that the BSL is handled differently amongst
the various generations of MSP430. In some cases, as with the ‘F5529, it is stored in its own
region of flash memory. On other devices, it may be hard-coded into the device.

RAM
RAM (Static Random Access Memory – SRAM) is found on every MSP430 device. Like flash,
though, the amount of RAM varies from device to device; and the amount of RAM memory is
often directly proportional to the cost of the device.

RAM is where most of the data is stored: everything from global variables, to stacks and heaps. It
is often thought of as the ‘working’ memory on the device. Even so, due to the ‘unified’ nature of
the MSP430 architecture, you can also move program code into RAM and run from this space.

The ‘F5529 has one aspect that is common among MSP430 devices which include the USB
peripheral. These devices have an extra 2KB of RAM; this RAM is dedicated to the USB
peripheral when it is in use, but available to your programs when the USB port is not being used.
Please refer to the USB Developers Package documentation to learn more about how the USB
protocol stack uses this RAM.

TLV
Although not ‘memory’, the Device Descriptors (TVL) does appear within the memory map. This
segment contains a tag-length-value (TLV) data structure that comprises a hierarchical
description (or on older devices, flat file description) of information such as: the device ID, die
revisions, firmware revisions, and other manufacturer and tool related information. Additionally,
these descriptors may contain information about the available peripherals, their subtypes and
addresses. This info may prove useful if building adaptive hardware drivers for operating
systems. (Note that some of the Value Line devices may not contain all of this information; and,
their factory supplied calibration data may reside in Info Memory A.)

1 - 18 MSP430 Workshop - Introduction to MSP430

 MSP430 Memory

FRAM
Some of the latest MSP430 devices from TI now use FRAM in place of Flash for their non-volatile
memory storage. For example, you will find the Wolverine (FR58xx, FR59xx) devices utilize this
new technology.

Actually, FRAM is not a brand new technology. It has been available in stand-alone memory
chips for nearly a decade. It is quite new, though, to find it used within micros.

In brief, the MSP430 FRAM provides some exciting new features in our MCUs:
• FRAM memory is a nonvolatile memory that reads and writes like standard SRAM

• It supports Byte or word write access

• A nearly limitless re-write capability – ‘we haven’t worn it out yet’

• Very fast write cycles – much faster than Flash or EEPROM

• Very low power – unlike Flash memory, it only takes 1.5V to write and erase FRAM (really
ideal for low-power data logging applications)

• Error Correction Code with bit error correction, extended bit error detection and flag indicators

• Power control for disabling FRAM if it is not used – and due to non-volatile nature, it naturally
does not lose its contents in the process of powering down

MSP430 Workshop - Introduction to MSP430 1 - 19

MSP430 Memory

As stated above, FRAM can be read and written in a similar fashion to SRAM and needs no
special requirements. This provides a big value in letting you choose how to use your memory; in
other words, if your system needs “a little bit more RAM”, this can be accomplished by locating
your data in FRAM.

The downside, of course, is that your program could be just as easily overwritten in the same
fashion. (We shouldn’t have code that writes to program addresses – but accidents occur.) To
this end, the FRAM based devices provide a memory protection unit (MPU) that lets you create 1
to 3 segments of FRAM. Often, these segments are set for: Execute only, Read only, and
Read/Write.

The other two caveats to FRAM are that reads are a bit slower than Flash and their density is not
as great as we can build using flash technology. On the other hand, the benefits are an
outstanding fit for many MSP430 types of applications.

1 - 20 MSP430 Workshop - Introduction to MSP430

 MSP430 Memory

This graphic speaks to the earlier comment about the trade-offs between Flash and RAM. We
have seen users who are forced into purchasing a larger, more expensive MCU just to get a little
bit more RAM. The flexibility of FRAM allows your programs to use the non-volatile storage for
things like variables and buffers. This flexibility often ends up lowering your overall system costs.

MSP430 Workshop - Introduction to MSP430 1 - 21

MSP430 Peripherals

MSP430 Peripherals
This section provides a high-level overview of the various categories of MSP430 peripherals.

GPIO
MSP430 devices contain many I/O ports. The largest limitation is usually the package selection –
a lesser pin-count package means less General Purpose bit I/O.

Like most current day microcontrollers, the pins on our devices are heavily multiplexed. That is,
you often have one of several choices of signals that can be output to a given pin. The MSP430
makes each signal independently programmable, which affords maximum flexibility.

Other handy GPIO features include:
− I/O ports 1 and 2 can generate interrupts to the CPU. (Some devices support interrupts

on additional I/O ports.)

− Pull-up and Pull-down resistors are available as part of the I/O port, simplifying your
board design.

− Many devices can lock the state of the pins when going into the lowest power modes,
which again saves the effort , power, and cost of adding external transceivers to
accomplish this purpose.

− Finally, many I/O ports include ‘touch’ circuitry. This additional circuitry makes it easy to
implement capacitive touch based interfaces in your systems – all without having to add
extra hardware.

1 - 22 MSP430 Workshop - Introduction to MSP430

 MSP430 Peripherals

Timers

As stated earlier, timers are often thought of as the heartbeat of an embedded system. The MSP430
contains a number of different timers that can assist you with different system needs.

Timer _A (covered in detail in Chapter 6) is the original timer found across all MSP430 generations.
And there is a reason for that, it is quite powerful, as well as flexible.

These 16-bit timers contain anywhere from 2 to 7 capture/compare registers (CCR). Each CCR can
capture a time value when triggered (capture mode). Alternatively, each CCR could be used to
generate an interrupt or signal (internal or external via a pin) when the timer’s counter (TAR) matches
the value in the CCR (compare mode). Oh, and each CCR is independently programmable – thus
some could be used for capture while others for compare.

Using the CCR feature, it is easy to create a host of complex waveforms – for example, they could be
used to generate PWM outputs. (Something we’ll explore in Lab 6.)

Timer_B is nearly similar to Timer_A. It provides the ability to use the internal counter in 8/10/12 or 16-
bit modes. This affords it a bit more flexibility. Additionally, double-buffered CCR registers, as well as
the ability to put the timer outputs into high-impedance, provide a couple of additional advantages
when driving H-bridges and such.

Timer_D takes Timer_B and adds a higher resolution capability. (BTW, we’re not sure what happened
to Timer_C…)

RTC (real-time clock) peripherals not only provide a time base, but their calendar and alarm modes
make them ideal for clock/calendar types of activities. More importantly, they have been designed to
run with extremely low power. This means they can provide a heartbeat while the rest of your system
is asleep.

Watchdog timers provide two different functions. In their namesake mode, they act as failsafe’s for the
system. If your code does not reset them before their counter reaches the end, they reset the system.
This functionality is ALWAYS enabled at boot. You can also choose to use them as an interval timer.

MSP430 Workshop - Introduction to MSP430 1 - 23

MSP430 Peripherals

Clocking and Power Management
MSP430 Clocks (Chapter 4)
The MSP430 devices provide a rich, robust set of clocking options.

Rich in that they provide a great number of on- and off-chip clock sources. Further, there are
three internal clocks routed to the CPU and various peripherals. Why three? Simply, there's a
clock for the CPU and two clocks for the peripherals - one fast and the other slow - with goal of
providing the user a balance of performance and low power. Of course, some of the devices
provide more clock choices than others.

Robust clocking in that there are defaults and failsafe’s for all of the various clocks. These failsafe
clocks choices can be particularly important for some applications. Imagine a crystal oscillator
being forcibly removed from the board - or maybe just broken - when your end-product is
accidentally damaged in use. It's nice to know there are internal alternatives that let your product
continue working in a well-documented state.

Please turn to the Clocking chapter for further information.

Power Management
Power is one of those features that every system needs but doesn't often get highlighted. All of
the MSP430 devices provide some level of Power Management. On the most cost-sensitive, it
might only be a Brown-Out Reset (BOR) peripheral - which makes sure there is enough power
going to the device to assure proper, stable operation. The other notable point is that BOR was
designed with extreme sensitivity to low-power system needs.

On other devices you'll find BOR plus an increasing set of power management peripherals. For
example, the 'F5529 device adds an LDO (low dropout voltage regulator) which derives a steady
CPU voltage from that applied to the device. (Normally, voltage regulation is handled by an extra

1 - 24 MSP430 Workshop - Introduction to MSP430

 MSP430 Peripherals

device in your system.) The 'F5529 also contains a sophisticated power supervisor to warn (i.e.
interrupt) your system when the power is getting close to out-of-spec.

Power gating is another feature found on most of the MSP430 devices. The basic idea is that we
want to power-down anything that is not needed.

Analog
Bringing high-quality analog components on-chip was a big selling point of the original MSP430
devices - and still is today. Besides providing high-quality analog, they've done it with a low-
power footprint, too.

MSP430 analog peripherals cover a wide range of needs. At one end, you'll find most every
device contains one or more analog comparators. These signal the processor when an analog
input crosses a boundary. (Comparators are often used to build a "poor mans" analog to digital
converter.)

In many systems, though, you will want an actual ADC (analog to digital) converter. The MSP430
family provides a wide variety of options. In fact, some designers select their specific MSP430
device based upon which type of converter they want to use.

Almost regardless of the type of analog component, they have a few key features in common.
The ability to generate interrupts is fundamental. Also critical are the ability to trigger conversions
based on timers; and couple that with using DMA's to transfer the results to memory sans CPU.

MSP430 Workshop - Introduction to MSP430 1 - 25

MSP430 Peripherals

Communications (Serial ports, USB, Radio)
We specifically chose the name "Communications" for this category, rather than the more
common "Serial Communications" It's true that most of the communications ports utilize serial
connections; this is due to the lower cost and power of using fewer pins. But, in the end, we didn't
want to overlook the growing support for wireless communications.

The additional of radios to some MSP430 devices makes them quite unique in the industry.
Beyond that, TI has created wireless chips and modules that can be used from any MSP430
device. It's really telling when the cheapest Value Line MSP430 device can actually talk Wi-Fi
using TI's CC3000 module. A similar story can be shown across TI's complete portfolio of
wireless technologies. In the end, TI is enabling a very low-cost entry point into the "Internet of
Things".

Let's not forget the various MSP430 serial ports. They are the workhorses of communications.
There are a variety of serial modules, from UART, to SPI, to I2C.

1 - 26 MSP430 Workshop - Introduction to MSP430

 MSP430 Peripherals

Hardware Accelerators
One question that is often asked, "Why would you put dedicated hardware accelerators onto low-
cost, low-power processors?"

It's an interesting question ... with a very practical answer. If a specific functionality is required,
accelerators are the most efficient implementation. Take for example, the CRC or AES modules;
serial (and wireless) communications are often requiring these functions to make the data
transmissions robust and secure. To implement these functions in software is possible, but would
actually consume a lot more power. Further, the memory footprint for an algorithm (code and
data) often ends up greater than the smaller footprint of the hardwired accelerator. Thus, where it
makes sense, you'll see TI adding dedicated hardware modules.

Another example is the multiplier. We can benefit from it without any programming effort, since
the compiler automatically uses this hardware, when it's available.

With regards to the Direct Memory Access (DMA) peripheral, we caution you ... if you find
yourself using memcpy() in your code, you should investigate how the DMA might save you time
and power. It also should be utilized in your peripheral driver software whenever and wherever it's
available.

MSP430 Workshop - Introduction to MSP430 1 - 27

MSP430 Peripherals

Summary
Many of the peripherals we've just outlined are covered - in detail - within their own chapters.
Over time, we'll be adding more chapters to the course to cover additional peripherals.

1 - 28 MSP430 Workshop - Introduction to MSP430

 ULP

ULP
Does Low Power matter? Our answer is a resounding YES!

Some end-products are only enabled by low-power operation. For example, a wrist watch that
cannot make it through a single day would be of little value.

But even when the application does not demand low power, we think it still matters. The trend in
electronics over the past few years has been, "Why consume power if you don't have to?" In fact,
the MSP430 has found many new applications in the last couple of years where end-users are
demanding the reduction of 'phantom load', also known as 'vampire power'. This can be defined
as the dissipation of power when electronic products are in standby mode (or even when
switched off completely). The MSP430 is a perfect fit for systems trying to prevent these issues.

MSP430 Workshop - Introduction to MSP430 1 - 29

ULP

Profile Your Activities
A fundamental precept of low-power systems is: turn on, do something, then turn off.

The following diagram is a good example of this. One of the low-power modes lets you put the
fast components of the system to sleep, while retaining the slow clock running a RTC. Then, as
needed, the system wakes up, performs one or more tasks, then goes back into low-power mode.

1 - 30 MSP430 Workshop - Introduction to MSP430

 ULP

The MSP430 supports this sleep/wake/sleep profile quite well, by providing a variety of low-power
modes (LPM). The following chart is an example of the LPM's found on various MSP430 devices,
showing which resources are powered down by LP mode. It also broadly indicates what it takes
to wake up from a given LPM. (In general, LPM0 and LPM3 are very popular modes.)

Almost as important is the 430's ability to wake up quickly from a sleep mode as is demonstrated
on the next slide. The DCO (digitally controlled oscillator) is one of the on-chip, high-performance
clocks available to the MSP430. The graphic is powerful statement, showing how quickly the
clocks and system can be up-and-running after receiving an interrupt.

MSP430 Workshop - Introduction to MSP430 1 - 31

ULP

This slide shows some of the quantitative data for different LPM's across a few different devices.
Please, keep in mind that you should always design your system by referencing the datasheet,
but this slide does give us a good comparison between the various MSP430 generations.

Much of designing for low-power is common sense; e.g. turn it off when you're not using it. The
following slide provides a good set of guidelines (or principles) to use when developing our
application.

1 - 32 MSP430 Workshop - Introduction to MSP430

 ULP

Many of these guidelines have been distilled into a static code analysis tool that is part of the TI
(and IAR) compiler. This tool can help us learn what techniques to apply - or for the more
experienced, help us not overlook something we already know.

MSP430 Workshop - Introduction to MSP430 1 - 33

Launchpad’s

Launchpad’s
The MSP430F5529 Launchpad is a powerful, low-cost evaluation (and development) tool.

As the diagram shows, the board is really divided into two halves. The top portion (above the ------
- line) is an open-source emulator (called eZ-FET lite). This connects our 'target' MSP430 to a PC
running a debugging tool, such as Code Composer Studio. You can isolate the emulator from the
'target' processor by pulling the appropriate jumpers (that straddle the dashed line).

The lower portion of the board provides the target of our application programming. There are
LED's, pushbuttons, and pins we can use to let our programs interact with the 'real world'.

1 - 34 MSP430 Workshop - Introduction to MSP430

 Lab 1 – MSP4305529 LaunchPad User Experience

Lab 1 – MSP4305529 LaunchPad User Experience
This lab simply gives us an opportunity to pull the board out of the box and make sure it runs
properly. The board arrives with a USB keyboard/memory application burned into the flash
memory on the ‘F5529.

You can either follow the quick start directions on the card included with the Launchpad, or follow
the directions here. We re-created the directions since some folks have a tough time reading the
small print of the quick start card.

 Download and install tools
and documentation

 Review Launchpad kit
contents

 Connect hardware
 Try out preloaded software

using Quickstart Guide

Lab 1 – Run Out-of-Box Demo

Agenda …

Examine the LaunchPad Kit Contents
1. Open up your MSP430F5529 LaunchPad box. You should find the following:

− The MSP-EXP430F5529LP LaunchPad Board

− USB cable (A-male to micro-B-male)

− “Meet the MSP430F5529 Launchpad Evaluation Kit” card

2. Initial Board Set-Up
 Using the included USB cable, connect the USB emulation connector on your evaluation

board to a free USB port on your PC.

 A PC’s USB port is capable of sourcing up to 500 mA for each attached device, which is
sufficient for the evaluation board. If connecting the board through a USB hub, it must usually
be a powered hub. The drivers should install automatically.

3. Run the User Experience Application
 Your LaunchPad Board came pre-programmed with a User Experience application. This

software enumerates as a composite USB device.
• HID (Human Interface device): an emulated keyboard

• MSC (Mass Storage class): an emulated hard drive with FAT volume

 The contents of the hard drive can be viewed with a file browser such as Windows Explorer.

MSP430 Workshop - Introduction to the MSP430 1 - 35

Lab 1 – MSP4305529 LaunchPad User Experience

4. View the contents of the emulated hard drive

 Open Windows Explorer and browse to the emulated hard drive. You should see four files
there:

− Button1.txt – the contents of this file are "typed out" to the PC, using the emulated
keyboard when you press button S1

− Button2.txt – the contents of this file are "typed out" to the PC, using the emulated
keyboard when you press button S2

− MSP430 USB LaunchPad.url – when you double-click, your browser launches the
MSP- EXP430F5529LP home page

− README.txt – a text file that describes this example

5. Use S1 and S2 buttons to send ASCII strings to the PC

 The LaunchPad's buttons S1 and S2 can be used to send ASCII strings to the PC as if they
came from a keyboard. These strings that are sent are stored in the files Button1.txt and
Button2.txt, respectively; and these files can be modified to change the strings. The text
string is limited to 2048 characters, so even though you can make the file contents longer, be
aware that the string will be truncated to 2048.

Open Notepad. In the start menu, type “Run”, then type “Notepad”

To send the strings to Notepad, press S1.

What do you see? __

Now press S2. What happens now? __

 The default ASCII strings stored in the two text files are are:
− Button1.txt: "Hello world"

− Button2.txt: an ASCII-art picture of the LaunchPad rocket

 For the rocket picture, please note that the display can be affected by settings of the
application receiving the typed characters. On Windows, the basic Notepad.exe is
recommended.

Note: If powering the current version of the ‘F5529 Launchpad via the USB port, the board must
enumerate, otherwise it will not power on. This means USB batteries – which do not
contain a USB host – cannot be used as a power source, at this time.

1 - 36 MSP430 Workshop - Introduction to the MSP430

MSP430 Workshop - Programming C with CCS 2 - 1

Programming C with CCS

Introduction
This chapter will introduce you to Code Composer Studio (CCS).

In the lab, we will build our first project using CCS and then experiment with some useful
debugging features. Even if you have some experience with CCS, this lab is a good review and
you will likely learn some new things you don’t know.

Learning Objectives

Objectives

 List the 3 parts of TI’s support ecosystem
 Describe the fundamentals of

Code Composer Studio (CCSv5)
 Differentiate CCSv5/Eclipse workspaces and

projects
 Create a new CCS project
 Analyze the different CCS licensing options
 Lab – Create, build and debug a “Hello World”

example using CCSv5

TI Support Ecosystem

2 - 2 MSP430 Workshop - Programming C with CCS

Chapter Topics

Programming C with CCS .. 2-1

TI Support Ecosystem ... 2-3
Run-Time Software ... 2-3
Development Tools ... 2-4
Support & Community ... 2-6

Examining CCSv5 ... 2-8
Functional Overview .. 2-8
Perspectives .. 2-9
Target Config & Emulation .. 2-10
Workspaces & Projects ... 2-11
Creating a Project ... 2-12
Licensing/Pricing ... 2-13

Writing MSP430 C Code ... 2-14
Build Config & Options .. 2-14
Data Types .. 2-15
Device Specific Files (.h and .cmd) ... 2-15
MSP430 Compiler Intrinsic Functions ... 2-16

Lab 2 – CCSv5 Projects .. 2-17

 TI Support Ecosystem

MSP430 Workshop - Programming C with CCS 2 - 3

TI Support Ecosystem

Development Tools
• CCStudio™ Integrated Devl’t

Environment (IDE)
• Optimizing compilers
• Graphical coding (e.g. Grace)
• Design Kits & Eval Modules
• Rich 3rd Party Support (e.g. IAR)

Run-Time Software
• Easy-to-use, highly-portable

Energia software
• O/S independent device support

with TI-Ware software
• TI-RTOS: kernel, filesystem,

USB, networking, drivers

TI MCU Software and Tools Ecosystem

Run-Time Software …

Support & Community
• TI Design Network: off-the-shelf

software, tools & services
• Forums: http://e2e.ti.com
• Wiki: processors.wiki.ti.com
• Training: In-person and online

Free code that runs
on your system

Tools that help you
create your code

Resources to help you
help yourself

Run-Time Software

Pick a Level that Suits your needs

Energia Chapter
(coming soon)

MSP430ware
(Chapter 3)

Header Files
(Chapter 2 & 3)

MSP430
(Chapter 1)

Free Run-Time Software

TI-RTOS...

TI Support Ecosystem

2 - 4 MSP430 Workshop - Programming C with CCS

TI-RTOS:
• Provides an optimized real-time kernel that works with TI Wares (driverLib) and other

additional software collateral
• TI-RTOS Availability (Note: SYS/BIOS kernel already available for all these)

• Now: Tiva-C ARM Cortex M4F, Concerto (F28M35) devices
• Soon: MSP430
• Planned: Sitara Cortex-A8 and -A9 processors

• Training: 2-day TI-RTOS Kernel Workshop

Real-time kernel
(SYS/BIOS)

• Scheduling
• Memory management
• Synchronization
• Real-time analysis

TI Wares
Minimizes programming

complexity w/optimized drivers
• Low-level driver libraries
• Thread-safe Peripheral API

Additional Collateral
• USB Stack
• Networking Stack
• CC3000 WiFi Stack
• Open Source FAT f/s
• Libraries & Examples

SYS/BIOS + TI Wares

T I - R TO S

+
• File systems
• Network stack
• USB

Real-Time Operating System (TI-RTOS)

Development Tools

Development Tools for MSP430
Open

Source

Evaluation
License

 32KB code-size
or 30-day limit

 Upgradeable

 Full function

 JTAG limited
after 90-days

N/A N/A

Compiler IAR C/C++ TI C/C++ MSPGCC* MSPGCC*

Debugger
and IDE

 C-SPY

 Embedded
Workbench

 TI or GDB

 CCStudio
(Eclipse-based)

Energia IDE
(Arduino port)

MSPDEBUG
(gdb proxy)

Full
Upgrade

$2700 $445 Free Free

JTAG
Debugger

J-Link
$299

MSP-FET430UIF
$99

No JTAG
 serial.printf()
 LED or scope

MSP-FET430UIF
$99

MSPGCC*: RedHat GCC compiler in development
ULP...

 TI Support Ecosystem

MSP430 Workshop - Programming C with CCS 2 - 5

ULP (Ultra-Low Power) Advisor
Squeezing out every last nanoAmp

 Checks your code against an MSP430 ULP Checklist
 The ULP Advisor wiki includes a description of each rule, proposed

remedies, code examples & links to related e2e online forum posts
 ULP Advisor is FREE and is available as a plugin for CCS
 Standalone command-line tool for use with other IDEs
 Learn more at www.ti.com/ulpadvisor

Write your code…

ULP Advisor finds areas for code improvement

Wiki provides details & remedies

Grace...

Grace™

 A free, graphical user interface for use with
CCStudio or IAR

 Simplifies peripheral configuration
 Prevents contradicting H/W configurations
 Generates well-commented source code
 Currently supports: G2xx (Value Line) and

FR5xx (FRAM based) devices

TI Support Ecosystem

2 - 6 MSP430 Workshop - Programming C with CCS

Support & Community

TI Wiki: http://processors.wiki.ti.com

Technical Training Organization (TTO)

 TI Support Ecosystem

MSP430 Workshop - Programming C with CCS 2 - 7

This Workshop

Engineer-2-Engineer Forums

http://e2e.ti.com

Examining CCSv5

2 - 8 MSP430 Workshop - Programming C with CCS

Examining CCSv5

Functional Overview

CCS Functional Overview

Compiler

Asm

.c

.asm .obj

.asm

Edit Debug

 Integrated Development Environment (IDE) based on Eclipse
 Integrated “Debugger” and “Editor” – IDE

Edit and Debug have the own “perspectives” (menus, windows)
 Contains all development tools – compilers, SYS/BIOS (RTOS) and

includes one target – the Simulator

Standard
Runtime
Libraries

.out

.lib

.mapUser.cmd

SYS/BIOS
Libraries

SYS/BIOS
Config
(.cfg) Bios.cmd

SIM

Launch
Pad

EVM

Stand Alone
Emulator

(MSP430 FET)

Target
Cfg File

.ccxml

Link

Perspectives...

 Examining CCSv5

MSP430 Workshop - Programming C with CCS 2 - 9

Perspectives

CCSv5 GUI – EDIT Perspective

Project Explorer
• Project(s)
• Source Files

Source EDITing
• Tabbed windows
• Color-coded text

Outline View
• Declarations

and functions

Menus & Buttons
• Specific actions

related to EDITing

Perspectives
• EDIT and DEBUG

If you click on the "Debug" perspective, the windows change to...

CCSv5 GUI – DEBUG Perspective

Menus & Buttons
• Related to DEBUGing
• Play, Pause, Terminate

DEBUG Windows
• Watch Variables
• Memory Browser
• PC execution point
• Console Window

Connection Type
• Specified in Target Cfg file
• What options do users have

when connecting to a target?

ccxml...

Examining CCSv5

2 - 10 MSP430 Workshop - Programming C with CCS

Target Config & Emulation

Target Configuration and Emulators

 The Target Configuration File specifies
• Connection to the target (e.g. USB FET)
• Target device (e.g. MSP430F5529)
• GEL file (if applicable) for h/w setup

 EMU Connection Options
• MSP-FET430 stand-alone FET
• EZ-FET built into development boards (i.e. Launchpad)
• (non MSP430) XDS100v1/v2, 200, 510, 560, 560v2

 Examining CCSv5

MSP430 Workshop - Programming C with CCS 2 - 11

Workspaces & Projects

Workspaces and Projects (GUI)

WORKSPACE

PROJECTSource

Looking more closely at Projects and Workspaces...

Projects and Workspaces

 Project \folder contains:
• Build and tool settings (for use

in managed MAKE projects)
• Files can be linked to or

reside in the project folder
• Deleting a linked file from

Project Explorer only deletes
the link

Workspace
• Project 1
• Project 2
• Project 3
• Settings/preferences

Project
• Source Files
• Header Files
• Library Files
• Build/tool settings

Source Files
• Code and Data

Header Files
• Declarations

Library Files
• Code and Data

Link

Link

Link

Link

 Workspace \folder contains:
• IDE settings and preferences
• Projects can reside in the workspace

folder or be linked from elsewhere
• When importing projects into the

workspace, linking is recommended
• Deleting a project from the Project

Explorer only deletes the link

Examining CCSv5

2 - 12 MSP430 Workshop - Programming C with CCS

Creating a Project

Creating a New Project
File New CCS Project

(in Edit perspective…)

 Project Location
• Default = workspace
• Manual = anywhere you like

 Templates
• No BIOS? Choose “Empty”
• BIOS? Choose BIOS template

 Connection
• If target is specified, user can

choose “connection” (i.e. the
target config file)

Adding files to the project…

Adding Files to a Project
 Users can ADD (copy or link) files into their project

• SOURCE files are typically COPIED
• LIBRARY files are typically LINKED (referenced)

1 Right-click on project and select: 2 Select file(s) to add to the project:

3 Select “Copy” or “Link” COPY
• Copies file from original location

to project folder (two copies)

 LINK
• References (points to) source

file in the original folder
• Can select a “reference” point

(default is project’s directory)

 Examining CCSv5

MSP430 Workshop - Programming C with CCS 2 - 13

Licensing/Pricing

CCSv5 Licensing and Pricing
 Licensing

• Wide variety of options (node locked, floating, time based)
• All versions (full, DSK, free tools) use same image
• Updates available online

 Pricing
• Reasonable – includes FREE options as noted below
• Annual subscription - $99 ($159 for floating)

Item Description Price Annual
Platinum Eval Tools Full tools with 90 day limit (all EMU) FREE

Platinum Bundle XDS100; Simulators; many TI dev’l
boards (such as Tiva-C Launchpad) FREE

Platinum Node Lock Full tools tied to a machine $445 (1) $99
Platinum Floating Full tools shared across machines $795 $159
MSP430 Code-Limited MSP430 (16KB code limit) FREE

Managing the CCS license...
(1) Download version; $495 when disc is shipped to you

Changing CCS User License

Writing MSP430 C Code

2 - 14 MSP430 Workshop - Programming C with CCS

Writing MSP430 C Code

Build Config & Options

Compiler Build Options
 Nearly 100 compiler options available to tune your code’s

performance, size, etc.
 The following table lists the most commonly used options:

Options Description
-mv7M4 Generate Cortex M4 code
-vmspx Generate MSP430 code

Debug
-g Enables src-level symbolic debugging

-ss Interlist C statements into assembly listing

Optimize
(release)

-o3 Invoke optimizer (-o0, -o1, -o2/-o, -o3)

-mf Speed/code size tradeoff

-k Keep asm files, but don't interlist

 To make things easier, CCS creates two BUILD CONFIGURATIONS:
• Debug (-g, no opt) – great for LOGICAL debug
• Release (no –g, opt) – good for PERFORMANCE/Size
• Users can create their own custom build configs

How do you CHANGE compiler build options or configurations?

Modifying Build Configurations
 Select the build configuration: Debug or Release
 Right-click on the project and select Properties
 Then click “Processor Options” or any other category (like Opt):

 Writing MSP430 C Code

MSP430 Workshop - Programming C with CCS 2 - 15

Data Types

MSP430 C Data Types (ELF format)
Type Bits Representation

char 8 (aligned to 8-bit boundary)

short 16 Binary, 2's complement

int 16 Binary, 2's complement

long 32 Binary, 2's complement

long long 64 Binary, 2's complement

float 32 IEEE 32-bit

double 64 IEEE 64-bit

long double 64 IEEE 64-bit
 Data are aligned to 16-bit address boundary (except where noted)
 8-bit values are stored in bits 0-7 of a register
 32- and 64-bit types require 2 and 4 registers, respectively

Device Specific Files (.h and .cmd)

Example: Device Specific ‘Header’ Files

1. Device header file (msp430f5529.h)
Register bit-field symbols are found in ‘header’ file

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

2. Device linker command file (msp430f5529.cmd)
Symbols that represent register locations – which are effectively
addresses – are found in the ‘linker’ command file

 Below is an example of using the MSP430 ‘header’ files.

 This example will be used in the upcoming lab exercise. It turns off the
Watchdog Timer (WDT). We have to setup the WDT in every MSP430 program.
(We explain why in Chapter 4 of the workshop.)

 Notice how “address” values (i.e. register locations) are found in the .cmd
file, while all other symbol definitions are found in the .h file.

Writing MSP430 C Code

2 - 16 MSP430 Workshop - Programming C with CCS

Device Specific Files (.h/.cmd)
 New CCS projects automatically contain two files based upon the

“Target CPU” selection:

1. Device header file (msp430f5529.h)
 Symbols defined for bit fields, reg’s, etc.
 Structs/union’s also defined for bit fields, if you prefer
 You shouldn’t have to use hard-coded bit locations, etc.
 Your code should #include msp430.h, this points to the device specific .h file

2. Device linker command file (msp430f5529.cmd)
 Device specific addresses defined in dev specific .cmd file
 Creating a new CCS project automatically includes a project .cmd file … which includes

the device specific .cmd file
 You shouldn’t have to ever look up the address of a register
 Default linker command file in your project points to device specific .cmd file

 You should use these symbols in your code, rather than specifying
hard values/addresses

 MSP430ware also uses these symbolic definitions; that is, these
definitions represent the lowest-level abstraction layer for C code

MSP430 Compiler Intrinsic Functions

Intrinsics for MSP430 C Compiler

_bcd_add_short(); _disable_interrupt(); _never_executed();
_bcd_add_long(); _enable_interrupt(); _no_operation();
_bic_SR_register(); _even_in_range(); _op_code();
_bic_SR_register_on_exit(); _get_interrupt_state(); _set_interrupt_state();
_bis_SR_register(); _get_R4_register(); _set_R4_register();
_bis_SR_register_on_exit(); _get_R5_register(); _set_R5_register();
_data16_read_addr(); _get_SP_register(); _set_SP_register();
_data16_write_addr (); _get_SR_register(); _swap_bytes();
_data20_read_char(); _get_SR_register_on_exit();
_data20_read_long(); _low_power_mode_0();
_data20_read_short(); _low_power_mode_1();
_data20_write_char(); _low_power_mode_2();
_data20_write_long(); _low_power_mode_3();
_data20_write_short(); _low_power_mode_4();

_delay_cycles(); _low_power_mode_off_on_exit();

 Compiler intrinsic functions are essentially “built-in” C functions
 They usually provide access to underlying hardware features of a processor;

often mapping closely to specific asm instructions
 We will use some of these in today’s workshop:

 Lab 2 – CCSv5 Projects

MSP430 Workshop - Programming C with CCS 2 - 17

Lab 2 – CCSv5 Projects
The objective of this lab is to learn the basic features of Code Composer Studio. In this exercise
you will create a new project, build the code, and program the on-chip flash on the MSP430
device.

Since none of the Value Line MSP430 devices have more than 16K of flash memory, the free,
16K license of Code Composer Studio can be considered fully functional. If you want to work with
larger MSP430 (or other) devices, you’ll need to purchase a license.

Lab 2 – Creating CCS Projects
 Lab 2a – Hello World

 Create a new project
 Build program, launch debugger, connect

to target, and load your program
 printf() to CCSv5 console

 Lab 2b – Blink the LED
 Explore basic CCS debug functionality

Restart, Breakpoint, Single-step,
Run-to-line

 Lab 2c – Restore Demo to Flash
 Import CCS project (for original demo)
 Load program to device’s flash memory
 Verify original demo program works

 (Optional) Lab 2d
 Create binary TXT file of your program
 Use MSP430 Flasher to program original

demo’s binary file to device’s flash Time: 45 minutes

Lab 2 – CCSv5 Projects

2 - 18 MSP430 Workshop - Programming C with CCS

Lab Outline

Programming C with CCS .. 2-15

Lab 2 – CCSv5 Projects .. 2-17
Lab 2a – Creating a New CCS Project ... 2-19

Intro to Workshop Files ... 2-19
Start Code Composer Studio and Open a Workspace ... 2-20
00430 … Licensed to Develop .. 2-21
“CCS Edit” Perspective ... 2-22
Create a New Project .. 2-23
Build The Code (ignore advice)... 2-26
Debug The Code ... 2-27
Fix Your Project ... 2-31
Build, Load, Connect and Run … with the Easy Button ... 2-32

Lab 2b – My First Blinky .. 2-33
Create and Examine Project ... 2-33
Build, Load, Run .. 2-34
Restart, Single-Step, Run To Line .. 2-35

Lab 2c – Putting the OOB back into your device .. 2-37
(Optional) Lab 2d – MSP430Flasher .. 2-38

Programming the UE OOB demo using MSP430Flasher ... 2-38
Programming Blinky with MSP430Flasher .. 2-41
Cleanup ... 2-42

 Lab 2 – CCSv5 Projects

MSP430 Workshop - Programming C with CCS 2 - 19

Lab 2a – Creating a New CCS Project
In this lab, you create a new CCS project that contains one source file – hello.c – which prints
“Hello World” to the CCS console window.

The purpose of this lab is to practice creating projects and getting to know the look and feel of
CCSv5. If you already have experience with CCSv5 (or the Eclipse) IDE, this lab will be a quick
review. The workshop labs start out very basic, but over time, they’ll get a bit more challenging
and will contain less “hand holding” instructions.

Hint: In a real-world MSP430 program, you would NOT want to call printf(). This function is slow,
requires a great deal of program and data memory, and sucks power – all bad things for any
embedded application. (Real-world programs tend to replace printf() by sending data to a terminal
via the serial port.)

We’re using this function since it’s the common starting point when working with a new processor.
Part B of this lab, along with the next chapter, finds us programming what is commonly called, the
“embedded” version of “hello world”. This involves blinking an LED on the target board.

Intro to Workshop Files

1. Find the workshop lab folder.

 Using Windows Explorer, locate the following folder. In this folder, you will find at least two
folders – aptly named for the two launchpads this workshop covers – F5529_USB,
FR5969_Wolverine:

C:\msp430_workshop\F5529_USB
C:\msp430_workshop\FR5969_Wolverine (coming 1st Quarter 2014)

 Click on YOUR specific target’s folder. Underneath, you’ll find many subfolders

C:\msp430_workshop\F5529_USB\lab_02a_ccs
C:\msp430_workshop\F5529_USB\lab_02b_blink

...
C:\msp430_workshop\F5529_USB\solutions
C:\msp430_workshop\F5529_USB\workspace

 From this point, we will usually refer to the path using the generic <target> so that we can
refer to whichever target board you may happen to be working with.

e.g. C:\msp430_workshop\<target>\lab_02a_ccs

 So, when the instructions say “navigate to the Lab2 folder”, this assumes you are in the tree
related to YOUR specific target.

 Finally, you will usually work within each of the lab_ folders but if you get stuck, you may opt
to import – or examine – a lab’s archived (.zip) solution files. These are found in the
\solutions directory.

Hint: This lab does not contain any “starter” files, rather, we’ll create everything from scratch.

In future labs, though, there may be files already present in the lab folder. If this is the case, we will
also include an archive (_starter.zip) in case you ever need to refer back to an origianl file.

Lab 2 – CCSv5 Projects

2 - 20 MSP430 Workshop - Programming C with CCS

Start Code Composer Studio and Open a Workspace

Note: CCS5.x should have already been installed during the workshop installation procedure.

2. Start Code Composer Studio (CCS).

 Double clicking the CCStudio icon on the desktop or selecting it from the Windows Start
menu.

3. Select a Workspace – don’t use the default workspace location !!

 When CCS starts, a dialog box will prompt you for the location of a workspace folder. We
suggest that you select the workspace folder provided in our workshop labs folder. (This will
help your experience to match our lab instructions.)

Select: C:\msp430_workshop\<target>\workspace

 Most importantly, the workspace provides a location to store your projects … or links to your

projects. In addition to this, the workspace folder also contains many CCS preferences, such
as: perspectives, views, and IDE variables. The workspace is saved automatically when CCS
is closed.

Hint: If you check the “Use this as the default…” option, you won’t be asked to choose a
workspace everytime you open CCS. At some point, if you need to change the workspace – or
create a new one – you can do this from the menu: File Switch Workspace

4. Click OK (to close workspace dialog). View, then close, TI Resource Explorer.

 When CCS opens to a new workspace, the TI Resource Explorer window is automatically
opened and you’re greeted with:

Welcome to Code Composer Studio v5

 This Explorer is a handy way for you explore the CCSv5 features, such as: examples,
libraries (i.e. MSP430ware), and tools, such as Grace™. In this workshop, we’ll use many of
these features, but we won’t necessarily access them from here. Once you close this window,
you can always reopen it via: Help Welcome to CCS

Go ahead and close the TI Resource Explorer tab

 Lab 2 – CCSv5 Projects

MSP430 Workshop - Programming C with CCS 2 - 21

00430 … Licensed to Develop

5. Set CCSv5 license … if required.

 The first time CCS opens, the “License Setup Wizard” should appear. In case you need to
change the license option, you can open the wizard by clicking:

Help Code Composer Studio Licensing Information

then click the Upgrade tab and the Launch License Setup…

 If you have a full CCS license, please use that, otherwise we recommend that you select the

option:

CODE SIZE LIMITED (MSP430)

Hint: If you are attending another workshop in conjunction with this one, like the Tiva-C
ARM Cortex-M4F LaunchPad workshop, you can return here and change this to the
FREE LICENSE option.

Lab 2 – CCSv5 Projects

2 - 22 MSP430 Workshop - Programming C with CCS

“CCS Edit” Perspective

6. At this point you should see an empty CCS workbench.

 The term workbench refers to the desktop development environment.

 The workbench will open in the “CCS Edit” view.

Maximize CCS to fill your screen

 Notice the tab in the upper right-hand corner…

 Perspectives define the window layout views of the workbench, toolbars, and menus – as
appropriate for a specific type of activity (i.e. editing or debugging). This minimizes clutter of
the user interface.

 The “CCS Edit” perspective is used to when creating, editing and building C/C++

projects.

 CCS automatically switches to the “CCS Debug” perspective when a debug session
is started.

 You can customize the perspectives and save as many as you like.

Hint: Most of us find the Window Reset Perspective… handy for those times when
we’ve messed our windows up a bit too much.

Notice Project Explorer is

empty – this matches our

empty Workspace folder

 Lab 2 – CCSv5 Projects

MSP430 Workshop - Programming C with CCS 2 - 23

Create a New Project
7. Select New CCSP Project from the menu.

