

Programme Area: Carbon Capture and Storage

Project: Benchmark Refresh

Title: WP6 CCS Benchmark Refresh 2013 Phase A Report

Abstract:

The ETI engaged Foster Wheeler to execute its CCS Benchmark Refresh Project. The main purpose of this further study work is to provide additional benchmarking and performance analysis of next generation carbon capture technologies for combined cycle gas turbines (CCGTs) building upon those evaluated and reported in previous phases of CCS study work that Foster Wheeler had executed with ETI. This Phase A Report includes: •An assessment of materially significant changes from the previous CCGT benchmark, together with documentation of the assumptions used in development of the new benchmark; An assessment of appropriate EGR rates fulfilling the above criteria appropriate exhaust gas recycle (EGR) rates which could potentially be used in CCGTs with CCS;• Presentation of the technical and economic performance and deliverables for each of the benchmark cases.

Context:

This project refreshed and extended techno-economic studies of current generation (benchmark) CO2 capture technologies for gas fired power stations and provided comparable information on one or more next generation technologies. It produced a new benchmark incorporating exhaust gas recycle and provided robust, independent and directly comparable technology assessments of specific technologies being considered for further demonstration.

Disclaimer:

The Energy Technologies Institute is making this document available to use under the Energy Technologies Institute Open Licence for Materials. Please refer to the Energy Technologies Institute website for the terms and conditions of this licence. The Information is licensed 'as is' and the Energy Technologies Institute excludes all representations, warranties, obligations and liabilities in relation to the Information to the maximum extent permitted by law. The Energy Technologies Institute is not liable for any errors or omissions in the Information and shall not be liable for any loss, injury or damage of any kind caused by its use. This exclusion of liability includes, but is not limited to, any direct, indirect, special, incidental, consequential, punitive, or exemplary damages in each case such as loss of revenue, data, anticipated profits, and lost business. The Energy Technologies Institute does not guarantee the continued supply of the Information. Notwithstanding any statement to the contrary contained on the face of this document, the Energy Technologies Institute confirms that the authors of the document have consented to its publication by the Energy Technologies Institute.

FOSTER

Contract No.:	1.17.13074			
Client's Name:	The Energy Technologies Institute			
Project Title:	CCS Benchmark Refresh 2013			
Project Location:	Generic UK			

REVISION	Rev O1 (Draft)	Rev A1 (Final)	Rev A2	Rev A3	
DATE	14 Nov 2013	6 Dec 2013	17 Dec 2013	19 June 2014	2.00
ORIG. BY	S. Ferguson	S. Ferguson	S. Ferguson	T. Abbott	Tin Ablt.
CHKD BY	T. Abbott	T. Abbott	T. Abbott	R. Ray	Riky
APP. BY	T. Abbott	T. Abbott	T. Abbott	T. Abbott	. In All H .

WP6 - CCS Benchmark Refresh 2013 Phase A Report

CONTENTS

	२	
1. EXECU	TIVE SUMMARY	5
1.1 Intro	oduction	5
1.2 Scc	ре	5
1.3 Tas	k 1 – CCGT Benchmark	
1.3.1		
1.3.2	Assessment of changes from previous CCGT Benchmark	6
1.4 Tas	k 2 – EGR Benchmark	
1.4.1	Assessment of EGR Rates	
1.4.2	Estimating M701F5 Turbine Performance with EGR	8
1.4.3	EGR Benchmark Performance Results	9
2. INTROE	DUCTION	12
2.1 Scc	pe of Study	12
2.2 Scc	pe of Phase A	12
2.2.1	Task 1 - Combined Cycle Gas Turbine (CCGT) Benchmark Refresh	12
2.2.2	Task 2 - Exhaust Gas Recycle Benchmark	
2.2.3	Cost Estimate	
2.2.4	Phase A (Techno-Economic Assessment) Report	14
3. TASK 1	- CCGT BENCHMARK	
3.1 Cor	nbined Cycle Gas Turbine (CCGT) with 90% CO ₂ Capture	
3.1.1	Introduction	
3.1.2	Plant Performance	16
3.1.3	Process Description	17
3.1.4	Plant Turndown	
3.1.5	Capital Cost, Operating Cost and Economics	20
3.1.6	Key Assumptions and Uncertainties	
3.2 CC	GT without CO ₂ Capture	22
3.2.1	Introduction	
3.2.2	Plant Performance	22
3.2.3	Process Description	23
3.2.4	Plant Turndown	24
3.2.5	Capital Cost, Operating Cost and Economics	25
3.2.6	Key Assumptions and Uncertainties	25
3.3 Tec	hnical Performance Assessment Findings	
3.3.1	Review of Gas Turbine Performance Data	26
3.3.2	Review of Pressure Drop Profile in the HRSG and Downstream Equipment	26
3.3.3	Development of the New CCGT Benchmark	
3.3.4	Conclusions	29
	- EXHAUST GAS RECYCLE BENCHMARKS	
4.1 Dev	velopment of Exhaust Gas Recycle Benchmarks	31
4.1.1	Modelling of EGR Rates	31
4.1.2	Estimating M701F5 Turbine Performance with EGR	
4.1.3	Capture Plant equipment sizing with increasing levels of EGR	34
4.2 CC	GT with 35% EGR and 90% CO ₂ capture	
4.2.1	Introduction	35
4.2.2	Plant Performance	35
4.2.3	Process Description	36
4.2.4	Plant Turndown	39
4.2.5	Capital Cost, Operating Cost and Economics	40
4.2.6	Key Assumptions and Uncertainties	
4.3 CC	GT with 35% EGR without CO ₂ Capture	41
4.3.1	Introduction	41

Date: 19 June 2014

4.3.2	Plant Performance	41
4.3.3	Process Description	
4.3.4	Plant Turndown	
4.3.5	Capital Cost, Operating Cost and Economics	
4.3.6	Key Assumptions and Uncertainties	
4.4 CC	GT with 18% EGR and 90% CO ₂ capture	45
4.4.1	Introduction	
4.4.2	Plant Performance	45
4.4.3	Process Description	
4.4.4	Plant Turndown	
4.4.5	Capital Cost, Operating Cost and Economics	
4.4.6	Key Assumptions and Uncertainties	
4.5 CC	GT with 18% EGR without CO ₂ Capture	51
4.5.1	Introduction	51
4.5.2	Plant Performance	51
4.5.3	Process Description	
4.5.4	Plant Turndown	53
4.5.5	Capital Cost, Operating Cost and Economics	54
4.5.6	Key Assumptions and Uncertainties	54
5. EVALU	ATION BASES	
5.1 Te	chnical Evaluation Basis	
5.2 Ca	pital Cost Estimating Basis	
5.3 Op	erating and Maintenance Cost Estimating Basis	
5.3.1	Variable costs	
5.3.2	Fixed costs	60
	onomic Basis	
6. ASSES	SMENT OF THE EFFECT OF INCREASING EGR RATE	62
	oduction	
6.2 Pla	nt Performance with Increasing Levels of EGR	62
6.2.1	Power Island Performance	
6.2.2	CO ₂ Capture, Compression and Balance of Plant Performance	62
6.2.3	Overall Plant Performance	63
6.3 Ec	onomic Performance with Increasing levels of EGR	64
6.3.1	Capital Cost with Increasing EGR	64
6.3.2	Operating Cost with Increasing EGR	
6.3.3	Levelised Cost of Electricity with Increasing EGR	65
7. REFER	ENCES	68

FOSTER

WHEELER

ATTACHMENTS

- 1. Basis of Design
- 2. Heat and Material Balances
- 3. Utility Summaries
- 4. Capital Cost Estimates
- 5. Operating Cost Estimates
- 6. Technical Performance Report
- 7. Equipment Lists

DISCLAIMER

The information contained herein is provided by Foster Wheeler Energy Limited (FWEL) to Energy Technologies Institute LLP (ETI), solely to assist ETI in its benchmarking and performance analysis of next generation carbon capture technologies.

FWEL has not made any independent verification of data and information contained herein that has been supplied by ETI or other third parties. This report is intended for the sole use of ETI and FWEL makes no representation or warranty, express or implied, and assumes no obligation or liability, whatsoever, to any third party with respect to the veracity, adequacy, completeness, accuracy or use of any information contained herein.

The information provided is not, and should not be construed as, a recommendation by FWEL that any recipient provide finance to any project. Each recipient of this document should make its own independent evaluation of any such project and of the relevance and accuracy of the information contained herein, and should make such other investigations as it deems necessary to determine whether to extend credit to that project.

1. EXECUTIVE SUMMARY

1.1 Introduction

The ETI has engaged Foster Wheeler to execute its CCS Benchmark Refresh 2013 Project. The main purpose of this further study work is to provide additional benchmarking and performance analysis of next generation carbon capture technologies building upon those evaluated and reported in previous phases of CCS study work that Foster Wheeler has executed with ETI.

1.2 Scope

Phase A of the Project involves two tasks:

Task 1: Combined Cycle Gas Turbine (CCGT) Benchmark Refresh

Review and update of the WP1 CCGT flowsheet to include more accurate representation of:

- current mass-market gas turbines, based on published performance data;
- pressure profile through the HRSG and downstream equipment.

Task 2: Exhaust Gas Recycle (EGR) Benchmark

Develop a new benchmark for the CCGT/CCS case which recycles combustion exhaust gas to the gas turbine inlet. Develop designs for two EGR rates:

- An intermediate rate; and
- A rate representing an optimum for EGR, as agreed with ETI.

This Phase A Report includes:

- An assessment of materially significant changes from the previous CCGT benchmark, together with documentation of the assumptions used in development of the new benchmark;
- An assessment of appropriate EGR rates fulfilling the above criteria;
- Presentation of the technical and economic performance and deliverables for each of the benchmark cases.

In Phase B of this project, the technical and economic performance of alternative carbon capture technologies will be assessed against these new benchmarks.

1.3 Task 1 – CCGT Benchmark

1.3.1 CCGT Benchmark Performance Results

Table 1-1 Summary Performance Figures for CCGT Benchmark Cases

		CC with 90% C	-	CC without CC	
		100% Load	40% Load	100% Load	40% Load
Total gross installed capacity	MWe	967.9	421.2	1068.0	472.0
Total auxiliary loads	MWe	97.1	64.4	22.4	14.8
Net Power Export	MWe	870.8	356.8	1045.6	457.2
Net Efficiency (LHV)	%	48.6	39.2	58.3	50.3
Carbon capture rate	%	90.0	90.0	0	0
Total CO ₂ captured	tpd	7913	4020	0	0
Total CO ₂ emitted	tpd	883	445	8796	4464
CO ₂ emissions	g CO ₂ /kWh _{Net}	42.2	51.9	350.5	406.8

Table 1-2Economic Figures for CCGT Benchmark Cases

		CCGT with 90% CO₂ Capture		CCC without CO	
		100% Load	40% Load	100% Load	40% Load
Total CAPEX	GB£M	997	997	548	548
CAPEX efficiency	GB£/kWh	1145	2795	524	1197
Total OPEX – incl. fuel	GB£M p.a.	313.4	180.5	296.6	164.4
Total OPEX – excl. fuel	GB£M p.a.	45.1	44.4	28.3	28.3
OPEX – incl. fuel	GB£ p.a. / kW _{Net}	359.9	505.9	283.7	359.6
OPEX – excl. fuel	GB£ p.a. / kW _{Net}	51.8	124.5	27.1	61.9
Levelised Cost of Electricity CO_2 emission cost = £0 / te CO_2 CO_2 emission cost = £20 / te CO_2 CO_2 emission cost = £40 / te CO_2 CO_2 emission cost = £60 / te CO_2 Cost of CO_2 Captured	£ / MWh _{Net} £ / MWh _{Net} £ / MWh _{Net} £ / MWh _{Net}	69.1 70.0 70.8 71.7	118.8 119.8 120.9 121.9	47.7 54.7 61.7 68.7	70.1 78.3 86.4 94.6
CO_2 emission cost = £ 0 / te CO_2	£ / te CO ₂	56.8	103.6	n/a	n/a
Cost of CO_2 Avoided CO_2 emission cost = £ 0 / te CO_2	£ / te CO ₂	69.7	137.1	n/a	n/a

1.3.2 Assessment of changes from previous CCGT Benchmark

The Technical Performance Report included in Attachment 6 provides a detailed assessment of materially significant changes from the previous CCGT benchmark, together with documentation of the assumptions used in development of the new benchmark.

Table 1-3 summarises the key performance figures for the refreshed CCGT benchmark case compared with the WP1 CCGT benchmark cases with and without 90% CO₂ capture.

The impacts of each of the changes can be summarised as follows:

Gas Turbine Changes:

- increase in GT power output,
- increased heat rate (due to apparent error in Gatecycle library),
- increased GT exhaust temperature,

PAGE

• increased GT exhaust pressure,

decrease in GT efficiency

Blower Changes:

- decreased suction pressure
- increased ΔP
- increased flow rate
- decreased efficiency
- > increase in blower power and overall parasitic load

CO2 Capture Level

- capture level decreased from 90.9 to 90.0%
- quantity of CO₂ captured increase (5.2%) lower than plant capacity increase (6.3%)

CO2 Compressor Motor Efficiency

- compressor motor efficiency decreased from 100% to 95%
- CO₂ compression and dehydration unit power increase (11%) higher than plant capacity increase (6.3%)

		M701G (library)		M701G2 (GTW)		M701F5 (GTW)	
		WP3	WP1	WP3	WP1	WP6	WP6
		90% CO ₂ Capture	0% CO ₂ Capture	90% CO ₂ Capture	0% CO ₂ Capture	90% CO ₂ Capture	0% CO ₂ Capture
Total installed gross capacity	MWe	954.6	1037.6	908.1	1003.1	967.9	1068.0
- Gas Turbines	MWe	729.1	729.1	692.0	692.0	739.0	739.0
- Steam Turbine	MWe	225.5	308.5	216.0	311.1	228.9	328.9
Total auxiliary loads	MWe	110.6	46.9	88.6	22.1	97.1	22.4
- Power Island	MWe	39.2	40.1	13.3	15.6	13.2	15.6
- Acid Gas Removal	MWe	32.8	0.0	35.4	0.0	40.0	0.0
- CO ₂ Compression	MWe	28.6	0.0	28.7	0.0	31.7	0.0
- Others	MWe	10.0	6.7	11.1	6.5	12.1	6.8
Net Power Export	MWe	844.0	990.8	819.5	981.0	870.8	1045.6
Net Efficiency (LHV)	%	50.05	58.76	48.51	58.07	48.58	58.33
Heat Rate	kJ/kWh	7192.3	6127.0	7421.6	6199.6	7410.6	6172.1
CC Energy Penalty	% points	8.70		9.56		9.75	
Total Fuel Feed Rate	tpd	3070.4	3070.4	3076.3	3076.3	3264.1	3264.1
Total Carbon in Fuel	tpd	2257.8	2257.8	2262.2	2262.2	2400.3	2400.3
Total Carbon Captured	tpd	2053.5	0.0	2057.2	0.0	2159.4	0.0
Total CO ₂ Emissions	tpd	749.0	8273.8	751.2	8795.6	882.6	8795.6
Carbon Capture Rate	%	90.9	0.0	90.9	0.0	90.0	0.0
Carbon Efficiency	gCO ₂ /kWh	37.0	347.9	38.9	352.1	42.2	350.5

Table 1-3 Summary of Technical Performance for Original and RefreshedBenchmarks at 100% GT Load

1.4 Task 2 – EGR Benchmark

1.4.1 Assessment of EGR Rates

A simplified modelling approach was used to investigate the appropriate rates to use for EGR, simulating the performance of the GT system, and predicting the exhaust gas composition with a portion of the exhaust gas stream cooled to 24°C and recycled back to the GT inlet.

The Intermediate Case

This case was chosen to provide intermediate oxygen concentration at the GT inlet (19%) which were considered to present moderate development risks for the GT. The resulting EGR rate was approximately 19%.

The "Optimum" Case

For CCS applications, high EGR ratios are desirable to maximise the CO_2 content in the exhaust gas and minimise the mass flow through the CO_2 capture plant. However, there is a maximum feasible rate of EGR which can be achieved without compromising flame stability and increasing emissions.

GE has demonstrated complete combustion in a DLN F-class combustion system operating at 35% EGR using existing technology without major modifications.

It can be assumed that 35% EGR represents the current state of EGR development in F-class turbines, but that this may be extended in future through developments in turbine technology specifically for CCS projects.

	Tas 0% I	sk 1 EGR		ediate EGR	"Optimum" 35% EGR		
	GT Oxidant GT Exhaust		GT Oxidant	GT Exhaust	GT Oxidant	GT Exhaust	
Pressure (kPa)	101	105	101	104	101	104	
Temperature (°C)	10	613	13	597	15	603	
Mass rate (kg/h)	4991402	5127404	5231285	5362805	5108933	5238702	
Mole % Oxygen	20.82	11.01	18.92	9.92	16.42	7.38	
Mole % CO2	0.03	4.64	1.06	5.29	2.47	6.68	

Table 1-4 Preliminary GT Inlet/Exhaust Conditions at selected EGR Levels

1.4.2 Estimating M701F5 Turbine Performance with EGR

It is necessary to develop a method of estimating the performance of the MHI M701F5 turbine at a variety of exhaust gas recycle rates.

Given a coherent set of user defined input data, the Gatecycle model can predict the performance and exhaust conditions, which can then be used within HYSYS to model the HRSG and capture plant performance.

By calculating performance curves of the M701G library turbine at varying levels of EGR, correlations were identified, and applied to the Task 1 CCGT benchmark performance figures for the M701F5 turbine (at 0% EGR), in order to derive input data at 19% and 35% EGR.

	Task 1 0% EGR	Intermediate 19% EGR	"Optimum" 35% EGR
Electric Power (kW)	369521	365308	361681
Heat Rate (Btu/kWh)	8276	8329	8374
Exhaust flow rate (kg/s)	712.1	704.8	698.6
Exhaust Temp (°C)	613	618	621

Table 1-5 Gatecycle Input Parameters for M701F5 Turbine at selected EGR Levels

1.4.3 EGR Benchmark Performance Results

There are two variables which impact the plant technical and economic performance with increasing % EGR:

- Total flue gas CO₂ concentration increases and volumetric flow decreases.
- Total CO₂ molar flow decreases slightly because the GT demands slightly less fuel.

The plant performance trends can be seen in Table 1-6, while the cost impact of increasing % EGR can be seen in Table 1-7.

With increasing % EGR, there is a decrease in the power island gross power output, but at the same time, the total auxiliary loads also decrease. This results in only a modest improvement in the plant overall LHV efficiency with EGR, of 0.39 and 0.6 % points relative to the 0% EGR case efficiency of 48.58%. There is also a very small (0.2%) increase in the total net power output with EGR.

The power island capital cost increases with increasing EGR since the additional DCC for the EGR cases has been included in the Power Island scope. The CO_2 capture DCC, absorber and blower decrease in size significantly with EGR, resulting in a significant reduction in the CO_2 capture unit capital cost. The impact on the overall plant total project capital cost is therefore quite significant, with a 3.2% and 7.1% reduction for the 18% EGR and 35% EGR cases respectively.

The total operating costs at 100% GT load reduce with EGR by 0.7% and 1.4% for the 18% EGR and 35% EGR cases respectively. At 40% GT load the operating cost reduction is more significant at 2.1% and 4.3% for the 18% EGR and 35% EGR cases respectively. This is due to the slightly higher efficiency at turndown in the EGR cases.

Since both the total capital and the total operating costs reduce with increasing EGR, so does the levelised cost of electricity (LCOE). However, the reduction in the LCOE is quite modest, since, for gas plants, over the plant lifetime the price of fuel is much more significant than the capital cost of the original plant. The LCOE reduces by 1.7% and 3.3% for the 18% EGR and 35% EGR cases respectively.

The LCOE reduction is more significant at 40% GT load, reducing by 4.0% and 7.6% for the 18% EGR and 35% EGR cases respectively. However, it should also be remembered that the LCOE at part load is much higher than when operating the plant at full load (£118.8/MWh_{Net} at 40% GT load versus £69.1/MWh_{Net} at 100% GT load with 90% CCS and without EGR).

Table 1-6	Technical Performance Figures for CCGT with EGR
-----------	---

			1						
		0% EGR	0% EGR	18% EGR	35% EGR	0% EGR	0% EGR	18% EGR	35% EGR
		0% CCS	90% CCS	90% CCS	90% CCS	0% CCS	90% CCS	90% CCS	90% CCS
		100% GT	100% GT	100% GT	100% GT	40% GT	40% GT	40% GT	40% GT
Power									
Total gross installed capacity	MWe	1068.0	967.9	964.2	957.1	472.0	421.2	420.9	418.7
Gas Turbine (s)	MWe	739.0	739.0	731.0	723.4	295.6	295.6	287.5	279.9
Steam Turbine	MWe	328.9	228.9	233.2	233.8	176.4	125.6	133.4	138.7
Total auxiliary loads	MWe	22.4	97.1	90.8	84.0	14.8	64.4	59.0	53.7
Power Island	MWe	15.6	13.2	13.4	13.6	10.4	9.7	9.9	10.1
Flue Gas Blower	MWe	0.0	37.2	30.1	23.6	0.0	28.9	23.4	18.3
Acid Gas Removal/DCC	MWe	0.0	2.8	2.7	2.5	0.0	2.8	2.7	2.5
Alternative Technology	MWe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO2 compression	MWe	0.0	31.7	31.7	31.5	0.0	16.1	15.8	15.4
Others	MWe	6.8	12.1	12.8	12.9	4.4	6.9	7.2	7.3
Net Power Export	MWe	1045.6	870.8	873.4	873.1	457.2	356.8	362.0	365.0
Net Efficiency (LHV)	%	58.33	48.58	48.97	49.18	50.25	39.21	40.71	41.98
Heat Rate	kJ/kWh	6172	7411	7352	7320	7164	9181	8843	8576
CC Energy Penalty	% points	0.00	9.75	9.31	8.96	0.00	11.04	10.78	9.78
Carbon Balance									
Total carbon in feeds	tpd	2400.3	2400.3	2388.4	2376.9	1218.3	1218.3	1190.6	1164.3
Total carbon captured	tpd	0.0	2159.4	2156.5	2139.9	0.0	1096.9	1071.7	1049.0
Total carbon emissions	tpd	2400.3	240.9	231.9	237.1	1218.3	121.3	118.9	115.3
Carbon capture rate	%	0.0	90.0	90.3	90.0	0.0	90.0	90.0	90.1
Carbon efficiency	g CO2/kWh	350.5	42.2	40.5	41.5	406.8	51.9	50.1	48.2

Table 1-7	Economic Performance Figures for CCGT with EGR
-----------	--

		0% EGR	0% EGR	18% EGR	35% EGR	0% EGR	0% EGR	18% EGR	35% EGR
		0% CCS	90% CCS	90% CCS	90% CCS	0% CCS	90% CCS	90% CCS	90% CCS
		100% GT	100% GT	100% GT	100% GT	40% GT	40% GT	40% GT	40% GT
Power									
Net Power Export	MWe	1045.6	870.8	873.4	873.1	457.2	356.8	362.0	365.0
Net Efficiency (LHV)	%	58.33	48.58	48.97	49.18	50.25	39.21	40.71	41.98
Economic Performance									
Total CAPEX	GB£M	547.5	997.2	965.7	926.3	547.5	997.2	965.7	926.3
Power Island	GB£M	474.5	474.5	480.5	491.0	474.5	474.5	480.5	491.0
Acid Gas Removal	GB£M	0.0	322.9	290.3	246.4	0.0	322.9	290.3	246.4
CO ₂ compression	GB£M	0.0	61.5	61.5	61.5	0.0	61.5	61.5	61.5
Others	GB£M	73.0	138.2	133.4	127.4	73.0	138.2	133.4	127.4
CAPEX efficiency	GB£/kW _{Net}	523.6	1145.1	1105.6	1061.0	1197.5	2795.1	2667.9	2537.7
Total OPEX – incl. fuel	GB£M p.a.	296.6	313.4	311.1	308.9	164.4	180.5	176.7	172.7
		268.3	268.3	266.9	265.8	136.1	136.1	133.2	130.3
Total OPEX – excl. fuel	GB£M p.a.	28.3	45.1	44.2	43.1	28.3	44.4	43.5	42.4
OPEX – incl. fuel	GB£ p.a. /	283.7	359.9	356.2	353.8	359.6	505.9	488.2	473.1
OPEX – excl. fuel	GB£ p.a. /	27.1	51.8	50.6	49.4	61.9	124.5	120.2	116.2
Levelised Cost of Electricity		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO_2 emission cost = £0 / te CO_2	£ / MWh _{Net}	47.7	69.1	67.9	66.8	70.1	118.8	114.0	109.7
Cost of CO ₂ Captured									
CO_2 emission cost = £ 0 / te CO_2	£ / te CO ₂	n/a	56.8	51.9	47.9	n/a	103.6	96.1	86.8
Cost of CO ₂ Avoided									
CO_2 emission cost = £ 0 / te CO_2	£ / te CO ₂	n/a	69.7	63.0	57.8	n/a	137.1	125.2	109.8

2. INTRODUCTION

The Energy Technologies Institute (ETI) is a public private partnership between global industry members - BP, Caterpillar, EDF, E.ON, Rolls-Royce and Shell with the UK government. The ETI brings together projects that accelerate the development of affordable, clean, secure technologies needed to help the UK meet its' legally binding 2050 targets. The ETI's mission is to accelerate the development, demonstration and eventual commercial deployment of a focused portfolio of energy technologies, which will increase energy efficiency, reduce greenhouse gas emissions and help achieve energy and climate change goals.

The ETI has engaged Foster Wheeler to execute its CCS Benchmark Refresh 2013 Project. The main purpose of this further study work is to provide additional benchmarking and performance analysis of next generation carbon capture technologies building upon those evaluated and reported in previous phases of CCS study work that Foster Wheeler has executed with ETI.

2.1 Scope of Study

The scope of the CCS Benchmark Refresh 2013 Project is presented in four distinct tasks over two phases.

Phase A – Benchmark Refresh

Task 1: Combined Cycle Gas Turbine (CCGT) Benchmark Refresh

Task 2: Exhaust Gas Recycle Benchmark

Phase B – Technology Assessments

Task 3: Inventys Technology Refresh

Task 4: (Optional) Alternative Next Generation Technology Assessment

2.2 Scope of Phase A

Together Tasks 1 and 2 constitute Phase A of the Project.

2.2.1 Task 1 - Combined Cycle Gas Turbine (CCGT) Benchmark Refresh

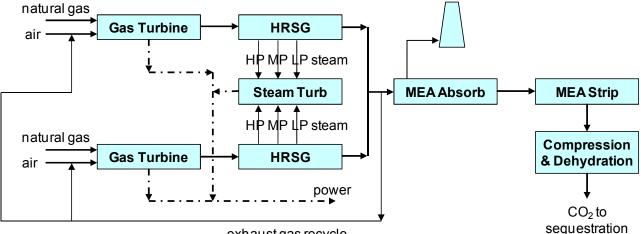
Review of the WP1 CCGT flowsheet, and updating it to include any technology updates, specifically including the following:

- review of the assumed performance of the Mitsubishi M701G2 gas turbines against manufacturer's and published data, with the aim of providing an accurate representation of current mass-market gas turbines (from MHI, GE or Siemens)
- review of the pressure drop profile in the heat recovery steam generator ("HRSG") and downstream equipment, and consideration of whether a fan is required to overcome pressure losses.

Using the WP1 CCGT case as the basis for technical development of a revised CCGT benchmark in Task 1, modify the process simulation model to incorporate the updated gas turbine performance data, the pressure drop profile in the HRSG and downstream equipment, and any other changes as agreed with ETI.

Use the process model to generate a revised heat and material balance at 100% load and at 40% load for the CCGT Benchmark Case. Take utility supply, specifically steam and power into account in the overall process performance.

Generate technical performance data for CCGT Benchmark for 90% and 0% capture.


Technical Performance Report

With visibility of the impact that these changes have made on the technical performance of the CCGT Benchmark schemes, provide an assessment of any materially significant changes for both the 90% capture and 0% capture cases in a Technical Performance Report. Show the agreed basis of the new CCGT benchmark in the report for development of (and/or comparison with) the other Tasks.

2.2.2 Task 2 - Exhaust Gas Recycle Benchmark

Develop a new benchmark for the CCGT/CCS case which recycles combustion exhaust gas to the gas turbine inlet ("EGR"), as shown in Figure 1.

The intention is to increase the percentage of CO_2 in the gas turbine and hence reduce the size of the capture plant. The key here is to examine the effect of EGR on the performance of the gas turbine (GT).

exhaust gas recycle

Figure 2-1 – CCGT with EGR and Post Combustion CO₂ Capture

Following agreement of the new CCGT benchmark in Task 1, and based on the feedback from the gas turbine vendors, develop the process simulation model to incorporate exhaust gas recycle, including any additional equipment required, at 90% capture. Deploy the same amine system as the original benchmark for the designs, resized as appropriate for the increased CO₂ concentration. Cool the gas before recycle. Develop designs for two EGR rates:

- A rate providing GT inlet conditions representing modest GT development risks. This choice will examine the O₂ outlet concentrations, inlet and outlet temperatures, etc. ; and
- A rate representing an optimum for EGR, as agreed with ETI.

Use the process model to generate heat and material balances at 100% load and at 40% load for the EGR Benchmark Cases. Take utility supply, specifically steam and power into account in the overall process performance. Where beneficial integrate the added equipment into the rest of the flowsheet, including reuse of low grade heat from the offgas.

Generate technical performance data for each of the EGR cases for 90% and 0% capture.

2.2.3 Cost Estimate

Produce equipment factored capital cost estimates for each of the cases, based on sized equipment lists. Produce the estimates on a consistent basis with the WP1 cost estimate (UK£, 2009 Q1 basis, $\pm 40\%$ accuracy) and present as a breakdown of costs at a main unit / block level.

Produce operating cost estimates for each evaluation case based on the combination of technical definition and capital cost estimate.

2.2.4 Phase A (Techno-Economic Assessment) Report

Collate the deliverables for each of the benchmark cases and present them in the Phase A Report, including the following for each case:

- Process description and block level process flow scheme drawings;
- Heat and material balance for key streams at 100% and 40% load;
- Summary of scheme performance figures on a block-by-block level at 40% and 100% load including;
 - Overall gross and net power output figures;
 - o Individual block power demand figures;
 - Overall CO₂ capture (quantity and capture level);
 - Overall thermal efficiency (LHV basis);
 - Feedstock composition and feed rate;
 - Utility summary;
 - Assumed entry conditions for CO₂ compression system.
- Statement of key assumptions and uncertainties;
- ±40% Equipment factored CAPEX estimate, including a breakdown of costs at a main unit / block level. Estimate basis Q1 2009 UK£;
- Operating cost estimate, including contribution of adsorbents, catalysts and chemicals costs, maintenance (factored from CAPEX), direct labour and general overheads.

3. TASK 1 - CCGT BENCHMARK

3.1 Combined Cycle Gas Turbine (CCGT) with 90% CO₂ Capture

3.1.1 Introduction

The overall process scheme was based upon a natural gas fired combined cycle gas turbine (CCGT) using two Mitsubishi Heavy Industries (MHI) M701F5 gas turbines featuring dry low NOx (DLN) burners, each with downstream heat recovery steam generator (HRSG), and common single steam turbine generator (STG), CO_2 capture unit and CO_2 compression and dehydration unit.

Figure 3-1 CCGT with Post Combustion CO₂ Capture

In this case the natural gas feed rate was set to ensure full utilisation of the gas turbines with the supporting and downstream equipment items sized to process the generated gas turbine exhaust gas. The process conditions, including stream flows, pressures, temperatures and compositions, were produced to reflect this sizing basis. Key features of the configuration include:

- Power Island Unit comprising of two parallel trains, each with one Mitsubishi Heavy Industries (MHI) M701F5 50 Hz gas turbine and one heat recovery steam generator (HRSG), connected to a single condensing steam turbine, using seawater cooling.
- Acid Gas Removal Unit CO₂ removal scheme developed using in-house information on the basis of an MEA-based process such as Fluor Econamine FG+ CO₂ recovery technology.
- CO₂ Compression and Drying Units dehydration and multi-stage compression to 150 barg.

The carbon capture scheme is configured with three trains of MEA absorption, two trains of stripping and two trains of CO_2 compression and drying. The absorption trains are sized based upon the maximum size of the absorption column in the region of 15m diameter (larger column diameters up to 20m have been suggested where the vessel can be constructed on-site). The number of stripping trains was selected based upon the heat input required for the stripper reboilers with a maximum total reboiler duty of 200 MW_{th} per train (this is based upon 4 x 50 MW_{th} reboilers located around the column base). The number of CO_2 compression trains was selected based upon in-house knowledge of commercially available equipment and to keep a consistent order of compressor size with other benchmark cases (from WP1).

The lean/rich solvent exchanger, also known as the cross-over exchanger, is another very large and key equipment item in the post-combustion carbon capture scheme. This duty is most commonly met using a plate and frame type heat exchanger in the smaller scale plants currently in operation. A feature of this type of exchanger is its relative simplicity of scale up, achieved by adding frames and increasing the area of each frame. While it is unlikely that a heat exchanger of this type has yet been operated at the scale required for the benchmark cases, previous Foster Wheeler work with technology providers has shown that the sizes envisaged in this study are not infeasible (this case was calculated to require 2 x 21870m² heat transfer surface area exchangers with a duty of 115MW each).

3.1.2 Plant Performance

The plant performance for this case was assessed at both 100% load and 40% load, as summarised in the table below:

		100% Load	40% Load
Power			
Total gross installed capacity	MWe	967.9	421.2
Gas Turbine (s)	MWe	739.0	295.6
Steam Turbine	MWe	228.9	125.6
Others	MWe	0.0	0.0
Total auxiliary loads	MWe	97.1	64.4
Power Island	MWe	13.2	9.7
Flue Gas Blower	MWe	37.2	28.9
Acid Gas Removal	MWe	2.8	2.8
CO ₂ compression	MWe	31.7	16.1
Others	MWe	12.1	6.9
Net Power Export	MWe	870.8	356.8
Net Efficiency (LHV)	%	48.6	39.2
Heat Rate	kJ/kWh	7411	9181
Flows			
Total fuel feed rate	tpd	3264	1657
Water consumption	tpd	3566	1834
Cooling water (once through)	tpd	1,851,274	1,022,976
Carbon Balance			
Total carbon in feeds	tpd	2400	1218
Total carbon captured	tpd	2159	1097
Carbon capture rate	%	90.0	90.0
Total CO ₂ captured	tpd	7913	4020
Total CO ₂ emitted	tpd	883	445
CO ₂ emissions	g CO ₂ /kWh _{Net}	42.2	51.9

Table 3-1Performance Figures for CCGT with 90% CO2 Capture

3.1.3 Process Description

Gas Turbines, Heat Recovery Steam Generators and Steam Turbine

The power island is based on two Mitsubishi Heavy Industries (MHI) M701F5 natural gas fed gas turbines, each with its own heat recovery steam generator (HRSG). The two HRSGs are identical and are configured to generate steam at three pressure levels with full reheat of medium pressure steam. A single steam turbine receives the steam from both HRSGs and is equipped with a vacuum condenser and condensate treatment.

Natural gas is received from across the plant battery limits via a metering station before being heated against MP boiler feed water (BFW) and fed to the gas turbines (GTs).

The GT exhaust gases flow to the Heat Recovery Steam Generator, without additional duct firing. The thermal energy of the exhaust gases is used to raise and superheat steam at 3 pressure levels as well as preheating condensate and heating the BFW. The flue gases, at approximately 93° C, leaving the HRSG are pressurised using a blower in order to overcome the pressure drop through the MEA based Acid Gas Removal unit. Once the CO₂ has been removed the flue gases are reheated against the hot flue gase from the HRSG to cool the gas entering the AGRU and ensure that the treated flue gases are warm enough for dispersion via the stack.

The coil sequence in the HRSG is summarised as follows:

- 2nd HP Superheater
- 2nd MP Reheater
- 1st HP Superheater
- 1st MP Reheater
- HP Evaporator
- MP Superheater
- 2nd HP Economiser
- MP Evaporator
- LP Superheater
- MP Economiser
- 1st HP Economiser
- LP Evaporator
- LP Economiser
- Condensate Preheater

Condensate from the steam turbine condenser is preheated and deaerated using LP steam in the deaerator. Boiler feed water from the deaerator is pumped up to the three pressure levels required by the boiler feed water pumps.

In the HP circuit the BFW is pumped to approximately 14,000 kPa, passing through the 1st and 2nd HP Economiser into the HP Steam Drum. Water from the HP Steam Drum passes through the HP Evaporator coil generating saturated HP steam which returns to the HP Steam Drum before passing through the 1st and 2nd HP Superheaters and then to the HP inlet of the Steam Turbine.

The MP BFW pumps pump BFW to approximately 3000 kPa, through the MP Economiser and into the MP Steam Drum. Water from the MP Steam Drum passes through the MP Evaporator generating MP steam which is returned to the MP Steam Drum before entering the MP Superheater. Exhaust steam from the HP stage Steam Turbine are combined with superheated MP steam which is

subsequently further superheated in the 1st and 2nd MP Reheaters before being routed to the MP stage of the Steam Turbine.

Desuperheaters between the two HP superheaters and the two MP reheaters use boiler feed water to control the second superheater outlet temperatures to 565°C for both pressure levels.

The LP BFW pumps pump the BFW to approximately 450 kPa, through the LP Economiser and into the LP Steam Drum. Water from the LP Steam Drum passes through the LP Evaporator generating LP steam which is returned to the LP Steam Drum before entering the LP Superheater. The superheated LP Steam is then split, with a portion being used to supply the heat required for the Stripper reboiler in the AGRU, and the remaining LP Steam being routed to the LP inlet of the Steam Turbine.

The exhaust gases from the LP stage of the steam turbine are combined with condensate from the Natural Gas Preheater and the condensate return from the AGRU Stripper Reboiler before being fully condensed against seawater in the Vacuum Condenser. The vacuum condensate is then returned to the Vacuum Condensate Pumps completing the circuit.

CO₂ Removal

A blower boosts the flue gas pressure sufficiently to overcome the pressure drop in the direct contact cooler (DCC) and absorption column. In the DCC much of the water present in the flue gas stream condenses as the gas is cooled to 50° C. The condensate is then recirculated through a cooler and returned to the contact tower. A small quantity of sodium hydroxide is added to the recirculating water in order to ensure that the remaining SO₂ in the flue gas is removed to meet the <10 ppm specification to prevent excessive solvent losses. Precipitates and excess water are removed from the system to waste water treatment.

In the lower portion of the absorption column the flue gas is contacted with semilean and then lean amine which absorbs approximately 90% of the CO_2 content of the flue gas. This section also incorporates an extraction and cooling loop in order to ensure the cooler conditions which are more favourable to CO_2 absorption. In the top of the column the flue gas is washed with water to prevent solvent losses to the atmosphere. The flue gas is routed back to the gas / gas heat exchanger in the FGD unit, to ensure its temperature is sufficient for dispersion, then is released to atmosphere via the stack.

The CO_2 -rich solvent stream exits the bottom of the absorber column and is pumped to approximately 5 bara. The stream is then split, with approximately 25% of the flow passing through 2 stages of heating against warmer solvent streams before being flashed at a pressure of 1.3 bara. The semi lean solvent from the flash drum is then cooled against rich solvent and returned to the absorption column with the cooled extracted solvent. The remaining rich solvent is heated against lean solvent in the cross over exchanger and introduced to the stripper column.

In the stripper column the CO_2 desorbs from the rich solvent as it is heated producing a stream of hot lean solvent from the bottom of the stripper. This lean solvent is cooled against rich solvent and returned to the absorption column. The stripper overheads are cooled to 30°C, condensing a significant quantity of water, some of which is returned to the stripper as reflux with the rest being sent to treatment or recovery.

CO₂ Compression and Drying

The acid gas resulting from the semi lean amine flash is compressed in the first of 8 compression stages, after which it is cooled and passed through a knock out drum.

After the first compression stage the main CO_2 stream from the stripper column is added to the flashed acid gas stream for all the subsequent compression steps. Between each of the next 4 steps is a cooler and knock out drum, and the CO_2 is compressed up to a pressure of 25 bara.

The CO_2 is then dried by molecular sieve adsorption to reach the specification of <50 ppmv moisture. Two dehydration vessels are required since one bed will be in use whilst the second bed will be in regeneration. The regeneration cycle uses a slipstream of dried gas exiting the operating molecular sieve bed. The gas is heated using the returning regeneration gas exiting the molecular sieve bed in regeneration. It is further heated under temperature control in an electric heater before entering the bed in a counter flow direction. The wet gas leaving the bed is cooled against incoming gas, any condensed water is separated in a knock out drum before it is passed through a fines filter and returned upstream of the 3rd stage compressor. The absorbent regeneration process takes several hours. When complete the heater is bypassed and the bed is cooled down over several hours before return to operation.

The final 3 compression stages include intercoolers and an after cooler and result in a final CO_2 product at specification of 150 barg and 30°C.

Balance of Plant

The key balance of plant requirements for this scheme are the cooling water supply systems. A very large flow of cooling water is required to supply the steam turbine vacuum condenser. This duty is supplied using sea water in a once through flow scheme.

The AGRU and CO_2 compression and drying units also require a significant quantity of cooling medium. Where this cannot be supplied using heat integration within or between the process units, cooling water is required. This cooling water is supplied as fresh cooling water in a closed circuit. The fresh water system is cooled against sea water.

Facilities are also required for storage and make-up of the MEA based solvent to the AGRU. Reuse and treatment of the numerous, mainly small, water streams produced from the cooling of water saturated gas streams are integrated with the units where possible. Streams containing contaminants such as MEA are routed to an effluent treatment system.

3.1.4 Plant Turndown

Overall plant performance has been assessed at turndown using a GT power output of 40%. GT performance at 40% power output was estimated using in-house performance curves for a similar turbine firing natural gas at reduced load.

The gas turbine operates less efficiently at turndown, consuming proportionally more fuel and air, and delivering proportionally more exhaust gas to the HRSG and capture plant. In turn, this will mean the HRSG is able to raise proportionally more steam, which results in the following effects:

40%
51%
78%
77%
64%
51%

PAGE

Capture Plant Steam Usage 51%				
ST Power Output	55%			
Net Power Output	41%			

3.1.5 Capital Cost, Operating Cost and Economics

The economic results are outlined in the table below:

·			-
		100% Load	40% Load
Total CAPEX	GB£M	997.2	997.2
Power Island	GB£M	474.5	474.5
Acid Gas Removal	GB£M	322.9	322.9
CO ₂ compression	GB£M	61.5	61.5
Others	GB£M	138.2	138.2
CAPEX efficiency	GB£/kW _{Net}	1145	2795
Total OPEX – incl. fuel	GB£M p.a.	313.4	180.5
Total OPEX – excl. fuel	GB£M p.a.	45.1	44.4
OPEX – incl. fuel	GB£ p.a. / kW _{Net}	359.9	505.9
OPEX – excl. fuel	GB£ p.a. / kW _{Net}	51.8	124.5
Levelised Cost of Electricity CO_2 emission cost = £0 / te CO_2 CO_2 emission cost = £20 / te CO_2 CO_2 emission cost = £40 / te CO_2 CO_2 emission cost = £60 / te CO_2	£ / MWh _{Net} £ / MWh _{Net} £ / MWh _{Net} £ / MWh _{Net}	69.1 70.0 70.8 71.7	118.8 119.8 120.9 121.9
Cost of CO ₂ Captured CO ₂ emission cost = \pounds 0 / te CO ₂ Cost of CO ₂ Avoided	£ / te CO ₂	56.8	103.6
CO_2 emission cost = £ 0 / te CO_2	£ / te CO ₂	69.7	137.1

Table 3-2 Economic Figures for CC	CGT with 90% CO ₂ Capture
-----------------------------------	--------------------------------------

3.1.6 Key Assumptions and Uncertainties

Many assumptions have already in discussed in the proceeding sections hence are only summarised below:

- GTW 2013 performance data combined with the GTW rule of thumb for GT performance derating for ambient temperature is a good guide for establishing representative GT performance for our basis of design (±0.25% since the middle of the suggested range was selected)
- Testing the impact of a number of variables using the M701G library gas turbine in Gatecycle will give performance impacts which can be used to extrapolate the anticipated impact of the same variables for the M701F5 machine. (For Task 1 this was limited to the impact of increasing the GT exhaust gas pressure.)
- The GT behaviour at 40% turndown was modelled using curves for a different machine from Foster Wheeler recent experience, it is therefore assumed that the M701G2 will respond in a similar way to this reference machine (this includes an assumption that the air compressor can only turn down to 78% load, as was the case for the reference machine).
- The GT turndown calculation for the reference machine.
- HRSG pressure drop is assumed to be a typical value for a Frame 9 HRSG of 0.02 bar.
- Polytropic efficiency of the flue gas blower is assumed to be 85%.

- Motor efficiencies for blowers, pumps and compressors are all assumed to be 95%.
- Transformer losses have been assumed to be 0.3% which assumes a single step up transformer is used for all three generators.
- BFW make-up in the Power Island is assumed to be 1% of the total water circulation rate.
- For the 40% turndown case it is assumed that cooling water pumps, blowers and compressors all turndown in line with the unit load as there will be multiple pumps in each set. The solvent pumps are assumed to turndown using minimum flow recycle.
- Typical figures for pressure drop have been assumed throughout the scheme in order to arrive at a reasonable pressure profile in the absence of specifics such as plot layout and elevations.

3.2 CCGT without CO₂ Capture

3.2.1 Introduction

A natural gas CCGT without CO_2 capture was developed, using the same configuration and natural gas feed rate as the CCGT with CO_2 capture case, but excluding the Acid Gas Removal and CO_2 Compression and Drying Units.

₽

OSTER

WHEEL

The overall process scheme was based upon a natural gas fired combined cycle gas turbine (CCGT) using two Mitsubishi Heavy Industries (MHI) M701F5 gas turbines featuring dry low NOx (DLN) burners, each with downstream heat recovery steam generator (HRSG), and common single steam turbine generator (STG).

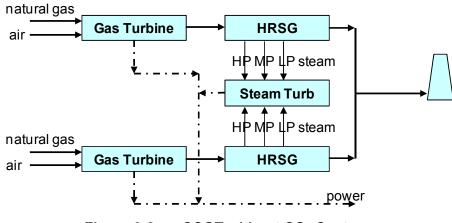


Figure 3-2 CCGT without CO₂ Capture

3.2.2 Plant Performance

The plant performance for this case was assessed at both 100% load and 40% load, as summarised in the table below:

		100% Load	40% Load
Power			
Total gross installed capacity	MWe	1068.0	472.0
Gas Turbine (s)	MWe	739.0	295.6
Steam Turbine	MWe	328.9	176.4
Others	MWe	0.0	0.0
Total auxiliary loads	MWe	22.4	14.8
Power Island	MWe	15.6	10.4
Flue Gas Blower	MWe	0.0	0.0
Acid Gas Removal	MWe	0.0	0.0
CO ₂ compression	MWe	0.0	0.0
Others	MWe	6.8	4.4
Net Power Export	MWe	1045.6	457.2
Net Efficiency (LHV)	%	58.3	50.3
Heat Rate	kJ/kWh	6172	7164
Flows			
Total fuel feed rate	tpd	3264	1657
Water consumption	tpd	204	131
Cooling water (once through)	tpd	1,219,104	746,755

 Table 3-3
 Performance Figures for CCGT without CO₂ Capture

Carbon Balance			
Total carbon in feeds	tpd	2400	1218
Total carbon captured	tpd	0	0
Carbon capture rate	%	0.0	0.0
Total CO ₂ captured	tpd	0	0
Total CO ₂ emitted	tpd	8796	4464
CO ₂ emissions	g CO ₂ / kWh _{Net}	350.5	406.8

3.2.3 Process Description

Gas Turbines, Heat Recovery Steam Generators and Steam Turbine

The power island is based on two Mitsubishi Heavy Industries (MHI) M701F5 natural gas fed gas turbines, each with its own heat recovery steam generator (HRSG). The two HRSGs are identical and are configured to generate steam at three pressure levels with full reheat of medium pressure steam. A single steam turbine receives the steam from both HRSGs and is equipped with a vacuum condenser and condensate treatment.

Natural gas is received from across the plant battery limits via a metering station before being heated against MP boiler feed water (BFW) and fed to the gas turbines (GTs).

The GT exhaust gases flow to the Heat Recovery Steam Generator, without additional duct firing. The thermal energy of the exhaust gases is used to raise and superheat steam at 3 pressure levels as well as preheating condensate and heating the BFW. The flue gases, at approximately 93 °C, leaving the HRSG are released to the atmosphere via a stack equipped with damper and continuous emissions monitoring.

The coil sequence in the HRSG is summarised as follows:

- 2nd HP Superheater
- 2nd MP Reheater
- 1st HP Superheater
- 1st MP Reheater
- HP Evaporator
- MP Superheater
- 2nd HP Economiser
- MP Evaporator
- LP Superheater
- MP Economiser
- 1st HP Economiser
- LP Evaporator
- LP Economiser
- Condensate Preheater

Condensate from the steam turbine condenser is preheated and deaerated using LP steam in the deaerator. Boiler feed water from the deaerator is pumped up to the three pressure levels required by the boiler feed water pumps.

In the HP circuit the BFW is pumped to approximately 14,000 kPa, passing through the 1st and 2nd HP Economiser into the HP Steam Drum. Water from the HP Steam Drum passes through the HP Evaporator coil generating saturated HP steam which

returns to the HP Steam Drum before passing through the 1st and 2nd HP Superheaters and then to the HP inlet of the Steam Turbine.

The MP BFW pumps pump BFW to approximately 3000 kPa, through the MP Economiser and into the MP Steam Drum. Water from the MP Steam Drum passes through the MP Evaporator generating MP steam which is returned to the MP Steam Drum before entering the MP Superheater. Exhaust steam from the HP stage Steam Turbine are combined with superheated MP steam which is subsequently further superheated in the 1st and 2nd MP Reheaters before being routed to the MP stage of the Steam Turbine.

Desuperheaters between the two HP superheaters and the two MP reheaters use boiler feed water to control the second superheater outlet temperatures to 565°C for both pressure levels.

The LP BFW pumps pump the BFW to approximately 450 kPa, through the LP Economiser and into the LP Steam Drum. Water from the LP Steam Drum passes through the LP Evaporator generating LP steam which is returned to the LP Steam Drum before entering the LP Superheater. The superheated LP Steam is then routed to the LP inlet of the Steam Turbine.

The exhaust gases from the LP stage of the steam turbine are combined with condensate from the Natural Gas Preheater before being fully condensed against seawater in the Vacuum Condensate Condenser. The vacuum condensate is then returned to the Vacuum Condensate Pumps completing the circuit.

Balance of Plant

The key balance of plant requirements for this scheme are the cooling water supply systems. A very large flow of cooling water is required to supply the steam turbine vacuum condenser. This duty is supplied using sea water in a once through flow scheme. Any other cooling duties are supplied using fresh cooling water, which is itself cooled against sea water.

3.2.4 Plant Turndown

Overall plant performance has been assessed at turndown using a GT power output of 40%. GT performance at 40% power output was estimated using in-house performance curves for a similar turbine firing natural gas at reduced load.

