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Summary

Space weather forecasts require reliable knowledge of the IMF Bz field at L1 and this is

required before they are measured there in situ. Codes developed at the University of

Michigan will take magnetogram observations and use these to drive MHD simulations,

time-accurate, out to around 30 solar radii. These coronal simulations can then be used to

drive a fast, spherical geometry inner-heliospheric MHD code (SWIFT) to give predictions

at L1. This report covers the decisions made, and tests performed, in developing this

spherical geometry MHD code. This covers the conversion of the existing Cartesian code

Lare3d to spherical geometry by a mixture of area-volume and finite difference techniques

as well as detailed testing of the shock viscosity. This report will be sufficient for a

computational MHD researcher, who has a copy of the freely available Lare3d code, to

re-engineer SWIFT. The SWIFT code is now released under version control. The release

version solves MHD in spherical geometry using edge-based shock viscosity.

1 Introduction

This report details the work done, and decisions made, in developing the spherical ge-

ometry version of the SWIFT Lagrangian-remap code. This is a crucial step towards

predicting solar wind values at L1 based on GONG observations. The University of

Michigan is developing the AWSoM code [8] to take GONG data and use this to drive

a coronal simulation out to 20-30 solar radii. At this radius output from AWSoM will

be coupled to SWIFT which then completes the simulation from 20-30 radii out to L1.

The coupling of the codes will be the subject of D2.2 in month 20 of the project. The

full simulation suite, from GONG data to L1, will then be documented in D2.3 at the

end of the project. WP2 will be coupled to all other work packages providing forecasts

of L1 variables for all of the other toolsets. This coupling is the aim of WP7. The final

toolchain will forecast space weather using GONG observations of the solar magnetic field

coupled to predictive simulations.
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2 Overview of D2.1 within WP2 activity

The overall aim of WP2 is to predict solar wind properties at L1 based on GONG data.

The AWSoM code will complete this task from the solar surface up to 20-30 solar radii.

After this the SWIFT code will take output from AWSoM and simulate the MHD evolu-

tion out to L1. This deliverable reports on the design and implementation of the spherical

geometry code SWIFT. Specifically how the existing Cartesian MHD code Lare3d [1] was

converted to spherical geometry. This section of the report summaries the initial state of

Lare3d and outlines the changes that were made to convert to spherical geometry. The

details of these changes are then summarised in later sections.

In S.I. units the standard ideal MHD equations are

Dρ

Dt
= −ρ∇ · v (1)

Dv

Dt
=

1

ρµ0

(∇×B)×B− 1

ρ
∇P (2)

DB

Dt
= (B · ∇)v −B(∇ · v) (3)

Dε

Dt
= −P

ρ
∇ · v (4)

Where ε is the specific internal energy density and γ is the ratio of specific heats. Here

D/Dt is the advective derivative and all other terms have their usual meaning. Definitions

for converting between ε and the more familiar pressure and temperature are

P =
ρkBT

µm

ε =
P

ρ(γ − 1)
=

kBT

µm(γ − 1)

where µm is the reduced mass, i.e. the average mass of all particles in the plasma. Hence

µm = mp for neutral hydrogen atoms (mp is the proton mass) and µm = 0.5mp for fully

ionised hydrogen.

The Lare3d code solves the MHD equations by first taking a Lagrangian step, i.e.

solving equations (1-4), and then conservatively remapping the variables back onto the
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original Cartesian mesh. The advantages of this approach are that all of the physics

is in the fully 3-dimensional Lagrangian step with limiters required for accurate shock

solutions, i.e. TVD limiters, confined to the purely geometric remap step. This means that

additional physics such as separate electron and ion temperatures or thermal conduction

are easy to implement in the computationally efficient 3D Lagrangian phase. This report

focuses purely on the conversion of the core Lare3d to spherical geometry so does not

discuss the two-temperature model or thermal conduction further although these will be

needed later for an accurate solar wind model. The SWIFT code will solve for the full 2π

azimuthal angle, for radii from 20 or 30 solar radii out to L1 and for poloidal angles ±60

degrees from the equator.

The Lagrangian step in Lare3d is roughly 1000 lines of code and the remap steps are

an additional 3000 lines. All of these were implemented specifically for a regular Cartesian

grid and hence the majority of the code had to be converted to spherical geometry for

SWIFT. There were three key high-level decisions for this conversion.

1. Shock viscosity: The accurate treatment of shocks in a Lagrangian step is best

treated through a compatible shock viscosity [3, 1]. This ensure the correct en-

tropy jump across shocks and conserves energy. When moving such schemes to

multi-dimensions there are however several options. These include tensor mimetic

viscosity [2], edge viscosities [5] and sub-zonal pressures [4]. Lare3d uses mimetic

tensor viscosity but this was only thoroughly tested in Cartesian geometry and is

computationally expensive. For SWIFT to provide forecasts of space weather it

needs to be fast and so the choice of shock viscosity was crucial. It was determined

that edge-viscosity was the best choice for symmetry and speed.