 A project contains all the files you will need to develop an
executable output file (.out) which can be run on the MSP430
hardware. To create a new project click:

File New CCS Project

8. Make project choices as shown here:

 Note: Your dialog may look slightly different than this one. This is how it looked for CCSv5.5 (build 61).

a) lab_02a_ccs

b) Executable

c) Don’t use default loc’n

d) Choose your target’s
lab_02a_ccs folder

e) Pick MSP430 family

f) Type “5529” or “5969”
into variant to quickly
select Target CPU

g) Use Default debugger
connection (this creates
the .ccsxml file for you)

h) Select template:

Hello World

Target CPU selection results in:

 Compiler target (-vmsp) option

 CCS adding the correct device
specific:

 ‘Header’ file (.h)

 Linker command file (.cmd)

Lab 2 – CCSv5 Projects

2 - 24 MSP430 Workshop - Programming C with CCS

9. Code Composer will add the named project to your workspace.

View the project in the Project Explorer pane.

Click on the left of the project name to expand the project

 CCS includes other items based upon the Template selection. These might include source

files, libraries, etc.

 When choosing the Hello World template, CCS adds the file hello.c to the new project.

10. Open and view lab_02a_ccs_readme.txt.

 During installation, we placed the readme file into the project folder.

By default, Eclipse (and thus CCS) adds any file it finds within the project folder to the project.
This is why the readme text file shows up in project explorer. Go ahead and open it up:

Double-click on lab_02a_ccs_readme.txt

 You should see a description of this lab similar to the abstract found in these lab directions.

Hint: Be aware of this Eclipse feature. If – say in Windows Explorer – you absent-mindedly
add a C source file to your project folder, it will become part of your program the next
time you build.

If you want a file in the project folder, but not in your program, you can exclude files
from build:
 Right-click on the file Exclude from Build

 Lab 2 – CCSv5 Projects

MSP430 Workshop - Programming C with CCS 2 - 25

11. Explore source code in hello.c.

 Open the file, if it’s not already open.

Double-click on hello.c in the Project Explorer window

 We hope most of this code is self-explanatory. Except for one line, it’s all standard C code:

#include <stdio.h>
#include <msp430.h>

/*
 * hello.c
 */
int main(void) {

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 printf("Hello World!\n");

 return 0;
}

 The only MSP430-specific line is the same one we examined in the chapter discussion:

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 As the comment indicates, this turns off the watchdog timer (WDT peripheral). As we’ll learn
in Chapter 4, the WDT peripheral is always turned on (by default) in MSP430 devices. If we
don’t turn it off, it will reset the system – which is not what we usually want during
development (especiall during ‘hello world’).

Lab 2 – CCSv5 Projects

2 - 26 MSP430 Workshop - Programming C with CCS

Build The Code (ignore advice)

12. Build your project using “the hammer” and check for errors.

 At this point, it is a good time to build your code to check for any errors before moving on.

Just click the “hammer” icon:

 It should build without any Problems, although you should see two sets of Advice:
Optimization Advice (new to CCSv5.5) and Power (ULP™) Advice.

At this point, we’re just going to ignore their advice.
It’s better to get code running first. Later, we return
and investigate some of these items further.

 If the program builds successfully, move to the next page to begin debugging. If you have
problems getting it to bulid, please ask a neighbor, or your instructor for help.

Sidenote: ULP Advisor

Sometime, when you launch the debugger (as we will soon), CCS will warn you that your code
could be better optimized for lower power.

While we like the ULP Advisor tool, this usually comes up a long time before we are ready to start
optimizing our performance. We recommend that you click the box:

 Do not show this message again

As the dialog above indicates, you can always go into your project’s properties and enable or
disable this advice. We will do this in a later chapter, when we’re ready to focus on driving our
every last nanoamp.

 Lab 2 – CCSv5 Projects

MSP430 Workshop - Programming C with CCS 2 - 27

Debug The Code

Starting up the debugger is a 3-step process.You could even call it five steps, if you include
building and running the code. (In a few minutes, we’ll show you a quick shortcut.)

13. Launch a debug session.

 This starts the CCS Debugger and then
switches to the Debug perspective.

a) Open Target Configurations window

View Target Configurations

b) Expand hierarchy until you can see your
project’s .ccxml file

c) Launch .ccxml file

Rt-click .ccxml file Launch Selected Configuration

Note: The first time you Launch a debugger session, you may encounter the following dialog:

This occurs when CCS finds that the FET firmware – that is, the firmware in your
Launchpad’s debugger – is out-of-date. We recommend that you choose to update the
firmware. Once complete, CCS should finish launching the debugger.

Lab 2 – CCSv5 Projects

2 - 28 MSP430 Workshop - Programming C with CCS

14. Connect to Target.

 With your debugger open, you can now connect to your target board.

 ► Use menu: Run Connect Target ► Or the Connect Target toolbar button:

Connection Problems - Troubleshooting

 If the error “cannot connect to target” appears, the problem is most likely due to:

 No target configuration (.ccxml) file
 Wrong board/target config file or both – i.e. board does not match the target config file

 Bad USB cable
 Windows USB driver is incorrect – or just didn’t get enumerated correctly

 If you run into this, check for each of these possibilities. In the case of the Windows USB
driver try:

 Unplugging the USB cable and trying it in a different USB port. (Just changing ports
can often get Windows to re-enumerate the device.

 Open Windows Device Manager and verify the board exists and there are no

warnings or errors with its driver.

 If all else fails, ask your neighbor (or instructor) for assistance.

 Lab 2 – CCSv5 Projects

MSP430 Workshop - Programming C with CCS 2 - 29

15. Load the code.

 We need to load the code to our Launchpad. With this step, CCS actually programs the on-
chip Flash memory with your program.

Run Load Load Program – or – use the download button:

 When the dialog appears, select Browse Project…

 … and navigate to the executable (.out) file in your project:

 Your program will now download to the target board and the PC will automatically run until it
reaches main(), then stop as shown:

Hint:

Use Browse Project to select the .out file.

Often, the default file is NOT the .out file
you want. After you have browsed to select
it once, it usually provides the correct
defaults thereafter.

Lab 2 – CCSv5 Projects

2 - 30 MSP430 Workshop - Programming C with CCS

16. Run the code.

 Now, it’s finally time to RUN or “Play”. ► Hit the Resume button:

 The button is called ‘Resume’, though we may end up calling it
 ‘Play’ since that’s what the icon looks like.

17. Pause the code.

 To stop your program running, ► click Halt (Pause):

Warning: Pause is different than Terminate !!!

If you click the Terminate button, the debugger – and your connection to the target – will be
closed. If you’re debugging and just want to view a variable or memory, you will have to open
a new debug session all over again. Remember to pause and think, before you halting your
program.

18. Did printf work?

 Did “Hello World!” show up in your console window?

 Nope, it didn’t show up for us.

19. Let’s Terminate the debug session and go fix our project.

 OK, this time we really want to terminate our debug session.

Click the red Terminate button:

 This closes the debug session (and Debug Perspective). CCS will switch back to the Edit
perspective. You are now completely disconnected from the target.

20. Also, if the Target Configurations window is still open, please close it.

 Lab 2 – CCSv5 Projects

MSP430 Workshop - Programming C with CCS 2 - 31

Fix Your Project

21. What is wrong?

 We searched the internet for: “msp430 printf” and found a wiki page that demonstrated how
to get printf() to work:

 http://processors.wiki.ti.com/index.php/Printf_support_for_MSP430_CCSTUDIO_compiler

 Since you may not have internet access in the classroom, here’s the relavent bit:

22. Increase the heap size.

 Per the wiki suggestion, let’s increase the heap size size to 320 bytes.

Rt-click project Properties MSP430 Linker Basic Options

 Increase Heap size to: 320

Hint: As a side note, if you look just below the entry for setting the Heap size, you will see
the setting for Stack size. This is where you would change the stack size of you
system, when/if that needs to be done.

http://processors.wiki.ti.com/index.php/Printf_support_for_MSP430_CCSTUDIO_compiler

Lab 2 – CCSv5 Projects

2 - 32 MSP430 Workshop - Programming C with CCS

Build, Load, Connect and Run … with the Easy Button

23. Rebuild and Reload your program – the one-step method.

 Here’s the “easy button” (i.e. one button) method for debugging your code. First, make sure
you terminated your previous debug session and you are in the Edit perspective.

Click the BUG toolbar button:

 Clicking this button will: Build the program (if needed); Launch the debugger; Connect to
Target; and Load your program

24. Once the program has successfully loaded, ► run it.

25. Close the lab_02a_ccs project.

 Closing a project is both handy and prevents errors.

Rt-click project Close Project

 If your source file (hello.c) was open, notice how closing the project also closes most source
files. This can help prevent errors. (Wait until you’ve spent an hour editing a file – with it not working
– only to find you were editing a file with the same name, but from a different project. Doh!)

 You can quickly reopen the project, when and if you need to.

 Lab 2 – CCSv5 Projects

MSP430 Workshop - Programming C with CCS 2 - 33

Lab 2b – My First Blinky
We plan to get into all the details of how GPIO (general purpose input/output) works in the next
chapter. At that time, we will also introduce the MSP430ware DriverLib library to help you
program GPIO, as well as all the other peripherals on the MSP430.

In the lab exercise, we want to teach you a few additional debugging basics – and need some
code to work with. To that end, we’re going to use the Blink template found in CCS. This is
generic, low-level MSP430 code, but it should suite our purposes for now.

Create and Examine Project

1. Create a new project with the following properties:

Make sure to select
FR5969

if you’re using the
Wolverine

Lab 2 – CCSv5 Projects

2 - 34 MSP430 Workshop - Programming C with CCS

2. Let’s quickly examine the code that was in the template.

 This code simply blinks the LED connected to Port1, Pin0 (often shortened to P1.0).

#include <msp430.h>

int main(void) {

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 P1DIR |= 0x01; // Set P1.0 to out-put direction

 for(;;) {
 volatile unsigned int i; // volatile to prevent op-timization

 P1OUT ^= 0x01; // Toggle P1.0 using exclusive-OR

 i = 10000; // SW Delay
 do i--;
 while(i != 0);
 }

 Other than standard C code which creates an endless loop that repeats every 10,000 counts,
there are three MSP430-specific lines of code.

 As we saw earlier, the Watchdog Timer needs to be halted.

 The I/O pin (P1.0) needs to be configured as an output. This is done by writing a “1” to bit

0 of the Port1 direction register (P1DIR).

 Finally, each time thru the for loop, the code toggles the value of the P1.0 pin.
(In this case, it appears the author didn’t really care if his LED started in the on or off

position; just that it changed each time thru the loop.)

Hint: As we mentioned earlier, we will provide more details about the MSP430 GPIO
features, registers, and programming in the next chapter.

Build, Load, Run

3. Build the code. Start the debugger. Load the code.

 If you don’t remember how to use the easy button (or the long method), please refer back to
lab_02a_ccs.

4. Let’s start by just running the code.

Click the Run button on the toolbar (or press F8)

 You should see the LED toggling on/off.

5. Halt the debugger … don’t terminate!

 Lab 2 – CCSv5 Projects

MSP430 Workshop - Programming C with CCS 2 - 35

Restart, Single-Step, Run To Line

6. Restart your program.

 Let’s get the program counter back to the beginning of our program.

Run Restart - or - use the Restart toolbar button:

 Notice how the arrow, which represents the
Program Counter (PC) ends up at main() after
your restart your program. This is where your
code will start executing next.

 In CCS, the default is for execution to stop
whenever it reaches the main() routine.

 By the way, Restart starts running your code
from the entry point specified in the executable (.out) file. Most often, this is set to your reset
vector. On the other hand, Reset will invoke an actual reset. (Reset will be discussed further
in Chapter 4.)

7. Single-step your program.

 With the program halted, click the Step Over (F6) toolbar button (or tap the F6 key):

Run Halt Close Debugger Step Into Step Over Step Return Restart

 Notice how one line of code is executed each time you click Step Over; in fact, this action
treats functions calls as a single point of execution – that is, it steps over them. On the other
hand Step Into will execute a function call step-by-step – go into it. Step Return helps to jump
back out of any function call you’re executing.

Hint: You probably won’t see anything happen until you have stepped past the line of code
that toggles P1.0.

8. Single-step 10,000 times

Try stepping over-and-over again until the light toggles again…

 Hmmm… looking at the count of 10,000; we could be single-stepping for a long time. For this,
we have something better…

9. Try the Run-To-Line feature.

 Click on the line of code that toggles the LED.

Click on the line: P1OUT ^= 0x01;

Then Right-click and select Run To Line (or hit Ctrl-R)

Single-step once more to toggle the LED

Lab 2 – CCSv5 Projects

2 - 36 MSP430 Workshop - Programming C with CCS

10. Set a breakpoint.

 There are many ways to set a breakpoint on a line of code in CCS. You can right-click on a
line of code to toggle a Breakpoint. But the easiest is to:

Double-click the blue bar on the line of code

 For example, you can see we have just set a breakpoint on our toggle LED line of code:

Once a breakpoint is set, there will be a blue marker
that represents it. By double-clicking in this location,
we can easily add or remove breakpoints.

11. Run to breakpoint.

 Run the code again. Notice how it stops at the breakpoint each time the program flow
encounters it.

 Press F8 (multiple times)

 You should see the LED toggling on or off each time you run the code.

12. Terminate your debug session.

 When you’re done having fun, terminate your debug session.

13. Close the project.

 Lab 2 – CCSv5 Projects

MSP430 Workshop - Programming C with CCS 2 - 37

Lab 2c – Putting the OOB back into your device
Do you want to go back and run the original Out-Of-Box (OOB) demo that came on your Launchpad board?

Unfortunately, we overwrote the Flash memory on our microcontroller as downloaded our code from the
previous couple lab exercises. In this part of the lab, we will build and reload the original demo program.
Note: sometimes the Out-Of-Box demo is also referred to as the UE (User Experience) demo.

1. Import OOB demo project.

 As part of the workshop files, we already placed a copy of the project used to build the
original Launchpad demo into the lab_02c_oob folder.

Project Import Existing CCS Eclipse Project

 C:\msp430_workshop\F5529_usb\lab_02c_oob\CCS\

 Browse to the lab_02c_oob folder for your target and import the project.

 Note, this project was obtained from the Launchpad’s webpage: ti.com/msp-exp430f5529lp

2. Click the easy debug button to build, launch the debugger, and load the program to flash.

 In this lab, we’re not that interested in running the code within the debugger, rather we’re just
using the debug button as an easy way to program our device with the demo program. Later
labs will explore the various features on display in the demos.

3. Terminate the debugger and close the project. (You can run it within the debugger, but
running it outside the debugger ‘proves’ the program is actually in Flash memory.)

4. Unplug the Launchpad from your PC and plug it back in.

 This runs the original demo that was just re-programmed into Flash. (We unplugged from
Windows to get Windows to recognize the memory-stick (MSC) feature of the demo program.
(You can refer back to lab_01_oob if you have questions.)

For Woverine
FR5969

users, your project
name will be slightly

different

http://ti.com/msp-exp430f5529lp

Lab 2 – CCSv5 Projects

2 - 38 MSP430 Workshop - Programming C with CCS

(Optional) Lab 2d – MSP430Flasher
The MSP430Flasher utility lets you program a device without the need for Code Composer
Studio. It can actually perform quite a few more tasks, but writing binary files to your board is the
only feature that we explore in this exercise. The tool is documented at:

http://processors.wiki.ti.com/index.php/MSP430_Flasher_-_Command_Line_Programmer

Note: The MSP430Flasher utility is quite powerful; with that comes the need for caution. With
this tool you could – if you are being careless – lock yourself out of the device. This is a
feature that is appreciated by many users, but not when doing development. The batch
files we provide should not hurt your Launchpad – but we ask that you treat this tool with
caution.

Programming the UE OOB demo using MSP430Flasher

1. Verify MSP430Flasher installation.

Where did you install the MSP430Flasher program? Please write down the path here:

 __/MSP430Flasher.exe

Hint: If you have not installed this executable, either return to
the installation guide to do so, or you may skip this lab
exercise.

2. Edit / Verify DOS batch program in a text editor.

 We created the ue.bat file to allow you to program the User Experience OOB demo to your
Launchpad without CCS. Open the following file in a text editor:

C:\msp430_workshop\<target>\lab_02d_flasher\ue.bat

 Verify – and modify, if needed – the two directory paths listed in the .bat file. For example:

CLS

C:\ti\msp430\MSP430Flasher_1.2.2\MSP430Flasher.exe -n MSP430F5529
-w "C:\msp430_workshop\F5529_usb\workspace\emulStorageKeyboard\Debug\emulStorageKeyboard.txt" -v

pause

Where: -n is the name of the processor to be programmed
 -w indicates the binary image
 -v tells the tool to verify the image

 We used the default locations for MSP430Flasher and our lab exercises. You will have to
change them if you installed these items to other locations on your hard drive.

 Lab 2 – CCSv5 Projects

MSP430 Workshop - Programming C with CCS 2 - 39

3. Open up a DOS command window.

 One way to do this is by typing “command” in Windows “Start” menu, then hitting Enter.

 After starting command, it should open to something similar to this:

4. Navigate to your lab_02d_flasher folder.

 The DOS command for changing directories is: “cd”

cd C:\msp430_workshop\<target>\lab_02d_flasher\

 Once there, you should be able to list the directories contents using the dir command.

dir

Lab 2 – CCSv5 Projects

2 - 40 MSP430 Workshop - Programming C with CCS

5. Run the batch file to program the UE out-of-box executable to your board.

ue.bat

 You should see it running … here’s a screen capture we caught mid-programming:

6. When complete, hit enter to finish the batch program.

 We ended our batch program with a pause since – depending upon how you invoked it – the
command window could close automatically. Pause forces the window to stay open, so that
you can see the feedback shown above.

 Below is what the command window should look like right before you hit any key, which
should end the batch program.

7. Once again, verify the Launchpad program works.

 Lab 2 – CCSv5 Projects

MSP430 Workshop - Programming C with CCS 2 - 41

Programming Blinky with MSP430Flasher

We can use this same utility to burn other programs to our target. Before we can do that, though,
we need to create the binary file of our program. The UE app already did this as part of their build
process, but we need to make a quick modification to our project to have it build the correct
binary format for the flasher tool.

8. Open your lab_02b_blink project.

9. Open the project properties for you project.

 With the project selected, hit Alt-Enter.

10. Change the required build setting, as shown below.

 This is documented at:
http://processors.wiki.ti.com/index.php/Generating_and_Loading_MSP430_Binary_Files

11. Rebuild the project.

 If you don’t rebuild the project, the .txt binary might not be generated if CCS thinks the
program is already built.

Clean the project
Build the project

12. Verify that lab_02b_blink.txt was created in the /Debug directory.

13. Open blink.bat with a text editor and verify all the paths are correct.

C:\msp430_workshop\<target>\lab_02d_flasher\blink.bat

http://processors.wiki.ti.com/index.php/Generating_and_Loading_MSP430_Binary_Files

Lab 2 – CCSv5 Projects

2 - 42 MSP430 Workshop - Programming C with CCS

14. Run blink.bat from the DOS command window.

 When done programming, you should see the LED start blinking.

Cleanup

15. Close your lab_02b_blink project.

16. You can also close the DOS command window, if it’s still open.

Using GPIO with MSP430ware

Introduction
In the previous lab exercise blinked an LED on the MSP430 Launchpad, but we didn’t write the
code – we were able to import a generic ‘blink’ template that ships with CCSv5.

This chapter explores the GPIO (general purpose bit input/output) features of the MSP430
family.By examining the hardware operation of the I/O pins, as well as the registers that control
them, we gain insight to the many way we can utilize these features.

To make programming easier, we’ll use the driver library (DriverLib) component of MSP430ware.
While not actually a set of “drivers” in the traditional sense, this library provides us the software
tools to quickly build and deploy our own driver code for MSP430 devices.

Finally, now that we are introducing a library we can link into our project, we explore the concept
of “portable projects”. By creating and using IDE path variables, it becomes easy to migrate
projects from one computer to another. Another benefit is that it becomes much easier to upgrade
to new library versions, as they become available.

Learning Objectives

MSP430 Workshop - Using GPIO with MSP430ware 3 - 1

MSP430ware (DriverLib)

Chapter Topics
Using GPIO with MSP430ware ... 3-1

MSP430ware (DriverLib) ... 3-3
MSP430 GPIO .. 3-5

GPIO Basics .. 3-5
Flexible Pin Useage (Muxing) ... 3-8
Summary ... 3-10

Before We Get Started Coding ... 3-11
#Include Files .. 3-11
Disable Watchdog Timer ... 3-12
Pin Unlocking (Wolverine) ... 3-12

Lab 3 ... 3-13
Lab 3 Worksheet ... 3-15

MSP430ware DriverLib ... 3-15
GPIO Output ... 3-15
GPIO Input .. 3-16

Lab 3a – Blinking an LED.. 3-17
??? .. 3-18
Add MSP430ware DriverLib .. 3-19
Add the Code to main.c .. 3-21
Debug .. 3-22

Lab 3b – Reading a Push Button .. 3-24
File Management .. 3-24
Add Setup Code (to reference push button) ... 3-26
Modify Loop ... 3-27
Verify Code.. 3-28

Optional Exercises .. 3-28
Chapter 3 Appendix .. 3-29

3 - 2 MSP430 Workshop - Using GPIO with MSP430ware

 MSP430ware (DriverLib)

MSP430ware (DriverLib)

MSP430 Workshop - Using GPIO with MSP430ware 3 - 3

MSP430ware (DriverLib)

Summary

Name 3 ways to program GPIO:

1. ___

2. ___

3. ___

Using device specific header & command files (.h/.cmd) Ch2

MSP430ware DriverLib (F5xx/6xx and Wolverine devices) Ch3

Grace graphical driverlib tool (Value-line and Wolverine devices) *

*see G2553 Value-Line Launchpad Workshop (Ch8)

3 - 4 MSP430 Workshop - Using GPIO with MSP430ware

 MSP430 GPIO

MSP430 GPIO

GPIO Basics

MSP430 Workshop - Using GPIO with MSP430ware 3 - 5

MSP430 GPIO

3 - 6 MSP430 Workshop - Using GPIO with MSP430ware

 MSP430 GPIO

MSP430 Workshop - Using GPIO with MSP430ware 3 - 7

MSP430 GPIO

Flexible Pin Useage (Muxing)

3 - 8 MSP430 Workshop - Using GPIO with MSP430ware

 MSP430 GPIO

MSP430 Workshop - Using GPIO with MSP430ware 3 - 9

MSP430 GPIO

Summary
GPIO Summary: F5529 vs FR5969 vs G2553

PA PB PC PD PJ*
(4-bit)P1† P2 P3 P4 P5 P6 P7 P8

(3-bit)
PxIN

All
Three

Devices
support

Ports 1 and 2

F5529
and

FR5969
(only)

F5529
(only)

F55
&

FR59

PxOUT
PxDIR
PxREN
PxDS
PxSEL
PxIV

FR5969 (only)PxIES
PxIE
PxIFG

F5529 only (80-pin)
FR5969 only (48-pin) * PJ: 4-bits shared with JTAG pins
G2553 only (20-pin) †P1: 4-bits shared with JTAG pins (‘G2553)

 Each numbered port has 8 bits, unless noted otherwise
 At reset, all I/O pins are set to … input
 You should initialize all pins (to prevent floating inputs)
 Analog functions can ‘preempt’ pin function selection

MSP430ware GPIO Summary
PA PB

P1† P2 P3 P4

PxIN

All
Three

Devices
support

Ports 1 and 2

F5529
and

FR5969
(only)

PxOUT

PxREN

PxDIR

PxSEL

PxDS

PxIV

FR5969 (only)
PxIES

PxIE

PxIFG

GPIO_setDriveStrength

GPIO_setAsInputPin
GPIO_setAsOutputPin
GPIO_setAsPeripheralModuleFunctionInputPin

GPIO_setAsPeripheralModuleFunctionOutputPin

GPIO_getInputPinValue
GPIO_setOutputHighOnPin
GPIO_setOutputLowOnPin
GPIO_toggleOutputOnPin

GPIO_setAsInputPinWithPullDownresistor
GPIO_setAsInputPinWithPullUpresistor

GPIO_interruptEdgeSelect
GPIO_disableInterrupt
GPIO_enableInterrupt
GPIO_getInterruptStatus
GPIO_clearInterruptFlag

3 - 10 MSP430 Workshop - Using GPIO with MSP430ware

 Before We Get Started Coding

Before We Get Started Coding

Getting Your Program Started
We cover system initialization details in Chapter 4, but
here are a few items needed for Lab 3:
1. Include required #include files
2. Turn off the Watchdog timer
3. Unlock pins (Wolverine devices)

#Include Files

MSP430 Workshop - Using GPIO with MSP430ware 3 - 11

Before We Get Started Coding

Disable Watchdog Timer

Pin Unlocking (Wolverine)

3 - 12 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

Lab 3
We begin with a short Worksheet to prepare ourselves for coding GPIO using MSP430 DriverLib.

Next you’ll implement the blinking LED example using DriverLib, finally adding a test of the push
button in the final part of the lab exercise.

MSP430 Workshop - Using GPIO with MSP430ware 3 - 13

Lab 3

Lab3 Abstract
Lab 3a – GPIO
This lab creates what is often called "The Embedded Hello World" program.

While this is just simple LED blinking code, we implement with the MSP430ware DriverLib library.
This gives us a good example for learning to use, as well as link in, a library. This library will
become even more important as we explore other peripherals in later lab exercises.

Part of learning to use a library involves adding it to our project and adding its location the
compiler’s search path.

Finally, along with single-stepping our program, we will explore the "Registers" window in CCSv5.
This lets us view the CPU registers, watching how they change as we step thru our code.

Note: Our code example is a BAD way to implement a blinking light ... from an efficiency
standpoint. The _delay_cycles() function is VERY INEFFICIENT. A timer, which we learn
about in a later chapter, would be a much lower-power way to implement a delay. For our
purposes in this chapter, though, this is an easy function to get started with.

Lab 3b - Button
The goal of this lab is to light the LED when the SW1 button is pushed.

After setting up the two pins we need (one input, one output), the code enters an endless while
loop where it checks the state of the push button and lights the LED if the button is pushed down.

Basic Steps:
- Cut/Paste previous project
- Delete/replace previous while loop
- Single-step code to observe behavior
- Run, to watch it work!

Note: Only lighting LED while "polling" the button is very inefficient!

We'll improve on this in both the Interrupts and Timers lab exercises.

3 - 14 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

Lab 3 Worksheet
MSP430ware DriverLib
1. Where is your MSP430ware folder located?

2. To use the MSP430ware GPIO and Watchdog API, what header file needs to be included in
your source file?

#include < ________________________ >

3. How do we turn off the Watchdog timer using a driverlib function call?

__ ;

GPIO Output
4. We need to initialize our GPIO output pin. What two GPIO driverlib functions setup Port 1, Pin

0 (P1.0) as an output and set its value to “1”?

___;

___;

5. Using the _delay_cycles() intrinsic function (from the last chapter), write the code to blink an
LED with a 1 second delay setting the pin (P1.0) high, then low?

#define ONE_SECOND 800000

while (1) {

 //Set pin to “1” (hint, see question 4)

 __ ;

 _delay_cycles(ONE_SECOND);

 // Set pin to “0”

 ___ ;

 _delay_cycles(ONE_SECOND);

}

MSP430 Workshop - Using GPIO with MSP430ware 3 - 15

Lab 3

GPIO Input
6. What three functions choices are there for setting up a pin for GPIO input?

 Hint, one place to look would be the MSP430 Driverlib Users Guide found in the
MSP430ware folder: \MSP430ware_1_60_01_11\driverlib\doc\MSP430F5xx_6xx\

7. What can happen to an input pin that isn’t tied high or low?

8. Assuming you need a pull-up resistor for a GPIO input, write line of code required to setup
pin P2.1 for input:

___;

9. Complete the following code to read pin P2.1:

volatile unsigned short usiButton1 = 0;

while(1) {

 // Read push-button pin (SW1)

 usiButton1 = __;

 if (usiButton1 == GPIO_INPUT_PIN_LOW) {

 // If button is down, turn on LED

 GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN0);

 }

 else {

 // Otherwise, if button is up, turn off LED

 GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);

} }

10. In embedded systems, what is the name given to the way in which we are reading the
button? (Hint, it’s not an interrupt.)

Check your answers against ours … see the Chapter 3 Appendix.

3 - 16 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

Lab 3a – Blinking an LED
1. Close any open project and file.

 This helps to prevent us from accidentally working on the wrong file, which is easy to do
when we have multiple lab exercises that use “main.c”. If a previous project is open:

Right-click on the project and select “Close Project”

2. Also, if the Target Configurations window is open,
please close it.

3. Create a new project.

MSP430 Workshop - Using GPIO with MSP430ware 3 - 17

Lab 3

4. Notice that the main() function turns off the watchdog timer.

 You can replace this “register-based” code with the driverlib function, although this is not
required. Either way works fine. If you want to use driverlib, please reference your Worksheet
answer #3 (on page 3-15).

5. Add required header files.
 Add the #include header required by MSP430ware DriverLib. (See Worksheet question #2).

Hint: The default main.c created by the new project wizard already has #included
<msp430.h>. You can replace this with the driverlib #include. It’s OK to have both of
them, but the driverlib header file already references msp430.h.

???
6. Do you see question marks next to #include statement? What does this mean?

3 - 18 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

Add MSP430ware DriverLib
Hopefully you answered the last question by saying that we need to add the DriverLib library to
our project. The question marks told us that CCS couldn’t find the header file.

Adding the DriverLib library is a two-step process:
• Import a copy of the library

• Include the location in the CCS build search path

7. Import MSP430ware DriverLib library to your project.

File → Import... → General → File System

 Then select the version and path of MSP430ware you are using – your path may be different
than what is shown below. (See Worksheet question #1.)

 You should notice the library folder was added to your project:

 driverlib/MSP430F5xx_6xx (or driverlib/MSP430FR5xx_6xx)

Note: The version of MSP430ware you have may vary slightly from what is shown above. If
the version is lower (i.e. older), you should update it. If it is later, hopefully it will work
without any problems.

 You will need to expand
‘driverlib’ so that you can
choose the driverlib folder
for your architechure.

 Don’t forget to select your
project folder.

 Select ‘Create top-level
folder’

MSP430 Workshop - Using GPIO with MSP430ware 3 - 19

Lab 3

8. Update your project’s search path with the location of DriverLib header files.

 Along with adding the library, we also need to tell the compiler where to find it.

 Open the Include Options and add dir to #include search path:

Right-click project → Properites

 Then select:

Build → MSP430 Compiler → Include Options

 and add the appropriate path to the #include search path:

${PROJECT_ROOT}\driverlib\MSP430F5xx_6xx

 or ${ PROJECT_ROOT}\driverlib\MSP430FR5xx_6xx

 With this step done, you should notice the ??? gone from the #include statements.

9. Click the build toolbar button to verify our edits, thusfar, are all correct.

3 - 20 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

Add the Code to main.c
10. Setup P1.0 as output pin.

 Reference Worksheet question #4 (page 3-15).

 Begin writing your code after the code that disables the watchdog timer as shown:

11. Create a while{} loop that turns LED1 off/on with a 1 second delay.

 Reference Worksheet question #5 (page 3-15). Begin the while() loop after the code your
wrote in the previous step. Also, don’t forget to add the #define for “ONE_SECOND”.

12. Build your program with the Hammer icon.
 Make sure your program builds correctly, fixing any syntax mistakes found by the compiler.

For now, you can ignore any remarks or advice recommendation, we’ll explore this later.

13. Load and Run your program.
 Click the easy Debug button to start the debugger and download your program. Then click

the Run button.

Does your LED flash? ___

 If it doesn’t, let’s hope following debug steps help you to track down your error.

 If it does, hooray! We still think you should perform the following debug steps, if only to better
understand some additional features of CCS.

14. Suspend the debugger.

Alt-F8

MSP430 Workshop - Using GPIO with MSP430ware 3 - 21

Lab 3

Debug
15. Restart your program.

16. Open the Registers window and view P1DIR and P1OUT. Then single-step past the
GPIO DriverLib functions.

View → Registers

Expand Port_1_2, P1OUT and P1DIR as shown

 Then, single-step (i.e. Step Over – F6) until you execute this line:

GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);

Your register view should now look similar to this:

17. Single-step until you reach the _delay_cycles() function.

 You should see the P1OUT register change as you step over the appropriate function.

 Unfortunately, the “Step Over” command doesn’t step over _delay_cycles().

3 - 22 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

18. Set breakpoints on both GPIO_setAs … functions, then Run and check values in
Registers window.

 Since it’s difficult to step over _delay_cycles(), we’ll just run past them. Setting the
breakpoints on both lines where we change the GPIO pin value, we should see the LED
toggle each time you press run.

 Set breakpoints as shown below:

Then click Run several times stopping at each breakpoint and keeping your eye on the LED.

Note: Oh, and we ended up finding the problem with our code. A cut and paste error left us
with two lines of code in our loop that both turned off the LED. Oops!

MSP430 Workshop - Using GPIO with MSP430ware 3 - 23

Lab 3

Lab 3b – Reading a Push Button
File Management
We’re going to try another – easier – method of creating a new driverlib project from scratch.

Import the Empty driverlib example project

1. Import the emptyProject from the MSP430 DriverLib examples.

 There are a couple different ways to import the example projects, but in this lab we’ll utilize
the TI Resource Explorer as it provides convenient access to examples from within CCS.

a) Open the TI Resource Explorer window, if it’s not already open

Help → Welcome to CCS

Hint: If you don’t see a listing of resource in the window, click the Home button.

b) Locate the emptyProject example.
Look for it as shown here:

If you’re using the FR5969, follow
the same path starting from the

MSP430FR5xx6xx heading.

3 - 24 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

c) Click the link to “Import the example project into CCS”.

Once imported you can close the TI Resource Explorer, if you want to get it out of the way.

d) Rename the imported project to: lab_03b_button (Right-click on the project name
and select “Rename”)

2. Quickly examine the new lab_03b_button Project.

 Looking at this project, you’ll see that it already has the driverlib library imported into the
project. Also, the required #include search path entry has already been added to the project.

Copy our source project from the previous project

3. Delete the ‘empty’ main.c from the new project.

4. Copy/Paste main.c from lab_03a_gpio to lab_03b_button.

 You can easily copy and paste files right inside the CCSv5 Project Explorer. Simply right-click
on the file (main.c) from the previous project and select “Copy” and then right-click on the
new project and select “Paste”.

 (Alternatively, we could have just copied and pasted the main() function from our previous lab project,
but we found it easier just to copy the whole file.)

5. Close the previous lab: lab_03a_gpio

 As we’ve learned, this should close the .c source files associated with the project, which can
help us from accidentally editing the wrong file. (Believe us, this happens a lot.). Right-click
on the project and select “Close Project”.

6. Build the new lab, just to make sure everything was copied correctly.

MSP430 Workshop - Using GPIO with MSP430ware 3 - 25

Lab 3

Add Setup Code (to reference push button)
7. Before main(), add the global variable: usiButton1

volatile unsigned short usiButton1 = 0;

 Let’s explain some of our choices:

 Global variable: We chose to use a global variable because it’s in scope all the time. Since it
exists all the time (as opposed to a local variable), it’s just a bit easier to debug the code.
Otherwise, local variables are probably a better choice: better programming style, less prone
to naming conflicts and more memory efficient.

 Volatile: We’ll use this variable to hold the state of the switch, after reading it with our
DriverLib function.

Does this variable change outside the scope of C? ________________________________

 Absolutely; it’s value depends upon the push button’s up/down state. That is why we must
declare the variable as volatile.

unsigned short … You tell us, why did we pick that? ______________________________

 usiButton1: The ‘usi’ is Hungarian notation for unsigned short integer. We added the ‘1’ to
‘Button’, just in case we want to add a variable for ‘Button2’ later on. (We could have also used
the names ‘SW1’ and ‘SW2’ as they’re labled on the Launchpad, but we liked ‘Button’ better.)

=0 … well, that’s just good style. You should always initialize your variables. Many embedded
processor compilers do not automatically initialize variables for you.

8. In main(), add code to setup push button (SW1) as an input with pullup resistor.

 This setup code should go before the while{} loop.

 And don’t forget, this code was the answer to Worsheet question #8 (page 3-16). Reminder –
SW1 is connected to Port 2, Pin 1)

Hint: We should’ve have recommended bringing a magnifying glass to read the silk screen on the
Launchpad board. It’s very hard to see which button is SW1 – and the pin it is connected to. It
may easier to reference the Quick Start sheet that came with your Launchpad.

3 - 26 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

Modify Loop
9. Modify the while loop to light LED when SW1 push button is pressed.

 Comment out (or delete) LED blinking code and replace it with the code we created in the
Worsheet question #9 (page 3-16).

 At this point, your main.c file should look similar to this:

// --
// main.c (for lab_03b_button project)
// --

//***** Header Files **
#include <driverlib.h>

//***** Defines ***
#define ONE_SECOND 800000
#define HALF_SECOND 400000

//***** Global Variables **
volatile unsigned short usiButton1 = 0;

//***** Functions ***
void main (void)
{
 // Stop watchdog timer
 WDT_A_hold(WDT_A_BASE);

 // Set P1.0 to output direction, P2.1 as input with pullup resistor
 GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);
 GPIO_setAsInputPinWithPullUpresistor(GPIO_PORT_P2, GPIO_PIN1);

 while(1) {
 // Read P2.1 pin connected to push button 1
 usiButton1 = GPIO_getInputPinValue (GPIO_PORT_P2,
 GPIO_PIN1);

 if (usiButton1 == GPIO_INPUT_PIN_LOW) {
 // If button is down, turn on LED
 GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN0);
 }
 else {
 // If button is up, turn off LED
 GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);
 }
 }
}

Hint: If you want to minimize your typing errors, you can copy/paste the code from the listing above.
We have also placed a copy of this code into the lab’s readme file (in the lab folder), just in
case the copy/paste doesn’t work well from the PDF file.

Copying from PDF will usually mess up the code’s indentation. You can fix this by selecting the
code inside CCSv5 and telling it to clean-up indentation:

 Right-click → Source → Correct Indentation (Ctrl+I)

MSP430 Workshop - Using GPIO with MSP430ware 3 - 27

Lab 3

Verify Code
10. Build & Load program.

11. Add the usiButton1 variable to the Watch Expression window.

 Hint: select the variable name before you right-click on it and add it to the Watch window.

12. Single-step project. Watch the LED and variable.

 Loop thru while multiple times with the button pressed (and not pressed), watching the
variable (and LED) change value.

13. Run the program.

 Go ahead and click the Run toolbar button and glory in your code, as the LED lights
whenever you push the button.

Note: This is not efficient code. It would be much better to use the pin as an interrupt … which
we’ll do in Chapter 5.

Optional Exercises
• Try this lab without pullup (or pulldown) resistor.

Without the resistor, is the pushbutton’s value always consistent? (yes / no) _______________
• Try using the other LED on the board …

• … or the other pushbutton.

3 - 28 MSP430 Workshop - Using GPIO with MSP430ware

 Chapter 3 Appendix

Chapter 3 Appendix

Lab3 – Worksheet
1. Where is your MSP430ware folder located?

__
2. To use the MSP430ware GPIO and Watchdog API, what header

file needs to be included in your source file?
#include < ________________________ >

3. How do we turn off the Watchdog timer?

__ ;
4. We need to initialize our GPIO output pin. What two GPIO

driverlib functions setup Port 1, Pin 0 (P1.0) as an output and
set its value to “1”?

__ ;
__ ;

driverlib.h

Most likely: C:\ti\msp430\MSP430ware_1_60_01_11\

WDT_A_hold(WDT_A_BASE)

GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0)

GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN0)

Lab3 Worksheet
5. Using the _delay_cycles() intrinsic function (from the last chapter),

write the code to blink an LED with a 1 second delay setting the
pin (P1.0) high, then low?
#define ONE_SECOND 800000

while (1) {

//Set pin to “1” (hint, see question 4)

___ ;

_delay_cycles(ONE_SECOND);

// Set pin to “0”

___ ;

_delay_cycles(ONE_SECOND);

}

GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN0)

GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0)

MSP430 Workshop - Using GPIO with MSP430ware 3 - 29

Chapter 3 Appendix

6. What three functions choices are there for setting up a pin for GPIO
input?
Hint, one place to look would be the MSP430 Driverlib Users Guide
found in the MSP430ware folder:

\MSP430ware_1_60_01_11\driverlib\doc\MSP430F5xx_6xx\

7. What can happen to an input pin that isn’t tied high or low?

8. Assuming you need a pull-up resistor for a GPIO input, write line of
code required to setup pin P1.0 for input:
___;

Lab3 Worksheet

The input pin could end up floating up or down. This uses

more power … and can give you erroneous results.