The gas turbine operates less efficiently at turndown, consuming proportionally more fuel and air, and delivering proportionally more exhaust gas to the HRSG. In turn, this will mean the HRSG is able to raise proportionally more steam, which results in the following effects:

GT Power Output	40%
Fuel Consumption	51%
Air Consumption	78%
GT Exhaust Flow	77%
HRSG Steam Raised	64%
ST Power Output	54%
Net Power Output	44%

3.2.5 Capital Cost, Operating Cost and Economics

The economic results are outlined in the table below:

Table 3-4 Economic Figures for CCGT without CO₂ Capture

		100% Load	40% Load
Total CAPEX	GB£M	547.5	547.5
Power Island	GB£M	474.5	474.5
Acid Gas Removal	GB£M	0.0	0.0
CO ₂ compression	GB£M	0.0	0.0
Others	GB£M	73.0	73.0
CAPEX efficiency	GB£/ kW _{Net}	524	1197
Total OPEX – incl. fuel	GB£M p.a.	296.6	164.4
Total OPEX – excl. fuel	GB£M p.a.	28.3	28.3
OPEX – incl. fuel	GB£ p.a. / kW _{Net}	283.7	359.6
OPEX – excl. fuel	GB£ p.a. / kW _{Net}	27.1	61.9
Levelised Cost of Electricity CO_2 emission cost = £0 / te CO_2 CO_2 emission cost = £20 / te CO_2 CO_2 emission cost = £40 / te CO_2 CO_2 emission cost = £60 / te CO_2 Cost of CO_2 Captured CO_2 emission cost = £0 / te CO_2	£ / MWh _{Net} £ / MWh _{Net} £ / MWh _{Net} £ / MWh _{Net} £ / te CO ₂	47.7 54.7 61.7 68.7 n/a	70.1 78.3 86.4 94.6 n/a
Cost of CO ₂ Avoided	2,10002	il/d	11/a
CO_2 emission cost = £ 0 / te CO_2	£ / te CO ₂	n/a	n/a

3.2.6 Key Assumptions and Uncertainties

For this case the assumptions are identical to the case with CO_2 capture shown in Section 3.1.6.

3.3 Technical Performance Assessment Findings

The Technical Performance Report included in Attachment 6 provides a detailed assessment of materially significant changes from the previous CCGT benchmark, together with documentation of the assumptions used in development of the new benchmark. This can be summarised as follows.

3.3.1 Review of Gas Turbine Performance Data

Attempts have been made to contact each of the major GT vendors to discuss the suitability and performance of their machines for both post-combustion capture and EGR modes of operation. Unfortunately, their responses have not been positive.

This performance data from GTW must be modified to take into account the site conditions assumed in the basis of design, and to raise the GT exhaust pressure slightly following the HRSG pressure drop review.

After additional scrutiny of the WP1/WP3 Gatecycle models it has become apparent that the M701G Gatecycle library performance data differs significantly from the published M701G2 data in GTW. In order to compare the GTW data with the Gatecycle library data, temperature/performance modifications were applied to the published M701G2 data, to provide an alternative prediction of the machine performance at our basis of design conditions.

MHI recommended that the performance of their M701F5 machine has superseded the M701G2 used in our WP1 benchmark, as published in GTW 2013 data.

A comparison of the performance data for the MHI M701G machine used to develop the WP1 Benchmark versus the predicted performance data for both the MHI M701G2 and M701F5 machines is given below.

	WP1	GTW	WP6
	M701G	M701G2	M701F5
Electric power (net of gen. losses only), kW	364,550	346,024	369,521
Heat Rate, Btu/kWh	8254	8330	8276
Exhaust flow rate, lb/s	1525	1625	1570
Exhaust temperature, °F	1124	1089	1136
Exhaust Pressure, kPa (abs)	103.5	103.5	105.3

 Table 3-5 – Original and Refreshed GT Performance Data

Note: Performance at BoD conditions (10°C)

The figures show that there is a moderate but significant improvement in GT performance which can be achieved by updating the original CCGT benchmark cases with a new state-of-the-art GT, despite the raised exhaust pressure.

3.3.2 Review of Pressure Drop Profile in the HRSG and Downstream Equipment

The WP1 CCGT benchmark case shows no pressure drop between the GT exhaust and the blower inlet. This oversimplification resulted in an underestimation of the blower power, which is a significant contributor to the total parasitic load of the plant.

HRSG Pressure Drop

In-house experience within FW (Madrid office and Fired Heaters) has confirmed that an HRSG pressure drop of 0.02 barg is appropriate.

As such, it is recommended for the updated benchmark that we use a blower suction pressure of 0.02 barg, an HRSG pressure drop of 0.02 bar, and an increased gas turbine exhaust pressure of 0.04 barg.

Blower Efficiency

The original benchmark design model included an assumption of polytropic efficiency of 91.25%. The origin of this figure is uncertain, so a revised assumption of 85% is recommended based on advice from both FW in-house rotating equipment specialists and Howdens.

Using the recommended suction and discharge pressures above, together with a polytropic efficiency of 85%, the revised blower power would be 17,683 kW.

3.3.3 Development of the New CCGT Benchmark

Table 3-6 summarises the key performance figures for the refreshed CCGT benchmark case compared with the WP1 CCGT benchmark cases with and without 90% CO₂ capture.

The impacts of each of the changes can be summarised as follows:

Gas Turbine Changes:

- increase in GT power output,
- increased heat rate (due to apparent error in Gatecycle library),
- increased GT exhaust temperature,
- increased GT exhaust pressure,
- decrease in GT efficiency

Blower Changes:

- decreased suction pressure
- increased ΔP
- increased flow rate
- decreased efficiency
- > increase in blower power and overall parasitic load

CO₂ Capture Level

- capture level decreased from 90.9 to 90.0%
- quantity of CO₂ captured increase (5.2%) lower than plant capacity increase (6.3%)

CO₂ Compressor Motor Efficiency

- compressor motor efficiency decreased from 100% to 95%
- CO₂ compression and dehydration unit power increase (11%) higher than plant capacity increase (6.3%)

		M701G	(library)	M701G2	2 (GTW)	M701F5	G(GTW)
		WP3	WP1	WP3	WP1	WP6	WP6
		90% CO ₂ Capture	0% CO ₂ Capture	90% CO ₂ Capture	0% CO ₂ Capture	90% CO ₂ Capture	0% CO ₂ Capture
Total installed gross capacity	MWe	954.6	1037.6	908.1	1003.1	967.9	1068.0
- Gas Turbines	MWe	729.1	729.1	692.0	692.0	739.0	739.0
- Steam Turbine	MWe	225.5	308.5	216.0	311.1	228.9	328.9
Total auxiliary loads	MWe	110.6	46.9	88.6	22.1	97.1	22.4
- Power Island	MWe	39.2	40.1	13.3	15.6	13.2	15.6
- Acid Gas Removal	MWe	32.8	0.0	35.4	0.0	40.0	0.0
- CO ₂ Compression	MWe	28.6	0.0	28.7	0.0	31.7	0.0
- Others	MWe	10.0	6.7	11.1	6.5	12.1	6.8
Net Power Export	MWe	844.0	990.8	819.5	981.0	870.8	1045.6
Net Efficiency (LHV)	%	50.05	58.76	48.51	58.07	48.58	58.33
Heat Rate	kJ/kWh	7192.3	6127.0	7421.6	6199.6	7410.6	6172.1
CC Energy Penalty	% points	8.70		9.56		9.75	
Total Fuel Feed Rate	tpd	3070.4	3070.4	3076.3	3076.3	3264.1	3264.1
Total Carbon in Fuel	tpd	2257.8	2257.8	2262.2	2262.2	2400.3	2400.3
Total Carbon Captured	tpd	2053.5	0.0	2057.2	0.0	2159.4	0.0
Total CO ₂ Emissions	tpd	749.0	8273.8	751.2	8795.6	882.6	8795.6
Carbon Capture Rate	%	90.9	0.0	90.9	0.0	90.0	0.0

Table 3-6 Summary of Technical Performance for Original and RefreshedBenchmarks at 100% GT Load

Overall Impact on Performance between WP1/3 (library) and WP6 Benchmarks

37.0

gCO₂/kWh

The above changes and individual impacts come together to produce the following overall changes between the original WP1 and WP3 benchmarks and the refreshed WP6 benchmarks (at 100% GT load):

347.9

38.9

352.1

42.2

350.5

- total plant fuel input has increased by 6.3% due to changing the GT model data from the M701G2 to the M701F5;
- net power output has increased by 26.8 MWe and 54.8 MWe (or an increase of 3.2% and 5.5%) for the 90% and 0% carbon capture cases respectively;
- LHV net efficiency has decreased by 1.47 %-points and 0.43 %-points to 48.58% and 58.33% for the 90% and 0% carbon capture cases respectively;
- the carbon capture energy penalty has increased relative to the WP1 and WP3 benchmarks by 1.05 %-points from 8.70 % points to 9.75 %-points;
- the carbon footprint of the power generation scheme has increased from 37.0 gCO₂/kWh_{net} to 42.2 gCO₂/kWh_{net} relative to the WP1 and WP3 benchmarks (347.9 gCO₂/kWh_{net} to 350.5 gCO₂/kWh_{net} in the cases without carbon capture) due to the decrease in overall LHV efficiency.
 i.e. the increased fuel rate per unit of power has now resulted in more CO₂ production per unit of power).

Carbon Efficiency

Impact on Performance between WP1/3 (GTW) and WP6 Benchmarks

An apparent error in the Gatecycle Library data heat rate and GT auxiliaries figures led to the generation of a revised WP1 and WP3 simulation in order to investigate the differences between the overall plant performance based on the Gatecycle library machine and the M701G2 as shown in Gas Turbine World 2013.

Advice was sought from experts in power systems based in FW's Milan office, who suggested that it is normal for the total auxiliaries in a CCGT (without capture) to be approximately 2% of the total gross power output. The simulations and performance calculations were therefore modified to reflect this lower parasitic load.

The main features changing from the library data to the GTW data for the WP1 and WP3 benchmarks are:

- 0.2% increase in fuel requirement;
- 5.1% decrease in GT power generation;
- 4.2% decrease and 0.8% increase in ST power generation for the with and without CO₂ capture cases respectively;
- 25.9 MWe and 25 MWe reduction in power island parasitic load for the with and without CO₂ capture cases respectively (due to a very high GT auxiliaries figure in the Library data);
- 2.9% and 1% decrease in net power production for the with and without CO₂ capture cases respectively;
- 1.6% point and 0.7% point decrease in net LHV efficiency for the with and without CO₂ capture cases respectively;
- A 0.9 % point increase in the energy penalty of CO₂ capture.

3.3.4 Conclusions

The results above show that there has been a significant value in revisiting the CCGT benchmark cases originally developed in 2009 and 2010 and applying a higher degree of interrogation to all input data used. This work has identified areas for improvement in:

- GT performance data
- Blower power
- HRSG pressure profile
- CO₂ compression power
- CO₂ capture level

The overall changes can be attributed to two key steps:

- Changing from using Gatecycle library data (for the M701G turbine) to Gas Turbine World 2013 data (for the M701G2 turbine).
 The main impact of changing to the GTW data was to reduce the GT output and overall net power production. This reduced the expected net efficiency by 1.5% points.
- Changing from the M701G2 turbine data to the M701F5 turbine data based on MHI's recommendation.

The absolute performance of the M701F5 gas turbine is better than that of the M701G2 gas turbine, and almost equivalent to the original M701G (library) turbine output.

In order to improve upon the benchmarks further it would be essential to obtain the assistance of one or more of the vendors of Frame 9 scale gas turbines. Unfortunately, this study has found that these vendors are currently reluctant to commit resource to work of this nature until a firm project prospect is identified as a focus for their efforts.

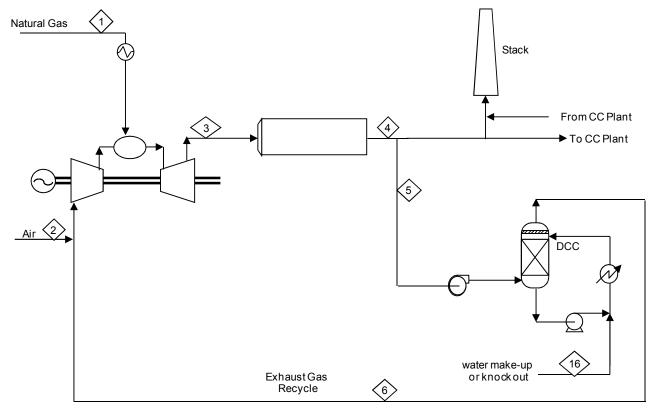
₽

OSTER

4. TASK 2 - EXHAUST GAS RECYCLE BENCHMARKS

4.1 Development of Exhaust Gas Recycle Benchmarks

In developing the new benchmarks for the CCGT/CCS case with EGR, an assessment of two rates was required:


- An intermediate rate providing GT inlet conditions representing modest GT development risks; and
- A rate representing an optimum for EGR.

4.1.1 Modelling of EGR Rates

For the purposes of this assessment, the EGR rate is defined as follows:

EGR Rate = <u>volume flow of recirculated exhaust gas</u> volume flow of exhaust gas from HRSG

In order to model the CCGT system with EGR, a simplified Gatecycle simulation was developed using the library data for the MHI M701G turbine. By simulating the performance of the CCGT system, the exhaust gas composition could be predicted, with a portion of the exhaust gas stream cooled and recycled back to the GT inlet. Using a 10°C approach temperature to the cooling water temperature of 14°C, gives an EGR temperature of 24°C after cooling.

Figure 4-1 Simplified CCGT with EGR Flowsheet

This simplified modelling approach was used to investigate the appropriate rates to use for EGR, and did not include the specific GT modifications to represent the MHI M701F5 turbine performance and the HRSG pressure drop as outlined in Section 3.3. These will be included in the more detailed modelling of the full cases in sections 4.2 to 4.6.

Selection of the Intermediate Case

The Intermediate case was chosen such that the oxygen concentration at the GT inlet represented modest development risks for the GT.

The oxygen concentration of the GT inlet for this case was assumed to be 19%.

Using the modelling described above, the EGR Rate was varied such that the oxygen concentration at the GT inlet was also 19%. The resulting EGR rate was approximately 19%.

Selection of the "Optimum" Case

EGR involves using exhaust gases (with depleted oxygen levels) to replace part of the combustion air in the GT inlet. For the CCS application, high EGR ratios are desirable to maximise the CO_2 content in the exhaust gas and minimise the mass flow through the CO_2 capture plant. However, there is a maximum feasible rate of EGR which can be achieved without compromising flame stability due to low oxygen concentration in the flame anchoring region and increasing emissions from incomplete combustion.

Oxygen enrichment of the combustion air would require an air separation unit, which would incur significant capital cost, parasitic load and operational inflexibility. As such, oxygen enrichment was discounted form this study.

The published articles on EGR (see references) have found that the effect of EGR on the components including the power outputs and efficiency is not very large, and that while NOx emissions are reduced by EGR, CO emissions increase due to decreasing O_2 content.

GE has demonstrated complete combustion in a DLN F-class combustion system operating at 35% EGR using existing technology without major modifications.

Further, GE believe that this could be pushed up to 40% whilst maintaining the lean blow out margins with minor modifications to change the level of pre-mixing, control systems, and introduction of pilots.

As such, it can be assumed that 35% EGR represents the current state of EGR development in F-class turbines, but that this may be extended in future through developments in turbine technology specifically for CCS projects.

<u>Results</u>

Preliminary modelling produced the following results for the GT oxidant and exhaust streams at the selected EGR rates of 19% and 35%. These are compared against the same data for the GT without EGR based on the (more detailed) modelling completed in Task 1.

As the EGR modelling is developed in more detail for the Task 2 Benchmarks, the key attributes that will be maintained are:

- "Optimum" Case 35% EGR
- "Intermediate Case" 19% Oxygen in GT inlet.

As such, the results shown in the Table 4-1 may not exactly match the benchmark results.

	Task 1 0% EGR		Intermediate 19% EGR		"Optimum" 35% EGR	
	GT Oxidant	GT Exhaust	GT Oxidant	GT Exhaust	GT Oxidant	GT Exhaust
Pressure (kPa)	101	105	101	104	101	104
Temperature (°C)	10	613	13	597	15	603
Mass rate (kg/h)	4991402	5127404	5231285	5362805	5108933	5238702
Mole % Oxygen	20.82	11.01	18.92	9.92	16.42	7.38
Mole % Nitrogen	77.60	74.18	77.96	74.84	78.72	75.39
Mole % CO2	0.03	4.64	1.06	5.29	2.47	6.68
Mole % Argon	0.93	0.89	0.93	0.89	0.94	0.90
Mole % H2O	0.61	9.29	1.12	9.05	1.46	9.65
Molar rate (kmol/hr)	173009	180728	180783	188449	176006	183558

Table 4-1 Preliminary GT Inlet/Exhaust Conditions at selected EGR Levels

4.1.2 Estimating M701F5 Turbine Performance with EGR

It is necessary to develop a method of estimating the performance of the MHI M701F5 turbine at a variety of exhaust gas recycle rates.

Given a coherent set of user defined input data, the Gatecycle model can predict the performance and exhaust conditions, which can then be used within HYSYS to model the capture plant performance.

By calculating performance curves for the M701G library turbine at varying levels of EGR, the following correlations have been identified:

Heat Rate (Btu/KWh)	$= 0.026x^2 + 2.778x + 8481$					
Gross Power (kW)	= -158.7x + 280756					
Exhaust Flow (kg/s)	= -0.388x + 752					
Exhaust Temp (°C)	$= 0.003x^2 + 0.228x + 592$					
where x = EGR level = e.g. 35%						

To confirm the results, similar correlations were calculated for the performance of the M701F library turbine, with no significant difference (<1%) identified between the trends for the relevant input data at either 19% and 35%.

Using the GT Performance figures from the Task 1 CCGT benchmark which have been derived for the M701F5 turbine at 0% EGR, together with the correlations above, we can derive the following initial input data for the Gatecycle models at 19% and 35% EGR.

Table 4-2 Gatecycle Input Parameters for M701F5 Turbine at selected EGR Levels

	Task 1 0% EGR	Intermediate 19% EGR	"Optimum" 35% EGR
Electric Power (kW)	369521	365308	361681
Heat Rate (Btu/kWh)	8276	8329	8374
Exhaust flow rate (kg/s)	712.1	704.8	698.6
Exhaust Temp (°C)	613	618	621

The calculation method employed by Gatecycle uses the user specified values for net power generation, heat rate, exhaust flow and exhaust temperature to define the GT performance and calculate the subsequent overall power island performance.

Specifying these variables means that the air stream flow rate or, in the EGR cases, the oxidant stream flow rate (made up of air and cooled recycled flue gas), is a function of the exhaust flow rate and heat rate. Consequently the detailed power island model had to be converged manually by specifying the GT oxidant feed stream composition and temperature to match the resultant GT exhaust gas plus fresh air stream composition from the previous iteration.

This process resulted in a slightly different final value of EGR for the optimum case of 18.05% in order to ensure that the oxygen concentration in the GT inlet was consistent with the Intermediate Case value.

4.1.3 Capture Plant equipment sizing with increasing levels of EGR

There are two variables which impact the CO₂ capture and compression equipment size when EGR is increasingly applied to the benchmark system design:

- Total flue gas CO₂ concentration increases and volumetric flow decreases.
- Total CO₂ molar flow decreases slightly because the GT demands slightly less fuel with increasing EGR.

To account for the potential benefits in terms of reduced equipment sizes and parasitic loads as the percentage of EGR is increased, heat and material balances and utility summaries have been developed based on the flue gas flow rate and composition for each case assessed (at full load). The equipment within the CO_2 capture and compression equipment has been resized and recosted (equipment was not resized for the turndown cases) for the flue gas flow rate and composition particular to the individual case.

Due to the flue gas total volumetric flow rate decrease the CO_2 capture plant blower, DCC and absorber decrease in size as %EGR increases.

The remaining CO_2 capture and compression equipment size is dependant only on the molar flow rate of CO_2 to be captured because this, in turn, determines the optimum solvent molar flow rate. (The solvent lean and rich loading should not be a variable in this kind of comparative study as it is independent of the upstream technology being assessed.) Since the CO_2 molar flow decreases slightly with increasing %EGR, the size of this equipment all decreases slightly with increasing %EGR.

However, as EGR is added, an additional DCC is required (included in the Power Island scope) to cool the exhaust gas recycle prior to mixing with the fresh air at the GT compressor inlet. The size of this additional DCC increases with increasing EGR and slightly offsets the capital cost benefit of reducing capture plant equipment size.

4.2 CCGT with 35% EGR and 90% CO₂ capture

4.2.1 Introduction

A natural gas CCGT with EGR and CO_2 capture was developed, using the same configuration and natural gas feed rate as the CCGT with CO_2 capture case, and including a recycle of 35% of the exhaust gas to the gas turbine inlet. This increases the percentage of CO_2 in the gas turbine and reduces the size of the capture plant with the 35% figure representing the maximum demonstrated, and thus optimal, currently achievable level of EGR. Levels above 35% risk flame instability and begin to approach the limit of available LP steam for solvent regeneration.

The overall process scheme was based upon a natural gas fired combined cycle gas turbine (CCGT) using two Mitsubishi Heavy Industries (MHI) M701F5 gas turbines featuring dry low NOx (DLN) burners, each with downstream heat recovery steam generator (HRSG), and common single steam turbine generator (STG), CO_2 capture unit and CO_2 compression and dehydration unit.

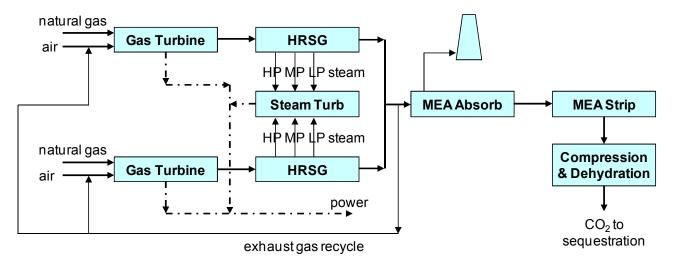


Figure 4-2 CCGT with EGR and Post Combustion CO₂ Capture

This case differs from the CCGT Benchmark without EGR by having a smaller volumetric flow rate and increased concentration of CO_2 in the CO_2 capture plant feed (but with nearly unchanged CO_2 mass rate). This results is reduced blower power and reduced diameter of the direct contact cooler and absorption column in the CO_2 capture plant. However, it also involves an additional direct contact cooler and additional low pressure ducting to cool and return the recycle to the air compressor inlet. These additional items have been included in the Power Island scope.

4.2.2 Plant Performance

The plant performance for this case was assessed at both 100% load and 40% load, as summarised in the table below:

		100% Load	40% Load
Power			
Total gross installed capacity	MWe	957.1	418.7
Gas Turbine (s)	MWe	723.4	279.9
Steam Turbine	MWe	233.8	138.7
Others	MWe	0.0	0.0
Total auxiliary loads	MWe	84.0	53.7
Power Island	MWe	13.6	10.1
Flue Gas Blower	MWe	23.6	18.3
Acid Gas Removal	MWe	2.5	2.5
CO ₂ compression	MWe	31.5	15.4
Others	MWe	12.9	7.3
Net Power Export	MWe	873.1	365.0
Net Efficiency (LHV)	%	49.18	41.98
Heat Rate	kJ/kWh	7320	8576
Flows			
Total fuel feed rate	tpd	3232.3	1583.3
Water consumption	tpd	3562	1843
Cooling water (once through)	tpd	1,961,856	1,103,069
Carbon Balance			
Total carbon in feeds	tpd	2376.9	1164.3
Total carbon captured	tpd	2139.9	1049.0
Carbon capture rate	%	90.0	90.1
Total CO ₂ captured	tpd	7841.4	3844.1
Total CO ₂ emitted	tpd	868.7	422.5
CO ₂ emissions	g CO ₂ /kWh _{Net}	41.5	48.2

Table 4-3Performance Figures for CCGT with 35% EGR and 90% CO2
Capture

4.2.3 Process Description

Gas Turbines, Heat Recovery Steam Generators and Steam Turbine

The power island is based on two Mitsubishi Heavy Industries (MHI) M701F5 natural gas fed gas turbines, each with its own heat recovery steam generator (HRSG). The two HRSGs are identical and are configured to generate steam at three pressure levels with full reheat of medium pressure steam. A single steam turbine receives the steam from both HRSGs and is equipped with a vacuum condenser and condensate treatment.

Natural gas is received from across the plant battery limits via a metering station before being heated against MP boiler feed water (BFW) and fed to the gas turbines (GTs).

The GT exhaust gases flow to the Heat Recovery Steam Generator, without additional duct firing. The thermal energy of the exhaust gases is used to raise and superheat steam at 3 pressure levels as well as preheating condensate and heating the BFW. The flue gases, at approximately 93 °C, leaving the HRSG are pressurised using a blower in order to overcome the pressure drop through the MEA based Acid Gas Removal unit. Once the CO_2 has been removed the flue gases are reheated against the hot flue gases are warm enough for dispersion via the stack.

The coil sequence in the HRSG is summarised as follows:

- 2nd HP Superheater
- 2nd MP Reheater
- 1st HP Superheater
- 1st MP Reheater
- HP Evaporator
- MP Superheater
- 2nd HP Economiser
- MP Evaporator
- LP Superheater
- MP Economiser
- 1st HP Economiser
- LP Evaporator
- LP Economiser
- Condensate Preheater

Condensate from the steam turbine condenser is preheated and deaerated using LP steam in the deaerator. Boiler feed water from the deaerator is pumped up to the three pressure levels required by the boiler feed water pumps.

In the HP circuit the BFW is pumped to approximately 14,000 kPa, passing through the 1st and 2nd HP Economiser into the HP Steam Drum. Water from the HP Steam Drum passes through the HP Evaporator coil generating saturated HP steam which returns to the HP Steam Drum before passing through the 1st and 2nd HP Superheaters and then to the HP inlet of the Steam Turbine.

The MP BFW pumps pump BFW to approximately 3000 kPa, through the MP Economiser and into the MP Steam Drum. Water from the MP Steam Drum passes through the MP Evaporator generating MP steam which is returned to the MP Steam Drum before entering the MP Superheater. Exhaust steam from the HP stage Steam Turbine are combined with superheated MP steam which is subsequently further superheated in the 1st and 2nd MP Reheaters before being routed to the MP stage of the Steam Turbine.

Desuperheaters between the two HP superheaters and the two MP reheaters use boiler feed water to control the second superheater outlet temperatures to 565°C for both pressure levels.

The LP BFW pumps pump the BFW to approximately 450 kPa, through the LP Economiser and into the LP Steam Drum. Water from the LP Steam Drum passes through the LP Evaporator generating LP steam which is returned to the LP Steam Drum before entering the LP Superheater. The superheated LP Steam is then split, with a portion of being used to supply the heat required for the Stripper reboiler in the AGRU, and the remaining LP Steam being routed to the LP inlet of the Steam Turbine.

The exhaust gases from the LP stage of the steam turbine are combined with condensate from the Natural Gas Preheater and the condensate return from the AGRU Stripper Reboiler before being fully condensed against seawater in the Vacuum Condensate Condenser. The vacuum condensate is then returned to the Vacuum Condensate Pumps completing the circuit.

Exhaust Gas Recycle

The exhaust gases are divided with 65% of the exhaust gas flow continuing on to the CO_2 capture plant while the remaining 35% is recycled. This flue gas is cooled by direct contact with a circulating water stream, which in turned is cooled against sea water. The flue gas is cooled to 24°C which also results in knock out of some water from the exhaust gas. The cooled recycled flue gas is them mixed with fresh air and fed to the GT air compressor inlet.

CO₂ Removal

A blower boosts the flue gas pressure sufficiently to overcome the pressure drop in the direct contact cooler (DCC) and absorption column. In the DCC much of the water present in the flue gas stream condenses as the gas is cooled to 50° C. The condensate is then recirculated through a cooler and returned to the contact tower. A small quantity of sodium hydroxide is added to the recirculating water in order to ensure that the remaining SO₂ in the flue gas is removed to meet the <10 ppm specification to prevent excessive solvent losses. Precipitates and excess water are removed from the system to waste water treatment.

In the lower portion of the absorption column the flue gas is contacted with semilean and then lean amine which absorbs approximately 90% of the CO_2 content of the flue gas. This section also incorporates an extraction and cooling loop in order to ensure the cooler conditions which are more favourable to CO_2 absorption. In the top of the column the flue gas is washed with water to prevent solvent losses to the atmosphere. The flue gas is routed back to the gas / gas heat exchanger in the FGD unit, to ensure its temperature is sufficient for dispersion, then is released to atmosphere via the stack.

The CO_2 -rich solvent stream exits the bottom of the absorber column and is pumped to approximately 5 bara. The stream is then split, with approximately 25% of the flow passing through 2 stages of heating against warmer solvent streams before being flashed at a pressure of 1.3 bara. The semi lean solvent from the flash drum is then cooled against rich solvent and returned to the absorption column with the cooled extracted solvent. The remaining rich solvent is heated against lean solvent in the cross over exchanger and introduced to the stripper column.

In the stripper column the CO_2 desorbs from the rich solvent as it is heated producing a stream of hot lean solvent from the bottom of the stripper. This lean solvent is cooled against rich solvent and returned to the absorption column. The stripper overheads are cooled to 30°C, condensing a significant quantity of water, some of which is returned to the stripper as reflux with the rest being sent to treatment or recovery.

CO₂ Compression and Drying

The acid gas resulting from the semi lean amine flash is compressed in the first of 8 compression stages, after which it is cooled and passed through a knock out drum. After the first compression stage the main CO_2 stream from the stripper column is added to the flashed acid gas stream for all the subsequent compression steps. Between each of the next 4 steps is a cooler and knock out drum, and the CO_2 is compressed up to a pressure of 25 bara.

The CO_2 is then dried by molecular sieve adsorption to reach the specification of <50 ppmv moisture. Two dehydration vessels are required since one bed will be in use whilst the second bed will be in regeneration. The regeneration cycle uses a slipstream of dried gas exiting the operating molecular sieve bed. The gas is heated using the returning regeneration gas exiting the molecular sieve bed in regeneration. It is further heated under temperature control in an electric heater before entering the bed in a counter flow direction. The wet gas leaving the bed is cooled against

incoming gas, any condensed water is separated in a knock out drum before it is passed through a fines filter and returned upstream of the 3rd stage compressor. The absorbent regeneration process takes several hours. When complete the heater is bypassed and the bed is cooled down over several hours before return to operation.

The final 3 compression stages include intercoolers and an after cooler and result in a final CO_2 product at specification of 150 barg and 30°C.

Balance of Plant

The key balance of plant requirements for this scheme are the cooling water supply systems. A very large flow of cooling water is required to supply the steam turbine vacuum condenser. This duty is supplied using sea water in a once through flow scheme.

The AGRU and CO_2 compression and drying units also require a significant quantity of cooling medium. Where this cannot be supplied using heat integration within or between the process units, cooling water is required. This cooling water is supplied as fresh cooling water in a closed circuit. The fresh water system is cooled against sea water.

Facilities are also required for storage and make-up of the MEA based solvent to the AGRU. Reuse and treatment of the numerous, mainly small, water streams produced from the cooling of water saturated gas streams are integrated with the units where possible. Streams containing contaminants such as MEA are routed to an effluent treatment system.

4.2.4 Plant Turndown

Overall plant performance has been assessed at turndown using a GT power output of 40%. GT performance at 40% power output was estimated using in-house performance curves for a similar turbine firing natural gas at reduced load.

The gas turbine operates less efficiently at turndown, consuming proportionally more fuel and air, and delivering proportionally more exhaust gas to the HRSG and capture plant. In turn, this will mean the HRSG is able to raise proportionally more steam, which results in the following effects:

GT Power Output	40%
Fuel Consumption	49%
Air Consumption	77%
GT Exhaust Flow	77%
HRSG Steam Raised	64%
Capture Plant Turndown	49%
Capture Plant Steam Usage	46%
ST Power Output	59%
Net Power Output	42%

4.2.5 Capital Cost, Operating Cost and Economics

The economic results are outlined in the table below:

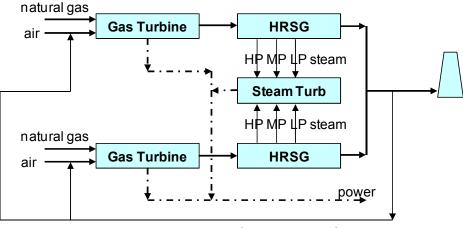
Table 4-4	Economic Figures for CCGT with 35% EGR and 90% CO ₂
	Capture

		100% Load	40% Load
Total CAPEX	GB£M	926.3	926.3
Power Island	GB£M	491.0	491.0
Acid Gas Removal	GB£M	246.4	246.4
CO ₂ compression	GB£M	61.5	61.5
Others	GB£M	127.4	127.4
CAPEX efficiency	GB£/kWh	1061	2538
Total OPEX – incl. fuel	GB£M p.a.	308.9	172.7
Total OPEX – excl. fuel	GB£M p.a.	43.1	42.4
OPEX – incl. fuel	GB£ p.a. / kW _{Net}	353.8	473.1
OPEX – excl. fuel	GB£ p.a. / kW _{Net}	49.4	116.2
Levelised Cost of Electricity CO_2 emission cost = £0 / te CO_2 CO_2 emission cost = £20 / te CO_2 CO_2 emission cost = £40 / te CO_2 CO_2 emission cost = £60 / te CO_2 Cost of CO_2 Captured CO_2 emission cost = £0 / te CO_2	£ / MWh _{Net} £ / MWh _{Net} £ / MWh _{Net} £ / MWh _{Net} £ / te CO ₂	66.8 67.6 68.5 69.3 47.9	109.7 110.6 111.6 112.6 86.8
Cost of CO_2 Avoided CO_2 emission cost = £ 0 / te CO_2	£ / te CO ₂	57.8	109.8

4.2.6 Key Assumptions and Uncertainties

For this case the CCGT with CO_2 Capture without EGR also apply and are detailed in 3.1.6. Additional assumptions relevant for the EGR cases are:

- Testing the impact of a number of variables using the M701G library gas turbine in Gatecycle will give performance impacts which can be used to extrapolate the anticipated impact of the same variables for the M701F5 machine. (For Task 2 this includes the impact of varying the level of exhaust gas recycle.)
- For the 40% GT load cases it is assumed that the same level of derating will apply as applies to the cases without EGR.
- There is potential for reuse of low grade heat in most normal CCGT power plants with carbon capture, however, the temperature range of available heat from the exhaust gas recycle (93°C down to 24°C) is not of an easily useable quality within either the power island or the CO₂ capture and compression plants. This level of heat could be used in the power island to replace or reduce the duty of either the condensate preheater coil or condensate exchanger, or it could be used to provide heat input to an Organic Rankine Cycle to produce additional power. Investigation of any of these options and their integration into the overall scheme, and subsequent impact on operational flexibility would require a considerable amount of development and optimisation work in order to produce meaningful results. It was therefore assumed that while low-grade heat reuse might be applicable, it was not possible to include a meaningful design within the scope of this project.


4.3 CCGT with 35% EGR without CO₂ Capture

4.3.1 Introduction

A natural gas CCGT with EGR and without CO_2 capture was developed, using the same configuration and natural gas feed rate as the CCGT with 35% EGR and CO_2 capture case, but excluding the Acid Gas Removal and CO_2 Compression and Drying Units.

This case is a theoretical case for performance benchmarking only, as application of EGR does not serve a purpose without a CO_2 capture plant.

The overall process scheme was based upon a natural gas fired combined cycle gas turbine (CCGT) using two Mitsubishi Heavy Industries (MHI) M701F5 gas turbines featuring dry low NOx (DLN) burners, each with downstream heat recovery steam generator (HRSG), and common single steam turbine generator (STG).

exhaust gas recycle

Figure 4-3 CCGT with EGR without CO₂ Capture

4.3.2 Plant Performance

The plant performance for this case was assessed at both 100% load and 40% load, as summarised in the table below:

Table 4-5Performance Figures for CCGT with 35% EGR without CO2Capture

		100% Load	40% Load
Power			
Total gross installed capacity	MWe	1054.7	466.1
Gas Turbine (s)	MWe	723.4	279.9
Steam Turbine	MWe	331.4	186.1
Others	MWe	0.0	0.0
Total auxiliary loads	MWe	22.6	16.0
Power Island	MWe	14.8	10.6
Flue Gas Blower	MWe	0.0	0.0
Acid Gas Removal	MWe	0.0	0.0
CO ₂ compression	MWe	0.0	0.0
Others	MWe	7.9	5.4
Net Power Export	MWe	1032.1	450.1
Net Efficiency (LHV)	%	58.14	51.76
Heat Rate	kJ/kWh	6192	6956

Flows			
Total fuel feed rate	tpd	3232.3	1583.3
Water consumption	tpd	202	130
Cooling water (once through)	tpd	1,396,690	749,256
Carbon Balance			
Total carbon in feeds	tpd	2376.9	1164.3
Total carbon captured	tpd	0.0	0.0
Carbon capture rate	%	0.0	0.0
Total CO ₂ captured	tpd	0.0	0.0
Total CO ₂ emitted	tpd	8710.2	4266.6
CO ₂ emissions	g CO ₂ / kWh _{Net}	351.6	395.0

4.3.3 Process Description

Gas Turbines, Heat Recovery Steam Generators and Steam Turbine

The power island is based on two Mitsubishi Heavy Industries (MHI) M701F5 natural gas fed gas turbines, each with its own heat recovery steam generator (HRSG). The two HRSGs are identical and are configured to generate steam at three pressure levels with full reheat of medium pressure steam. A single steam turbine receives the steam from both HRSGs and is equipped with a vacuum condenser and condensate treatment.

Natural gas is received from across the plant battery limits via a metering station before being heated against MP boiler feed water (BFW) and fed to the gas turbines (GTs).

The GT exhaust gases flow to the Heat Recovery Steam Generator, without additional duct firing. The thermal energy of the exhaust gases is used to raise and superheat steam at 3 pressure levels as well as preheating condensate and heating the BFW. The flue gases, at approximately 93 °C, leaving the HRSG are released to the atmosphere via a stack equipped with damper and continuous emissions monitoring.

The coil sequence in the HRSG is summarised as follows:

- 2nd HP Superheater
- 2nd MP Reheater
- 1st HP Superheater
- 1st MP Reheater
- HP Evaporator
- MP Superheater
- 2nd HP Economiser
- MP Evaporator
- LP Superheater
- MP Economiser
- 1st HP Economiser
- LP Evaporator
- LP Economiser
- Condensate Preheater

Condensate from the steam turbine condenser is preheated and deaerated using LP steam in the deaerator. Boiler feed water from the deaerator is pumped up to the three pressure levels required by the boiler feed water pumps.

In the HP circuit the BFW is pumped to approximately 14,000 kPa, passing through the 1st and 2nd HP Economiser into the HP Steam Drum. Water from the HP Steam Drum passes through the HP Evaporator coil generating saturated HP steam which returns to the HP Steam Drum before passing through the 1st and 2nd HP Superheaters and then to the HP inlet of the Steam Turbine.

The MP BFW pumps pump BFW to approximately 3000 kPa, through the MP Economiser and into the MP Steam Drum. Water from the MP Steam Drum passes through the MP Evaporator generating MP steam which is returned to the MP Steam Drum before entering the MP Superheater. Exhaust steam from the HP stage Steam Turbine are combined with superheated MP steam which is subsequently further superheated in the 1st and 2nd MP Reheaters before being routed to the MP stage of the Steam Turbine.

Desuperheaters between the two HP superheaters and the two MP reheaters use boiler feed water to control the second superheater outlet temperatures to 565°C for both pressure levels.

The LP BFW pumps pump the BFW to approximately 450 kPa, through the LP Economiser and into the LP Steam Drum. Water from the LP Steam Drum passes through the LP Evaporator generating LP steam which is returned to the LP Steam Drum before entering the LP Superheater. The superheated LP Steam is then routed to the LP inlet of the Steam Turbine.

The exhaust gases from the LP stage of the steam turbine are combined with condensate from the Natural Gas Preheater before being fully condensed against seawater in the Vacuum Condensate Condenser. The vacuum condensate is then returned to the Vacuum Condensate Pumps completing the circuit.

Exhaust Gas Recycle

The exhaust gases are divided with 65% of the exhaust gas flow continuing on to the stack while the remaining 35% is recycled. This flue gas is cooled by direct contact with a circulating water stream, which in turned is cooled against sea water. The flue gas is cooled to 24°C which also results in knock out of some water from the exhaust gas. The cooled recycled flue gas is them mixed with fresh air and fed to the GT air compressor inlet.

Balance of Plant

The key balance of plant requirements for this scheme are the cooling water supply systems. A very large flow of cooling water is required to supply the steam turbine vacuum condenser. This duty is supplied using sea water in a once through flow scheme. Any other cooling duties are supplied using fresh cooling water, which is itself cooled against sea water.

4.3.4 Plant Turndown

Overall plant performance has been assessed at turndown using a GT power output of 40%. GT performance at 40% power output was estimated using in-house performance curves for a similar turbine firing natural gas at reduced load.

The gas turbine operates less efficiently at turndown, consuming proportionally more fuel and air, and delivering proportionally more exhaust gas to the HRSG. In turn, this will mean the HRSG is able to raise proportionally more steam, which results in the following effects:

		Data: 10 Juna 2014
Air Consumption	77%	
Fuel Consumption	49%	
GT Power Output	40%	

GT Exhaust Flow	77%
HRSG Steam Raised	64%
ST Power Output	56%
Net Power Output	44%

4.3.5 Capital Cost, Operating Cost and Economics

The economic results are outlined in the table below:

Table 4-6 Economic Figures for CCGT with 35% EGR without CO₂ Capture

		100% Load	40% Load
Total CAPEX	GB£M	586.3	586.3
Power Island	GB£M	508.1	508.1
Acid Gas Removal	GB£M	0.0	0.0
CO ₂ compression	GB£M	0.0	0.0
Others	GB£M	78.2	78.2
CAPEX efficiency	GB£/kWh	568	1303
Total OPEX – incl. fuel	GB£M p.a.	295.9	160.3
Total OPEX – excl. fuel	GB£M p.a.	30.1	30.1
OPEX – incl. fuel	GB£ p.a. / kW _{Net}	286.7	356.2
OPEX – excl. fuel	GB£ p.a. / kW _{Net}	29.2	66.9
Levelised Cost of Electricity CO_2 emission cost = £0 / te CO_2 CO_2 emission cost = £20 / te CO_2 CO_2 emission cost = £40 / te CO_2 CO_2 emission cost = £60 / te CO_2	£ / MWh _{Net} £ / MWh _{Net} £ / MWh _{Net} £ / MWh _{Net}	48.9 55.9 62.9 70.0	71.6 79.5 87.4 95.3
Cost of CO ₂ Captured CO ₂ emission cost = $\pounds 0 / \text{te CO}_2$ Cost of CO ₂ Avoided CO ₂ emission cost = $\pounds 0 / \text{te CO}_2$	£ / te CO ₂ £ / te CO ₂	n/a n/a	n/a n/a

4.3.6 Key Assumptions and Uncertainties

Key assumptions for this case are identical for those for the with CO_2 capture case, detailed in Section 4.2.6.

4.4 CCGT with 18% EGR and 90% CO₂ capture

4.4.1 Introduction

A natural gas CCGT with EGR and CO_2 capture was developed, using the same configuration and natural gas feed rate as the CCGT with CO_2 capture case, and including a recycle of 18% of the exhaust gas to the gas turbine inlet. This increases the percentage of CO_2 in the gas turbine and reduces the size of the capture plant.

The overall process scheme was based upon a natural gas fired combined cycle gas turbine (CCGT) using two Mitsubishi Heavy Industries (MHI) M701F5 gas turbines featuring dry low NOx (DLN) burners, each with downstream heat recovery steam generator (HRSG), and common single steam turbine generator (STG), CO_2 capture unit and CO_2 compression and dehydration unit.

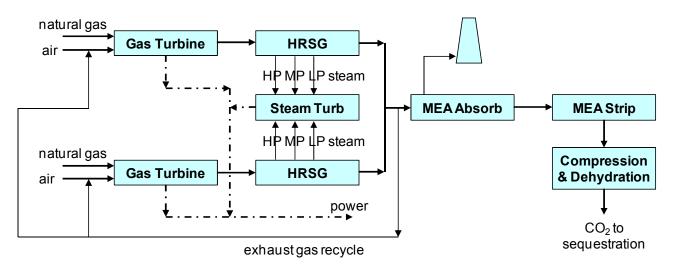


Figure 4-4 CCGT with EGR and Post Combustion CO₂ Capture

This case, with 18.05% EGR results in an oxygen content in the GT air compressor inlet which is the same as the oxygen content in the GT inlet for the Intermediate Case technology case.

This case differs from the CCGT Benchmark without EGR by having a smaller volumetric flow rate and increased concentration of CO_2 in the CO_2 capture plant feed (but with nearly unchanged CO_2 mass rate). This results is reduced blower power and reduced diameter of the direct contact cooler and absorption column in the CO_2 capture plant. However, it also involves an additional direct contact cooler and additional low pressure ducting to cool and return the recycle to the air compressor inlet. These additional items have been included in the Power Island scope.

4.4.2 Plant Performance

The plant performance for this case was assessed at both 100% load and 40% load, as summarised in the table below:

Table 4-7	Performance Figures for CCGT with 18% EGR and 90% CO ₂
	Capture

		100% Load	40% Load
Power			
Total gross installed capacity	MWe	964.2	420.9
Gas Turbine (s)	MWe	731.0	287.5
Steam Turbine	MWe	233.2	133.4
Others	MWe	0.0	0.0
Total auxiliary loads	MWe	90.8	59.0
Power Island	MWe	13.4	9.9
Flue Gas Blower	MWe	30.1	23.4
Acid Gas Removal	MWe	2.7	2.7
CO ₂ compression	MWe	31.7	15.8
Others	MWe	12.8	7.2
Net Power Export	MWe	873.4	362.0
Net Efficiency (LHV)	%	48.97	40.71
Heat Rate	kJ/kWh	7352	8843
Flows	-		
Total fuel feed rate	tpd	3247.9	1619.1
Water consumption	tpd	3562	1843
Cooling water (once through)	tpd	1,945,229	1,075,188
Carbon Balance	-		
Total carbon in feeds	tpd	2388.4	1190.6
Total carbon captured	tpd	2156.5	1071.7
Carbon capture rate	%	90.3	90.0
Total CO ₂ captured	tpd	7902.3	3927.2
Total CO ₂ emitted	tpd	849.8	435.6
CO ₂ emissions	g CO ₂ /kWh _{Net}	40.5	50.1

4.4.3 Process Description

Gas Turbines, Heat Recovery Steam Generators and Steam Turbine

The power island is based on two Mitsubishi Heavy Industries (MHI) M701F5 natural gas fed gas turbines, each with its own heat recovery steam generator (HRSG). The two HRSGs are identical and are configured to generate steam at three pressure levels with full reheat of medium pressure steam. A single steam turbine receives the steam from both HRSGs and is equipped with a vacuum condenser and condensate treatment.

Natural gas is received from across the plant battery limits via a metering station before being heated against MP boiler feed water (BFW) and fed to the gas turbines (GTs).

The GT exhaust gases flow to the Heat Recovery Steam Generator, without additional duct firing. The thermal energy of the exhaust gases is used to raise and superheat steam at 3 pressure levels as well as preheating condensate and heating the BFW. The flue gases, at approximately 93 °C, leaving the HRSG are pressurised using a blower in order to overcome the pressure drop through the MEA based Acid Gas Removal unit. Once the CO_2 has been removed the flue gases are reheated against the hot flue gases are warm enough for dispersion via the stack.

The coil sequence in the HRSG is summarised as follows:

- 2nd HP Superheater
- 2nd MP Reheater
- 1st HP Superheater
- 1st MP Reheater
- HP Evaporator
- MP Superheater
- 2nd HP Economiser
- MP Evaporator
- LP Superheater
- MP Economiser
- 1st HP Economiser
- LP Evaporator
- LP Economiser
- Condensate Preheater

Condensate from the steam turbine condenser is preheated and deaerated using LP steam in the deaerator. Boiler feed water from the deaerator is pumped up to the three pressure levels required by the boiler feed water pumps.

In the HP circuit the BFW is pumped to approximately 14,000 kPa, passing through the 1st and 2nd HP Economiser into the HP Steam Drum. Water from the HP Steam Drum passes through the HP Evaporator coil generating saturated HP steam which returns to the HP Steam Drum before passing through the 1st and 2nd HP Superheaters and then to the HP inlet of the Steam Turbine.

The MP BFW pumps pump BFW to approximately 3000 kPa, through the MP Economiser and into the MP Steam Drum. Water from the MP Steam Drum passes through the MP Evaporator generating MP steam which is returned to the MP Steam Drum before entering the MP Superheater. Exhaust steam from the HP stage Steam Turbine are combined with superheated MP steam which is subsequently further superheated in the 1st and 2nd MP Reheaters before being routed to the MP stage of the Steam Turbine.

Desuperheaters between the two HP superheaters and the two MP reheaters use boiler feed water to control the second superheater outlet temperatures to 565°C for both pressure levels.

The LP BFW pumps pump the BFW to approximately 450 kPa, through the LP Economiser and into the LP Steam Drum. Water from the LP Steam Drum passes through the LP Evaporator generating LP steam which is returned to the LP Steam Drum before entering the LP Superheater. The superheated LP Steam is then split, with a portion of being used to supply the heat required for the Stripper reboiler in the AGRU, and the remaining LP Steam being routed to the LP inlet of the Steam Turbine.

The exhaust gases from the LP stage of the steam turbine are combined with condensate from the Natural Gas Preheater and the condensate return from the AGRU Stripper Reboiler before being fully condensed against seawater in the Vacuum Condensate Condenser. The vacuum condensate is then returned to the Vacuum Condensate Pumps completing the circuit.

Exhaust Gas Recycle

The exhaust gases are divided with 65% of the exhaust gas flow continuing on to the CO_2 capture plant while the remaining 35% is recycled. This flue gas is cooled by direct contact with a circulating water stream, which in turned is cooled against sea water. The flue gas is cooled to 24°C which also results in knock out of some water from the exhaust gas. The cooled recycled flue gas is them mixed with fresh air and fed to the GT air compressor inlet.

CO₂ Removal

A blower boosts the flue gas pressure sufficiently to overcome the pressure drop in the direct contact cooler (DCC) and absorption column. In the DCC much of the water present in the flue gas stream condenses as the gas is cooled to 50° C. The condensate is then recirculated through a cooler and returned to the contact tower. A small quantity of sodium hydroxide is added to the recirculating water in order to ensure that the remaining SO₂ in the flue gas is removed to meet the <10 ppm specification to prevent excessive solvent losses. Precipitates and excess water are removed from the system to waste water treatment.

In the lower portion of the absorption column the flue gas is contacted with semilean and then lean amine which absorbs approximately 90% of the CO_2 content of the flue gas. This section also incorporates an extraction and cooling loop in order to ensure the cooler conditions which are more favourable to CO_2 absorption. In the top of the column the flue gas is washed with water to prevent solvent losses to the atmosphere. The flue gas is routed back to the gas / gas heat exchanger in the FGD unit, to ensure its temperature is sufficient for dispersion, then is released to atmosphere via the stack.

The CO_2 -rich solvent stream exits the bottom of the absorber column and is pumped to approximately 5 bara. The stream is then split, with approximately 25% of the flow passing through 2 stages of heating against warmer solvent streams before being flashed at a pressure of 1.3 bara. The semi lean solvent from the flash drum is then cooled against rich solvent and returned to the absorption column with the cooled extracted solvent. The remaining rich solvent is heated against lean solvent in the cross over exchanger and introduced to the stripper column.

In the stripper column the CO_2 desorbs from the rich solvent as it is heated producing a stream of hot lean solvent from the bottom of the stripper. This lean solvent is cooled against rich solvent and returned to the absorption column. The stripper overheads are cooled to 30°C, condensing a significant quantity of water, some of which is returned to the stripper as reflux with the rest being sent to treatment or recovery.