2. Area-volume approach: It is possible to convert a Cartesian finite-difference

scheme to spherical geometry by hard coding the spherical version of the differential

equations in finite difference form. This is the simplest approach but has several

drawbacks. Firstly the code can then only work in spherical geometry so can only
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be compared to other spherical codes. This reduces the robustness of the testing

and debugging. It is often important to know, when adding new physics modules,

that these work in the simpler Cartesian geometry first. To accommodate this it

was decided to implement the changes to spherical geometry in area-volume formal-

ism where possible (the remap step). Compiler flags change metrics allowing the

code to run in Cartesian, cylindrical or spherical geometry without a computational

overhead. This was more work than a simple finite difference swap but leads to a

more flexible, testable and sustainable code.

3. Nodal forces: Moving to spherical geometry introduces geometric factors into the

forces on grid nodal points in full area-volume schemes. These are relatively easy

to handle in Euler’s equations but the complications for MHD in a Lagrangian,

moving control volume, while solved are computationally expensive. The forces,

both pressure gradient and magnetic forces, are therefore handled as finite difference

with metrics handling the geometry changes. This is the only component of SWIFT

which is not area-volume based.

The details of the implementation, and test cases where appropriate, for each of these

elements of the spherical geometry implementation are detailed below.

2.1 Choice of shock viscosity

Testing of the shock viscosities for SWIFT was performed in the Odin code. This is a

2-dimensional (r,z) or (x,y) geometry arbitrary Lagrangian Eulerian (ALE) code. This

code has been extensively tested for shocks generated in inertial confinement fusion ex-

periments. The Odin code can work with an arbitrary grid in either geometry and is far

more flexible than either Lare3d or SWIFT. However this flexibility leads to a slower code.

A single full Lagrangian-remap step in Odin can be three times slower than Lare3d or

SWIFT. Nonetheless it is an ideal testbed for assessing shock viscosities in cylindrical and

spherical geometry as it already had mimetic tensor and scalar viscosities implemented
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along with the option to use sub-zonal pressures. Edge viscosity was added to Odin which

was then run in planar, cylindrical and spherical test cases. It was found that the mimetic

tensor viscosity was the most robust choice for arbitrarily distorted ALE grids but when

grids were frequently remapped back to the original grid, suppressing large grid distortion,

edge viscosity was as accurate as tensor viscosity and for spherical shock tests maintained

symmetry better. Edge viscosity is only used in ALE grids in conjunction with sub-zonal

pressures which are required to suppress hourglass modes. As hourglass modes cannot

grow in a Lagrangian-remap code the conclusion for these tests was that the best option

for SWIFT was an edge based shock viscosity using the scheme in [5]. This is as good as

the mimetic tensor viscosity in Lare3d but quicker. As a result of this work for SWIFT

the viscosity in Lare3d will now also be changed to edge viscosity.

Lare3d’s use of a mimetic tensor viscosity provided all the components of the tensor

required for a Cauchy Lagrangian update of the magnetic field. Hence the magnetic field

for the Lagrangian step was updated through

Bj =
∂xj
∂Xi

B0
i

∆
(5)

where xj(t) are the locations of the nodes during the Lagrangian phase and Xi = xi(t = 0).

The Jacobian for the Lagrangian transformation is ∆ and B0
i = Bi(t = 0). When SWIFT

moves over to edge viscosity the tensor components ∂xj/∂Xi are no longer pre-calculated

in the viscosity and as a result the magnetic field updated is now treated through

DBi

Dt
=

∫
viB.dS (6)

2.2 Area-volume Lagrangian remap in spherical geometry

SWIFT uses a staggered grid with velocities defined at cell corners (nodes), scalars defined

at cell centres (zones) and magnetic field components defined on cell faces (areas). Thus

magnetic field components are not all defined at the same location. Once SWIFT has

chosen the location of the nodes it calculates the metric factors (h1, h2, h3) = (1, r, r sin θ)
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for the (r, θ, φ) spherical system at the zone centroid, cell faces and on those edges where it

will be needed for finite differencing, see next section. Cell face areas are then defined from

these metrics, e.g. Ar = h2h3dθdφ and the zone volume from the centroid defined metrics

through V = h1h2h3drdθdφ. Changing SWIFT to work in Cartesian or cylindrical for code

comparisons, prototyping new physics modules or debugging simple requires redefining

the h metrics.