GPIO_setAsInputPinWithPullUpresistor (GPIO_PORT_P1, GPIO_PIN0)

GPIO_setAsInputPin()

GPIO_setAsInputPinWithPullDownresistor()

GPIO_setAsInputPinWithPullUpresistor()

9. Complete the following code to read pin P2.1:
volatile unsigned short usiButton1 = 0;

while(1) {

// Read push-button pin (SW1)

usiButton1 = _____________________________________;

if (usiButton1 == GPIO_INPUT_PIN_LOW) {

// If button is down, turn on LED
GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN0);

}
else {

// Otherwise, if button is up, turn off LED
GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);

}
}

Lab3 Worksheet

10. In embedded systems, what is the name given to the way in which
we are reading the button? (Hint, it’s not an interrupt)

GPIO_getInputPinValue (GPIO_PORT_P2, GPIO_PIN1)

“Polling”

3 - 30 MSP430 Workshop - Using GPIO with MSP430ware

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 1

MSP430 Clocks & Initialization

Introduction

A fundamental part of any modern MCU is its clocking. While rarely a flashy part of system design, it
provides the heartbeat of the system. It becomes even more important in applications that depend upon
precise, or very low-power, timing.

The MSP430 provides a wealth of clock sources; from ultra low-power, low-cost on-chip clock sources to
high-speed external crystal inputs. All of these can be brought to use through 3 internal clock signals,
which power the CPU along with fast and slow peripherals.

Along with clocking, though, there are a few other items that need to be initialized at system startup.
Towards the end of the chapter, we touch on the power management and watchdog features of the
MSP430.

Learning Objectives

Objectives

- List the different types of MSP430 timers
- Describe how a basic timer/counter works
- Define the concepts of Capture & Compare
- Explain the nomenclature for Timer_A
- Enumerate the 4 steps to programming Timer_A
- List 3 differences between Timer_A and Timer_B
- Write a program to:

- Generate (and handles) a periodic interrupt
- Generate a simple PWM waveform

Operating Modes (Reset → Active)

4 - 2 MSP430 Workshop - MSP430 Clocks & Initialization

Chapter Topics

MSP430 Clocks & Initialization .. 4-1

Operating Modes (Reset → Active) .. 4-3
BOR → POR → PUC → Active (AM) ... 4-3

Clocking... 4-5
What Do You Need? ... 4-5
MCLK, SMCLK, ACLK .. 4-6
Clock Sources ... 4-6
Clock Details (by Device Family) .. 4-8

DCO Setup and Calibration .. 4-14
How the DCO Works ... 4-14
Factory Callibration (G2xx, FR5xx) ... 4-17
Runtime Calibration ... 4-18
VLO 'Calibration' ... 4-19

Other Initialization (WDT, PMM) ... 4-20
Watchdog .. 4-20
PMM with LDO, SVM, SVS, and BOR .. 4-21
Initialization Summary (template) .. 4-24

Lab Exercise ... 4-25

 Operating Modes (Reset → Active)

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 3

Operating Modes (Reset → Active)

BOR → POR → PUC → Active (AM)

Brownout Reset (BOR)
At power-up, the brownout circuitry

holds device in reset until Vcc is above
hysteresis point

Startup from BOR:
 RST/NMI pin is configured as reset
 I/O pins are configured as inputs
 Clocks are configured
 Peripherals and CPU registers are

initialized (see user guide)
 Status register (SR) is reset
 Watchdog timer powers up active in

watchdog mode
 Program counter (PC) is loaded with

reset vector location (0xFFFE)
If reset vector is blank (0FFFFh), the
device enters LPM4

BOR → POR → PUC → Active (AM)

Three Levels of Reset
 BOR is most comprehensive, followed by:

 POR = Power-On Reset
 PUC = Power-Up Clear

 Different events trigger different resets; e.g.
 SVS (power supervisor) triggers POR
 WDT (watchdog) triggers PUC

 Each level touches different bits in CPU and
peripheral registers → User Guide notation:

Operating Modes (Reset → Active)

4 - 4 MSP430 Workshop - MSP430 Clocks & Initialization

 Diagram makes a good
reference during dev’l

 See diagram in each
User’s Guide

 Note: We removed the
Low-Power Modes (LPMx)
from this diagram for
simplicity (they will be
discussed in later chapter)

MSP430F5529 Power-Up Modes

 Clocking

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 5

Clocking

What Do You Need?

What Clocks Do You Need?

 Fast Clocks CPU, Communications, Burst Processing

 Low-power RTC, Remote, Battery, Energy Harvesting

 Accurate Stable over ⁰/V, Communications, RTC, Sensors

 Failsafe Robust–keeps system running in case of failure

 Cheap … goes without saying …

… or some combination of these features?

MSP430 – Lot’s of Options

 Variety of osc sources – on-chip (cheap, reliable) and off-chip (accurate)
 Rich selection of oscillator sources routed to internal clocks
 Many clock dividers enhance the available clock frequencies
 All MSP430 devices provide at least 3 internal clocks – provides flexibility

in tuning system’s power vs performance

Clocking

4 - 6 MSP430 Workshop - MSP430 Clocks & Initialization

MCLK, SMCLK, ACLK

MSP430 Clock Options

CPU

Clock

ADC LCDGPIO

SerialWDT Timer RTC

ACLK
SMCLK

MCLK

Name Description Used-by Typical Speed
 MCLK Master Clock CPU Fast
 SMCLK Sub-Master Clock Peripherals Fast
 ACLK Auxiliary Clock Peripherals Slow

Clocks – Fast or Slow
 All MSP430 devices

provide at least 3 clocks
 Tune system peripherals

by choice of clock:
 Fast = Performance
 Slow = Low-power

 Fast/slow clocks also
provide wider timing

Clock Sources

Typical Clock Sources

Frequency

VLO ~10 KHz

REFO 32768 Hz

XT1 • LF: < 50 KHz
• HF: 4-Max MHz

XT2 4-40 MHz

DCO 100 KHz to
CPU Max

MODOSC • 5 MHz
• 5 MHz / 128 MODOSC

ACLK

SMCLK

MCLK

` V R 1 2 D

*Note: This is a general description, please refer to datasheet/UsersGuide for complete details regarding your device

 Clocking

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 7

Typical Clock Sources

Frequency ‘G2553
Value-line

‘F5529
USB

‘F5969
Wolverine

VLO ~10 KHz

REFO 32768 Hz

XT1 • LF: < 50 KHz
• HF: 4-Max MHz

XT2 4-40 MHz

DCO 100 KHz to
CPU Max

MODOSC • 5 MHz
• 5 MHz / 128

*Note: This is a general description, please refer to datasheet

Clock Source Details (‘F5529)

Frequency Precision Current /
Startup Comments

VLO ~10 KHz Very Low
(40%) 60nA Use as Ultra

Low Power tick

REFO 32768 Hz Med/High
(3.5%)

3A
25S

Trimmed to
3.5%

XT1 • LF: < 50 KHz
• HF: 4-Max MHz High 75nA

500-1k mS
Crystal or
Ext Clock

XT2 4-40 MHz High 260A (12MHz)
400S

Crystal or
Ext Clock

DCO 100 KHz to
CPU Max Low/Med 60A

200nS
Calibrate with
Constant/FLL

MODOSC • 5 MHz
• 5 MHz / 128 Med N/A Used by FLASH

or ADC

Clocking

4 - 8 MSP430 Workshop - MSP430 Clocks & Initialization

Clock Details (by Device Family)

MSP430 Clock Modules

Module Clock Module Name
MSP430

Device Family

BCS Basic Clock System F1xx / F2xx

BCS+ Basic Clock System + F2xx / G2xx

FLL+ Frequency Locked Loop + F4xx

UCS Unified Clock System F5xx / F6xx

CS Clock System FR5xx

CCS Compact Clock System L092

F1xx Basic Clock System (BCS)

R2/SR

Reserved CSCG1 SCG0 ZNGIECPU
OFF

OSC
OFFV

 Clocking

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 9

 Very Low Power/Low Frequency
Oscillator (VLO)*

 4 – 20kHz (typical 12kHz)

 500nA standby

 0.5%/°C and 4%/Volt drift

 Not in ’21x1 devices

 Crystal oscillator (LFXT1)

 Programmable capacitors

 Failsafe OSC_Fault

 Minimum pulse filter

 Digitally Controlled Oscillator
(DCO)

 0-to-16MHz

 + 3% tolerance

 Factory calibration in Flash

F2xx/G2xx Basic Clock System (BCS+)

On PUC, MCLK and SMCLK are sourced
from DCOCLK at ~1.1 MHz. ACLK is sourced
from LFXT1CLK in LF mode with an internal
load capacitance of 6pF. If LFXT1 fails, ACLK
defaults to VLO.

* Not on all devices. Check the datasheet.

 UCS is available on F5xx/F6xx devices
 Six independent clock sources

 Low Frequency
 LF XT1 32768 Hz crystal
 VLO 10 kHz
 REFO 32 kHz

 High Frequency
 HF XT1 4 – 32 MHz crystal
 XT2 4 – 32 MHz crystal
 DCO FLL calibration

 FLL references (divisible, too)
 LFXT1 / XT1
 REFO
 XT2

 Orthogonal: Any source to any clock
 MODOSC provided for Flash & ADC12
 Clocks on demand

F5xx: Unified Clock System (UCS)

Clocking

4 - 10 MSP430 Workshop - MSP430 Clocks & Initialization

 Orthogonal clock system
 Any source can drive

any clock signal
 2 Integrated clock sources:

 REFO: 32kHz, trimmed osc.
 VLO: 12kHz, ultra-low

power
 DCO & FLL provide high

frequency accurate timing
 MODOSC provides bullet proof

timing for Flash
 Crystal pins muxed with

I/O function

F5xx: Unified Clock System
Main Features:
 Any OSC can drive any system

clock (MCLK,ACLK,SMCLK)
 Clock divider up to 32 for each

system clock
 Control the CLK in Low Power

Modes (stopped or running) and
react to module CLK requests

 OSC enable logic according
requests

 Supporting the FLL as sub-
module and providing the
control registers

 MODOSC as Clock source for
Flash and ADC

Wolverine’s Clock System (CS)

Clock System (CS)
 CS found on Wolverine (FR58/59xx)
 Five independent clock sources

 Low Freq
 LFXT1 (32768 Hz crystal)
 VLO (10 kHz)
 LFMODCLK (MODCLK/128)

 High Freq
 XT1 (4 – 24 MHz crystal)
 XT2 (4 – 24 MHz crystal)
 DCO (Specific CAL range)
 MODCLK (Internal 5MHz)

 Notes:
 MODOSC provided to ADC12,

MODCLK and LFMODCLK
 LF and HF ranges for XT1

 Defaults:
 DCO = 1MHz
 ACLK = Only LF sources

 Failsafes:
 XT1LF: LFMODCLK (~42kHz)
 XT1HF

or XT2: MODCLK (5MHz)

 Clocking

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 11

Using MSP430ware to configure clocking

DriverLib – Selecting Clock Sources
#include <driverlib.h>

void myClkInit(void) {

//Set ACLK = REFO
UCS_clockSignalInit (

UCS_BASE,
UCS_ACLK, // Configure ACLK
UCS_REFOCLK_SELECT, // Set to REFO source
UCS_CLOCK_DIVIDER_1 // Set clock divider to 1
);

...

 Call “clockSignalInit” function for each clock you want to configure
 Function prefix: UCS_ (F5xx/6xx), CS_ (FR5xx)
 Exception – we usually configure MCLK for F5xx/6xx using the initFLL

function (discussed later)

DriverLib – Using External Crystal

 Warning: Verify XIN and XOUT before starting external oscillators!
On many devices, these pins are shared with GPIO

 UCS_LFXT1StartWithTimeout() lets the function exit even if the crystal
isn’t working – make sure you check it’s return value

#include <driverlib.h>

//Set XIN (P5.4) and XOUT (P5.5) in Clock mode
GPIO_setAsPeripheralModuleFunctionInputPin(

GPIO_PORT_P5, GPIO_PIN4);

GPIO_setAsPeripheralModuleFunctionOutputPin(
GPIO_PORT_P5, GPIO_PIN5);

//Start the XT1 oscillator, wait until it’s running
UCS_LFXT1Start(UCS_BASE, UCS_XT1_DRIVE0, UCS_XCAP_3);

UCS_clockSignalInit (UCS_BASE,
UCS_ACLK, // Configure ACLK
UCS_XT1CLK_SELECT, // Set to REFO source
UCS_CLOCK_DIVIDER_1); // Set clock divider to 1

Clocking

4 - 12 MSP430 Workshop - MSP430 Clocks & Initialization

Clock Requests (don’t turn off clocks, if needed)

 Modules place clock requests
to the system clocks

 LPM3 entry can be prevented
if a module requires SMCLK
to operate properly!

 Must be very conscious of
the clocks required in the
system.

Other Clock Notes/Warnings
 Devices with shared IO’s for GPIO and XIN/XOUT:

 Configure the XIN/XOUT ports correct, if you forget this the Fault will
be still available.

 If using a loop or interrupt for clearing the fault flag you will loop
forever

 After clearing the fault flag in the Clock system successfully you need to
clear the OFIFG flag inside the SFR as well.
 If you don‘t do this you run always with the failsafe clock. Two stage

Fault logic is new for 5xx series
 If LFXT is disabled when entering into a low-power mode:

 It is not fully enabled and stable upon exit from the low-power mode,
because its enable time is much longer than the wakeup time.

 If the application needs to keep LFXT enabled during a low-power
mode, the LFXTOFF bit can be cleared prior to entering the low-power
mode which causes LFXT to remain enabled.

 Similarly, the HFXTOFF bit can be cleared prior to entering the low-
power mode. This causes HFXT to remain enabled.

 Clocking

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 13

Additional Clock Features
Clock Feature G2553 (BCS+) F5529 (UCS) F5969 (CS)

Available
Clock

Sources

MCLK VLO, LFXT1, XT2,
DCO VLO, REFO, XT1,

XT2, DCOCLK,
DCOCLKDIV

VLO, LFXT, LFMODCLK,
HFXT, MODCLK, DCOCLK

SMCLK

ACLK VLO, LFXT1 VLO, LFXT, LFMODCLK

Clock
Defaults

(at PUC Reset)

MCLK
DC0

(1.1MHz)
DCOCLKDIV

(1MHz)
DCO

(1MHz)SMCLK

ACLK LFXT1 XT1CLK
(32KHz) LFXT

External Clk Failsafe ACLK = VLO
S/MCLK = DCO

LF XT1 = REFO
HF XT1/XT2 = DCO

LFXT= LFMODCLK (42kHz)
HFXT=MODCLK (5MHz)

DCO Calibration Factory Constant FLL (Run-time) Factory Trimmed

Password Needed
(To change clock settings)

No No Yes

Clock Request
(Periph can force clk on)

WDT+ only Yes Yes

DCO Setup and Calibration

4 - 14 MSP430 Workshop - MSP430 Clocks & Initialization

DCO Setup and Calibration

Calibrating DCO

Before we look at the details of calibration, let’s start with “How does the DCO work?”

How the DCO Works

Pick a Frequency Range

f D
CO

M
Hz

DCO Range Select (DCORSEL)

UCSCTL1 DCORSEL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘F5529 Example: 1 MHz
 DCORSEL = 1

Select a range with the target
frequency near mid-point

 DCO Setup and Calibration

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 15

Narrow The Range

f D
CO

M
Hz

DCO = 0

DCO = 0

DCO = 31

DCO = 31 ‘F5529 Example: 1 MHz
 DCORSEL = 1

Select a range with the target
frequency near mid-point

 DCO = 18
Each range broken into 32
levels (8 levels for ‘G2xx)

UCSCTL0 DCO MOD

UCSCTL1 DCORSEL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Modulation Further Extends Precision
‘F5529 Example: 1 MHz
 DCORSEL = 1

Select a range with the target
frequency near mid-point

 DCO = 18
Each range broken into 32
levels (8 levels for ‘G2xx)

 MOD – Interpolates between
levels by modulating their
frequencies (DCO and DCO+1)
 Effectively provides freq taps

between DCO selections
 Spreads clock energy between 2

freq’s, which reduces EMI
 Jitter avg’d out within 32 clocks

UCSCTL0 DCO MOD

UCSCTL1 DCORSEL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DCO

DCO+1

DCO Setup and Calibration

4 - 16 MSP430 Workshop - MSP430 Clocks & Initialization

DCO Clock Summary

1. Select Range
2. Select Tap within Range
3. Choose Modulation to

effect greater precision

DCO Modulation

 The modulator mixes two frequencies to produce
the DCO clock

 This spreads the clock energy and reduces
electromagnetic interference (EMI)

 Due to small jitter, DCO cannot be used to lock a PLL

 DCO Setup and Calibration

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 17

Factory Callibration (G2xx, FR5xx)

FR5xx DCO – Calibrated Frequencies
 Clock System (CS) module

found on FR5xx devices
 DCO (CS module) provides

multiple pre-defined &
calibrated frequencies

 Factory Trimmed Accuracy:
+2% from 0-50C
+3.5% from -40 to 85C

 FR5xx CS module requires psw
to write clock reg’s

 *If DCOCLK = 20 or 24MHz it
must be divided down for MCLK

DCORSEL DCOFSEL DCO (MHz)

0 or 1 000 1

0 001 2.667

0 010 3.333

0 011 4

0/1 100/001 5.33

0/1 101/010 6.67

0/1 110/011 8

1 100 16

1 101 20*

1 110 24*

CSCTL1 DCOFSEL
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

// Set DCO to 8MHz
CS_setDCOFreq(CS_BASE, CS_DCORSEL_1, CS_DCOFSEL_3);

Ex:

‘G2xxx DCO – Calibration Constants

// Setting the DCO to 1MHz
if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)

while(1); // Erased calibration data? Trap!
BCSCTL1 = CALBC1_1MHZ; // Set range
DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation

 Most G2xx devices provide pre-calibrated clock settings – applying
these sets the Range, DCO, and MCO values

 Clock (and ADC) calibration values are calculated at the factory and
stored into Flash memory (INFOA)

 G2xx1 provide 1MHz calibration; G2xx2/3 provides all 4 frequencies

DCO Setup and Calibration

4 - 18 MSP430 Workshop - MSP430 Clocks & Initialization

Runtime Calibration

Dynamic Calibration of DCO in Software

 Minimize frequency drift due to changes in voltage or temperature
 DCO clock precision is achieved by periodic adjustment in loop
 Modify settings (DCO, MOD) in loop based upon comparison of DCO to

another known/stable freq, such as 32kHz crystal (or 50/60Hz AC power)

 Frequency Locked Loop (FLL) – ‘lock’ one frequency to another
 Software FLL is the only option available on ‘F1xx devices
 While software FLL could be used for any MSP430 device, the F4xx/5xx/6xx

clock modules contain Hardware FLL circuitry

32768 Hz // Partial SW FLL Code
if (COUNT < Compare) // DCO too fast

increase DCO/MOD;
else decrease DCO/MOD; // DCO too slow

‘F5xx Hardware FLL

UCSCTL0 DCO MOD

UCSCTL2 FLLD FLLN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DCOCLK

DCOCLKDIV

DCO and MODulator

DC
Generator

FLLREFCLK

Divider
DCOCLKDIV/(FLLN+1)

Integrator

-

+

 XT1
 XT2
 REFO

Inc/dec DCO+MOD
bit-fields

as needed

n

DCOCLK = (FLLREFCLK/n) * FLLD * (FLLN + 1)

where: n = FLLREFDIV

 DCO Setup and Calibration

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 19

Setting ‘F5529 DCO with MSP430ware

UCSCTL0 DCO MOD

UCSCTL1 DCORSEL

UCSCTL2 FLLD FLLN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

#include <msp430.h>
#include <driverlib.h>

#define MCLK_FREQ_KHZ 8000
#define FLLREF_KHZ 32
#define MCLK_FLLREF_RATIO MCLK_FREQ_KHZ/FLLREF_KHZ // Ratio=250

void myInitDCO (void) {

// Set DCO FLLREF to 32KHz = REF0
UCS_clockSignalInit (UCS_BASE,

UCS_FLLREF, // Setup FLLREFCLK
UCS_REFOCLK_SELECT, // FLLREFCLK=REFO
UCS_CLOCK_DIVIDER_1 // FLLREFDIV=1
);

// Setup DCO and FLL to provided freq (sets FLLD, FLLN, etc.)
// once clk settled, use as source for MCLK & SMCLK
UCS_initFLLSettle(UCS_BASE,

MCLK_FREQ_KHZ,
MCLK_FLLREF_RATIO);

}

VLO 'Calibration'

 Calibrate the VLO during runtime

 Example:
 Timer_A clocked at calibrated 1MHz (from DCO)
 Capture with rising edge of ACLK/8 from VLO
 fVLO = 8MHz/Counts

 Code library on the web (search for “SLAA340”)

Run Time ‘Calibration’ of VLO

TAR

Calibrated 1 MHz DCO

CCRx

ACLK/8 from VLO

fVLO = 8MHz/Counts

Other Initialization (WDT, PMM)

4 - 20 MSP430 Workshop - MSP430 Clocks & Initialization

Other Initialization (WDT, PMM)

Software Initialization

Initialization Step Required
Action?

Who is
Responsible

Where
Discussed

1. Initialize the stack pointer (SP) Yes Yes /
Compiler N/A

2. Initialize watchdog timer
(usually OFF when debugging) Yes Yes / User Chapter 4

3. Setup Power Manager & Supervisors No User Chapter 4

4. Configure GPIO pins No User Chapter 3

5. Reconfigure clocks (if desired) No User Chapter 4
(earlier)

6. Configure peripheral modules No User Later
chapters

Watchdog

Watchdog Timer (WDT)

 Watchdogs provide a system failsafe – reset’s system when upon timeout
 Slight variations among device families:

 WDT_A* 8 time intervals; uses VLO if clock fails (F5xx, FR5xx)
 WDT+ 4 time intervals; uses DCO if clock fails (G2xx)

 Use WDT in three ways:
1. Turn off: WDT_A_hold();
2. Use as watchdog: WDT_A_watchdogTimerInit();
3. Use as interval timer: WDT_A_intervalTimerInit();

 If using as Watchdog, usually slowest clock & longest interval is best
 Watchdog source clock cannot be turned off – may affect Low-Power Modes

CPU

Reset

WDT

Restart countdown

up-counter
ACLK

SMCLK
VLO*

Your code must periodically
clear the WDT counter:
WDT_A_resetTimer();

If WDT count completes
CPU is reset (POR)

WDT is always on at PUC

 Other Initialization (WDT, PMM)

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 21

PMM with LDO, SVM, SVS, and BOR

Power Management Module (PMM)
The on-chip PMM manages all functions related to the power supply and its
supervision for the device. Its primary functions are:
1. Generate a supply voltage for the core logic (LDO)
2. Provide several mechanisms for the supervision and monitoring (SVS/SVM)

Regulator
(LDO)

DVCC
(Device Voltage)

VCORE
(Core Voltage)

“High” side “Low” side

SVMHSVSH SVSLSVML BOR

Reset
CPU

InterruptsReset

SVM Supply Voltage Monitor Warn if voltage is getting low Optional
SVS Supply Voltage Supervisor Reset if voltage is too low Optional

BOR Brown-Out Reset Reset if core voltage too low Always On

‘F5xx Operating Range
 25MHz peak performance
 More performance

across VCC range vs ‘F/G2xx:
 Flash ISP @ min. VCC

 8MHz @ min. VCC

 Up to 25MHz @ 2.4V-3.6V
 Programmable VCORE

maximizes power efficiency;
power vs performance

 VCORE register bits:
PMMCTL0.PMMCOREV

 When using SVS, changing
VCORE is a 4 step process, but
it’s easy with Driverlib:
PMM_setVCore();

#include <driverlib.h>

//Set VCore = 1 for 12MHz clock
PMM_setVCore(PMM_BASE, PMM_CORE_LEVEL_1);

Other Initialization (WDT, PMM)

4 - 22 MSP430 Workshop - MSP430 Clocks & Initialization

Supply Supervisor and Monitor (SVS, SVM)

A few remarks:

 SVS and SVM can be disabled
 SVM provides “early” warning

and generates interrupts
 SVS turns off device – but also

sets an interrupt flag (check it
after reset)

 High side is the voltage input to
the device (prior to PMM’s LDO)

 Low side is the core voltage
(after LDO)

Power Management Summary
G2553 F5529 FR5969

Input Voltage (DVCC) 1.8 - 3.6 Volts 1.8 - 3.6 Volts 1.8 - 3.6 Volts

Internal Regulator s (LDO) None 3 LDO’s
(LP, HP, USB)

4 LDO’s
(LP, HP, RTC, FRAM)

of VCORE Levels
(Configuration)

N/A 4 Power Levels
(Manual)

Intelligent Power
(Automatic)

Speed affected by
Input Voltage

Yes
1.8V: up to 6MHz
3.3V: up to 16MHz

Yes
1.8V: up to 8MHz
2.4V: up to 25MHz

No
All speeds available

over entire range

Flash/FRAM Voltage
(In-System Programming)

2.2 V and above Full Range Full Range

Brown-Out Reset (BOR) Yes Yes Yes

Power Supervisor (SVS) F2xx (but not G2xx) Yes Yes

Power Monitor (SVM) No Yes Yes

I/O protection No Yes Yes

 Other Initialization (WDT, PMM)

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 23

Wolverine Power Gating (‘FR58/59)

 Enhanced clock system
 Each module has a clock enable line
 If CE line is not in use the domain is powered down

Domain 1: Always ON CPU, Interrupt logic
Domain 2: Always OFF, AES, HW MPY
Domain 3/4: Peripheral Domain for e.g.

timers

Voltage Supervision & Monitoring

Power on Default Mode

Normal Performance Mode
+800 nA active current

consumption
0 nA LPM2,3,4 current

consumption

SVS / SVM disabled

• SVS / SVM disabled
• Zero-power BOR protection

is ALWAYS ON
• 5 us wakeup from LPM2,3,4
• +0 uA active & LPM2,3,4

current consumption

High-side Fast Performance Mode

• High-side Fast Performance Mode
• Low-side SVS / SVM disabled
• 5 us wakeup from LPM2,3,4
• +4 uA active & LPM2,3,4 current

consumption
• Automatic high-side protection

when CPU is active

Maximum Robustness

• Fast Performance Mode
• 5 us wakeup from LPM2,3,4
• +8 uA active & LPMx current

consumption

Current

150 us wakeup from LPMx

High-side Full Performance
Mode

• High-side Full Performance
Mode

• Low-side SVS / SVM disabled
• +4uA active current

consumption
• +0uA LPM2,3,4 current

consumption
• Automatic high-side

protection when CPU is active

5 us wakeup from LPMx

Other Initialization (WDT, PMM)

4 - 24 MSP430 Workshop - MSP430 Clocks & Initialization

Initialization Summary (template)

Summary: Initializing MSP430
#include <driverlib.h>

void main(void) {
// Setup/Hold Watchdog Timer (WDT+ or WDT_A)
initWatchdog();

// Configure Power Manager and Supervisors (PMM)
initPowerMgmt();

// Configure GPIO ports/pins
initGPIO();

// Setup Clocking: ACLK, SMCLK, MCLK (BCS+, UCS, or CS)
initClocks();

//--
// Then, configure any other required peripherals and GPIO
...

while(1) {
...
}

}

 Lab 4 - Abstract

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 25

Lab 4 - Abstract
Lab 4 explores a variety of initialization tasks; the largest one being to setup the clocks for the
MSP430.

Lab 4 – Clocks & Init
 Initialize the Lab with a Worksheet:

 Clock setup
 DCO setup
 Watchdog configuration

 Lab 4a – Program MSP430 Clocks
 Program MCLK, SMCLK, and ACLK
 Evaluate using ‘get’ clock rate functions

Extra Labs:
 Lab 4b – Exploring the Watchdog Timer

 What happens if the WDT times-out?

 Lab 4c – Utilizing Crystals
 Configure SMCLK using the external high-

speed crystal
 Configure ACLK using the off-chip external

‘watch’ crystal

Time:
Worksheet – 15 mins
Lab 4a – 30 mins

This lab also starts off with a worksheet where we will answer a number of questions (and write a
little code) that will be used in the upcoming lab procedure.

Lab 4a – Program MSP430 Clocks

We explore the default clock rates for each of MSP430’s three internal clocks; then, set them up
with a set of specified clock rates.

(Extra) Lab 4b – Blink LED with Different Clocks

If you have time, this lab provides an opportunity to explore the Watchdog Timer.

(Extra) Lab 4C – Utilizing Crystals as Clock Sources

Once again, if you have time, this lab gives us a chance to configure our system to use the
external crystal oscillators found on the Launchpad.

Lab 4 - Abstract

4 - 26 MSP430 Workshop - MSP430 Clocks & Initialization

Lab Topics

MSP430 Clocks & Initialization .. 4-24

Lab 4 - Abstract ... 4-25

Lab 4 Worksheet ... 4-27

Lab 4a – Program the MSP430 Clocks ... 4-31
File Management .. 4-31
Do Clock Code .. 4-31
Initialization Code - Three more simple changes .. 4-34
Debugging the Clocks ... 4-35
Extra Credit (i.e. Optional Step) – Change the Rate of Blinking 4-37

(Optional) Lab 4b – Exploring the Watchdog Timer .. 4-38
First, a couple of Questions .. 4-38
Play with last lab exercise ... 4-38
File Management .. 4-39
Edit the Source File ... 4-39
Keep it Running ... 4-41
Extra Credit – Try DriverLib’s Watchdog Example (#3) ... 4-41

(Optional) Lab 4c – Using Crystal Oscillators ... 4-42

Chapter 04 Appendix .. 4-44

 Lab 4 Worksheet

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 27

Lab 4 Worksheet

Hints:
 The MSP430 DriverLib Users Guide will be useful in helping to answer these

workshop questions. Find it in your MSP430ware DriverLib doc folder:
e.g. \MSP430ware_1_60_02_09\driverlib\doc\

 Maybe even more helpful is to reference the actual DriverLib source code –
that is, the .h/.c files for each module you are using. For example:
\MSP430ware_1_60_02_09\driverlib\driverlib\MSP430F5xx_6xx\ucs.h

 Finally, we recommend you also reference the driverlib UCS example #4:
\msp430\MSP430ware_1_60_02_09\driverlib\examples\MSP430F5xx_6xx\ucs\ucs_ex4_XTSourcesDCOInternal.c

Reset and Operating Modes & Watchdog Timers
1. Name all 3 types of resets:

__

2. If the Watchdog (WDT) times out, which reset does it invoke?

__

3. Write the driverlib function that stops (halts) the watchdog timer:

________________________(WDT_A_BASE);

Power Management
4. (‘F5529 Launchpad users only)

Write the driverlib function that sets the core voltage needed to run
MCLK at 8MHz.

_______________________(PMM_BASE,

_________________________);

Clocking
5. Why does MSP430 provide 3 different types of internal clocks?

__

__

__

Name them:

____________ ____________ ____________

Lab 4 Worksheet

4 - 28 MSP430 Workshop - MSP430 Clocks & Initialization

6. What is the speed of the crystal oscillators on your board?
(Hint: look in the Hardware section of the Launchpad Users Guide.)
#define LF_CRYSTAL_FREQUENCY_IN_HZ _______________

#define HF_CRYSTAL_FREQUENCY_IN_HZ _______________

7. What function specifies these crystal frequencies to the DriverLib?
Hint: Look in the MSP430ware Driverlib User’s Guide – “UCS chapter”.

_______________________(UCS_BASE,

___________________________,

___________________________);

LF_CRYSTAL_FREQUENCY_IN_HZ

HF_CRYSTAL_FREQUENCY_IN_HZ

 p ()
8. What speed are the clocks running at? There’s an API for that…

Write the code that returns your current clock frequencies:

uint32_t myACLK = 0;
uint32_t mySMCLK = 0;
uint32_t myMCLK = 0;

myACLK = _______________________(___ _BASE);

mySMCLK = _______________________(___ _BASE);

myMCLK = _______________________(___ _BASE);

9. We didn’t setup the clocks (or power level) in our previous labs,
how come our code worked?

Don’t spend too much time pondering this, but what speed do you
think each clock is running at before we configure them?

ACLK: ___________ SMCLK: ____________ MCLK: _________

Refer to clocking section
of DriverLib User’s Guide

 Lab 4 Worksheet

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 29

10. Setup ACLK:

• Use REFO for the F5529 device

• Use VLO for the FR5969 device

// Setup ACLK

_________________________(______ _BASE,

______ _ACLK, // Clock to setup

____________________________, // Source clock

_____ _CLOCK_DIVIDER_1

);

 p ()
11. (F5529 User’s only) Write the code to setup MCLK. It should be

running at 8MHz using the DCO+FLL as its oscillator source.

#define MCLK_DESIRED_FREQUENCY_IN_KHZ _________________________

#define MCLK_FLLREF_RATIO __________________________ /(UCS_REFOCLK_FREQUENCY/1024)

// Set the FLL's clock reference clock to REFO

_________________________(UCS_BASE,

UCS_FLLREF, // Clock you're configuring

_____________________, // Clock Source

UCS_CLOCK_DIVIDER_1);

// Config the FLL's freq, let it settle, and set MCLK & SMCLK to use DCO+FLL as clk source

_________________________(UCS_BASE,

MCLK_DESIRED_FREQUENCY_IN_KHZ,

_____________________________);

Lab 4 Worksheet

4 - 30 MSP430 Workshop - MSP430 Clocks & Initialization

12. (FR5969 Users only) Write the code to setup MCLK. It should be
running at 8MHz using the DCO as its oscillator source.

// Set DCO to 8MHz
CS_setDCOFreq(CS_BASE,

______________________, // Set Frequency range (DCOR)

______________________ // Set Frequency (DCOF)
);

// Set MCLK to use DCO clock source

_________________________(CS_BASE,

__,

__,

UCS_CLOCK_DIVIDER_1);

Check your answers against ours … see the Chapter 4 Appendix

 Lab 4a – Program the MSP430 Clocks

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 31

Lab 4a – Program the MSP430 Clocks

File Management

1. Import previous lab_03a_gpio solution.

Project Import Existing CCS Eclipse Project

2. Rename the project to: lab_04a_clock

Right-Click on Project Rename

3. Build it, just to make sure the import went without errors.

Do Clock Code

4. Add myclocks.c into the project (from the lab_04a_clock folder).

 Since there can be quite a few lines of code (if you setup all the clocks), we decided to place
the clock initialization into its own file.

Right-click on project Add Files…

C:\msp430_workshop\<target>\lab_04a_clock\myClocks.c

 You might notice, the myClocks.c file is missing some code. We’ll fix this in the next step…

Lab 4a – Program the MSP430 Clocks

4 - 32 MSP430 Workshop - MSP430 Clocks & Initialization

5. Update myclocks.c – adding answers from the worksheet

 Fill in the blanks with code you wrote on the worksheet.

//***** Header Files **
//#include <stdbool.h>
#include <driverlib.h>
#include "myClocks.h"

//***** Defines ***
#define LF_CRYSTAL_FREQUENCY_IN_HZ _______
#define HF_CRYSTAL_FREQUENCY_IN_HZ _______

#define MCLK_DESIRED_FREQUENCY_IN_KHZ _______
#define MCLK_FLLREF_RATIO ______/(UCS_REFOCLK_FREQUENCY/1024)

//***** Global Variables **
uint32_t myACLK = 0;
uint32_t mySMCLK = 0;
uint32_t myMCLK = 0;

//***** Functions ***
void initClocks(void) {

 // Initialize the XT1 and XT2 crystal frequencies being used
 // so driverlib knows how fast they are

 // Verify if the default clock settings are as expected
 myACLK = UCS_getACLK(UCS_BASE);
 mySMCLK = UCS_getSMCLK(UCS_BASE);
 myMCLK = UCS_getMCLK(UCS_BASE);

 // Setup ACLK to use REFO as its oscillator source
 UCS_clockSignalInit(UCS_BASE,
 UCS_ACLK, // Clock you're configuring
 ___________________, // Clock source
 UCS_CLOCK_DIVIDER_1 // Divide down clock source
);

 // Set the FLL's clock reference clock source
 UCS_clockSignalInit(UCS_BASE,
 UCS_FLLREF, // Clock you're configuring
 ___________________, // Clock source
 UCS_CLOCK_DIVIDER_1 // Divide down clock source
);

 // Configure the FLL's frequency and set MCLK & SMCLK to use the FLL
 UCS_initFLLSettle(UCS_BASE,
 MCLK_DESIRED_FREQUENCY_IN_KHZ, // MCLK frequency
 ___________________ // Ratio between MCLK and
 // FLL's ref clock source
);

 // Verify that the modified clock settings are as expected
 myACLK = UCS_getACLK(UCS_BASE);
 mySMCLK = UCS_getSMCLK(UCS_BASE);
 myMCLK = UCS_getMCLK(UCS_BASE);
}

Worksheet
Question #6

Worksheet
Question #11

Worksheet
Question #7

Worksheet
Question #8

Worksheet
Question #10

Worksheet
Question #11/12

 Lab 4a – Program the MSP430 Clocks

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 33

6. Try building to see if there are any errors.

 Hopefully you don’t have any typographic or syntax errors, but you should see this error:

 fatal error #1965: cannot open source file "myClocks.h"

 Since we placed the clock function into another file, we should use a header file to provide an
external interface for our code.

7. Create a new source file called myclocks.h.

File New Header File

 Then click ‘Finish’.

8. Add prototype to new header file.

 CCS automatically creates a set of #ifndef statements, which are good practice to use
inside of your header files. It helps to keep items from accidentally being defined more than
once – which the compiler will complain about.

 All we really need in the header file is the prototype of our initClocks() function:

/*
 * myClocks.h
 */

#ifndef MYCLOCKS_H_
#define MYCLOCKS_H_

//***** Prototypes ***
void initClocks(void);

#endif /* MYCLOCKS_H_ */

9. Add reference to myclocks.h to your main.c.

 While we’re working with this header file, it’s a good time to add a #include to it at the top of
your main.c. Otherwise, you will get a warning later on.

10. Try building again. Keep fixing errors until they’re all gone.

Lab 4a – Program the MSP430 Clocks

4 - 34 MSP430 Workshop - MSP430 Clocks & Initialization

Initialization Code - Three more simple changes

11. Use the simple initialization “template” to organize your setup code.

 We’ve outlined the 3 areas you will need to adapt to create a little better code organization.

// --
// main.c (for lab_04a_clock project)
// --

//***** Header Files **
#include <driverlib.h>
#include "myClocks.h"

//***** Prototypes **
void initGPIO(void);
void initPowerMgmt(void);

//***** Defines ***
#define ONE_SECOND 800000
#define HALF_SECOND 400000

//***** Functions ***
void main (void)
{
 // Stop watchdog timer
 WDT_A_hold(WDT_A_BASE);

 //Initialize Power Management
 initPowerMgmt();

 //Initialize GPIO
 initGPIO();

 //Initialize clocks
 initClocks();

 while(1) {

 // Turn on LED
 GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN0);

 // Wait
 _delay_cycles(ONE_SECOND);

 // Turn off LED
 GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);

 // Wait
 _delay_cycles(ONE_SECOND);
 }
}
//**
void initGPIO(void) {

 // Set P1.0 to output direction
 GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);
}

void initPowerMgmt(void) {

 // Set core voltage level to handle 8MHz clock rate

 PMM_setVCore(PMM_BASE, ____________________________);
}

Since the setup
code is now

organized into
functions,

prototypes need
to be included

for them

This follows
the init code

‘template’
discussed in

class

Create GPIO
and

PowerMgmt
functions

referenced
above

To fill in the
blank, refer to

Worksheet
Question #4

 Lab 4a – Program the MSP430 Clocks

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 35

12. Build the code and fix any errors. When no errors exist, launch the debugger.

Debugging the Clocks

Before running the code, let’s set some breakpoints and watch expressions.

13. Open myClocks.c in the debugger.

14. Add a watch expression for myACLK (in KHz).

Select myACLK in your code Rt-click Add Watch Expression…

 Enter ‘myACLK/1024’ into the dialog and hit OK. Upon hitting “OK”, the Expressions
window should open up, if it’s not already open.

 In a minute, this should give us a value of 32, if ACLK is running at 32KHz.

15. Go ahead and create similar watch expressions for SMCLK and MCLK.

mySMCLK/1024
myMCLK/1024

16. Finally, let’s add two breakpoints to myClocks.c.

 These breakpoints will let us view the
expressions before … and after our
clock initialization code runs.

Lab 4a – Program the MSP430 Clocks

4 - 36 MSP430 Workshop - MSP430 Clocks & Initialization

Note: Before you run the code to the first breakpoint, you may see an error in the Expressions
window similar to “Error: identifier not found”. This happens when the variable in the
expression is out-of-scope. For example, this can happen if you defined the variable as a
local, but you were currently executing code in another function. Then again, it will also
happen if you delete a variable that you had previously added to the Expression watch
window.