CO₂ Compression and Drying

The acid gas resulting from the semi lean amine flash is compressed in the first of 8 compression stages, after which it is cooled and passed through a knock out drum. After the first compression stage the main CO_2 stream from the stripper column is added to the flashed acid gas stream for all the subsequent compression steps. Between each of the next 4 steps is a cooler and knock out drum, and the CO_2 is compressed up to a pressure of 25 bara.

The CO_2 is then dried by molecular sieve adsorption to reach the specification of <50 ppmv moisture. Two dehydration vessels are required since one bed will be in use whilst the second bed will be in regeneration. The regeneration cycle uses a slipstream of dried gas exiting the operating molecular sieve bed. The gas is heated using the returning regeneration gas exiting the molecular sieve bed in regeneration. It is further heated under temperature control in an electric heater before entering the bed in a counter flow direction. The wet gas leaving the bed is cooled against

incoming gas, any condensed water is separated in a knock out drum before it is passed through a fines filter and returned upstream of the 3rd stage compressor. The absorbent regeneration process takes several hours. When complete the heater is bypassed and the bed is cooled down over several hours before return to operation.

The final 3 compression stages include intercoolers and an after cooler and result in a final CO_2 product at specification of 150 barg and 30°C.

Balance of Plant

The key balance of plant requirements for this scheme are the cooling water supply systems. A very large flow of cooling water is required to supply the steam turbine vacuum condenser. This duty is supplied using sea water in a once through flow scheme.

The AGRU and CO_2 compression and drying units also require a significant quantity of cooling medium. Where this cannot be supplied using heat integration within or between the process units, cooling water is required. This cooling water is supplied as fresh cooling water in a closed circuit. The fresh water system is cooled against sea water.

Facilities are also required for storage and make-up of the MEA based solvent to the AGRU. Reuse and treatment of the numerous, mainly small, water streams produced from the cooling of water saturated gas streams are integrated with the units where possible. Streams containing contaminants such as MEA are routed to an effluent treatment system.

4.4.4 Plant Turndown

Overall plant performance has been assessed at turndown using a GT power output of 40%. GT performance at 40% power output was estimated using in-house performance curves for a similar turbine firing natural gas at reduced load.

The gas turbine operates less efficiently at turndown, consuming proportionally more fuel and air, and delivering proportionally more exhaust gas to the HRSG and capture plant. In turn, this will mean the HRSG is able to raise proportionally more steam, which results in the following effects:

GT Power Output	40%
Fuel Consumption	50%
Air Consumption	78%
GT Exhaust Flow	77%
HRSG Steam Raised	63%
Capture Plant Turndown	50%
Capture Plant Steam Usage	49%
ST Power Output	57%
Net Power Output	41%

4.4.5 Capital Cost, Operating Cost and Economics

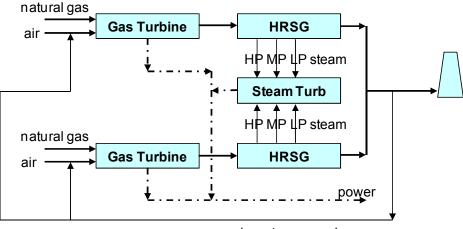
The economic results are outlined in the table below:

Table 4-8	Economic Figures for CCGT with 18% EGR and 90% CO ₂
	Capture

		100% Load	40% Load
Total CAPEX	GB£M	965.7	965.7
Power Island	GB£M	480.5	480.5
Acid Gas Removal	GB£M	290.3	290.3
CO ₂ compression	GB£M	61.5	61.5
Others	GB£M	133.4	133.4
CAPEX efficiency	GB£/kWh	1106	2668
Total OPEX – incl. fuel	GB£M p.a.	311.1	176.7
Total OPEX – excl. fuel	GB£M p.a.	44.2	43.5
OPEX – incl. fuel	GB£ p.a. / kW _{Net}	356.2	488.2
OPEX – excl. fuel	GB£ p.a. / kW _{Net}	50.6	120.2
Levelised Cost of Electricity CO_2 emission cost = £0 / te CO_2 CO_2 emission cost = £20 / te CO_2 CO_2 emission cost = £40 / te CO_2 CO_2 emission cost = £60 / te CO_2 Cost of CO_2 Captured CO_2 emission cost = £0 / te CO_2 Cost of CO_2 Available	£ / MWh _{Net} £ / MWh _{Net} £ / MWh _{Net} £ / MWh _{Net} £ / te CO ₂	67.9 68.8 69.6 70.4 51.9	114.0 115.0 116.0 117.0 96.1
Cost of CO ₂ Avoided CO ₂ emission cost = $\pounds 0 / \text{te CO}_2$	£ / te CO ₂	63.0	125.2

4.4.6 Key Assumptions and Uncertainties

Key assumptions for this case are identical for those for the 35% EGR case, detailed in Section 4.2.6.


4.5 CCGT with 18% EGR without CO₂ Capture

4.5.1 Introduction

A natural gas CCGT with EGR and without CO_2 capture was developed, using the same configuration and natural gas feed rate as the CCGT with 18% EGR and CO_2 capture case, but excluding the Acid Gas Removal and CO_2 Compression and Drying Units.

This case is a theoretical case for performance benchmarking only, as application of EGR does not serve a purpose without a capture plant.

The overall process scheme was based upon a natural gas fired combined cycle gas turbine (CCGT) using two Mitsubishi Heavy Industries (MHI) M701F5 gas turbines featuring dry low NOx (DLN) burners, each with downstream heat recovery steam generator (HRSG), and common single steam turbine generator (STG).

exhaust gas recycle

Figure 4-5 CCGT with EGR without CO₂ Capture

4.5.2 Plant Performance

The plant performance for this case was assessed at both 100% load and 40% load, as summarised in the table below:

Table 4-9 Performance Figures for CCGT with 18% EGR without CO2 Capture

		100% Load	40% Load
Power			
Total gross installed capacity	MWe	1061.1	473.5
Gas Turbine (s)	MWe	731.0	287.5
Steam Turbine	MWe	330.1	185.9
Others	MWe	0.0	0.0
Total auxiliary loads	MWe	21.5	15.7
Power Island	MWe	14.7	10.6
Flue Gas Blower	MWe	0.0	0.0
Acid Gas Removal	MWe	0.0	0.0
CO ₂ compression	MWe	0.0	0.0
Others	MWe	6.8	5.1
Net Power Export	MWe	1039.6	457.8
Net Efficiency (LHV)	%	58.28	51.48
Heat Rate	kJ/kWh	6177	6992

Flows			
Total fuel feed rate	tpd	3247.9	1619.1
Water consumption	tpd	203	132
Cooling water (once through)	tpd	1,289,890	806,990
Carbon Balance			
Total carbon in feeds	tpd	2388.4	1190.6
Total carbon captured	tpd	0.0	0.0
Carbon capture rate	%	0.0	0.0
Total CO ₂ captured	tpd	0.0	0.0
Total CO ₂ emitted	tpd	8752.1	4362.9
CO ₂ emissions	g CO ₂ / kWh _{Net}	350.8	397.1

4.5.3 Process Description

Gas Turbines, Heat Recovery Steam Generators and Steam Turbine

The power island is based on two Mitsubishi Heavy Industries (MHI) M701F5 natural gas fed gas turbines, each with its own heat recovery steam generator (HRSG). The two HRSGs are identical and are configured to generate steam at three pressure levels with full reheat of medium pressure steam. A single steam turbine receives the steam from both HRSGs and is equipped with a vacuum condenser and condensate treatment.

Natural gas is received from across the plant battery limits via a metering station before being heated against MP boiler feed water (BFW) and fed to the gas turbines (GTs).

The GT exhaust gases flow to the Heat Recovery Steam Generator, without additional duct firing. The thermal energy of the exhaust gases is used to raise and superheat steam at 3 pressure levels as well as preheating condensate and heating the BFW. The flue gases, at approximately 93 °C, leaving the HRSG are released to the atmosphere via a stack equipped with damper and continuous emissions monitoring.

The coil sequence in the HRSG is summarised as follows:

- 2nd HP Superheater
- 2nd MP Reheater
- 1st HP Superheater
- 1st MP Reheater
- HP Evaporator
- MP Superheater
- 2nd HP Economiser
- MP Evaporator
- LP Superheater
- MP Economiser
- 1st HP Economiser
- LP Evaporator
- LP Economiser
- Condensate Preheater

Condensate from the steam turbine condenser is preheated and deaerated using LP steam in the deaerator. Boiler feed water from the deaerator is pumped up to the three pressure levels required by the boiler feed water pumps.

In the HP circuit the BFW is pumped to approximately 14,000 kPa, passing through the 1st and 2nd HP Economiser into the HP Steam Drum. Water from the HP Steam Drum passes through the HP Evaporator coil generating saturated HP steam which returns to the HP Steam Drum before passing through the 1st and 2nd HP Superheaters and then to the HP inlet of the Steam Turbine.

The MP BFW pumps pump BFW to approximately 3000 kPa, through the MP Economiser and into the MP Steam Drum. Water from the MP Steam Drum passes through the MP Evaporator generating MP steam which is returned to the MP Steam Drum before entering the MP Superheater. Exhaust steam from the HP stage Steam Turbine are combined with superheated MP steam which is subsequently further superheated in the 1st and 2nd MP Reheaters before being routed to the MP stage of the Steam Turbine.

Desuperheaters between the two HP superheaters and the two MP reheaters use boiler feed water to control the second superheater outlet temperatures to 565°C for both pressure levels.

The LP BFW pumps pump the BFW to approximately 450 kPa, through the LP Economiser and into the LP Steam Drum. Water from the LP Steam Drum passes through the LP Evaporator generating LP steam which is returned to the LP Steam Drum before entering the LP Superheater. The superheated LP Steam is then routed to the LP inlet of the Steam Turbine.

The exhaust gases from the LP stage of the steam turbine are combined with condensate from the Natural Gas Preheater before being fully condensed against seawater in the Vacuum Condensate Condenser. The vacuum condensate is then returned to the Vacuum Condensate Pumps completing the circuit.

Exhaust Gas Recycle

The exhaust gases are divided with 65% of the exhaust gas flow continuing on to the stack while the remaining 35% is recycled. This flue gas is cooled by direct contact with a circulating water stream, which in turned is cooled against sea water. The flue gas is cooled to 24°C which also results in knock out of some water from the exhaust gas. The cooled recycled flue gas is them mixed with fresh air and fed to the GT air compressor inlet.

Balance of Plant

The key balance of plant requirements for this scheme are the cooling water supply systems. A very large flow of cooling water is required to supply the steam turbine vacuum condenser. This duty is supplied using sea water in a once through flow scheme. Any other cooling duties are supplied using fresh cooling water, which is itself cooled against sea water.

4.5.4 Plant Turndown

Overall plant performance has been assessed at turndown using a GT power output of 40%. GT performance at 40% power output was estimated using in-house performance curves for a similar turbine firing natural gas at reduced load.

The gas turbine operates less efficiently at turndown, consuming proportionally more fuel and air, and delivering proportionally more exhaust gas to the HRSG. In turn, this will mean the HRSG is able to raise proportionally more steam, which results in the following effects:

		Data: 10 luna 0011
Air Consumption	78%	
Fuel Consumption	50%	
GT Power Output	40%	

GT Exhaust Flow	77%
HRSG Steam Raised	65%
ST Power Output	56%
Net Power Output	44%

4.5.5 Capital Cost, Operating Cost and Economics

The economic results are outlined in the table below:

Table 4-10 Economic Figures for CCGT with 18% EGR without CO2 Capture

		100% Load	40% Load
Total CAPEX	GB£M	574.4	574.4
Power Island	GB£M	497.8	497.8
Acid Gas Removal	GB£M	0.0	0.0
CO ₂ compression	GB£M	0.0	0.0
Others	GB£M	76.6	76.6
CAPEX efficiency	GB£/kWh	553	1255
Total OPEX – incl. fuel	GB£M p.a.	296.5	162.7
Total OPEX – excl. fuel	GB£M p.a.	29.5	29.5
OPEX – incl. fuel	GB£ p.a. / kW _{Net}	285.2	355.4
OPEX – excl. fuel	GB£ p.a. / kW _{Net}	28.4	64.4
Levelised Cost of Electricity CO_2 emission cost = £0 / te CO_2 CO_2 emission cost = £20 / te CO_2 CO_2 emission cost = £40 / te CO_2 CO_2 emission cost = £60 / te CO_2 Cost of CO_2 contured	£ / MWh _{Net} £ / MWh _{Net} £ / MWh _{Net} £ / MWh _{Net}	48.4 55.4 62.4 69.4	70.6 78.5 86.5 94.4
Cost of CO ₂ Captured CO ₂ emission cost = $\pounds 0 / te CO_2$ Cost of CO ₂ Avoided	£ / te CO ₂	n/a	n/a
CO_2 emission cost = £ 0 / te CO_2	£ / te CO ₂	n/a	n/a

4.5.6 Key Assumptions and Uncertainties

Key assumptions for this case are identical for those for the with CO_2 capture case, detailed in Section 4.2.6.

5. EVALUATION BASES

5.1 Technical Evaluation Basis

The Basis of Design document given in Attachment 1 has been used as the technical basis on which each option has been evaluated, including:

- plant location;
- site conditions;
- plant capacity;
- plant (climatic) operating conditions;
- feedstock, product and utility availability and specifications; and
- environmental emissions basis.

CO₂ Capture Rate

Each carbon dioxide abated case will be designed to achieve a target carbon capture level of at least 90%, defined as:

 CO_2 Capture Rate (%) = 100 x Moles carbon contained in the CO_2 product

Moles carbon contained in the natural gas feed

5.2 Capital Cost Estimating Basis

Introduction

The Estimates contained within this study report have been based on the technical definition for each of the benchmark cases considered. The estimate methodology is largely based on in-house data, available from previous work undertaken by Foster Wheeler for similar plants.

For all of the cases reported the source estimate data has been adjusted to provide figures on a consistent and comparable 1st quarter 2009 (1Q2009) UK Basis.

Estimates prepared using this methodology and associated qualifications/exclusions are normally considered to have an accuracy of +/-40%.

<u>Currency</u>

The estimates are reported in GB Pounds (GB£).

When in-house data is available in a different currency, the following Currency Conversion rates have been used for conversion:

Base Currency	Exchange Rate
GB£ 1	US\$ 1.53
GB£ 1	€ 1.12

<u>Basis</u>

Equipment estimates are developed using FW's indexed Aspentech Capital Cost Estimator (ACCE) estimating programme and in-house data for more complex specialist equipment.

All other costs, including bulks associated with the project are factored from the equipment costs.

No Site specific costs have been included. Consistent with the Basis of Design, the site has been assumed to be a generic site clear and level and free from underground obstructions. These Estimates reflect a 1Q2009 UK site basis with no allowance for future escalation.

<u>Format</u>

The Work Breakdown Structure (WBS) used for the estimates is as follows:

- Acid Gas Removal
- CO₂ compression and dehydration
- Power Block
- Utilities & Offsites

The Utilities & Offsites area includes the following major items, as appropriate:

- Interconnecting piping
- Electrical Switchgear/Transformers
- 275 kV cables to new switchyard
- DCS system
- Seawater Intake/Pumping/Outfall System
- Demineralised Water system
- BFW Chemical Injection
- Condensate Polishing Package
- Water treatment
- Flare Package
- N₂ Package
- Instrument/Utility Air Package
- Fire fighting system

Major Equipment

The majority of equipment item costs have been generated using the ACCE estimating program indexed to reflect Foster Wheeler's experience of market conditions.

For some specialised major equipment items not covered by the ACCE database, costs have been based on in-house data and published cost data from licensors.

The main supplier/licensor budget prices, received for previous works carried out by Foster Wheeler, mainly include the following unit/equipment:

- Dehydration Package;
- Power Island including the following
 - o HRSG
 - o Steam Turbine
 - o Gas turbine

Direct Bulk Materials

The estimated material costs reflect worldwide procurement, therefore no allowance for possible savings by locally purchasing of direct materials and associated reductions in shipping costs have been made.

The bulk material costs have been factored from the major equipment costs using factors derived from a more detailed study for a very similar plant. These costs include for the following

- Piping
- Instruments
- Electricals
- Catalysts & Chemicals

Direct Material & Labour Contracts

Costs are allowed based on factors derived from earlier similar projects. Cost include for the following.

- Tankage
- Civil, Steelwork & Buildings
- Protective cover

Labour only contracts

Costs are allowed based on factors derived from earlier similar projects. Cost include for the following.

- Equipment erection
- Piping Fabrication & Erection
- E&I Installation
- Scaffolding
- Pre-commissioning trade labour assistance

Indirect Costs

Costs are allowed based on factors derived from earlier similar projects. Cost include for the following.

- Temporary facilities
- Heavy Lifts
- Commissioning
- Vendor's engineers

EPC Contracts

Costs are allowed based on factors derived from earlier similar projects. Cost include for the following.

- Engineering services (Including FEED engineering)
- Construction Management

Escalation

The estimates have been escalated depending on the date of the reference project, based on Foster Wheeler experience. No allowance has been made for future escalation.

Land Costs

Land Costs have been included as specified by ETI at a rate of 5% of the total installed costs for all cases

Owners Costs

Owners costs have been included as specified by ETI at a rate of 10% of the total installed costs for all cases.

Contingency

Contingency has been included as specified by ETI at a rate of 25% of the total installed costs for all cases.

Exclusions

The following costs have been specifically been excluded from the capital cost estimates:

- Import Duties;
- Capital / Insurance Spares;
- Financing;
- Royalties & Process Guarantees;
- Piling;
- Removal of unseen/unidentified underground obstructions;
- Operating costs (which are covered separately);
- Statutory Authority & Utility Company Costs & permits;

- Currency Fluctuations;
- PMC Costs;
- Contractors Fees;
- Contractors All Risk Insurance;
- Taxes;
- Metal pricing movements.

5.3 Operating and Maintenance Cost Estimating Basis

Introduction

Operating and Maintenance (O&M) costs include the following:

- Chemicals;
- Catalyst;
- Solvents;
- Direct labour;
- Maintenance;
- Administration and General Overheads.

O&M costs are generally allocated as variable and fixed costs. Variable operating costs are directly proportional to the amount of kilowatt-hours produced and are referred as incremental costs. They may be expressed in \pounds/kWh . Fixed operating costs are essentially independent of the quantity of kilowatt-hours produced. They may be expressed in \pounds/h or \emptyset/h or \emptyset/h

WHEELE

5.3.1 Variable costs

The variable costs include the consumption of catalysts, chemicals and solvents. These costs are annual, based on the expected equivalent availability of the plant. The variable costs mainly include the following:

• Fuel (natural gas);

A natural gas price of £265/ has been assumed.

- Solvent (MEA) consumption for the chemical or physical removal of the acid gases;
- Chemicals for water/steam treatment and waste water treatment; and
- Waste disposal.

CO₂ Emissions Costs

In addition, any costs associated with CO_2 emissions will impact the operating costs of the facility. LCOE has been calculated for each case using emissions costs of £0/te, £20/te, £40/te and £60/te.

5.3.2 Fixed costs

The fixed costs mainly include the following:

- Direct labour;
- Administration and general overheads;
- Maintenance.

Direct Labour

The yearly cost of the direct labour has been calculated assuming, for each individual, an average cost equal to $\pounds 50,000$ / year. The number of personnel engaged for the different alternatives has been evaluated on the basis of the following tables.

Operation	Total	Notes
Area Responsible	1	daily position
Assistant Area Responsible	1	daily position
Electrical Assistant	5	1 shift position
Shift Supervisor	5	1 shift position
Control Room Operator	10	2 shift position
Field Operator	10	2 shift position
Subtotal	32	
Maintenance		
Mechanical group	3	daily position
Instrument group	3	daily position
Electrical group	2	daily position
Subtotal	8	
Laboratory		
Superintendent + Analysts	4	daily position
Total	40	

Table 5-1– Personnel of Combined Cycle Gas Turbine plants

The number of personnel required for the Combined Cycle Gas Turbine plants with post-combustion CO_2 capture has been considered as 60.

Administration and General Overheads

These costs include all other Company services not directly involved in the operation of the Complex, such as:

- Management;
- Personnel services;
- Technical services;
- Clerical staff.

These services vary widely from company to company and are also dependent on the type and complexity of the operation.

Based on EPRI, Technical Assessment Guide for the Power Industry, an amount equal to 30% of the direct labour cost has been considered.

<u>Maintenance</u>

A precise evaluation of the cost of maintenance would require a breakdown of the costs amongst the numerous components and packages of the Complex.

Since these costs are all strongly dependent on the type of equipment selected and statistical maintenance data provided by the selected Supplier, this type of evaluation of the maintenance cost is premature at this stage of the study.

For this reason, the annual maintenance cost of the Complex has been estimated as a percentage of the installed capital cost of the facilities.

Different percentage factors have been applied to the different units, based on the following criteria:

- 2.5% for gaseous and liquid handling units;
- 1.7% for utilities and offsites;
- 5.0% for the Power Island (to take into account the gas turbine maintenance cost based on the assumption of a Long Term Service Agreement with the selected gas turbine manufacturer).

5.4 Economic Basis

For the purposes of economic modelling and calculation of the Levelised Cost of Electricity (LCOE), the following assumptions have been made for all cases.

- A plant availability of 85% has been assumed, which equates to an onstream time of 7446 hrs per year. A reduced availability has been taken into account for in years 1 (65%) and year 2 (75%).
- Costs of insurance and local taxes have been assumed at 2% of the Total Installed Cost.
- Capital Expenditure has been assumed to be spread over a three year period in the following spread:
 - Year -3 = 25%
 - Year -2 = 45%
 - Year -1 = 30%
- A discount rate of 10% has been assumed.
- A project life of 20 years has been assumed.
- All costs associated with transport and storage of CO₂ have been assumed to be outside of the scope of the calculated LCOE.

CO₂ Emissions Costs

In addition, any costs associated with CO_2 emissions will impact the economics of the facility. LCOE has been calculated for each case using emissions costs of £0/te, £20/te, £40/te and £60/te.

6. ASSESSMENT OF THE EFFECT OF INCREASING EGR RATE

6.1 Introduction

There are two variables which impact the CO_2 capture and compression equipment size when EGR is increasingly applied to the benchmark system design:

- Total flue gas CO₂ concentration increases and volumetric flow decreases.
- Total CO₂ molar flow decreases slightly because the GT demands slightly less fuel with increasing EGR.

The effect on the equipment sizing when EGR is increasingly applied to the system can be summarised as follows:

- Due to decrease in the flue gas total volumetric flow rate, the CO2 capture plant blower, DCC and absorber decrease in size as %EGR increases.
- Due to the slight decrease in molar flow of CO2 with increasing EGR, the remaining CO2 capture and compression equipment slightly decrease in size as %EGR increases.
- Due to the increasing flow of exhaust gas around the recycle, the DCC on the EGR stream within the Power Island increases in size as %EGR increases.

The plant performance trends can be seen in Table 6-1 while the cost impact of increasing % EGR can be seen in Table 6-2.

6.2 Plant Performance with Increasing Levels of EGR

6.2.1 Power Island Performance

The GT power output is reduced by 2.1% with 35% EGR (and 1.0% with 18% EGR), from the case without EGR. It is likely that this is due to the change in total mass and / or volume flow through the machine as increasing EGR changes the composition, temperature and molecular weight of the oxidant stream.

The enthalpy of the exhaust gas is increased with increasing EGR which results in an increase in steam turbine power output of 2.1% with 35% EGR (and 1.9% with 18% EGR) due to an increase in the exhaust temperature and molecular weight. The balance of plant parasitic load increases slightly with increasing EGR due to the increase in total water flow rate around the system, due to the additional steam production.

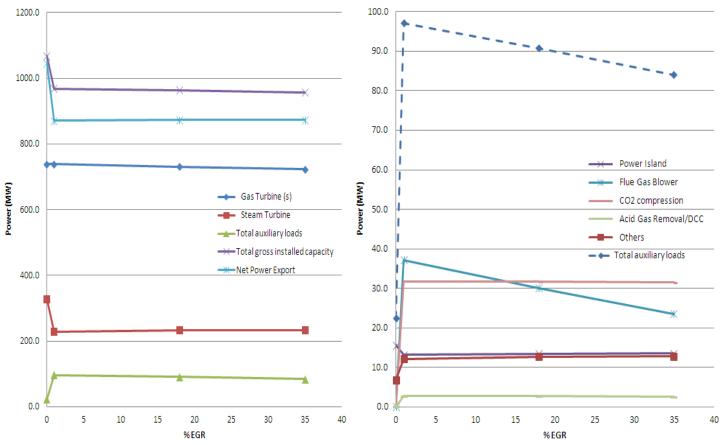
Both the decrease in GT performance and the increase in ST performance are significantly more marked in the 40% GT load cases, however it can be seen that the efficiency penalty at turndown is slightly reduced in the EGR cases.

6.2.2 CO₂ Capture, Compression and Balance of Plant Performance

The power required by the flue gas blower is significantly reduced as the % EGR increases, with a 36.6% reduction in power demand for the 35% EGR case.

The remaining power requirement is for solvent pumps and this reduced in line with the slight reduction in CO_2 molar flow, and hence solvent molar flow. It was assumed that these pumps operate in partial recycle during plant turndown, thus the power absorbed by these pumps at 40% GT load is unchanged from the 100% GT load case.

The steam requirement of the solvent stripper reboiler is not significantly impacted by the % EGR, but reduces slightly in line with the slight reduction in the total CO_2 molar flow due to the reduction in fuel used in the GT with increasing EGR.


The power required by the CO_2 compressor is reduced in the same way as the solvent flow rate and stripper heat load are reduced, due to the reduced CO_2 molar flow at increasing EGR.

The balance of plant parasitic load increases with increasing % EGR, mainly due to the increased cooling water pumping requirement with increasing EGR. Additional cooling is required for the EGR DCC and for the steam turbine condenser with increasing EGR.

6.2.3 Overall Plant Performance

With increasing % EGR, there is a decrease in the power island gross power output, but at the same time, the total auxiliary loads also decrease. This results in only a modest improvement in the plant overall LHV efficiency with EGR, of 0.39 and 0.6 % points relative to the 0% EGR case efficiency of 48.58%. There is also a very small (0.2%) increase in the total net power output with EGR.

Figure 6-1 – (a) Overall Plant Technical Performance and (b) Auxiliary Load Changes with Increasing %EGR

As an additional benefit, it is likely that adding EGR will result in a reduction in both the NO_X and oxygen content of the flue gas, which should decrease the rate of solvent degradation. At this stage of development, it is not possible to quantify this effect, which would be dependent on the chemistry of the specific licensor's solvent.

6.3 Economic Performance with Increasing levels of EGR

6.3.1 Capital Cost with Increasing EGR

The additional direct contact cooler for the EGR cases has been included in the Power Island scope, thus the capital cost of the power island increases with increasing EGR, by 1.3% and 3.5% for the 18% EGR and 35% EGR cases respectively.

The diameter of the direct contact cooler and absorber and the size of the flue gas blower in the CO_2 capture plant are significantly reduced with increasing EGR, resulting in a significant reduction in the total CAPEX of the CO_2 capture unit with EGR, by 10.0% and 23.7% for the 18% EGR and 35% EGR cases respectively.

The impact on the overall plant CAPEX is therefore quite significant with a 3.2% and 7.1% reduction for the 18% EGR and 35% EGR cases respectively.

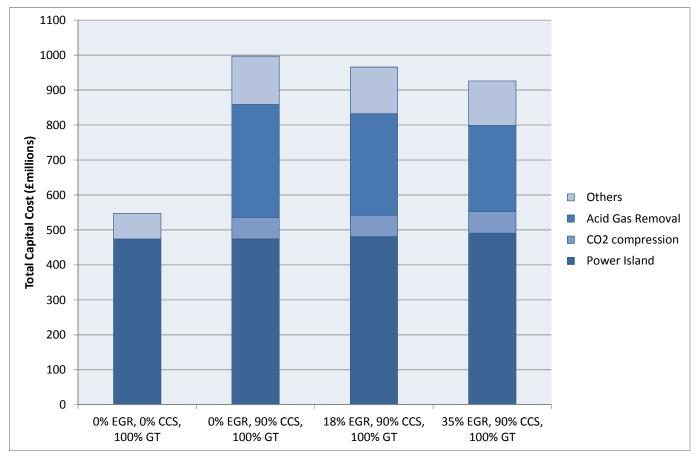


Figure 6-2: Total Project Capital Cost with Increasing EGR

6.3.2 Operating Cost with Increasing EGR

The operating costs vary largely in line with the variation in fuel requirement since the fuel flow rate is lower in the cases with increasing EGR. In addition to the fuel cost reduction, there is also a small reduction in the fixed operating costs since several of these are related to the total capital cost. The total operating costs reduce with EGR by 0.7% and 1.4% for the 18% EGR and 35% EGR cases respectively.

At 40% GT load the operating cost reduction is more significant at 2.1% and 4.3% for the 18% EGR and 35% EGR cases respectively. This is due to the slightly higher efficiency at turndown in the EGR cases.

FOSTER 🗑 WHEELER

6.3.3 Levelised Cost of Electricity with Increasing EGR

Since both the total capital and the total operating costs reduce with increasing EGR, so does the levelised cost of electricity (LCOE). However, the reduction in the LCOE is quite modest, since, for gas plants, over the plant lifetime the price of fuel is much more significant than the capital cost of the original plant. The LCOE reduces by 1.7% and 3.3% for the 18% EGR and 35% EGR cases respectively.

It should be noted that the LCOE reduction with increasing EGR is more significant at 40% GT load, since the total operating cost at 40% GT load is improved more than in the 100% GT load cases. Thus the LCOE reduces by 4.0% and 7.6% for the 18% EGR and 35% EGR cases respectively at 40% GT load. However, it should be remembered that the LCOE at part load operation is very substantially higher to begin with than when operating the plant at full load (£118.8/MWh_{Net} at 40% GT load versus £69.1/MWh_{Net} at 100% GT load with 90% CCS and without EGR).

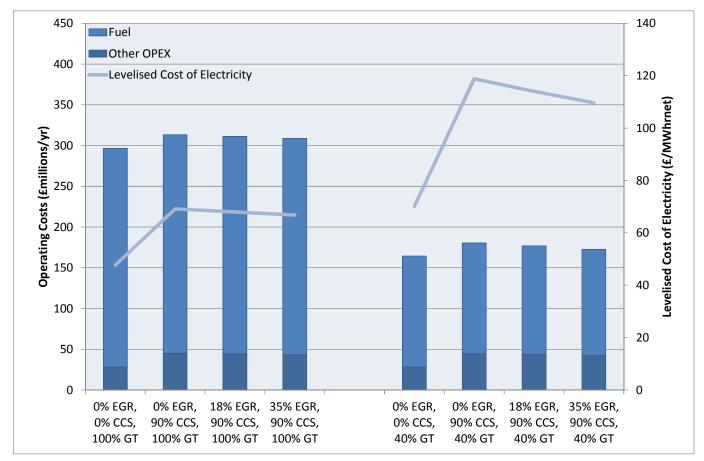


Figure 6-3: Operating Costs and LCOE with Increasing EGR

Table 6-1	Technical Performance Figures for CCGT with EGR
-----------	---

		0% EGR	0% EGR	18% EGR	35% EGR	0% EGR	0% EGR	18% EGR	35% EGR
		0% CCS	90% CCS	90% CCS	90% CCS	0% CCS	90% CCS	90% CCS	90% CCS
		100% GT	100% GT	100% GT	100% GT	40% GT	40% GT	40% GT	40% GT
Power									
Total gross installed capacity	MWe	1068.0	967.9	964.2	957.1	472.0	421.2	420.9	418.7
Gas Turbine (s)	MWe	739.0	739.0	731.0	723.4	295.6	295.6	287.5	279.9
Steam Turbine	MWe	328.9	228.9	233.2	233.8	176.4	125.6	133.4	138.7
Total auxiliary loads	MWe	22.4	97.1	90.8	84.0	14.8	64.4	59.0	53.7
Power Island	MWe	15.6	13.2	13.4	13.6	10.4	9.7	9.9	10.1
Flue Gas Blower	MWe	0.0	37.2	30.1	23.6	0.0	28.9	23.4	18.3
Acid Gas Removal/DCC	MWe	0.0	2.8	2.7	2.5	0.0	2.8	2.7	2.5
Alternative Technology	MWe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO2 compression	MWe	0.0	31.7	31.7	31.5	0.0	16.1	15.8	15.4
Others	MWe	6.8	12.1	12.8	12.9	4.4	6.9	7.2	7.3
Net Power Export	MWe	1045.6	870.8	873.4	873.1	457.2	356.8	362.0	365.0
Net Efficiency (LHV)	%	58.33	48.58	48.97	49.18	50.25	39.21	40.71	41.98
Heat Rate	kJ/kWh	6172	7411	7352	7320	7164	9181	8843	8576
CC Energy Penalty	% points	0.00	9.75	9.31	8.96	0.00	11.04	10.78	9.78
Carbon Balance									
Total carbon in feeds	tpd	2400.3	2400.3	2388.4	2376.9	1218.3	1218.3	1190.6	1164.3
Total carbon captured	tpd	0.0	2159.4	2156.5	2139.9	0.0	1096.9	1071.7	1049.0
Total carbon emissions	tpd	2400.3	240.9	231.9	237.1	1218.3	121.3	118.9	115.3
Carbon capture rate	%	0.0	90.0	90.3	90.0	0.0	90.0	90.0	90.1
Carbon efficiency	g CO2/kWh	350.5	42.2	40.5	41.5	406.8	51.9	50.1	48.2

Table 6-2	Economic Performance Figures for CCGT with EGR
-----------	--

		0% EGR	0% EGR	18% EGR	35% EGR	0% EGR	0% EGR	18% EGR	35% EGR
		0% LGR	90% CCS	90% CCS	90% CCS	0% CCS	90% CCS	90% CCS	90% CCS
		100% GT	100% GT	100% GT	100% GT	40% GT	40% GT	40% GT	40% GT
Power		100 /8 G1	100 % G1	100 % G1	100 /8 G1	4078 G1	40% G1	40% G1	40% G1
Net Power Export	MWe	1045.6	870.8	873.4	873.1	457.2	356.8	362.0	365.0
Net Efficiency (LHV)	%	58.33	48.58	48.97	49.18	50.25	39.21	40.71	41.98
Economic Performance									
Total CAPEX	GB£M	547.5	997.2	965.7	926.3	547.5	997.2	965.7	926.3
Power Island	GB£M	474.5	474.5	480.5	491.0	474.5	474.5	480.5	491.0
Acid Gas Removal	GB£M	0.0	322.9	290.3	246.4	0.0	322.9	290.3	246.4
CO ₂ compression	GB£M	0.0	61.5	61.5	61.5	0.0	61.5	61.5	61.5
Others	GB£M	73.0	138.2	133.4	127.4	73.0	138.2	133.4	127.4
CAPEX efficiency	GB£/kW _{Net}	523.6	1145.1	1105.6	1061.0	1197.5	2795.1	2667.9	2537.7
Total OPEX – incl. fuel	GB£M p.a.	296.6	313.4	311.1	308.9	164.4	180.5	176.7	172.7
		268.3	268.3	266.9	265.8	136.1	136.1	133.2	130.3
Total OPEX – excl. fuel	GB£M p.a.	28.3	45.1	44.2	43.1	28.3	44.4	43.5	42.4
OPEX – incl. fuel	GB£ p.a. /	283.7	359.9	356.2	353.8	359.6	505.9	488.2	473.1
OPEX – excl. fuel	GB£ p.a. /	27.1	51.8	50.6	49.4	61.9	124.5	120.2	116.2
Levelised Cost of Electricity		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO_2 emission cost = £0 / te CO_2	£ / MWh _{Net}	47.7	69.1	67.9	66.8	70.1	118.8	114.0	109.7
Cost of CO ₂ Captured									
CO_2 emission cost = £ 0 / te CO_2	£ / te CO ₂	n/a	56.8	51.9	47.9	n/a	103.6	96.1	86.8
Cost of CO ₂ Avoided									
CO_2 emission cost = £ 0 / te CO_2	£ / te CO ₂	n/a	69.7	63.0	57.8	n/a	137.1	125.2	109.8

7. **REFERENCES**

- 1. Gas Turbine World, 2013, Vol 1
- 2. Gas Turbine World 2009, Vol 1
- 3. "Flue gas recirculation in a gas turbine: impact on performance and operational behaviour", F. Sander et al., Alstom.
- 4. "Flue gas recirculation of the Alstom sequential gas turbine combustor at high pressure", F. Guethe et al., Alstom.
- 5. "Impacts of exhaust gas recirculation (EGR) on the natural gas combined cycle integrated with chemical absorbtion CO2 capture technology", Hailong Li et al., Sintef.
- 6. "Application of exhaust gas recycle in a DLN F-class combustion system for post-combustion carbon capture", AM EiKady et al, GE & StatoilHydro.

ATTACHMENT 1 BASIS OF DESIGN

FOSTER WWHEELER

Contract No.:	1.17.13058	
Client's Name:	The Energy Technologies Institute	
Project Title:	Hydrogen Storage and Flexible Turbine Systems	
Project Location:	Generic UK	

REVISION	Rev O1 (Draft)			
DATE	26 July 2013	1 1		
ORIG. BY	T. Abbott	Tu Albert .		
CHKD BY	S. Ferguson	Bowson		
APP. BY	T. Abbott	Tin Alabert		

WP6 - CCS Benchmark Refresh 2013 Basis of Design

CONTENTS

1.	INTRODUCTION	2
2.	PLANT LOCATION	2
3.	SITE CONDITION	2
4.	PLANT CAPACITY	2
5.	PLANT OPERATING CONDITIONS	2
6.	CARBON DIOXIDE CAPTURE RATE	2
7.	FEEDSTOCK, PRODUCT AND UTILITY SUPPLIES	3
8.	FEEDSTOCK SPECIFICATIONS	3
8.		3
8.		4
9.	PRODUCT SPECIFICATIONS	4
9.	1 Carbon Dioxide	4
9.		4
10.	UTILITY SUPPLIES	5
10	0.1 Seawater cooling system	5
1(0.2 Closed loop water cooling system	
11.	ENVIRONMENTAL EMISSION BASIS	6
12.	OUTLINE SCHEME DESCRIPTIONS	6
1:	2.1 Natural Gas CCGT Power Plant with Amine Solvent Post-Combustion CO ₂ Capture	6
1:	2.2 Natural Gas CCGT Power Plant without CO ₂ Capture	6

1. INTRODUCTION

The ETI has engaged Foster Wheeler to execute its CCS Benchmark Refresh 2013 Project. The main purpose of this further study work is to provide additional benchmarking and performance analysis of next generation carbon capture technologies building upon those evaluated and reported in previous phases of CCS study work that Foster Wheeler has executed with ETI.

WHEELE

This purpose of this Basis of Design document is to provide a clear and consistent basis on which to evaluate each option in support of the study.

2. PLANT LOCATION

The site is assumed to be a green field coastal location on the NE coast of the UK, with adjacent deep sea access.

3. SITE CONDITION

An assumed clear level obstruction (both under and above ground) free site is considered, without the need for any required special civil works.

4. PLANT CAPACITY

Each case will be designed to produce electric energy (800 MWe nominal gross capacity without CO_2 capture) to be delivered to the UK National grid. For each of the Benchmarks considered, the design capacity will vary, determined by the full design capacity of key equipment items, for example, in the case of CCGT schemes the full "appetite" of the selected gas turbines.

5. PLANT OPERATING CONDITIONS

The following climatic conditions marked (*) shall be considered reference conditions for plant performance evaluation across all WP6 cases. Individual case deliverables will be produced at reference conditions only.

Atmospheric pressu	1013 mbar (*)			
Relative humidity:	average:	average 60% (*)		
		maximum: 95%		
		minimum: 40%		
Ambient temperature	average 10°C (*)			
		summer 30°C		
		minimum -10°C		

6. CARBON DIOXIDE CAPTURE RATE

Each carbon dioxide abated case will be designed to achieve a target carbon capture level of at least 90%, defined as:

 CO_2 Capture Rate (%) = 100 x Moles carbon contained in the CO_2 product

Moles carbon contained in the natural gas feed

7. FEEDSTOCK, PRODUCT AND UTILITY SUPPLIES

The streams available at plant battery limits are the following:

- Natural gas;
- CO₂ product;
- Sea water supply;
- Sea water return;
- Plant/raw/potable water; and
- Chemicals (including amine).

Other utilities, including demineralised water, boiler feed water, instrument and plant air, oxygen and nitrogen will be generated within the complex where necessary and will be available for use at the required conditions.

8. FEEDSTOCK SPECIFICATIONS

8.1 Natural Gas

Natural gas NTS connection is available.

Natural gas feedstock specification (as NTS spec):

H ₂ S Content	Not more than 5 mg/m ³
Total Sulphur Content	Not more than 50 mg/m ³
Hydrogen Content	Not more than 0.1% (molar)
Oxygen Content	Not more than 0.001% (molar)
Hydrocarbon Dewpoint	Not more than -2°C, at any pressure up to 85 bar(g)
Water Dewpoint	Not more than -10°C, at 85 bar(g) (or the actual delivery pressure)
Wobbe Number (real gross dry)	Between 48.14 MJ/m ³ and 51.41 MJ/m ³ (at standard temperature and pressure) and in compliance with ICF and SI limits as listed below
Incomplete Combustion Factor	Not more than 0.48
Soot Index	Not more than 0.60
Gross Calorific Value (real gross dry)	Between 36.9 MJ/m ³ and 42.3 MJ/m ³ (at standard temperature and pressure) and in compliance with ICF and SI limits described above, subject to a 1 MJ/m ³ variation.
Inerts	Not more than 7.0mol%, subject to: Carbon Dioxide content – not more than 2.0mol% Nitrogen content – not more than 5.0mol%

PAGE

Contaminants	Gas shall not contain solid or liquid material which may interfere with the integrity or operation of pipes or any gas appliance within the meaning of the Regulation 2(1) of the Gas Safety (Use of) Regulations 1998 that a consumer could reasonably be expected to operate.
Delivery Temperature	Between 1°C and 38°C
Odour	Gas delivered shall have no odour that might contravene the statutory obligation "not to transmit or distribute any gas at a pressure below 7 bar(g) which does not possess a distinctive and characteristic odour".

8.2 Back up fuel/power

Natural gas (as detailed in section 8.1) is available for back-up fuel.

National Grid electrical grid connection is available for "black start" power requirement scenarios.

9. **PRODUCT SPECIFICATIONS**

9.1 Carbon Dioxide

Carbon dioxide produced from the plant will be dried and compressed to 150 bar(g) for export from the facility. Product carbon dioxide conditions will be:

Pressure:	150 bar(g)
Temperature:	$\leq 30^{\circ}C$

The target carbon dioxide export specification is based on the requirements for EOR.

H ₂ O	< 50 ppmv
CO ₂	> 97 vol%
SO ₂	< 50 ppm
H_2S	< 50 ppm
СО	< 3 vol%
Ar	< 3 vol%
O ₂	100 ppmv
N ₂	< 3 vol%
H ₂	< 3 vol%
CH_4	< 2 vol%
COS	< 50ppm

9.2 Power

Power will be generated from the complex at 275 kV and will be transmitted to an assumed existing HV substation for connection onto the UK National Grid. It is assumed that National Grid electrical grid connection is available.

Electric Power

Net Power Output	800 MWe nominal capacity
Voltage	275 kV
Frequency	50 Hz

10. UTILITY SUPPLIES

10.1 Seawater cooling system

The primary cooling system is sea water in a once through system. Services will include the steam turbine condenser and the seawater/closed loop interchanger. Seawater supply assumed to be clear filtered and chlorinated, without suspended solids and organic matter. Seawater supply from a new intake and a seawater outfall will be required as part of the complex.

The following seawater conditions marked (*) shall be considered reference conditions for plant performance evaluation across all WP6 cases. Individual case deliverables will be produced at reference conditions only.

Seawater conditions:

Average supply temperature:	10°C (*)
Average return temperature:	18°C (*)
Operating pressure at Condenser inlet:	3 bar(g)
Maximum allowable ΔP for Condenser:	0.7 bar

10.2 Closed loop water cooling system

The secondary cooling system is a closed loop, seawater cooled cooling water system. All cooling services, with the exception of the steam turbine vacuum condenser, will be placed on this system. This system cools the closed loop water against seawater. The make-up water to the system shall be demineralised water stabilized and conditioned.

The following closed loop water conditions marked (*) shall be considered reference conditions for plant performance evaluation across all WP6 cases. Individual case deliverables will be produced at reference conditions only.

Closed loop cooling water conditions:

Average supply temperature:	14°C (*)
Average return temperature:	24°C (*)
Seawater/closed loop water interchange	r ΔT: 4°C (*)
Operating pressure at users:	3.0 bar(g)
Maximum allowable ΔP for users:	1.5 bar

11. ENVIRONMENTAL EMISSION BASIS

The overall gaseous emissions basis for the study cases are as follows:

	CCGT(2)
NOx (as NO ₂),mg/Nm ³ :	\leq 50
Particulate, mg/Nm ³ :	≤ 5
CO, mg/Nm ³ :	≤ 20
Notes:	

(1) @ 6% O₂ vol dry

(2) @ 15% O₂ vol dry

12. OUTLINE SCHEME DESCRIPTIONS

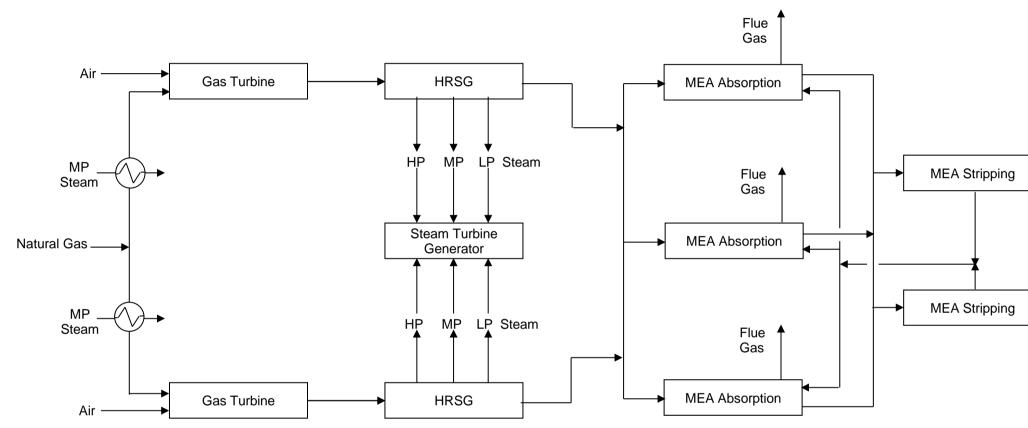
12.1 Natural Gas CCGT Power Plant with Amine Solvent Post-Combustion CO₂ Capture

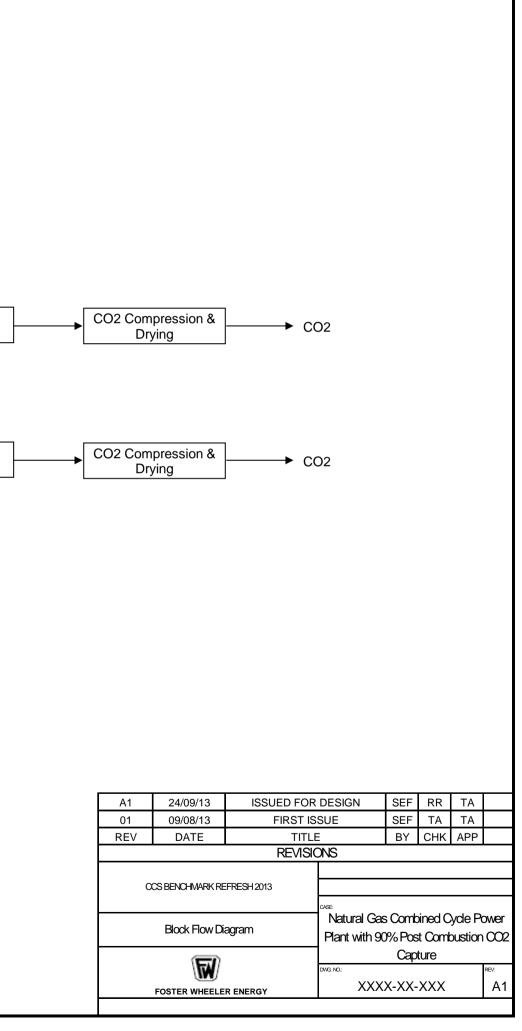
The overall process scheme will be based upon a natural gas fired combined cycle gas turbine (CCGT) using two Frame F class gas turbines, each with downstream heat recovery steam generator (HRSG), and common single steam turbine generator (STG), CO_2 capture unit and CO_2 compression and dehydration unit.