After a Lagrangian step the nodes have moved and the grid is deformed. The variables

on this deformed grid are then conservatively remapped onto the original grid, as described

in [1], using a mixture of control volumes for the density, mass coordinates for the velocities

and specific internal energy and areas for the magnetic fluxes. However as Lare3d was

coded for purely Cartesian the remap distances, for the density remap for example, used

only the linear distance in the direction of the remap. These overlap distances had to be

replaced by overlap volumes and swept areas in SWIFT. When (h1, h2, h3) = (1, 1, 1) this

reverts to Lare3d and for (h1, h2, h3) = (1, r, r sin θ) gives spherical geometry.

2.3 Treating forces via finite difference

The control volume/area scheme used for the geometry of the remap step could be applied

to the calculation of forces in the Lagrangian step, which uses a second order predictor-

corrector scheme. The mass in a zone is constant during the Lagrangian step so only

volume changes are needed to find the density after the grid moves. The specific energy

update is not handled via equation (4) but via a compatible update based on the nodal

forces [3]. All that is needed then is the control volume, Lagrangian average, of the

momentum equation. Integrating equation (3), but without the j × B term, over the

moving Lagrangian zone using the Reynolds transport theorem gives

M
Dũ

Dt
= −

∫
PdS + r̂

∫
2P

r
dV.

where ũ is the mass averaged velocity ũ =
∫
ρudV/M . The last term arrises from
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noting that
∫
â.∇PdV =

∫
P â.dS −

∫
P∇.âdV and applying Gauss’s theorem. While

this last term can be easily included in SWIFT the equivalent for the MHD force j × B

on a Lagrangian grid is far less straightforward [6]. Tests have shown that as each full

step of SWIFT begins with the same regular grid it is far more computationally efficient,

and just as accurate, to simply evaluate j and B at the node and find j×B directly. The

same approach is therefore applied to the pressure gradient term in SWIFT. This does

require the gradient, divergence and curls be evaluated on a spherical grid. Since the h

factors are defined in the initial conditions, and do not change, these are for the gradient

of a scalar f

∇f =

(
1

h1

∂

∂x1
f,

1

h2

∂

∂x2
f,

1

h3

∂

∂x3
f

)
(7)

the divergence of vector field A = (a1, a2, a3)

∇.A =
1

h1h2h3

(
∂

∂x1
h2h3a1,

∂

∂x2
h1h3a2,

∂

∂x3
h1h2a3

)
(8)

and for the curl

∇× A =

{
1

h2h3

(
∂

∂x2
h3a3 −

∂

∂x3
h2a2

)
, (9)

1

h1h3

(
∂

∂x3
h1a1 −

∂

∂x1
h3a3

)
, (10)

1

h1h2

(
∂

∂x1
h2a2 −

∂

∂x2
h1a1

)}
(11)

Finite differencing of these are also used to give the current density j from the magnetic

field B.

2.4 Spherical test results

To check that SWIFT does correctly maintain spherical symmetry and can correctly solve

MHD in this geometry a selection of idealised test cases are presented. These include

simple Gaussian pulses, which when symmetric about r = 0, provide a good test of

symmetry preservation. The calculated MHD waves speeds in each direction also verify

the MHD solver is correct. Beyond these tests a proxy solar wind test is presented. This
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Figure 1: Normalised mass density for Gaussian pulse in Cartesian geometry using a 1283

grid.

is not a realistic solar wind, which requires careful setup and then continuous driving

from AWSoM or similar to establish a real solution, but contains all of the computational

elements. These are the inflow/outflow boundaries, mass and magnetic flux injection, a

wind roughly matched to a Parker wind and model spiral magnetic field.

The Gaussian pulse test is setup with a uniform density and temperature and zero

velocity. A normalised mass density ρ = 1 was used with a a perturbation ρ1 = exp(−(r−

r0)
2/σ2) where r0 was varied but σ = 2× 10−3. Figure 1 shows the result for a Cartesian

grid and figure 2 for the equivalent resolution spherical simulation when r0 = 0. Thus

SWIFT reproduces Lare3d results in Cartesian and gives improved symmetry for spherical

geometry as expected.

The Gaussian test was repeated with the initial density enhancement offset from r = 0.

The result in figure 3 shows that spherical symmetry is still preserved. Grid level effects

can now be seen and are more pronounced at larger radii where the underlying resolution

is worse. Note this is only roughly one quarter of the resolution SWIFT is expected to use
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Figure 2: Normalised mass density for Gaussian pulse in spherical geometry an (64, 64,
128) grid in (r, θ, φ).

in space weather prediction. Also these figures are cell averaged values to clearly show the

underlying numerical solution. Results from ENLIL for example use contour plots which

smooth most of these grid level effects.