17. Run the code to the first breakpoint and write down the Express values:

myACLK/1024: __

mySMCLK/1024: ___

myMCLK/1024: __

Are these the values that you expected? __

 (Look back at Worksheet question #9, if you need a reminder.)

18. Run to the next breakpoint – at the end of the initClocks() function.

 Check on the values again:

myACLK/1024: __

mySMCLK/1024: ___

myMCLK/1024: __

Are these the values we were asked to implement? ________________________________

 (Look back at Worksheet questions 10-12.)

19. Let the program run from the breakpoint and watch the blinking LED.

 Lab 4a – Program the MSP430 Clocks

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 37

Extra Credit (i.e. Optional Step) – Change the Rate of Blinking

20. Halt the processor and terminate the debugger session.

21. Add a function call to initClocks() to force MCLK to use the REFO oscillator.

 We suggest that you copy/paste the
function that sets up ACLK… then
change the ACLK parameter to
MCLK.

 Our code sets up MCLK (via the
UCS_initFLLSettle() function) then
changes it again right away … but
that’s OK. No harm done.

22. Build your code and launch the debugger.

23. Run the code, stopping at both breakpoints.

Did the value for MCLK change? ___

 It should be much slower now that it’s running from REFO.

24. After the second breakpoint, watch the blinking light.

 When the code leaves the initClocks() function and starts executing the while{} loop, it should
take a very looooooong time to run the _delay_cycles() functions; our “ONE_SECOND” time
was based upon a very fast clock, not one this slow.

 If you’re patient enough, you should see the light blink…

(Optional) Lab 4b – Exploring the Watchdog Timer

4 - 38 MSP430 Workshop - MSP430 Clocks & Initialization

(Optional) Lab 4b – Exploring the Watchdog Timer

First, a couple of Questions

1. Complete the code needed to enable the Watchdog Timer using ACLK:

 WDT_A_watchdogTimerInit(//Initialize the WDT as a watchdog
 WDT_A_BASE,

 _______________________________________, //Which clock should WDT use?

 WDT_A_CLOCKDIVIDER_64); //Divide the WDT clock input?
 //WDT_A_CLOCKDIVIDER_512); //Here are 3 (of 8) different div choices
 //WDT_A_CLOCKDIVIDER_32K);

 ______________________________(WDT_A_BASE); //Start the watchdog

2. Write the code to ‘kick the dog’? (Or, call it ‘pet’ or ‘feed’ if ‘kick sounds too mean)

 The purpose of the watchdog is reset the processor if your code doesn’t reset it before the
count runs out. What driverlib function can you used to reset the timer?

Play with last lab exercise

Before we create a new lab exercise, let’s quickly test our old one with regards to the Watchdog.

3. Launch and run the lab_04a_clock project.

 If there are any breakpoints set, remove them. Run the program and observe how fast the
LED is blinking. (Ours was blinking about 1/sec.)

4. Terminate the Debugger.

5. Edit the source file by commenting out the Watchdog hold function.

// WDT_A_hold(WDT_A_BASE);

6. Launch the debugger and run the program.

How fast is the LED blinking now? ___

 (Ours wasn’t blinking at all, after we left the WDT_A running. It must keep resetting the
processor before we even get to the while{} loop.)

7. Close the lab_04a_clock project.

 (Optional) Lab 4b – Exploring the Watchdog Timer

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 39

File Management

8. Import the solution for lab_02a_ccs.

Project Import Existing CCS Eclipse Project

 Use the archived solution file:

C:\msp430_workshop\<target>\solutions\lab_02a_ccs_solution.zip

9. Rename the project to: lab_04b_wdt

10. Build the project, just to verify it still works correctly.

11. Import DriverLib into your project and add the appropriate path to the compilers
#include search path setting.

 If you need a reminder on how to do this, look back at Lab3a under the heading:

 “Add MSP430ware Driverlib”

12. Build the project, to verify the library was added correctly.

 Fix any errors and test until the program builds without any errors.

Edit the Source File

13. First, let’s modify the printf() statement.

 Next, we want to modify the print statement so that it shows how many times it has been
executed.

a) Add a global variable to the program.

uint16_t count = 0;

b) Replace printf() statement with the following while{} loop:

 while (1) {
 count++;
 printf("I called this %d times\n", count);
 }

14. Build the code to make sure it’s still error free. Fix any errors it finds.

15. Replace the watchdog hold code with the two WDT_A functions written earlier.

 Remember that we didn’t actually write this code. It ‘holds’ the watchdog by using register-
based syntax. So, this is the line you want to replace:

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 This new code will initialize the watchdog timer using the clock and divisor of our choice; then
start the watchdog timer running. (See question in step #1 on page 4-38.)

(Optional) Lab 4b – Exploring the Watchdog Timer

4 - 40 MSP430 Workshop - MSP430 Clocks & Initialization

16. Build the code to test that is error-free (syntax wise).

 Did you get an error? Unless you’re really experienced and changed one other item, you
should have received this error:

Where are these values defined? __

17. Include driverlib.h in your hello.c file.

 Yep, when we added the driverlib code, we needed to add the driverlib header file, too.
Actually, you can replace the msp430.h file with driverlib.h because the latter
references the former.

 When complete, your code should look similar to this:

#include <stdio.h>
#include <driverlib.h>

uint16_t count = 0;

/*
 * hello.c
 */
int main(void) {
// WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 WDT_A_watchdogTimerInit(WDT_A_BASE,
 WDT_A_CLOCKSOURCE_ACLK,
 WDT_A_CLOCKDIVIDER_64); //WDT clock input divisor
 //WDT_A_CLOCKDIVIDER_512); //Here are 3 (of 8) div choices
 //WDT_A_CLOCKDIVIDER_32K);

 WDT_A_start(WDT_A_BASE);

 while (1) {
 count++;
 printf("I called this %d times\n", count);
 }
}

18. Build the code; fix any errors.

19. Launch the debugger and run the program. Write down the results.

 How many times does printf() run before the count restarts? Terminate, change divisor, and
retest. (This is why we put 2 commented-out lines in the code.)

 Number of times printf() runs before watchdog reset:

WDT_A_CLOCKDIVIDER_64: __

WDT_A_CLOCKDIVIDER_512: ___

WDT_A_CLOCKDIVIDER_32K: ___

 (Optional) Lab 4b – Exploring the Watchdog Timer

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 41

 For the watchdog lab using different divisor values, we got the following results, of: 1, 9, 589
(respectively) … did you wait all the way to 589 before giving up?

Keep it Running

20. Add the function call that will keep the CPU running without a watchdog reset.

 Add the line of code to the while{} loop – our answer to question # in this lab – that will reset
the watchdog and keep the program running.

 WDT_A_resetTimer(WDT_A_BASE);

Hint: You may want to change the clock divisor back to WDT_A_CLOCKDIVER_64 to
make it easier to see the change. Then, if the count goes past “1” you’ll know the
watchdog is being serviced.

21. Build and run the program to observe the watchdog resetting the MSP430.

How many times will it run now? ___

22. When done playing with the program, terminate your debug session close the project.

Extra Credit – Try DriverLib’s Watchdog Example (#3)

The driverlib library contains an example for ‘watching’ the watchdog timer. Give it a test to watch
every time the watchdog rolls-over.

23. Import the wdt_a_ex3_watchdogACLK project using the CCSv5 Resource Explorer.

 If you cannot remember how to import a project using Resource Explorer, please refer back
to the beginning of Lab3b – Reading a Push Button. We started that lab by importing the
EmptyProject example project.

24. Examine the source file in the project.

 Notice how they utilize the GPIO pin. Every time the program re-starts it toggles the GPIO
pin.

 If you look in the User Guide for your MSP430 device, you can see that while the PDIR (pin
direction) register is reset after a Power-Up Clear (PUC), the POUT value is left alone. This is
the trick used to make the pin toggle after every watchdog reset.

 Note, PUC was described during this chapter, while the GPIO pins were discussed in
Chapter 3.

25. Build and run the program to observe the watchdog resetting the MSP430.

26. When you’re done, close the project.

(Optional) Lab 4c – Using Crystal Oscillators

4 - 42 MSP430 Workshop - MSP430 Clocks & Initialization

(Optional) Lab 4c – Using Crystal Oscillators
1. Import lab_04a_clock_solution.

 If you don’t remember how to do this, refer back to lab step 1 (on page 4-31).

2. Rename the project to lab_04c_crystals.

3. Make sure the project builds correctly.

4. Delete two files from the project:

 myClocks.c

 Old readme file (not required, but might make things less confusing later on)

5. Add files to project.

 Add the following two files to the project:

 myClocksWithCrystals.c

 lab_04_crystals_readme.txt (again, not required, but helpful)

 You’ll find them along the path

C:\msp430_workshop\<target>\lab_04c_crystals\

6. Examine the new C file.

 Notice the following:

 We need to “start” the crystal oscillators before selecting them as a clock source.

 Two different ways to “start” a crystal – with and without a timeout.

 If no timeout is used, then that function will continue until the oscillator is started. That

could effectively halt the program indefinitely, if there is a problem with the crystal

(say, it breaks, has a solder fault, or has fallen off the board).

 A better solution might be to specify a timeout … as long as you check for the result

after the function completes. (In our example, we just used an indefinite wait loop, but

“in real life” you might choose another clock source based on a failed crystal.)

7. Build to verify the file import was OK.

8. Add the following code to the initGpio() function in main.c.

 Rather than having you build and run the project only to find out it doesn’t work (like what
happened to the course author), we’ll give you a hint: connect the clock pins to the crystals.

 //Connect pins to crystal in/out pins
 GPIO_setAsPeripheralModuleFunctionInputPin(
 GPIO_PORT_P5,
 GPIO_PIN5 + // XOUT on P5.5
 GPIO_PIN4 + // XIN on P5.4
 GPIO_PIN3 + // XT2OUT on P5.3
 GPIO_PIN2 // XT2IN on P5.2
);

 By default – on some MSP430 devices, such as the F5529 – these pins default to GPIO
mode. Thus, we have to connect them by reprogramming the GPIO.

 (Optional) Lab 4c – Using Crystal Oscillators

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 43

Note: In our solution, we connected all four pins using the
GPIO_setAsPeripheralModuleFunctionInputPin(). We found this done two
different ways in two different examples. One example was similar to ours, the other set
the IN pins with the ‘InputPin’ function, while the setting the OUT pins using the
GPIO_setAsPeripheralModuleFunctionOutputPins() function. We found that
either of these solutions works. We chose the solution with less typing.

9. Build and launch the debugger.

10. Set three breakpoints in the myClocksWithCrystals.c file.

 Set a breakpoint after each instance of the code where we read the clock settings.

 For example:

11. Run the code (click ‘Resume’) three times and record the clock settings:

Expression Default Settings First setup Second setup

myACLK/1024

mySMCLK/1024

myMCLK/1024

Why didn’t SMCLK get set correctly on the first setup? We setup SMCLK to use XT2CLK, but
it didn’t’ seem to take:

Hint: Read the comments on the code itself. We hope that’ll explain what caused this.

12. When done experimenting with this code, terminate the debugger and close the
project.

Chapter 04 Appendix

4 - 44 MSP430 Workshop - MSP430 Clocks & Initialization

Chapter 04 Appendix

Chapter 4 Worksheet (1)Hints:
 The MSP430 DriverLib Users Guide will be useful in helping to answer these

workshop questions. Find it in your MSP430ware DriverLib doc folder:
e.g. \MSP430ware_1_60_01_11\driverlib\doc\

 Maybe even more helpful is to reference the actual DriverLib source code –
that is, the .h/.c files for each module you are using. For example:
\MSP430ware_1_60_01_11\driverlib\driverlib\MSP430F5xx_6xx\ucs.h

 Finally, we recommend you also reference the driverlib UCS example #4:
\msp430\MSP430ware_1_60_01_11\driverlib\examples\MSP430F5xx_6xx\ucs\ucs_ex4_XTSourcesDCOInternal.c

Reset and Operating Modes & Watchdog Timers
1. Name all 3 types of resets:

__

2. If the Watchdog (WDT) times out, which reset does it invoke?

__

3. Write the driverlib function that stops (halts) the watchdog timer:

________________________(WDT_A_BASE);

BOR, POR, PUC

PUC

WDT_A_hold

Chapter 4 Worksheet (2)
Power Management
4. (‘F5529 Launchpad users only)

Write the driverlib function that sets the core voltage needed to run
MCLK at 8MHz.

_______________________(PMM_BASE,

_________________________);

Clocking
5. Why does MSP430 provide 3 different types of internal clocks?

__

__

__

Name them:

____________ ____________ ____________

initPowerMgmt

PMM_CORE_LEVEL_1

To meet the varying demands of performance, accuracy, and power.

One clock runs the CPU, while the other two provide fast and

slow/low-power clocking to the peripherals

MCLK SMCLK ACLK

 Chapter 04 Appendix

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 45

6. What is the speed of the crystal oscillators on your board?
(Hint: look in the Hardware section of the Launchpad Users Guide.)
#define LF_CRYSTAL_FREQUENCY_IN_HZ _______________

#define HF_CRYSTAL_FREQUENCY_IN_HZ _______________

7. What function specifies these crystal frequencies to the DriverLib?
Hint: Look in the MSP430ware Driverlib User’s Guide – “UCS chapter”.

_______________________(UCS_BASE,

___________________________,

___________________________);

Chapter 4 Worksheet (3)

32768
4000000

UCS_setExternalClockSource
(for FR5969: CS_setExternalClock Source) LF_CRYSTAL_FREQUENCY_IN_HZ

HF_CRYSTAL_FREQUENCY_IN_HZ

Chapter 4 Worksheet (4)
8. What speed are the clocks running at? There’s an API for that…

Write the code that returns your current clock frequencies:

uint32_t myACLK = 0;
uint32_t mySMCLK = 0;
uint32_t myMCLK = 0;

myACLK = _______________________(___ _BASE);

mySMCLK = _______________________(___ _BASE);

myMCLK = _______________________(___ _BASE);

9. We didn’t setup the clocks (or power level) in our previous labs,
how come our code worked?

Don’t spend too much time pondering this, but what speed do you
think each clock is running at before we configure them?

ACLK: ___________ SMCLK: ____________ MCLK: _________

F5529 Prefix = ‘UCS’
FR5969 Prefix = ‘CS’

UCS_getACLK

UCS_getSMCLK

UCS_getMCLK

UCS

UCS

UCS

There are default values provided in hardware for clocks, power, etc.

32 KHz 1 MHz 1 MHz

Chapter 04 Appendix

4 - 46 MSP430 Workshop - MSP430 Clocks & Initialization

Chapter 4 Worksheet (5)
10. Setup ACLK:

• Use REFO for the F5529 device

• Use VLO for the FR5969 device

// Setup ACLK

_________________________(______ _BASE,

______ _ACLK, // Clock to setup

____________________________, // Source clock

_____ _CLOCK_DIVIDER_1

);

UCS_clockSignalInit

F5529 Prefix = ‘UCS’
FR5969 Prefix = ‘CS’

UCS

UCS

UCS
UCS_REFOCLK_SELECT

or CS_VLOCLK_SELECT

Chapter 4 Worksheet (6)
11. (F5529 User’s only) Write the code to setup MCLK. It should be

running at 8MHz using the DCO as its oscillator source.

#define MCLK_DESIRED_FREQUENCY_IN_KHZ _________________________

#define MCLK_FLLREF_RATIO __________________________ /(UCS_REFOCLK_FREQUENCY/1024)

// Set the FLL's clock reference clock to REFO

_________________________(UCS_BASE,

UCS_FLLREF, // Clock you're configuring

_____________________, // Clock Source

UCS_CLOCK_DIVIDER_1);

// Config the FLL's freq, let it settle, and set MCLK & SMCLK to use DCO+FLL as clk source

_________________________(UCS_BASE,

MCLK_DESIRED_FREQUENCY_IN_KHZ,

_____________________________);

8000

MCLK_DESIRED_FREQUENCY_IN_KHZ

UCS_clockSignalInit

UCS_REFOCLK_SELECT

UCS_initFLLSettle

MCLK_FLLREF_RATIO

 Chapter 04 Appendix

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 47

Chapter 4 Worksheet (7)
12. (FR5969 Users only) Write the code to setup MCLK. It should be

running at 8MHz using the DCO as its oscillator source.

// Set DCO to 8MHz
CS_setDCOFreq(CS_BASE,

______________________, // Set Frequency range (DCOR)

______________________ // Set Frequency (DCOF)
);

// Set MCLK to use DCO clock source

_________________________(CS_BASE,

__,

__,

UCS_CLOCK_DIVIDER_1);

CS_DCORSEL_1
CS_DCOFSEL_3

CS_clockSignalInit

CS_MCLK
CS_DCOCLK_SELECT

Chapter 4b Worksheet
1. Complete the code needed to enable the Watchdog Timer using

ACLK. (Hint: look at the WDT_A section of the driverlib User’s Guide)

2. Write the code to ‘kick the dog’?
__________________________________(WDT_A_BASE);

// Initialize the WDT as a watchdog

WDT_A_watchdogTimerInit(

WDT_A_BASE,

____________________________; //Which clock should WDT use?
WDT_A_CLOCKDIVIDER_64); //Divide the WDT clock input?
//WDT_A_CLOCKDIVIDER_512); //Two other divisor options
//WDT_A_CLOCKDIVIDER_32K);

// Start the watchdog

__________________________________(WDT_A_BASE);

WDT_A_resetTimer

WDT_A_CLOCKSOURCE_ACLK

WDT_A_start

Notes:

MSP430 Workshop - Interrupts 5 - 1

0BInterrupts

Introduction
What is an embedded system without interrupts?

If you just needed to solve a math problem you would most likely sit down and use a desktop
computer. Embedded systems, on the other hand, take inputs from real-world events and then
act upon them. These real-world events usually translate into ‘interrupts’ – asynchronous signals
provided to the microcontroller: timers, serial ports, pushbuttons … and so on.

This chapter discusses the how interrupts work; how they are implemented on the MSP430 MCU,
and what code we need to write in order to harness their functionality. The lab exercises provided
are relatively simple (using a pushbutton to generate an interrupt), but the skills we learn here will
apply to all the remaining chapters of this workshop.

Learning Objectives

Objectives

- Explain the difference between Polling &
Interrupts

- List the 4 items that occur in the process of
MSP430 interrupts

- Find the interrupt vector documentation
- Describe the difference between a dedicated and

grouped interrupt
- Write a function to enable interrupts
- Write two ISR functions (one for dedicated, the

other for grouped interrupts)

Interrupts, The Big Picture

5 - 2 MSP430 Workshop - Interrupts

Chapter Topics

0BInterrupts ... 5-1

Interrupts, The Big Picture .. 5-3

How Interrupts Work ... 5-5
1. Interrupt Must Occur ... 5-6
2. Interrupt is Flagged (and must be Enabled) ... 5-7
3. CPU's Hardware Response .. 5-8
4. Your Software ISR .. 5-9

Interrupt Vectors & Priorities ... 5-10

Coding Interrupts ... 5-12
Dedicated ISR (Interrupt Service Routine) .. 5-12
Grouped ISR (Interrupt Service Routine) .. 5-13
Enabling Interrupts .. 5-14

Misc Topics ... 5-15

Interrupts and TI-RTOS Scheduling .. 5-17

Lab Exercise ... 5-21

 Interrupts, The Big Picture

MSP430 Workshop - Interrupts 5 - 3

Interrupts, The Big Picture

Waiting for an Event: Family Vacation

Polling

Wake me up when we get there...

Interrupts

Waiting for an Event: Button Push

100% CPU Load

while(1) {

// Polling GPIO button

while (GPIO_getInputPinValue()==1)

GPIO_toggleOutputOnPin();

}

// GPIO button interrupt

#pragma vector=PORT1_VECTOR

__interrupt void rx (void){

GPIO_toggleOutputOnPin();

}

> 0.1% CPU Load

Polling Interrupts

Interrupts, The Big Picture

5 - 4 MSP430 Workshop - Interrupts

Interrupts Help Support Ultra Low Power

Only timers are running

Very little CPU
effort required

Lots of sleep time

 Keep CPU asleep (i.e. in Low
Power Mode) while waiting for
event

 Interrupt ‘wakes up’ CPU when
it’s required
 Another way to look at it is

that interrupts often cause a
program state change

 Often, work can be done by
peripherals, letting CPU stay in
LPM (e.g. Gate Time)

Foreground / Background Scheduling

main() {

}

while(1){
background
or LPMx

}

//Init
initPMM();
initClocks();
...

ISR1
get data
process

System Initialization
 The beginning part of main() is usually dedicated

to setting up your system
 As discussed in Chapters 3 and 4

Background
 Most systems have an endless loop that runs

‘forever’ in the background
 In this case, ‘Background’ implies that it runs at a

lower priority than ‘Foreground’
 In MSP430 systems, the background loop often

contains an Low Power Mode (LPM) command –
this sleeps the CPU/System until an interrupt
event wakes it up

Foreground
 Interrupt Service Routine (ISR) runs in response

to enabled hardware interrupt
 These events may change modes in Background –

such as waking the CPU out of low-power mode
 ISR’s, by default, are not interruptible
 Some processing may be done in ISR, but it’s

usually best to keep them short

ISR2
set a flag

 How Interrupts Work

MSP430 Workshop - Interrupts 5 - 5

How Interrupts Work

How do Interrupts Work?

Slide left intentionally blank…

How Interrupts Work

5 - 6 MSP430 Workshop - Interrupts

1. Interrupt Must Occur

How do Interrupts Work?

• UART
• GPIO
• Timers
• ADC
• Etc.

1. An interrupt occurs

…currently executing code
interrupt occurs

next_line_of_code
}

 How Interrupts Work

MSP430 Workshop - Interrupts 5 - 7

2. Interrupt is Flagged (and must be Enabled)

How do Interrupts Work?

• UART
• GPIO
• Timers
• ADC
• Etc.

1. An interrupt occurs

…currently executing code
interrupt occurs

next_line_of_code
}

2. It sets a flag bit
in a register

. . .

IE bit
“Individual”

Int Enable

SR.GIE
“Global”
Int Enable

IFG bit
Interrupt

‘Flag’

CPU1TIMER_A

0GPIO

0…

0NMI

Interrupt Flow

Interrupt Enable (IE); e.g.
GPIO_enableInterrupt();
GPIO_disableInterrupt();

TIMER_A_enableInterrupt();

Interrupt Flag Reg (IFR)
bit set when int occurs; e.g.

GPIO_getInterruptStatus();
GPIO_clearInterruptFlag();

Global Interrupt Enable (GIE)
Enables ALL maskable interrupts

Enable: __bis_SR_register(GIE);
Disable: __bic_SR_register(GIE);

Interrupt
Source

How Interrupts Work

5 - 8 MSP430 Workshop - Interrupts

3. CPU's Hardware Response

How do Interrupts Work?

• UART
• GPIO
• Timers
• ADC
• Etc.

1. An interrupt occurs

…currently executing code
interrupt occurs

next_line_of_code
}

2. Sets a flag bit
(IFG) in register

. . .

3. CPU acknowledges INT by…
• Current instruction completes
• Saves return-to location on stack
• Saves Status Reg (SR) to the stack
• Clears most of SR, which turns off

interrupts globally (SR.GIE=0)
• Determines INT source (or group)
• Clears non-grouped flag* (IFG=0)
• Reads interrupt vector & calls ISR

 How Interrupts Work

MSP430 Workshop - Interrupts 5 - 9

4. Your Software ISR

#pragma vector=WDT_VECTOR
interrupt myISR(void){

}

4. Interrupt Service Routine (ISR)

Using Interrupt Keyword
 Compiler handles context save/restore
 Call a function? Then full context is saved
 Nesting interrupts is MANUAL
 No arguments, no return values
 You cannot call any TI-RTOS Scheduler

functions (e.g. Swi_post)

&myISR

Vector Table…currently executing code
interrupt occurs

next_line_of_code
}

• Save context of system
• (optional) Re-enable interrupts
• *If group INT, read assoc IV Reg

(determines source & clears IFG)
• Run your interrupt’s code
• Restore context of system
• Continue where it left off (RETI)

How do Interrupts Work?

2. Sets a flag bit
(IFG) in register

. . .

• UART
• GPIO
• Timers
• A/D Converter
• Etc.

1. An interrupt
occurs

3. CPU acknowledges INT by…
• Current instruction completes
• Saves return-to location on stack
• Saves Status Reg (SR) to the stack
• Clears most of SR, which turns off

interrupts globally (SR.GIE=0)
• Determines INT source (or group)
• Clears non-grouped flag* (IFG=0)
• Reads interrupt vector & calls ISR

4. ISR (Interrupt Service Routine)
• Save context of system
• (optional) Re-enable interrupts
• *If group INT, read assoc IV Reg

(determines source & clears IFG)
• Run your interrupt’s code
• Restore context of system
• Continue where it left off (RETI)

Interrupt Vectors & Priorities

5 - 10 MSP430 Workshop - Interrupts

Interrupt Vectors & Priorities

INT Source Priority
System Reset high

System NMI
User NMI
Comparator
Timer B (CCIFG0)
Timer B
WDT Interval Timer
Serial Port (A)
Serial Port (B)
A/D Convertor

GPIO (Port 1)

GPIO (Port 2)
Real-Time Clock low

0xFFFF

Interrupt Priorities (F5529)

 There are 23 interrupts
(partially shown here)

 Most of these represent ‘groups’ of
interrupt source flags
 145 IFG’s map into these 23 interrupts

 If multiple interrupts (of the 23) are
pending, the highest priority is
responded to first

 By default, interrupts are not
nested …
 That is, unless you re-enable INT’s

during your ISR, other interrupts will be
held off until it completes

 It doesn’t matter if the new INT is a
higher priority

 As already recommended, you should
keep your ISR’s short

Interrupt Vector (IV) Registers
 IV = Interrupt Vector register
 Most MSP430 interrupts can be caused by more than one

source; for example:
 Each 8-bi GPIO port one has a single CPU interrupt

 IV registers provide an easy way to determine which
source(s) actually interrupted the CPU

 The interrupt vector register reflects only ‘triggered’
interrupt flags whose interrupt enable bits are also set

 Reading the ‘IV’ register:
 Clears the pending interrupt flag with the highest priority
 Provides an address offset associated with the highest priority

pending interrupt source

 An example is provided in the “Coding Interrupts” section
of this chapter

 Interrupt Vectors & Priorities

MSP430 Workshop - Interrupts 5 - 11

INT Source IV Register Vector Address Loc’n Priority
System Reset SYSRSTIV RESET_VECTOR 63 high

System NMI SYSSNIV SYSNMI_VECTOR 62
User NMI SYSUNIV UNMI_VECTOR 61
Comparator CBIV COMP_B_VECTOR 60
Timer B (CCIFG0) CCIFG0 TIMER0_B0_VECTOR 59
Timer B TB0IV TIMER0_B1_VECTOR 58
WDT Interval Timer WDTIFG WDT_VECTOR 57
Serial Port (A) UCA0IV USCI_A0_VECTOR 56
Serial Port (B) UCB0IV USCI_B0_VECTOR 55
A/D Convertor ADC12IV ADC12_VECTOR 54

GPIO (Port 1) P1IV PORT1_VECTOR 47

GPIO (Port 2) P12V PORT2_VECTOR 42
Real-Time Clock RTCIV RTC_VECTOR 41 low

Legend: Non-maskable Group’d IFG bits
Maskable Dedicated IFG bits

Flash (128K)

INT Vectors (80)

RAM (8K)

USB RAM (2K)
Info Memory (512)
Boot Loader (2K)

Peripherals (4K)

Memory Map

0xFFFF

Interrupt Vectors & Priorities (F5529)

‘F5529 Vector Table (From Datasheet)

Coding Interrupts

5 - 12 MSP430 Workshop - Interrupts

Coding Interrupts

Dedicated ISR (Interrupt Service Routine)

INT Source IV Register Vector Address Loc’n Priority
System Reset SYSRSTIV RESET_VECTOR 63 high

System NMI SYSSNIV SYSNMI_VECTOR 62
User NMI SYSUNIV UNMI_VECTOR 61
Comparator CBIV COMP_B_VECTOR 60
Timer B (CCIFG0) CCIFG0 TIMER0_B0_VECTOR 59
Timer B TB0IV TIMER0_B1_VECTOR 58
WDT Interval Timer WDTIFG WDT_VECTOR 57
Serial Port (A) UCA0IV USCI_A0_VECTOR 56
Serial Port (B) UCB0IV USCI_B0_VECTOR 55
A/D Convertor ADC12IV ADC12_VECTOR 54

GPIO (Port 1) P1IV PORT1_VECTOR 47

GPIO (Port 2) P12V PORT2_VECTOR 42
Real-Time Clock RTCIV RTC_VECTOR 41 low

Legend: Non-maskable Group’d IFG bits
Maskable Dedicated IFG bits

Flash (128K)

INT Vectors (80)

RAM (8K)

USB RAM (2K)
Info Memory (512)
Boot Loader (2K)

Peripherals (4K)

Memory Map

0xFFFF

Interrupt Vectors & Priorities (F5529)

#pragma vector=WDT_VECTOR

__interrupt void myWdtISR(void) {

GPIO_toggleOutputOnPin(...);

}

Interrupt Service Routine (Dedicated INT)

 #pragma vector assigns
‘myISR’ to correct location
in vector table

 __interrupt keyword tells
compiler to save/restore
context and RETI

INT Source IV Register Vector Address Loc’n
WDT Interval Timer WDTIFG WDT_VECTOR 57

 For a dedicated
interrupt, the MSP430
CPU auto clears the
WDTIFG flag

 Coding Interrupts

MSP430 Workshop - Interrupts 5 - 13

Grouped ISR (Interrupt Service Routine)

Individual & Multiple Interrupt Sources

CPU

0
1

0
0

0

)

0
1

0
0

1

TIMER0_A5

TA0CCR1
TA0CCR2
TA0CCR3
TA0CCR4

TA0CTL

.CCIFG .CCIE
1 1TA0CCR0

0
1

0
0

0
1

1
1

0
1

0
0

1
1

0
0

)
GPIO Port 1 P1IFG P1IE

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

SR.GIE

52
TA0IV

53

INT Source IFG IV Register Vector Address Loc’n
Timer A (CCIFG0) TA0CCR0.CCIFG none TIMER0_A0_VECTOR 53
Timer A TA0CCR1.IFG1…TA0CCR4.IFG TA0IV TIMER0_A1_VECTOR 52

GPIO (Port 1) P1IFG.0 … P1IFG.7 P1IV PORT1_VECTOR 47

47

Example:
Interrupts on

pin 1 and 5

Reading P1IV
returns highest
priority interrupt
and clears it’s
IFG bit

Single interrupt:
 Only caused by one

INT – simplifies ISR
 IFG auto cleared

#pragma vector=PORT1_VECTOR

__interrupt void myISR(void) {

switch(__even_in_range(P1IV, 10)) {
case 0x00: break; // None
case 0x02: break; // Pin 0
case 0x04: break; // Pin 1

case 0x06: GPIO_toggleOutputOnPin(…); // Pin 2
break;

case 0x08: break; // Pin 3
case 0x0A: break; // Pin 4
case 0x0C: break; // Pin 5
case 0x0E: break; // Pin 6
case 0x10: break; // Pin 7
default: _never_executed();

}}

Interrupt Service Routine (Group INT)
INT Source IV Register Vector Address Loc’n

GPIO (Port 1) P1IV PORT1_VECTOR 47

 #pragma vector assigns
‘myISR’ to correct location
in vector table

 __interrupt keyword tells
compiler to save/restore
context and RETI

 Reading P1IV register:
 Returns value for

highest priority INT
for the Port 1 ‘group’

 Clears IFG bit
 Tell compiler to ignore

un-needed switch cases
by using intrinsics:
__even_in_range()
_never_executed()

Coding Interrupts

5 - 14 MSP430 Workshop - Interrupts

Enabling Interrupts

Enabling Interrupts – GPIO Example
#include <driverlib.h>

void main(void) {
// Setup/Hold Watchdog Timer (WDT+ or WDT_A)
initWatchdog();

// Configure Power Manager and Supervisors (PMM)
initPowerMgmt();

// Configure GPIO ports/pins
initGPIO();

// Setup Clocking: ACLK, SMCLK, MCLK (BCS+, UCS, or CS)
initClocks();

//--
// Then, configure any other required peripherals and GPIO
...

__bis_SR_register(GIE);

while(1) {
...
}

void initGPIO() {
// Set P1.0 as output & turn LED on
GPIO_setAsOutputPin (

GPIO_PORT_P1, GPIO_PIN0);

GPIO_setOutputLowOnPin (
GPIO_PORT_P1, GPIO_PIN0);

// Set input & enable P1.1 as INT
GPIO_setAsInputPinWithPullUpresistor (

GPIO_PORT_P1, GPIO_PIN1);

GPIO_clearInterruptFlag (
GPIO_PORT_P1, GPIO_PIN1);

GPIO_enableInterrupt (
GPIO_PORT_P1, GPIO_PIN1);

}

__bis_SR_register(GIE);

initGPIO();

 Misc Topics

MSP430 Workshop - Interrupts 5 - 15

Misc Topics

Handling Unused Interrupts
 The MSP430 compiler issues warning whenever all interrupts are not handled

(i.e. when you don’t have a vector specified for each interrupt)

 Here’s a simple example of how this might be handled:

// Example for UNUSED_HWI_ISR()

#pragma vector=ADC12_VECTOR
#pragma vector=COMP_B_VECTOR
#pragma vector=DMA_VECTOR
#pragma vector=PORT1_VECTOR
...
#pragma vector=TIMER1_A1_VECTOR
#pragma vector=TIMER2_A0_VECTOR
#pragma vector=TIMER2_A1_VECTOR
#pragma vector=UNMI_VECTOR
#pragma vector=USB_UBM_VECTOR
#pragma vector=WDT_VECTOR

__interrupt void UNUSED_HWI_ISR (void)
{

__no_operation();
}

Hardware ISR’s – Coding Practices
 An interrupt routine must be declared with no arguments and must return void

 Do not call interrupt handling functions directly (Rather, write to IFG bit)

 Calling functions in an ISR
 If a C/C++ interrupt routine doesn’t call other functions, only those registers that

the interrupt handler uses are saved and restored.
 However, if a C/C++ interrupt routine does call other functions, the routine saves

all the save-on-call registers if any other functions are called
 Why, these nested functions could modify unknown registers that were not saved

by the interrupt handler does not use.
 Interrupts can be handled directly with C/C++ functions by using the interrupt

pragma or the interrupt keyword
… Conversely, the TI-RTOS kernel easily manages Hwi context

 Re-enable interrupts … Nesting ISR’s
 DON’T – It’s not recommended – better that ISR’s are “lean & mean”
 If you do, change IE masking before re-enabling interrupts
 Disable interrupts before restoring context and returning (RETI re-enables int’s)

 Beware – Only You Can Prevent Reentrancy…

Misc Topics

5 - 16 MSP430 Workshop - Interrupts

GPIO Interrupt Register Summary
PA PB PC PD

PJ*
(4-bit)P1† P2 P3 P4 P5 P6 P7 P8

(3-bit)
PxIN

All
Three

Devices
support

Ports 1 and 2

F5529
and

FR5969
(only)

F5529
(only)

F55
&

FR59

PxOUT
PxDIR
PxREN
PxDS
PxSEL
PxIV

FR5969 (only)PxIES
PxIE
PxIFG

 P1IV: Interrupt Vector generator
Highest Priority Pending interrupt enabled on Port 1

 P1IES: Interrupt Edge Select
Are interrupts triggered on high/low edge? (0 = low-to-high)

 P1IE: Interrupt Enable register for Port 1
 P1IFG: Interrupt Flag register for Port 1

ISR hardware - automatically
 PC pushed
 SR pushed
 Interrupt vector moved to PC
 GIE, CPUOFF, OSCOFF and SCG1 cleared
 IFG flag cleared on single source flags

reti - automatically
 SR popped - original
 PC popped

Prior to ISR
SP

Item1

Item2

PC

SR

SP

SP

Item1

Item2

Item1

Item2

PC

SR

Interrupt Processing

 Interrupts and TI-RTOS Scheduling

MSP430 Workshop - Interrupts 5 - 17

Interrupts and TI-RTOS Scheduling

What is a Thread?

main() {

init code

}

while(1) {
nonRT Fxn

}

UART ISR
get byte
process
output

Timer ISR
Scan keyboard

 We all know what a function() is…
 A thread is a function that runs

within a specific context; e.g.
 Priority
 Registers/CPU state
 Stack

 To retain a thread’s context,
we must save

then restore it
 Most common threads in a system

are hardware interrupts

Foreground
threads

Background
thread

main() {

init code

}

while(1) {
nonRT Fxn

}

H/W ISR
get data
process
printf()

Foreground / Background Scheduling

R
T

O
S

 S
ch

ed
u

ler

Idle
nonRT

+ instrumentation

 Idle events run in sequence when no Hwi’s are posted
 Hwi is ISR with automatic vector table generation + context save/restore
 Hwi performs “process” – typical use is to perform HRT need, then post

“follow-up activity”

main() {
init
BIOS_start()

}

Hwi
get data
process
LOG_info1()

Notes:

 Interrupts and TI-RTOS Scheduling

MSP430 Workshop - Interrupts 5 - 19

TI-RTOS Thread Types – More Design Options

Pr
io

rit
y

Hwi
Hardware Interrupts

 Hardware event triggers Hwi to run
 BIOS handles context save/restore, nesting
 Hwi triggers follow-up processing
 Priorities set in silicon

Swi
Software Interrupts

 Software posts Swi to run
 Performs Hwi ‘follow-up’ activity (process data)
 Up to 32 priority levels (16 on C28x)
 Often favored by traditional h/w interrupt users

Task
Tasks

 Usually enabled to run by posting a ‘semaphore’
(a task signaling mechanism) (similar to Posix)

 Designed to run concurrently – pauses when
waiting for data (semaphore)

 Favored by folks experienced in high-level OS’s

Idle
Background

 Runs as an infinite while(1) loop
 Users can assign multiple functions to Idle
 Single priority level

TI-RTOS Kernel (i.e. SYS/BIOS) is a
library of services that users can
add to their system to perform
various tasks:

TI-RTOS Kernel Services

 Memory Mgmt (stack, heap, cache)

 Real-time Analysis (logs, graphs, loads)

 Scheduling (various thread types)

 Synchronization (e.g. semaphores, events)

Interrupts and TI-RTOS Scheduling

5 - 20 MSP430 Workshop - Interrupts

TI-RTOS Kernel – Characteristics
 RTOS means “Real-time O/S” – so the intent of this O/S is to provide common

services to the user WITHOUT disturbing the real-time nature of the system

 The TI-RTOS Kernel (SYS/BIOS) is a PRE-EMPTIVE scheduler. This means the
highest priority thread ALWAYS RUNS FIRST. Time-slicing is not inherently
supported.

 The kernel is EVENT-DRIVEN. Any kernel-configured interrupts or user calls to
APIs such as Swi_post() will invoke the scheduler. The kernel is NOT time-
sliced although threads can be triggered on a time bases if so desired.

 The kernel is OBJECT BASED. All APIs (methods) operate on self-contained
objects. Therefore when you change ONE object, all other objects are
unaffected.

 Being object-based allows most RTOS kernel calls to be DETERMINISTIC. The
scheduler works by updating event queues such that all context switches take
the same number of cycles.

 Real-time Analysis APIs (such as Logs) are small and fast – the intent is to LEAVE
them in the program – even for production code – yes, they are really that small

BIOS – Priority Based Scheduling

Hwi 2

Hwi 1

Swi 3 (Hi)

Swi 2

Swi 1 (Lo)

main

Idle

Audio_ISR()
{

read_sample();
Swi_post(Swi_2);

}

int1

start

post2 rtn

int2

post3 rtn

post1 rtn

rtn

rtn

User SETs the priorities, BIOS executes them

Posted
Running
Ready

 Lab 5 – Interrupts

MSP430 Workshop - Interrupts 5 - 21

Lab 5 – Interrupts
This lab introduces you to programming MSP430 interrupts. Using interrupts is generally one of
the core skills required when buiding embedded systems. If nothing else, it will be used
extensively in later chapters and lab exercises.

Lab 5 – Button Interrupts
 Lab Worksheet… a Quiz, of sorts:

 Interrupts
 Save/Restore Context
 Vectors and Priorities

 Lab 5a – Pushing your Button
 Create a CCS project that uses an interrupt

to toggle the LED when a button is pushed
 This requires you to create:

o Setup code enabling the GPIO interrupt
o GPIO ISR for pushbutton pin

 You’ll also create code to handle all the
interrupt vectors

 Optional
 Lab 5b – Use the Watchdog Timer

Use the WDT in interval mode to
blink the an LED

Time:
Worksheet – 15 mins
Labs – 45 mins

Lab 5a covers all the essential details of interrupts:

 Setup the interrupt vector

 Enable interrupts

 Create an ISR

When complete, you should be able to push the SW1 button and toggle the Red LED on/off.