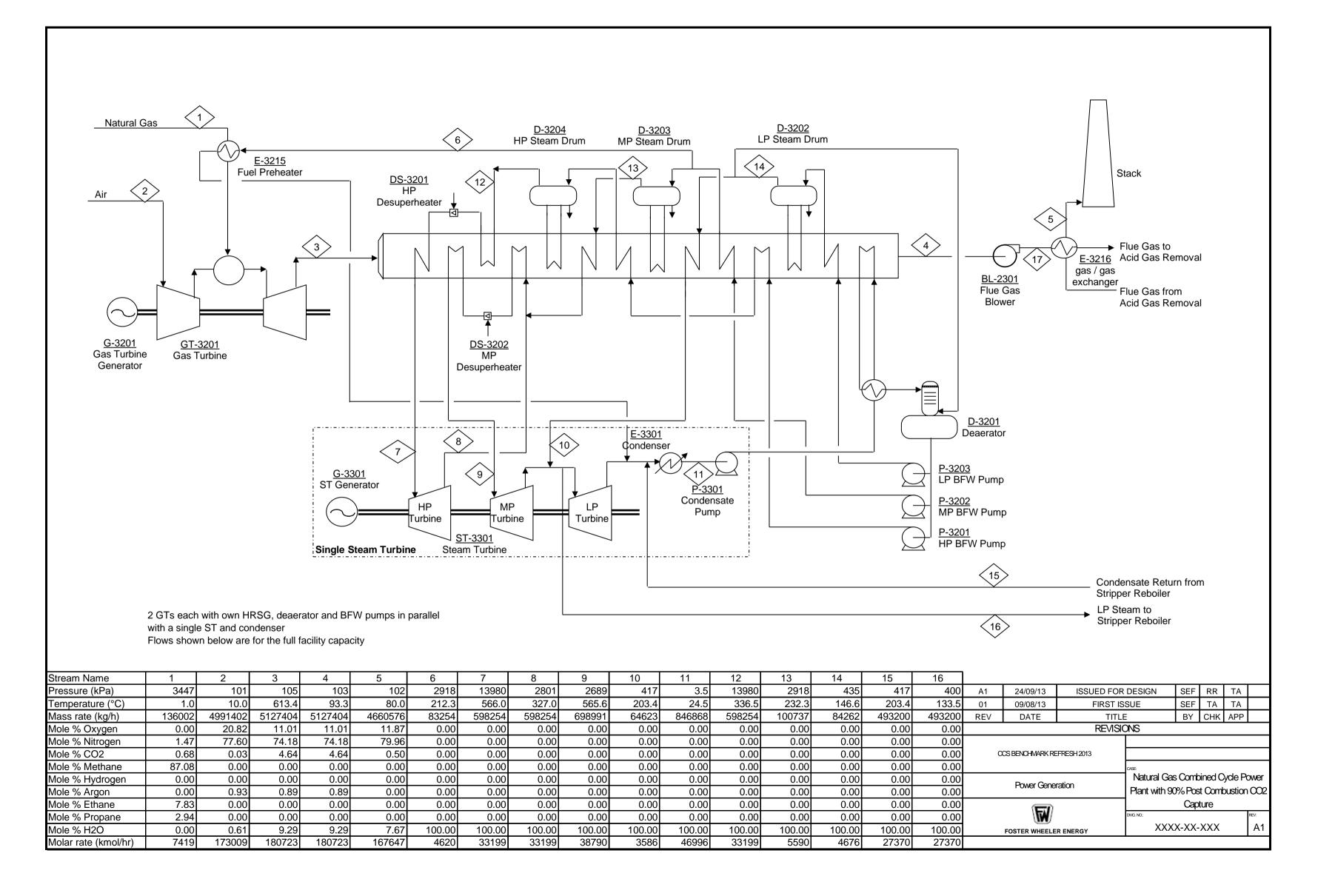
In this case this natural gas feed rate will be set to ensure full utilisation of the gas turbines with the supporting and downstream equipment items sized to process the generated gas turbine exhaust gas. The process conditions, including stream flows, pressures, temperatures and compositions, will be produced to reflect this sizing basis. Key features of the configuration include:

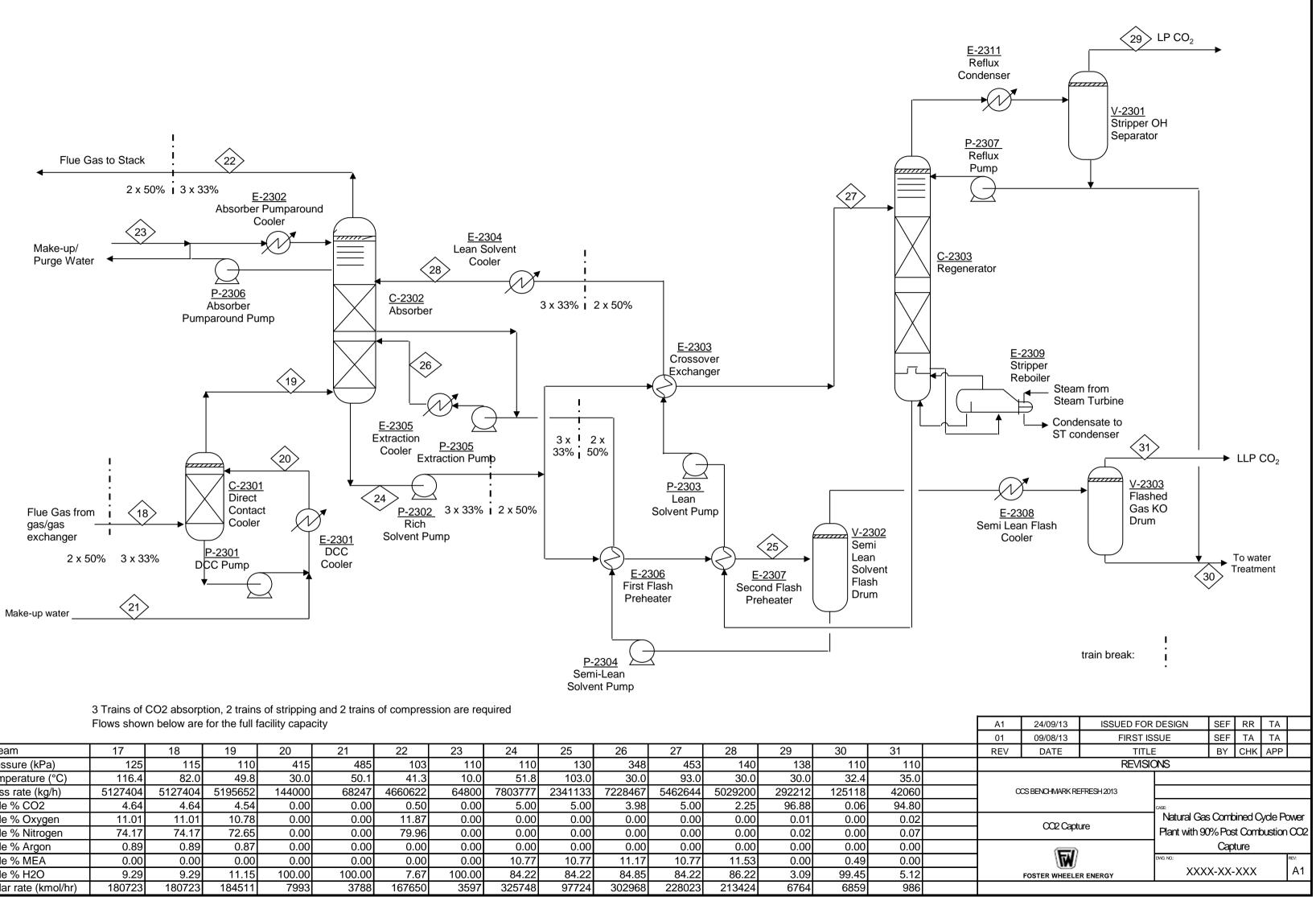
- Power Island Unit comprising of two parallel trains, each with one F class 50 Hz gas turbine and one heat recovery steam generator (HRSG), connected to a single condensing steam turbine, using seawater cooling.
- Acid Gas Removal Unit carbon dioxide removal scheme developed using in-house information on the basis of an MEA-based process such as Fluor Econamine carbon dioxide recovery technology.
- Carbon Dioxide Compression and Drying Units dehydration and compression to 150 barg based on in-house knowledge of commercially available equipment.

12.2 Natural Gas CCGT Power Plant without CO₂ Capture

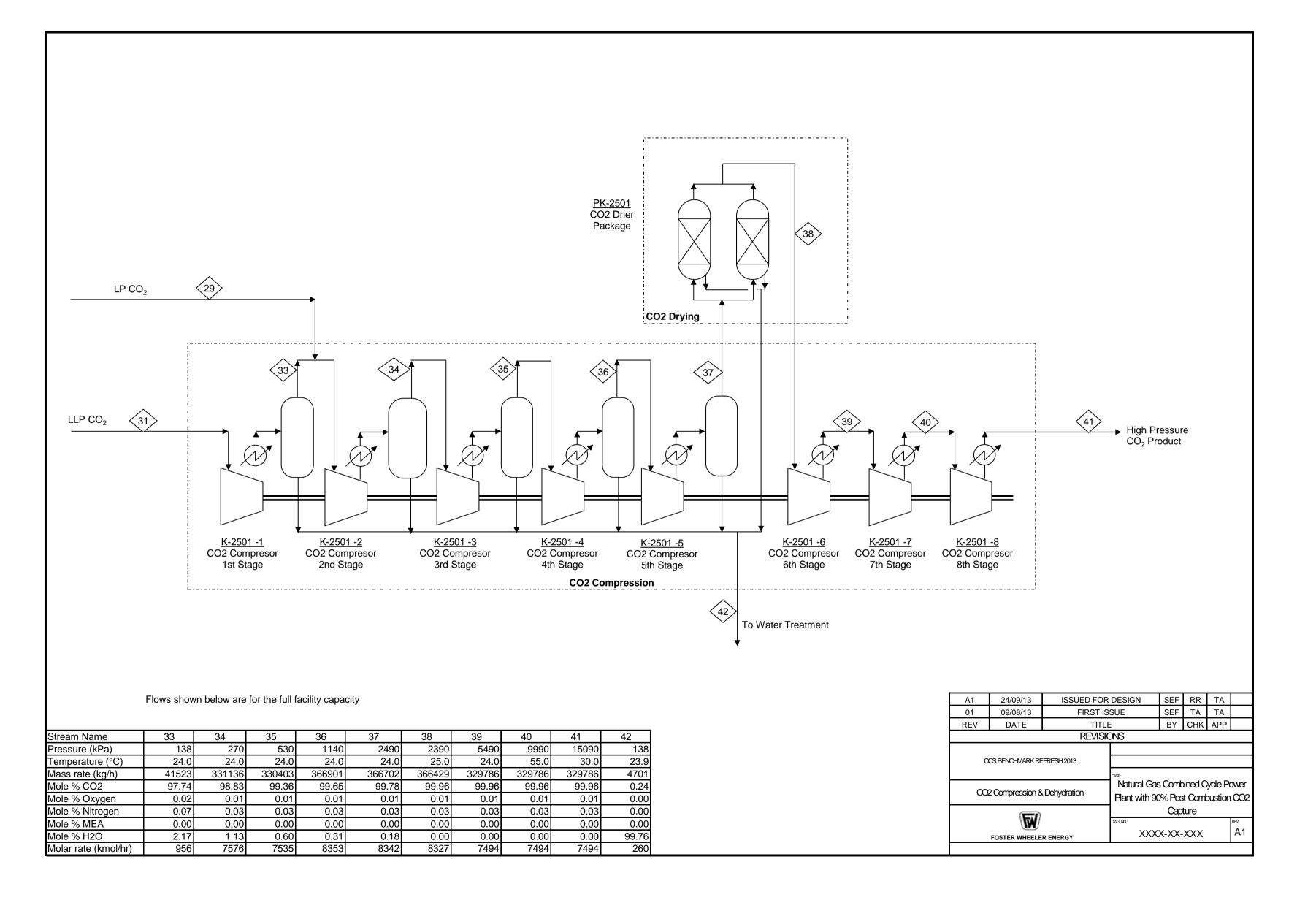

An equivalent Natural Gas CCGT without CO_2 capture will be developed. This will be based upon the same configuration as above, with the exclusion of the AGR and CO_2 compression and drying units. The case will use the same natural gas feed rate as the Natural Gas CCGT Power Plant with CO_2 capture case.

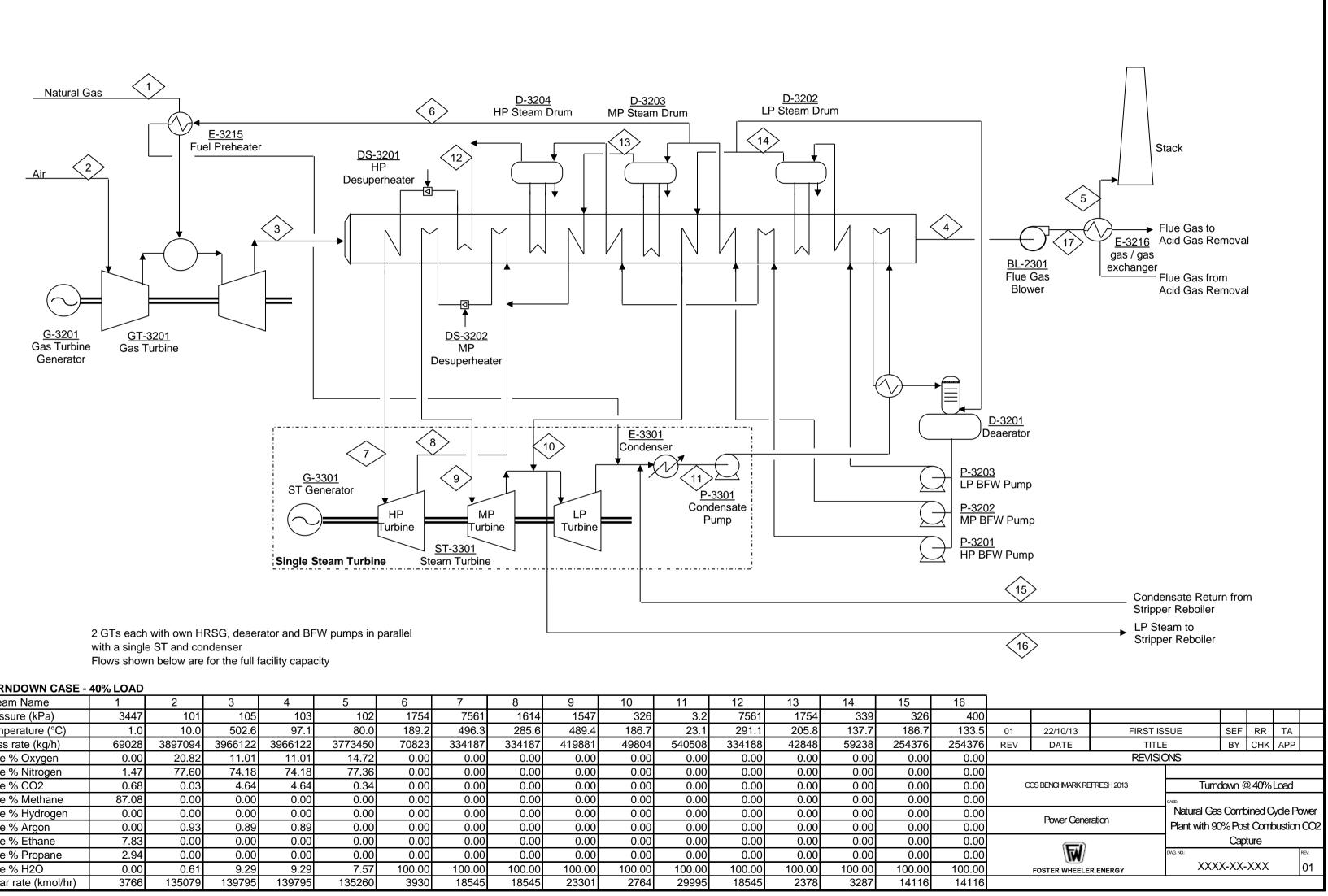


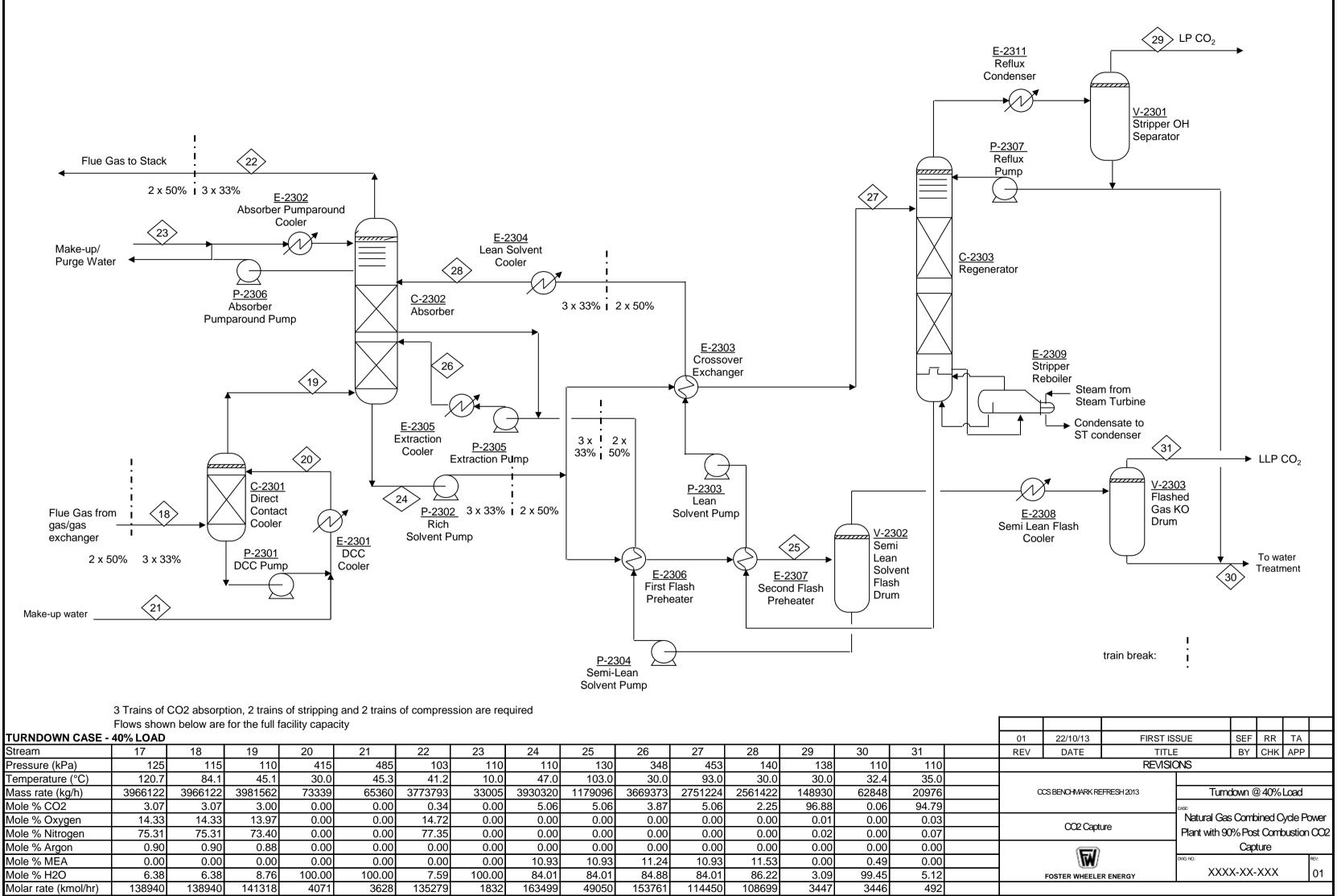


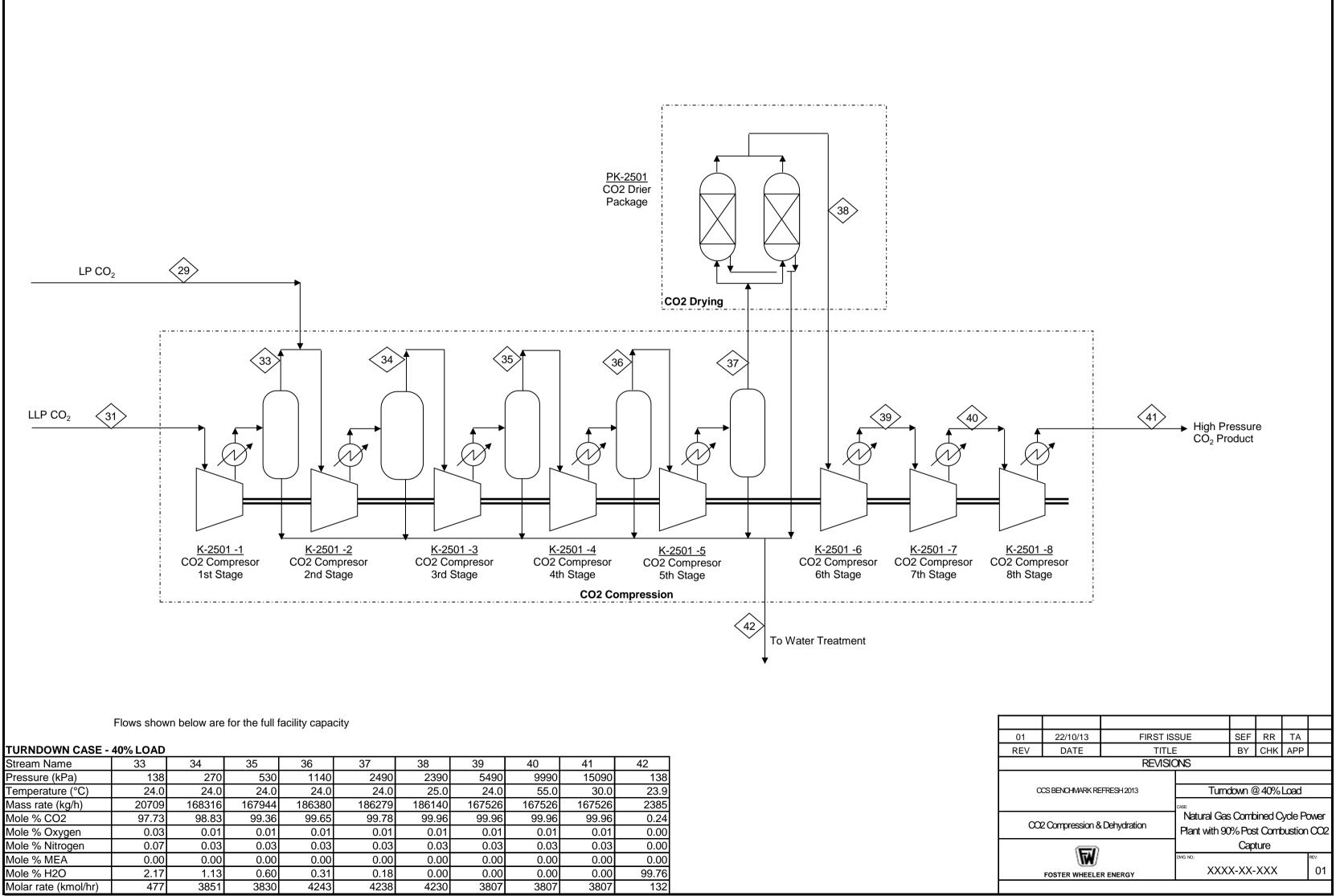

ATTACHMENT 2 HEAT AND MATERIAL BALANCES

- 1. CCGT with 90% CO₂ Capture
 - a. 100% Load
 - b. 40% Load
- 2. CCGT without CO₂ Capture
 - a. 100% Load
 - b. 40% Load
- 3. CCGT with 35% EGR and 90% CO₂ Capture
 - a. 100% Load
 - b. 40% Load
- 4. CCGT with 35% EGR without CO₂ Capture
 - a. 100% Load
 - b. 40% Load
- 5. CCGT with 18% EGR and 90% CO₂ Capture
 - a. 100% Load
 - b. 40% Load
- 6. CCGT with 18% EGR without CO₂ Capture
 - a. 100% Load
 - b. 40% Load

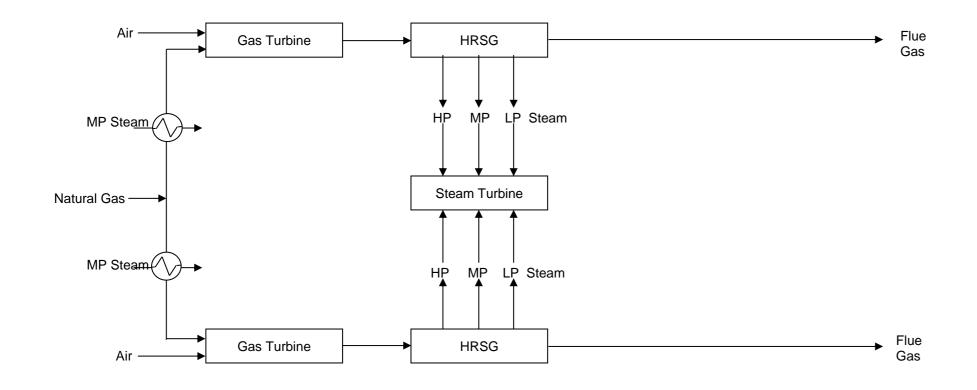


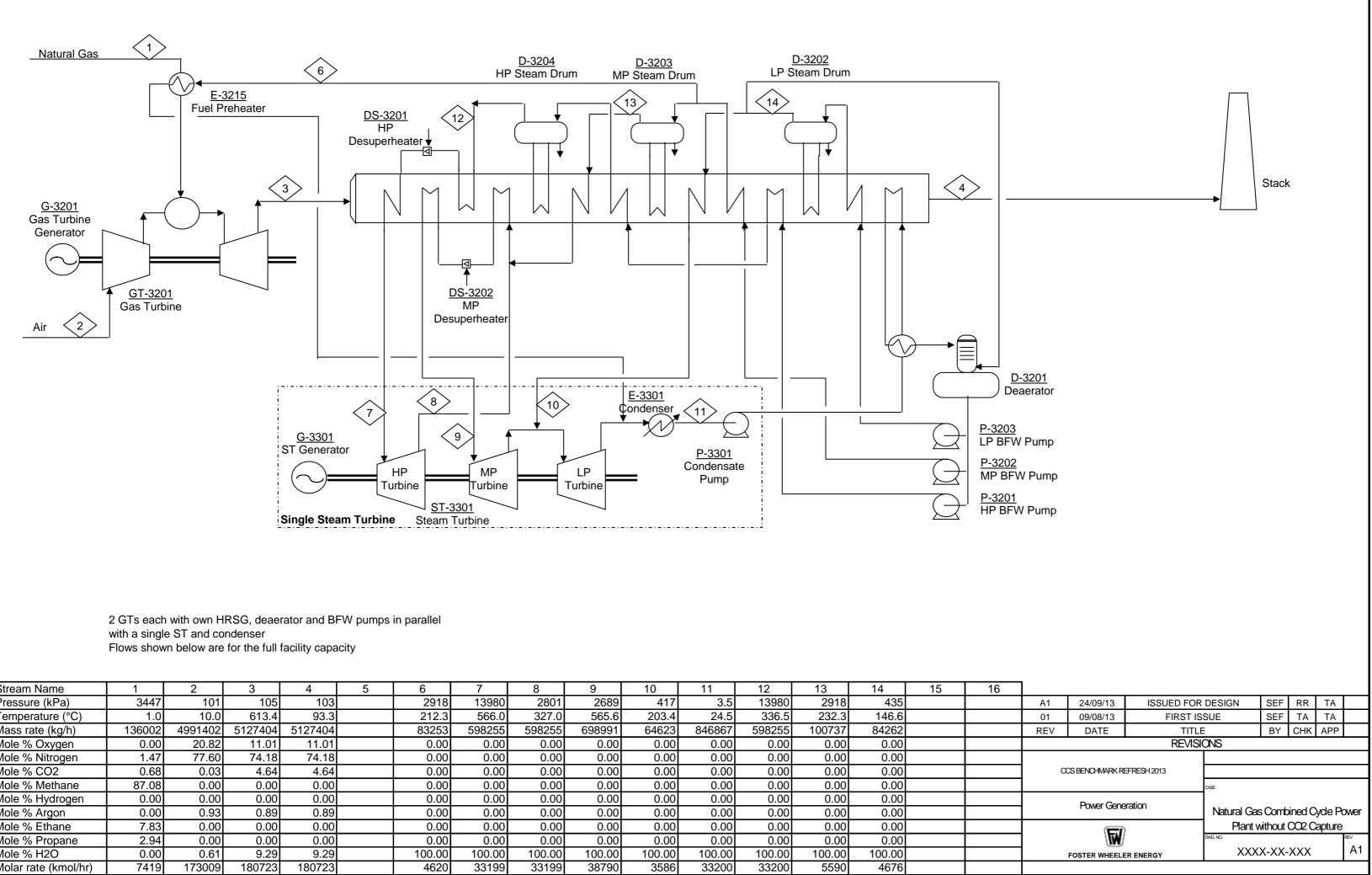


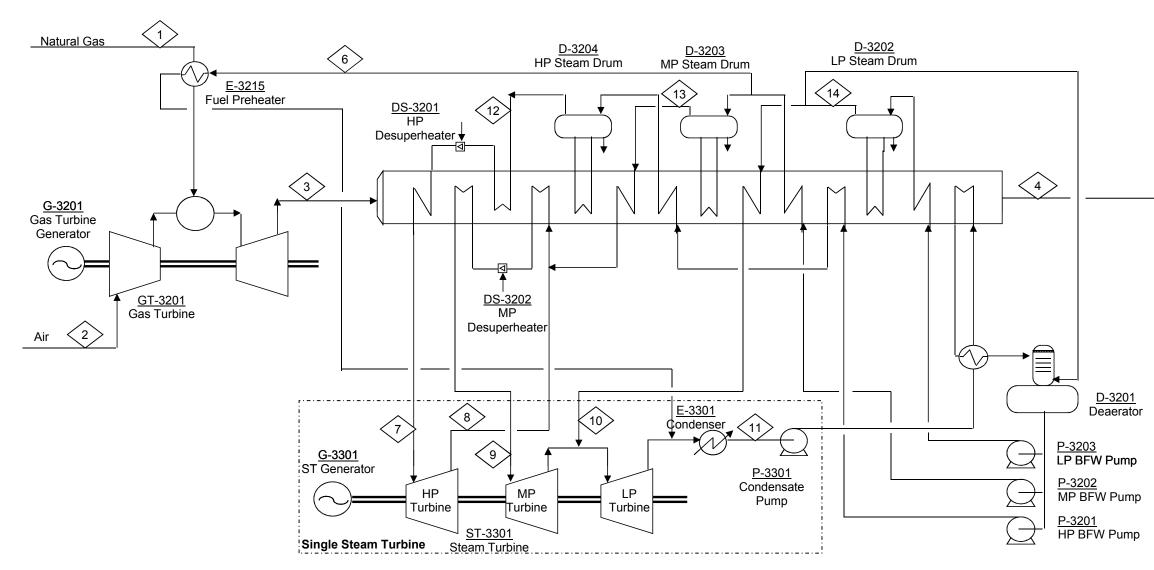

Stream	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Pressure (kPa)	125	115	110	415	485	103	110	110	130	348	453	140	138	110	
Temperature (°C)	116.4	82.0	49.8	30.0	50.1	41.3	10.0	51.8	103.0	30.0	93.0	30.0	30.0	32.4	3
Mass rate (kg/h)	5127404	5127404	5195652	144000	68247	4660622	64800	7803777	2341133	7228467	5462644	5029200	292212	125118	42
Mole % CO2	4.64	4.64	4.54	0.00	0.00	0.50	0.00	5.00	5.00	3.98	5.00	2.25	96.88	0.06	94
Mole % Oxygen	11.01	11.01	10.78	0.00	0.00	11.87	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0
Mole % Nitrogen	74.17	74.17	72.65	0.00	0.00	79.96	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0
Mole % Argon	0.89	0.89	0.87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Mole % MEA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.77	10.77	11.17	10.77	11.53	0.00	0.49	0
Mole % H2O	9.29	9.29	11.15	100.00	100.00	7.67	100.00	84.22	84.22	84.85	84.22	86.22	3.09	99.45	5
Molar rate (kmol/hr)	180723	180723	184511	7993	3788	167650	3597	325748	97724	302968	228023	213424	6764	6859	ļ



TURNDOWN CASE - 40% LOAD

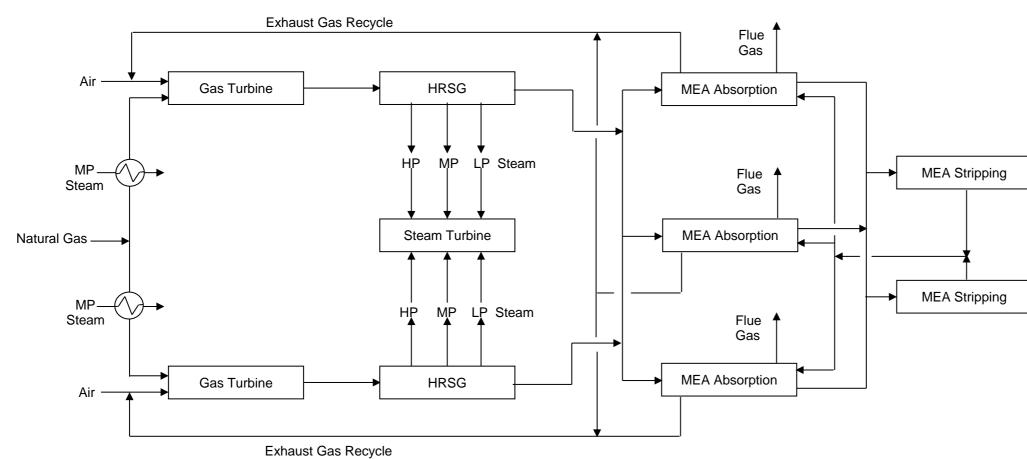

Stream Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Pressure (kPa)	3447	101	105	103	102	1754	7561	1614	1547	326	3.2	7561	1754	339	3
Temperature (°C)	1.0	10.0	502.6	97.1	80.0	189.2	496.3	285.6	489.4	186.7	23.1	291.1	205.8	137.7	18
Mass rate (kg/h)	69028	3897094	3966122	3966122	3773450	70823	334187	334187	419881	49804	540508	334188	42848	59238	2543
Mole % Oxygen	0.00	20.82	11.01	11.01	14.72	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
Mole % Nitrogen	1.47	77.60	74.18	74.18	77.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
Mole % CO2	0.68	0.03	4.64	4.64	0.34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
Mole % Methane	87.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
Mole % Hydrogen	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
Mole % Argon	0.00	0.93	0.89	0.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
Mole % Ethane	7.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
Mole % Propane	2.94	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
Mole % H2O	0.00	0.61	9.29	9.29	7.57	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.
Molar rate (kmol/hr)	3766	135079	139795	139795	135260	3930	18545	18545	23301	2764	29995	18545	2378	3287	141

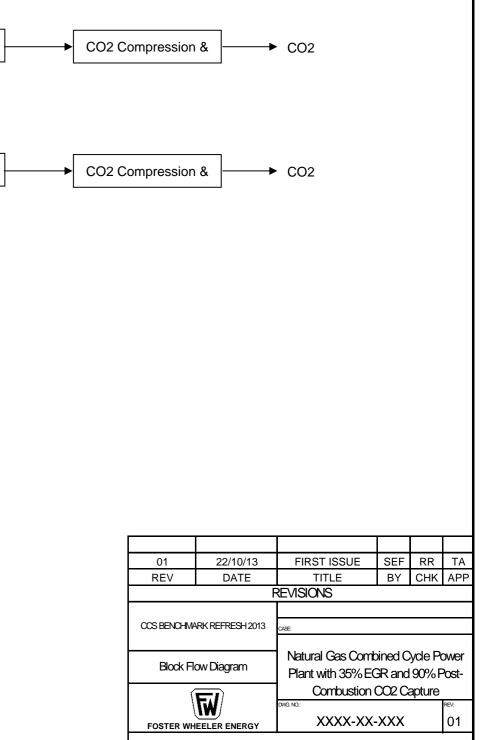

I ON TO ON OAOE															
Stream	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Pressure (kPa)	125	115	110	415	485	103	110	110	130	348	453	140	138	110	1
Temperature (°C)	120.7	84.1	45.1	30.0	45.3	41.2	10.0	47.0	103.0	30.0	93.0	30.0	30.0	32.4	3
Mass rate (kg/h)	3966122	3966122	3981562	73339	65360	3773793	33005	3930320	1179096	3669373	2751224	2561422	148930	62848	209
Mole % CO2	3.07	3.07	3.00	0.00	0.00	0.34	0.00	5.06	5.06	3.87	5.06	2.25	96.88	0.06	94
Mole % Oxygen	14.33	14.33	13.97	0.00	0.00	14.72	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0
Mole % Nitrogen	75.31	75.31	73.40	0.00	0.00	77.35	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0
Mole % Argon	0.90	0.90	0.88	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Mole % MEA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.93	10.93	11.24	10.93	11.53	0.00	0.49	0
Mole % H2O	6.38	6.38	8.76	100.00	100.00	7.59	100.00	84.01	84.01	84.88	84.01	86.22	3.09	99.45	5
Molar rate (kmol/hr)	138940	138940	141318	4071	3628	135279	1832	163499	49050	153761	114450	108699	3447	3446	2

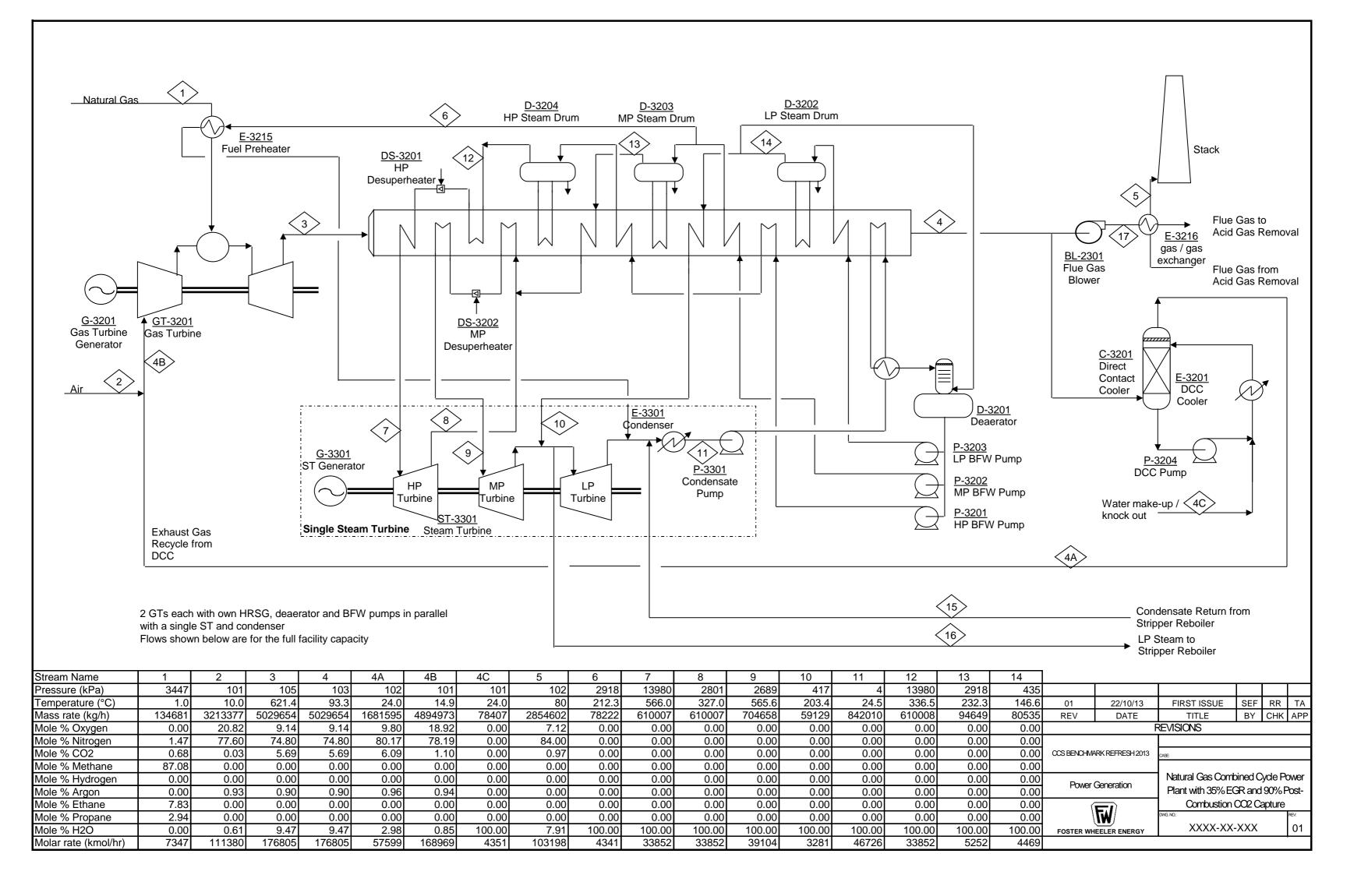

Stream Name	33	34	35	36	37	38	39	40	41	42
Pressure (kPa)	138	270	530	1140	2490	2390	5490	9990	15090	138
Temperature (°C)	24.0	24.0	24.0	24.0	24.0	25.0	24.0	55.0	30.0	23.9
Mass rate (kg/h)	20709	168316	167944	186380	186279	186140	167526	167526	167526	2385
Mole % CO2	97.73	98.83	99.36	99.65	99.78	99.96	99.96	99.96	99.96	0.24
Mole % Oxygen	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00
Mole % Nitrogen	0.07	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.00
Mole % MEA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mole % H2O	2.17	1.13	0.60	0.31	0.18	0.00	0.00	0.00	0.00	99.76
Molar rate (kmol/hr)	477	3851	3830	4243	4238	4230	3807	3807	3807	132

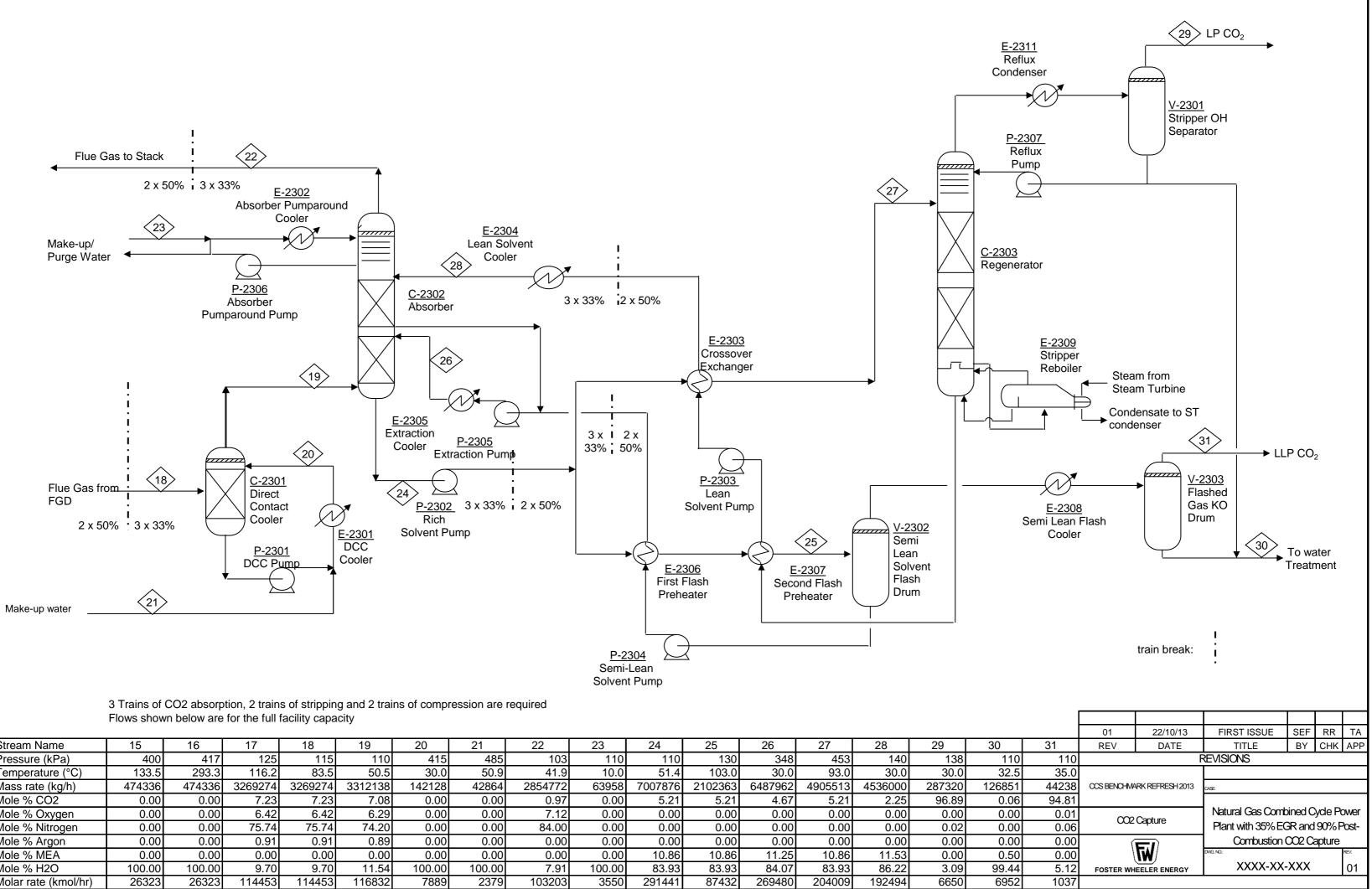
A1	24/09/13	ISSUED FOR	DESIGN	SEF	RR	TA	
01	09/08/13	FIRST IS	SUE	SEF	TA	TA	
REV	DATE	TITLE		ΒY	CHK	APP	
		REVISI	ONS				
α	CS BENCHMARK RE	EFRESH 2013					
			CASE				
	Block Flow D	iagram	Natural Gas	s Comb	oined C	yde Po	ower
			Plant w	vithout	CO2 C	apture	
			DWG. NO.:				REV:
	FOSTER WHEELE	R ENERGY	XXX	X-XX-	XXX		A1

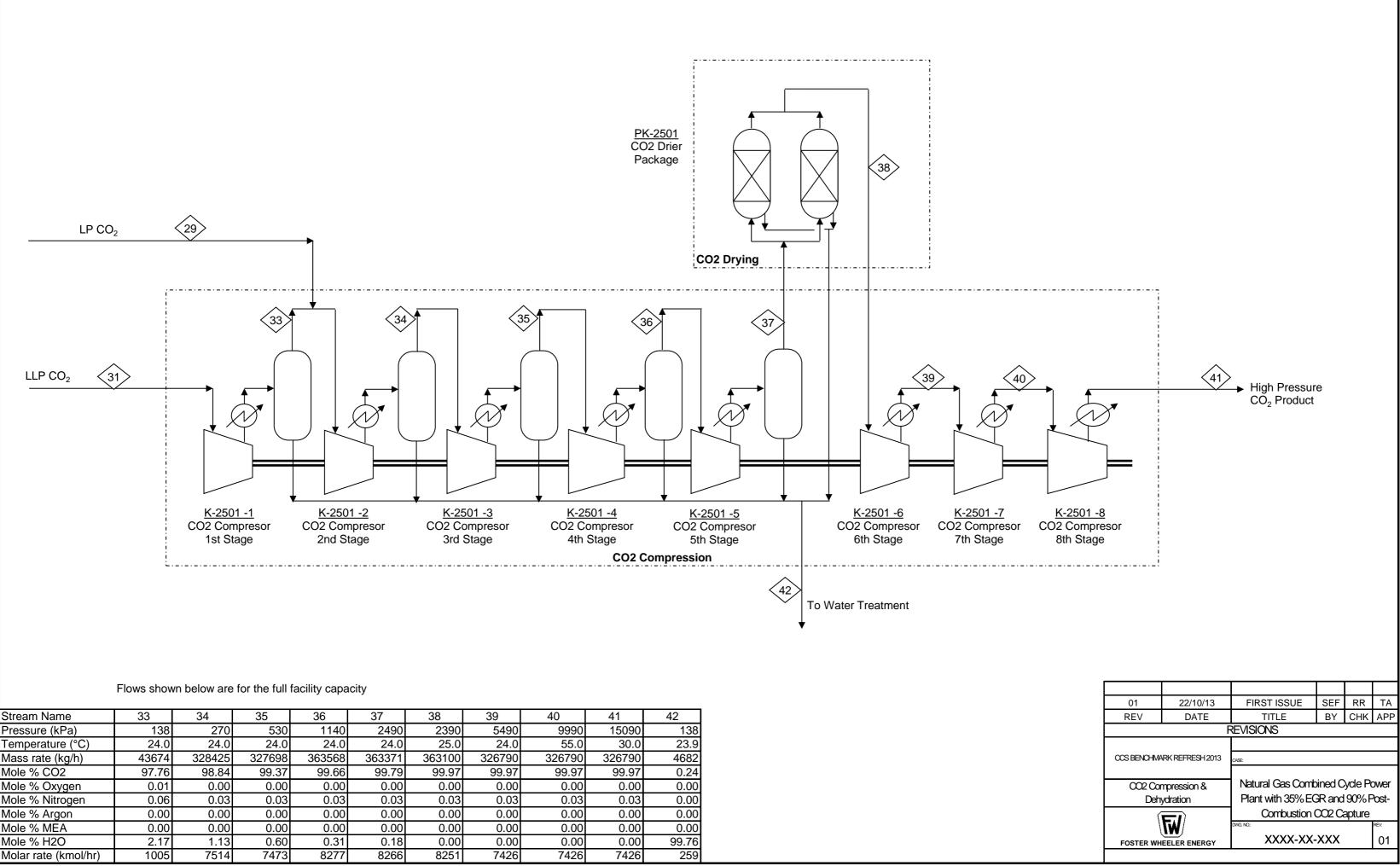
Stream Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Pressure (kPa)	3447	101	105	103		2918	13980	2801	2689	417	3.5	13980	2918	435		
Temperature (°C)	1.0	10.0	613.4	93.3		212.3	566.0	327.0	565.6	203.4	24.5	336.5	232.3	146.6		
Mass rate (kg/h)	136002	4991402	5127404	5127404		83253	598255	598255	698991	64623	846867	598255	100737	84262		
Mole % Oxygen	0.00	20.82	11.01	11.01		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Mole % Nitrogen	1.47	77.60	74.18	74.18		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Mole % CO2	0.68	0.03	4.64	4.64		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Mole % Methane	87.08	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Mole % Hydrogen	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Mole % Argon	0.00	0.93	0.89	0.89		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Mole % Ethane	7.83	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Mole % Propane	2.94	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Mole % H2O	0.00	0.61	9.29	9.29		100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00		
Molar rate (kmol/hr)	7419	173009	180723	180723		4620	33199	33199	38790	3586	33200	33200	5590	4676		