As a final test we setup a model solar wind. While artificial this is representative of

the numerical problems expected when driven by real data from AWSoM. An analytic

Parker wind is initialised with

u2 − ln(u2) = 4 ln r′ + 4
4

r′
+ 3 (12)

Here u is the radial velocity normalised to the sound speed cs = 2kBT/mp and the

temperature is taken as uniform at 1 MK. The radius is normalised to the critical radius

r′ = r/rc where rc = GM�/2c
2
s. The mass density and pressure are then given by

ρ = C/r2ccs and P = 2ρkbT/mp, with C chosen so that ρ = 6 × 106mp kg/m3 at 1A.U.

The solution domain runs from 0.1 to 1.1 A.U., poloidal angles π/6 to π − π/6 and a

full 2π in toroidal/azimuthal angle. The resolution is (128, 32, 64) grid in (r, θ, φ) and
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Figure 3: Normalised mass density for Gaussian pulse in spherical geometry with the
pulse offset in the radial coordinate. This used the same resolution as in figure 2

the simulation is run for two solar rotations. An initial radial magnetic field is imposed

with Br = B0/r
2 and B0 = 9 nT so that solar rotation will impose a spiral magnetic

field. Finally an artificial disturbance is created by injecting a mass density 100 times

background on the inner radial boundary for angles φ = vφt ± 0.05π where vφ is the

imposed rotation speed at 0.1 A.U. from solar rotation. For all other angles the injected

density is that from the analytic model above.

Plotted in figure 4 is the magnitude of the Bx component of the magnetic field Bx =

Br cosφ, scaled by (r/au)2, in the ecliptic plane. The same field is plotted in figure 5 in

the φ = π plane, i.e. the slice in (x, z) through y = 0 for x < 0. The same slices but for

number density are shown in figures 6 and 7. These number densities are also scaled by

(r/au)2.

These tests show correct treatment of inflow/outflow boundaries in r, no issues withthe

slip boundaries at θ = ±60o and correct spherical symmetry. The model Parker solar wind

behaves as expected and the code has been tuned and optimised for spherical geometry
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Figure 4: Magnitude of Bx in the ecliptic plane after half a solar rotation.

Figure 5: Magnitude of Bx in the φ = π plane after half a solar rotation.
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Figure 6: Number density in the ecliptic plane after half a solar rotation.

Figure 7: Number density in the φ = π plane after half a solar rotation.
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ready for coupling to the AWSoM code.

3 Issues and future development

The 3D spherical geometry MHD code SWIFT is now released under source control from

a Warwick University based gitlab server (https://cfsa-pmw.warwick.ac.uk). This will

be coupled with the AWSoM code from the University of Michigan by month 20 of the

PROGRESS project. Components of SWIFT which will be needed for a realistic solar

wind model independently the implementation of spherical geometry detailed above are:

1. Thermal conduction routines from Lare3d which are based on super-stepping schemes

[7] will be moved over to SWIFT. These have been developed and tested in Lare3d

which was used instead of SWIFT as the development took place in parallel with

the conversion of SWIFT to spherical geometry and needed a stable platform for

this development prior to the completion of spherical SWIFT.

2. The two-temperature model within Odin needs implementing in SWIFT. This will

allow shock heating only of the ions and thermal conduction only on the electrons.

This has been in Odin for over a year and was not part of the work undertaken for

this project.

3. Full testing of the feature complete SWIFT, i.e. current release plus two-temperatures

and thermal conduction, prior to coupling to AWSoM.

4. The AWSoM coupling may have a problem if AWSoM tries to inject a magnetic

field with an associated poloidal flux through the poloidal boundaries in SWIFT.

The issue is that AWSoM runs over the whole sphere. SWIFT can do this but

it is quicker if only those poloidal angles which affect results at L1 are included.

SWIFT with a reduced poloidal range then has a slip boundary along those new

poloidal boundaries which are absent from the driver AWSoM code. The injection

of poloidal flux on these boundaries from AWSoM would need to be suppressed as
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the resulting computational open boundaries would now no longer be a well posed

mathematical problem.

5. Currently SWIFT relies on flat MPI domain decomposition. Changes to optimal

machine architectures over the next two years, for example the Intel KNL processor

or IBM Power plus nVidea, may require either multi-threading or CUDA. This

decision will not be made until a clearer picture of available hardware emerges.

4 Conclusions

The Cartesian geometry Lare3d code has been converted to the spherical geometry MHD

code SWIFT. This code has been tested for symmetry, shocks and MHD model solar-

winds. Any researcher experienced in computational MHD can use this report, along

with a copy of the Lare3d code and manual, to reproduce the SWIFT code base. The key

decisions were the choice of viscosity, which routines were handed in area-volume control

differencing and which through standard finite differences, albeit with a choice of three

orthogonal metrics. The SWIFT code is now available for any of the PROGRESS project

team to use via a Warwick maintained gitlab repository.
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