Lab 5b is listed as optional since, while these skills are valuable, you should know enough at the
end of Lab 5a to move on and complete the other labs in the workshop.

Lab 5 – Interrupts

5 - 22 MSP430 Workshop - Interrupts

Chapter Topics

Interrupts ... 5-20

Lab 5 – Interrupts .. 5-21
Lab 5 Worksheet ... 5-23

General Interrupt Questions .. 5-23
Interrupt Flow .. 5-23
Interrupt Priorities & Vectors ... 5-24
ISR’s for Group Interrupts ... 5-25

Lab 5a – Push Your Button ... 5-26
File Management .. 5-26
Configure/Enable GPIO Interrupt … Then Verify it Works .. 5-29
Add a Simple Interrupt Service Routine (ISR) .. 5-32

Sidebar – Vector Errors ... 5-32
Upgrade Your Interrupt Service Routine (ISR) ... 5-34

(Optional) Lab 5b – Can You Make a Watchdog Blink? ... 5-35
Import and Explore the WDT_A Interval Timer Example .. 5-35
Run the code ... 5-37
Change the LED blink rate .. 5-37

Appendix ... 5-38

 Lab 5 – Interrupts

MSP430 Workshop - Interrupts 5 - 23

Lab 5 Worksheet

General Interrupt Questions
1. When your program is not in an interrupt service routine, what code is it usually executing?

And, what ‘name’ do we give this code?

 __

2. Why keep ISR’s short (i.e. Why shouldn’t you do a lot of processing in them)?

 __

3. What causes the MSP430 to exit a Low Power Mode (LPMx)?

 __

4. Why are interrupts generally preferred over polling?

Interrupt Flow
5. Name 4 sources of interrupts? (Well, we gave you one, so name 3 more.)

6. What signifies that an interrupt has occurred?

A __________ bit is set

 What’s the acronym for these types of ‘bits” ___________

7. Write the code to enable a GPIO interrupt on Port 1, pin1 (aka P1.1)?

 ___________________________________ // setup pin as input

 ___________________________________ // clear individual flag

 ___________________________________ // enable individual interrupt

Timer_A

Lab 5 – Interrupts

5 - 24 MSP430 Workshop - Interrupts

8. Write the line of code required to turn on interrupts globally:

 ___________________________________ // enable global interrupts (GIE)

 Where, in our programs, is the most common place we see GIE enabled? (Hint, you can look
back at the slides where we showed how to do this.)

Interrupt Priorities & Vectors
9. Circle interrupt has higher priority: GPIO Port 2 or WDT Interval Timer?

 Let’s say you’re CPU is in the middle of the GPIO Port 2 ISR, can it be interrupted by a new
WDT interval timer interrupt? If so, is there anything you could do to your code in order for
this to happen?

10. Where do you find the name of an “interrupt vector”?

11. How do you write the code to set the interrupt vector? (Hint, we’ve provided a simple ISR to
go with the line of code we’re asking you to complete.)

// Sets ISR address in the vector for Port 1

__interrupt void pushbutton_ISR (void)
{
 // Toggle the LED on/off
 GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);
}

 What is wrong with this GPIO port ISR?

12. How do you pass a value into (or out from) and interrupt service routine (ISR)?

#pragma

 Lab 5 – Interrupts

MSP430 Workshop - Interrupts 5 - 25

ISR’s for Group Interrupts

As we learned earlier, most MSP430 interrupts are grouped. For example, the GPIO port
interrupts are all grouped together.

13. For dedicated interrupts (such as WDT interval timer) the CPU clears the IFG flag when
responding to the interrupt. How does an IFG bit get cleared for group interrupts?

14. Creating ISR’s for grouped interrupts is as easy as following a ‘template’. The following code
represents a grouped ISR template. Fill in the blanks required for the CPU to toggle the LED
(P1.0) in response to a GPIO pushbutton interrupt (P1.1).

#pragma vector=PORT1_VECTOR
__interrupt void pushbutton_ISR (void) {
 switch(__even_in_range(____________, 10)) {
 case 0x00: break; // None
 case 0x02: break; // Pin 0
 case 0x04: //break; // Pin 1

 __

 break;
 case 0x06: break; // Pin 2
 case 0x08: break; // Pin 3
 case 0x0A: break; // Pin 4
 case 0x0C: break; // Pin 5
 case 0x0E: break; // Pin 6
 case 0x10: break; // Pin 7
 default: _never_executed();
}

Lab 5 – Interrupts

5 - 26 MSP430 Workshop - Interrupts

Lab 5a – Push Your Button
When Lab 5a is complete, you should be able to push the S2 button and toggle the Red LED
on/off.

We will begin by importing the solution to Lab 4a. After which we’ll need to delete a bit of ‘old’
code and add the following.

 Setup the interrupt vector

 Enable interrupts

 Create an ISR

File Management

1. Close all previous projects. Also, close any remaining open files.

2. Import the solution for Lab 4a from: lab_04a_clock_solution

 Select import previous CCS project from the Project menu:

Project Import Existing CCS Eclipse Project

 Lab 5 – Interrupts

MSP430 Workshop - Interrupts 5 - 27

3. Rename the imported project to: lab_05a_buttonInterrupt

 You can right-click on the project name and select Rename, though the easiest way to
rename a project is to:

Select project in Project Explorer hit @
 When the following dialog pops up, fill in the new project name:

4. Verify the project builds and runs.

 Before we change the code, let’s make sure the original project is working. Build and run the
project – you should see the LED flashing once per second.

5. Add unused_interrupts.c file to your project.

 To save a lot of typing (and probably typos) we already created this file for you. You’ll need to
add it to your project.

Right-click project Add Files…

 Find the file in:

C:\msp430_workshop\<target>\lab_05a_buttonInterrupt\unused_interrupts.c

 You can take a quick look at this file, if you’d like. Notice that we created a single ISR function
that is associated with all of the interrupts on your device – since, at this point, all of the
interrupts are unused. As you add each interrupt to the project, you will need to modify this
file.

lab_05a_buttonInterrupt

Lab 5 – Interrupts

5 - 28 MSP430 Workshop - Interrupts

6. Before we start adding new code … delete old code from while{} loop.

 Open main.c and comment out – or delete – the code in the while{} loop. This is the old
code that flashes the LED using the inefficient __delay_cycles() function.

After commenting out the while code, just double-check for errors by clicking
the build button. (Fix any error that pops up.)

Hint: If you are commenting out the code, it’s easiest to select all the code and hit the Ctrl-/
keys:

 c -|

This toggles the line comments on/off.

 Lab 5 – Interrupts

MSP430 Workshop - Interrupts 5 - 29

Configure/Enable GPIO Interrupt … Then Verify it Works

Add Code to Enable Interrupts

7. Open main.c and modify initGPIO() to enable the interrupt for your push-button.

 If you need a hint on what three lines are required, refer back to the Lab 5 Worksheet,
question number 7 (see page 5-23).

 Note that the pin numbers are the same, but the switch names differ for these Launchpads:

 For the F5529 Launchpad, we’re using pushbutton SW2 (P1.1)

 For the FR5969 Launchpad, we’re using pushbutton SW3 (P1.1)

8. Add the line of code needed to enable interrupts globally (i.e GIE).

 This line of code should be placed right before the while{} loop in main(). Refer back to the
Lab 5 Worksheet, question number 8 (see page 5-24).

9. Build your code.

 Fix any typos or errors.

Start the Debugger and Set Breakpoints

Once the debugger opens, we’ll setup two breakpoints. This allows us to verify the interrupts
were enabled, as well as trapping the interrupt when it occurs.

10. Launch the debugger.

11. Set a breakpoint on the “enable GIE” line of code in main.c.

12. Next, set a breakpoint inside the ISR in the unused_interrupts.c file.

Lab 5 – Interrupts

5 - 30 MSP430 Workshop - Interrupts

Run Code to Verify Interrupts are Enabled

13. Click Run … the program should stop at your first breakpoint.

14. Open the Registers window in CCS (or show it, if it’s already open).

 If the Registers window isn’t open, do so by:

View Registers

15. Verify Port1 bits: DIR, OUT, REN, IE, IFG.

 The first breakpoint (should have) halted the processor right before setting the GIE bit. We’ll
look at that in a minute; for now, we want to view the GPIO Port 1 settings. Scroll/expand the
registers to verify:

 P1DIR.0 = 1 (pin in output direction)

 P1DIR.1 = 0 (input direction – to be used for generating an interrupt)

 P1REN.1 = 1 (we enabled the resistor for our input pin)

 P1OUT.0 = 0 (we set it low to turn off LED)

 P1IE.1 = 1 (our button interrupt is enabled)

 P1IFG.1 = 0 (at this point, we shouldn’t have received an
 interrupt – unless you already pushed the button…)

 Here’s a snapshot of the P1IE register as an example …

16. Next, let’s look at the Status Register (SR).

 You can find it under the Core Registers at the top
of the Registers window.

 You should notice that the GIE bit equals 0, since
we haven’t executed the line of code enabling
interrupts globally, yet.

 Lab 5 – Interrupts

MSP430 Workshop - Interrupts 5 - 31

17. Single-step (i.e. Step-Over) the processor and watch GIE change.

 Click the toolbar button or tap the ^ key. Either way, the Registers window should update:

Testing your Interrupt

With everything setup properly, let’s have a go at it.

18. Click Resume (i.e. Run) … and nothing should happen.

 In fact, if you Suspend (i.e. Halt) the processor, you should see that the code is sitting in the
while{} loop, as expected.

19. Press the appropriate pushbutton (connected to P1.1) on your board.

 Did that cause the program to stop at the breakpoint we set in the ISR?

 If you hit Suspend in the previous step, did you remember to hit Resume afterwards?

 (If it didn’t stop, and you cannot figure out why, ask a neighbor/instructor for help.)

Lab 5 – Interrupts

5 - 32 MSP430 Workshop - Interrupts

Add a Simple Interrupt Service Routine (ISR)

20. Add your Port 1 (P1.1) ISR to the bottom of main.c.

 Here’s a simple ISR routine that you can copy/paste into your code.

//***
// Interrupt Service Routines
//***
#pragma vector= ?????
__interrupt void pushbutton_ISR (void)
{
 // Toggle the LED on/off
 GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);
}

 Don‘t forget to fill in the ???? with your answer from question 11 from the worksheet (see
page 5-24).

21. Build your program to test for any errors.

 You should have gotten the error …

This error example (from the ‘F5529) is telling us that the linker cannot fit all the
PORT1_VECTOR is defined twice.

 We just created one of these vectors, where is the other one coming from?

Sidebar – Vector Errors

First, how did we recognize this error?

1. It says, “errors encountered during linking”. This tells us the complilation was fine, but
there was a problem in linking.

2. Next, “symbol “__TI_int47”” redefined”. Oops, too many definitions for this symbol. It also
tells us that this symbol was found in both unused_interrupts.c as well as main.c.
(OK, is says that the offensive files were .obj, but these were directly created from their
.c counterparts.

3. Finally, what’s with the name, “__TI_int47”? Go back and look at the Interrupt Vector
Location (sometimes it’s also called Interrupt Priority) in the Interrupt Vector table. You
can find this in the chapter discussion or the datasheet. Once you’ve done so, you should
see the correlation with the PORT1_VECTOR.

 Lab 5 – Interrupts

MSP430 Workshop - Interrupts 5 - 33

22. Comment out the PORT1_VECTOR from unused_interrupts.c.

23. Try building it again

 It should work this time… our fingers are crossed for you.

24. Launch the debugger.

25. Remove all breakpoints.

View Breakpoints then click the Remove All button

26. Set a new breakpoint inside your new ISR.

27. Run your code … nce the code is running, push the button to generate an interrupt.

 The processor should stop at your ISR (location shown above). Breakpoints like this can
make it easier to see that we reached the interrupt. (A good debugging trick.)

28. Resuming once again, at this point inside the ISR should toggle-on the LED.

 If it works, call out “Hooray!”

29. Push the button again.

 Hmmm… did you get another interrupt? We didn’t appear to.

 We didn’t see the light toggle-off – and we didn’t stop at the breakpoint inside the ISR.

 Some of you may have already known this was going to happen. If you’re still unsure, go
back to Step 13 from our worksheet (page 5-25). We discussed it there.

Lab 5 – Interrupts

5 - 34 MSP430 Workshop - Interrupts

Upgrade Your Interrupt Service Routine (ISR)

If you hadn’t already guess what the problem was, since the IFG bit never got cleared, the CPU
never realized that new interrupts were being applied.

For grouped interrupts, if we use the appropriate Interrupt Vector (IV) register, we can easily
decipher the highest priority interrupt of the group, as well as getting the CPU to clear the IFG bit.

30. Replace the code inside your ISR with the code that uses the P1IV register.

 Once again, we have already created the code as part of the worksheet; refer to the
Worksheet, Step 14 (page 5-25).

 To make life easier, here’s a copy of the original template from the worksheet. You may want
to cut/paste this code, then tweak it with answers from your worksheet.

//***
// Interrupt Service Routines
//***
#pragma vector=PORT1_VECTOR
__interrupt void pushbutton_ISR (void) {

 switch(__even_in_range(????, 10)) {
 case 0x00: break; // None
 case 0x02: break; // Pin 0
 case 0x04: // Pin 1
 ??????????????????????;
 break;
 case 0x06: break; // Pin 2
 case 0x08: break; // Pin 3
 case 0x0A: break; // Pin 4
 case 0x0C: break; // Pin 5
 case 0x0E: break; // Pin 6
 case 0x10: break; // Pin 7
 default: _never_executed();
 }
}

Hint: The syntax indentation often gets messed up when pasting code. If/when this occurs, the
CCS editor provides a prettying feature.

 Select the ‘ugly’ code and press c -I

31. Build the code.

 If you correctly inserted the code and replaced all the questions marks, hopefully it built
correctly the first time.

32. Launch the debugger. Run. Push the button. Verify the light toggles.

 Run the program. Push the button and verify that the interrupt is taken every time you push
the button. If the breakpoint in the ISR is still set, you should see the processor stop for each
button press (and you’ll need to click Resume).

 You’re welcome to explore the code further by single-stepping thru code, using breakpoints,
syspending (halting) the processor and exploring the various registers.

 Lab 5 – Interrupts

MSP430 Workshop - Interrupts 5 - 35

(Optional) Lab 5b – Can You Make a Watchdog Blink?
The goal of this lab is to blink the LED. Rather than using a _delay_cycles() function, we’ll
actually use a timer to tell us when to toggle the LED.

In Lab 4 we used the Watchdog timer as a … well, a watchdog timer. In all other exercises, thus
far, we just turned it off with WDT_A_hold().

In this lab exercise, we’re going to use it as a standard timer (called ‘interval’ timer) to generate a
periodic interrupt. In the interrupt service routine, we’ll toggle the LED.

As we write the ISR code, you may notice that the Watchdog Interval Timer interrupt has a
dedicated interrupt vector. (Whereas the GPIO Port interrupt had 8 interrupts that shared one
vector.)

Import and Explore the WDT_A Interval Timer Example

1. Import the wdt_a_ex2_intervalACLK project from the MSP430 DriverLib examples.

 We’re going to “cheat” and use the example provided with MSP430ware to get the WDT_A
timer up and running.

 There are two different ways we can import the example project:

 Use the ProjectImport Existing CCS Eclipse Project (as we’ve done before)

 Utilize the TI Resource Explorer (as we did to import our ‘Empty Project’ in Lab3)

a) Open the TI Resource Explorer window, if it’s not already open

Help Welcome to CCS

Hint: If you don’t see a listing of resource in the window, click the Home button.

b) Locate the wdt_a_ex2_intervalACLK
example.

Look for it as shown here under:
Example Projects WDT_A

If you’re using the FR5969, follow
the same path starting from the

MSP430FR5xx6xx heading.

Lab 5 – Interrupts

5 - 36 MSP430 Workshop - Interrupts

c) Click the link to “Import the example project into CCS”.

Once imported you can close the TI Resource Explorer, if you want to get it out of the way.

d) Rename the imported project to: lab_05b_wdtBlink

While not required, this should make it easier to match the project to our lab files later on.

2. Open the lab_05b_wdtBlink.c file. Review the following points:

 Notice the DriverLib function that sets up the
WDT_A for interval timing.
You can choose which clock to use; we selected
ACLK. By the way, what speed is ACLK running at?
(This example uses ACLK at the default rate.)
As described, dividing ACLK/8192 gives us an
interval of ¼ second.

The WDT_A is a system (SYS) interrupt, so it’s
IFG and IE bits are in the Special Functions
Register. It’s always good practice to clear a the
flag before enabling the interrupt. (Remember,
CPU won’t be interrupted until we set GIE.)

Along with enabling interrupts globally (GIE=1), this
example puts the CPU into low power mode (LPM3).

When the interrupt occurs, the CPU wake up and
handles it, then goes back into LPM3. (Low Power
modes will be discussed further in a future chapter.)

Hopefully this ISR is straight-forward. It uses the
#pragma to set up the vector; and, it manages
the context using the __interrupt keyword.
Since WDT has a dedicated interrupt vector, the
code inside the ISR is simple. We do not have to
manually clear the IFG bit, or use the IV vector
to determine the interrupt source.

These GPIO functions
should be familiar by
now …

 Lab 5 – Interrupts

MSP430 Workshop - Interrupts 5 - 37

Run the code

3. Build and run the example.

 You should see the LED blinking…

Change the LED blink rate

4. Terminate the debug session.

5. Modify the example to blink the LED at 2 second intervals.

 (Hint: choose clock divide by 32K.)

6. Build and run the example again.

 If you want, you can experiment with other clock divider rates to see their affect on the LED.

Appendix

5 - 38 MSP430 Workshop - Interrupts

Appendix

Lab 05 Worksheet (1)
General Interrupt Questions
1. When your program is not in an interrupt service routine, what code is it

usually executing? And, what ‘name’ do we give this code?
__

2. Why keep ISR’s short (i.e. not do a lot of processing in them)?
__
__
__

3. What causes the MSP430 to exit a Low Power Mode (LPMx)?
__

4. Why are interrupts generally preferred over polling?
__
__

main functions while{} loop. We often call this ‘background’ processing.

We don’t want to block other interrupts. The other option is nesting

interrupts, but this is INEFFICIENT. Do interrupt follow-up processing in

while{} loop … or use TI-RTOS kernel.

Interrupts

They are a lot more efficient. Polling ties up the CPU – even worse it

consumes power waiting for an event to happen.

Lab 05 Worksheet (2)
Interrupt Flow
5. Name 3 more sources of interrupts?

__
__
__
__

6. What signifies that an interrupt has occurred?
A __________ bit is set
What’s the acronym for these types of ‘bits” ___________

7. Write the code to enable a GPIO interrupt on Port 1, pin1 (aka P1.1)?
___________________________________ // setup pin as input
___________________________________ // clear individual INT
___________________________________ // enable individual INT

Timer_A

GPIO

Watchdog Interval Timer

Analog Converter … and many more

flag

IFG

GPIO_setAsInputPinWithPullUpresistor(GPIO_PORT_1, GPIO_PIN1);

GPIO_clearInterruptFlag(GPIO_PORT_P1, GPIO_PIN1);

GPIO_enableInterrupt(GPIO_PORT_P1, GPIO_PIN1);

 Appendix

MSP430 Workshop - Interrupts 5 - 39

Lab 05 Worksheet (3)
Interrupt Service Routine
8. Write the line of code required to turn on interrupts globally:

_________________________________ // enable global interrupts (GIE)
Where, in our programs, is the most common place we see GIE enabled?
(Hint, you can look back at the slides where we showed how to do this.)

__

Interrupt Priorities & Vectors
9. Which interrupt has higher priority: GPIO Port 2 or WDT Interval Timer?

__
Let’s say you’re CPU is in the middle of the GPIO Port 2 ISR, can it be
interrupted by a new WDT interval timer interrupt? If so, is there anything
you could do to your code in order to allow this to happen?
__
__

__bis_SR_set(GIE);

Right before the while{} loop in main().

No, by default, MSP430 interrupts are disabled when running an ISR. To

enable this you could settup interrupt nesting (though this isn’t recommended)

WDT Interval Timer (INT 56 vs GPIO P2 at INT 42)

Lab 05 Worksheet (4)
10. Where do you find the name of an “interrupt vector”?

__
__

11. How do you write the code to set the interrupt vector? (Hint, we’ve
provided a simple ISR to go with the line of code we’re asking you to
complete.)

// Sets ISR address in the vector for Port 1

#pragma ___________________________________

__interrupt void pushbutton_ISR (void)
{

// Toggle the LED on/off
GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);

}

What is wrong with this GPIO port ISR?
__
__

Interrupt vector table in the datasheet. (It’s also defined in the device

specific header file (e.g. msp430f5529.h))

vector=PORT1_VECTOR

GPIO ports are group interrupts, which should read the P1IV register

and handle multiple interrupts using a switch/case statement

Appendix

5 - 40 MSP430 Workshop - Interrupts

Lab 05 Worksheet (5)
12. How do you pass a value into (or out from) and interrupt service routine

(ISR)?
__

ISR’s for Group Interrupts
As we learned earlier, most MSP430 interrupts are grouped. For example, the
GPIO port interrupts are all grouped together.

13. For dedicated interrupts (such as WDT interval timer) the CPU clears
the IFG flag when responding to the interrupt. How does an IFG bit get
cleared for group interrupts?

__
__

Interrupts cannot pass arguments, we need to use global variables

Either manually; or when you read the IV register (such as P1IV).

Lab 05 Worksheet (6)
14. Creating ISR’s for grouped interrupts is as easy as following a ‘template’.

The following code represents a grouped ISR template. Fill in the blanks
required for the CPU to toggle the LED (P1.0) in response to a GPIO
pushbutton interrupt (P1.1).

#pragma vector=PORT1_VECTOR
__interrupt void pushbutton_ISR (void) {

switch(__even_in_range(____________, 10)) {
case 0x00: break; // None
case 0x02: break; // Pin 0

case 0x04: //break; // Pin 1

break;

case 0x06: break; // Pin 2
case 0x08: break; // Pin 3
case 0x0A: break; // Pin 4
case 0x0C: break; // Pin 5
case 0x0E: break; // Pin 6
case 0x10: break; // Pin 7
default: _never_executed(); }

P1IV

GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);

Timers

Introduction
Often times, Timers are the heartbeat (and lifeblood) of an embedded system.

Whether you need a periodic wake-up call, a one-time delay, or need a means of verifying that
the system is running without a failure, Timers are the solution.

This chapter begins with a brief summary of the Timers found on the MSP430F5529 device. Most
of the chapter, though, is spent digging into the details of the MSP430’s TIMER_A module. Not
only does it provide the rudimentary counting/timing features, but provides sophisticated capture
and compare features that allow a variety of complex waveforms – or interrupts – to be
generated. In fact, this timer can even generate PWM signals.

Along the way, we examine the MSP430ware DriverLib code required to setup and utilize
TIMER_A.

The chapter nears conclusion with a brief summary of the difference between TIMER_A and
TIMER_B. The single sentence summary of TIMER_B would be … if you know how to use
TIMER_A, then you can use TIMER_B.

Finally, we borrow a little advice from the author of MSP430 Microcontroller Basics1. His
summary of which MSP430 timer to use, and when, is spot on.

Learning Objectives

Objectives

- List the different types of MSP430 timers
- Describe how a basic timer/counter works
- Define the concepts of Capture & Compare
- Explain the nomenclature for Timer_A
- Enumerate the 4 steps to programming Timer_A
- List 3 differences between Timer_A and Timer_B
- Write a program to:

- Generate (and handles) a periodic interrupt
- Generate a simple PWM waveform

1 MSP430 Microcontoller Basics by John H. Davies, (ISBN-10 0750682760) Link

MSP430 Workshop - Timers 6 - 1

http://www.amazon.com/MSP430-Microcontroller-Basics-John-Davies/dp/0750682760

Prerequisites and Tools

Chapter Topics
Timers .. 6-1

Prerequisites and Tools .. 6-2
Overview of MSP430 Timers .. 6-3
Timer Basics: How timers work ... 6-4

Counter.. 6-4
Capture.. 6-4
Compare.. 6-5

Timer Details: Configuring TIMER_A .. 6-7
1. Counter: TIMER_A_configure…() .. 6-7
2a. Capture: TIMER_A_initCapture() ... 6-12
2b. Compare: TIMER_A_initCompare() ... 6-13
3. Clear Interrupt Flags and TIMER_A_startTimer() ... 6-18
4. Interrupt Code (Vector & ISR) ... 6-19

TIMER_A API Summary ... 6-20
Differences between Timer’s A and B ... 6-21
Lab Exercise ... 6-23

Prerequisites and Tools

Prerequisites & Tools
 Skills Chapter

 Creating a CCS Project for MSP430 Launchpad(s) (Ch 2)
 Basic knowledge of:

 C language
 Using a C libraries and header files (MSP430ware DriverLib) (Ch 3)
 Setting up MSP430 clocks (Ch 4)
 Using interrupts (setup and ISR’s) (Ch 5)

 Hardware
 Windows (XP, 7, 8) PC with available USB port
 MSP430F5529 Launchpad (with included USB micro cable)
 One (1) jumper wire (female to female)

 Software
 CCSv5.5
 MSP430ware (v1.60.02.09)

6 - 2 MSP430 Workshop - Timers

 Overview of MSP430 Timers

Overview of MSP430 Timers

MSP430 Timers

5 3 3 7TA0CLK
Out: TA0.n
In: TA0.CCInA

MSP430F5529

Timer_A/B Nomenclature
Timer_An: Where n = # of CCR’s

TAx: Instance of Timer_A
Therefore:
TA0 is the first instance of Timer_A5

Timers in Training
 Timer_A (and _B) are discussed in this Ch.
 Watchdog Timer (WDT) was described in

an earlier chapter
 Real-Time Clock (RTC) will be a topic for a

future chapter

MSP430 Workshop - Timers 6 - 3

Timer Basics: How timers work

Timer Basics: How timers work
Counter

Timer/Counter Basics

Counter
Register

15 0

Counter
Overflow Action
 Interrupt (TAIFG)

FFFF

FFFE

FFFD

04

03

02

01 01

Each pulse
of clock input

increments the
counter register

Interrupt occurs when
timer overflows back
to zero

Notes
 Timers are often called “Timer/Counters” as a counter is the essential element
 “Timing” is based on counting inputs from a known clock rate
 Actions don’t occur when writing value to counter

TAR

Clock Input
 Clock
 GPIO Pin (TACLK)

Capture

Capture/Compare
Register (CCRn)

Counter
Register

15 0TAR

Counter
Overflow Action
 Interrupt (TAIFG)

Capture Input signal triggers
transfer:

Counter → Capture

Notes
 Capture time (i.e. count value) when Capture Input signal occurs
 When capture is triggered, count value is placed in CCR and an interrupt is generated
 Capture Overflow (COV): indicates 2nd capture to CCR before 1st was read

Capture Input
 CCInA
 CCInB
 Software

Capture Actions
 Interrupt (CCIFGn)
 Signal peripheral
 Modify pin (TAx.n)

Capture Basics

Clock Input
 Clock
 GPIO Pin (TACLK)

6 - 4 MSP430 Workshop - Timers

 Timer Basics: How timers work

Compare

Compare Basics

Compare Actions
 Interrupt (CCIFGn)
 Signal peripheral
 Modify pin (TAx.n)

Capture/Compare
Register (CCRn)

Counter
Register

15 0

Clock Input
 Clock
 GPIO Pin (TACLK)

Counter
Overflow Action
 Interrupt (TAIFG)

when Counter = Compare
Compare Actions can occur

Notes
 There are usually 2 to 7 compare registers (CCR’s), therefore

up to 8 interrupts or signals can be generated
 Counter must count-to Compare value to generate action

TAR

15 0

Example: Timer0_A7

16-bit Counter
(TA0R)

Interrupt
(TA0IFG)

Divide
by 5-bits

(up to ÷ 64)
Enable
(TA0IE)

CCR0

CCR1

CCR2

CCR3

CCR4

CCR5

CCR6

MSP430 Workshop - Timers 6 - 5

Timer Basics: How timers work

Summary

Timer_A7 Summary

 Timer0_A7:
 Is the first instance (Timer0 or TA0) of Timer_A7 on the device
 _A7 means it has 7 Capture/Compare Registers (CCR’s)

 CCR registers can be configured for:
 Compare (set when CAP=0) generates interrupt (CCnIFG) and

modifies OUT signal when TAR = CCRn
 Capture (when CAP=1) grabs the TAR value and sets an interrupt (CCnIFG)

when triggered by the selected CCIx input

15 0

16-bit Counter
(TAR)

Interrupt
(TAIFG)

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0

CCR6
 CAP=1
 CM
 SCS
 COV

CC0IFGCC0IE

TA0.0...
CAP=0

CC6IFGCC6IE

TA0.6

Timer_A3
 Async 16-Bit timer/counter

available on all MSP430s
 Count modes:

 Continuous
 Up-down
 Up

 Multiple capture/compare
registers (CCRn); each can
provide:
 Interval timing
 Generate interrupt
 Combined for complex signal

generation

 PWM outputs
 Interrupt vector register

for fast INT decoding
 Direct connection to DMA

and many peripherals:
 Increases determinism
 Lowers power dissipation

6 - 6 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

Timer Details: Configuring TIMER_A

4 Steps to Program Timer_A

16-bit Counter (TAR)

CCR0 (TACCR0)
...

Timer_A Ctrl Reg (TACTL)

CCR0 Ctrl Reg (TACCTL0)

CCR6 (TACCR6)
CCR6 Ctrl Reg (TACCTL6)

Timer Setup Code
1. Configure Timer/Counter (TACTL)

 Clocking
 Which Count Mode
 Interrupt on TAR rollover?

2. Setup Capture and/or Compare Registers
 Capture (TACCTL):

 Input
 Interrupt on Capture?

 Compare (TACCTL, TACCR):
 Compare-to Value
 Output mode (How output signal

changes at compare (EQU) events)
 Interrupt on Compare?

3. Clear interrupt Flags & Start Timer

Timer Interrupt Service Routine(s)
4. Write 1-2 ISR’s (CCR0, others)

1. Counter: TIMER_A_configure…()

15 0

1. Configure Timer/Counter

16-bit Counter
(TAR)

Interrupt
(TAIFG)

TIMER_A_configureContinuousMode(

TIMER_A0_BASE,

TIMER_A_CLOCKSOURCE_SMCLK,

TIMER_A_CLOCKSOURCE_DIVIDER_64,

TIMER_A_TAIE_INTERRUPT_ENABLE,

TIMER_A_DO_CLEAR //clear TAR counter?
);

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

MSP430 Workshop - Timers 6 - 7

Timer Details: Configuring TIMER_A

Timer Counting Modes

15 0

1. Configure Timer/Counter

16-bit Counter
(TAR)

Interrupt
(TAIFG)

TIMER_A_configureContinuousMode(

TIMER_A0_BASE,

TIMER_A_CLOCKSOURCE_SMCLK,

TIMER_A_CLOCKSOURCE_DIVIDER_64,

TIMER_A_TAIE_INTERRUPT_ENABLE,

TIMER_A_DO_CLEAR //clear TAR counter?
);

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

Timer Counting Modes Summary

CCR0 is special !!!

6 - 8 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

Continuous Mode

TAR in Continuous Mode
16-bit Counter

(TAR) TA0IFG
Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

Interrupt

FFFFh

0h

TA0IFG TA0IFG

 Continuous mode
TAR runs full range of
16-bit counter

 Int occurs at count to 0
TAR must transition to
zero – it won’t happen
if you write 0 to TAR

TIMER_A_configureContinuousMode();

Up Mode

16-bit Counter
(TAR) TA0IFG

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0 CC0IFGCC0IE

Interrupts

FFFFh

CCR0

0h

TAR in UP Mode

 UP mode
Ints at ‘custom’ (higher)
frequencies

 CCR0 is special CCR
Only CCR0 affects TAR’s
count in this way

 Both interrupts are
generated 1-cycle apart
 CC0IFG when TAR = CCR0
 TA0IFG when TAR0h

CC0IFG
TA0IFG

CC0IFG
TA0IFG

CC0IFG
TA0IFG

TIMER_A_configureUpMode();

MSP430 Workshop - Timers 6 - 9

Timer Details: Configuring TIMER_A

Up/Down Mode

16-bit Counter
(TAR) TAIFG

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0 CC0IFGCC0IE

Interrupts

FFFFh

CCR0

0h

TAR in UP/DOWN Mode

 UP/DOWN mode
TAR counts up & down

 2x period of UP mode
i.e. half the interrupts

 Remembers count dir
If TAR stopped then
started, it keeps going
in same direction TA0IFG

TIMER_A_configureUpDownMode();

CC0IFG CC0IFG

6 - 10 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

Summary of Timer Setup Code – Part 1

Timer Code Example (Part 1)
#include <driverlib.h>

void main(void) {
// Setup/Hold Watchdog Timer (WDT+ or WDT_A)
initWatchdog();

// Configure Power Manager and Supervisors (PMM)
initPowerMgmt();

// Configure GPIO ports/pins
initGPIO();

// Setup Clocking: ACLK, SMCLK, MCLK (BCS+, UCS, or CS)
initClocks();

//--
// Then, configure any other required peripherals and GPIO
initTimers();

__bis_SR_register(GIE);

while(1) {
...
}

Timer Code Example (Part 1)
#include <driverlib.h>

void initTimerA0(void) {
// Setup TimerA0 in Up mode
TIMER_A_configureUpMode(TIMER_A0_BASE,

TIMER_A_CLOCKSOURCE_SMCLK,
TIMER_A_CLOCKSOURCE_DIVIDER_1,
TIMER_PERIOD,
TIMER_A_TAIE_INTERRUPT_ENABLE,
TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE,
TIMER_A_DO_CLEAR);

}

1

MSP430 Workshop - Timers 6 - 11

Timer Details: Configuring TIMER_A

2a. Capture: TIMER_A_initCapture()

15 0

Timer_A7: Capture Mode

16-bit Counter
(TAR)

Interrupt
(TAIFG)

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0

CCR1

CCR2

CCR3

CCR4

CCR5

CCR6

 Capture or Compare (CAP)
CAP=1 for capture

 Which Edge (CM)
Rising, Falling, or Both

 Sync’d to Clock (SCS)
Is capture sync or async?

 Capture Overflow (COV)
Did you miss a capture?

 CAP=1
 CM
 SCS
 COV

Interrupt
(CC6IFG)CC6IE

Timer Code Example (Part 2 - Capture)
#include <driverlib.h>

void initTimerA0(void) {
// Setup TimerA0 in Up mode with CCR6 capture
TIMER_A_configureUpMode(TIMER_A0_BASE,

TIMER_A_CLOCKSOURCE_SMCLK,
TIMER_A_CLOCKSOURCE_DIVIDER_1,
TIMER_PERIOD,
TIMER_A_TAIE_INTERRUPT_ENABLE,
TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE,
TIMER_A_DO_CLEAR);

TIMER_A_initCapture(TIMER_A0_BASE,
TIMER_A_CAPTURECOMPARE_REGISTER_6,
TIMER_A_CAPTUREMODE_RISING_EDGE,
TIMER_A_CAPTURE_INPUTSELECT_CCIxA,
TIMER_A_CAPTURE_ASYNCHRONOUS,
TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE,
TIMER_A_OUTPUTMODE_OUTBITVALUE);

}

1

2

6 - 12 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

2b. Compare: TIMER_A_initCompare()

15 0

Timer_A7: Compare Mode

16-bit Counter
(TAR)

Interrupt
(TAIFG)

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0

CCR1

CCR2

CCR3

CCR4

CCR5

CCR6

Interrupt
(CC2IFG)

Enable
(CC2IE)

OUT
(TA0.2)

CAP=0

Interrupt
(CC6IFG)CC6IE

 CAP=0 (Capture off)
Compare mode on

 If CCR2 = TAR (named EQU2):
 Interrupt occurs (if enabled)
 OUT is set/reset/toggled

 OUT can be:
 Connected to pin (TA0.2)
 Routed to peripherals
 OUT bit can be polled

 Many OUT signal options
Discussed later in the chapter

Timer Code Example (Part 2 - Compare)
#include <driverlib.h>

void initTimerA0(void) {
// Setup TimerA0 in Up mode with CCR2 compare
TIMER_A_configureUpMode(TIMER_A0_BASE,

TIMER_A_CLOCKSOURCE_SMCLK,
TIMER_A_CLOCKSOURCE_DIVIDER_1,
TIMER_PERIOD,
TIMER_A_TAIE_INTERRUPT_ENABLE,
TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE,
TIMER_A_DO_CLEAR);

TIMER_A_initCompare(TIMER_A0_BASE,
TIMER_A_CAPTURECOMPARE_REGISTER_2,
TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE,
TIMER_A_OUTPUTMODE_SET_RESET,
0xBEEF // Compare Value

);

}

1
Writes 0xBEEF

to CCR2

MSP430 Workshop - Timers 6 - 13

Timer Details: Configuring TIMER_A

Summary of Timer Setup Code – Part 2

Timer Code Example (Part 2 - Compare)
#include <driverlib.h>

void initTimerA0(void) {
// Setup TimerA0 in Up mode with CCR2 compare
TIMER_A_configureUpMode(TIMER_A0_BASE,

TIMER_A_CLOCKSOURCE_SMCLK,
TIMER_A_CLOCKSOURCE_DIVIDER_1,
TIMER_PERIOD,
TIMER_A_TAIE_INTERRUPT_ENABLE,
TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE,
TIMER_A_DO_CLEAR);

TIMER_A_initCompare(TIMER_A0_BASE,
TIMER_A_CAPTURECOMPARE_REGISTER_2,
TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE,
TIMER_A_OUTPUTMODE_SET_RESET,
0xBEEF // Compare Value

);

}

1

2

Output Modes

Timer CCR (Compare) Output Mode 01

Output
Mode

(CCRn.OUTMOD)

 As discussed earlier,
each CCR has it’s own
signal (e.g. TA0.1)
 Input for capture (CCI)
 Output for compare (OUT)

 For capture, the value in
register bit CCRn.OUT is
routed to TA0.n

 Value of OUT is affected
by Output Mode
(CCRn.OUTMOD) as described
over the next few slides

 Note: If OUTMOD=0, then OUT
(and hence the signal) is under
software control

01 Set

Note: Interrupts don’t vary
with OUTMOD, only the
OUTput signal changes

Output Mode 1
 OUTMOD = 01 is called “Set”
 This means that OUT (e.g. TA0.1) is

set on EQU1
 That is, whenever TAR=CCR1

6 - 14 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

EQU: When TAR = CCR

 Nomenclature used in MSP430 User’s Guide
 EQU0 and EQU1 are names for when CCR0 and

CCR1 compare events occur (e.g. CCR1 = TAR)
 Similar EQUn events exist for each CCR register
 TAIFG is the generic timer interrupt whenever

the count (in TAR) goes to zero

01 Set

02 Toggle/
Reset

Timer CCR (Compare) Output Mode 02

Output
Mode

(CCRn.OUTMOD)

 OUT is actually affected
by two events:
 EQUn : when TAR=CCRn
 EQU0 : when TAR=CCR0

 In other words, the two
events are CCRnIFG and
CCR0IFG, respectively

 Output Mode 02 is called:

 As stated earlier, CCR0 is special
It affects all other CCR compare
outputs in this same way

 Note: In this example, EQU0 and
TAIFG happen at the same time;
but TAIFG does not affect OUT

Toggle / Reset

Toggles OUT
on EQUn

Resets OUT
on CCR0

Output Mode 2
 OUTMOD = 02 is called “Toggle/Reset”
 This means that OUT (e.g. TA0.1) is

Toggled upon EQU1
 And Reset on EQU0 (i.e. CCR0 match)

MSP430 Workshop - Timers 6 - 15

Timer Details: Configuring TIMER_A

02 Toggle/
Reset

Timer CCR (Compare) Output Mode 02

Output
Mode

(CCRn.OUTMOD)

 OUT is actually affected
by two events:
 EQUn : when TAR=CCRn
 EQU0 : when TAR=CCR0

 In other words, the two
events are CCRnIFG and
CCR0IFG, respectively

 Output Mode 02 is called:
Toggle/Reset

Here’s an example of routine TA0.2 (i.e. OUT2) to a GPIO pin:

 Completely automatic
 Independent frequencies with different duty

cycles can be generated for each CCR

Capture “Output Modes” Summary

Output
Mode

(CCRn.OUTMOD)

01 Set

02 Toggle/
Reset

03 Set/
Reset

04 Toggle

05 Reset

06 Toggle/
Set

07 Reset/
Set

 Use different OUTMOD
settings to create
various signal patterns

 Output modes 2, 3, 6,
and 7 are not useful for
output unit 0 because
EQUn = EQU0

 This summary is for the “UP”
mode. User’s Guide has similar
diagrams for Continuous and
UpDown counter modes

6 - 16 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

PWM Signals

PWM Signals – Up to one per CCR
0xFFFF

TA0CCR0

TA0CCR1

TA0CCR2

0x0

OUT1

OUT2

 Duty cycle (“on” time) is set by selecting Output Mode and varying CCRx value
 In this example, CCR0 – CCR1 = amount of time Signal is High

MSP430 Workshop - Timers 6 - 17

Timer Details: Configuring TIMER_A

3. Clear Interrupt Flags and TIMER_A_startTimer()
Timer Code Ex. (Part 3 – Clear IFG’s/Start)

#include <driverlib.h>

void initTimerA0(void) {
// Setup TimerA0 in Up mode with CCR2 Compare
TIMER_A_configureUpMode(TIMER_A0_BASE,

TIMER_A_CLOCKSOURCE_SMCLK,
TIMER_A_CLOCKSOURCE_DIVIDER_1,
TIMER_PERIOD,
TIMER_A_TAIE_INTERRUPT_ENABLE,
TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE,
TIMER_A_DO_CLEAR);

TIMER_A_initCompare(TIMER_A0_BASE,
TIMER_A_CAPTURECOMPARE_REGISTER_2,
TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE,
TIMER_A_OUTPUTMODE_SET_RESET,
0xBEEF); // Compare Value

TIMER_A_clearTimerInterruptFlag(
TIMER_A0_BASE);

TIMER_A_clearCaptureCompareInterruptFlag(
TIMER_A0_BASE,
TIMER_A_CAPTURECOMPARE_REGISTER_0 +
TIMER_A_CAPTURECOMPARE_REGISTER_2);

TIMER_A_startCounter(TIMER_A0_BASE,
TIMER_A_UP_MODE); //Make sure this

} // matches config fxn

1

2

3

6 - 18 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

4. Interrupt Code (Vector & ISR)

Timer0_A5 Interrupts Review

CPU

0
1

0
0

0

)

0
1

0
0

1

TIMER0_A5

TA0CCR1
TA0CCR2
TA0CCR3
TA0CCR4

TA0IFG

.CCIFG .CCIE
1 1TA0CCR0

SR.GIE 52
TA0IV

53

INT Source IFG IV Register Vector Address Loc’n
Timer A (CCIFG0) TA0CCR0.CCIFG none TIMER0_A0_VECTOR 53
Timer A TA0CCR1.IFG1…TA0CCR4.IFG TA0IV TIMER0_A1_VECTOR 52

 In the interrupts chapter, we learned that most MPS430 interrupts are grouped together
and share an interrupt vector, although a few have their own dedicated vector

 Timers A and B have two vectors: one for CCR0 and the other shared
 When the CPU responds to TIMER0_A0_VECTOR, the CCR0IFG is auto cleared
 In the TIMER0_A1_VECTOR ISR, reading TA0IV register returns associated highest

priority pending interrupt and clears it’s IFG bit

Timer Code Example (Part 4 – ISR’s)
#pragma vector=TIMER0_A0_VECTOR
__interrupt void myISR_TA0_CCR0(void) {

GPIO_toggleOutputOnPin(...);
}

#pragma vector=TIMER0_A1_VECTOR
__interrupt void myISR_TA0_Other(void) {

switch(__even_in_range(TA0IV, 10)) {
case 0x00: break; // None
case 0x02: break; // CCR1 IFG
case 0x04: // CCR2 IFG

GPIO_toggleOutputOnPin(…);
break;

case 0x06: break; // CCR3 IFG
case 0x08: break; // CCR4 IFG
case 0x0A: break; // CCR5 IFG
case 0x0C: break; // CCR6 IFG
case 0x0E: // TA0IFG

GPIO_toggleOutputOnPin(…);
break;

default: _never_executed();
}

}

4

CCR0
ISR

CCR2
and TA0

ISR’s

MSP430 Workshop - Timers 6 - 19

TIMER_A API Summary

TIMER_A API Summary

MSP430ware TIMER_A Summary
TIMER_A_configureContinuousMode()

TIMER_A_configureUpMode()
TIMER_A_configureUpDownMode()

16-bit Counter
(TAR)

CCR0

CCR6

...