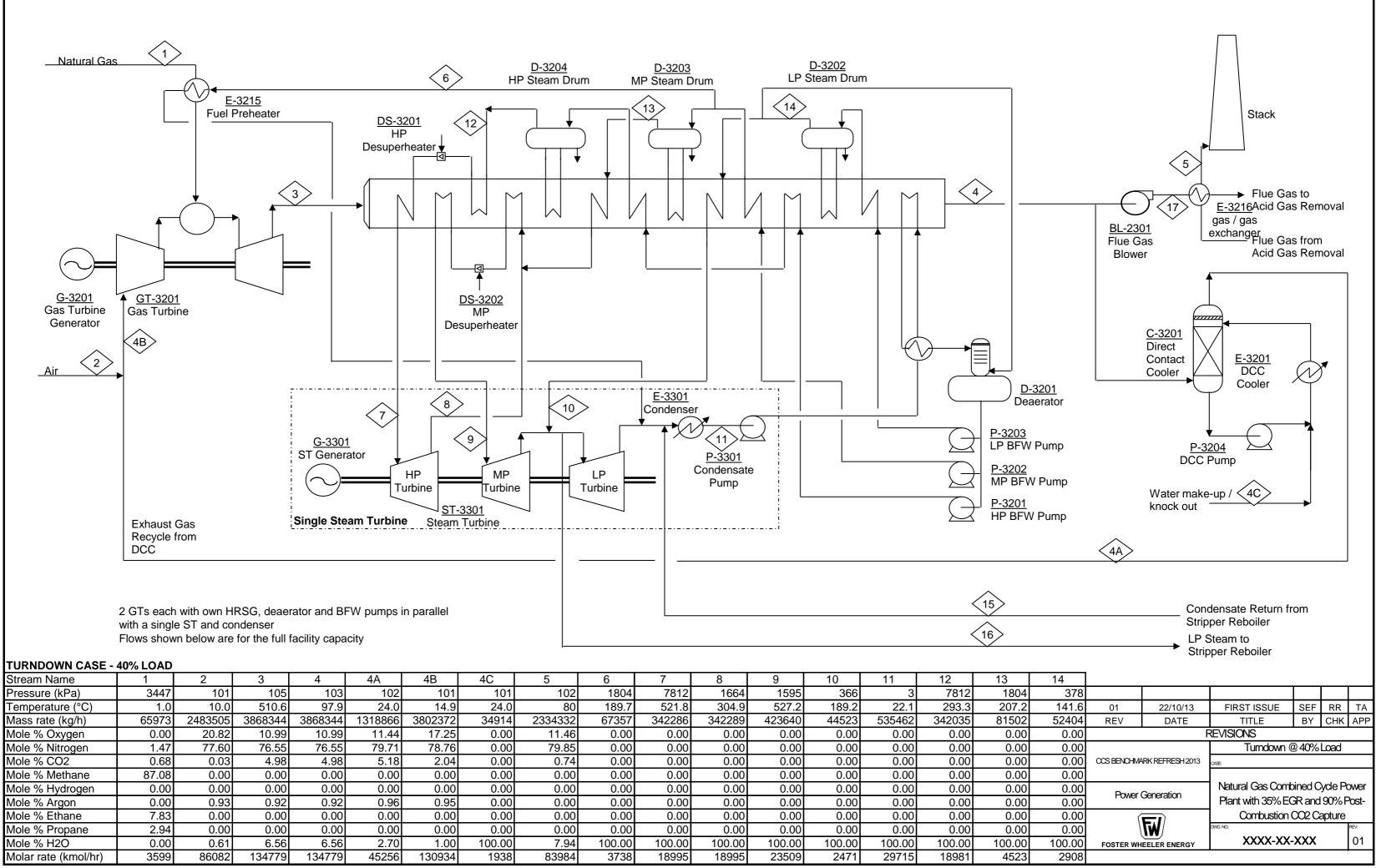


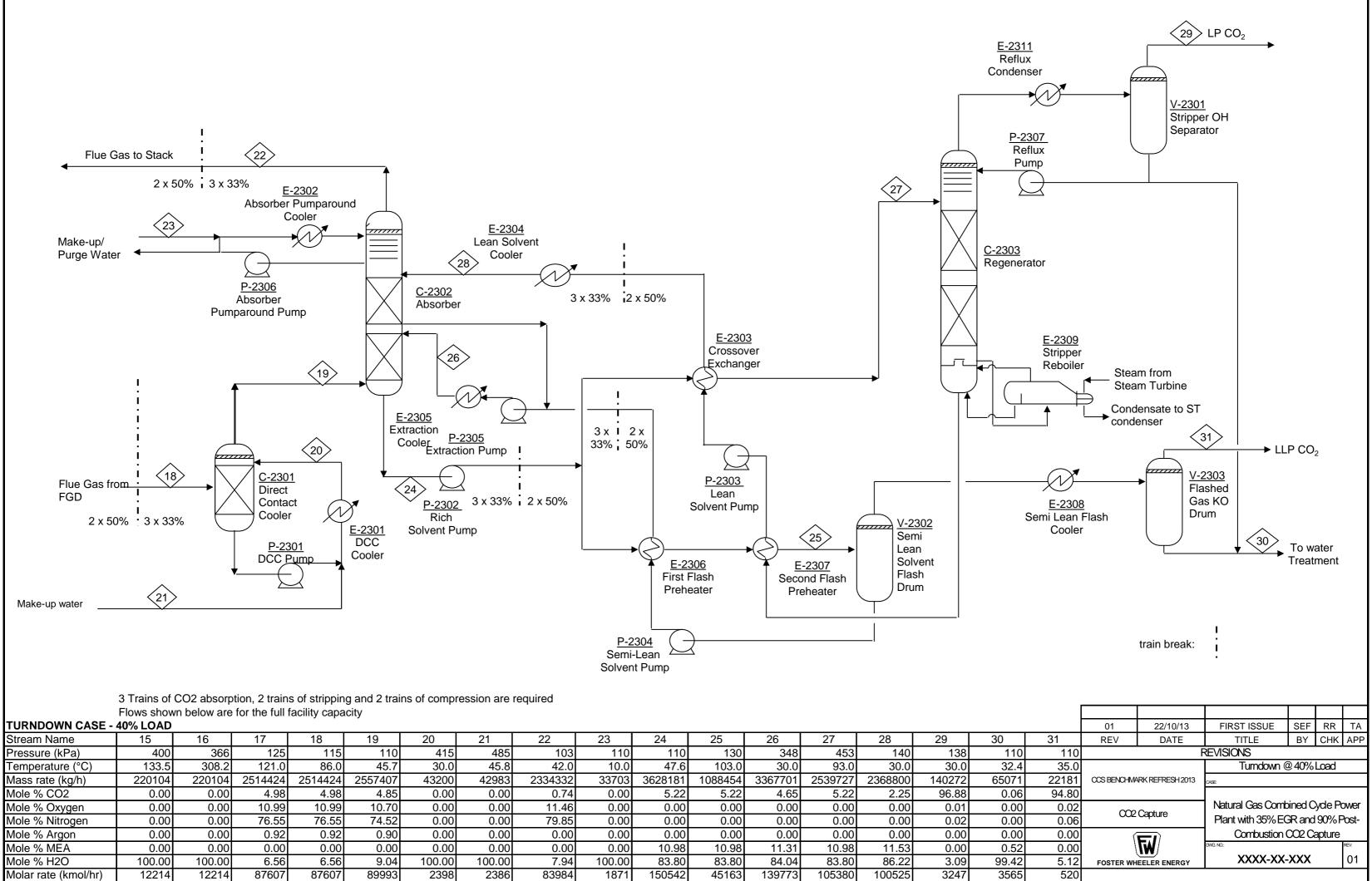

2 GTs each with own HRSG, deaerator and BFW pumps in parallel with a single ST and condenser Flows shown below are for the full facility capacity

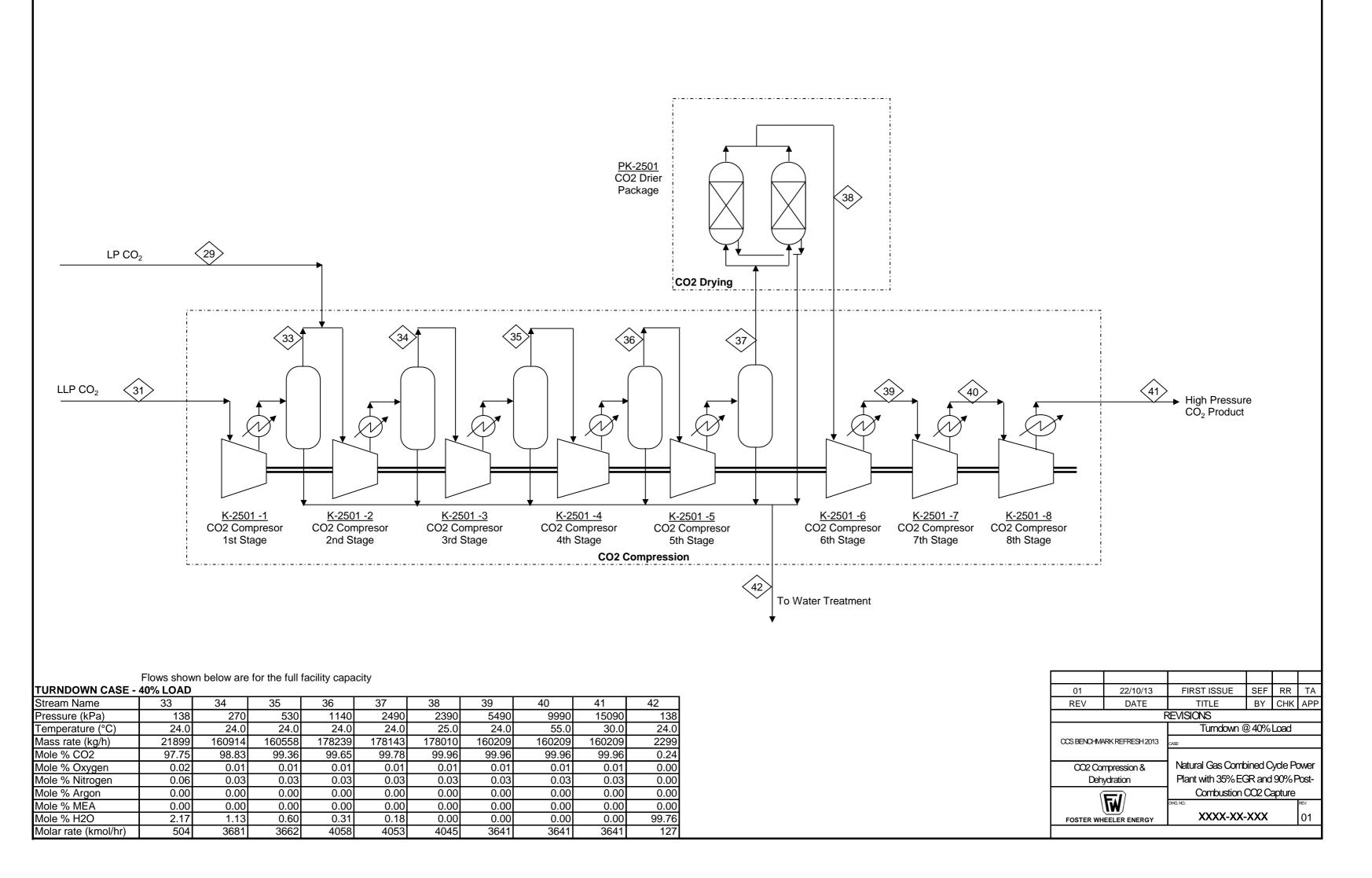

TURNDOWN CASE - 40% LOAD

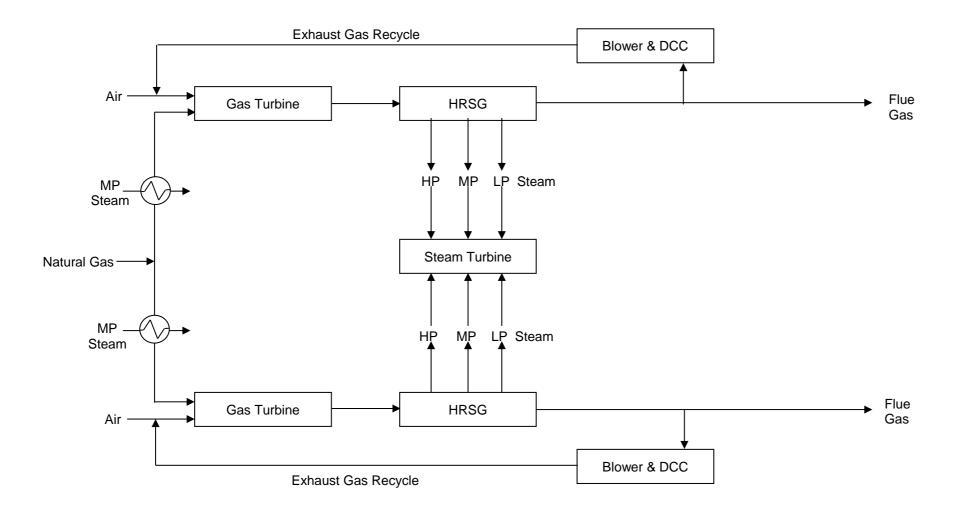

Stream Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16]	
Pressure (kPa)	3447	101	105	103		1750	7560	1609	1542	248	2.7	7560	1750	268				
Temperature (°C)	1.0	10.0	502.6	92.1		189.0	496.4	285.3	489.4	180.7	20.4	291.0	205.7	129.7			01	
Mass rate (kg/h)	69028	3897094	3966122	3966122		70808	334106	334107	419786	55149	545745	334105	85678	70083			REV	
Mole % Oxygen	0.00	20.82	11.01	11.01		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Mole % Nitrogen	1.47	77.60	74.18	74.18		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Mole % CO2	0.68	0.03	4.64	4.64		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			CCS	BE
Mole % Methane	87.08	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Mole % Hydrogen	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				Б
Mole % Argon	0.00	0.93	0.89	0.89		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				г
Mole % Ethane	7.83	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Mole % Propane	2.94	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Mole % H2O	0.00	0.61	9.29	9.29		100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00				FO
Molar rate (kmol/hr)	3766	135079	139795	139795		3929	18541	18541	23296	3060	30285	18541	4755	3889				



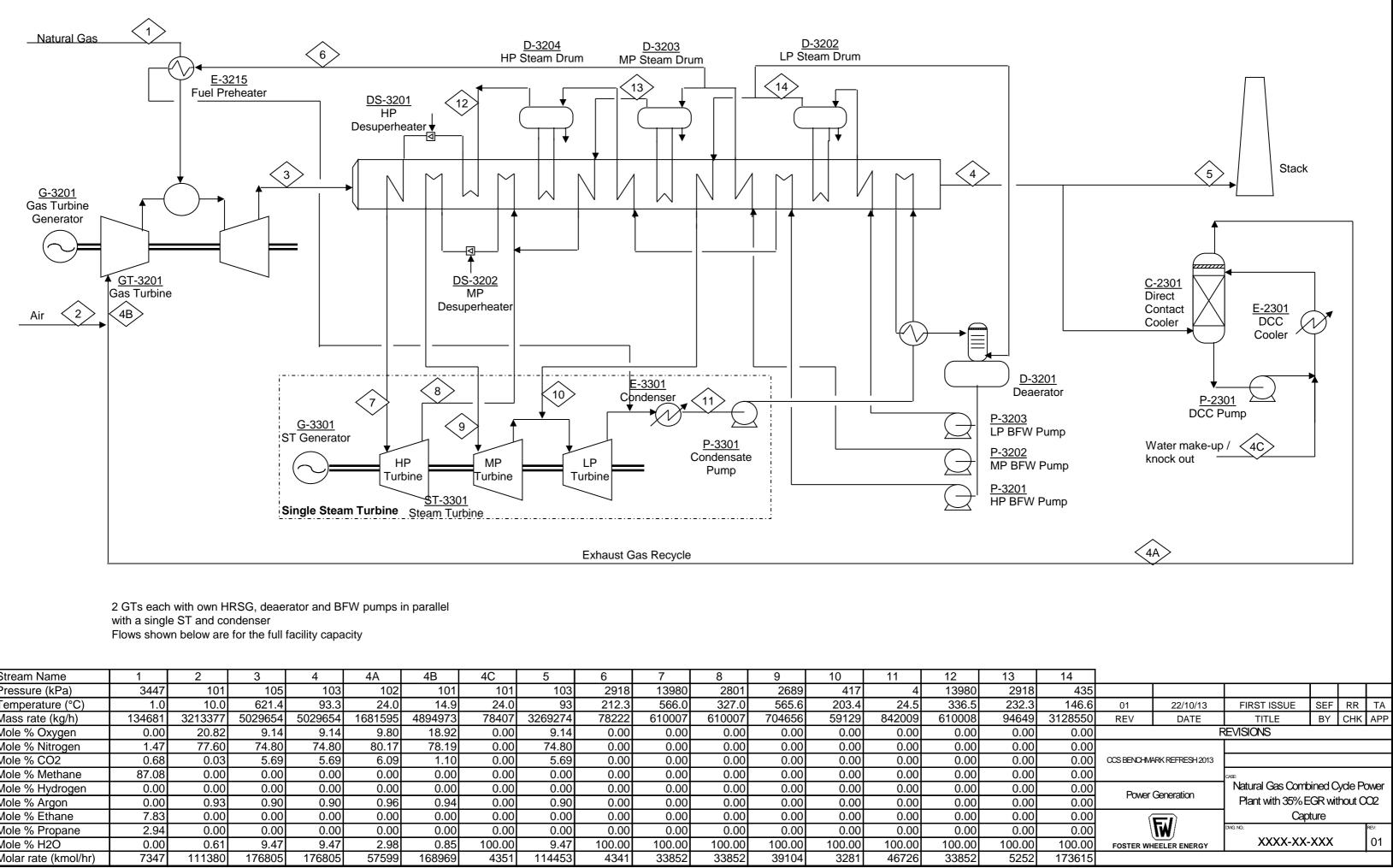



Stream Name	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Pressure (kPa)	400	417	125	115	110	415	485	103	110	110	130	348	453	140	138
Temperature (°C)	133.5	293.3	116.2	83.5	50.5	30.0	50.9	41.9	10.0	51.4	103.0	30.0	93.0	30.0	30.0
Mass rate (kg/h)	474336	474336	3269274	3269274	3312138	142128	42864	2854772	63958	7007876	2102363	6487962	4905513	4536000	287320
Mole % CO2	0.00	0.00	7.23	7.23	7.08	0.00	0.00	0.97	0.00	5.21	5.21	4.67	5.21	2.25	96.89
Mole % Oxygen	0.00	0.00	6.42	6.42	6.29	0.00	0.00	7.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mole % Nitrogen	0.00	0.00	75.74	75.74	74.20	0.00	0.00	84.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
Mole % Argon	0.00	0.00	0.91	0.91	0.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mole % MEA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.86	10.86	11.25	10.86	11.53	0.00
Mole % H2O	100.00	100.00	9.70	9.70	11.54	100.00	100.00	7.91	100.00	83.93	83.93	84.07	83.93	86.22	3.09
Molar rate (kmol/hr)	26323	26323	114453	114453	116832	7889	2379	103203	3550	291441	87432	269480	204009	192494	6650

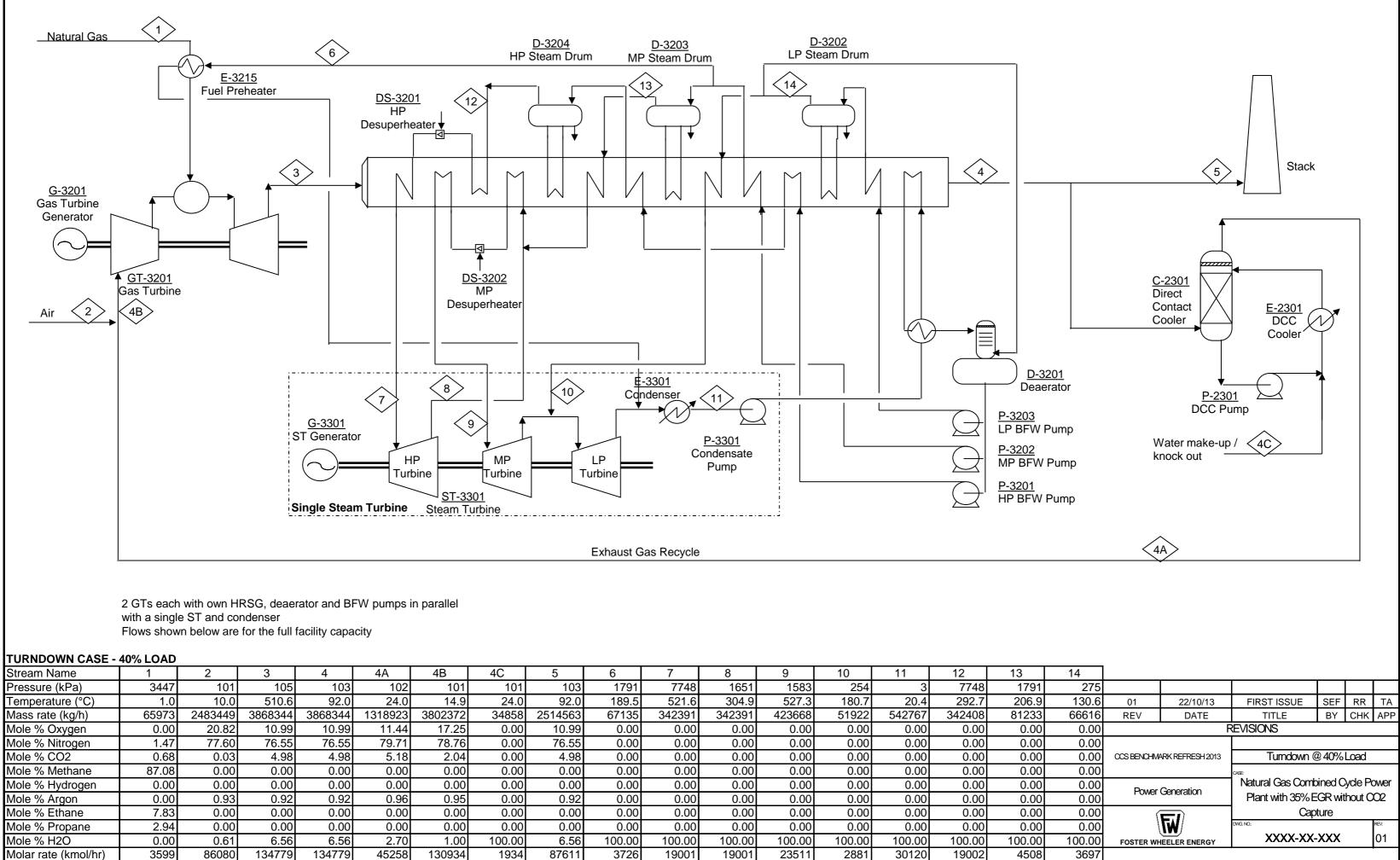

Stream Name	33	34	35	36	37	38	39	40	41	42
Pressure (kPa)	138	270	530	1140	2490	2390	5490	9990	15090	138
Temperature (°C)	24.0	24.0	24.0	24.0	24.0	25.0	24.0	55.0	30.0	23.9
Mass rate (kg/h)	43674	328425	327698	363568	363371	363100	326790	326790	326790	4682
Mole % CO2	97.76	98.84	99.37	99.66	99.79	99.97	99.97	99.97	99.97	0.24
Mole % Oxygen	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mole % Nitrogen	0.06	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.00
Mole % Argon	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mole % MEA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mole % H2O	2.17	1.13	0.60	0.31	0.18	0.00	0.00	0.00	0.00	99.76
Molar rate (kmol/hr)	1005	7514	7473	8277	8266	8251	7426	7426	7426	259

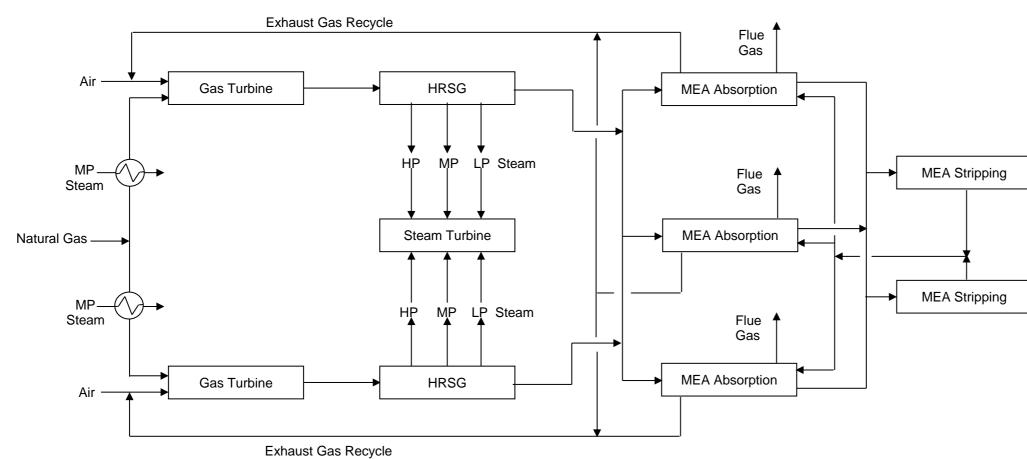


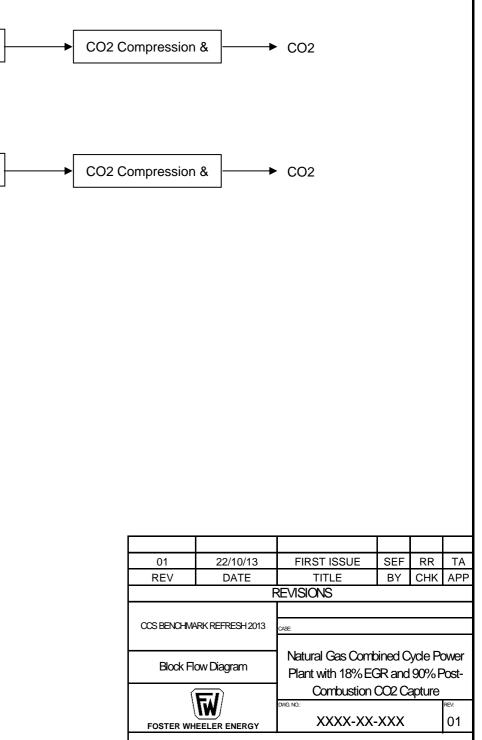
Stream Name	1	2	3	4	4A	4B	4C	5	6	7	8	9	10	11	12	
Pressure (kPa)	3447	101	105	103	102	101	101	102	1804	7812	1664	1595	366	3	7812	
Temperature (°C)	1.0	10.0	510.6	97.9	24.0	14.9	24.0	80	189.7	521.8	304.9	527.2	189.2	22.1	293.3	
Mass rate (kg/h)	65973	2483505	3868344	3868344	1318866	3802372	34914	2334332	67357	342286	342289	423640	44523	535462	342035	
Mole % Oxygen	0.00	20.82	10.99	10.99	11.44	17.25	0.00	11.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Nitrogen	1.47	77.60	76.55	76.55	79.71	78.76	0.00	79.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % CO2	0.68	0.03	4.98	4.98	5.18	2.04	0.00	0.74	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Methane	87.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Hydrogen	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Argon	0.00	0.93	0.92	0.92	0.96	0.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Ethane	7.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Propane	2.94	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % H2O	0.00	0.61	6.56	6.56	2.70	1.00	100.00	7.94	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
Molar rate (kmol/hr)	3599	86082	134779	134779	45256	130934	1938	83984	3738	18995	18995	23509	2471	29715	18981	

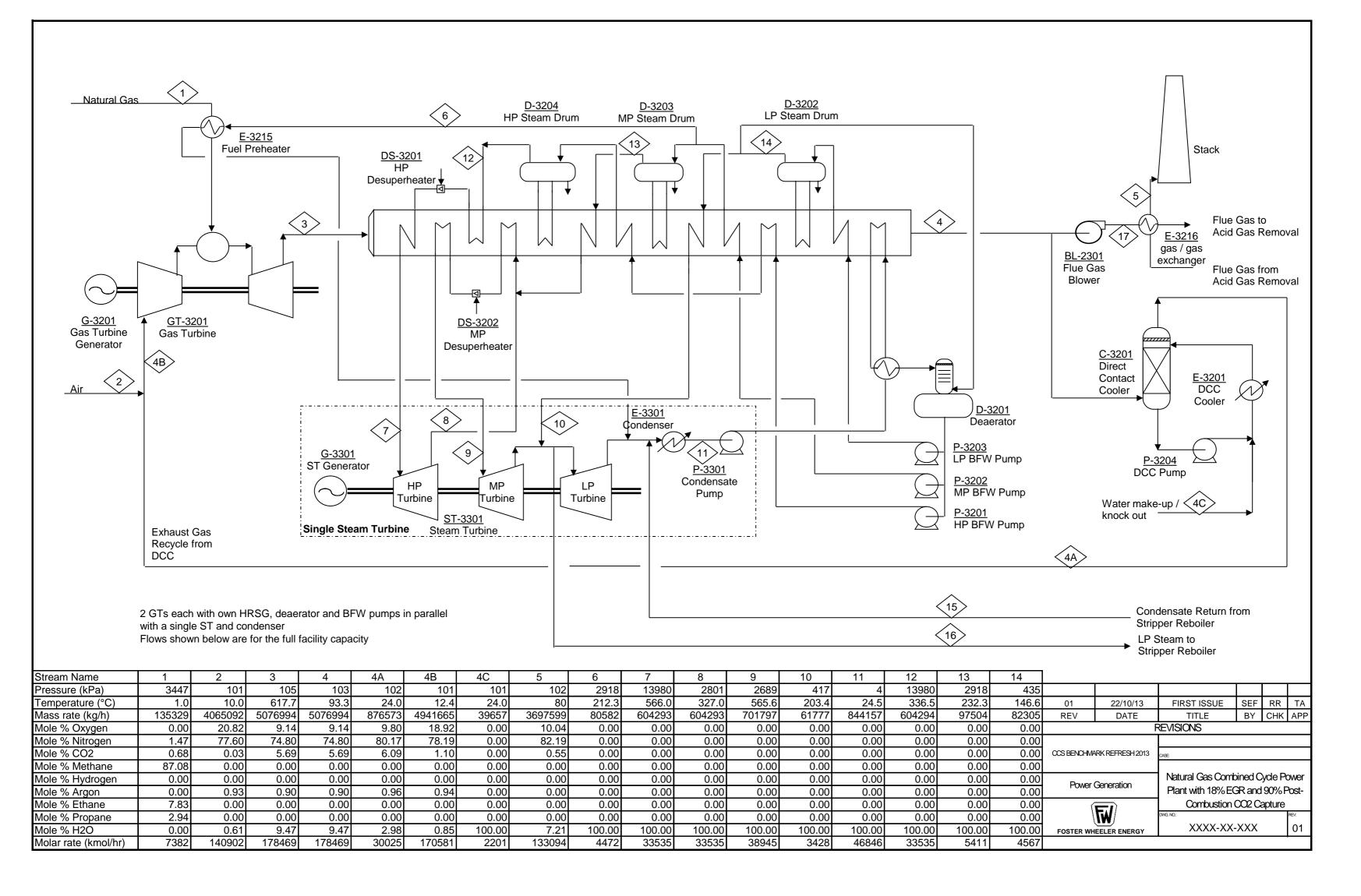


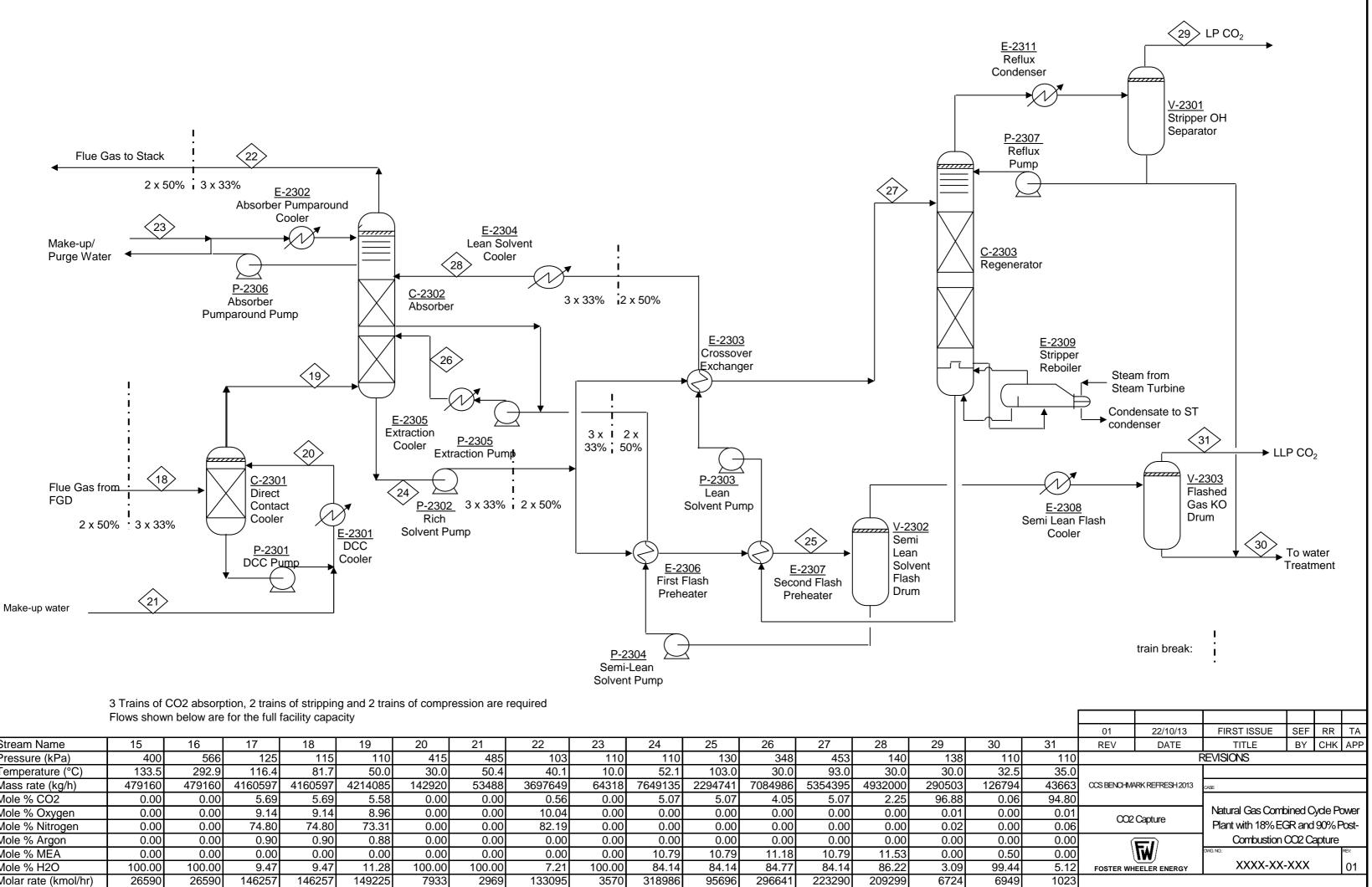
TURINDOWIN CASE -	40 /0 LOAD															
Stream Name	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	
Pressure (kPa)	400	366	125	115	110	415	485	103	110	110	130	348	453	140	138	
Temperature (°C)	133.5	308.2	121.0	86.0	45.7	30.0	45.8	42.0	10.0	47.6	103.0	30.0	93.0	30.0	30.0	
Mass rate (kg/h)	220104	220104	2514424	2514424	2557407	43200	42983	2334332	33703	3628181	1088454	3367701	2539727	2368800	140272	
Mole % CO2	0.00	0.00	4.98	4.98	4.85	0.00	0.00	0.74	0.00	5.22	5.22	4.65	5.22	2.25	96.88	
Mole % Oxygen	0.00	0.00	10.99	10.99	10.70	0.00	0.00	11.46	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
Mole % Nitrogen	0.00	0.00	76.55	76.55	74.52	0.00	0.00	79.85	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
Mole % Argon	0.00	0.00	0.92	0.92	0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % MEA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.98	10.98	11.31	10.98	11.53	0.00	
Mole % H2O	100.00	100.00	6.56	6.56	9.04	100.00	100.00	7.94	100.00	83.80	83.80	84.04	83.80	86.22	3.09	
Molar rate (kmol/hr)	12214	12214	87607	87607	89993	2398	2386	83984	1871	150542	45163	139773	105380	100525	3247	



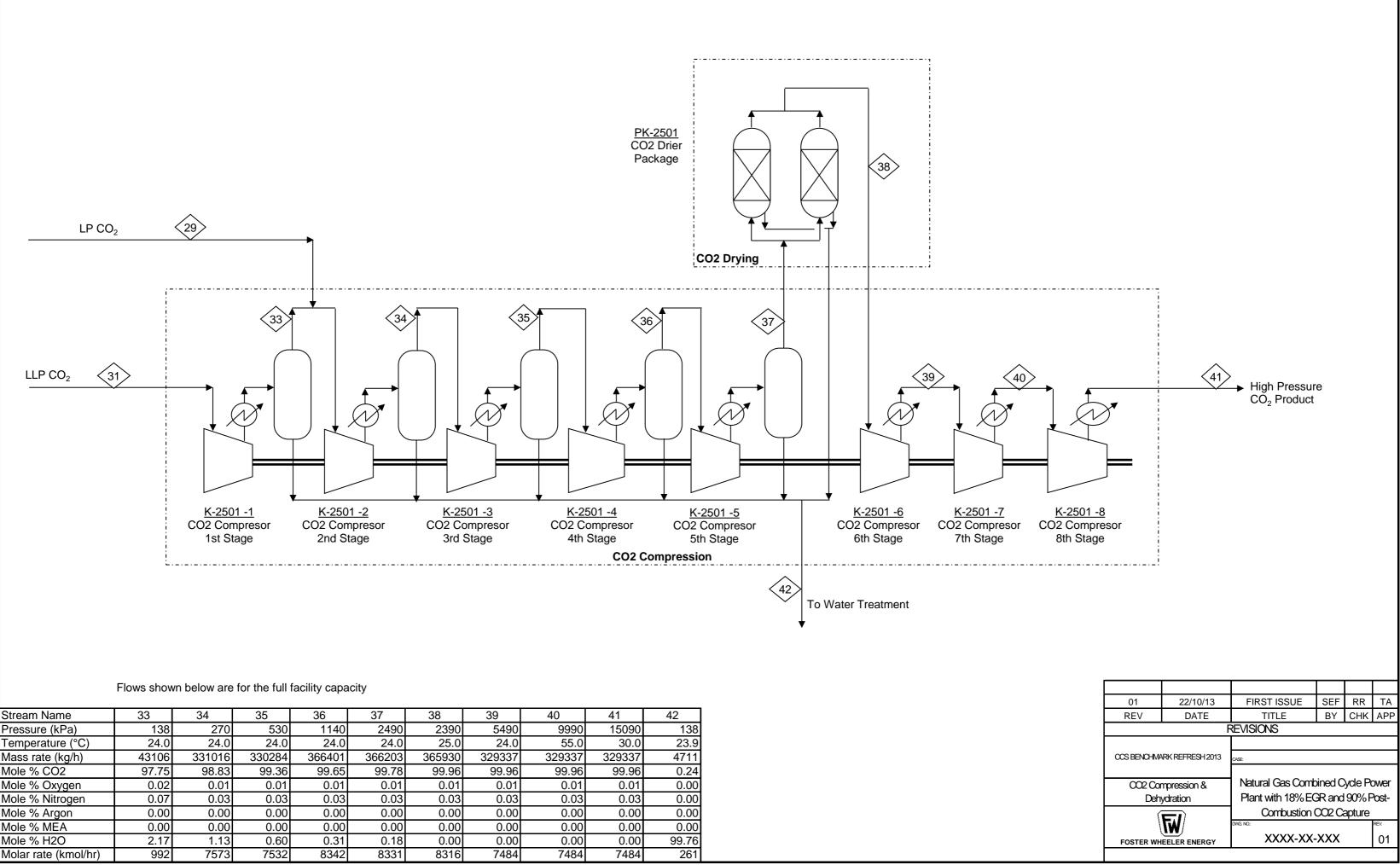

01	22/10/13	FIRST ISSUE	SEF	RR	ΤA
REV	DATE	TITLE	ΒY	CHK	APP
	F	REVISIONS			
CCS BENCHM	ARK REFRESH 2013				
		CASE			
Dlady []		Natural Gas Comb	ined C	yde Po	ower
DUCK FI	ow Diagram	Plant with 35% E	GR wit	hout C	02
{		Cap	ture		
	W /	DWG. NO.:			REV:
FOSTER WH	EELER ENERGY	XXXX-XX-	XXX		01

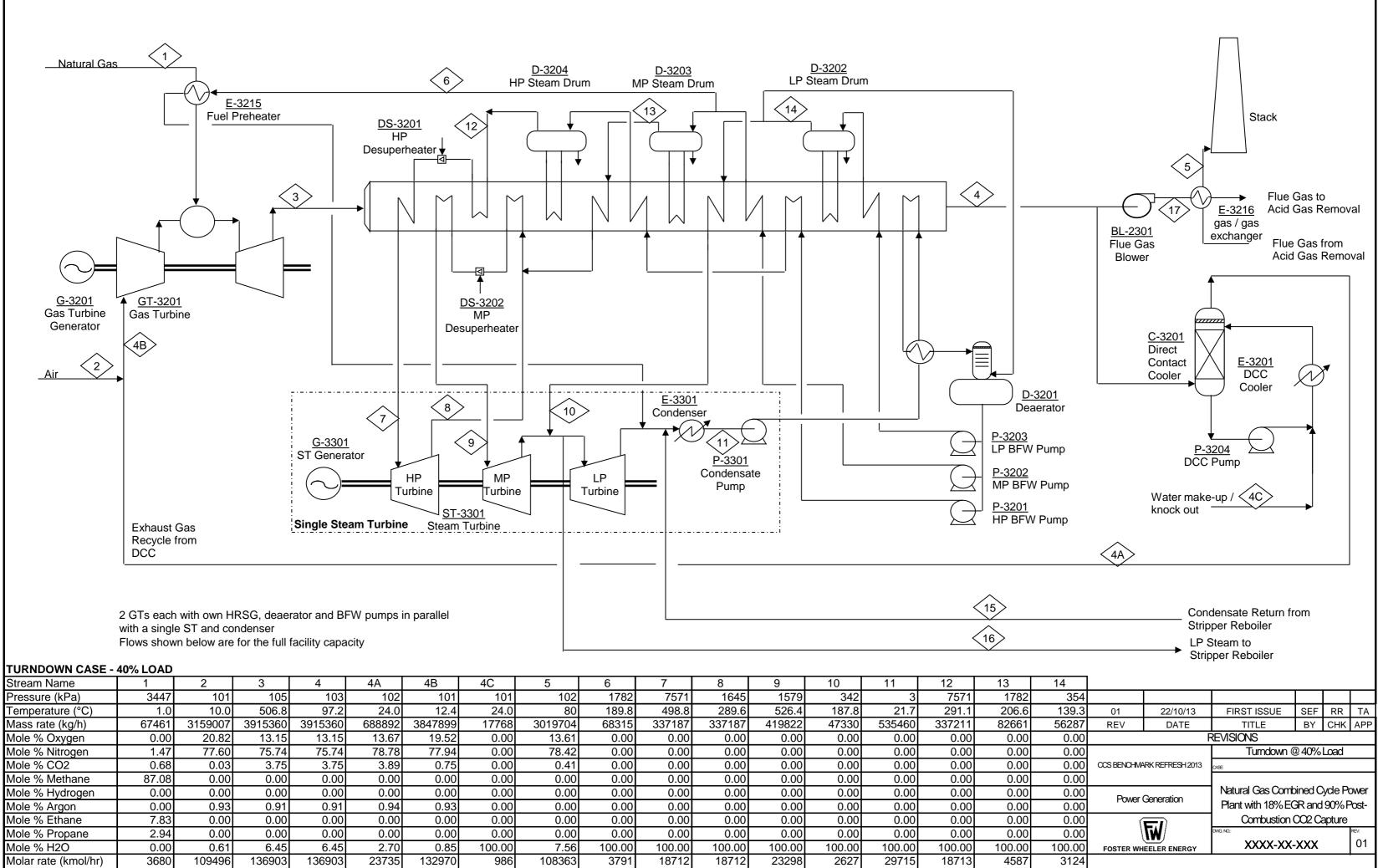


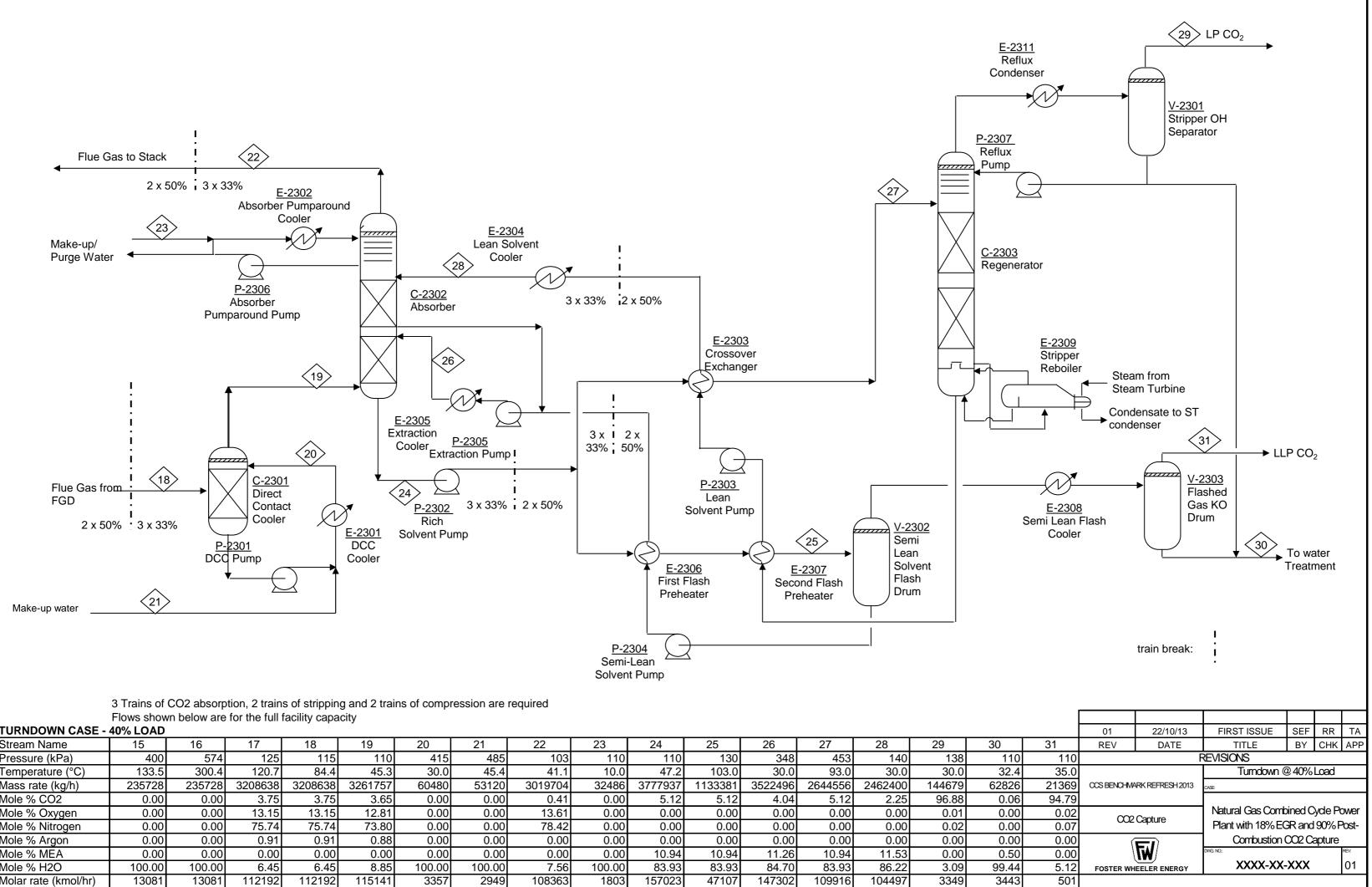

Stream Name	1	2	3	4	4A	4B	4C	5	6	7	8	9	10	11	12	
Pressure (kPa)	3447	101	105	103	102	101	101	103	2918	13980	2801	2689	417	4	13980	
Temperature (°C)	1.0	10.0	621.4	93.3	24.0	14.9	24.0	93	212.3	566.0	327.0	565.6	203.4	24.5	336.5	
Mass rate (kg/h)	134681	3213377	5029654	5029654	1681595	4894973	78407	3269274	78222	610007	610007	704656	59129	842009	610008	
Mole % Oxygen	0.00	20.82	9.14	9.14	9.80	18.92	0.00	9.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Nitrogen	1.47	77.60	74.80	74.80	80.17	78.19	0.00	74.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % CO2	0.68	0.03	5.69	5.69	6.09	1.10	0.00	5.69	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Methane	87.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Hydrogen	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Argon	0.00	0.93	0.90	0.90	0.96	0.94	0.00	0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Ethane	7.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Propane	2.94	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % H2O	0.00	0.61	9.47	9.47	2.98	0.85	100.00	9.47	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
Molar rate (kmol/hr)	7347	111380	176805	176805	57599	168969	4351	114453	4341	33852	33852	39104	3281	46726	33852	

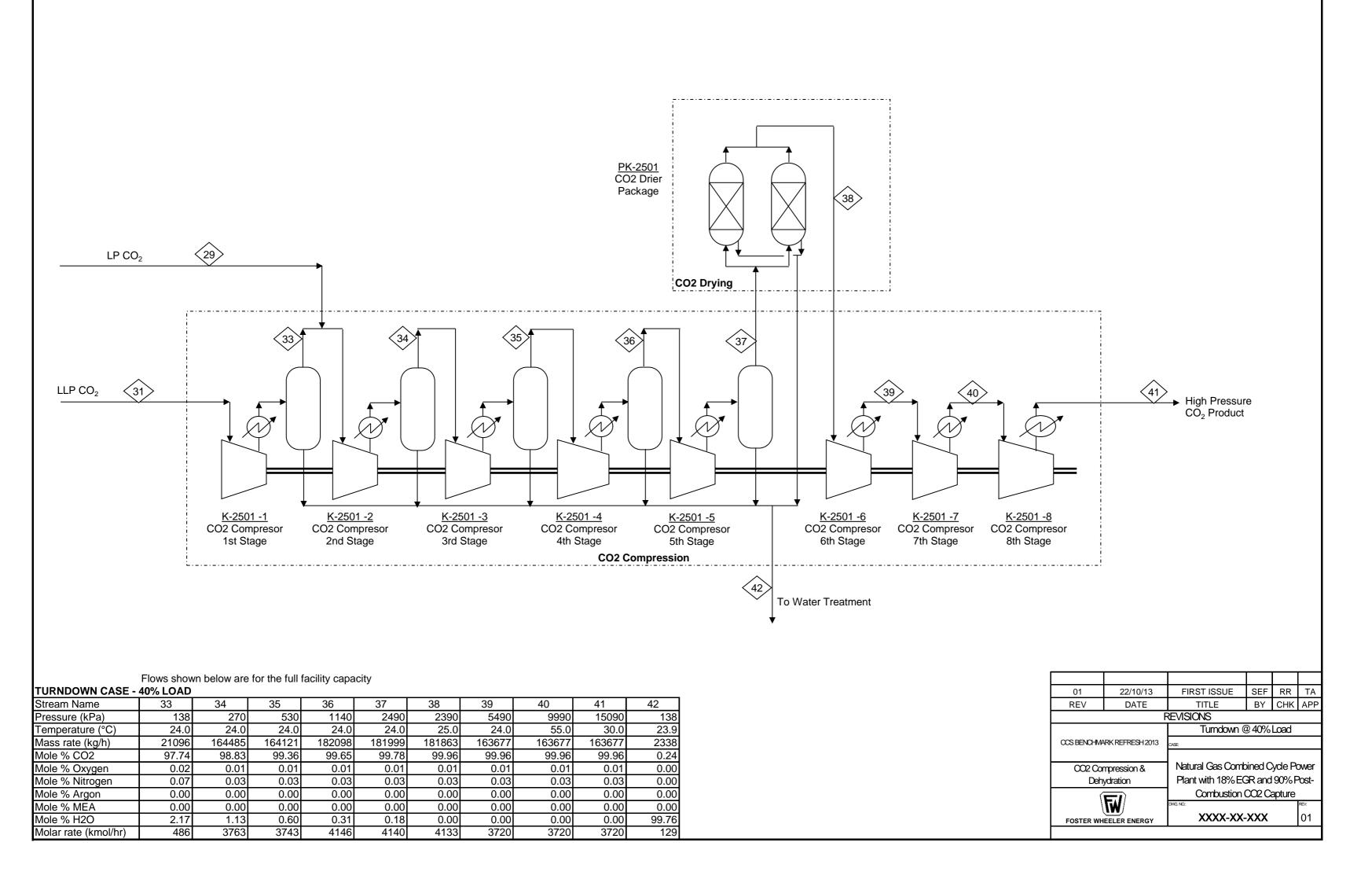


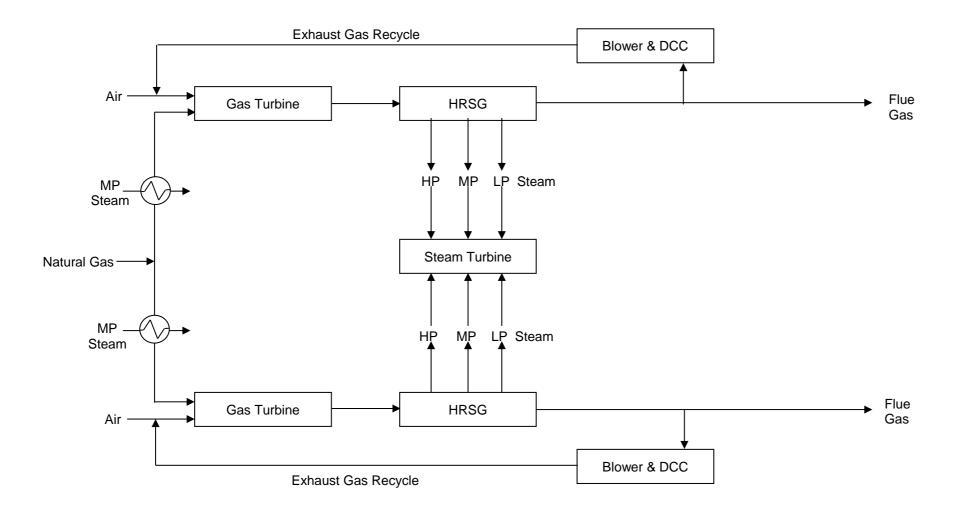
Stream Name	1	2	3	4	4A	4B	4C	5	6	7	8	9	10	11	12	
Pressure (kPa)	3447	101	105	103	102	101	101	103	1791	7748	1651	1583	254	3	7748	
Temperature (°C)	1.0	10.0	510.6	92.0	24.0	14.9	24.0	92.0	189.5	521.6	304.9	527.3	180.7	20.4	292.7	
Mass rate (kg/h)	65973	2483449	3868344	3868344	1318923	3802372	34858	2514563	67135	342391	342391	423668	51922	542767	342408	
Mole % Oxygen	0.00	20.82	10.99	10.99	11.44	17.25	0.00	10.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Nitrogen	1.47	77.60	76.55	76.55	79.71	78.76	0.00	76.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % CO2	0.68	0.03	4.98	4.98	5.18	2.04	0.00	4.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Methane	87.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Hydrogen	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Argon	0.00	0.93	0.92	0.92	0.96	0.95	0.00	0.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Ethane	7.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Propane	2.94	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % H2O	0.00	0.61	6.56	6.56	2.70	1.00	100.00	6.56	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
Molar rate (kmol/hr)	3599	86080	134779	134779	45258	130934	1934	87611	3726	19001	19001	23511	2881	30120	19002	



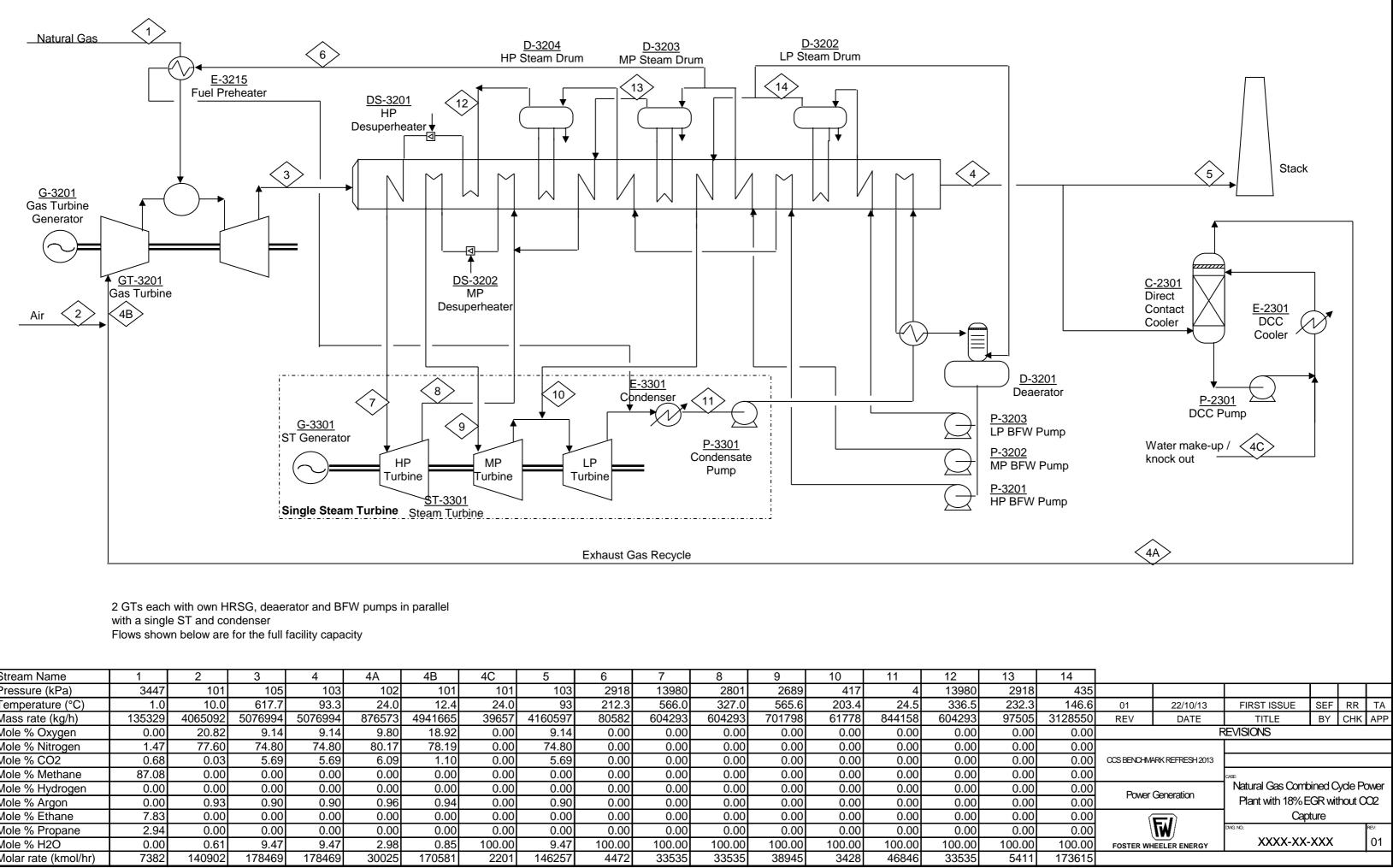



Stream Name	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Pressure (kPa)	400	566	125	115	110	415	485	103	110	110	130	348	453	140	138
Temperature (°C)	133.5	292.9	116.4	81.7	50.0	30.0	50.4	40.1	10.0	52.1	103.0	30.0	93.0	30.0	30.0
Mass rate (kg/h)	479160	479160	4160597	4160597	4214085	142920	53488	3697649	64318	7649135	2294741	7084986	5354395	4932000	290503
Mole % CO2	0.00	0.00	5.69	5.69	5.58	0.00	0.00	0.56	0.00	5.07	5.07	4.05	5.07	2.25	96.88
Mole % Oxygen	0.00	0.00	9.14	9.14	8.96	0.00	0.00	10.04	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Mole % Nitrogen	0.00	0.00	74.80	74.80	73.31	0.00	0.00	82.19	0.00	0.00	0.00	0.00	0.00	0.00	0.02
Mole % Argon	0.00	0.00	0.90	0.90	0.88	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mole % MEA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.79	10.79	11.18	10.79	11.53	0.00
Mole % H2O	100.00	100.00	9.47	9.47	11.28	100.00	100.00	7.21	100.00	84.14	84.14	84.77	84.14	86.22	3.09
Molar rate (kmol/hr)	26590	26590	146257	146257	149225	7933	2969	133095	3570	318986	95696	296641	223290	209299	6724

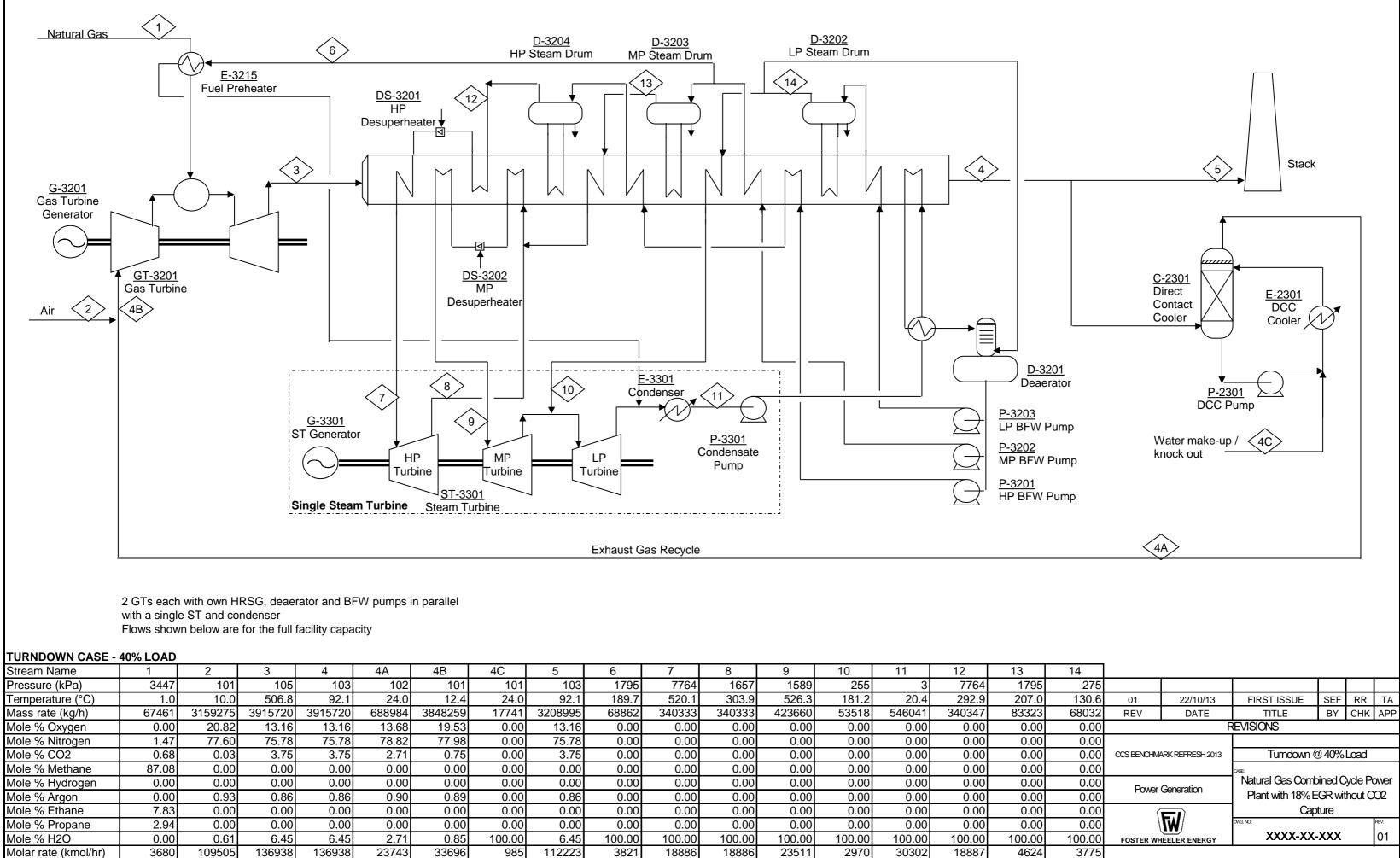

Stream Name	33	34	35	36	37	38	39	40	41	42
Pressure (kPa)	138	270	530	1140	2490	2390	5490	9990	15090	138
Temperature (°C)	24.0	24.0	24.0	24.0	24.0	25.0	24.0	55.0	30.0	23.9
Mass rate (kg/h)	43106	331016	330284	366401	366203	365930	329337	329337	329337	4711
Mole % CO2	97.75	98.83	99.36	99.65	99.78	99.96	99.96	99.96	99.96	0.24
Mole % Oxygen	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00
Mole % Nitrogen	0.07	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.00
Mole % Argon	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mole % MEA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mole % H2O	2.17	1.13	0.60	0.31	0.18	0.00	0.00	0.00	0.00	99.76
Molar rate (kmol/hr)	992	7573	7532	8342	8331	8316	7484	7484	7484	261



Stream Name	1	2	3	4	4A	4B	4C	5	6	7	8	9	10	11	12	
Pressure (kPa)	3447	101	105	103	102	101	101	102	1782	7571	1645	1579	342	3	7571	
Temperature (°C)	1.0	10.0	506.8	97.2	24.0	12.4	24.0	80	189.8	498.8	289.6	526.4	187.8	21.7	291.1	
Mass rate (kg/h)	67461	3159007	3915360	3915360	688892	3847899	17768	3019704	68315	337187	337187	419822	47330	535460	337211	
Mole % Oxygen	0.00	20.82	13.15	13.15	13.67	19.52	0.00	13.61	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Nitrogen	1.47	77.60	75.74	75.74	78.78	77.94	0.00	78.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % CO2	0.68	0.03	3.75	3.75	3.89	0.75	0.00	0.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Methane	87.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Hydrogen	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Argon	0.00	0.93	0.91	0.91	0.94	0.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Ethane	7.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Propane	2.94	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % H2O	0.00	0.61	6.45	6.45	2.70	0.85	100.00	7.56	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
Molar rate (kmol/hr)	3680	109496	136903	136903	23735	132970	986	108363	3791	18712	18712	23298	2627	29715	18713	



TURNDOWN CASE - 40% LOAD															
Stream Name	15	16	17	18	19	20	21	22	23	24	25	26	27	28	
Pressure (kPa)	400	574	125	115	110	415	485	103	110	110	130	348	453	140	
Temperature (°C)	133.5	300.4	120.7	84.4	45.3	30.0	45.4	41.1	10.0	47.2	103.0	30.0	93.0	30.0	
Mass rate (kg/h)	235728	235728	3208638	3208638	3261757	60480	53120	3019704	32486	3777937	1133381	3522496	2644556	2462400	
Mole % CO2	0.00	0.00	3.75	3.75	3.65	0.00	0.00	0.41	0.00	5.12	5.12	4.04	5.12	2.25	
Mole % Oxygen	0.00	0.00	13.15	13.15	12.81	0.00	0.00	13.61	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Nitrogen	0.00	0.00	75.74	75.74	73.80	0.00	0.00	78.42	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Argon	0.00	0.00	0.91	0.91	0.88	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % MEA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.94	10.94	11.26	10.94	11.53	
Mole % H2O	100.00	100.00	6.45	6.45	8.85	100.00	100.00	7.56	100.00	83.93	83.93	84.70	83.93	86.22	
Molar rate (kmol/hr)	13081	13081	112192	112192	115141	3357	2949	108363	1803	157023	47107	147302	109916	104497	



01	22/10/13	FIRST ISSUE	SEF RR		TA						
REV	DATE	TITLE BY CHK									
	F	REVISIONS									
CCS BENCHM	ARK REFRESH 2013										
		CASE									
Dlady []		Natural Gas Combined Cycle Power									
DIUCK FI	ow Diagram	Plant with 18% E	GRwit	hout C	02						
{		Capture									
· \	W /	DWG. NO.:			REV:						
FOSTER WH	EELER ENERGY	XXXX-XX-XXX 01									

Stream Name	1	2	3	4	4A	4B	4C	5	6	7	8	9	10	11	12	
Pressure (kPa)	3447	101	105	103	102	101	101	103	2918	13980	2801	2689	417	4	13980	
Temperature (°C)	1.0	10.0	617.7	93.3	24.0	12.4	24.0	93	212.3	566.0	327.0	565.6	203.4	24.5	336.5	
Mass rate (kg/h)	135329	4065092	5076994	5076994	876573	4941665	39657	4160597	80582	604293	604293	701798	61778	844158	604293	
Mole % Oxygen	0.00	20.82	9.14	9.14	9.80	18.92	0.00	9.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Nitrogen	1.47	77.60	74.80	74.80	80.17	78.19	0.00	74.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % CO2	0.68	0.03	5.69	5.69	6.09	1.10	0.00	5.69	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Methane	87.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Hydrogen	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Argon	0.00	0.93	0.90	0.90	0.96	0.94	0.00	0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Ethane	7.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Propane	2.94	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % H2O	0.00	0.61	9.47	9.47	2.98	0.85	100.00	9.47	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
Molar rate (kmol/hr)	7382	140902	178469	178469	30025	170581	2201	146257	4472	33535	33535	38945	3428	46846	33535	

Stream Name	1	2	3	4	4A	4B	4C	5	6	7	8	9	10	11	12	
Pressure (kPa)	3447	101	105	103	102	101	101	103	1795	7764	1657	1589	255	3	7764	
Temperature (°C)	1.0	10.0	506.8	92.1	24.0	12.4	24.0	92.1	189.7	520.1	303.9	526.3	181.2	20.4	292.9	
Mass rate (kg/h)	67461	3159275	3915720	3915720	688984	3848259	17741	3208995	68862	340333	340333	423660	53518	546041	340347	
Mole % Oxygen	0.00	20.82	13.16	13.16	13.68	19.53	0.00	13.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Nitrogen	1.47	77.60	75.78	75.78	78.82	77.98	0.00	75.78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % CO2	0.68	0.03	3.75	3.75	2.71	0.75	0.00	3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Methane	87.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Hydrogen	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Argon	0.00	0.93	0.86	0.86	0.90	0.89	0.00	0.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Ethane	7.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % Propane	2.94	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mole % H2O	0.00	0.61	6.45	6.45	2.71	0.85	100.00	6.45	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
Molar rate (kmol/hr)	3680	109505	136938	136938	23743	33696	985	112223	3821	18886	18886	23511	2970	30302	18887	

ATTACHMENT 3 UTILITY SUMMARIES

- 1. CCGT with 90% CO₂ Capture
 - a. 100% Load
 - b. 40% Load
- 2. CCGT without CO₂ Capture
 - a. 100% Load
 - b. 40% Load
- 3. CCGT with 35% EGR and 90% CO₂ Capture
 - a. 100% Load
 - b. 40% Load
- 4. CCGT with 35% EGR without CO₂ Capture
 - a. 100% Load
 - b. 40% Load
- 5. CCGT with 18% EGR and 90% CO_2 Capture
 - a. 100% Load
 - b. 40% Load
- 6. CCGT with 18% EGR without CO₂ Capture
 - a. 100% Load
 - b. 40% Load

\mathbf{W}	FOSTER WHEELER ENERGY LIM UTILITIES BALANCE SUMMARY	ITED				CCGT wi	th 90% CO₂ C	Capture - 1009	% GT Load				
CLIENT:	The Energy Technologies Institute												
CONTRACT:	13074		REV			01	02	O3				SHEET	
NAME:	CCS Benchmark Refresh 2013		DATE			09/08/2013	24/09/2013	22/10/2013				1 OF 1	
			ORIG. BY			SEF	SEF	SEF				1	
			APP. BY			TA	TA	TA				-	
	DESCRIPTION	ELECTRIC POWER (kWh/h)		Steam (T/h)		Condensate	Sea Cooling water	Fresh Cooling water	Process Water	Demin water	BFW	REMARKS	REV
		Electric Oper. Load	HP Steam 139 barg	MP Steam 26 barg	LP Steam 3 barg	T/h	T/h	T/h	T/h	T/h	T/h		
	Process Units												
		40000	0		405.0	405.0		07040	1.10	0	0	Nists 4	
	Acid Gas Removal Unit (MEA)	-40023	0	0	-495.0	495.0	0	-37846	-140	0	0	Note 4	
	CO ₂ Compression & Drying	-31731	0	0	0	0	0	-4768	0	0	0		
	Process Units Total	-71754	0	0	-495	495	0	-42614	-140	0	0		
		-71734	0	0	-495	495	0	-42014	-140	0	0		
	Power Island												
	Gas Turbine (Note 1)	-8060	0	0	0	0	0	0	0	0	0		
	HRSGs	0	598.3	699.0	64.6	-1341.9	0	0	0	-8.5	0		
	Steam Turbine (Note 2)	-5158	-598.3	-699.0	430.4	846.9	-23892	0	0	0	0		
	Power Generation Units (Note 3)	967927	0	0	0	0	0	0	0	0	0		
	Power Island Total	954710	0	0	495	-495	-23892	0	0	-8.5	0		
	Offsites & Utilities												
		05								0.5			
	Demin Plant	-25					77400			8.5			
	Sea Cooling Water	-8855 -2451					77136 -53244	42614		┨────┤			
	Fresh Cooling Water Utility water	-2451				-	-33244	42014	140	┤			
	Fire Water System	-12		<u> </u>					140	+ +			
	Condensate Treatment	-40 -58								+			
	Waste Water Treatment	-100											
	Flare	0				1				1 1			
	Storage	0											-1
	Buildings	-600											1
	Others	0											
	Offistes & Utilities Total	-12140	0	0	0	0	23892	42614	140	8.5	0		
	Grand Total	870816	0	0	0	0	0	0	0	0	0		
NOTES	 Includes auxiliary and transformer Includes Steam and water cycle b Net of generator losses 62.2 tph intermittent LPS required 	alance of plant and											

W	FOSTER WHEELER ENERGY LIM UTILITIES BALANCE SUMMARY	ITED				CCGT w	ith 90% CO₂ (Capture - 40%	% GT Load				
CLIENT:	The Energy Technologies Institute												
CONTRACT:	13074		REV			01						SHEET	
NAME:	CCS Benchmark Refresh 2013		DATE			22/10/2013						1 OF 1	
			ORIG. BY			SEF						7	
			APP. BY			TA						7	
	DESCRIPTION	ELECTRIC POWER (kWh/h)		Steam (T/h)		Condensate	Sea Cooling water	Fresh Cooling water	Process Water	Demin water	BFW	REMARKS	REV
		Electric Oper. Load	HP Steam 139 barg	MP Steam 26 barg	LP Steam 3 barg	T/h	T/h	T/h	T/h	T/h	T/h		
	Process Units												
		04705	0	0	054.4	054.4	0	47000	74	0	0	Note 4	
	Acid Gas Removal Unit (MEA)	-31725	0	0	-254.4	254.4	0	-17383	-71	0	0	Note 4	
	CO ₂ Compression & Drying	-16123	0	0	0	0	0	-2422	0	0	0		
	Process Units Total	-47847	0	0	-254	254	0	-19805	-71	0	0		
			0	0	204	204		10000	,,	U	0		
	Power Island												
	Gas Turbine (Note 1)	-6729	0	0	0	0	0	0	0	0	0		
	HRSGs	0	334.2	419.9	49.8	-794.9	0	0	0	-5.4	0		
	Steam Turbine (Note 2)	-2990	-334.2	-419.9	204.6	540.5	-17845	0	0	0	0		
	Power Generation Units (Note 3)	421203	0	0	0	0	0	0	0	0	0		
	Power Island Total	411483	0	0	254	-254	-17845	0	0	-5.4	0		
	Offsites & Utilities												
	Demin Plant	-25								5.4			
	Sea Cooling Water	-4889					42624			0.1			
	Fresh Cooling Water	-1148					-24779	19805					
	Utility water	-12					-		71				
	Fire Water System	-40											
	Condensate Treatment	-58											
	Waste Water Treatment	-100											
	Flare	0											
	Storage	0							ļ	ļ			
	Buildings	-600											
	Others	0					470.47	1000-			_		
	Offistes & Utilities Total	-6873	0	0	0	0	17845	19805	71	5.4	0		
	Grand Total	356763	0	0	0	0	0	0	0	0	0		
NOTES	 Includes auxiliary and transformer Includes Steam and water cycle b Net of generator losses 62.2 tph intermittent LPS required 	alance of plant and											

\blacksquare	FOSTER WHEELER ENERGY LIM UTILITIES BALANCE SUMMARY	ITED				CCGT w	ithout CO ₂ C	apture - 100%	GT Load				
CLIENT:	The Energy Technologies Institute												
CONTRACT:	13074		REV			01	O2	O3				SHEET	
NAME:	CCS Benchmark Refresh 2013		DATE			09/08/2013	02/09/2013					1 OF 1	
			ORIG. BY			SEF	SEF	SEF					
			APP. BY			TA	TA	TA					
	DESCRIPTION	ELECTRIC POWER (kW)		Steam (T/h)		Condensate	Sea Cooling water	Freeh	Process Water	Demin water	BFW	REMARKS	REV
		Electric Oper. Load	HP Steam 139 barg	MP Steam 26 barg	LP Steam 3 barg	T/h	T/h	T/h	T/h	T/h	T/h		
	Process Units												<u> </u>
	Acid Gas Removal Unit (MEA)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
	CO ₂ Compression & Drying	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
	Process Units Total	0	0	0	0	0	0	0	0	0	0		
													<u> </u>
	Power Island												
		0000	0	0	0				0	0			
	Gas Turbine (Note 1)	-8060	0	0	0	0	0	0	0	0	0		
	HRSGs	0	598.3	699.0	64.6	-846.9	0	0	0	8.5	0		
	Steam Turbine (Note 2)	-6469	-598.3	-699.0	-64.6	846.9	-49053	0	0	0	0		
	Power Generation Units (Note 3)	1067991	0.0	0.0	0.0	0.0	0.0	0	0	0	0		
	Power Island Total	1053463	0	0	0	0	-49053	0	0	8.5	0		
	Offsites & Utilities												
													_
	Demin Plant	-25								-8.5			
	Sea Cooling Water	-5608					49053						
	Fresh Cooling Water	0											
	Utility water	0											
	Fire Water System	-40											
	Condensate Treatment	-58											
	Waste Water Treatment	-100											
	Flare	0											
	Storage	0											
	Buildings	-1000											
	Others	0											
	Offsites & Utilities Total	-6831	0	0	0	0	49053	0	0	-8.5	0		
	Grand Total	1046631	0	0	0	0	0	0	0	0	0		
NOTES	 Includes auxiliary and transformer Includes Steam and water cycle b Net of generator losses 	r losses. alance of plant and	transformer l	OSSES.									

W	FOSTER WHEELER ENERGY LIM UTILITIES BALANCE SUMMARY	ITED				CCGT v	vithout CO ₂ C	apture - 40%	GT Load				
CLIENT:	The Energy Technologies Institute												
CONTRACT:	13074		REV			01						SHEET	
NAME:	CCS Benchmark Refresh 2013		DATE			22/10/2013						1 OF 1	
			ORIG. BY			SEF							
			APP. BY			TA							
	DESCRIPTION	ELECTRIC POWER (kWh/h)		Steam (T/h))	Condensate	Sea Cooling water	Fresh Cooling water	Process Water	Demin water	BFW	REMARKS	RE
		Electric Oper. Load	HP Steam 139 barg	MP Steam 26 barg	LP Steam 3 barg	T/h	T/h	T/h	T/h	T/h	T/h		
	Process Units												
	Acid Gas Removal Unit (MEA)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
i	CO_2 Compression & Drying	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		_
	CO ₂ Compression & Drying	n/a	∏/a	11/a	1#a	11/a	11/a	11/a	n/a	11/a	n/a		
	Process Units Total	0	0	0	0	0	0	0	0	0	0		
	Power Island												
	Gas Turbine (Note 1)	-6729	0	0	0	0	0	0	0	0	0		
	HRSGs	0	334.2	419.9	55.2	-545.8	0	0	0	-5.5	0		
	Steam Turbine (Note 2)	-3658	-334.2	-419.9	-55.2	545.8	-31115	0	0	0	0		
	Power Generation Units (Note 3)	295795	0	0	0	0	0	0	0	0	0		
	Power Island Total	285408	0	0	0	0	-31115	0	0	-5.5	0		
	Offsites & Utilities												
	Demin Plant	-25.0					04444.0			5.5			
	Sea Cooling Water	-3556.8					31114.8			┦───┤			
	Fresh Cooling Water	0.0								┨────┤			
	Utility water	0.0											
	Fire Water System	-40.0											
	Condensate Treatment	-58.0								┤───┤			
	Waste Water Treatment Flare	-100.0 0.0											
	Storage	0.0								+			
	Buildings	-1000.0								+			
	Others	0.0			1								
	Offistes & Utilities Total	-4780	0	0	0	0	31115	0	0	5.5	0		
	Grand Total	280628	0	0	0	0	0	0	0	0	0		
NOTES	 Includes auxiliary and transformed Includes Steam and water cycle b Net of generator losses 	r losses. alance of plant and	transformer	losses.									

W	FOSTER WHEELER ENERGY LIM UTILITIES BALANCE SUMMARY	ITED			С	CGT with 35%	% EGR & 90%	CO ₂ Capture	e - 100% GT L	oad			
CLIENT:	The Energy Technologies Institute												
CONTRACT:	13074		REV			01						SHEET	
NAME:	CCS Benchmark Refresh 2013		DATE			22/10/2013						1 OF 1	
			ORIG. BY			SEF						7	
			APP. BY			TA							
	DESCRIPTION	ELECTRIC POWER (kWh/h)		Steam (T/h)		Condensate	Sea Cooling water	Fresh Cooling water	Process Water	Demin water	BFW	REMARKS	REV
		Electric Oper. Load	HP Steam 139 barg	MP Steam 26 barg	LP Steam 3 barg	T/h	T/h	T/h	T/h	T/h	T/h		
	Process Units												
	Acid Gas Removal Unit (MEA)	-26101	0	0	-461.5	461.5	0	-33305	-140	0	0	Note 4	
	CO_2 Compression & Drying	-26101	0	0	-461.5	461.5	0	-33305	-140	0	0		
	CO ₂ Compression & Drying	-31474	0	0	0	0	0	-4729	0	0	0		
	Process Units Total	-57576	0	0	-462	462	0	-38034	-140	0	0		
				•	102			00004	140	Ŭ	Ŭ		
	Power Island												
	EGR Recycle Cooling	-339	0	0	0	0	0	-7394	78	0	0		
	Gas Turbine (Note 1)	-8013	0	0	0	0	0	0	0	0	0		
	HRSGs	0	611.3	699.1	58.7	-1300.4	0	0	0	-8.4	0	_	
	Steam Turbine (Note 2)	-5251	-611.3	-699.1	402.8	838.9	-24908	0	0	0	0		
	Power Generation Units (Note 3)	957114	0	0	0	0	0	0	0	0	0		
	Power Island Total	943512	0	0	462	-462	-24908	-7394	78	-8.4	0		
	Offsites & Utilities												
	Demin Plant	-25								0 /			_
	Sea Cooling Water	-25					81744			8.4		-	
	Fresh Cooling Water	-2636					-56836	45428	1	+ +			
	Utility water	-12	L	<u> </u>		1	00000	10720	140			1	
	Fire Water System	-40		1						1 1			
	Condensate Treatment	-58											
	Waste Water Treatment	-100		1		1			-78				
	Flare	0											
	Storage	0											
	Buildings	-600											
	Others	0											
	Offistes & Utilities Total	-12855	0	0	0	0	24908	45428	62	8.4	0		
	Grand Total	873081	0	0	0	0	0	0	0	0	0		
NOTES	 Includes auxiliary and transforme Includes Steam and water cycle b Net of generator losses 62.2 tph intermittent LPS required 	alance of plant and											

W	FOSTER WHEELER ENERGY LIM UTILITIES BALANCE SUMMARY	ITED			(CCGT with 35	% EGR & 90%	CO₂ Captur	e - 40% GT L	oad			
CLIENT:	The Energy Technologies Institute												
CONTRACT:	13074		REV			01						SHEET	
NAME:	CCS Benchmark Refresh 2013		DATE			22/10/2013						1 OF 1	
			ORIG. BY			SEF						7	
			APP. BY			TA						7	
	DESCRIPTION	ELECTRIC POWER (kWh/h)		Steam (T/h)		Condensate	Sea Cooling water	Fresh Cooling water	Process Water	Demin water	BFW	REMARKS	REV
		Electric Oper. Load	HP Steam 139 barg	MP Steam 26 barg	LP Steam 3 barg	T/h	T/h	T/h	T/h	T/h	T/h		
	Process Units												
	Acid Gas Removal Unit (MEA)	-20793	0	0	-220.0	220.0	0	-14973	-71	0	0	Note 4	
	CO ₂ Compression & Drying	-15436	0	0	0	0	0	-2318	0	0	0		
	Process Units Total	-36229	0	0	-220	220	0	-17292	-71	0	0		
		-30229	0	0	-220	220	0	-17292	-71	0	0		
	Power Island												
	EGR Recycle Cooling	-224	0	0	0	0	0	-4103	32	0	0		
	Gas Turbine (Note 1)	-6682	0	0	0	0	0	0	0	0	0		
	HRSGs	0	342.7	423.7	44.5	-755.3	0	0	0	-5.4	0		
	Steam Turbine (Note 2)	-3169	-342.7	-423.7	175.6	535.2	-19195	0	0	0	0		
	Power Generation Units (Note 3)	418662	0	0	0	0	0	0	0	0	0		
	Power Island Total	408811	0	0	220	-220	-19195	-4103	32	-5.4	0		
	Offsites & Utilities												
	Demin Plant	-25								5.4			
	Sea Cooling Water	-5273					45961			5.4			
	Fresh Cooling Water	-1241				1	-26766	21395		+			
	Utility water	-12					20,00	21000	71	+ +			
	Fire Water System	-40				1				1 1			
	Condensate Treatment	-58				1			1	1 1			
	Waste Water Treatment	-100				1			-32				
	Flare	0			1								
	Storage	0											
	Buildings	-600								1			
	Others	0											
	Offistes & Utilities Total	-7349	0	0	0	0	19195	21395	39	5.4	0		
	Grand Total	365233	0	0	0	0	0	0	0	0	0		
NOTES	 Includes auxiliary and transforme Includes Steam and water cycle b Net of generator losses 62.2 tph intermittent LPS required 	alance of plant and											

	The Energy Technologies Institute					0.1							
ONTRACT: AME:	13074		REV DATE			O1 22/10/2013						SHEET 1 OF 1	
	CCS Benchmark Refresh 2013		ORIG. BY			SEF						1 OF 1	
			APP. BY			TA							
	T		AFF. DI					Fresh					
	DESCRIPTION	ELECTRIC POWER (kW)		Steam (T/h)		Condensate	Sea Cooling water	Cooling water	Process Water	Demin water	BFW	REMARKS	R
		Electric Oper. Load	HP Steam 139 barg	MP Steam 26 barg	LP Steam 3 barg	T/h	T/h	T/h	T/h	T/h	T/h		
	Process Units												
	Acid Gas Removal Unit (MEA)	2/2	n/o	2/2	n/o	n/o	n/o	2/2	n/o	n/o	2/2		
	CO ₂ Compression & Drying	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
	CO ₂ Compression & Drying	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
	Process Units Total	0	0	0	0	0	0	0	0	0	0		
	Power Island												
	EGR Recycle Cooling	-229	0	0	0	0	-9166	0	78	0	0		
	Gas Turbine (Note 1)	-8013	0	0	0	0	0	0	0	0	0		
	HRSGs	0	610.0	703.2	59.1	-842.0	0	0	0	-8.4	0		
	Steam Turbine (Note 2)	-6527	-610.0	-703.2	-59.1	842.0	-49030	0	0	0	0		
	Power Generation Units (Note 3)	1054716	0	0	0	0	0	0	0	0	0		
	Power Island Total	1039948	0	0	0	0	-58195	0	78	-8.4	0		
	Offsites & Utilities												
	Demin Plant	-25								8.4			
	Sea Cooling Water	-6654					58195		ļ				
	Fresh Cooling Water	0				ļ			ļ				
	Utility water	0							ļ				
	Fire Water System	-40							 	├ ───┤			
	Condensate Treatment	-58							70	┨────┤			
	Waste Water Treatment	-100							-78	├			
	Flare	0							<u> </u>	├			
	Storage Buildings	-1000								┨			-+
	Others	0											
	Offsites & Utilities Total	-7877	0	0	0	0	58195	0	-78	8.4	0		
							00100	0	10	0.4			
	Grand Total	1032071	0	0	0	0	0	0	0	0	0		
OTES	 Includes auxiliary and transforme Includes Steam and water cycle b 		transformer l	OSSES.									

\blacksquare	FOSTER WHEELER ENERGY LIM UTILITIES BALANCE SUMMARY	ITED			С	CGT with 35%	6 EGR withou	t CO₂ Captu	re - 40% GT L	oad			
CLIENT:	The Energy Technologies Institute												
CONTRACT:	13074		REV			01						SHEET	
NAME:	CCS Benchmark Refresh 2013		DATE			22/10/2013						1 OF 1	
			ORIG. BY			SEF							
		1	APP. BY			TA							
	DESCRIPTION	ELECTRIC POWER (kWh/h)		Steam (T/h)		Condensate	Sea Cooling water	Fresh Cooling water	Process Water	Demin water	BFW	REMARKS	RE
		Electric Oper. Load	HP Steam 139 barg	MP Steam 26 barg	LP Steam 3 barg	T/h	T/h	T/h	T/h	T/h	T/h		
	Process Units												
	Acid Gas Removal Unit (MEA)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
	CO_2 Compression & Drying	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		-
		170	1,70	1,0	1,00	1.74	174	1,70		1,70			
	Process Units Total	0	0	0	0	0	0	0	0	0	0		
	Power Island												
	EGR Recycle Cooling	-148	0	0	0	0	-5190	0	32	0	0		
	Gas Turbine (Note 1)	-6682	0	0	0	0	0	0	0	0	0		
	HRSGs	0	342.4	423.7	51.9	-542.8	0	0	0	-5.4	0		
	Steam Turbine (Note 2)	-3803	-342.4	-423.7	-51.9	542.8	-31219	0	0	0	0		
	Power Generation Units (Note 3)	466073	0	0	0	0	0	0	0	0	0		_
	Power Island Total	455587	0	0	0	0	-36409	0	32	-5.4	0		
	Offsites & Utilities												
	Demin Plant	-25					00400			5.4			
	Sea Cooling Water	-4163					36409			┦────┤			
	Fresh Cooling Water	0								┨────┤			
	Utility water Fire Water System	-40								┨────┤			
	Condensate Treatment	-40								+ +			
	Waste Water Treatment	-100		<u> </u>					-32				
	Flare	0				1				1 1			
	Storage	0		1									
	Buildings	-1000		1							[
	Others	0											
	Offistes & Utilities Total	-5386	0	0	0	0	36409	0	-32	5.4	0		
	Grand Total	450201	0	0	0	0	0	0	0	0	0		
NOTES	 Includes auxiliary and transformed Includes Steam and water cycle b Net of generator losses 	r losses. alance of plant and	transformer	losses.									

\mathbf{W}	FOSTER WHEELER ENERGY LIM UTILITIES BALANCE SUMMARY	ITED			С	CGT with 18%	6 EGR & 90%	CO₂ Capture	e - 100% GT L	oad			
CLIENT:	The Energy Technologies Institute												
CONTRACT:	13074		REV			01						SHEET	
NAME:	CCS Benchmark Refresh 2013		DATE			22/10/2013						1 OF 1	
			ORIG. BY			SEF						-	
			APP. BY			TA						-	
	DESCRIPTION	ELECTRIC POWER (kWh/h)		Steam (T/h)		Condensate	Sea Cooling water	Fresh Cooling water	Process Water	Demin water	BFW	REMARKS	REV
		Electric Oper. Load	HP Steam 139 barg	MP Steam 26 barg	LP Steam 3 barg	T/h	T/h	T/h	T/h	T/h	T/h		
	Process Units												
	Acid Gas Removal Unit (MEA)	-32862	0	0	-479.2	479.2	0	-36538	-140	0	0	Note 4	
	CO ₂ Compression & Drying	-31714	0	0	-479.2	0	0	-30536	-140	0	0		_
	CO ₂ Compression & Drying	-51714	0	0	0	0	0	-4703	0	0	0		
	Process Units Total	-64576	0	0	-479	479	0	-41303	-140	0	0		
	Power Island												
	EGR Recycle Cooling	-175	0	0	0	0	0	-3762	40	0	0		
	Gas Turbine (Note 1)	-8035	0	0	0	0	0	0	0	0	0		
	HRSGs	0	604.3	701.8	61.8	-1323.3	0	0	0	-8.4	0		
	Steam Turbine (Note 2)	-5229	-604.3	-701.8	417.4	844.2	-24671	0	0	0	0		
	Power Generation Units (Note 3)	964195	0	0	0	0	0	0	0	0	0		
	Power Island Total	950756	0	0	479	-479	-24671	-3762	40	-8.4	0		
	Offsites & Utilities												
	Demin Plant	-25								8.4			
	Sea Cooling Water	-9304					81051						
	Fresh Cooling Water	-2614		1			-56381	45065					
	Utility water	-12							140				
	Fire Water System	-40											
	Condensate Treatment	-58											
	Waste Water Treatment	-100		ļ		ļ			-40				
	Flare	0											
	Storage	0				ļ			ļ	ļ ļ			
	Buildings	-600		ļ					ļ	ļ			
	Others	0				0	0.4074	45005	400		<u> </u>		
	Offistes & Utilities Total	-12753	0	0	0	0	24671	45065	100	8	0		
	Grand Total	873427	0	0	0	0	0	0	0	0	0		
NOTES	 Includes auxiliary and transformer Includes Steam and water cycle b Net of generator losses 62.2 tph intermittent LPS required 	alance of plant and											

W	FOSTER WHEELER ENERGY LIM UTILITIES BALANCE SUMMARY	ITED			(CCGT with 18	% EGR & 90%	CO₂ Captur	e - 40% GT L	oad			
CLIENT:	The Energy Technologies Institute												
CONTRACT:	13074		REV			01						SHEET	
NAME:	CCS Benchmark Refresh 2013		DATE			22/10/2013						1 OF 1	
			ORIG. BY			SEF							
			APP. BY			TA							
	DESCRIPTION	ELECTRIC POWER (kWh/h)		Steam (T/h)		Condensate	Sea Cooling water	Fresh Cooling water	Process Water	Demin water	BFW	REMARKS	REV
		Electric Oper. Load	HP Steam 139 barg	MP Steam 26 barg	LP Steam 3 barg	T/h	T/h	T/h	T/h	T/h	T/h		
	Process Units												
	Acid Gas Removal Unit (MEA)	-26104	0	0	-235.7	235.7	0	-16466	-71	0	0	Note 4	
	CO_2 Compression & Drying	-15763	0	0	-235.7	0	0	-2367	0	0	0		
	CO ₂ Compression & Drying	-13703	0	0	0	0	0	-2307	0	0	0		
	Process Units Total	-41867	0	0	-236	236	0	-18834	-71	0	0		
		-41007	0	0	-230	230	0	-10034	-71	0	0		
	Power Island												
	EGR Recycle Cooling	-118	0	0	0	0	0	-2138	17	0	0		
	Gas Turbine (Note 1)	-6705	0	0	0	0	0	0	0	0	0		
	HRSGs	0	337.2	419.8	47.3	-771.2	0	0	0	-5.4	0		
	Steam Turbine (Note 2)	-3088	-337.2	-419.8	188.4	535.5	-18562	0	0	0	0		
	Power Generation Units (Note 3)	420943	0	0	0	0	0	0	0	0	0		
	Power Island Total	411150	0	0	236	-236	-18562	-2138	17	-5.4	0		
	Offsites & Utilities												
	Derein Dieret	05.0								5.4			<u> </u>
	Demin Plant	-25.0					44800			5.4			\rightarrow
	Sea Cooling Water Fresh Cooling Water	-5140.0 -1216.8					-26238	20972	<u> </u>	+			
	Utility water	-1210.0				1	-20230	20912	71	+			
	Fire Water System	-12.0								+			
	Condensate Treatment	-40.0				1				+			+-
	Waste Water Treatment	-100.0							-17	+			-+-
	Flare	0.0						<u> </u>	1 1/	+ +			
	Storage	0.0				1			1	1 1			-
	Buildings	-600.0				1			1	1 1			+
	Others	0.0											
	Offistes & Utilities Total	-7192	0	0	0	0	18562	20972	55	5	0		
	Grand Total	362091	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	•	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
NOTES	1. Includes auxiliary and transforme 2. Includes Steam and water cycle b		transformer	losses.									
	 3. Net of generator losses 4. 62.2 tph intermittent LPS required 	during solvent recla	aimation mod	le.									

LIENT: ONTRACT:	The Energy Technologies Institute					01			1			OUEET	
AME:	13074 CCS Benchmark Refresh 2013		REV DATE			O1 22/10/2013						SHEET 1 OF 1	
	CCS Benchmark Reliesh 2013		ORIG. BY			SEF				}		I OF I	
			APP. BY			TA							
								Fresh					·
	DESCRIPTION	ELECTRIC POWER (kW)		Steam (T/h)		Condensate	Sea Cooling water	Cooling water	Process Water	Demin water	BFW	REMARKS	RE
		Electric Oper. Load	HP Steam 139 barg	MP Steam 26 barg	LP Steam 3 barg	T/h	T/h	T/h	T/h	T/h	T/h		
	Process Units												
		n /n	n/o	n/a	2/2	n/a	n/o		n/n	7/0	n/n		
	Acid Gas Removal Unit (MEA)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		—
	CO ₂ Compression & Drying	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
	Process Units Total	0	0	0	0	0	0	0	0	0	0		
	Power Island												
	EGR Recycle Cooling	-175	0	0	0	0	-4716	0	40	0	0		
	Gas Turbine (Note 1)	-8035	0	0	0	0	0	0	0	0	0		
	HRSGs	0	604.3	701.8	61.8	-844.2	0	0	0	8.4	0		
	Steam Turbine (Note 2)	-6498	-604.3	-701.8	-61.8	844.2	-49030	0	0	0	0		
	Power Generation Units (Note 3)	1061100	0	0	0	0	0	0	0	0	0		
	Power Island Total	1046391	0	0	0	0	-53745	0	40	8.4	0		
													<u> </u>
	Offsites & Utilities												
	Demin Plant	-25								-8.4			
	Sea Cooling Water	-5606					53745						
	Fresh Cooling Water	0											
	Utility water	0											
	Fire Water System	-40								ļļ			
	Condensate Treatment	-58					I			ļ			
	Waste Water Treatment	-100							-40	├			
	Flare	0								├ ───┤			<u> </u>
	Storage	0					 			<u>├</u> ───┤			<u> </u>
	Buildings Others	-1000 0							<u> </u>	<u> </u>			\rightarrow
	Offsites & Utilities Total	-6829	0	0	0	0	53745	0	-40	-8.4	0		
		-0023	0	0	0		00140	0	-40	-0.4	0		
	Grand Total	1039562	0	0	0	0	0	0	0	0	0		
IOTES	 Includes auxiliary and transformed Includes Steam and water cycle b 		transformer l	osses.									

W	FOSTER WHEELER ENERGY LIM UTILITIES BALANCE SUMMARY	IITED			с	CGT with 18%	6 EGR withou	t CO ₂ Captu	re - 40% GT L	.oad			
CLIENT:	The Energy Technologies Institute												
CONTRACT:	13074		REV			01						SHEET	
NAME:	CCS Benchmark Refresh 2013		DATE			22/10/2013						1 OF 1	-
			ORIG. BY			SEF							
			APP. BY			TA							
	DESCRIPTION	ELECTRIC POWER (kWh/h)		Steam (T/h)		Condensate	Sea Cooling water	Fresh Cooling water	Process Water	Demin water	BFW	REMARKS	RE
		Electric Oper. Load	HP Steam 139 barg	MP Steam 26 barg	LP Steam 3 barg	T/h	T/h	T/h	T/h	T/h	T/h		
	Process Units												
	Acid Gas Removal Unit (MEA)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
	CO ₂ Compression & Drying	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
	CC2 Compression & Drying	Π/α	11/4	11/4	174	174	Π/α	Π/α	17/4	Π/α	Π/a		
	Process Units Total	0	0	0	0	0	0	0	0	0	0		
	Power Island												
	EGR Recycle Cooling	-73	0	0	0	0	-2510	0	16	0	0		
	Gas Turbine (Note 1)	-6705	0	0	0	0	0	0	0	0	0		
	HRSGs	0	340.3	423.7	53.5	-546.0	0	0	0	-5.5	0		
	Steam Turbine (Note 2)	-3797	-340.3	-423.7	-53.5	546.0	-31313	0	0	0	0		
	Power Generation Units (Note 3)	473450	0	0	0	0	0	0	0	0	0		
	Power Island Total	462875	0	0	0	0	-33823	0	16	-5.5	0		
	Offsites & Utilities												
	Demin Plant	-25				ļ	00000			5.5			<u> </u>
	Sea Cooling Water	-3867				l	33823			┦────┤			<u> </u>
	Fresh Cooling Water	0								┼───┤			
	Utility water	0 -40											_
	Fire Water System Condensate Treatment	-40				<u> </u>							
	Waste Water Treatment	-100							-16				
	Flare	0											
	Storage	0				1			1				
	Buildings	-1000				1			1				+
	Others	0				1			1				
	Offistes & Utilities Total	-5090	0	0	0	0	33823	0	-16	5	0		
	Grand Total	457784	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
NOTES	 Includes auxiliary and transforme Includes Steam and water cycle b Net of generator losses 	r losses. palance of plant and	transformer	losses.									