Timer_A Ctrl Reg

CCR0 Ctrl Reg

CCR6 Ctrl RegTIMER_A_initCapture()

TIMER_A_startCounter()
TIMER_A_clear()
TIMER_A_stop()

MISC Functions
TIMER_A_getSynchronizedCaptureCompareInput()
TIMER_A_getOutputForOutputModeOutBitValue()
TIMER_A_setOutputForOutputModeOutBitValue()

TIMER_A_getCounterValue()

TIMER_A_initCompare()

TIMER_A_initCompare()
TIMER_A_setCompareValue

TIMER_A_getCaptureCompareCount()

Intertupt Functions
TIMER_A_enableInterrupt()
TIMER_A_disableInterrupt()
TIMER_A_getInterruptStatus()
TIMER_A_enableCaptureCompareInterrupt()
TIMER_A_disableCaptureCompareInterrupt()
TIMER_A_getCaptureCompareInterruptStatus()
TIMER_A_clearCaptureCompareInterruptFlag()
TIMER_A_clearTimerInterruptFlag()

TIMER_A_generatePWM()

6 - 20 MSP430 Workshop - Timers

 Differences between Timer’s A and B

Differences between Timer’s A and B

Timer_A vs Timer_B

 “Sampling Mode” acts like a digital sample & hold
 Timer_A can latch CCI input (to SCCI) upon compare
 Makes it easy to implement software UART’s
 Timer_B cannot latch CCI directly, but most Timer_B devices have dedicated

communication peripherals

Timer_A specific features

 Compare (CCRx) registers are double-buffered & can be updated in groups
 Preserves PWM “dead time” between driving complementary outputs (H-bridge)
 More care needed when implementing edge-aligned PWM with Timer_A

 TBR configurable for 8, 10, 12 or 16-bits counter (default is 16-bits)
 Provides range of periods when used in ‘Continuous’ mode

 Tri-state function from external pin
 External TBOUTH pins puts all Timer_B pins into high-impedance
 With Timer_A, you would need to reconfigure pins in software

Timer_B specific features

 Timer_B’s default functionality is identical to Timer_A
 Names are (almost) the same: TAR → TBR, TA0CTL → TB0CTL, etc.

Similarities

Which Timer Should I Use?
Pulse-width modulation: Use Timer_B, if available, otherwise Timer_A. Connect the
load directly to an output of the timer so that it can be driven directly by hardware.
Less regular outputs: Connect directly to an output of Timer_A or B.
 Use the Up mode if the intervals between changes are always the same, as in

many forms of communication.
 Continuous mode is easier if the intervals vary.
Inputs to be sampled at regular intervals: Connect directly to an input of Timer_A
and use the Sampling mode (the Compare mode with the SCCI bit). This applies
mainly to communications.
Inputs to be timed: Connect slow inputs directly to a Capture input of Timer_A or B.
Fast signals should be connected to one of the timer clock inputs, such as TACLK or
INCLK.
Periodic software interrupts:
 Try the watchdog timer if it’s not used as watchdog, though, WDT has a limited

set of interval periods. For longer intervals use ACLK, shorter use SMCLK.
 If WDT isn’t suitable try Timer_A or B, which can produce almost any interval

desired. Though, this may interfere with the use of their more advanced features.
Less regular software interrupts: Use Timer_A or B, preferably in the Continuous
mode.

* Adapted from MSP430 Microcontroller Basics by John Davies (Newnes) (ISBN 978-0750682763)

MSP430 Workshop - Timers 6 - 21

Notes:

 Lab 6 – Using Timer_A

Lab 6 – Using Timer_A

Lab 6 – Using Timer_A
 Time for the lab prep Worksheet:

 What time is it?
 Capture vs Compare
 4 steps to timer programming
 Simple PWM generation

 Lab 6a – Simple Timer Interrupt
 Create a CCR0 interrupt with the timer

counting in Continuous Mode
 ISR toggles LED

 Optional Exercises
Lab 6b – Timer using Up Mode
 Similar to Lab6a, but using Up mode

Lab 6c – Timer with Directly Driven LED
 Similar to Lab6b, but with the timer directly

driving the LED

Lab 6d – Simple PWM Signal
 Alter the brightness of the LED by changing

the PWM duty cycle

Time:
Worksheet – 15 mins
Labs – 30 mins

Note: The solutions exist for all of these exercises, but the instructions for Lab 6d are not yet
included. These will appear in a future version of the course.

MSP430 Workshop - Timers 6 - 23

Lab 6 – Using Timer_A

Lab Topics
Timers .. 6-21

Lab 6 – Using Timer_A ... 6-23
Lab 6a – Simple Timer Interrupt ... 6-25

Lab 6a Worksheet ... 6-25
File Management .. 6-29
Setup the Timer ... 6-30
Debug/Run .. 6-31

(Extra Credit) Lab 6b – Timer using Up Mode .. 6-32
Lab 6b Worksheet ... 6-32
File Management .. 6-35
Change the Timer Setup Code ... 6-35
Debug/Run .. 6-36
Archive and Close the Project ... 6-37

(Extra Credit) Lab 6c – Timer using Up Mode .. 6-39
Lab 6c Worksheet ... 6-39
File Management .. 6-42
Change the GPIO Setup ... 6-42
Change the Timer Setup Code ... 6-43
Debug/Run .. 6-44

Chapter 6 Appendix .. 6-47

6 - 24 MSP430 Workshop - Timers

 Lab 6a – Simple Timer Interrupt

Lab 6a – Simple Timer Interrupt
Similar to lab_05a_buttonInterrupt, we want to blink an LED based upon a timer. In this
case, though, we'll use TIMER_A to generate an interrupt. During the interrupt routine we'll toggle
the GPIO value that drives an LED on our Launchpad board.

As we write the ISR code, you should see that TIMER_A has two interupts:
− One is dedicated to CCR0 (capture and compare register 0).
− The second handles all the other timer interrupts

This first TIMER_A lab will use the main timer/counter rollover interrupt (called TA0IFG). As with
our previous interrupt lab (with GPIO ports), this ISR should read the TimerA0 IV register (TA0IV)
and decipher the correct response using a switch/case statement.

Lab 6a Worksheet
Goal: Write a function setting up TimerA0 which generates an interrupt every two seconds.

1. How many clock cycles does it take for the 16-bit TimerA0 to ‘rollover’? (Hint: 16-bit
timer)

 __

2. If our goal is to generate a two second interrupt rate, what clock input and divider
value will get our timer near 2 seconds?

Clock input: __

Divide value: __

Hint: Since we are interested in 2 seconds, a slow clock might work best.

Another Hint: Look up the arguments for the TIMER_A_configureContinuousMode()
function in the MSP430® Peripheral Driver Library User’s Guide.

MSP430 Workshop - Timers 6 - 25

Lab 6a – Simple Timer Interrupt

3. Calculate the Timer frequencies for the clocks & divider values you chose in the
prevous step.

 This lab exercise uses the clock setup from Chapter 4. So you don’t have to look it up, we’ve
copied the values into the table below:

Clock ‘F5529 Launchpad

ACLK 32 KHz

SMCLK 8 MHz

MCLK 8 MHz

 What clock did you choose in the previous step?

 Timer Clock Source: ___

Clock Frequency = cycles/second

Timer Frequency = ÷ =
 clock frequency timer clock divider

Timer Output = ÷ =
 timer frequency counts for timer to

rollover

4. Write the TIMER_A_configureContinuousMode() function.

 Where to get help for writing this function? We highly recommend the MSP430ware DriverLib
users guide. (See docs folder inside MPS430ware’s driverlib folder.) Another suggestion
would be to examine the header file: (timer_a.h).

TIMER_A_configureContinuousMode(

 TIMER_A0_BASE, // Setup Timer A0

 _______________________________________, // Timer clock source

 _______________________________________, // Timer clock divider

 _______________________________________, // Enable interrupt on TAR counter rollover

 TIMER_A_DO_CLEAR // Clear TAR & previous divider state
);

6 - 26 MSP430 Workshop - Timers

 Lab 6a – Simple Timer Interrupt

5. Complete the code to for the 3rd part of the “Timer Setup Code”.

 The third part of the timer setup code includes:
− Enable the interrupt (IE) … we don’t have to do this, since it’s done by the

TIMER_A_configureContinuousMode() function used in the previous question

− Clear the appropriate interrupt flag (IFG)

− Start the timer

// Clear the timer flag and start the timer

_______________________________________ (TIMER_A0_BASE); // Clear TA0IFG

_______________________________________ (TIMER_A0_BASE, // Start timer
TIMER_A_CONTINUOUS_MODE); // in Continuous mode

6. Change the following interrupt code to toggle the Green LED when TimerA0 rolls-over.

 Here’s the interrupt code that exists from our previous lab exercise, change it as needed:

#pragma vector=PORT1_VECTOR

__interrupt void pushbutton_ISR (void)

{

 switch(__even_in_range(P1IV , 16)) {

 case 0: break; // No interrupt

 case 2: break; // Pin 0

 case 4: // Pin 1

 GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);

 break;

 case 6: break; // Pin 2

 case 8: break; // Pin 3

 case 10: break; // Pin 4

 case 12: break; // Pin 5

 case 14: break; // Pin 6

 case 16: break; // Pin 7

 default: _never_executed();

 }

}

Hint: On your Launchpad, what Port/Pin number does the Green LED use? ______________

Please verify your answers before moving onto the lab exercise.

MSP430 Workshop - Timers 6 - 27

Notes:

 Lab 6a – Simple Timer Interrupt

File Management
1. Verify that all projects (and files) in your workspace are closed.

 If some are open, we recommend closing them.

2. Import previous solution for lab_05a_buttonInterrupt.

 Import the solution from the archive:

C:\msp430_workshop\<target>\solution\lab_05a_buttonInterrupt_solution.zip

3. Rename the project to: lab_06a_timer

4. Delete old, unneccessary code.
 We won’t be using the pushbutton, so you can delete that code from the initGPIO() function.

Make sure, though, that the the LED setup code remains.

5. Make sure both LED’s are configured.
 Verify that both LED GPIO outputs are properly configured – adding the code, if necessary.

That means, on the F5229 Launchpad, setting up both P1.0 and P4.7.

 Also, we recommend initializing LEDs by turning them off.

6. Build the project to verify no errors were introduced.

MSP430 Workshop - Timers 6 - 29

Lab 6a – Simple Timer Interrupt

Setup the Timer
In this part of Lab 6, we will be setting up TimerA0 in Continuous Mode.

7. Add a new initTimers() function to main.c.

 This requires three steps:

a) In main(), add a call to initTimers().
We recommend that you add the call below the initClocks() function call.

b) Add a prototype for the initTimers() function at the top of main.c.

c) Create an empty initTimers() function.
We recommend placing this below the initGPIO() function in main.c, though, you could
really put it anywhere inside the file. We’ll add the code to this function in the next step.

void initTimers(void) {

}

d) Build the code to make sure there are no syntax errors.

8. Add the code needed to setup the timer to the initTimers() function.

 You may remember that the Timer setup code consisted of three parts. In this exercise,
though, we’re only use parts and , since the Continuous mode does not require us to
setup a capture/compare register.

a) Configure the timer with a call to TIMER_A_configureContinuousMode().

Please refer to the Lab Worksheet for assistance. (Step 4, Page 6-26).

b) Add code to clear the interrupt flag, enable the interrupt, and start the timer.

Please refer to the Lab Worksheet for assistance. (Step 5, Page 6-27).

c) Build the code to make sure there are not syntax errors.

9. Modify the ISR to handle the TimerA0 interrupt, rather than GPIO port interrupt.

 Please refer to the Lab Worksheet for assistance. (Step 6, Page 6-27).

10. Don’t forget to modify the “unused” vectors (unused_interrupts.c).

 Failing to do this will generate a build error. (Most of us saw this error back during the lab
exercise for the Interrupts chapter.)

11. Build the code. Verify there are no syntax errors.

6 - 30 MSP430 Workshop - Timers

 Lab 6a – Simple Timer Interrupt

Debug/Run
12. Launch the debugger.

13. Set a breakpoint inside the ISR.
 We found it worked well to set a breakpoint on the ‘switch’ statement.

14. Run your code.

 If all worked well, when the counter rolled over to zero, an interrupt should have occurred …
which should have resulted in the processor halting at a breakpoint inside the ISR.

15. If the breakpoint occurred, skip to the next step …

 If you did not reach the breakpoint inside your ISR, here’s a few thing to look for:
− Is the interrupt flag bit (IFG) set?

− Is the interrupt enable bit (IE) set?

− Are interrupts enabled globally?

16. If the breakpoint occurred, then resume running again.

 You should always verify that your interrupts work by taking more than ‘one’ of them. A
common cause of problems occurs when the IFG bit is not cleared. This means you take one
interrupt, but never get a second one.

 In our current example, reading the TA0IV should clear the flag, so the likelihood of this
problem occurring is small, but for one reason or another, the problem occurs more often
than you might expect.

17. Did the LED toggle?
 If you are executing the ISR (i.e. hitting the breakpoint) and the LED is not toggling, try single-

stepping from the point where the breakpoint occurs. Make sure your program is executing
the GPIO instruction.

 A common error, in this case, is accidentally putting the “do something” code (in our case, the
GPIO toggle function) into the wrong ‘case’ statement.

MSP430 Workshop - Timers 6 - 31

(Extra Credit) Lab 6b – Timer using Up Mode

 (Extra Credit) Lab 6b – Timer using Up Mode
In this timer lab we switch our code from counting in the "Continuous" mode to the "Up" mode.
This gives us more flexibility on the frequency of generating interrupts and output signals.

Frome the discussion you might remember that TIMER_A has two interupts:
• One is dedicated to CCR0 (capture and compare register 0).

• The second handles all the other timer interrupts

In our previous lab exercise, we created an ISR for group (non-dedicated) timer ISR. This lab
adds an ISR for the dedicated (CCR0 based) interrupt.

Each of our two ISR's will toggle a different colored LED.

The goal of this part of the lab is to:
 // TimerA0 in Up mode using ACLK

 // Toggle Green LED every ½ second using TA0IFG

 // Toggle Red LED every ½ second using CCR0IFG

Lab 6b Worksheet
1. Calculate the timer period that will go into CCR0 to set the proper interrupt rate.

 Here’s a quick review from our discussion.

16-bit Counter
(TAR) TA0IFG

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0 CC0IFGCC0IE

Interrupts

FFFFh

CCR0

0h

TAR in UP Mode

 UP mode
Ints at ‘custom’ (higher)
frequencies

 CCR0 is special CCR
Only CCR0 affects TAR’s
count in this way

 Both interrupts are
generated 1-cycle apart
 CC0IFG when TAR = CCR0
 TA0IFG when TAR0h

CC0IFG
TA0IFG

CC0IFG
TA0IFG

CC0IFG
TA0IFG

TIMER_A_configureUpMode();

 Timer_A’s counter (TAR) will count up until it reaches the value in the CCR0 capture register,

then reset back to zero. What value do we need to set CCR0 to get a ½ second interval?

Timer Frequency = ÷ =
 clock frequency timer clock divider

Timer Output = ÷ =
 timer frequency timer period

(i.e. CCRO value)

32 KHz 1 32 KHz

32 KHz ½ second

6 - 32 MSP430 Workshop - Timers

 (Extra Credit) Lab 6b – Timer using Up Mode

2. Complete the TIMER_A_configureUpMode() function?

 This function will replace the TIMER_A_configureContinuousMode() call we made in our
previous lab exercise.

Hint: Where to get help for writing this function? Once again, we recommend the
MSP430ware DriverLib users guide (“docs” folder inside MPS430ware’s driverlib).

Another suggestion would be to examine the timer_a.h header file.

TIMER_A_configureUpMode(

 TIMER_A0_BASE, // Setup Timer A0

 TIMER_A_CLOCKSOURCE_ACLK, // Timer clock source

 TIMER_A_CLOCKSOURCE_DIVIDER_1, // Timer clock divider

 _______________________________________, // Period (calculated in previous question)

 TIMER_A_TAIE_INTERRUPT_ENABLE, // Enable interrupt on TAR counter rollover

 _______________________________________, // Enable CCR0 compare interrupt

 TIMER_A_DO_CLEAR // Clear TAR & previous divider state
);

MSP430 Workshop - Timers 6 - 33

(Extra Credit) Lab 6b – Timer using Up Mode

3. Modify your previous code. We need to clear both interrupts and start the timer.

 We copied the code from the previous lab into this question. It needs to be modified to meet
our new objectives for this lab.

 Here are some hints:
− Add an extra line of code to clear the CCR0 flag (we left a blank space below for this)

− Don’t make the mistake we made … look very carefully at the ‘start’ function. Is there
anything that needs to change in that function call?

// Clear the timer flag and start the timer

TIMER_A_clearTimerInterruptFlag(TIMER_A0_BASE); // Clear TA0IFG

 __

TIMER_A_startCounter(TIMER_A0_BASE, // Start timer
 TIMER_A_CONTINUOUS_MODE); // in ____________ mode

4. Add a new ISR to toggle the Red LED when the CCR0 interrupt fires.

On your Launchpad, what Port/Pin number does the Red LED use? ______________

 Here we’ve given you a bit of code to get you started:

#pragma vector= _________________________________

__interrupt void ccr0_ISR (void)

{

 // Toggle the Red LED on/off

}

Please verify your answers before moving onto the lab exercise.

6 - 34 MSP430 Workshop - Timers

 (Extra Credit) Lab 6b – Timer using Up Mode

File Management
1. Copy/Paste the lab_06a_timer to lab_06b_upTimer.

a) In Project Explorer, right-click on the lab_06a_timer project and select “Copy”.

b) Then, click in an open area of Project Explorer and select paste.

c) Finally, rename the copied project to lab_06b_upTimer.

Note: If you didn’t complete lab_06a_timer – or you just want a clean starting solution –
you can import the lab_06a_timer archived solution.

2. Close the previous project: lab_06a_timer

3. Delete old, readme file and import the new one.

C:\msp430_workshop\<target>\lab_06b_upTimer

4. Make sure both LED’s are configured.

 We only used one in the last lab, make sure that both still are setup in the code, as we’ll be
using both of them in this exercise.

5. Build the project to verify no errors were introduced.

Change the Timer Setup Code
In this part of Lab 6, we will be setting up TimerA0 in Up Mode.

6. Modify the timer configuration function, configuring it for ‘Up’ mode.

 You should have a completed copy of this code in the Lab 6b Worksheet.

 Please refer to the Lab Worksheet for assistance. (Step 2, Page 6-33).

7. Modify the rest of the timer setup code, where we clear the interrupt flags, enable the
individual interrupts and start the timer.

 Please refer to the Lab Worksheet for assistance. (Step 3, Page 6-34).

8. Add the new ISR we wrote in the Lab Worksheet to handle the CCR0 interrupt.

 When this step is complete, you should have two ISR’s in your main.c file.

 Please refer to the Lab Worksheet for assistance. (Step 4, Page 6-34).

9. Don’t forget to modify the “unused” vectors (unused_interrupts.c).

 Failing to do this will generate a build error. (Most of us saw this error back during the lab
exercise for the Interrupts chapter.)

10. Build the code to verify that there are no syntax errors; fix any as needed.

MSP430 Workshop - Timers 6 - 35

(Extra Credit) Lab 6b – Timer using Up Mode

Debug/Run
Follow the same basic steps as found in the previous lab for debugging.

11. Launch the debugger and set a breakpoint inside the both ISR’s.

12. Run your code.

 If all worked well, when the counter rolled over to zero, an interrupt should occur. Actually,
two interrupts should occur. Once you reach the first breakpoint, resume running your code
and you should reach the other ISR.

Which ISR was reached first? ___

Why? __

13. Remove the breakpoints and let the code run. Do both LED’s toggle?

6 - 36 MSP430 Workshop - Timers

 (Extra Credit) Lab 6b – Timer using Up Mode

Archive and Close the Project
Thus far in this workshop, we have imported many projects from archives … but we haven’t
asked you to make an archive. It’s not hard, as you’ll find out.

14. Export your project to the lab’s file folder.
− Right-click the project and select ‘Export’

− Select ‘Archive File’ for export, then click Next

− Fill out the dialog as shown below, choosing: the ‘upTimer’ lab; “Save in zip format”,

“Compress the contents of the file”; and the following destination:

C:\msp430_workshop\<target>\lab_06b_upTimer\my_lab_06b_upTimer.zip

MSP430 Workshop - Timers 6 - 37

Notes:

 (Extra Credit) Lab 6c – Timer using Up Mode

(Extra Credit) Lab 6c – Timer using Up Mode
This lab is a minor adaptation of the code from the previous exercise. The main difference is that
we'll connect the output of Timer_A0 CCR2 (TA0.2) directly to a GPIO pin. (Remember, CCR0 is
used for reseting TAR back to 0; we are still using Up mode in this lab. But, we CCR0 already in
use, we chose to use CCR2 to generate our output signal for this exercise.)

In our case, we want to drive an LED directly from the timer’s output signal…

…unfortunately, the Launchpad does not have an LED connected directly to a timer output pin,
therefore we'll need to use a jumper in order to make the proper connection - here's an excerpt
from the lab solution:
 // When running this lab exercise, you will need to pull the JP8 jumper and

 // use a jumper wire to connect signal from ____ (on boosterpack pinouts) to

 // JP8.2 (bottom pin) of LED1 jumper ... this lets the TA0.2 signal drive the

 // RED LED directly (without having to use interrupts)

Lab 6c Worksheet
1. Figure out which boosterpack pin to drive with the timer’s output (i.e. TA0.2).

 We want to choose a boosterpack pin, as this will make it easy for us to jumper the signal
over to the Red LED. Which boosterpack pin can support the TA0.2 output?

 There are really two parts to this question:

a) What GPIO output is TA0.2 combined with?

Hint: There are a couple places in the datasheet to find this information. We
recommend opening your device’s datasheet and searching for “TA0.2”.

 GPIO pin: __

b) Next, what boosterpack pin is this GPIO connected to?

This is easy to read directly from the Launchpad. Scan the silkscreened labels next to the
boosterpack pins. (If you’re getting a little older, you may need a magnifying glass to
answer this question…or zoom in while viewing the Launchpad’s photo in this document.)

 Boosterpack pin: __

2. Write the function to set this Pin/Port to be used as a timer pin (as opposed to an output pin).

 GPIO_setAs________________________________(___________, ___________);

3. Which Port/Pin drives the Red LED?

 Port ______ Pin _______

MSP430 Workshop - Timers 6 - 39

(Extra Credit) Lab 6c – Timer using Up Mode

4. Modify the TIMER_A_configureUpMode() function?

 Here is the code we wrote for the previous part of the lab exercise. We only need to make
one change to the code. Since we will drive the signal directly from the timer, we don’t need
to generate the CCR0 interrupt anymore.

 Mark up the code below to disable the interrupt. (We’ll bet you can make this change without
even looking at the API documentation. Intuitive code is one of the benefits of using DriverLib!)

TIMER_A_configureUpMode(

 TIMER_A0_BASE, // Setup Timer A0

 TIMER_A_CLOCKSOURCE_ACLK, // Timer clock source

 TIMER_A_CLOCKSOURCE_DIVIDER_1, // Timer clock divider

 0xFFFF / 2, // Period: (0x8000) / 32Khz = 1/2 sec

 TIMER_A_TAIE_INTERRUPT_ENABLE, // Enable interrupt on TAR counter rollover

 TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE, // Enable CCR0 compare interrupt

 TIMER_A_DO_CLEAR // Clear TAR & previous divider state
);

5. What ‘compare’ value does CCR2 need to equal in order to toggle the output signal at
¼ second?

CCR0=0x8000

CCR2

0x0

¼ Second

CCR2 = __________________

½ Second

6 - 40 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Timer using Up Mode

6. Add a new function call to setup Capture and Compare Register 2 (CCR2). This should
be added to initTimers().

TIMER_A_init_________________(

 TIMER_A0_BASE, // Setup Timer A0

 _______________________________________, // Select the CCR2 register

 TIMER_A_CAPTURECOMPARE_INTERRUPT_DISABLE, // Disable int; since driving LED directly

 TIMER_A_OUTPUTMODE_TOGGLE, // Toggle mode creates on/off signal

 _______________________________________, // Compare value to toggle at ¼ second
);

7. Compare your previous code to that below.

What did we change? ___

#pragma vector=TIMER0_A1_VECTOR

__interrupt void timer0_ISR(void)

{

 switch(__even_in_range(TA0IV, 14)) {

 case 0: break; // No interrupt

 case 2: break; // CCR1 IFG

 case 4: // CCR2 IFG

 _no_operation();

 break;

 case 6: break; // CCR3 IFG

 case 8: break; // CCR4 IFG

 case 10: break; // CCR5 IFG

 case 12: break; // CCR6 IFG

 case 14: break; // TAR overflow

 GPIO_toggleOutputOnPin(GPIO_PORT_P4, GPIO_PIN7);

 break;

 default: _never_executed();

 }

}

 During debug, we will ask you to set a breakpoint on ‘case 4’.

 Why should case 4 be skipped, and thus, the breakpoint never reached?

CCR2 value
calculated above

goes here

MSP430 Workshop - Timers 6 - 41

(Extra Credit) Lab 6c – Timer using Up Mode

8. Why is better to toggle the LED directly from the timer, as opposed to using an interrupt (as
we’ve done in the previous lab exercises)?

File Management
1. Copy/Paste the lab_06b_upTimer to lab_06c_timerDirectDriveLed.

a) In Project Explorer, right-click on the lab_06b_upTimer project and select “Copy”.

b) Then, click in an open area of Project Explorer and select paste.

c) Finally, rename the copied project to lab_06c_timerDirectDriveLed.

Note: If you didn’t complete lab_06b_upTimer – or you just want a clean starting solution
– you can import the archived solution for it.

2. Close the previous project: lab_06b_upTimer

3. Delete old, readme file.

 Delete the old readme file and import the new one from:

C:\msp430_workshop\<target>\lab_06c_timerDirectDriveLed

4. Build the project to verify no errors were introduced.

Change the GPIO Setup
Similar to the earlier parts of the lab, we will make the changes discussed in the worksheets.

5. Modify the initGPIO function, defining the appropriate pin to be configured for
peripheral (i.e. timer) functionality.

 Please refer to the Lab6c Worksheet for assistance. (Step 2, Page 6-39).

6 - 42 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Timer using Up Mode

Change the Timer Setup Code
6. Modify the timer configuration function, we are still using ‘Up’ mode, but not using one

of the interrupts anymore.

 Please refer to the Lab Worksheet for assistance. (Step 4, Page 6-40).

7. Add a call to the TIMER_A function that configures CCR2.

 Please refer to the Lab Worksheet for assistance. (Step 6, Page 6-41).

8. Delete or comment out the call to clear the CCR0IFG flag.

 We won’t need this because the timer will drive the LED directly – that is, not interrupt is
required where we need to toggle the GPIO with a function call.

TIMER_A_clearCaptureCompareInterruptFlag(TIMER_A0_BASE,
 TIMER_A_CAPTURECOMPARE_REGISTER_0 //Clear CCR0IFG
);

 Then again, it doesn’t hurt anything if you leave it in the code… so a unused bit gets cleared.

9. Make the minor modification to the timer0_isr() as shown in the worksheet.

 Please refer to the Lab Worksheet for assistance. (Step 7, Page 6-41).

10. Build the code verifying there are no syntax errors; fix any as needed.

MSP430 Workshop - Timers 6 - 43

(Extra Credit) Lab 6c – Timer using Up Mode

Debug/Run
11. Launch the debugger and set three breakpoints inside the two ISR’s.

• When we run the code, the first breakpoint will indicate if we received the CCR0 interrupt.
If we wrote the code properly, we should NOT stop here.

• We should NOT stop at the second breakpoint either. CCR2 was setup to change the
Output Signal, not generate an interrupt.

• We should stop at the 3rd breakpoint. We left the timer configured to break whenever TAR
rolled-over to zero. (That is, whenever TA0IFG is set.)

12. Remove the breakpoints and let the code run. Do both LED’s toggle?

Why doesn’t the Red LED toggle? ___

6 - 44 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Timer using Up Mode

13. Add the jumper wire to your board to connect the timer output to the LED.

a) Remove the jumper (JP8) that connects the Red LED to P1.0.
(We recommend reconnecting it to the top pin of the jumper so that you don’t loose it.)

b) On the ‘F5529 Launchpad, connect P1.3 (fifth pin down, right-side of board,

inside row of pins) to the bottom of the LED jumper (JP8) using the jumper wire.

Ask your instructor
for a jumper wire,

when you need one.

MSP430 Workshop - Timers 6 - 45

(Extra Credit) Lab 6c – Timer using Up Mode

14. Run your code.

 Hopefully both LED’s are not blinking. The Red LED should toggle first, then the Green LED.

Do they both blink at the same rate? __

Why is that? ___

15. Terminate the debugger and go back to your main.c file.

16. Modify one parameter of the function that configures CCR2, changing it to use the
mode:

TIMER_A_OUTPUTMODE_SET_RESET

 Hint, if you haven’t already tried this trick, delete the last part of the parameter and hit

Ctrl_Space:

TIMER_A_OUTPUTMODE_ then hit Control-Space

Eclipse will provide the possible variations. Double-click on one (or select one and hit return)
to enter it into your code.

6 - 46 MSP430 Workshop - Timers

 Chapter 6 Appendix

17. Build and run your code with the new Output Mode setting.

Do they both blink at the same rate? __

 When using the “TIMER_A_OUTPUTMODE_SET_RESET” output mode …

If a compare match (TAR = CCR2) causes the output to be SET (i.e. LED goes ON),
what causes the RESET (LED going OFF)?

 __

 __

You may want to experiment with a few other output mode settings. It can be fun to see them
in action.

18. When done experimenting, close the project.

Chapter 6 Appendix

Lab 6a Worksheet

216 = 64K

ACLK - which is configured for 32KHz / sec

Clock input divide of 1 should work (as we’ll see in next)

MSP430 Workshop - Timers 6 - 47

Chapter 6 Appendix

Lab 6a Worksheet

ACLK

32KHz / sec

32KHz / sec 1 32KHz / sec

32KHz / sec 64K ½ sec

Lab 6a Worksheet

TIMER_A_CLOCKSOURCE_ACLK

TIMER_A_CLOCKSOURCE_DIVIDER_1

TIMER_A_TAIE_INTERRUPT_ENABLE

6 - 48 MSP430 Workshop - Timers

 Chapter 6 Appendix

Lab 6a Worksheet

TIMER_A_clearTimerInterruptFlag

TIMER_A_startCounter

Lab 6a Worksheet

TIMER0_A1_VECTOR

timer0_ISR TA0IV 14

GPIO_toggleOutputOnPin(GPIO_PORT_P4, GPIO_PIN7);

MSP430 Workshop - Timers 6 - 49

Chapter 6 Appendix

Lab 6b Worksheet

0x8000

0xFFFF / 2

Lab 6b Worksheet

TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE

0xFFFF / 2

6 - 50 MSP430 Workshop - Timers

 Chapter 6 Appendix

Lab 6b Worksheet

TIMER_A_clearCaptureCompareInterruptFlag(TIMER_A0_BASE,
TIMER_A_CAPTURECOMPARE_REGISTER_0);

UP
UP

Lab 6b Worksheet

P1.0

TIMER0_A0_VECTOR

GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);

MSP430 Workshop - Timers 6 - 51

Chapter 6 Appendix

Lab 6c Worksheet

P1.3

see photo

PeripheralModuleFunctionOutputPin

1 0

GPIO_PORT_P1 GPIO_PIN3

Lab 6c Worksheet

We changed ‘ENABLE’ to ‘DISABLE’

6 - 52 MSP430 Workshop - Timers

 Chapter 6 Appendix

Lab 6c Worksheet

0x4000

0x8000 / 2 = 0x4000

Lab 6c Worksheet

Compare

TIMER_A_CAPTURECOMPARE_REGISTER_2

0x4000

MSP430 Workshop - Timers 6 - 53

Chapter 6 Appendix

Lab 6c Worksheet
Added _no_operation() – something to breakpoint on

Lab 6c Worksheet

 Lower Power:
When the Timer drives the pin; no need to wake up the CPU. (Either
that, or it leaves the CPU free for other processing.)

 Less Latency:
When the CPU toggles the pin, there is a slight delay that occurs since
the CPU must be interrupted, then go run the ISR.

 More Deterministic:
The delay caused by generating/responding to the interrupt may vary
slightly. This could be due to another interrupt being processed (or a
higher priority interrupt occurring simultaneously). Directly driving the
output removes the variance and makes it easy to “determine” the time
that the output will change!

6 - 54 MSP430 Workshop - Timers

USB Devices

Introduction
The MSP430 makes an ideal USB device: ultra-low power, rich integration of peripherals and it’s
inexpensive. Do you want to make a Human Interface Device product? Maybe a sensor, such as
a barcode reader, that needs to be both low-power (when collecting data), but also capable of
‘dumping’ its data via USB to a computer. Dream big, we’ve got the devices, tools, and software
to help you make them come true.

Learning Objectives

MSP430 Workshop - USB Devices 7 - 1

Introduction

Chapter Topics
USB Devices .. 7-1

Introduction ... 7-1
What is USB? .. 7-3
MSP430's USB Support .. 7-5
How USB Works ... 7-11
Descriptions and Classes .. 7-14
Quick Overview of MSP430’s USB Stack ... 7-19
ABC’s of USB .. 7-21

A. Plan Your System ... 7-21
B. Connect & Enumerate .. 7-22
C. Managing my App & Transferring Data .. 7-24

Final Thoughts .. 7-27
Lab Exercise ... 7-29

7 - 2 MSP430 Workshop - USB Devices

 What is USB?

What is USB?

MSP430 Workshop - USB Devices 7 - 3

What is USB?

USB Standards

MSP430 USB Peripheral Supports
 USB 2.0 standard
 Full speed USB device (12Mbps)
 Device only

Note: Look at TI’s TivaC processors if you need host, device or OTG support

Version Year Speeds Power
Available Notes

USB 1.1 1995 1½ Mbps (Low)
12 Mbps (Full) – Host & Device connectors

USB 2.0 2000
1½ Mbps (Low)
12 Mbps (Full)
480 Mbps (High)

500 mA
• Backward compatible

with USB 1.1
• Added On-the-Go (OTG)

USB 3.0 2008

1½ Mbps (Low)
12 Mbps (Full)

480 Mbps (High)
4.8 Gbps (Super)

900 mA

• Backward USB 2.0
compatibility

• Full-duplex
• Power mgmt features

7 - 4 MSP430 Workshop - USB Devices

 MSP430's USB Support

MSP430's USB Support

MSP430 Devices with USB

Product s Prog
(KB)

RAM
(KB)

16-Bit
Timers

Common
Peripherals ADC Additional

Features

MSP430F663x up to
256

8 to 16

4

WDT, RTC,
DMA(3-6),

MPY32,
Comp_B,
UART, SPI,
I2C, PMM
(BOR, SVS,
SVM, LDO)

12-bit

USB, EDI, DAC12,
LCD, Backup

battery switch

MSP430F563x up to
256

USB, EDI, DAC12,
Backup battery

switch
MSP430F552x 32 - 128 6 to 8

USB, 25 MIPS
MSP430F551x 32 - 128 4 to 8 ?

10-BitMSP430F550x 8 - 32 4

 Portfolio of devices with more (or less) peripheral/memory integration;
this provides basis for different price points

 USB Launchpad uses the ‘F5529 … found in the middle of the pack

MSP430 Workshop - USB Devices 7 - 5

MSP430's USB Support

7 - 6 MSP430 Workshop - USB Devices

 MSP430's USB Support

MSP430 Workshop - USB Devices 7 - 7

MSP430's USB Support

MSP430 USB API Features
1. A finished API

– Not just example code
– Increases chance of USB success, because the user doesn’t need to modify

the USB plumbing; speeds development
– An API approach makes USB more accessible to USB non-experts

2. Small memory footprint
– Single-interface CDC or HID: 5K flash / 400 bytes RAM
– MSC (not including file system / storage volume): 8K flash / 1.4K RAM

3. Can use either DMA or CPU to move data
– Simply turn the DMA feature ‘on’ and select the channel

4. Limited resource usage
– Only uses the USB module, some memory, & a DMA ch; no other resources

5. RTOS-friendly
– TI will soon provides using it with TI-RTOS

7 - 8 MSP430 Workshop - USB Devices

 MSP430's USB Support

MSP430 USB API Features, cont.
6. Responsiveness

– No risky blocking calls stuck waiting for the host
– Data can be transferred “in the background”, for increased system

responsiveness and efficiency, even with a busy host/bus

7. Easy data interface (CDC and HID-Datapipe)
– The function calls are similar to interfacing with a simple COM port
– You can send/receive data of any size, with a single call -- no packetization

required
– Deep USB knowledge not required

8. Flexibility (MSC)
– Compatible with any file system software. (We provide the open-source

“FatFs” as an example.)
– Easy multiple-LUN support; just select the number of LUNs
– No RTOS required – but can be ported to one

MSP430 Workshop - USB Devices 7 - 9

MSP430's USB Support

Suggested Reading

 “Starting a USB Design Using MSP430™ MCUs” App Note by Keith Quiring
(Sept 2013) (Search ti.com for SLAA457.pdf)

 “Programmers_Guide_MSP430_USB_API” by Texas Instruments (Aug 2013)
Found in the MSP430 USB Developers Package

 “USB Complete: The Developer's Guide” by Jan Axelson (ISBN 1931448086)
http://www.amazon.com/USB-Complete-Developers-Guide-Guides/dp/1931448086

7 - 10 MSP430 Workshop - USB Devices

 How USB Works

How USB Works
Logical Connection Between Host & Device

Device

Master

Slave

 Communication takes place
between the host and device

 Host controls ALL communication
 Device is addressable

(assigned by host)

Host

MSP430 Supports 8 Ins/Outs

Device

Pipes

 Host/Device communication occurs
thru a Pipe

 The host sets up pipe connections
to one or more device “endpoints”

 An endpoint is essentially a buffer
in the device

 Pipes/Endpoints are unidirectional
 In/Out is from the Host perspective
 Endpoints are enumerated (from 0)
 Endpoint 0 is special case – all USB

devices must have EP0, which is
used for setup and control

 MSP430 Endpoints:
 16 endpoints (8 in, 8 out)
 Each has 64 byte buffer

00
Endpoints …

11 77

Host

InOut

MSP430 Workshop - USB Devices 7 - 11

How USB Works

USB Transfers

Device

Pipes

 Pipe’s define a Transfer Type as
well as the endpoint and direction

 USB supports 4 Transfer Types:
 Control Setup/Command/Status
 Interrupt Small size, Periodic

Guaranteed latency
Guaranteed bandwidth

 Bulk Large size allowed
No time guarantees

 Isochronous Guar. time, Periodic
No error handling
Not supported on ‘430

 Contrary to the name, ‘interrupt’
transfers are not initiated by device

00
Endpoints …

11 77

Host

InOut

7 - 12 MSP430 Workshop - USB Devices

 How USB Works

MSP430 Workshop - USB Devices 7 - 13

Descriptions and Classes

Descriptions and Classes

Device (example shown here is ‘composite’ device with multiple I/F’s)

What Do You Want to Transmit?
 USB devices describe one (or more) Interfaces to transmit information
 Typical interface examples:

 Creating a Virtual COM port requires 2-in and 1-out endpoints
 Human interface devices (mice/keyboards) require 1-in/1-out
 Memory devices also require 1-in/1-out

EP0 EP0 …EP1 EP1 EP7 EP7

Setup &
Control

EP2

Virtual
COM Port

EP6 EP6

Mouse Keyboard

Device Descriptors
Configuration

 Interface(s)
 Endpoint(s)

Device (example shown here is ‘composite’ device with multiple I/F’s)

What Do You Want to Transmit?
 USB devices describe one (or more) Interfaces to transmit information
 Typical interface examples:

 Creating a Virtual COM port requires 2-in and 1-out endpoints
 Human interface devices (mice/keyboards) require 1-in/1-out
 Memory devices also require 1-in/1-out

 USB devices must describe their themselves using device descriptors
 Host must match descriptors (at run time) with host-side device drivers
 MSP430 supports a single configuration with

one or more interfaces

EP0 EP0 …EP1 EP1 EP7 EP7

Setup &
Control

EP2

Virtual
COM Port

EP6 EP6

Mouse Keyboard

Device Descriptors
 Configuration

 Interface(s)
 Endpoint(s)

7 - 14 MSP430 Workshop - USB Devices

 Descriptions and Classes

USB Classes

Device

EP0 EP0 …EP1 EP1 EP7 EP7

Setup &
Control

EP2

Virtual
COM Port

EP6 EP6

Mouse Keyboard

USB defines a number of device classes
 Human Interface Device (HID)
 Communications Device (CDC)
 Memory Storage Class (MSC)
 Printer
 Audio
 Etc.

MSP430 Supports 4 classes
 HID, CDC, MSC (and PHDC)
 Simplifies specifying interfaces
 Host O/S can easily match its

drivers to known device classes
 Descriptors take form of:

 Device: data-structures
 Host: .INF file

“CDC” “HID” “HID”

MSP430 Workshop - USB Devices 7 - 15

Descriptions and Classes

7 - 16 MSP430 Workshop - USB Devices

 Descriptions and Classes

MSP430 Workshop - USB Devices 7 - 17

Descriptions and Classes

Comparison/Summary of Classes
CDC HID MSC

Host Interface COM Port HID device Storage Volume

Host Driver
Required

No
(but .inf file required) No No

Host Loading User
Intervention Silent Silent

Bandwidth “Hundreds of KB/sec” 62KB/sec “Hundreds of KB/sec”

Code Size 5K 5K 9K
(12-15K w/FS & vol)

Endpoints 2 in
1 out

1 in
1 out

1 in
1 out

Transfer Type Bulk Interrupt Bulk (BOT)

Advantages
 Familiar to user
 Bulk transport
 Common host apps

 Silent loading
 Interrupt xfers
 Mouse/Keybd

 Familiar to user
 Allows storage of

data using filesys

7 - 18 MSP430 Workshop - USB Devices

 Quick Overview of MSP430’s USB Stack

Quick Overview of MSP430’s USB Stack

MSP430 Workshop - USB Devices 7 - 19

Quick Overview of MSP430’s USB Stack

7 - 20 MSP430 Workshop - USB Devices

 ABC’s of USB

ABC’s of USB

A. Plan Your System

Plan Your System
1. What are your requirements?

 How much data needs to transfer … and how fast?
 Is guaranteed bandwidth & timing important?
 Are you connecting to Window, Mac, Linux (or all)
 What power will be needed?

2. From the requirements, decide which class
(or classes) will be needed

3. Import EmptyUsbProject (Optional)
4. Run Descriptor Tool

 Provides help & feedback in creating device description
 Generates device descriptor files & INF files
 If you followed step 3, it automatically drops generated

files into the project

MSP430 Workshop - USB Devices 7 - 21

ABC’s of USB

B. Connect & Enumerate

Six States of Connection
1. USB is disconnected

→ User plugs in device
& VBUS (power) appears

2. USB Connected, not enumerated
 handleVbusOnEvent()

→ App calls USB_Setup(), which
pulls PUR up

3. Enumeration in Progress

→ Enumeration succeeds

4. Device is enumerated, bus active
 handleEnumCompleteEvent()

→ Host Suspends device/bus

5. Device is enum, but suspended
 handleSuspendEvent()

ST_PHYS_
DISCONNECTED

ST_PHYS_
CONNECTED_

NOENUM

ST_ENUM_IN_
PROGRESS

ST_ENUM_
ACTIVE

ST_ENUM_
SUSPENDED

ST_PHYS_
CONNECTED_

NOENUM_SUSP

7 - 22 MSP430 Workshop - USB Devices

 ABC’s of USB

MSP430 Workshop - USB Devices 7 - 23

ABC’s of USB

C. Managing my App & Transferring Data

 Main Loop USB Framework
while(1){

switch(USB_connectionState())
{

case ST_USB_DISCONNECTED:

break;
case ST_ENUM_ACTIVE:

break;
case ST_ENUM_SUSPENDED:

break;
case ST_ENUM_IN_PROGRESS:

break;
case ST_USB_CONNECTED_NO_ENUM:

break;
case ST_NOENUM_SUSPENDED:

break;
case ST_ERROR:

break;
default:;

}
}

 Execution within main loop “forks”
depending on the state of USB,
creating alternate main loops
Thus, USB state becomes a central
part of managing software flow

 This framework excels when the
device behaves differently in each
state!

 For cases where system only cares
about one state, connectionState()
fxn could be called from IF{} stmt

 Most common non-RTOS solution –
it’s used in many of the USB
examples provided with the API

These three states are where
the application spends most
of its time

7 - 24 MSP430 Workshop - USB Devices

 ABC’s of USB

MSP430 Workshop - USB Devices 7 - 25

ABC’s of USB

7 - 26 MSP430 Workshop - USB Devices

 Final Thoughts

Final Thoughts

MSP430 Workshop - USB Devices 7 - 27

Final Thoughts

7 - 28 MSP430 Workshop - USB Devices

 Lab 7 – Using USB Devices

Lab 7 – Using USB Devices

Lab 7 – USB Devices
 Lab 7a – HID LED On/Off Toggle

 Set LED on/off/blinking from Windows PC
via the USB serial port using the HID class

 Uses HID host demo program supplied with
USB Developers Package

 Lab 7b – CDC LED On/Off Toggle
 Similar to Lab7a, but using CDC class to

transfer the data
 Host-side uses CCS serial Terminal (or Putty)

 Lab 7c – Send Short Message via CDC
 Example sends a short message (i.e. time)

to host via CDC class
 Host-side uses CCS serial Terminal (or Putty)

 Lab 7d – Send Pushbutton State to Host
 Starts by importing the Empty USB Example
 You add code to read the state of the

pushbutton and send it to the host (via CDC)
 Read data on host with serial terminal

MSP430 Workshop - USB Devices 7 - 29

Lab 7 – Using USB Devices

Lab Topics
USB Devices .. 7-27

Lab 7 – Using USB Devices .. 7-29
Lab 7a – LED On/Off HID Example .. 7-31
Lab 7b – LED On/Off CDC Example ... 7-34

Play with the demo .. 7-37
Lab 7c – CDC ‘Simple Send’ Example ... 7-39
Lab 7d – Creating a CDC Push Button App.. 7-41

Import Empty USB Project Steps .. 7-41
Use the Descriptor Tool .. 7-42
Add ‘Custom’ Code to Project ... 7-44

7 - 30 MSP430 Workshop - USB Devices

 Lab 7a – LED On/Off HID Example

Lab 7a – LED On/Off HID Example
The MSP430 USB Developers Package contains an example which changes the state of an LED
based on string commands sent from the USB host.

1. Import the following example into your workspace using TI Resource Explorer.

Help → Welcome to CCS

HID → Command-Line Interface with LED On/Off/Flash

2. Build the project.

3. Launch the debugger and wait for the program to load to flash; then start the program
running.

 At this point, the MSP430 should start running the USB application. You may see Windows
enumerate the USB device (in this case, your Launchpad); this usually appears as a popup
message from the system tray saying that a USB device (“USB input device”) was
enumerated.

MSP430 Workshop - USB Devices 7 - 31

Lab 7a – LED On/Off HID Example

4. Open the USB HID Demo program.

 TI provides a simple communications utility which can communicate with a USB device
implementing the HID-datapipe class. Essentially, this utility allows us to communicate with
devices much like a serial terminal lets us talk with CDC (comm port) devices.

 When the program opens, it will look like this:

 We’ll get back to this program in a minute. For now, return to CCS so that we can run the

demo code.

5. Switch back to the USB HID Demo application.
 With the USB program running on the Launchpad, let’s connect to it and send it commands.

6. Connect to the USB application.

 Click the button that tells the HID app to find the USB device with the provided
Vendor/Product IDs.

7 - 32 MSP430 Workshop - USB Devices

 Lab 7a – LED On/Off HID Example

 The app should now show “Connected” …
as well as show connected in the log below …

7. Play with the application.

 After getting the device and Windows app running,
what does it do? There are 4 commands you can use.

Enter a command and hit Send

8. In the HID USB application, disconnect from the
USB device; then close the application.

9. Switch back to CCS and Terminate the debugger
and close the project.

HID Commands

• LED ON!
• LED OFF!
• LED TOGGLE – SLOW!
• LED TOGGLE – FAST!

Don’t forget to use the “!”. The app uses
this as an end-of-string character.

Along with the LED changing, you will see
the command repeated back to the log.

MSP430 Workshop - USB Devices 7 - 33

Lab 7b – LED On/Off CDC Example

Lab 7b – LED On/Off CDC Example
Our next program is another example from the MSP430 USB Developers Package. This program
is a near duplicate of the previous lab – that is, it changes the state of an LED based on string
commands sent from the USB host. In this example, though, the string commands are sent using
the CDC class (versus the HID-datapipe class).

The advantage of the CDC class is that it can communicate with just about any Windows serial
terminal application. The disadvantage, as you might remember from the discussion, is that
Windows does not automatically load CDC based drivers – whereas Windows did this for us
when using an HID class driver.

10. Import the CDC version of the LED On/Off/Flash project.

11. Build the project and launch the debugger.

12. Run the program.

 The first time you run the program, Windows may not be able to enumerate the USB CDC
driver. You might see an error such as this pop up.

Why does this error occur? ___

7 - 34 MSP430 Workshop - USB Devices

 Lab 7b – LED On/Off CDC Example

13. Open the Windows Device Manager.

 For Windows 7, the easiest way is to start the device manager is to type “Device” into the
Start menu:

In most versions of Windows, such as Windows XP, you can also run the following program from
a command line to start the Device Manager:

devmgmt.msc

On Windows XP, you can quickly run the command line from the Start Menu:

Start Menu → Run

 You should find the a USB driver with a problem:

MSP430 Workshop - USB Devices 7 - 35

Lab 7b – LED On/Off CDC Example

14. Update the MSP430-USB Example driver.

 For Windows 7, the steps include:

Right-click on the driver → Update Driver Software…

Click Browse my computer for driver software

 Select the following (or wherever you installed the USB Developers Package)

C:\TI\MSP430\MSP430USBDEVELOPERSPACKAGE_4_00_02\MSP430_USB_SOFTWA
RE\MSP430_USB_API\EXAMPLES\CDC_VIRTUALCOMPORT\C1_LEDONOFF

During the installation, the following dialog may appear. If so, choose to Install the driver.

When complete you should see:

7 - 36 MSP430 Workshop - USB Devices

 Lab 7b – LED On/Off CDC Example

Note: The steps to install the USB CDC driver are also documented in the:

 Examples_Guide_MSP430_USB.pdf
found in the documentation directory of the USB Developers Package.

15. In the Device Manager, write down the COM port associated with our USB driver:

What is your COM port = ___

Hint: When done, we suggest you minimize the Device Manager; thus, leaving it open in the
background. It’s quite possible you may need to check the drivers later on during these
lab exercises.

Play with the demo
At this point, we should have:
• The USB device application running on the MSP430

• The appropriate Windows CDC driver loaded

Before we can communicate with the device, though, we also need to open a serial terminal.

16. Open your favorite serial terminal and connect to the MSP430.

 Putty and Tera Term are common favorites, but we’ll provide directions for using the Terminal
built into CCS.

a) Open the Terminal window.

Window → Show View → Other…

Looking at our computer, we would
need to use COM32

MSP430 Workshop - USB Devices 7 - 37

Lab 7b – LED On/Off CDC Example

b) Configure the terminal settings:

Open the Terminal settings and use the COM port
you wrote down in the previous step, then hit OK.

The Terminal should then show as “CONNECTED”.

If the terminal does not connect, then check:
− Is the MSP430 USB app running?

− Does the USB device show up in the Device
Manager?

− Did Windows load the driver (i.e. does the Device
Manager show a problem with the device)?

17. When connected, try turning on/off/toggling the LED.

18. When done experimenting…
• Stop the terminal (hit red disconnect button).

• Terminate the debugger.

• Close the project.

CDC Commands

• LED ON
• LED OFF
• LED TOGGLE – SLOW
• LED TOGGLE – FAST

Type one of these strings and then hit the
<Enter> key.

Along with the LED changing, you will see
the command repeated back to the term.

7 - 38 MSP430 Workshop - USB Devices

 Lab 7c – CDC ‘Simple Send’ Example

Lab 7c – CDC ‘Simple Send’ Example
Let’s try one more simple application example before we build our own. This next example simply
sends the time (from MSP430’s Real Time Clock) to a serial terminal.

19. Similar to our previous two examples, import the “Simple Sending of Data” project.

20. Build the project and launch the debugger.

21. Start the program.

22. Wait for the USB device to enumerate.

 If you’re not sure that Windows enumerated the device, check the Device Manager. If it does
not enumerate, try Terminating the debugger, unplugging the Launchpad, then plugging it
back into another USB port on your computer.

23. Once enumerated, start the Terminal again (by hitting the Green Connection button).
 You should see the time printed (repeatedly) to the Terminal.

MSP430 Workshop - USB Devices 7 - 39

Lab 7c – CDC ‘Simple Send’ Example

24. Once you are done watch time go by: disconnect the Terminal; Terminate the
debugger (if you didn’t do it in the last step).

25. (Optional) Review the code in this example. Here’s a bit of the code from main.c:
VOID main(VOID)
{
 WDT_A_hold(WDT_A_BASE); //Stop watchdog timer

 // Minimum Vcore required for the USB API is PMM_CORE_LEVEL_2
 PMM_setVCore(PMM_BASE, PMM_CORE_LEVEL_2);

 initPorts(); // Config GPIOS for low-power (output low)
 initClocks(8000000); // MCLK=SMCLK=FLL=8MHz; ACLK=REFO=32kHz
 USB_setup(TRUE,TRUE); // Init USB; if a host is present, connect
 initRTC(); // Start the real-time clock

 __enable_interrupt(); // Enable interrupts globally

 while (1)
 {
 // Enter LPM0, which keeps the DCO/FLL active but shuts off the
 // CPU. For USB, you can't go below LPM0!
 __bis_SR_register(LPM0_bits + GIE);

 // If USB is present, send time to host. Flag set every sec.
 if (bSendTimeToHost)
 {
 bSendTimeToHost = FALSE;
 convertTimeBinToASCII(timeStr);

 // This function begins the USB send operation, and immediately
 // returns, while the sending happens in the background.
 // Send timeStr, 9 bytes, to intf #0 (which is enumerated as a
 // COM port). 1000 retries. (Retries will be attempted if the
 // previous send hasn't completed yet). If the bus isn't present,
 // it simply returns and does nothing.
 if (cdcSendDataInBackground(timeStr, 9, CDC0_INTFNUM, 1000))
 {
 _NOP(); // If it fails, it'll end up here. Could happen if
 // the cable was detached after the connectionState()
 } // check, or if somehow the retries failed
 }
 } //while(1)
} //main()

// Convert the binary globals hour/min/sec into a string, of format "hr:mn:sc"
// Assumes str is an nine-byte string.
VOID convertTimeBinToASCII(BYTE* str)
{
 BYTE hourStr[2], minStr[2], secStr[2];

 convertTwoDigBinToASCII(hour, hourStr);
 convertTwoDigBinToASCII(min, minStr);
 convertTwoDigBinToASCII(sec, secStr);

 str[0] = hourStr[0];
 str[1] = hourStr[1];
 str[2] = ':';
 str[3] = minStr[0];
 str[4] = minStr[1];
 str[5] = ':';
 str[6] = secStr[0];
 str[7] = secStr[1];
 str[8] = '\n';
}

7 - 40 MSP430 Workshop - USB Devices

 Lab 7d – Creating a CDC Push Button App

Lab 7d – Creating a CDC Push Button App
We have experimented with three example USB applications. It’s finally time to build one from
“scratch”. Well, not really from scratch, since we can start with the “Empty USB Example”.

The goal of our application is to send the state of the Launchpad button to a virtual serial (CDC)
comm port in Windows. Thus, we’ll use a CDC class driver. This application will borrow from a
number of programs we’ve already written:

GPIO – We will read the push button and light the LED when it is pushed. Also, we’ll send
“DOWN” when it’s down and “UP” when it’s up.

Timer – We’ll use a timer to generate an interrupt every second. In the Timer ISR we’ll set a flag.
When the flag is TRUE, we’ll read the button and send the proper string to the host.

CDC Simple Send Example – we’ll borrow a bit of code from the CDC example we just ran to
‘package’ up our string and send it via USB to the host.

Finally, we’re going to start by following the first 3 steps provided in TI Resource Explorer for the
Empty USB Example.

Import Empty USB Project Steps
1. Import the Empty USB Project.

 As it states in the Resource Explorer, DO NOT RENAME the project (yet).

MSP430 Workshop - USB Devices 7 - 41

Lab 7d – Creating a CDC Push Button App

Use the Descriptor Tool
2. Launch the Descriptor Tool.

Just as the Resource Explorer directs us, launch the Descriptor Tool. The easiest way
to do this is to click the link as shown above.

3. Generate descriptor files using the Descriptor Tool.

We will take a quick look at the organization levels in the tool. In most cases, we will use the
tools defaults.

a) MSP430 level … use the defaults.

b) USB Device

We suggest changing the Product String – easier to see that it is different than other
examples. Also, we recommend changing the PID (we picked ‘307’ arbitrarily). For a real
design, you would usually need to purchase the VID/PID (or obtain a free PID from TI).

7 - 42 MSP430 Workshop - USB Devices

 Lab 7d – Creating a CDC Push Button App

c) Configuration

Once again, we chose to vary the string so that it would be a little bit less generic.

d) Add CDC (Virtual COM Port)

Once again, we chose to vary the string so that it would be a little bit less generic.

e) Click the button to generate the descriptor files.

Notice they get written to your empty project. (This is the reason we were asked not to
change the name until after we had used the Descriptor Tool.)

MSP430 Workshop - USB Devices 7 - 43

Lab 7d – Creating a CDC Push Button App

f) Save the Descriptor Tool settings.

While not required, this is handy if you want to open the tool and view the settings at
some later point in time. Notice that ‘Save’ puts the resulting .dat file into the same folder
as our descriptor files.

Save to your emptyProject USB_config folder. This is a pretty good place for it, since this
is where all of the descriptor files it generates are placed. For example:

C:\msp430_workshop\<target>\workspace\emptyUsbProject\USB_config\

g) You can close the Descriptor Tool.

4. Rename the project to lab_07d_usb.

 As you can see, the reason they didn’t want us to rename the project before now was that the
descriptor tool generates files to the empty project.

5. Build, just to make sure we’re starting off with a ‘clean’ project.

Add ‘Custom’ Code to Project
6. Copy myTimer.c and myTimer.h (and the readme file) to the project folder.

 We’ve already written the timer routine for you. (Look back to our Timer chapter if you want to
know the details of how this code was developed.)

Right-click the project → Add Files…

 Choose the three files from the location:

C:\msp430_workshop\<target>\lab_07d_usb\

7. Open main.c and add a #include for the myTimer.h.

 We suggest doing this somewhere below #include “driverlib.h”.

7 - 44 MSP430 Workshop - USB Devices

 Lab 7d – Creating a CDC Push Button App

8. Add global variables.
char pbStr[5] = ""; // Stores the string to send
volatile unsigned short usiButton1 = 0; // Stores the button state

9. Add additional setup code.
 GPIO_setAsOutputPin(GPIO_PORT_P4, GPIO_PIN7);
 GPIO_setAsInputPinWithPullUpresistor(GPIO_PORT_P2, GPIO_PIN1);
 initTimers();

10. Add code to ST_ENUM_ACTIVE state.
 // If USB is present, sent the button state to host. Flag set every sec
 if (bSend)
 {
 bSend = FALSE;

 usiButton1 = GPIO_getInputPinValue (GPIO_PORT_P2, GPIO_PIN1);

 if (usiButton1 == GPIO_INPUT_PIN_LOW) {
 // If button is down, turn on LED
 GPIO_setOutputHighOnPin(GPIO_PORT_P4, GPIO_PIN7);
 pbStr[0] = 'D';
 pbStr[1] = 'O';
 pbStr[2] = 'W';
 pbStr[3] = 'N';
 pbStr[4] = '\n';
 }
 else {
 // If button is up, turn off LED
 GPIO_setOutputLowOnPin(GPIO_PORT_P4, GPIO_PIN7);
 pbStr[0] = 'U';
 pbStr[1] = 'P';
 pbStr[2] = ' ';
 pbStr[3] = ' ';
 pbStr[4] = '\n';
 }

 // This function begins the USB send operation, and immediately
 // returns, while the sending happens in the background.
 // Send pbStr, 5 bytes, to intf #0 (which is enumerated as a
 // COM port). 1000 retries. (Retries will be attempted if the
 // previous send hasn't completed yet). If the bus isn't present,
 // it simply returns and does nothing.
 if (cdcSendDataInBackground((BYTE*)pbStr, 5, CDC0_INTFNUM, 1000))
 {
 _NOP(); // If it fails, it'll end up here. Could happen if
 // the cable was detached after the connectionState()
 } // check, or if somehow the retries failed
 }

11. Add #include "USB_app/usbConstructs.h".

 We need to use this header file since it supports the cdcSendDataInBackground() function
we are using to send data via USB.

12. Build and launch debugger. Then run the program.

MSP430 Workshop - USB Devices 7 - 45

Lab 7d – Creating a CDC Push Button App

13. Make sure the Windows driver installs.

 As discussed during the presentation, the Windows needs help finding the .INF file for CDC
driver interfaces.

Open Windows Device Manager

 When the USB driver shows up, if it’s the first time you have connected the ‘device’, you will
need to help Windows load the driver by pointing Windows towards the .inf file created by the
Descriptor Tool. (It should have been placed in the USB_config folder inside your project.)

Which Com port did Windows associate with it? ___________________________________

14. Verify your program works

 Once the the driver is loaded and working properly, open your Terminal, making sure to use
the proper com port.

 At this point:
• The Red LED should be blinking on/off.

• The Green LED should light when the button is pushed …

• … and the state of the button should be written to the serial Terminal.

Note: Ocassionally, you may run into a Windows driver error at this point. It’s evidenced by:

Red LED is flashing and Green LED lights when button is pushed – which means the
application seems to be working fine … but, no status shows up in Windows serial
terminal.

You may also notice that if you try starting the terminal that you get the error msg:
 “COM xx is already in use”.

This is most likely due to Windows getting confused with our use (and reuse) of USB
devices – especially if we have used the sameUSB VID/PID for multiple interfaces. In
other words, Windows thinks it has the right driver loaded … but it may end up having an
old match.

This can be solved by deleting the driver; removing the USB (for the Launchpad); waiting
for Windows to register the device is missing; then reinserting the device and helping
Windows load the driver again. (While that usually works, every once-in-a-while we’ve needed
to reboot our computer, as well.)

7 - 46 MSP430 Workshop - USB Devices

MSP430 Workshop - Using Energia (Arduino) 8 - 1

Using Energia (Arduino)

Introduction
This chapter of the MSP430 workshop explores
Energia, the Arduino port for the Texas Instruments
Launchpad kits.

After a quick definition and history of Arduino and
Energia, we provide a quick introduction to Wiring – the
language/library used by Arduino & Energia.

Most of the learning comes from using the Launchpad
board along with the Energia IDE to light LED’s, read
switches and communicate with your PC via the serial
connection.

Learning Objectives, Requirements, Prereq’s

Prerequisites & Objectives
 Prerequisites

 Basic knowledge of C language
 Basic understanding of using a C library and header files
 This chapter doesn’t explain clock, interrupt, and GPIO features in detail,

this is left to the other chapters in the MSP430 workshop

 Requirements - Tools and Software
 Hardware

 Windows (XP, 7, 8) PC with available USB port
 MSP430F5529 Launchpad

 Software
 Energia Download
 Launchpad drivers
 (Optional) MSP430ware / Driverlib

 Objectives
 Define ‘Arduino’ and describe what is was created for
 Define ‘Energia’ and explain what it is ‘forked’ from
 Install Energia, open and run included example sketches
 Use serial communication between the board & PC
 Add an external interrupt to an Energia sketch
 Modify CPU registers from an Energia sketch

Already installed, if you
have installed CCSv5.x

What is Arduino

8 - 2 MSP430 Workshop - Using Energia (Arduino)

Chapter Topics

Using Energia (Arduino) ... 8-1

What is Arduino ... 8-3

Energia .. 8-4

Programming Energia (and Arduino) .. 8-7
Programming with ‘Wiring’ .. 8-7
Wiring Language/Library Reference ... 8-8
How Does ‘Wiring’ Compare? ... 8-9
Hardware pinout .. 8-10

Energia IDE ... 8-12
Examples, Lots of Examples ... 8-13

Energia/Arduino References ... 8-14

Lab 8 ... 8-15
Installing Energia ... 8-16

Installing the LaunchPad drivers ... 8-16
Installing Energia ... 8-16
Starting and Configuring Energia .. 8-17

Lab 8a – Blink ... 8-20
Your First Sketch ... 8-20
Modifying Blink .. 8-23

Lab 8b – Pushing Your button .. 8-24
Examine the code ... 8-24
Reverse button/LED action ... 8-25

Lab 8c – Serial Communication (and Debugging) .. 8-26
What if the Serial Monitor is blank? (’G2553 Launchpad Configuration) 8-27
Blink with Serial Communication ... 8-28
Another Pushbutton/Serial Example ... 8-28

Lab 8d – Using Interrupts .. 8-29
Adding an Interrupt .. 8-29

Lab 8e – Using TIMER_A ... 8-31

Appendix – Looking ‘Under the Hood’ .. 8-32
Where, oh where, is Main ... 8-32
Two ways to change the MSP430 clock source ... 8-34
Sidebar – initClocks() .. 8-35
Sidebar Cont’d - Where is F_CPU defined? .. 8-36

Lab Debrief .. 8-37

 What is Arduino

MSP430 Workshop - Using Energia (Arduino) 8 - 3

What is Arduino
Physical Computing … Hardware Hacking … a couple of the names given to Arduino.

 Our home computers are great at communicating with other computers and (sometimes) with
us, but they have no idea what is going on in the world around them. Arduino, on the other
hand, is made to be hooked up to sensors which feed it physical information.1 These can be

as simple as pressing a button, or as complex as using ultrasound to detect distance, or
maybe having your garage door tweet every time it’s opened.

 So the Arduino is essentially a simple computer with eyes and ears. Why is it so popular?

Because the hardware is cheap, it’s easy to program and there is a huge web community,

which means that beginners can find help and download myriad programs.1

What is Arduino?
Hardware
Open source C boards with pins and I/O

 Physical Computing
Software that interacts with the real world

 Open-source ecosystem
Tools, Software, Hardware (Creative Commons)

 Popular solution for…
Open-source programmers, hobbyists,
rapid prototyping

Tools
IDE: write, compile, upload

Code
‘Wiring’ Language includes:
 C/C++ software
 Arduino library of functions

 The idea is to write a few lines of code, connect a few electronic components to the Wiring
hardware and observe how a light turns on when person approaches it, write a few more

lines, add another sensor, and see how this light changes when the illumination level in a
room decreases. This process is called sketching with hardware; explore lots of ideas very
quickly, select the more interesting ones, refine and produce prototypes in an iterative

process.2

In the end, Arudino is basically an ecosystem for easy, hardware-oriented, real-world
programming. It combines the Tools, Software and Hardware for talking to the world.

1 http://www.wired.com/gadgetlab/2008/04/just-what-is-an/
2 http://en.wikipedia.org/wiki/Wiring_%28development_platform%29

Energia

8 - 4 MSP430 Workshop - Using Energia (Arduino)

Energia
/enerˈɡia/ ; e‧ner‧gi‧a

Energia (Russian: Энергия, Energiya, "Energy") was a Soviet rocket that was designed by NPO
Energia to serve as a heavy-lift expendable launch system as well as a booster for the Buran
spacecraft.3

Energia – Arduino for TI

 Energia is a fork of Arduino for
Texas Instruments MicroControllers
 Software – Wiring programming language
 Tools – Energia IDE

 Hardware (supported MCU’s)
 MSP430 LaunchPad (‘G2553)
 MSP430 FRAM “FraunchPad” (‘FR5739)
 MSP430 USB Launchpad (‘F5529)
 Stellaris/Tiva Cortex-M4F Launchpad

 Dev’l Project – energia.github.com/Energia/

 Support – forum.43oh.com

Energia was a
Soviet Rocket

Energia is a rapid electronics prototyping platform for the Texas Instruments msp430 LaunchPad.
Energia is based on Wiring and Arduino and uses the Processing IDE. It is a fork of the Arduino
ecosystem, but centered around the popular TI microntrollers: MSP430 and ARM Cortex-M4F.

Similar to it’s predecessor, it an open-sourced project. It’s development is community supported,
being hosted on github.com.

3 http://en.wikipedia.org/wiki/Energia

http://en.wikipedia.org/wiki/Russian_language
http://en.wikipedia.org/wiki/Soviet_Union
http://en.wikipedia.org/wiki/NPO_Energia
http://en.wikipedia.org/wiki/NPO_Energia
http://en.wikipedia.org/wiki/Expendable_launch_system
http://en.wikipedia.org/wiki/Buran_%28spacecraft%29
http://en.wikipedia.org/wiki/Buran_%28spacecraft%29
http://www.github.com/

 Energia

MSP430 Workshop - Using Energia (Arduino) 8 - 5

Sidebar – Energia Lineage

Energia Lineage

DBN
(1990’s)

Processing
(2001)

Wiring
(2003)

• Language
• Design By Numbers

programming language
• Teaching experiment

for non-programmers
• MIT (USA)

• Language, Tools
• Processing language

builds on Java, but with
simplified syntax

• Sketchbook mini-IDE
• For non-programmers
• Former MIT’ers (USA)

• Language, Tools, H/W
• Developed for single-

chipController
• Prototypingplatformfor

quick iterative design
• C++ plus Wiring library
• Java-based IDE
• Columbia

Arduino
(2005)

Fritzing
(2009)

• EDA Tools
• C++ w/Qt components

• Language, Tools, H/W
• Teaching, hobbyist,

Rapid prototyping
• C/C++ plus Wiring library
• Java-based IDE
• AVR C
• Ivrea (Italy)

Arduino and Energia
 Wiring-based language (syntax and libraries), similar

to C++ with some slight simplifications and mod’s
 Sketchbook (Processing-based) integrated

development environment

Energia
(2012)

• Language, Tools, H/W
• Direct fork of Arduino
• TI C Launchpad boards
• California (USA)

Design By Numbers (or DBN programming language) was an influential experiment in teaching
programming initiated at the MIT Media Lab during the 1990s. Led by John Maeda and his
students they created software aimed at allowing designers, artists and other non-programmers
to easily start computer programming. The software itself could be run in a browser and published
alongside the software was a book and courseware.4

Processing (2001) - One of the stated aims of Processing is to act as a tool to get non-
programmers started with programming, through the instant gratification of visual feedback.5

 This process is called sketching with hardware; explore lots of ideas very quickly, select the
more interesting ones, refine and produce prototypes in an iterative process.

Wiring (2003)6 - The Wiring IDE is a cross-platform application written in Java which is derived
from the IDE made for the Processing programming language. It is designed to introduce
programming and sketching with electronics to artists and designers. It includes a code editor …
capable of compiling and uploading programs to the board with a single click.

 The Wiring IDE comes with a C /C++ library called "Wiring", which makes common
input/output operations much easier. Wiring programs are written in C/C++, although users
only need to define two functions to make a runnable program: setup() and loop().

 When the user clicks the "Upload to Wiring hardware" button in the IDE, a copy of the code is
written to a temporary file with an extra include header at the top and a very simple main()
function at the bottom, to make it a valid C++ program.

4 http://en.wikipedia.org/wiki/Design_By_Numbers_%28programming_language%29
5 http://en.wikipedia.org/wiki/Processing_(programming_language)
6 http://en.wikipedia.org/wiki/Wiring_%28development_platform%29

Energia

8 - 6 MSP430 Workshop - Using Energia (Arduino)

Energia Lineage (cont’d)

Arduino7 - In 2005, in Ivrea, Italy, a project was initiated to make a device for controlling student-
built interaction design projects with less expense than with other prototyping systems available
at the time. Founders Massimo Banzi and David Cuartielles named the project after Arduin of
Ivrea, the main historical character of the town.

 The Arduino project is a fork of the open source Wiring platform and is programmed using a
Wiring-based language (syntax and libraries), similar to C++ with some slight simplifications
and modifications, and a Processing-based integrated development environment.

Energia (2012) – As explained in the previous section of this chapter, Energia is a fork of Arduino
which utilizes the Texas Instruments microcontroller Launchpad development boards.

Fritzing (2009)8 - An open-source initiative to support designers, artists, researchers and
hobbyists to take the step from physical prototyping to actual product.

 It’s essentially an Electronic Design Automation software with a low entry barrier, suited for
the needs of designers and artists. It uses the metaphor of the breadboard, so that it is easy
to transfer your hardware sketch to the software. From there it is possible to create PCB
layouts for turning it into a robust PCB yourself or by help of a manufacturer.

7 http://en.wikipedia.org/wiki/Arduino
8 http:// Fritzing.org

 Programming Energia (and Arduino)

MSP430 Workshop - Using Energia (Arduino) 8 - 7

Programming Energia (and Arduino)

Programming with ‘Wiring’

 Arduino programs are called
sketches
From the idea that we’re…

Sketching with hardware
 Sketches require only two

functions to run cyclically:
 setup()
 loop()

 Are C/C++ programs that can
use Arduino’s Wiring library
Library included with IDE

 If necessary, you can access
H/W specific features of C,
but that hurts portability

 Blink is C’s ‘Hello World’ ex.
 ‘Wiring’ makes this simple
 Like most first examples,

it is not optimized

// Most boards have LED and resistor connected
// between pin 14 and ground (pinout on later slide)
#define LED_PIN 14
void setup () {

// enable pin 14 for digital output
pinMode (LED_PIN, OUTPUT);

}
void loop () {

digitalWrite (LED_PIN, HIGH); // turn on LED
delay (1000); // wait one second (1000ms)
digitalWrite (LED_PIN, LOW); // turn off LED
delay (1000); // wait one second

}

Energia / Arduino Programming

Programming in Arduino is relatively easy. Essentially, it is C/C++ programming, but the Wiring
library simplifies many tasks. As an example, we use the Blink sketch (i.e. program) that is one of
examples that is included with Arduino (and Energia). In fact, this example is so ubiquitous that
most engineers think of it as “Hello World” of embedded programming.

How does the ‘Wiring’ library help to make things easier? Let’s examine the Blink code above:

 A sketch only requires two functions:
o setup() – a function run once at the start of a program which can be used to

define initial environment settings
o loop() – a function called repeatedly until the board is powered off

 Reading and Writing pins (i.e. General Purpose Input Output – GPIO) is encapsulated in
three simple functions: one function defines the I/O pin, the other two let you read or write
the pin. In the example above, this allows us to turn on/off the LED connected to a pin on
our microcontroller.

 The delay() function makes it simple to pause program execution for a given number of
microseconds. In fact, in the Energia implementation, the delay() function even utilizes a
timer which allows the processor to go into low power mode while waiting.

 Finally, which not shown here, Arduino/Energia makes using the serial port as easy as
using printf() in standard C programs.

About the only difference between Arduino and Energia programming is that you might see some
hardware specific commands in the sketch. For example, in one of the later lab exercises, you will
see how you can change the clock source for the TI MSP430 microcontroller. Changing clocks is
often done on the MSP430 so that you can balance processing speed against long battery life.

Programming Energia (and Arduino)

8 - 8 MSP430 Workshop - Using Energia (Arduino)

Wiring Language/Library Reference
What commands are available when programming with ‘Wiring’ in Arduino and Energia?

Arduino provides a language reference on their website. This defines the operators, controls, and
functions needed for programming in Arduino (and Energia).9 You will also find a similar HTML
reference available in the Energia installation zip file.

Wiring Library Reference

9 http://arduino.cc/en/Reference/HomePage

http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/HomePage

 Programming Energia (and Arduino)

MSP430 Workshop - Using Energia (Arduino) 8 - 9

How Does ‘Wiring’ Compare?
How does the ‘Wiring’ language compare to standard C code?