ATTACHMENT 4 CAPITAL COST ESTIMATES

- 1. CCGT with 90% CO₂ Capture
- 2. CCGT without CO₂ Capture
- 3. CCGT with 35% EGR and 90% CO₂ Capture
- 4. CCGT with 35% EGR without CO₂ Capture
- 5. CCGT with 18% EGR and 90% CO₂ Capture
- 6. CCGT with 18% EGR without CO₂ Capture

Project No : 13074 Client : ETI Project : CCS Benchmark Refresh 2013 Location : UK

CCGT with 90% Carbon Capture

COST CODE	DESCRIPTION	Acid Gas Removal	CO2 Compression (to 150 Bar)	Power Block	U&O	Total
		Million's GBP	Million's GBP	Million's GBP	Million's GBP	Million's GBP
	MAJOR EQUIPMENT	98.7	20.9	190.9	13.8	324.3
	DIRECT BULK MATERIALS	34.3	5.3	57.6	17.8	115.1
				04.0		
	DIRECT MATERIAL & LABOUR CONTRACTS	11.4	0.9	21.8	28.9	63.0
	LABOUR ONLY CONTRACTS	46.5	9.3	32.1	22.7	110.6
	LABOOR ONET CONTRACTS	40.5	9.5	32.1	22.1	110.0
	INDIRECTS	14.7	2.9	21.9	5.4	44.8
			2.0	21.0	0.1	11.0
	EPC CONTRACTS	25.1	4.7	14.6	10.0	54.4
	INSTALLED COST	230.7	44.0	338.9	98.7	712.3
	LAND COSTS 5%	11.5	2.2	16.9	4.9	35.6
	OWNERS COSTS 10%	23.1	4.4	33.9	9.9	71.2
	CONTINGENCY 25%	57.7	11.0	84.7	24.7	178.1
		200.0	04.5	A74 F	400.0	007.0
	TOTAL PROJECT COST	322.9	61.5	474.5	138.2	997.2

Notes

1) Major Equipment is inclusive of costs up to FOB

2) Direct Bulk Materials includes Piping, Instrumentation, Electrical, Catalyst & Chemicals, Spares and Shipping costs

3) Direct Material & Labour Contracts includes Civil, Steelwork, Building and Protective Cover

4) Labour Only Contracts includes Mechanical, Electrical & Instrumentation, Pre-commisioning Trade Labour Support and Scaffolding Labour costs

5) Indirects includes Temporary Facilities, Heavy Lifts, Commissioning Services and Vendors Engineers

6) EPC Contracts covers Engineering, Procurement and Construction Management

7) Costs are instantaneos 1 Q 2009

1 Jun-14 KN

Rev : Date :

By :

Project No : 13074 Client : ETI Project : Carbon Capture Study Location : UK Rev : '1' Date : JUNE 2014 By : KDN Printed: 09-Jun-14

CCGT with 90% Carbon Capture Acid Gas Removal

Equipment Number	Description	Cost Carried Forward 2009 Basis GBP	Comments
1/2BL-2301	Flue Gas Blower	10,702,400	
1~3C-2301	Direct contact cooler	9,328,500	
1~3C-2301P	Direct contact cooler Packing	6,528,600	SS Structured Packing
1~3C-2302	Absorption Column	9,637,700	
1~3C-2302P1	Absorption Packing 1	19,029,300	SS Structured Packing
1~3C-2302P2	Absorption Packing 2	2,779,700	SS Structured Packing
1/2C-2303	Stripper Column	1,298,200	
1/2C-2303T	Stripper Column Trays	281,500	
1/2V-2301	Stripper OH Separator	385,300	
1/2V-2302	Semi-Lean Solvent Flash Drum	190,800	
1/2V-2303	Flashed Gas KO Pot	77,900	
1~3E-2301	DCC Cooler	788,700	
1~3E-2302	Absorber Pump Around Cooler	68,600	
1/2E-2303	Cross Over Exchanger	6,892,200	
1~3E-2304	Lean Solvent Cooler	2,655,700	
1~3E-2305	Extraction Cooler	3,201,100	
1/2E-2306	First Flash Preheater	5,847,100	
1/2E-2307	Second Flash Preheater	3,275,100	
1/2E-2308	Semi Lean Flash Cooler	462,800	
1/2E-2309A~C	Stripper Reboiler	2,719,400	
1/2E-2310	Solvent Reclaimer	171,000	
1/2E-2311	Reflux Cooler	713,500	
1/2E-2312	Gas / Gas Exchanger (2 x 50% Train)	6,446,500	
1~3P-2301A/B	DCC Cooler Pump	221,900	
1~3P-2302A~D	Rich Solvent Pump	915,800	
1~3P-2303A~D	Lean Solvent Pump	1,296,000	
1~3P-2304A~C	Semi-Lean Solvent Pump	523,300	
1~3P-2305A~D	Extraction Pump	858,600	
1~3P-2306A/B	Absorber Pumparound Pump	212,200	
1/2P-2307A/B	Stripper Reflux Pump	154,100	
1/2F-2301	DCC Circulation Water Filter	93,400	
1/2F-2302	Absorber Wash Water Filter	180,000	
1/2F-2303	Lean Solvent Filter	645,800	
1/2PK-2301	Soda Ash Injection Package	90,000	

Back-escalation Factor: 0.90 USD/GBP: 0.66 EUR/GBP: 0.74 98,672,700

Project No : 13074 Client : ETI Project : Carbon Capture Study Location : UK Rev : '1' Date : JUNE 2014 By : KDN Printed: 09-Jun-14

CCGT with 90% Carbon Capture CO2 Compression

Equipment Number	Description	Cost Carried Forward 2009 Basis GBP	Comments
	CO2 Compression Package	18,682,900	
1/2K-2501-1	CO2 Compressor Stage 1	-	Part of CO2 Compression Package
1/2K-2501-2	CO2 Compressor Stage 2	-	Part of CO2 Compression Package
1/2K-2501-3	CO2 Compressor Stage 3	-	Part of CO2 Compression Package
1/2K-2501-4	CO2 Compressor Stage 4	-	Part of CO2 Compression Package
1/2K-2501-5	CO2 Compressor Stage 5	-	Part of CO2 Compression Package
1/2K-2501-6	CO2 Compressor Stage 6	-	Part of CO2 Compression Package
1/2K-2501-7	CO2 Compressor Stage 7	-	Part of CO2 Compression Package
1/2K-2501-8	CO2 Compressor Stage 8	-	Part of CO2 Compression Package
1/2V-2501	CO2 Compressor Stage 1 KO Pot	-	Part of CO2 Compression Package
1/2V-2502	CO2 Compressor Stage 2 KO Pot	-	Part of CO2 Compression Package
1/2V-2503	CO2 Compressor Stage 3 KO Pot	-	Part of CO2 Compression Package
1/2V-2504	CO2 Compressor Stage 4 KO Pot	-	Part of CO2 Compression Package
1/2V-2505	CO2 Compressor Stage 5 KO Pot	-	Part of CO2 Compression Package
1/2D-2501A/B	Dehydration Bed #1 & 2	-	Part of Drier Package
1/2E-2501	CO2 Compressor Stage 1 Cooler	-	Part of CO2 Compression Package
1/2E-2502	CO2 Compressor Stage 2 Cooler	-	Part of CO2 Compression Package
1/2E-2503	CO2 Compressor Stage 3 Cooler	-	Part of CO2 Compression Package
1/2E-2504	CO2 Compressor Stage 4 Cooler	-	Part of CO2 Compression Package
1/2E-2505	CO2 Compressor Stage 5 Cooler	-	Part of CO2 Compression Package
1/2E-2506	CO2 Compressor Stage 6 Cooler	-	Part of CO2 Compression Package
1/2E-2507	CO2 Compressor Stage 7 Cooler	-	Part of CO2 Compression Package
1/2E-2508	CO2 Product Cooler	1,070,300	
1/2E-2509	Regen. Gas Electric Heater	-	Part of Drier Package
1/2E-2510	Regen. Gas Feed/Product Exchanger	-	Part of Drier Package
1/2F-2501	Dehydration Fines Filter	-	Part of Drier Package
1/2F-2502	Regeneration Fines Filter	-	Part of Drier Package
1/2PK-2501	CO2 Drier Package	1,162,800	
		20,916,000	

Back-escalation Factor: 0.90 USD/GBP: 0.66 EUR/GBP: 0.74 Project No : 13074 Client : ETI Project : Carbon Capture Study Location : UK Rev : '1' Date : JUNE 2014 By : KDN Printed: 09-Jun-14

CCGT with 90% Carbon Capture Power Block

Equipment Number	Description	Cost Carried Forward 2009 Basis GBP	Comments
1/2GT-3201	Gas Turbine (2 x 50% Train)	112,372,100	Type M701F5 369.52MW
	HRSG (2 x 50% Train)	34,845,800	
1/2D-3201	Deaerator (2 x 50% Train)	-	Part of HRSG
1/2P-3201A/B	HP BFW Pumps (4 x 50% Train)	2,653,200	
1/2P-3202A/B	MP BFW Pumps (4 x 50% Train)	1,168,900	
1/2P-3203A/B	LP BFW Pumps (4 x 50% Train)	201,600	
1/2D-3204	HP Steam Drum (2 x 50% Train)	-	Part of HRSG
1/2D-3203	MP Steam Drum (2 x 50% Train)	-	Part of HRSG
1/2D-3202	LP Steam Drum (2 x 50% Train)	-	Part of HRSG
1/2E-3215	Fuel Gas Preheater (2 x 50% Train)	147,600	
1E-3301	Vacuum Condenser (1 x 100% Train)	10,896,600	
1P-3301A/B/C	Condensate Pumps (1 x 100% Train)	169,000	
	Continuous Blowdown Drum	41,600	
	Intermittent Blowdown Drum	260,800	
	GT Purge Vessel	829,000	
	Continuous Blowdown Cooler	71,600	
1ST-3301	Steam Turbine (1 x 100% Train)	27,285,200	
1Z-3201	Stack (1 x 100%)	-	Part of HRSG

190,943,000

Back-escalation Factor: 0.90 USD/GBP: 0.66 EUR/GBP: 0.74

ent: E	CCS Benchmark Refresh 2013		Rev : Date : By :	Oct-13 AV
	<u>CCGT with No Ca</u>	<u>rbon Capture</u>		
OST ODE	DESCRIPTION	Power Block Million's GBP	U&O Million's GBP	Total Million's GBP
	MAJOR EQUIPMENT	190.9	8.5	199
	DIRECT BULK MATERIALS	57.6	10.6	6
	DIRECT MATERIAL & LABOUR CONTRACTS	21.8	18.5	4
	LABOUR ONLY CONTRACTS	32.1	8.3	4
	INDIRECTS	21.9	3.0	2
	EPC CONTRACTS	14.6	3.3	1
	INSTALLED COST	338.9	52.2	39
	LAND COSTS 59	6 16.9	2.6	1
	OWNERS COSTS 109	6 33.9	5.2	3
	CONTINGENCY 259	6 84.7	13.0	ç
	TOTAL PROJECT COST	474.5	73.0	54

2) Direct Bulk Materials includes Piping, Instrumentation, Electrical, Catalyst & Chemicals, Spares and Shipping costs

3) Direct Material & Labour Contracts includes Civil, Steelwork, Building and Protective Cover

4) Labour Only Contracts includes Mechanical, Electrical & Instrumentation, Pre-commisioning Trade Labour Support and Scaffolding Labour costs

5) Indirects includes Temporary Facilities, Heavy Lifts, Commissioning Services and Vendors Engineers

6) EPC Contracts covers Engineering, Procurement and Construction Management

lient : E	CCS Benchmark Refresh 2013 : UK	CGT with	35% EGR and	90% Carbon Ca	pture	Rev : Date : By :	1 Jun-14 KN
COST CODE	DESCRIPTION		Acid Gas Removal	CO2 Compression (to 150 Bar)	Power Block	U&O	Total
		Million's GBP	Million's GBP	Million's GBP	Million's GBP	Million's GBP	
	MAJOR EQUIPMENT		75.3	20.9	197.6	13.0	30
	DIRECT BULK MATERIALS		26.2	5.3	59.6	16.7	10
	DIRECT MATERIAL & LABOUR CONTRACTS		8.7	0.9	22.5	27.3	5
	LABOUR ONLY CONTRACTS		35.5	9.3	33.2	20.2	9
	INDIRECTS		11.2	2.9	22.6	5.1	
	EPC CONTRACTS		19.2	4.7	15.1	8.8	4
	INSTALLED COST		176.0	44.0	350.7	91.0	66
	LAND COSTS	5%	8.8	2.2	17.5	4.6	3
	OWNERS COSTS	10%	17.6	4.4	35.1	9.1	6
	CONTINGENCY	25%	44.0	11.0	87.7	22.8	16
	TOTAL PROJECT COST		246.4	61.5	491.0	127.4	92

2) Direct Bulk Materials includes Piping, Instrumentation, Electrical, Catalyst & Chemicals, Spares and Shipping costs

3) Direct Material & Labour Contracts includes Civil, Steelwork, Building and Protective Cover

4) Labour Only Contracts includes Mechanical, Electrical & Instrumentation, Pre-commisioning Trade Labour Support and Scaffolding Labour costs

5) Indirects includes Temporary Facilities, Heavy Lifts, Commissioning Services and Vendors Engineers

6) EPC Contracts covers Engineering, Procurement and Construction Management

oject :	CCS Benchmark Refresh 2013 :UK		By :	Oct-13 AV			
Location : UK CCGT with 35% EGR and No Carbon Capture COST CODE Description Power Block U&O Total Million's GBP Million's GBP Million's GBP Million's GBP MAJOR EQUIPMENT 204.5 9.1 2 DIRECT BULK MATERIALS 61.7 11.3 2 DIRECT MATERIAL & LABOUR CONTRACTS 23.3 19.8 2 LABOUR ONLY CONTRACTS 34.4 8.9 3 INDIRECTS 23.4 3.2 3 INDIRECTS 362.9 56.9 4 LAND COSTS 5% 18.1 2.8							
	DESCRIPTION						
		204.5	0.1	21			
				7			
	DIRECT MATERIAL & LABOUR CONTRACTS	23.3	19.8	2			
	LABOUR ONLY CONTRACTS	34.4	8.9	2			
	INDIRECTS	23.4	3.2	2			
	EPC CONTRACTS	15.6	3.5	1			
	INSTALLED COST	362.9	55.9	41			
	LAND COSTS 5%	18.1	2.8	2			
	OWNERS COSTS 10%	36.3	5.6	2			
	CONTINGENCY 25%	90.7	14.0	10			
	TOTAL PROJECT COST	508.1	78.2	58			

2) Direct Bulk Materials includes Piping, Instrumentation, Electrical, Catalyst & Chemicals, Spares and Shipping costs

3) Direct Material & Labour Contracts includes Civil, Steelwork, Building and Protective Cover

4) Labour Only Contracts includes Mechanical, Electrical & Instrumentation, Pre-commisioning Trade Labour Support and Scaffolding Labour costs

5) Indirects includes Temporary Facilities, Heavy Lifts, Commissioning Services and Vendors Engineers

6) EPC Contracts covers Engineering, Procurement and Construction Management

Project No : 13074 Client : ETI Project : CCS Benchmark Refresh 2013 Location : UK

 Rev :
 1

 Date :
 Jun-14

 By :
 KN

CCGT with 18% EGR and 90% Carbon Capture

соѕт				CO2 Compression (to			
CODE	DESCRIPTION		Acid Gas Removal	150 Bar)	Power Block	U&O	Total
			Million's GBP	Million's GBP	Million's GBP	Million's GBP	Million's GBP
	MAJOR EQUIPMENT		88.7	20.9	193.4	13.4	316.4
	DIRECT BULK MATERIALS		30.8	5.3	58.3	17.3	111.9
	DIRECT BOER WATERIALS		50.0	0.0	50.5	17.5	
	DIRECT MATERIAL & LABOUR CONTRACTS		10.2	0.9	22.1	28.2	61.3
	LABOUR ONLY CONTRACTS		41.8	9.3	32.5	21.6	105.2
	INDIRECTS		13.2	2.9	22.1	5.3	43.4
	EPC CONTRACTS		22.6	4.7	14.8	9.5	51.6
	INSTALLED COST		207.3	44.0	343.2	95.3	689.8
	LAND COSTS	5%	10.4	2.2	17.2	4.8	34.5
	OWNERS COSTS	10%	20.7	4.4	34.3	9.5	69.0
	CONTINGENCY	25%	51.8	11.0	85.8	23.8	172.5
	TOTAL PROJECT COST		290.3	61.5	480.5	133.4	965.7

Notes

1) Major Equipment is inclusive of costs up to FOB

2) Direct Bulk Materials includes Piping, Instrumentation, Electrical, Catalyst & Chemicals, Spares and Shipping costs

3) Direct Material & Labour Contracts includes Civil, Steelwork, Building and Protective Cover

4) Labour Only Contracts includes Mechanical, Electrical & Instrumentation, Pre-commisioning Trade Labour Support and Scaffolding Labour costs

5) Indirects includes Temporary Facilities, Heavy Lifts, Commissioning Services and Vendors Engineers

6) EPC Contracts covers Engineering, Procurement and Construction Management

lient : E roject : ocation	CCS Benchmark Refresh 2013	No Carbon Capt	Date : By : t ure	Oct-13 AV
COST	DESCRIPTION	Power Block	U&O	Total
JOBL		Million's GBP	Million's GBP	Million's GBP
	MAJOR EQUIPMENT	200.3	8.9	209
	DIRECT BULK MATERIALS	60.5	11.1	7
	DIRECT MATERIAL & LABOUR CONTRACTS	22.8	19.4	42
	LABOUR ONLY CONTRACTS	33.7	8.7	42
	INDIRECTS	22.9	3.2	2
	EPC CONTRACTS	15.3	3.4	18
	INSTALLED COST	355.6	54.7	41(
	LAND COSTS 5%	17.8	2.7	2
	OWNERS COSTS 10%	35.6	5.5	4
	CONTINGENCY 25%	88.9	13.7	10
	TOTAL PROJECT COST	497.8	76.6	57

2) Direct Bulk Materials includes Piping, Instrumentation, Electrical, Catalyst & Chemicals, Spares and Shipping costs

3) Direct Material & Labour Contracts includes Civil, Steelwork, Building and Protective Cover

4) Labour Only Contracts includes Mechanical, Electrical & Instrumentation, Pre-commisioning Trade Labour Support and Scaffolding Labour costs

5) Indirects includes Temporary Facilities, Heavy Lifts, Commissioning Services and Vendors Engineers

6) EPC Contracts covers Engineering, Procurement and Construction Management

ATTACHMENT 5 OPERATING COST ESTIMATES

Maintenance Costs

Task 1 – CCGT Benchmark Refresh

		CCGT w 90% CC 100% Load		w 90	GT % CC Load	No	CCGT No CC 100% Load		GT CC Load
		Capital	Capital Maint.		Maint.	Capital	Maint.	Capital	Maint.
	Maint	Cost	p.a	Cost	p.a	Cost	p.a	Cost	p.a
Complex Section	%	UK£ (N	Million)	UK£ (I	Million)	UK£ (N	Million)	UK£(N	/lillion)
AGR + CO2 Compression	2.5%	275	7	275	7	0	0	0	0
Power Island	5.0%	339	17	339	17	339	17	339	17
Common Facilities (offsites and utilities)	1.7%	99	2	99	2	52	1	52	1
		712	25.5	712	25.5	391	17.8	391.1	17.8
TOTAL	Overall Maint. % =		aint. % =	Overall Maint. % =		Overall Maint. % =		Overall Maint. % =	
		3.	58	3.	58	4.	56	4.	56

Task 2 – EGR Benchmark @ 35% EGR

		CCGT w		CCGT w	35% EGR	CCGT w	35% EGR	CCGT w	35% EGR
		90%	CC	90%	o CC	No	CC	No CC	
		100%	100% Load		40% Load		Load	40% Load	
		Capital	Maint.	Capital	Maint.	Capital	Maint.	Capital	Maint.
	Maint	Cost	p.a	Cost	p.a	Cost	p.a	Cost	p.a
Complex Section	%	UK£(N	/lillion)	UK£(N	/lillion)	UK£(N	/lillion)	UK£(N	/lillion)
AGR + CO2 Compression	2.5%	220	6	220	6	0	0	0	0
Power Island	5.0%	351	18	351	18	363	18	363	18
Common Facilities (offsites and utilities)	1.7%	91	2	91	2	56	1	56	1
		662	24.6	662	24.6	419	19.1	419	19.1
TOTAL		Overall M	aint. % =	Overall M	laint. % =	Overall M	aint. % =	Overall N	aint. % =
		3.	71	3.	71	4.	56	4.	56

Task 2 – EGR Benchmark @ 18% EGR

			18% EGR		18% EGR		18% EGR		18% EGR
		90%	o CC	90%	90% CC		No CC		CC
		100%	100% Load		40% Load		Load	40% Load	
		Capital	Maint.	Capital	Maint.	Capital	Maint.	Capital	Maint.
	Maint	Cost	p.a	Cost	p.a	Cost	p.a	Cost	p.a
Complex Section	%	UK£(N	/lillion)	UK£ (I	Million)	UK£ (I	Million)	UK£(N	/lillion)
AGR + CO2 Compression	2.5%	251	6	251	6	0	0	0	0
Power Island	5.0%	343	17	343	17	356	18	356	18
Common Facilities (offsites and utilities)	1.7%	95	2	95	2	55	1	55	1
		690	25.1	690	25.1	410	18.7	410.3	18.7
TOTAL		Overall N	aint. % =	Overall M	aint. % =	Overall M	aint. % =	Overall M	aint. % =
		3.	63	3.	63	4.	56	4.	56

Total Operating and Maintenance Costs

Task 1 – CCGT Benchmark Refresh

		Task 1 - CCGT Be	enchmark Refresh	
	CCGT w 90% CC 100% Load	CCGT w 90% CC 40% Load	CCGT No CC 100% Load	CCGT No CC 40% Load
	Million UK£ p.a	Million UK£ p.a	Million UK£ p.a	Million UK£ p.a
Fixed Costs				
Direct Labour	3.00	3.00	2.00	2.00
Administration / General Overheads	0.90	0.90	0.60	0.60
Maintenance	25.49	25.49	17.83	17.83
Insurance & Local Taxes Allowance	14.25	14.25	7.82	7.82
SUB TOTAL	43.6	43.6	28.3	28.3
Variable Costs				
Feedstock	268.4	136.2	268.4	136.2
Solvent, Catalysts and Chemicals	1.41	0.73	0.00	0.00
Waste Disposal	0.00	0.00	0.00	0.00
TOTAL	313.4	180.5	296.6	164.4

Task 2 – EGR Benchmark @ 35% EGR

		Task 2 - EGR Be	nchmark @ 35%	
	CCGT w 35% EGR			
	90% CC	90% CC	No CC	No CC
	100% Load	40% Load	100% Load	40% Load
	Million UK£ p.a	Million UK£ p.a	Million UK£ p.a	Million UK£ p.a
Fixed Costs				
Direct Labour	3.00	3.00	2.00	2.00
Administration / General Overheads	0.90	0.90	0.60	0.60
Maintenance	24.58	24.58	19.10	19.10
Insurance & Local Taxes Allowance	13.23	13.23	8.38	8.38
SUB TOTAL	41.7	41.7	30.1	30.1
Variable Costs				
Feedstock	265.8	130.2	265.8	130.2
Solvent, Catalysts and Chemicals	1.40	0.72	0.00	0.00
Waste Disposal	0.00	0.00	0.00	0.00
TOTAL	308.9	172.7	295.9	160.3

Task 2 – EGR Benchmark @ 18% EGR

		Task 2 - EGR Be	nchmark @ 18%	
	CCGT w 18% EGR			
	90% CC	90% CC	No CC	No CC
	100% Load	40% Load	100% Load	40% Load
	Million UK£ p.a	Million UK£ p.a	Million UK£ p.a	Million UK£ p.a
Fixed Costs				
Direct Labour	3.00	3.00	2.00	2.00
Administration / General Overheads	0.90	0.90	0.60	0.60
Maintenance	25.06	25.06	18.71	18.71
Insurance & Local Taxes Allowance	13.80	13.80	8.21	8.21
SUB TOTAL	42.8	42.8	29.5	29.5
Variable Costs				
Feedstock	267.0	133.2	267.0	133.2
Solvent, Catalysts and Chemicals	1.41	0.73	0.00	0.00
Waste Disposal	0.00	0.00	0.00	0.00
TOTAL	311.1	176.7	296.5	162.7

FOSTER

WHEELER


ATTACHMENT 6 TECHNICAL PERFORMANCE REPORT

ATTACHMENT 7 EQUIPMENT LISTS

- 1. CCGT with 90% CO2 Capture
- 2. CCGT without CO₂ Capture
- 3. CCGT with 35% EGR and 90% CO₂ Capture
- 4. CCGT with 35% EGR without CO₂ Capture
- 5. CCGT with 18% EGR and 90% CO₂ Capture
- 6. CCGT with 18% EGR without CO₂ Capture

FOSTER WHEELER ENERGY LTD READING

EQUIPMENT LIST - CCGT CASE with 90% CCS & 0% EGR

		REV	BY	APPROVED	DATE					
UNIT NAME:	MEA Unit & CO2 Compression	ORIG 01	SEF		10/09/2013					
UNIT No.:	100	02 03	•							
CLIENT:	The Energies Technology Institute									
PROJECT:	CCS BENCHMARK REFRESH 2013									
CONTRACT	13074									
DOCUMENT No.:										
CASE SUMMARY	Natural Gas Combined Cycle Power Plant with 90% Post Combustion CO2 Capture									

NOTES

FOSTER W ENERGY L QUIPMENT IUMBER DESCRIF /2 BL-2301 Flue Gas /2 K-2501-1 CO2 Con Stage 1 /2 K-2501-2 CO2 Con Stage 3 /2 K-2501-3 CO2 Con Stage 3 /2 K-2501-4 CO2 Con Stage 4		Client: Description: Unit No:	•	es Technology Ir	nstitute	c	ontract No:	13074		Ch'd	SEF	1		SHEET 2	
QUIPMENT IUMBER DESCRIF /2 BL-2301 Flue Gas /2 K-2501-1 CO2 Con Stage 1 /2 K-2501-2 CO2 Con Stage 2 /2 K-2501-3 CO2 Con Stage 3 /2 K-2501-4 CO2 Con Stage 3	LTD.	-	CCS BEN					13074		Cliu	3EF			SHEET 2	of
IUMBER Flue Gas /2 BL-2301 Flue Gas /2 K-2501-1 CO2 Con Stage 1 /2 K-2501-2 CO2 Con Stage 2 /2 K-2501-3 CO2 Con Stage 3 /2 K-2501-4 CO2 Con Stage 3		Unit No:	200 2210	CHMARK REFRE	ESH 2013					Арр.	SEF				
IUMBER Flue Gas /2 BL-2301 Flue Gas /2 K-2501-1 CO2 Con Stage 1 /2 K-2501-2 CO2 Con Stage 2 /2 K-2501-3 CO2 Con Stage 3 /2 K-2501-4 CO2 Con Stage 3		0111110.	2300/2500	MEA Unit & CO	2 Compressio	on				Date	10/09/2013				
IUMBER Flue Gas /2 BL-2301 Flue Gas /2 K-2501-1 CO2 Con Stage 1 /2 K-2501-2 CO2 Con Stage 2 /2 K-2501-3 CO2 Con Stage 3 /2 K-2501-4 CO2 Con Stage 3															
IUMBER Flue Gas /2 BL-2301 Flue Gas /2 K-2501-1 CO2 Con Stage 1 /2 K-2501-2 CO2 Con Stage 2 /2 K-2501-3 CO2 Con Stage 3 /2 K-2501-4 CO2 Con Stage 3	С	OMPRESSOR	No.off	DRIVE	ACTUAL	Cp/Cv	DIFF.	PRESSURE	TURB.DRIVE	COMPRESSIBILITY	POWER	MATERIAL	MOLECULAR	•	
/2 BL-2301 Flue Gas /2 K-2501-1 CO2 Con Stage 1 /2 K-2501-2 CO2 Con Stage 2 /2 K-2501-3 CO2 Con Stage 3 /2 K-2501-4 CO2 Con Stage 3	IPTION T	YPE(1)/	x DUTY	ТҮРЕ	CAPACITY	INLET/	PRESS.	INLET/OUTLET	STEAM PRESS.	INLET/OUTLET	EST/RATED	CASING	WEIGHT	REMARKS	RE
/2 K-2501-1 CO2 Con Stage 1 /2 K-2501-2 CO2 Con Stage 2 /2 K-2501-3 CO2 Con Stage 3	S	UB-TYPE	%	OP./SPARE	3	OUTLET									
/2 K-2501-1 CO2 Con Stage 1 /2 K-2501-2 CO2 Con Stage 2 /2 K-2501-3 CO2 Con Stage 3					m³/hr	1.379	bar	bara bara	barg		kW				
/2 K-2501-1 CO2 Con Stage 1 /2 K-2501-2 CO2 Con Stage 2 /2 K-2501-3 CO2 Con Stage 3	s Blower	Blower	2 x 50%	electric	2,663,319	1.379	0.22	1.04 / 1.25	n/a	0.999 / 0.999	17683	304 SS	28.37		0
/2 K-2501-1 Stage 1 /2 K-2501-2 CO2 Con Stage 2 /2 K-2501-3 CO2 Con Stage 3 /2 K-2501-4 CO2 Con Stage 3	o Biotrei	Diotter	2 x 00 %	cicotito	2,000,010	1.376	0.22	1.04 / 1.20	100	0.000 / 0.000	11000	00100	20.07		Ű
/2 K-2501-1 Stage 1 /2 K-2501-2 CO2 Con Stage 2 /2 K-2501-3 CO2 Con Stage 3 /2 K-2501-4 CO2 Con Stage 3						1.284									
/2 K-2501-2 CO2 Con Stage 2 /2 K-2501-3 CO2 Con Stage 3	mpressor	Centrifugal	2 x 50%	electric	11,402	1	0.38	1.10 / 1.48	n/a	0.994 / 0.994	129	304 SS	42.67		0
/2 K-2501-2 Stage 2 /2 K-2501-3 CO2 Con Stage 3 /2 K-2501-4 CO2 Con Stage 3						1.278									
/2 K-2501-2 Stage 2 /2 K-2501-3 CO2 Con Stage 3 /2 K-2501-4 CO2 Con Stage 3	moressor					1.286									
/2 K-2501-3 Stage 3		Centrifugal	2 x 50%	electric	69,830	1	1.4	1.38 / 2.80	n/a	0.992 / 0.991	2502	304 SS	43.23		0
/2 K-2501-3 Stage 3						1.272									
CO2 Con	mpressor	Centrifugal	2 x 50%	electric	34,143	1.296 /	2.7	2.7 / 5.4	n/a	0.985 / 0.983	2341	304 SS	43.71		0
/2 K 2501.4		Centinugai	2 × 30 /0	electric	34,143	, 1.284	2.1	2.7 / 5.4	1//a	0.985 / 0.985	2341	504 55	40.71		0
/2 K 2501.4						1.313									
		Centrifugal	2 x 50%	electric	17,042	1	6.2	5.3 / 11.5	n/a	0.970 / 0.966	2590	CS	43.85		0
Slage 4						1.304									
CO2 Con	mpressor					1.360									
/2 K-2501-5 Stage 5		Centrifugal	2 x 50%	electric	8,462	1	14	11.4 / 25.0	n/a	0.934 / 0.928	2809	CS	43.92		0
-						1.362									
/2 K-2501-6 CO2 Con	mpressor	Centrifugal	2 x 50%	electric	3,340	1.493	31	23.9 / 55.0	n/a	0.859 / 0.856	2490	CS	44.00		0
Stage 6		Centinugai	2 x 50 %	electric	3,340	1.512	51	23.9 / 55.0	11/d	0.859 / 0.850	2490	03	44.00		0
						2.883									
/2 K-2501-7 CO2 Con Stage 7	mpressor	Centrifugal	2 x 50%	electric	1,016	/	45	54.9 / 100.0	n/a	0.602 / 0.645	1250	CS	44.00		0
Slage 7						2.439									
CO2 Con	mpressor					4.318									
/2 K-2501-8 Stage 8		Centrifugal	2 x 50%	electric	512	1	51	99.9 / 151.0	n/a	0.500 / 0.578	795	CS	44.00		0
						2.887									\rightarrow
I			1	I			I	1	1	<u> </u>			<u> </u>		
lotes: 1. AC - A															

					EQUIPMEN	IT LIST FOF	VESSELS						Rev.	ORIG	REV 01	REV 02			
	OSTER WHEELER		Client:	Т	he Energies Te	echnology Insti	tute Cont	ract No:	13074				Ch'd	SEF			SHEET	3 of	F 8
	NERGY LTD.	De	scription:	С	CS BENCHM	ARK REFRESH	1 2013						Арр.	SEF					
			Unit No:	2	300/2500	MEA Unit & C	O2 Compressio	on					Date	10/09/2010					
																	-		
		VESSE	No.of	ff	DIMENSIO	ONS	TOTAL	V/H	DESIG		IONS	INTER	RNALS	MATERIALS	OF CONST'N		1		
EQUIPMENT	DESCRIPTION	TYPE(1			ID	HEIGHT	VOLUME	(2)	TEMP	PRESS	VACUUM	TYPE/No.		SHELL	INTERNALS	S REMA	RKS		RE\
NUMBER		SUB-TY	PE %			T/T					FVPRESS		VOL. m ³ /	MAT./LINING/	MAT./LINING/				
					m	m	m³		°c	barg	bara	PACKED		CA	CA				_
1/2/3 C-2301	Direct contact cooler	Т٧	/ 3 x 3	3%	14.77	29.53	5901.24	v	107	3.5	1.013	g	n Packing 916 0000	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin	Packing	10m Mellap	ak 250X	01
1/2/3 C-2302	Absorption Column	τv	/ 3 x 3	3%	15.58	27.00	6134	v	75	3.5	1.013	Randon 2670 / 14000 /	m Packing / 390 / 2000	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin		14m Mellap apak 250Y	ak 250X /	01
1/2 C-2303	Stripper Column	тν	2 x 5	0%	7.51	17.20	872	V	143	3.5	1.013	Tray	ys / 14	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01
1/2 V-2301	Stripper OH Separator	ΓV	2 x 5	0%	3.53	7.06	81	V	55	3.5	1.013	0	/lesh Pad).98 100	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01
1/2 V-2302	Semi-Lean Solvent Flash Drum	τV	2 x 5	0%	2.61	5.22	33	v	128	3.5	1.013	0	/lesh Pad).54 100	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01
1/2 V-2303	Flashed Gas KO Pot	τV	2 x 5	0%	1.44	2.88	5.5	v	60.0	3.5	1.013	0	/lesh Pad).16 100	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01
1/2 V-2501	CO2 Compressor Stage 1 KO Pot	τV	2 x 5	0%	1.33	2.66	4.3	v	49.0	3.5	1.013	0	/lesh Pad).14 100	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01
1/2 V-2502	CO2 Compressor Stage 2 KO Pot	τV	2 x 5	0%	3.18	6.36	58.9	v	49	3.5	1.013	0	/lesh Pad).79 100	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01
1/2 V-2503	CO2 Compressor Stage 3 KO Pot	۲V	2 x 5	0%	2.40	4.80	25.3	v	49	4.7	1.013	Wire N 0	Mesh Pad 0.45 100	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01
1/2 V-2504	CO2 Compressor Stage 4 KO Pot	ΓV	2 x 5	0%	2.00	4.00	14.7	v	49	11.4	1.013	0	/lesh Pad).31 100	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01

Notes: 1. TW - Single Diameter Tower DDT - Double Diameter Tower HT - Horizontal Tank AT - Agitated Tank VT - Vertical Tank

2. V - Vertical H - Horizontal

\frown					NT LIST FOR						Re		ORIG	REV 01	REV	/ 02			
	STER WHEELER	Clie	ent:	The Energies	echnology Insti	tute Contra	act No:	13074			Ch	'd	SEF				SHEET	4 of	
(IW) EN	ERGY LTD.	Descripti	ion:	CCS BENCHM	IARK REFRESH	H 2013					Ар	р.	SEF						
		Unit M	No:	2300/2500	MEA Unit & C	CO2 Compression	n				Dat	te	10/09/2010						
		VESSEL	No.off	DIMENS	ONS	TOTAL	V/H	DESIC		IONS	INTERNA	LS	MATERIALS	OF CONST'N					Γ
QUIPMENT	DESCRIPTION	TYPE(1)/	x DUTY	ID	HEIGHT	VOLUME	(2)	TEMP	PRESS	VACUUM	TYPE/No.OFF	-	SHELL	INTERNA	LS	REMAR	KS		R
UMBER		SUB-TYPE	%		T/T	2		0 -		FVPRESS	PACKED VOL		MAT./LINING/	MAT./LINING	/				
				m	m	m ³		°c	barg	bara	PACKED HG Wire Mesh		CA	CA					╇
/2 V-2305	CO2 Compressor	VT	2 x 50%	1.60	3.20	7.5	v	49	26.3	1.013	0.20		CS with 3mm min						
2 1-2000	Stage 5 KO Pot	v i	2 x 30 %	1.00	0.20	7.5	v	40	20.0	1.010	100		304L cladding	304L cladd	ling				
											Molecular	Sieve							t
/2 D-2501 A/B	Dehydration Bed #1 & 2	VT	4 x 25%								1				E	By Drier P	ackage Ver	ndor	
	α 2										1								
																			+
																			T
																			Ļ
		-	-		-														╀
																			T
																			╀
																			1
																			1
			+			1													t
		1			1														

				EQUI	PMENT LIST	FOR HEA	Т ЕХСН	ANGERS			Rev.	ORIG	REV 01	R	EV 02		
E I F	OSTER WHEELER	Client:	The Energ	ies Technol	ogy Institute	Coi	ntract No:	13074			Ch'd	SEF				SHEET 5 of	8
₩	NERGY LTD.	Description:	CCS BEN	CHMARK R	EFRESH 2013						App.	SEF					
\sim		Unit No:	2300/2500	MEA Unit	& CO2 Compres	sion					Date	16/09/2010					
					·												
		EXCHANGER	No.off	No.OF	TEMA			HEAT	DESIGN C	ONDITIONS	MATER	RIAL	No.OF	FAN	TOTAL	1	Τ
EQUIPMENT NUMBER		TYPE(1)/ SUB-TYPE	x DUTY %	SHELLS (ST)	TYPE(ST)/ HEADER CONST(AC)	RATE(3)	DUTY	T'FER AREA(6)	COLDSIDE(4) TEMP/PRESS	HOTSIDE TEMP/PRESS	PLATE/ SHELL	TUBE(ST/AC) HEAD(AC)	BAYS/FANS (AC)	TYPES (5)	FAN POWER	REMARKS	REV
			_		(2)	kg/hr	MW	m²	°C / barg	°C /barg			-		kW		+
1/2 E-3216	Gas/Gas Heat Exchanger	HE	2 x 50%	1	n/a	2563702	26.3	16531	105.0 / 4.7	141.4 / 3.5	CS	CS	n/a		n/a	like a combustion air preheater	¹ 01
1/2/3 E-2301	DCC Cooler	HE	3 x 33%	1	n/a	96676	1.2	934	49.0 / 4.7 (tubeside)	75.1 / 3.5	CS with 3mm min 304L cladding	316L	n/a		n/a		01
1/2/3 E-2302	Absorber Pump Around Cooler	HE	3 x 33%	1	n/a	12321	0.3	18	49.0 / 4.7 (tubeside)	66.8 / 3.5	CS	CS	n/a		n/a		01
1/2 E-2303	Cross Over Exchanger	HE	2 x 50%	1	n/a	2731311	114.9	21867	118.0 / 5.3	124.7 / 6.5	316L	316L	n/a		n/a	Plate & Frame	01
1/2/3 E-2304	Lean Solvent Cooler	HE	3 x 33%	4	n/a	4076281	48.7	2906	49.0 / 4.7 (tubeside)	82.8 / 5.5	316L	316L	n/a		n/a		01
1/2/3 E-2305	Extraction Cooler	HE	3 x 33%	4	n/a	4972952	59.5	3737	49.0 / 4.7 (tubeside)	79.6 / 4.2	316L	316L	n/a		n/a		01
1/2 E-2306	First Flash Preheater	HE	2 x 50%	4	n/a	1170562	37.0	11080	108.0 / 4.2 (tubeside)	128.1 / 5.3	316L	316L	n/a		n/a		01
1/2 E-2307	Second Flash Preheater	HE	2 x 50%	4	n/a	1170562	51.6	5957	128.0 / 3.5 (tubeside)	142.7 / 5.2	316L	316L	n/a		n/a		01
1/2 E-2308	Semi Lean Flash Cooler	HE	2 x 50%	4	n/a	1782565	21.3	528	49.0 / 4.7 (tubeside)	128.0 / 3.5	316L	316L	n/a		n/a		01
1/2 E-2309 A/B/C	Stripper Reboiler	RB	6 x 17%	3	n/a	946212	57.4	1391	142.7 / 3.5	325.0 / 4.7 (tubeside)	316L	316L	n/a		n/a		01
1/2 E-2310	Solvent Reclaimer	RB	2 x 50%	1	n/a	76581	34.5	230	173.9 / 3.5	172.9 / 6.2 (tubeside)	CS with 3mm min 304L cladding	316L	n/a		n/a	intermittent duty	01

1. C - Condenser HE - Heat Exchanger RB - Reboiler STB - Steam Boiler 2. For Air Coolers CP - Cover Plate PT - Plug Type MT - Manifold Type BT - Billet Type

3. Rate = Total Fluid Entering Coldside And Applies To Condensers, Boilers And Heaters. 4. Coldside Design Temp Equals Design Air Temp. For Air Coolers 5. I - Induced F - Forced

6. For Air-Coolers, this is Bare Tube Area

PROJECT No.: 13074

Notes:

				EQUI	PMENT LIST	FOR HEA	Т ЕХСН	ANGERS			Rev.	ORIG	REV 01	F	REV 02		
E	OSTER WHEELER	Client:	The Energ	ies Technol	ogy Institute	Con	tract No:	13074			Ch'd	SEF				SHEET 6 of	8
	ENERGY LTD.	Description:	CCS BEN	CHMARK R	EFRESH 2013						App.	SEF					
		Unit No:	2300/2500	MEA Unit	& CO2 Compress	sion					Date	10/09/2010					
												•	•				
		EXCHANGER	No.off	No.OF	TEMA			HEAT	DESIGN C	ONDITIONS	MATE	RIAL	No.OF	FAN	TOTAL		
EQUIPMENT		TYPE(1)/	x DUTY	SHELLS	TYPE(ST)/			T'FER	COLDSIDE(4)	HOTSIDE	PLATE/	TUBE(ST/AC)	BAYS/FANS	TYPE	FAN	REMARKS	RE
NUMBER		SUB-TYPE	%	(ST)	HEADER CONST(AC)	RATE(3)	DUTY	AREA(6)	TEMP/PRESS	TEMP/PRESS	SHELL	HEAD(AC)	(AC)	(5)	POWER		
					(2)	kg/hr	MW	m²	°C /barg	°C /barg					kW		
									Ŭ		CS with 3mm						
/2 E-2311	Reflux Cooler	HE	2 x 50%	2	n/a	3389602	40.5	1151	49.0 / 4.7	115.8 / 3.5	min 304L cladding	316L	n/a	n/a	n/a		01
									(tubeside)		CS with 3mm						_
/2 E-2501	CO2 Compressor Stage 1 Cooler	HE	2 x 50%	1	n/a	31094	0.4	91	49.0 / 4.7	84.7 / 3.5	min 304L	316L	n/a	n/a	n/a		01
	Stage 1 Coolei								(tubeside)		cladding						
/2 E-2502	CO2 Compressor	HE	2 x 50%	1	n/a	306447	3.7	603	40.0 / 4.7		CS with 3mm min 304L	316L	2/2	n/a	2/2		01
/Z E-2002	Stage 2 Cooler	ΠE	2 X 50%	1	11/a	300447	3.7	003	49.0 / 4.7 (tubeside)	114.5 / 3.5	cladding	310L	n/a	n/a	n/a		01
	000.0								((0.000.00)		CS with 3mm						
/2 E-2503	CO2 Compressor Stage 3 Cooler	HE	2 x 50%	1	n/a	226364	2.7	481	49.0 / 4.7	###### / 6.1	min 304L	316L	n/a	n/a	n/a		01
			-						(tubeside)		cladding						
/2 E-2504	CO2 Compressor	HE	2 x 50%	1	n/a	285572	3.4	557	49.0 / 4.7	115.2 / 12.2	CS with 3mm min 304L	316L	n/a	n/a	n/a		01
	Stage 4 Cooler								(tubeside)	-	cladding						
	CO2 Compressor		0 500/		,			= 0.0			CS with 6mm						
/2 E-2505	Stage 5 Cooler	HE	2 x 50%	1	n/a	304910	3.6	582	49.0 / 4.7 (tubeside)	117.5 / 26.5	CA	316L	n/a	n/a	n/a		01
									(tubeside)								
/2 E-2506	CO2 Compressor Stage 6 Cooler	HE	2 x 50%	1	n/a	404316	4.8	717	49.0 / 4.7	125.4 / 59	CS with 6mm CA	316L	n/a	n/a	n/a		01
			_						(tubeside)								—
/2 E-2507	CO2 Compressor	HE	2 x 50%	1	n/a	191536	2.3	203	49 / 4.7	100.0 / 105	CS with 6mm	316L	n/a	n/a	n/a		01
	Stage 7 Cooler								(tubeside)		CA						
						00.45-5		0.55			CS with 6mm	0.151					
/2 E-2508	CO2 Product Cooler	HE	2 x 50%	1	n/a	634358	7.6	999	49.0 / 4.7 (tubeside)	109.9 / 158	CA	316L	n/a	n/a	n/a		01
																Du Drine Drates	+
/2 E-2509	Regen. Gas Electric Heater	HE	2 x 50%													By Drier Package Vendor	
										-							—
/2E-2510	Regen. Gas Feed/Product	HE	2 x 50%													By Drier Package	
	Exchanger															Vendor	

3. Rate = Total Fluid Entering Coldside And Applies To Condensers, Boilers And Heaters. 4. Coldside Design Temp Equals Design Air Temp. For Air Coolers 5. I - Induced F - Forced

6. For Air-Coolers, this is Bare Tube Area

					EQUIPN	IENT LIS	T FOR PUM	PS			Rev.		ORIG	REV 01	REV 02		
्रम्य	FOSTER WHEELEF	Client:		The Energies T	echnology Inst	itute	Contract No	: 13074			Ch'd		SEF			SHEET 7 of	F 8
<u>w</u>	ENERGY LTD.	Description:		CCS BENCHM	ARK REFRESI	H 2013					Арр.		SEF				
		Unit No:		2300/2500	MEA Unit & C	O2 Compre	ssion				Date		10/09/2010				
		PUMP	No.off	DRIVE	DESIGN	PUMP	DIFF	TURB. DRIVE	OPERATING	CON	DS	DESIGN CO	NDITIONS	POWER	MATERIAL		
EQUIPMENT	DESCRIPTION	TYPE(1)/	x DUTY	TYPE (2)	CAPACITY		PRESSURE	STEAM P	TEMP / SO			TEMP/PR		EST/RATED	CASING/ROTOR	REMARKS	RE
NUMBER		SUB-TYPE	%	OP./SPARE	m³/hr	%	kPa	barg	°C	сР		°C	barg	kW			
1/2/3 P-2301 A/B	DCC Cooler Pump	Centrifugal	6 x 33%	electric	28		379		50.0 0.9	88 (0.544	75.0	5.35	3.9	316L SS / 316L SS	number of items the	oc 01
1/2/3 P-2302 A/B/C/D	Rich Solvent Pump	Centrifugal	12 x 11%	electric	851		352		52.0 1.0	05 ⁻	1.093	77.0	5.00	119	CS/CS	number of items the	oc 0'
1/2/3 P-2303 A/B/C/D	Lean Solvent Pump	Centrifugal	8 x 16.5%	electric	943		418		103.5 0.9	193 (0.411	128.5	6.57	146	316L SS / 316L SS	number of items to	oc 01
1/2/3 P-2304 A/B/C	Semi-Lean Solvent Pump	Centrifugal	6 x 25%	electric	608		224		103.0 1.0	13 (0.427	128.0	3.59	50	CS/CS	number of items the	oc 01
1/2/3 P-2305 A/B/C/D	Extraction Pump	Centrifugal	12 x 11%	electric	851		252		51.6 1.0	139 <i>~</i>	1.107	76.6	3.64	80	CS/CS	number of items the	oc 01
1/2/3 P-2306 A/B	Absorber Pumparound Pump	Centrifugal	6 x 33%	electric	14		126		41.8 0.9	193 (0.669	66.8	1.97	0.05	316L SS / 316L SS	number of items the	oc 01
1/2 P-2306 A/B	Stripper Reflux Pump	Centrifugal	4 x 50%	electric	57		147		30.0 1.0	52 (0.844	55.0	2.70	1.9	316L SS / 316L SS	number of items to	oc 01
																	1
Notes:	1. Differential pressure	to be confirm	ed after co	lumn design	1	1	1	1	1			1		1	1	1	

				EQUI	PMENT LIST FO	OR PACK	AGE EQUIPM	ENT		Rev.	ORIG	REV 01	REV 02	_	
िन्न	FOSTER WHEELER	R Clie	nt:	The Energies	Fechnology Institute		Contract No:	13074	Ļ	Ch'd	SEF			SHEET 8 of	
\W/	ENERGY LTD.	Descriptio	on:	CCS BENCHM	IARK REFRESH 20	13				App.	SEF				
		Unit N	lo:	2300/2500	MEA Unit & CO2	Compressi	ion			Date	10/09/2010				
														1	
EQUIPMENT	DESCRIPTION	EQUIPMENT TYPE(1)/ SUB-TYPE	No.off x DUTY %	DRIVE TYPE (2) OP./SPARE	DIMENSIONS DIAM./HGT/ LENGTH	AREA	CAPACITY	FLOW	PRESS OPER./DIFF. barg /	DESIGN CON TEMP/PRES		MATERIAL BODY/CA	COOL.TOWER WBT °C / APP °C /	REMARKS	RE
		000 111 2	70		mm	mm²	m³	kg/hr	bar	°C / barg	kW		CWT °C (3)		
1/2 F-2301	DCC Circulation Water Filter	F	2 x 50%				3	25251	3.85 / 0.7			Shell: 304L SS Internals: 304 SS		Packing = Activated Carbon	0
1/2 F-2302	Absorber Wash Water Filter	F	2 x 50%				12.4	12321.1	0.122 / 0.1			Shell: 304L SS Internals: 304 SS		Packing = Activated Carbon	ц 0.
1/2 F-2303	Lean Solvent Filter	F	2 x 50%				103	102108	0.387 / 0.1			Shell: 304L SS Internals: 304 SS		Packing = Activated Carbon	,0 p
1/2 F-2501	Dehydration Fines Filter	F	2 x 50%											By Drier Package Vendor	
1/2 F-2502	Regeneration Fines Filter	F	2 x 50%											By Drier Package Vendor	
1/2 PK-2301	Soda Ash Injection Package		2 x 50%												0
1/2 PK-2501	CO2 Drier Package	Mol Sieve	2 x 50%				3519 m3/h	183420 kg/h 0.075 wt% water	24.9 / 0.9					Product spec <50 ppmv water	0.
															_
Notes:	1. AD - Air Dryer CRY FLR - Flare Stack HU ·	•		-	-		-	•			•				

2. VFD - Variable Frequency Motor Driver

3. WBT - Wet Bulb Temperature APP - Approach Temperature CWT - Cooling Water Inlet Temperature

	4
	l
	ł
	ľ

CLIENT: ETI IECT TITLE: CCS BENCHMARK REFRESH 2013 CONTRACT: 13074

REVISION	0	1	2	3			
DATE	Sep-13						
BY	RR						
CHECKED	SEF						
APPROVED							

CASE: NGCC POWER PLANT WITH 90% POST COMBUSTION CO2 CAPTURE AND 0% EXHAUST GAS RECYCLE

Train Item		Description	Specification	Remarks
1 - 2	GT-3201	Gas Turbine (2 x 50% Train)	369.52 MWe Output Turbine generator	MHI M701F5 machine
1 - 2		HRSG (2 x 50% Train)	409.76 MW Duty (14 Coils)	
1 - 2	D-3201	Deaerator (2 x 50% Train)	436.75 tph	part of HRSG package
1 - 2	P-3201 A/B	HP BFW Pumps (4 x 50% Train)	1443.3 kW, 330.6 m3/h, 28.4 barg suction, 139.0 barg discharge, CS	
1 - 2	P-3202 A/B	MP BFW Pumps (4 x 50% Train)	445.46 kW 431.8 m3/h, 3.34 barg suction, 28.4 barg discharge, CS	
1 - 2	P-3203 A/B	LP BFW Pumps (4 x 50% Train)	38.5 kW 477.9 m3/h, 2.49 barg suction, 3.34 barg discharge, CS	
1 - 2	D-3204	HP Steam Drum (2 x 50% Train)	299.13 tph	part of HRSG package
1 - 2	D-3203	MP Steam Drum (2 x 50% Train)	50.37 tph	part of HRSG package
1 - 2	D-3202	LP Steam Drum (2 x 50% Train)	42.13 tph	part of HRSG package
1 - 2	E-3215	Fuel Gas Preheater (2 x 50% Train)	8871 kW Duty, 68004 kg/h process stream flow, 326 m2 heat transfer area, Carbon Steel	
1 - 2	E-3216	Gas / Gas Exchanger (2 x 50% Train)	26330 kW Duty, 26.33MW, 2330288 kg/h flow, 16531 m3 heat transfer area	
1	E-3301	Vacuum Condenser (1 x 100% Train)	846.86 tph condensate; 3.5 kPa (abs), 470.51 MW, 48,556 m2 heat transfer area, Carbon Steel	REF. duty = 371.8 MW
1	P-3301 A/B/C	Condensate Pumps (1 x 100% Train)	423.43 tph condensate, 420.5 m3/h, 115.9 kW, -0.978 barg suction, 5.53 barg discharge, CS	
1	ST-3301	Steam Turbine (1 x 100% Train)	229.25 MWe Output Turbine generator; 140 bar, 566 °C; 27 bar, 565 °C; 4.2 bar, 292 °C	
1 - 2	Z-3201	Stack (2 x 50%)		part of HRSG package
	1			
	1			
	1			
	1			
	1			
				+