MSP430 C Code vs Wiring Language

Background
Loop

Setup
Code

void setup() {
// Setup pin for output
pinMode (LED_PIN, OUTPUT);

}

void loop() {
digitalWrite (LED_PIN, HIGH); // LED on
delay (1000); // wait 1 second
digitalWrite (LED_PIN, LOW); // LED off
delay (1000);

}

void main() {
// Setup pin for output
P1DIR = 0x40;
P1OUT = 0;
// Disable watchdog timer
WDTCTL = WDTPW | WDTHOLD;
// Setup Master Clock (MCLK)
BCSCTL1 = CALBC1_16MHZ;
DCOCTL = CALDCO_16MHZ;
BCSCTL2 &= ~(DIVS_0);
// Setup ACLK
BCSCTL3 |= LFXT1S_2;

while(1) {
P1OUT = 0x40; // LED on
_delay_cycles(1000); // wait 1 sec
P1OUT = 0; // LED off
_delay_cycles(1000);

}
}

This comparison helps to demonstrate the simplicity of programming with Energia. As stated
before, this can make for very effective rapid prototyping.

Later, during one of the lab exercises, we will examine some of the underpinings of Wiring.
Although the language makes programming easier, the same actual code is required for both
sides of this diagram. In the case of Wiring, this is encapsulated by the language/library. You will
see later on where this is done; armed with this knowledge, you can change the default values
defined by the folks who ported Arduino over to Energia for the TI microcontrollers.

Programming Energia (and Arduino)

8 - 10 MSP430 Workshop - Using Energia (Arduino)

Hardware pinout
Arduino programming refers to Arduino “pins” throughout the language and examples. In the
original implementation, these refer directly to the original hardware platform.

When adapting the Arduino library/language over to other processors, such as the TI
microcontrollers, these pins must be mapped to the available hardware. The following screen
capture from the Energia wiki shows the mapping for the MSP430 (v1.5 ‘G2553) Launchpad
development board. There are similar diagrams for the other supported TI boards; please find
these at wiki page: https://github.com/energia/Energia/wiki/Hardware.

MSP430F5529 Launchpad : Energia Pinout
http://energia.nu/Guide_MSP430F5529LaunchPad.html

Arduino/Energia logical pin #’s

Color Coded Pin Mapping

The wiki authors have color coded the pins to try and make things easier. The Black numbers
represent the Arduino Pin Numbers. Thus, you can write to the pins using the pin numbers:

 pinMode(2, OUTPUT);
 digitalWrite(2, HIGH);

The Grey values show the hardware elements that are being mapped, such as the LED’s or
PushButton. You can use these alternative names: RED_LED; GREEN_LED; PUSH2; and
TEMPSENSOR. Thus, to turn on the red LED, you could use:

 pinMode(RED_LED, OUTPUT);
 digitalWrite(RED_LED, HIGH);

Pins can also be address by there alternative names, such as P1_0. These correlate to the GPIO
port (P1) and pin (0) names (P1.0) as defined by the MSP430. (In fact, the Launchpads
conveniently show which I/O pins are mapped to the Boosterpack header connectors.) Using
these symbols, we can write to pins using the following:

 pinMode(P1_0, OUTPUT);
 digitalWrite(P1_0, HIGH);

https://github.com/energia/Energia/wiki/Hardware

 Programming Energia (and Arduino)

MSP430 Workshop - Using Energia (Arduino) 8 - 11

The remaining colored items show how various pins are used for digital, analog or
communications purposes. The color legend on the right side of the diagram demonstrates the
meaning of the various colors.

 Green indicates that you can use the associated pins with the digitalRead() and
digitalWrite() functions.

 Purple is similar to Green, though you can also use the analogWrite() function with these
pins.

 Yellow , Orange , and Red specify these pins are used for serial communication: UART,

I2C, and SPI protocols, respectively.

 Finally, Blue demonstrates which pins are connected to the MSP430’s ADC (analog to
digital converter).

Should you do Pullups or Not?

To reduce power consumption, MSP430 Value-Line Launchpads (version V1.5 and later) are
shipped without pull-up resistors on PUSH2 (S2 or P1_3 or pin 5). This saves (77uA) if port P1_3
is driven LOW. (On your LaunchPad just below the "M" in the text "MSP-EXP430G2" see if R34 is
missing.) For these newer launchpads, sketches using PUSH2 should enable the internal pull-up
resistor in the MSP430. This is a simple change; for example:

pinMode(PUSH2, INPUT); now looks like pinMode(PUSH2, INPUT_PULLUP);

Hardware Pin References

As stated above, the Energia wiki (https://github.com/energia/Energia/wiki/Hardware) and Energia site
(http://energia.nu/Guide_MSP430F5529LaunchPad.html) shows these pin mapping diagrams for each
of the Energia supported boards. You can also refer to the source code which defines this pin
mapping; look for Energia/hardware/msp430/variants/launchpad/pins_energia.h.
This header file can be found on github, or in the files installed with Energia.

Sidebar

How can some ‘pins’ be connected to various pieces of hardware? (For example, PUSH2 and A3
(analog input 3) are both mapped to pin 5.)

Well, most processors today have multiplexed pins; i.e. each pin can have multiple functionality.
While a given ‘pin’ can only be used for one function at a time, the chip designers give users
many options to choose from. In an ideal world, we could just put as many pins as we want on a
device; but unfortunately this costs too much, therefore multiplexing is a common
cost/functionality tradeoff.

Orange

https://github.com/energia/Energia/wiki/Hardware
http://energia.nu/Guide_MSP430F5529LaunchPad.html
https://github.com/energia/Energia/blob/master/hardware/msp430/variants/launchpad/pins_energia.h

Energia IDE

8 - 12 MSP430 Workshop - Using Energia (Arduino)

Energia IDE
The Energia IDE (integrated debugger and editor; integrated development environment) has been
written in Java. This is how they can provide versions of the tools for multiple host platforms
(Wndows, Mac, Linux).

Energia Debugger

 Installation
 Simply unzip Energia package
 Everything is included: debugger, libraries,

board files, compilers
 Download button…

 Performs compile and downloads the
program to the target

 Debugging – Use common open-src methods
 Write values to serial port: Serial.println()
 Toggle pins & watch with o-scope

New
Open

Save

Verify/Compile
Download

Installation of the tools couldn’t be much simplier – unzip the package … that’s it. (Though, if you
have not already installed TI’s Code Composer Studio IDE, you may have to install drivers so that
the Energia debugger can talk to the TI Launchpad board.)

Editing code is straightforward. Syntax highlighting, as well as brace matching help to minimize
errors.

Compiling and downloading the program is as simple as clicking the Download button.

Debugging code is handled in the common, open-source fashion: printf() style. Although, rather
than using printf(), you can use the Serial print functions to keep track of what is going on with
your programs. Similarly, we often use LED’s to help indicate status of program execution. And, if
you have an oscilloscope or logic analyzer, you can also toggle other GPIO pins to evaluate the
runtime state of your program sketches. (We explore using LED’s and serial communications in
the upcoming lab exercises.)

 Energia IDE

MSP430 Workshop - Using Energia (Arduino) 8 - 13

Examples, Lots of Examples
Energia ships with many examples. These are great for getting started with programming – or
when trying to learn a new functionality. Our upcoming lab exercises will follow with this tradition
of starting from these simple examples.

Energia Sketches (Examples)

 Basic Sketches

 Blink is the ‘hello
world’ of micro’s

 BareMinimum is just
setup() and loop()

 Selecting example…

 Opens sketch in
debugger window

 Click download to
compile, download
and run

Energia/Arduino References

8 - 14 MSP430 Workshop - Using Energia (Arduino)

Energia/Arduino References
There are many more Arduino references that could possibly be listed here, but this should help
get you started.

Where To Go For More Information

 Energia
 Home: http://energia.nu/
 Download: http://energia.nu/download/
 Wiki: https://github.com/energia/Energia/wiki
 Getting Started: https://github.com/energia/Energia/wiki/Getting-Started
 Support Forum: http://forum.43oh.com/forum/28-energia/

 Launchpad Boards
 MSP430: http://www.ti.com/tool/msp-exp430g2 (wiki) (eStore)
 ARM Cortex-M4F: Launchpad Wiki eStore

 Arduino:
 Site: http://www.arduino.cc/
 Comic book: http://www.jodyculkin.com/.../arduino-comic-latest3.pdf

Energia

 Home: http://energia.nu/

 Download: http://energia.nu/download/

 Wiki: https://github.com/energia/Energia/wiki

 Supported Boards: https://github.com/energia/Energia/wiki/Hardware

 (H/W pin mapping)

 Getting Started: https://github.com/energia/Energia/wiki/Getting-Started

 Support Forum: http://forum.43oh.com/forum/28-energia/

Arduino

 Site: http://www.arduino.cc/

 Comic book: http://www.jodyculkin.com/.../arduino-comic-latest3.pdf

http://energia.nu/
http://energia.nu/
http://energia.nu/
http://energia.nu/download/
https://github.com/energia/Energia/wiki
https://github.com/energia/Energia/wiki/Hardware
https://github.com/energia/Energia/wiki/Hardware
https://github.com/energia/Energia/wiki/Hardware
https://github.com/energia/Energia/wiki/Getting-Started
https://github.com/energia/Energia/wiki/Getting-Started
https://github.com/energia/Energia/wiki/Getting-Started
http://forum.43oh.com/forum/28-energia/
http://forum.43oh.com/forum/28-energia/
http://forum.43oh.com/forum/28-energia/
http://www.arduino.cc/
http://www.arduino.cc/
http://www.jodyculkin.com/wp-content/uploads/2011/09/arduino-comic-latest3.pdf

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 15

Lab 8
This set of lab exercises will give you the chance to start exploring Energia: the included
examples, the ‘Wiring’ language, as well as how Arduino has been adapted for the TI Launchpad
boards.

The lab exercises begin with the installation of Energia, then give you the opportunity to try out
the basic ‘Blink’ example included with the Energia package. Then we’ll follow this by trying a few
more examples – including trying some of our own.

Lab Exercises

Installing Energia

A. Blinking the LED

B. Pushing the Button

C. Serial Communication & Debugging

D. PushButton Interrupt

E. Timer Interrupt (Uses Non-Energia Code)

Lab 8

8 - 16 Gettings Started with the MSP430 - Using Energia (Arduino)

Installing Energia
If you already installed Energia as part of the workshop prework, then you can skip this step and
continue to Lab 8a – Blink.

These installation instructions were adapted from the Energia Getting Started wiki page. See this
site for notes on Mac OSX and Linux installations.

https://github.com/energia/Energia/wiki/Getting-Started

Note: If you are attending a workshop, the following files should have been downloaded as part
of the workshop’s pre-work. If you need them and do not have network access, please
check with your instructor.

Installing the LaunchPad drivers

1. To use Energia you will need to have the LaunchPad drivers installed.

 For Windows Users

 If TI's Code Composer Studio 5.x with MSP430 suport is already installed on your computer
then the drivers are already installed. Skip to the next step.

a) Download the LaunchPad drivers for Windows:
 LaunchPad CDC drivers zip file for Windows 32 and 64 bit

b) Unzip and double click DPinst.exe for Windows 32bit or DPinst64.exe for Windows 64 bit.

c) Follow the installer instructions.

Installing Energia

2. Download Energia, if you haven’t done so already.

 The most recent release of Energia can be downloaded from the download page.

 Windows Users

 Double click and extract the energia-0101EXXXX-windows.zip file to a desired location.

 (We recommend unzipping it to: C:\TI\energia-0101E00xx).

https://github.com/energia/Energia/wiki/Getting-Started
https://github.com/energia/Energia/raw/gh-pages/files/EZ430-UART.zip
http://energia.nu/download

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 17

Starting and Configuring Energia

3. Double click Energia.exe (Windows users).

 Energia will start and an empty Sketch window will appear.

Lab 8

8 - 18 Gettings Started with the MSP430 - Using Energia (Arduino)

4. Set your working folder in Energia.

 It makes it easier to save and open files if Energia defaults to the folder where you want to
put your sketches.

 The easiest way to set this locations is via Energia’s preferences dialog:

File Preferences

 Then set the Sketchbook location to:

C:\msp430_workshop\<target>\energia

 Which opens:

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 19

5. Selecting the Serial Port

 Select Serial Port from the Tools menu to view the available serial ports.

 For Windows, they will be listed as COMXXX port and usually a higher number is the
LaunchPad com port. On Mac OS X they will be listed as /dev/cu.uart-XXXX.

6. Select the board you are using – most likely the msp430f5529 (16MHz).

 To select the board or rather the msp430 in your LaunchPad, select Board from the Tools
menu and choose the board that matched the msp430 in the LaunchPad.

Lab 8

8 - 20 Gettings Started with the MSP430 - Using Energia (Arduino)

Lab 8a – Blink
Don’t blink, or this lab will go by without you seeing it. It’s a very simple lab exercise – that
happens to be one of the many examples included with the Energia package.

As simple as this example is, it’s a great way to begin. In fact, if you have followed the flow of this
workshop, you may recognize the Blink example essentially replicates the lab exercise we
created in Chapter 3 and 4 of this workshop.

As we pointed out during the Energia chapter discussion, the Wiring language simplifies the code
quite a bit.

Your First Sketch

1. Open the Blink sketch (i.e. program).

 Load the Blinky example into the editor; select Blink from the Examples menu.

File Examples 1.Basics Blink

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 21

2. Examine the code.

 Looking at the Blink sketch, we see the code we quickly examined during our chapter
discussion. This code looks very much like standard C code. (In Lab8d we examine some of
the specific differences between this sketch and C code.)

 At this point, due to their similarity to standard C language code, we will assume that you
recognize most of the elements of this code. By that, we mean you should recognize and
understand the following items:

 #define – to declare symbols

 Functions – what a function is, including: void, () and {}

 Comments – declared here using // characters

 What we do want to comment on is the names of the two functions defined here:

 setup(): happens one time when program starts to run

 loop(): repeats over and over again

 This is the basic structure of an Energia/Arduino sketch. Every sketch should have – at the
very least – these two functions. Of course, if you don’t need to setup anything, for example,
you can leave it empty.

/*

 Blink

 Turns on an LED on for one second, then off for one second,
 repeatedly. This example code is in the public domain.

 */

void setup () {

 // initialize the digital pin as an output.

 // Pin 14 has an LED connected on most Arduino boards:

 pinMode (RED_LED, OUTPUT);
}

void loop () {

 digitalWrite (RED_LED, HIGH); // turn on LED

 delay (1000); // wait one second (1000ms)

 digitalWrite (RED_LED, LOW); // turn off LED

 delay (1000); // wait one second
}

Lab 8

8 - 22 Gettings Started with the MSP430 - Using Energia (Arduino)

3. Compile and upload your program to the board.

 To compile and upload the Sketch to the LaunchPad click the button.

Do you see the LED blinking? What color LED is blinking? __________________________

What pin is this LED connected to? ___

 (Be aware, in the current release of Energia, this could be a trick question.)

Hint: We recommend you check out the Hardware Pin Mapping to answer this last
question. There’s a copy of it in the presentation. Of course, the original is on the
Energia wiki.

https://github.com/energia/Energia/wiki/Hardware%23wiki-LaunchPad_MSP430G2553

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 23

Modifying Blink

4. Copy sketch to new file before modification.

 We recommend saving the original Blink sketch to a new file before modifying the code.

File Save As…

 Save it to:

C:\msp430_workshop\<target>\energia\Blink_Green

Hint: This will actually save the file to:

C:\msp430_workshop\<target>\energia\Blink_Green\Blink_Green.ino

Energia requires the sketch file (.ino) to their to be in a folder named for the project.

5. How can you change which color LED blinks?

 Examine the H/W pin mapping for your board to determine what needs to change.

Please describe it here: __

 __

6. Make the other LED blink.

 Change the code, to make the other LED blink.

 When you’ve changed the code, click the Upload button to: compile the sketch; upload the
program to the processor’s Flash memory; and, run the program sketch.

Did it work? ___

 (We hope so. Please ask for help if you cannot get it to work.)

Lab 8

8 - 24 Gettings Started with the MSP430 - Using Energia (Arduino)

Lab 8b – Pushing Your button
Next, let’s figure out how to use the button on the Launchpad. It’s not very difficult, but since
there’s already a sketch for that, we’ll go ahead and use it.

1. Open the Button sketch (i.e. program).

 Load the Button example into the editor.

File Examples 2.Digial Button

2. Try out the sketch.

 Before we even examine the code, let’s try it out. (You’re probably just like us … going to try
it out right away, too.)

When you push the button the (GREEN or RED) LED goes (ON or OFF)? ______________

By the way, you probably know this already from earlier in the workshop, but which button are
we using? If you’re using the F5529 Launchpad, then the “user” buttons are called PUSH1
and PUSH2; the example uses PUSH2 (the board silkscreen says P1.1) as shown here:

Examine the code

3. The author of this sketch used the LED in a slightly different fashion.

How is the LED defined differently in the Button Sketch versus the Blink sketch?

4. Looking at the pushbutton…

How is the pushbutton created/used differently from the LED? ________________________

What “Energia” pin is the button connected to? ___________________________________

What is the difference between INPUT and INPUT_PULLUP? ________________________

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 25

5. A couple more items to notice…

 Just like standard C code, we can create variables. What is the global variable used for in this
example?

 Finally, this is a very simple way to read and respond to a button. What would be a more
efficient way to handle responding to a pushbutton? (And why would this be important to
many of us MSP430 users?)

 __

(Note, we will look at this ‘more efficient’ method in a later part of the lab.)

Reverse button/LED action

Do you find this example to be the reverse of what you expected? Would you prefer the LED to
go ON when the button is pushed, rather than the reverse. Let’s give that a try.

6. Save the example to sketch new file before modification.

 Once again, we recommend saving the original sketch before modification. Save it to:

C:\msp430_workshop\<target>\energia\Button_reversed

7. Make the LED light only when the button is pressed.

 Change the code as needed.

Hint: The changes required are similar to what you would do in C, they are not unique to
Energia/Arduino.

8. When your changes are finished, upload it to your Launchpad.

Did it work? ___

Lab 8

8 - 26 Gettings Started with the MSP430 - Using Energia (Arduino)

Lab 8c – Serial Communication (and Debugging)
This lab uses the serial port (UART) to send data back and forth to the PC from the Launchpad.

In and of itself, this is a useful and common thing we do in embedded processing. It’s the most
common way to talk with other hardware. Beyond that, this is also the most common debugging
method in Arduino programming. Think of this as the “printf” for the embedded world of
microcontrollers.

1. Open the DigitalReadSerial example.

 Once again, we find there’s a (very) simple example to get us started.

File Examples 1.Basics DigitalReadSerial

2. Save sketch as myDigitalReadSerial.

3. Examine the code.

 This is a very simple program, but that’s good since it’s very easy to see what
Energia/Arduino needs to get the serial port working.

/* DigitalReadSerial

 Reads a digital input on pin 2, prints the result to the
 serial monitor (This example code is in the public domain) */

void setup() {

 Serial.begin(9600); // msp430g2231 must use 4800

 pinMode(PUSH2, INPUT_PULLUP);
}

void loop() {

 int sensorValue = digitalRead(PUSH2);

 Serial.println(sensorValue);
}

 As you can see, serial communication is very simple. Only one function call is needed to
setup the serial port: Serial.begin(). Then you can start writing to it, as we see here in the
loop() function.

Note: Why are we limited to 9600 baud (roughly, 9600 bits per second)?

The G2553 Launchpad’s onboard emulation (USB to serial bridge) is limited to 9600
baud. It is not a hardware limitation of the MSP430 device. Please refer to the wiki for
more info: https://github.com/energia/Energia/wiki/Serial-Communication.

If you’re using other Launchpads (such as the ‘F5529 Launchpad), your serial port can
transmit at much higher rates.

https://github.com/energia/Energia/wiki/Serial-Communication

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 27

4. Download and run the sketch.

 With the code downloaded and (automatically) running on the Launchpad, go ahead and
push the button.

 But, how do we know it is running? It doesn’t change the LED, it only sends back the current
pushbutton value over the serial port.

Hint: After running the sketch and looking at the Serial Monitor (in the next step), you might
find that nothing is showing up. Try switching “pin 5” for “PUSH2” in the code. Look at the
mapping diagrams between the ‘G2553 and ‘F5529 Launchpads to see the mismatch.

5. Open the serial monitor.

 Energia includes a simple serial
terminal program. It makes it easy to
view (and send) serial streams via
your computer.

 With the Serial Monitor open, and
the sketch running, you should see
something like this:

 You should see either a “1” or “0”
depending upon whether the putton
is up or down.

 Also, notice that the value is updated continuously, since the sketch reads the button and
writes it to port in the loop() function.

Do you see numbers in the serial monitor?

 __

What if the Serial Monitor is blank? (’G2553 Launchpad Configuration)
If this is the case, your Launchpad is most likely configured incorrectly. For serial communications to work
correctly, the J3 jumpers need to be configured differently than how the board is configured out-of-the-box.
(This fooled us, too.) Refer to these diagrams for correct operation. (This does not affect other Launchpads.)

https://github.com/energia/Energia/wiki/Hardware%23wiki-Serial_port_communication_Hardware_UART

Lab 8

8 - 28 Gettings Started with the MSP430 - Using Energia (Arduino)

Blink with Serial Communication

Let’s try combining a couple of our previous sketches: Blink and DigitalReadSerial.

6. Open the Button sketch.

 Load the Button from the Examples menu.

File Examples 2.Digial Button

7. Save it to a new file before modification.

 Once again, we recommend saving the original sketch before modification. Save it to:

C:\msp430_workshop\<target>\energia\Serial_Button

8. Add ‘serial’ code to your Serial_Button sketch.

 Take the serial communications code from our previous example and add it to your new
Serial_Button sketch. (Hint, it should only require two lines of code.)

9. Download and test the example.

 Did you see the Serial Monitor and LED changing when you push the button?

 __

10. Considerations for debugging…

 How you can use both of these items for debugging?

 Serial Port; LED (And, what if you didn’t have an LED available on your board?):

Another Pushbutton/Serial Example

Before finishing Lab 8C, let’s look at one more example.

11. Open the StateChangeDetection sketch.

 Load the sketch from the Examples menu.

File Examples 2.Digial StateChangeDetection

12. Examine the sketch, download and run it.

How is this sketch different? What makes it more efficient? __________________________

 __

How is this (and all our sketches, up to this point) inefficient? ________________________

 __

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 29

Lab 8d – Using Interrupts
Interrupts are a key part of embedded systems. It is responding to external events and
peripherals that allow our programs to ‘talk’ to the real world.

Thusfar, we have actually worked with a couple different interrupts without having to know
anything about them. Our serial communications involved interrupts, although the Wiring
language insulates us from needing to know the details. Also, there is a timer involved in the
delay() function; thankfully, it is also managed automatically for us.

In this part of the lab exercise, you will setup two different interrupts. The first one will be triggered
by the pushbutton; the second, by one of the MSP430 timers.

1. Once again, let’s start with the Blink code.

File Examples 1.Basics Blink

2. Save the sketch to a new file.

File Save As…

 Save it to:

C:\msp430_workshop\<target>\energia\Interrupt_PushButton

3. Before we modify the file, run the sketch to make sure it works properly.

4. To setup(), configure the GREEN_LED and then initialize it to LOW.

 This requires two lines of code which we have used many times already.

Adding an Interrupt
Adding an interrupt to our Energia sketch requires 3 things:

 An interrupt source – what will trigger our interrupt. (We will use the pushbutton.)

 An ISR (interrupt service routine) – what to do when the interrupt is triggered.

 The interruptAttach() function – this function hooks a trigger to an ISR. In our case, we

will tell Energia to run our ISR when the button is pushed.

5. Interrupt Step 1 - Configure the PushButton for input.

 Look back to an earlier lab if you don’t remember how to do this.

6. Interrupt Step 2 – Create an ISR.

 Add the following function to your sketch; it will be your interrupt service routine. This is about
as simple as we could make it.

void myISR()
{
 digitalWrite(GREEN_LED, HIGH);
}

 In our function, all we are going to do is light the GREEN_LED. If you push the button and the
Green LED turns on, you will know that successfully reached the ISR.

Lab 8

8 - 30 Gettings Started with the MSP430 - Using Energia (Arduino)

7. Interrupts Step 3 – Connect the pushbutton to our ISR.

 You just need to add one more line of code to your setup() routine, the attachInterrupt()
function. But what arguments are needed for this function? Let’s look at the Arduino
reference to figure it out.

Help Reference

 Look up the attachInterrupt() function. What three parameters are required?

1. ___

2. ___

3. ___

 One you have figured out the parameters, add the function to your setup() function.

8. Compile & download your code and test it out.

Does the green RED_LED flash continuously? ____________________________________

When you push the button, does the GREEN_LED light? ___________________________

When you push reset, the code should start over again. This should turn off the
GREEN_LED, which you can then turn on again by pushing PUSH2.

Note: Did the GREEN_LED fail to light up? If so, that means you are not getting an
interrupt.

First, check to make sure you have all three items – button is configured;
attachInterrupt() function called from setup(); ISR routine that lights the GREEN_LED

The most common error involves setting up the push button incorrectly. The button
needs to be configured with INPUT_PULLUP. In this way, the button is held high
which lets the system detect when the value falls as the button is pressed.

Missing the INPUT_PULLUP is especially common since most Arduino examples –
like the one shown on the attachInterrupt() reference page only show INPUT. This is
because many boards include an external pullup resistor, Since the MSP430
contains an internal pullup, you can save money by using it instead.

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 31

Lab 8e – Using TIMER_A
9. Create a new sketch and call it Interrupt_TimerA

File New

File Save As…

C:\msp430_workshop\<target>\energia\Interrupt_TimerA

10. Add the following code to your new sketch.

#include <inttypes.h>

uint8_t timerCount = 0;

void setup()
{
 pinMode(RED_LED, OUTPUT);

 TA0CCTL0 = CCIE;
 TA0CTL = TASSEL_2 + MC_2;
}

void loop()
{
 // Nothing to do.
}

__attribute__((interrupt(TIMER0_A0_VECTOR)))
void myTimer_A(void)
{
 timerCount = (timerCount + 1) % 80;
 if(timerCount ==0)
 P1OUT ^= 1;
}

 In this case, we are not using the attachInterrupt() function to setup the interrupt. If you
double-check the Energia reference, it states the function is used for ‘external’ interrupts. In
this case, the MSP430’s Timer_A is an internal interrupt.

 In essense, though, the same three steps are required:

a) The interrupt source must be setup. In our example, this means seting up TimerA0’s
CCTL0 (capture/compare control) and TA0CTL (TimerA0 control) registers.

b) An ISR function – which, in this case, is named “myTimer_A”.

c) A means to hook the interrupt source (trigger from TimerA0) to our function. In this case,
we need to plug the Interrupt Vector Table ourselves. The GCC compiler uses the
__attribute__((interrupt(TIMER_A0_VECTOR))) line to plug the Timer_A0 vector.

Note: You might remember that we introduced Interrupts in Chapter 5 and Timers in
Chapter 6. In those labs, the syntax for the interrupt vector was slightly different from
what we are using here. This is because the other chapters use the TI compiler.
Energia uses the open-source GCC compiler, which uses a slightly different syntax.

Appendix – Looking ‘Under the Hood’

8 - 32 Gettings Started with the MSP430 - Using Energia (Arduino)

Appendix – Looking ‘Under the Hood’
We are going to create three different lab sketches in Lab 8d. All of them will essentially be our
first ‘Blink’ sketch, but this time we’re going to vary the system clock – which will affect the rate of
blinking. We will help you with the required C code to change the clocks, but if you want to study
this further, please refer to Chapter 3 – Inititialization and GPIO.

Where, oh where, is Main

How does Energia setup the system clock?

Before jumping into how to change the MSP430 system clock rate, let’s explore how Energia sets
up the clock in the first place. Thinking about this, our first question might be…

 What is the first function in every C program? (This is not meant to be a trick question)

If Energia/Arduino is built around the C language, where is the main() function? Once we answer
this question, then we will see how the system clock is initialized.

Open main.cpp …

C:\TI\energia-0101E0010\hardware\msp430\cores\msp430\main.cpp

The “C:\TI\energia-0101E0010” may be different if you unzipped the Energia to a different location.

When you click the Download button, the tools combine your setup() and loop() functions into the
main.cpp file included with Energia for your specific hardware. Main should look like this:

main.cpp

// main.cpp

#include < Energia.h >

int main(void)

{
init();

setup();

for (;;) {

loop();

if (serialEventRun) {
serialEventRun();

}
}

return 0;
}

Clicking download
combines sketch with
main.cpp to create a
valid c++ program

We have already seen setup()
and loop(). This is how Energia
uses them.

Energia.h contains the #defines,
enums, prototypes, etc.

System initalization is
done in wiring.c

(see next slide)

C:\TI\energia-0101E0010\hardware\msp430\cores\msp430\

Where do you think the MSP430 clocks are initialized? _____________________________

 Appendix – Looking ‘Under the Hood’

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 33

Follow the trail. Open wiring.c to find how init() is implemented.

C:\TI\energia-0101E0010\hardware\msp430\cores\msp430\wiring.c

 The init() function implements the essential code required to get the MSP430 up and running.
If you have already completed Chapter 4 – Clocking and Initialization, then you should
recognize most of these activities. At reset, you need to perform two essential activies:

 Initialize the clocks (choose which clock source you want use)

 Turn off the Watchdog timer (unless you want to use it, as a watchdog)

 The Energia init() function takes this three steps further. They also:

 Setup the Watchdog timer as a standard (i.e. interval) timer

 Setup two GPIO pins

 Enable interrupts globally

init() in wiring.c
C:\TI\energia-0101E0010\hardware\msp430\cores\msp430\

// wiring.c
void init()
{

disableWatchDog();
initClocks();
enableWatchDogIntervalMode();
// Default to GPIO (P2.6, P2.7)
P2SEL &= ~(BIT6|BIT7);
__eint();

}
enableWatchDogIntervalMode()
initClocks()
disableWatchDog()
enableWatchDog()
delayMicroseconds()
delay()
watchdog_isr ()

 wiring.c provides the core files for
device specific architectures

 init() is where the default
initializations are handled

 As discussed in Ch 3 (Init & GPIO)
 Watchdog timer (WDT+) is

disabled
 Clocks are initialized (DCO 16MHz)
 WDT+ set as interval timer

Appendix – Looking ‘Under the Hood’

8 - 34 Gettings Started with the MSP430 - Using Energia (Arduino)

Two ways to change the MSP430 clock source

There are two ways you can change your MSP430 clock source:

 Modify the initClocks() function defined in wiring.c

 Add the necessary code to your Setup() function to modify the clock sources

Advantages

 Do not need to re-modify wiring.c after updating to new revision of Energia

 Changes are explicitly shown in your own sketch

 Each sketch sets its own clocking, if it needs to be changed

 In our lab, it allows us to demonstrate that you can modify hardware registers – i.e.
processor specific hardware – from within your sketch

Disdvantages

 Code portability – any time you add processor specific code, this is something that will

need to be modified whenever you want to port your Arduino/Energia code to another
target platform

 A little less efficient in that clocking gets set twice

 You have to change each sketch (if you always want a different clock source/rate)

 Appendix – Looking ‘Under the Hood’

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 35

Sidebar – initClocks()

Here is a snippet of the initClocks() function found in wiring.c (for the ‘G2553 Launchpad). We
call it a snippet, since we cut out the other CPU speeds that are also available (8 & 12 MHz).

The beginning of this function starts out by setting the calibration constants (that are provided in
Flash memory) to their associated clock configuration registers.

(Sidebar): initClocks() in wiring.c

void initClocks(void)
{
#if (F_CPU >= 16000000L)
BCSCTL1 = CALBC1_16MHZ;
DCOCTL = CALDCO_16MHZ;

#elif (F_CPU >= 1000000L)
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

#endif

BCSCTL2 &= ~(DIVS_0);
BCSCTL3 |= LFXT1S_2;

CSCTL2 &= ~SELM_7;
CSCTL2 |= SELM__DCOCLK;
CSCTL3 &= ~(DIVM_3|DIVS_3);

#if F_CPU >= 16000000L
CSCTL1 = DCORSEL;

#elif F_CPU >= 1000000L
CSCTL1 = DCOFSEL0|DCOFSEL1;
CSCTL3 |= DIVM_3;

#endif
}

Select correct calibration
constants based on chosen clock
frequency

 F_CPU defined in boards.txt
 Select ‘board’ via: ToolsBoards

Set MCLK as per F_CPU

 Set SMCLK to F_CPU
Set ACLK to VLO (12Khz)

 Clear main clock (MCLK)
Use DCO for MCLK
Clear divide clock bits

If you work your way through the second and third parts of the code, you can see the BCS (Basic
Clock System) control registers being set to configure the clock sources and speeds. Once again,
there are more details on this in Clocking chapter and its lab exercise.

Appendix – Looking ‘Under the Hood’

8 - 36 Gettings Started with the MSP430 - Using Energia (Arduino)

Sidebar Cont’d - Where is F_CPU defined?

We searched high & low and couldn’t find it. Finally, after reviewing a number of threads in the
Energia forum, we found that it is specified in boards.txt. This is the file used by the debugger
to specifiy which board (i.e. target) you want to work with. You can see the list from the
ToolsBoard menu.

C:\TI\energia-0101E0010\hardware\msp430\boards.txt

 Lab Debrief

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 37

Lab Debrief

Q&A: Lab8A (1)
Lab A
3. Do you see the LED blinking? What color LED is blinking? _____________________

What pin is this LED connected to? _______________________________________

(Be aware, in the current release of Energia, this could be a trick question.)

Red

P1_0
(Code says Pin14, it was RED that blinked)

Q&A: Lab8A (2)
5. How can you change which color LED blinks?

Examine the H/W pin mapping for your board to determine what needs to change.
Please describe it here: ___

6. Make the other LED blink.
Did it work? ____________________________________

Change from P1_0 to P4_7, for the green LED to blink

(Easier yet, just use the pre-defined symbol: GREEN_LED)

Yes

Lab Debrief

8 - 38 Gettings Started with the MSP430 - Using Energia (Arduino)

Q&A: Lab8B (1)
2. Try out the sketch.

When you push the button the (GREEN or RED) LED goes (ON or OFF)?

Examine the code
3. How is the LED defined differently in the ‘Button’ Sketch versus the ‘Blink’ sketch?

4. How is the pushbutton created/used differently from the LED?

What “Energia” pin is the button connected to? _______________________________
What is the difference between INPUT and INPUT_PULLUP?

Green LED goes OFF

In ‘Blink’, the LED was #defined (as part of Energia);
in ‘Button’, it was defined as a const integer. Both work equally well.

In Setup() it is configured as an ‘input’; in loop() we use digitalRead()
P1_1

INPUT config’s the pin as a simple input – e.g. allowing you to read pushbutton.
Using INPUT_PULLUP config’s the pin as an input with a series pullup resitor;
(many TI C provide these resistors as part of their hardware design).

Q&A: Lab8B (2)
5. Just like standard C code, we can create variables. What is the global variable used

for in the ‘Button’ example?

What would be a more efficient way to handle responding to a pushbutton? (And why
would this be important to many of us MSP430 users?)

(Note, we will look at this later.)

Reverse Button/LED action
8. Did it work? _________________

‘buttonState’ global variable holds the value of the button returned by digitalRead().
We needed to store the button’s value to perform the IF-THEN/ELSE command.

It would be more efficient to let the button ‘interrupt’ the processor, as opposed to
reading the button over and over again. This is as the processor cannot SLEEP
while polling the pushbutton pin. If using an interrupt, the processor could sleep until
being woken up by a pushbutton interrupt.

Yes (it should)

 Lab Debrief

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 39

Q&A: Lab8C (1)
5. Did you see numbers in the serial monitor? ___________________________

If using ‘G2553 LP you might not have seen anything in the Serial Monitor. If so, change:

Yes

Change the serial-port jumpers

Note – changing jumpers is only needed for ‘G2553 Value-Line Launchpad

Q&A: Lab8C (2)
Blink with Serial Communication (Serial_Button sketch)
9. Did you see the Serial Monitor and LED changing when you push the button?

10. Considerations for debugging… How you can use both of these items for debugging?
(Serial Port and LED)
__

__

__

You (we hope so)

Use the serial port to send back info, just as you might use printf() in your C code.
An LED works well to indicate you reached a specific place in code. For example,
later on we’ll use this to indicate our program has jumped to an ISR (interrupt routine)
Similarly, many folks hook up an oscilloscope or logic analyzer to a pin, similar to
using an LED. (Since our boards have more pins than LEDs.)

Lab Debrief

8 - 40 Gettings Started with the MSP430 - Using Energia (Arduino)

Q&A: Lab8C (3)
Another Pushbutton/Serial Example (StateChangeDetection sketch)
12. Examine the sketch, download and run it.

How is this sketch different? What makes it more efficient?

How is this (and all our sketches, up to this point) inefficient?

It only sends data over the UART whenever the button changes

Our pushbutton sketchs – thusfar – have used polling to determine the state of the
button. It would be more efficient to let the processor sleep; then be woken up by an
interrupt generated when the pushbutton is depressed.

Q&A: Lab8D
Interrupt Example (Interrupt_PushButton)
7. Look up the attachInterrupt() function. What three parameters are required?

1. ___

2. ___

3. ___

8. Compile & download your code and test it out.
Does the green RED_LED flash continuously? _____________________________
When you push the button, does the GREEN_LED light? _____________________

Notes:
 Use reset button to start program again and clear GREEN_LED
 Most common error, not configuring PUSH2 with INPUT_PULLUP.

Interrupt source – in our case, it’s PUSH2
ISR function to be called when int is triggered – for our ex, it’s “myISR”
Mode – what state change to detect; the most common is “FALLING”

	Cover
	Workshop Agenda
	1. Intro to MSP430
	Administrative Topics
	TI Products
	TI's Embedded Processors
	MSP430 Family
	MSP430 CPU
	MSP430 Memory
	MSP430 Peripherals
	ULP
	Launchpad’s
	Lab 1 – MSP4305529 LaunchPad User Experience

	2. Programming C with CCS
	TI Support Ecosystem
	Examining CCSv5
	Writing MSP430 C Code
	Lab 2
	Lab 2a
	Lab 2b
	Lab 2c
	Lab 2d

	3. Using GPIO with MSP430ware
	MSP430ware
	GPIO
	Before We Get Started Coding
	Lab 3
	Lab 3 Worksheet
	Lab 3a
	Lab 3b

	Appendix

	4. MSP430 Clocks & Init
	Operating Modes
	Clocking
	DCO Setup & Calibration
	Other Initialization
	Lab 4
	Worksheet
	Lab 4a
	Lab 4b
	Lab 4c
	Chapter 4 Appendix

	5. Interrupts
	The Big Picture
	How Interrupts Work
	Enabling Interrupts
	Vectors & Priorities
	Coding Interrupts
	Dedicated ISR
	Grouped ISR
	Enabling Interrupts

	Misc Topics
	Interrupts & TI-RTOS
	Lab 5
	Worksheet
	Lab 5a - Push Your Button
	Lab 5b - Watchdog
	Appendix

	6. Timers
	Prerequisites and Tools
	Overview of MSP430 Timers
	Timer Basics: How timers work
	Timer Details: Configuring TIMER_A
	TIMER_A API Summary
	Differences between Timer’s A and B
	Lab 6 – Using Timer_A
	Lab 6a – Simple Timer Interrupt
	 (Extra Credit) Lab 6b – Timer using Up Mode
	(Extra Credit) Lab 6c – Timer using Up Mode
	Chapter 6 Appendix

	7. USB Devices
	Introduction
	What is USB?
	MSP430's USB Support
	How USB Works
	Descriptions and Classes
	MSP430’s USB Stack
	ABC’s of USB
	Final Thoughts
	Lab Exercise
	Lab 7 – Using USB Devices
	Lab 7a – LED On/Off HID Example
	Lab 7b – LED On/Off CDC Example
	Lab 7c – CDC ‘Simple Send’ Example
	Lab 7d – Creating a CDC Push Button App

	8. Using Energia (Arduino)
	What is Arduino
	Energia
	Programming Energia (and Arduino)
	Energia IDE
	Energia/Arduino References
	Lab 8
	Installing Energia
	Installing the LaunchPad drivers
	Installing Energia
	Starting and Configuring Energia

	Lab 8a – Blink
	Your First Sketch
	Modifying Blink

	Lab 8b – Pushing Your button
	Examine the code
	Reverse button/LED action

	Lab 8c – Serial Communication (and Debugging)
	What if the Serial Monitor is blank? (’G2553 Launchpad Configuration)
	Blink with Serial Communication
	Another Pushbutton/Serial Example

	Lab 8d – Using Interrupts
	Lab 8e – Using TIMER_A

	Appendix – Looking ‘Under the Hood’
	Where, oh where, is Main
	How does Energia setup the system clock?
	Open main.cpp …
	Follow the trail. Open wiring.c to find how init() is implemented.
	Two ways to change the MSP430 clock source
	Advantages
	Disdvantages

	Sidebar – initClocks()
	Sidebar Cont’d - Where is F_CPU defined?

	Lab Debrief