CLIENT: ETI ECT TITLE: CCS BENCHMARK REFRESH 2013 CONTRACT: 13074

REVISION	0	1	2	3
DATE	Sep-13			
BY	RR			
CHECKED	SEF			
APPROVED				

CASE: NGCC POWER PLANT WITH 0% POST COMBUSTION CO2 CAPTURE AND 0% EXHAUST GAS RECYCLE

Train	ltem	Description	Specification	Remarks
1 - 2	GT-3201	Gas Turbine (2 x 50% Train)	369.52 MWe Output Turbine generator	MHI M701F5 machine
1 - 2		HRSG (2 x 50% Train)	409.76 MW Duty (14 Coils)	
1 - 2	D-3201	Deaerator (2 x 50% Train)	436.75 tph	part of HRSG package
1 - 2	P-3201 A/B	HP BFW Pumps (4 x 50% Train)	1443.3 kW, 330.6 m3/h, 28.4 barg suction, 139.0 barg discharge, CS	
1 - 2	P-3202 A/B	MP BFW Pumps (4 x 50% Train)	445.46 kW 431.8 m3/h, 3.34 barg suction, 28.4 barg discharge, CS	
1 - 2	P-3203 A/B	LP BFW Pumps (4 x 50% Train)	38.5 kW 477.9 m3/h, 2.49 barg suction, 3.34 barg discharge, CS	
1 - 2	D-3204	HP Steam Drum (2 x 50% Train)	299.13 tph	part of HRSG package
1 - 2	D-3203	MP Steam Drum (2 x 50% Train)	50.37 tph	part of HRSG package
1 - 2	D-3202	LP Steam Drum (2 x 50% Train)	42.13 tph	part of HRSG package
1 - 2	E-3215	Fuel Gas Preheater (2 x 50% Train)	8871 kW Duty, 68004 kg/h process stream flow, 326 m2 heat transfer area, Carbon Steel	
1	E-3301	Vacuum Condenser (1 x 100% Train)	846.86 tph condensate; 3.5 kPa (abs), 470.51 MW, 48,556 m2 heat transfer area, Carbon Steel	REF. duty = 371.8 MW
1	P-3301 A/B/C	Condensate Pumps (1 x 100% Train)	423.43 tph condensate, 420.5 m3/h, 115.9 kW, -0.978 barg suction, 5.53 barg discharge, CS	
1	ST-3301	Steam Turbine (1 x 100% Train)	328.9 MWe Output Turbine generator; 140 bar, 566 °C; 27 bar, 565 °C; 4.2 bar, 292 °C	
1 - 2	Z-3201	Stack (2 x 50%)		part of HRSG package
	1			

FOSTER WHEELER ENERGY LTD READING

EQUIPMENT LIST - CCGT CASE with 90% CCS & 35% EGR

		REV	BY	APPROVED	DATE
UNIT NAME:	MEA Unit	ORIG 01	SEF		07/10/2013
UNIT No.:	100	02 03	3EF		07/10/2013
CLIENT:	The Energies Technology Institute	03			
PROJECT:	CCS BENCHMARK REFRESH 2013				
CONTRACT	13074				
DOCUMENT No.:					
CASE SUMMARY	Natural Gas Combined Cycle Power Plant with 90% Post Combust 35% EGR	ion CO2	Capture		
NOTES					

					EQUIPME	ENT LIST F	OR COMP	RESSOR	8		Rev.	ORIG	REV 01	REV 02		
E F	OSTER WHEELER	1	Client:	The Energi	ies Technology I	nstitute	c	ontract No:	: 13074		Ch'd	SEF			SHEET 2 of	f
	NERGY LTD.	Des	scription:	CCS BENG	CHMARK REFRE	ESH 2013					Арр.	SEF				
			Unit No:	2300/2500	MEA Unit						Date	07/10/2013				
												•	*	-		
		COMPRE	SSOR	No.off	DRIVE	ACTUAL	Cp/Cv	DIFF.	PRESSURE	TURB.DRIVE	COMPRESSIBILITY	POWER	MATERIAL	MOLECULAR		
EQUIPMENT	DESCRIPTION	TYPE(1)/		x DUTY	TYPE	CAPACITY	INLET/	PRESS.	INLET/OUTLET	STEAM PRESS.	INLET/OUTLET	EST/RATED	CASING	WEIGHT	REMARKS	RE
NUMBER		SUB-TYP	E	%	OP./SPARE	2	OUTLET									
						m³/hr	1.374	bar	bara bara	barg		kW				
1/2 BL-2301	Flue Gas Blower	BI	ower	2 x 50%	electric	1,686,654	1.374	0.22	1.03 / 1.25	n/a	0.999 / 0.999	11196	304 SS	28.56		0
1/2 BL-2301	Flue Gas blower	DI	Owei	2 x 50 %	electric	1,000,004	1.372	0.22	1.03 / 1.25	11/a	0.999 / 0.999	11190	304 33	20.00		0
							1.287									+
1/2 K-2501-1	CO2 Compressor	Cen	trifugal	2 x 50%	electric	12.005	/	0.38	1.10 / 1.48	n/a	0.994 / 0.994	136	304 SS	42.67		0.
	Stage 1					,	1.278							-		
							1.286									
1/2 K-2501-2	CO2 Compressor Stage 2	Cen	trifugal	2 x 50%	electric	69,212	1	1.4	1.38 / 2.80	n/a	0.992 / 0.991	2480	304 SS	43.23		0.
	olage z						1.272									
	CO2 Compressor						1.296									
1/2 K-2501-3	Stage 3	Cen	trifugal	2 x 50%	electric	33,849	1	2.7	2.7 / 5.4	n/a	0.985 / 0.983	2321	304 SS	43.71		0.
							1.284									\rightarrow
4/0 K 0504 4	CO2 Compressor	0	1.16	0	a la stala	10.005	1.313		50 / // 5			0500	00	10.05		
1/2 K-2501-4	Stage 4	Cen	trifugal	2 x 50%	electric	16,895	/ 1.304	6.2	5.3 / 11.5	n/a	0.970 / 0.966	2568	CS	43.85		0.
							1.360									+
1/2 K-2501-5	CO2 Compressor	Cen	trifugal	2 x 50%	electric	8,381	1.500	14	11.4 / 25.0	n/a	0.934 / 0.928	2782	CS	43.92		0.
	Stage 5	Con	unugui	2 x 00 %	cicotito	0,001	1.362		11.1 / 20.0	100	0.001 / 0.020	2102	00	10.02		Ŭ
							1.493									
1/2 K-2501-6	CO2 Compressor Stage 6	Cen	trifugal	2 x 50%	electric	3,308	1	31	23.9 / 55.0	n/a	0.859 / 0.856	2466	CS	44.00		0.
	Stage 6						1.512									
	000 0						2.884									
1/2 K-2501-7	CO2 Compressor Stage 7	Cen	trifugal	2 x 50%	electric	1,006	1	45	54.9 / 100.0	n/a	0.602 / 0.645	1238	CS	44.00		0.
							2.440									
	CO2 Compressor	_					4.320						a -			
1/2 K-2501-8	Stage 8	Cen	trifugal	2 x 50%	electric	507	/	51	99.9 / 151.0	n/a	0.500 / 0.578	787	CS	44.00		0,
							2.887									\rightarrow
		1		1	l	1		1	1		1			1		<u> </u>

Notes:

1. AC - Air Compressor GC - Gas Compressor FN - Fan

				EQUIPME	NT LIST FOR	R VESSELS					Rev.	ORIG	REV 01 F	REV 02			
E F	OSTER WHEELER	0	lient:	The Energies	Technology Inst	itute Cont	ract No:	13074			Ch'd	SEF			SHEET	3 of	8
_\ \\\ ∈I	NERGY LTD.	Descri	ption:	CCS BENCH	ARK REFRES	H 2013					App.	SEF					
		Un	it No:	2300/2500	MEA Unit						Date	07/10/2013					
													1				
		VESSEL	No.off	DIMENS	IONS	TOTAL	V/H	DESIG		IONS	INTERNALS	MATERIAL	S OF CONST'N				
EQUIPMENT	DESCRIPTION	TYPE(1)/	x DUTY	ID	HEIGHT	VOLUME	(2)	TEMP	PRESS	VACUUM	TYPE/No.OFF	SHELL	INTERNALS	REMAR	RKS		RE\
NUMBER		SUB-TYPE	%		T/T					FVPRESS	PACKED VOL. m ³	MAT./LINING/	MAT./LINING/				
				m	m	m ³		°c	barg	bara	PACKED HGT mm	CA	CA				
1/2/3 C-2301	Direct contact cooler	тw	3 x 33%	11.79	23.58	3004.89	v	109	3.5	1.013	Random Packing 916	CS with 3mm mir		¹ Packing:	10m Mellapa	ak 250X	01
											10000	304L cladding	304L cladding				
											Random Packing	CS with 3mm mir	n CS with 3mm mi	Dooking	14m Mellapa	ak 250X /	
1/2/3 C-2302	Absorption Column	TW	3 x 33%	12.39	27.00	3754	V	75	3.5	1.013	1690 / 250	304L cladding	304L cladding		pak 250Y	ak 200A /	01
											14000 / 2000						
1/2 C-2303	Stripper Column	TW	2 x 50%	7.51	17.20	874	v	142	3.5	1.013	Trays / 14	CS with 3mm mir	n CS with 3mm mi	n			01
1/2 0-2303	Supper Column	1 V V	2 × 50 /0	5 7.51	17.20	074	v	142	0.0	1.015	Trays / 14	304L cladding	304L cladding				01
											Wire Mesh Pad						
1/2 V-2301	Stripper OH Separator	VT	2 x 50%	3.50	7.00	78	V	55	3.5	1.013	0.96	CS with 3mm min 304L cladding	n CS with 3mm mi 304L cladding	1			01
	oopulatoi										100	ou in oldading	oo ie oladaliig				
	Semi-Lean Solvent		0 500		=				~ -		Wire Mesh Pad	CS with 3mm mir	n CS with 3mm mi	n			
1/2 V-2302	Flash Drum	VT	2 x 50%	2.67	5.34	35	V	128	3.5	1.013	0.56 100	304L cladding	304L cladding				01
			-		-	+					Wire Mesh Pad			-			—
1/2 V-2303	Flashed Gas KO Pot	VT	2 x 50%	1.48	2.96	6.0	v	60.0	3.5	1.013	0.17	CS with 3mm min		۱			01
											100	304L cladding	304L cladding				
	CO2 Compressor										Wire Mesh Pad	CS with 3mm mir	n CS with 3mm mi				
1/2 V-2501	CO2 Compressor Stage 1 KO Pot	VT	2 x 50%	1.37	2.74	4.7	V	49.0	3.5	1.013	0.15	304L cladding	304L cladding	1			01
											100			_			_
1/2 V-2502	CO2 Compressor	VT	2 x 50%	3.17	6.33	58.1	v	49	3.5	1.013	Wire Mesh Pad 0.79	CS with 3mm mir	n CS with 3mm mi	n			01
1/2 V-2502	Stage 2 KO Pot	VI	2 X 50%	5 3.17	0.33	58.1	v	49	3.5	1.013	100	304L cladding	304L cladding				01
						+					Wire Mesh Pad			+			+
1/2 V-2503	CO2 Compressor	VT	2 x 50%	2.66	4.80	31.6	v	49	4.7	1.013	0.56	CS with 3mm min		۱			01
	Stage 3 KO Pot										100	304L cladding	304L cladding				
	CO2 Compressor										Wire Mesh Pad	CS with 3mm mir	n CS with 3mm mi				
1/2 V-2504	Stage 4 KO Pot	VT	2 x 50%	2.30	4.00	19.8	V	49	11.4	1.013	0.42	304L cladding	304L cladding	'			01
	2										100	5	- 3				

Notes: 1. TW - Single Diameter Tower DDT - Double Diameter Tower HT - Horizontal Tank AT - Agitated Tank VT - Vertical Tank

2. V - Vertical H - Horizontal

				EQUIPME	NT LIST FOR	R VESSELS						Rev.	ORIG	REV 01	REV (02			
FO FO	STER WHEELER	Clie	ent:	The Energies T	echnology Inst	tute Contra	act No:	13074				Ch'd	SEF				SHEET	4 of	
IW EN	ERGY LTD.	Descripti	ion:	CCS BENCHM	ARK REFRESI	H 2013						Арр.	SEF						
		Unit I	No:	2300/2500	MEA Unit							Date	07/10/2013						
		VESSEL	No.off	DIMENSI	ONS	TOTAL	V/H	DESIC	GN CONDIT	IONS	INTE	RNALS	MATERIALS	OF CONST'N		ı			Τ
QUIPMENT	DESCRIPTION	TYPE(1)/	x DUTY	ID	HEIGHT	VOLUME	(2)	TEMP	PRESS	VACUUM	TYPE/No	o.OFF	SHELL	INTERNA		REMAR	ĸs		R
UMBER		SUB-TYPE	%		T/T	3		0-		FVPRESS		OVOL.m ³ /	MAT./LINING/	MAT./LINING	/				
		-	_	m	m	m³		°C	barg	bara		D HGT mm Mesh Pad	CA	CA					+
/2 V-2305	CO2 Compressor Stage 5 KO Pot	VT	2 x 50%	1.86	3.20	10.4	V	49	26.3	1.013		0.27 100	CS with 3mm min 304L cladding	CS with 3mn 304L cladd					
												cular Sieve							╈
/2 D-2501 A/B	Dehydration Bed #1 & 2	VT	4 x 25%									1			Ву	y Drier P	ackage Ven	ldor	
												<u>.</u>							T
																			_
																			_
																			_
																			+
otes:	1. TW - Single Diame	eter Tower DDT	- Double Di	iameter Tower	HT - Horizonta	al Tank AT - Agi	itated Ta	ank VT-Ve	ertical Tank										
	2. V - Vertical H - He																		

				EQU	PMENT LIST	FOR HEA	ТЕХСН	ANGERS			Rev.	ORIG	REV 01	RE	EV 02		
E	OSTER WHEELER	Client:	The Energ	ies Technol	ogy Institute	Co	ntract No:	13074			Ch'd	SEF				SHEET 5 of	8
N	NERGY LTD.	Description:	CCS BEN	CHMARK R	EFRESH 2013						App.	SEF					
\sim		Unit No:	2300/2500	MEA Unit							Date	07/10/2013					
		EXCHANGER	No.off	No.OF	TEMA			HEAT	DESIGN C	ONDITIONS	MATER	RIAL	No.OF	FAN	TOTAL		
EQUIPMENT NUMBER		TYPE(1)/ SUB-TYPE	x DUTY %	SHELLS (ST)	TYPE(ST)/ HEADER CONST(AC)	RATE(3)	DUTY	T'FER AREA(6)	COLDSIDE(4) TEMP/PRESS	HOTSIDE TEMP/PRESS	PLATE/ SHELL	TUBE(ST/AC) HEAD(AC)	BAYS/FANS (AC)	TYPES (5)	FAN POWER	REMARKS	REV
					(2)	kg/hr	MW	m²	°C / barg	°C /barg					kW		+
1/2 E-3216	Gas/Gas Heat Exchanger	HE	2 x 50%	1	n/a	1634637	16.0	9768	105.0 / 4.7	141.2 / 3.5	CS	CS	n/a		n/a	like a combustion air preheater	ⁿ 01
1/2/3 E-2301	DCC Cooler	HE	3 x 33%	1	n/a	99231	1.2	943	49.0 / 4.7 (tubeside)	75.9 / 3.5	CS with 3mm min 304L cladding	316L	n/a		n/a		01
1/2/3 E-2302	Absorber Pump Around Cooler	HE	3 x 33%	1	n/a	12212	0.3	18	49.0 / 4.7 (tubeside)	67.5 / 3.5	CS	CS	n/a		n/a		01
1/2 E-2303	Cross Over Exchanger	HE	2 x 50%	1	n/a	2452756	104.0	26504	118.0 / 5.3	123.2 / 6.5	316L	316L	n/a		n/a	Plate & Frame	01
1/2/3 E-2304	Lean Solvent Cooler	HE	3 x 33%	4	n/a	3351872	40.1	2475	49.0 / 4.7 (tubeside)	80.7 / 5.5	316L	316L	n/a		n/a		01
1/2/3 E-2305	Extraction Cooler	HE	3 x 33%	4	n/a	4049507	48.4	3154	49.0 / 4.7 (tubeside)	77.6 / 4.2	316L	316L	n/a		n/a		01
1/2 E-2306	First Flash Preheater	HE	2 x 50%	4	n/a	1051181	33.6	10112	108.0 / 4.2 (tubeside)	128.1 / 5.3	316L	316L	n/a		n/a		01
1/2 E-2307	Second Flash Preheater	HE	2 x 50%	4	n/a	1051181	50.2	7348	128.0 / 3.5 (tubeside)	142.9 / 5.2	316L	316L	n/a		n/a		01
1/2 E-2308	Semi Lean Flash Cooler	HE	2 x 50%	4	n/a	1860026	22.2	551	49.0 / 4.7 (tubeside)	128.0 / 3.5	316L	316L	n/a		n/a		01
1/2 E-2309 A/B/C	Stripper Reboiler	RB	6 x 17%	3	n/a	850703	55.2	1338	142.9 / 3.5	325.0 / 4.7 (tubeside)	316L	316L	n/a		n/a		01
1/2 E-2310	Solvent Reclaimer	RB	2 x 50%	1	n/a	68314	34.5	205	173.9 / 3.5	172.9 / 6.2 (tubeside)	CS with 3mm min 304L cladding	316L	n/a		n/a	intermittent duty	01

1. C - Condenser HE - Heat Exchanger RB - Reboiler STB - Steam Boiler 2. For Air Coolers CP - Cover Plate PT - Plug Type MT - Manifold Type BT - Billet Type

3. Rate = Total Fluid Entering Coldside And Applies To Condensers, Boilers And Heaters. 4. Coldside Design Temp Equals Design Air Temp. For Air Coolers 5. I - Induced F - Forced

6. For Air-Coolers, this is Bare Tube Area

PROJECT No.: 13074

Notes:

				EQU	IPMENT LIST	FOR HEA		HANGERS	1		Rev.	ORIG	REV 01	F	REV 02		
ि चिरी न	OSTER WHEELER	R Client:	The Energ	ies Technol	ogy Institute	Con	tract No:	13074			Ch'd	SEF				SHEET 6 of	8
W	NERGY LTD.	Description:	CCS BEN	CHMARK R	EFRESH 2013						Арр.	SEF					
		Unit No:	2300/2500) MEA Unit							Date	07/10/2013					
		•	2000,2000									0111012010				-	
		EXCHANGER	No.off	No.OF	TEMA			HEAT	DESIGN (ONDITIONS	MAT	ERIAL	No.OF	FAN	TOTAL		Τ
EQUIPMENT	DESCRIPTION	TYPE(1)/	x DUTY	SHELLS	TYPE(ST)/			T'FER	COLDSIDE(4)	HOTSIDE	PLATE/	TUBE(ST/AC)	BAYS/FANS	TYPE	FAN	REMARKS	REV
NUMBER		SUB-TYPE	%	(ST)	HEADER	RATE(3)	DUTY	AREA(6)	TEMP/PRESS	TEMP/PRESS	SHELL	HEAD(AC)	(AC)	(5)	POWER		
					CONST(AC) (2)	kg/hr	мw	m²	°C /barg	°C /barg					kW		
					(2)	Kg/III			0 / baig	o /barg	CS with 3mm				NV		+
1/2 E-2311	Reflux Cooler	HE	2 x 50%	2	n/a	3541527	42.4	1195	49.0 / 4.7	116.6 / 3.5	min 304L	316L	n/a	n/a	n/a		01
									(tubeside)		cladding						
	CO2 Compressor										CS with 3mm						
1/2 E-2501	Stage 1 Cooler	HE	2 x 50%	1	n/a	32727	0.4	95	49.0 / 4.7	84.7 / 3.5	min 304L cladding	316L	n/a	n/a	n/a		01
									(tubeside)		CS with 3mm						+
1/2 E-2502	CO2 Compressor	HE	2 x 50%	1	n/a	303368	3.6	597	49.0 / 4.7	114.5 / 3.5	min 304L	316L	n/a	n/a	n/a		01
	Stage 2 Cooler								(tubeside)		cladding						
	CO2 Compressor										CS with 3mm						
1/2 E-2503	Stage 3 Cooler	HE	2 x 50%	1	n/a	224452	2.7	478	49.0 / 4.7	###### / 6.1	min 304L	316L	n/a	n/a	n/a		01
	-								(tubeside)		cladding						—
1/2 E-2504	CO2 Compressor	HE	2 x 50%	1	n/a	282867	3.4	552	49.0 / 4.7	115.2 / 12.2	CS with 3mm min 304L	316L	n/a	n/a	n/a		01
1/2 2-2004	Stage 4 Cooler	THE	2 x 30 /0		n/a	202007	0.4	002	(tubeside)	110.2 / 12.2	cladding	0102	174	1#a	100		01
	000.0								(,		00 111 0						-
1/2 E-2505	CO2 Compressor Stage 5 Cooler	HE	2 x 50%	1	n/a	302072	3.6	577	49.0 / 4.7	117.5 / 26.5	CS with 6mm CA	316L	n/a	n/a	n/a		01
	g								(tubeside)								<u> </u>
4/0 5 0500	CO2 Compressor		0 50%		. (.	400504	4.0		10.0 / 17	405 4 4 50	CS with 6mm	0.101	. (.		. (.		
1/2 E-2506	Stage 6 Cooler	HE	2 x 50%	1	n/a	400581	4.8	711	49.0 / 4.7 (tubeside)	125.4 / 59	CA	316L	n/a	n/a	n/a		01
									(tubeside)								+
1/2 E-2507	CO2 Compressor Stage 7 Cooler	HE	2 x 50%	1	n/a	189793	2.3	201	49 / 4.7	100.0 / 105	CS with 6mm CA	316L	n/a	n/a	n/a		01
	Stage / Cooler								(tubeside)		CA						
											CS with 6mm						
1/2 E-2508	CO2 Product Cooler	HE	2 x 50%	1	n/a	628434	7.5	991	49.0 / 4.7	109.9 / 158	CA	316L	n/a	n/a	n/a		01
				1					(tubeside)								+-
1/2 E-2509	Regen. Gas Electric	HE	2 x 50%													By Drier Package	
	Heater															Vendor	
	Regen. Gas	1														By Drier Package	
1/2E-2510	Feed/Product	HE	2 x 50%													Vendor	
	Exchanger																

Notes: 1. C - Condenser HE - Heat Exchanger RB - Reboiler STB - Steam Boiler 2. For Air Coolers CP - Cover Plate PT - Plug Type MT - Manifold Type BT - Billet Type

3. Rate = Total Fluid Entering Coldside And Applies To Condensers, Boilers And Heaters. 4. Coldside Design Temp Equals Design Air Temp. For Air Coolers 5. I - Induced F - Forced

6. For Air-Coolers, this is Bare Tube Area

					EQUIPN	IENT LIS	T FOR PUM	PS			Rev.		ORIG	REV 01	REV 02		
्रम्	FOSTER WHEELER	Client:		The Energies T	echnology Inst	itute	Contract No	: 13074			Ch'd		SEF			SHEET 7 of	. 8
(W)	ENERGY LTD.	Description:		CCS BENCHM	ARK REFRESI	H 2013					App.		SEF				
_		Unit No:		2300/2500	MEA Unit						Date		07/10/2013				
										_							
		PUMP	No.off	DRIVE	DESIGN	PUMP	DIFF	TURB. DRIVE	OPERATIN			DESIGN CO		POWER	MATERIAL		Τ
EQUIPMENT	DESCRIPTION	TYPE(1)/	x DUTY	TYPE (2)	CAPACITY	EFFIC'Y	PRESSURE	STEAM P	TEMP / S			TEMP/PR		EST/RATED	CASING/ROTOR	REMARKS	RE
NUMBER		SUB-TYPE	%	OP./SPARE	m³/hr	%	kPa	barg	°C	сP	•	°C	barg	kW			
1/2/3 P-2301 A/B	DCC Cooler Pump	Centrifugal	6 x 33%	electric	37		379		50.9 0.	.988	0.536	75.9	5.35	5.1	316L SS / 316L SS	number of items the	ю 0 [.]
1/2/3 P-2302 A/B/C/D	Rich Solvent Pump	Centrifugal	12 x 11%	electric	814		353		51.4 1.	.052	1.114	76.4	5.00	106	CS / CS	number of items the	ic 01
1/2/3 P-2303 A/B/C/D	Lean Solvent Pump	Centrifugal	8 x 16.5%	electric	839		419		98.1 0.	.995	0.448	123.1	6.57	130	316L SS / 316L SS	number of items the	ic 01
1/2/3 P-2304 A/B/C	Semi-Lean Solvent Pump	Centrifugal	6 x 25%	electric	541		224		103.0 1.	.014	0.431	128.0	3.59	45	CS / CS	number of items the	ic 01
1/2/3 P-2305 A/B/C/D	Extraction Pump	Centrifugal	12 x 11%	electric	759		253		52.6 1.	.045	1.101	77.6	3.65	71	CS / CS	number of items the	ic 01
1/2/3 P-2306 A/B	Absorber Pumparound Pump	Centrifugal	6 x 33%	electric	14		126		42.5 0.	.993	0.660	67.5	1.97	0.05	316L SS / 316L SS	number of items the	ic 01
1/2 P-2306 A/B	Stripper Reflux Pump	Centrifugal	4 x 50%	electric	60		147		30.0 1.	.052	0.844	55.0	2.70	2.0	316L SS / 316L SS	number of items the	ic 01
																	T
																	\uparrow
Notes:	1. Differential pressure	to be confirm	ed after co	lumn design	1	1	1	1	1			1		1	1	1	

			EQUI	PMENT LIST FO	R PACK	AGE EQUIPM	ENT		Rev.	ORIG	REV 01	REV 02		
FOSTER WHEELEF	R Client	t:	The Energies T	echnology Institute		Contract No:	13074		Ch'd	SEF			SHEET 8 of	
ENERGY LTD.	Description	n:	CCS BENCHM	ARK REFRESH 20	13				App.	SEF				
	Unit No	:	2300/2500	MEA Unit					Date	07/10/2013]	
		n	1	•		1		r			1	1		
DESCRIPTION	TYPE(1)/	No.off x DUTY	DRIVE TYPE (2)	DIMENSIONS DIAM./HGT/	AREA	CAPACITY	FLOW	PRESS OPER./DIFF.	DESIGN CONDS TEMP/PRESS	POWER EST/RATED	MATERIAL BODY/CA	COOL.TOWER	REMARKS	R
	SUB-ITPE	%	OP./SPARE	mm	mm²	m ³	kg/hr	barg / bar	°C / barg	kW		CWT °C (3)		
DCC Circulation Water Filter	F	2 x 50%				3	33088	3.85 / 0.7			Shell: 304L SS Internals: 304 SS		Packing = Activated Carbon	d o
Absorber Wash Water Filter	F	2 x 50%				12.3	12212.3	0.122 / 0.1			Shell: 304L SS Internals: 304 SS		Packing = Activated Carbon	d o
Lean Solvent Filter	F	2 x 50%				92	91085	0.387 / 0.1			Shell: 304L SS Internals: 304 SS		Packing = Activated Carbon	d c
Dehydration Fines Filter	F	2 x 50%											By Drier Package Vendor	
Regeneration Fines Filter	F	2 x 50%											By Drier Package Vendor	
Soda Ash Injection Package		2 x 50%												(
CO2 Drier Package	Mol Sieve	2 x 50%				3486.08 m3/h	181692 kg/h 0.075 wt% water	24.9 / 0.9					Product spec <50 ppmv water	C
	DESCRIPTION DCC Circulation Water Filter Absorber Wash Water Filter Lean Solvent Filter Dehydration Fines Filter Regeneration Fines Filter Soda Ash Injection Package	Unit No DESCRIPTION EQUIPMENT TYPE(1)/ SUB-TYPE DCC Circulation Water Filter F Absorber Wash Water Filter F Lean Solvent Filter F Dehydration Fines Filter F Regeneration Fines Filter F Soda Ash Injection Package I	Unit No: DESCRIPTION EQUIPMENT TYPE(1)/ SUB-TYPE No.off x DUTY % DCC Circulation Water Filter F 2 x 50% Absorber Wash Water Filter F 2 x 50% Lean Solvent Filter F 2 x 50% Dehydration Fines Filter F 2 x 50% Regeneration Fines Filter F 2 x 50% Soda Ash Injection Package 2 x 50% 2 x 50%	Unit No:2300/2500DESCRIPTIONEQUIPMENT TYPE(1)/ SUB-TYPENo.off x DUTY OP/SPAREDCC Circulation Water FilterF2 x 50%Absorber Wash Water FilterF2 x 50%Lean Solvent FilterF2 x 50%Dehydration Fines FilterF2 x 50%Regeneration Fines FilterF2 x 50%Soda Ash Injection Package2 x 50%	Unit No:2300/2500MEA UnitDESCRIPTIONEQUIPMENT TYPE(1)/ SUB-TYPENo.off x DUTY %DRIVE TYPE (2) OP./SPAREDIMENSIONS DIAM./HGT/ LENGTH mmDCC Circulation Water FilterF2 x 50%IAbsorber Wash Water FilterF2 x 50%ILean Solvent FilterF2 x 50%IDehydration Fines FilterF2 x 50%ISoda Ash Injection PackageIII	Unit No:2300/2500MEA UnitDESCRIPTIONEQUIPMENT TYPE(1)/ SUB-TYPENo.off x DUTY %DRIVE TYPE (2) OP./SPAREDIMENSIONS DIAM./HGT/ LENGTH mmAREA mm2DCC Circulation Water FilterF2 x 50%Image: Comparison of the co	Unit No:2300/2500MEA UnitDESCRIPTIONEQUIPMENT TYPE(1)' SUB-TYPENo.off x DUTY %DRIVE TYPE (2) OP./SPAREDIMENSIONS DIAM./HGT/ LENGTH mmAREA Mm2CAPACITY m3DCC Circulation Water FilterF2 x 50%IIII3DSorber Wash Water FilterF2 x 50%IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Unit No: 2300/2500 MEA Unit DESCRIPTION EQUIPMENT TYPE(1)/ SUB-TYPE No.off x DUTY % DRIVE TYPE (2) OP/SPARE DIMENSIONS LENGTH mm AREA mm ² CAPACITY m ³ FLOW kg/hr DCC Circulation Water Filter F 2 x 50% Image: Comparison of the state of the st	Unit No:2300/2500MEA UnitDESCRIPTIONEQUIPMENT TYPE(1)/ SUB-TYPENo.off A DUTY $%$ DRVE TYPE (2) OP/SPAREDIMENSIONS DIAM./HGT/ LENGTH mmAREA mm^2 CAPACITY m^3 PLOW Kg/hr PRESS OPER/DIFF. bargDCC Circulation Water FilterF $2 \times 50\%$ Image: Similar Simi	Unit No:2300/2500MEA UnitDateDESCRIPTIONEQUIPMENT TYPE (1)/ SUB-TYPENo.off x DUTY $%$ DRIVE TYPE (2) OP/SPAREDIMENSIONS DIAM./HGT/ LENGTH mmAREA mm2CAPACITY m3PRESS OPER/DIFF. barDESIGN CONDS. OPER/DIFF. barDCC Circulation Water FilterF $2 \times 50\%$ Image: Constant of the second sec	Unit No: 2300/2500 MEA Unit Date 07/10/2013 DESCRIPTION EQUIPMENT TYPE(1)/ SUB-TYPE No.off NUM PRIVE DIMM./HGT/ LENGTH AREA mm ² CAPACITY m ³ PRESS Kg/hr DESIGN CONDS. POWER DCC Circulation Water Filter F $2 \times 50\%$ Control Control Sold Sold Sold Sold Sold EST/RATED bar Sold Sold Sold F EST/RATED bar EST/RATED bar Sold Sold Sold Sold Sold EST/RATED bar EST/RATED bar	Unit No:2300/2500MEA UnitDate $07/10/2013$ DESCRIPTIONEQUIPMENT TYPE(1/) SUB-TYPENo.off x DUTY $%$ DINVE TYPE (2) OP/SPAREDIMENSIONS LENGTH $LENGTHmmAREAmm2CAPACITYm3PRESSFUNmm2DESIGN CONDS.OPE.NUFF.FUNbarPOWEROPER/DIFF.TEMP/PRESSbarPOWERColsing conds.MATERIALBODVICADCC Circulation WaterFilterF2 x 50%Image: Condstance of the c$	Unit No: 2300/200 MEA Unit Date 07/10/2013 Image: Constraint of the	Unit No:2300/2500MEA UnitDate $07/10/2013$ Image: Control of the c

2. VFD - Variable Frequency Motor Driver

3. WBT - Wet Bulb Temperature APP - Approach Temperature CWT - Cooling Water Inlet Temperature

F		HEELER ENERGY	CCS BENCHMARK REFRESH 2013 DATE Oct-13	2 3
		ASE. NGCC FOWER FEART WIT	130% FOST-COMBOSTION CO ₂ CAFTORE AND 35% EXHAUST GAS RECTO	
Train	ltem	Description	Specification	Remarks
1 - 2	GT-3201	Gas Turbine (2 x 50% Train)	361.68 MWe Output Turbine generator	MHI M701F5 machine
1 - 2		HRSG (2 x 50% Train)	410.54 MW Duty (14 Coils)	
1 - 2	D-3201	Deaerator (2 x 50% Train)	435.26 tph	part of HRSG package
1 - 2	P-3201 A/B	HP BFW Pumps (4 x 50% Train)	1471.6 kW, 333.2 m3/h, 28.4 barg suction, 139.0 barg discharge, CS	
1 - 2	P-3202 A/B	MP BFW Pumps (4 x 50% Train)	445.85 kW 426.2 m3/h, 3.34 barg suction, 28.4 barg discharge, CS	
1 - 2	P-3203 A/B	LP BFW Pumps (4 x 50% Train)	38.4 kW 469.6 m3/h, 2.49 barg suction, 3.34 barg discharge, CS	
1 - 2	D-3204	HP Steam Drum (2 x 50% Train)	305.0 tph	part of HRSG package
1 - 2	D-3203	MP Steam Drum (2 x 50% Train)	47.32 tph	part of HRSG package
1 - 2	D-3202	LP Steam Drum (2 x 50% Train)	40.273 tph	part of HRSG package
1 - 2	E-3215	Fuel Gas Preheater (2 x 50% Train)	8785 kW Duty, 67341 kg/h process stream flow, 397 m2 heat transfer area, Carbon Steel	
1	E-3301	Vacuum Condenser (1 x 100% Train)	842.01 tph condensate; 3.5 kPa (abs), 238.92 MW, 33,724 m2 heat transfer area, Carbon Steel	ref. duty = 371.8 MW
1	P-3301 A/B/C	Condensate Pumps (3 x 50% pumps, 1 x 7	421.01 tph condensate, 422.17 m3/h, 115.2 kW, -0.978 barg suction, 5.53 barg discharge, CS	
1	ST-3301	Steam Turbine (1 x 100% Train)	235.39 MWe Output Turbine generator; 140 bar, 566 °C; 27 bar, 565 °C; 4.2 bar, 292 °C	
1 - 2	Z-3201	Stack (2 x 50%)		part of HRSG package
1 - 2	C-3201	Recycle DCC Column (2 x 50%)	3 sieve trays, 10.5m ID, 21m T/T, 2,160 tph water, 882,tph flue gas, CS with 3mm 304L cladding	
1 - 2	E-3217	Recycle DCC Cooler (2 x 50%)	44300 kW Duty, 2,160,000 kg/h process water flow, 8206 m2 HT area, 316SS tubes, shell	CS with 3mm 304L cladding
1 - 2	P-3204 A/B	Recycle DCC Pumps (6 x 25% Train)	80.5 kW 1103 m3/h, 0.02 barg suction, 2 barg discharge, SS	

		VHEELER ENERGY	NT: ETI REVISION 0 1 LE: CCS BENCHMARK REFRESH 2013 DATE Oct-13 1 CT: 13074 BY SEF 1 CHECKED RR APPROVED SEF /ITH 0% POST-COMBUSTION CO2 CAPTURE AND 35% EXHAUST GAS RECYC CHECKED SEF	
		CASE. NGCC FOWER FLANT W	$\frac{1}{100} \frac{1}{100} \frac{1}$	
Train	ltem	Description	Specification	Remarks
1 - 2	GT-3201	Gas Turbine (2 x 50% Train)	361.68 MWe Output Turbine generator	MHI M701F5 machine
1 - 2		HRSG (2 x 50% Train)	410.54 MW Duty (14 Coils)	
1 - 2	D-3201	Deaerator (2 x 50% Train)	435.26 tph	part of HRSG package
1 - 2	P-3201 A/B	HP BFW Pumps (4 x 50% Train)	1471.6 kW, 333.2 m3/h, 28.4 barg suction, 139.0 barg discharge, CS	
1 - 2	P-3202 A/B	MP BFW Pumps (4 x 50% Train)	445.85 kW 426.2 m3/h, 3.34 barg suction, 28.4 barg discharge, CS	
1 - 2	P-3203 A/B	LP BFW Pumps (4 x 50% Train)	38.4 kW 469.6 m3/h, 2.49 barg suction, 3.34 barg discharge, CS	
1 - 2	D-3204	HP Steam Drum (2 x 50% Train)	305.0 tph	part of HRSG package
1 - 2	D-3203	MP Steam Drum (2 x 50% Train)	47.32 tph	part of HRSG package
1 - 2	D-3202	LP Steam Drum (2 x 50% Train)	40.27 tph	part of HRSG package
1 - 2	E-3215	Fuel Gas Preheater (2 x 50% Train)	8785 kW Duty, 67341 kg/h process stream flow, 397 m2 heat transfer area, Carbon Steel	
1	E-3301	Vacuum Condenser (1 x 100% Train)	842.01 tph condensate; 3.5 kPa (abs), 470.286 MW, 66,385 m2 heat transfer area, Carbon Steel	REF. duty = 371.8 MW
1	P-3301 A/B/C	Condensate Pumps (3 x 50% pumps, 1	x 1421.01 tph condensate, 422.17 m3/h, 115.2 kW, -0.978 barg suction, 5.53 barg discharge, CS	
1	ST-3301	Steam Turbine (1 x 100% Train)	331.354 MWe Output Turbine generator; 140 bar, 566 °C; 27 bar, 565 °C; 4.2 bar, 292 °C	
1 - 2	Z-3201	Stack (2 x 50%)		part of HRSG package
1 - 2	C-3201	Recycle DCC Column (2 x 50%)	3 sieve trays, 10.5m ID, 21m T/T, 2,160 tph water, 882,tph flue gas, CS with 3mm 304L cladding	
1 - 2	E-3217	Recycle DCC Cooler (2 x 50%)	44300 kW Duty, 2,160,000 kg/h process water flow, 8206 m2 HT area, 316SS tubes, shell	CS with 3mm 304L cladding
1 - 2	P-3204 A/B	Recycle DCC Pumps (6 x 25% Train)	80.5 kW 1103 m3/h, 0.02 barg suction, 2 barg discharge, SS	

	CLIENT: ETI	REVISION	0	1	2	3
	ECT TITLE: CCS BENCHMARK REFRESH 2013	DATE	Oct-13			
FOSTER WHEELER ENERGY	CONTRACT: 13074	BY	SEF			
		CHECKED	RR			
		APPROVED	SEF			
					_	

CASE: NGCC POWER PLANT WITH 0% POST-COMBUSTION CO₂ CAPTURE AND 35% EXHAUST GAS RECYCLE

FOSTER WHEELER ENERGY LTD READING

EQUIPMENT LIST - CCGT CASE with 90% CCS & 18% EGR

		REV	BY	APPROVED	DATE
UNIT NAME:	MEA & CO2 Compression Unit	ORIG 01	SEF		07/10/2013
UNIT No.:	100	01 02 03	3Er		07710/2013
CLIENT:	The Energies Technology Institute	00			
PROJECT:	CCS BENCHMARK REFRESH 2013				
CONTRACT	13074				
DOCUMENT No.:					
CASE SUMMARY	Natural Gas Combined Cycle Power Plant with 90% Post Combust 18% EGR	ion CO2	Capture	1	
NOTES					

				EQUIPM	ENT LIST F	OR COMP	RESSORS	3		Rev.	ORIG	REV 01	REV 02		
E	OSTER WHEELER	Client:	The Energ	ies Technology I	nstitute	C	Contract No:	: 13074		Ch'd	SEF			SHEET 2	of
`₩]	NERGY LTD.	Description:	CCS BEN	CHMARK REFR	ESH 2013					App.	SEF				
<u> </u>		Unit No:	2300/2500) MEA & CO2 Co	ompression Ur	nit				Date	07/10/2013				
												-	•		
		COMPRESSOR	No.off	DRIVE	ACTUAL	Cp/Cv	DIFF.	PRESSURE	TURB.DRIVE	COMPRESSIBILITY	POWER	MATERIAL	MOLECULAR	•	
EQUIPMENT	DESCRIPTION	TYPE(1)/	x DUTY	TYPE	CAPACITY	INLET/	PRESS.	INLET/OUTLET	STEAM PRESS.	INLET/OUTLET	EST/RATED	CASING	WEIGHT	REMARKS	RE
NUMBER		SUB-TYPE	%	OP./SPARE	3	OUTLET									
					m³/hr	1.377	bar	bara bara	barg		kW				
1/2 BL-2301	Flue Gas Blower	Blower	2 x 50%	electric	2,155,333	/	0.22	1.03 / 1.25	n/a	0.999 / 0.999	14309	304 SS	28.45		01
					_,,	1.374									
						1.287									
1/2 K-2501-1	CO2 Compressor Stage 1	Centrifugal	2 x 50%	electric	11,850	/	0.38	1.10 / 1.48	n/a	0.994 / 0.994	135	304 SS	42.67		01
	oluge i					1.278									
	CO2 Compressor					1.286									
1/2 K-2501-2	Stage 2	Centrifugal	2 x 50%	electric	69,547	/	1.4	1.38 / 2.80	n/a	0.992 / 0.991	2492	304 SS	43.23		01
					-	1.272 1.296									\rightarrow
1/2 K-2501-3	CO2 Compressor	Centrifugal	2 x 50%	electric	34,010	1.296	2.7	2.7 / 5.4	n/a	0.985 / 0.983	2332	304 SS	43.71		01
1/2 R-2301-3	Stage 3	Centinugai	2 × 30 %	electric	54,010	, 1.284	2.1	2.7 / 5.4	11/a	0.965 / 0.965	2002	304 33	43.71		01
						1.313									
1/2 K-2501-4	CO2 Compressor	Centrifugal	2 x 50%	electric	16,976	1	6.2	5.3 / 11.5	n/a	0.970 / 0.966	2580	CS	43.85		01
	Stage 4					1.304									
	CO2 Compressor					1.360									
1/2 K-2501-5	Stage 5	Centrifugal	2 x 50%	electric	8,423	/	14	11.4 / 25.0	n/a	0.934 / 0.928	2796	CS	43.92		01
						1.362									\rightarrow
4/0 14 0504 0	CO2 Compressor	Qualification	0	a la stala	0.004	1.493	04	00.0 / 55.0	- (-	0.050 / 0.050	0.170	00	44.00		
1/2 K-2501-6	Stage 6	Centrifugal	2 x 50%	electric	3,324	/ 1.512	31	23.9 / 55.0	n/a	0.859 / 0.856	2478	CS	44.00		01
						2.884									
1/2 K-2501-7	CO2 Compressor	Centrifugal	2 x 50%	electric	1,011	2.004	45	54.9 / 100.0	n/a	0.602 / 0.645	1245	CS	44.00		01
	Stage 7	0			,	2.440									
	000.0				1	4.318									
1/2 K-2501-8	CO2 Compressor Stage 8	Centrifugal	2 x 50%	electric	510	1	51	99.9 / 151.0	n/a	0.500 / 0.578	791	CS	44.00		01
						2.887									
1															
							1	I	I				11		
Notes:	1. AC - Air Compres	ssor GC - Gas Com	oressor FN -	Fan											

				EQUIPM	ENT LIST FO	R VESSELS					Re	ev.	ORIG	REV 01	REV 02			
	OSTER WHEELER		Client:	The Energie	s Technology Inst	itute Cont	tract No:	13074			Ch	n'd	SEF			SHEET	3 of	8
. \ \\\ / ∎I	NERGY LTD.	Des	cription:	CCS BENCI	MARK REFRES	H 2013					Ар	op.	SEF					
			Unit No:	2300/2500	MEA & CO2	Compression U	nit				Da	ite	07/10/2013					
				2000.2000		eenpreeeren e							01/10/2010					
		VESSEL	No.off	DIMEN	ISIONS	TOTAL	V/H	DESIC	GN CONDIT	IONS	INTERNA	u s	MATERIAL	OF CONST'N		1		
EQUIPMENT	DESCRIPTION	TYPE(1)			HEIGHT	VOLUME	(2)	TEMP	PRESS	VACUUM	TYPE/No.OF		SHELL	INTERNALS	REMA	RKS		RE\
NUMBER		SUB-TYP	PE %		T/T					FVPRESS	PACKED VO	L. m ³ /	MAT./LINING/	MAT./LINING/				
				m	m	m³		°c	barg	bara	PACKED HG		CA	CA				_
1/2/3 C-2301	Direct contact cooler	TW	3 x 339	% 13.30	26.61	4314.35	v	107	3.5	1.013	Random P 916 1000	0	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin	Packing	10m Mellapa	ak 250X	01
1/2/3 C-2302	Absorption Column	TW	3 x 339	% 14.01	27.00	4883	v	75	3.5	1.013	Random P 2160 / 14000 /	acking 310 2000	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin		14m Mellapa pak 250Y	ak 250X /	01
1/2 C-2303	Stripper Column	TW	2 x 509	% 7.54	17.20	881	V	142	3.5	1.013	Trays /	14	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01
1/2 V-2301	Stripper OH Separator	VT	2 x 509	% 3.51	7.02	79	V	55	3.5	1.013	Wire Mes 0.97 100		CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01
1/2 V-2302	Semi-Lean Solvent Flash Drum	VT	2 x 509	% 2.66	5.32	34	v	128	3.5	1.013	Wire Mes 0.55 100	i	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01
1/2 V-2303	Flashed Gas KO Pot	VT	2 x 509	% 1.47	2.94	5.8	v	60.0	3.5	1.013	Wire Mes 0.17 100	,	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01
1/2 V-2501	CO2 Compressor Stage 1 KO Pot	VT	2 x 50%	% 1.36	2.72	4.6	v	49.0	3.5	1.013	Wire Mes 0.15 100	;	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01
1/2 V-2502	CO2 Compressor Stage 2 KO Pot	VT	2 x 509	% 3.17	6.35	58.5	v	49	3.5	1.013	Wire Mes 0.79 100)	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01
1/2 V-2503	CO2 Compressor Stage 3 KO Pot	VT	2 x 509	% 2.67	4.80	31.8	v	49	4.7	1.013	Wire Mes 0.56 100	h Pad	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01
1/2 V-2504	CO2 Compressor Stage 4 KO Pot	VT	2 x 509	% 2.30	4.00	19.9	v	49	11.4	1.013	Wire Mes 0.42 100	2	CS with 3mm min 304L cladding	CS with 3mm r 304L claddin				01

Notes: 1. TW - Single Diameter Tower DDT - Double Diameter Tower HT - Horizontal Tank AT - Agitated Tank VT - Vertical Tank

2. V - Vertical H - Horizontal

					NT LIST FOR							Rev.	ORIG	REV 01	REV				
	STER WHEELER	Clie			Technology Inst		ract No:	13074			F	Ch'd	SEF				SHEET	4 of	6
	ERGY LID.	Descript			IARK REFRES						-	Арр.	SEF						
		Unit	No:	2300/2500	MEA & CO2	Compression U	nit				-	Date	07/10/2013						
		VESSEL	No.off	DIMENS	IONS	TOTAL	V/H	DESIC	GN CONDIT	IONS	INTER	RNALS	MATERIALS	OF CONST'N		ł			Τ
EQUIPMENT NUMBER	DESCRIPTION	TYPE(1)/ SUB-TYPE	x DUTY %	ID	HEIGHT T/T	VOLUME	(2)	TEMP	PRESS	VACUUM FVPRESS	TYPE/No. PACKED		SHELL MAT./LINING/	INTERNA MAT./LINING/		REMAR	KS		RE
				m	m	m ³		°c	barg	bara	PACKED	HGT mm	CA	CA					_
1/2 V-2305	CO2 Compressor Stage 5 KO Pot	VT	2 x 50%	1.86	3.20	10.4	v	49	26.3	1.013	C	Mesh Pad).27 100	CS with 3mm mir 304L cladding	CS with 3mm 304L cladd					01
	Dehydration Bed #1		4 050								Molecu	ular Sieve				<u> </u>			-
1/2 D-2501 A/B	& 2	VT	4 x 25%									 			B	y Drier P	ackage Ven	dor	
																			T
																			_
																			+
																			_
																			1
																			+
Notes:	1. TW - Single Diame 2. V - Vertical H - H		- Double Di	ameter Tower	HT - Horizonta	al Tank AT - Ag	gitated T	ank VT - Ve	ertical Tank										

				EQUI	PMENT LIST	FOR HEA	ТЕХСН	ANGERS			Rev.	ORIG	REV 01	R	EV 02		
E	OSTER WHEELER	Client:	The Energ	ies Technol	ogy Institute	Co	ntract No:	13074			Ch'd	SEF				SHEET 5 of	8
W	NERGY LTD.	Description:	CCS BEN	CHMARK R	EFRESH 2013						App.	SEF					
\sim		Unit No:	2300/2500	MEA & CO	02 Compression	Unit					Date	07/10/2013					
												•					
		EXCHANGER	No.off	No.OF	TEMA			HEAT	DESIGN C	ONDITIONS	MATER	RIAL	No.OF	FAN	TOTAL	1	Τ
EQUIPMENT NUMBER		TYPE(1)/ SUB-TYPE	x DUTY %	SHELLS (ST)	TYPE(ST)/ HEADER CONST(AC)	RATE(3)	DUTY	T'FER AREA(6) m ²	COLDSIDE(4) TEMP/PRESS	HOTSIDE TEMP/PRESS	PLATE/ SHELL	TUBE(ST/AC) HEAD(AC)	BAYS/FANS (AC)	TYPES (5)	FAN POWER	REMARKS	REV
					(2)	kg/hr	MW	m	°C / barg	°C /barg					kW		
1/2 E-3216	Gas/Gas Heat Exchanger	HE	2 x 50%	1	n/a	2080299	21.5	13441	105.0 / 4.7	141.4 / 3.5	CS	CS	n/a		n/a	like a combustion air preheater	¹ 01
1/2/3 E-2301	DCC Cooler	HE	3 x 33%	1	n/a	97252	1.2	935	49.0 / 4.7 (tubeside)	75.4 / 3.5	CS with 3mm min 304L cladding	316L	n/a		n/a		01
1/2/3 E-2302	Absorber Pump Around Cooler	HE	3 x 33%	1	n/a	12239	0.2	18	49.0 / 4.7 (tubeside)	65.6 / 3.5	CS	CS	n/a		n/a		01
1/2 E-2303	Cross Over Exchanger	HE	2 x 50%	1	n/a	2677197	111.9	23628	118.0 / 5.3	124.1 / 6.5	316L	316L	n/a		n/a	Plate & Frame	01
1/2/3 E-2304	Lean Solvent Cooler	HE	3 x 33%	4	n/a	3930462	47.0	2820	49.0 / 4.7 (tubeside)	82.4 / 5.5	316L	316L	n/a		n/a		01
1/2/3 E-2305	Extraction Cooler	HE	3 x 33%	4	n/a	4813072	57.6	3635	49.0 / 4.7 (tubeside)	79.4 / 4.2	316L	316L	n/a		n/a		01
1/2 E-2306	First Flash Preheater	HE	2 x 50%	4	n/a	1147370	36.0	10789	108.0 / 4.2 (tubeside)	128.1 / 5.3	316L	316L	n/a		n/a		01
1/2 E-2307	Second Flash Preheater	HE	2 x 50%	4	n/a	1147370	52.1	6532	128.0 / 3.5 (tubeside)	142.7 / 5.2	316L	316L	n/a		n/a		01
1/2 E-2308	Semi Lean Flash Cooler	HE	2 x 50%	4	n/a	1847889	22.1	547	49.0 / 4.7 (tubeside)	128.0 / 3.5	316L	316L	n/a		n/a		01
1/2 E-2309 A/B/C	Stripper Reboiler	RB	6 x 17%	3	n/a	926022	55.7	1351	142.7 / 3.5	325.0 / 4.7 (tubeside)	316L	316L	n/a		n/a		01
1/2 E-2310	Solvent Reclaimer	RB	2 x 50%	1	n/a	75009	34.5	225	173.9 / 3.5	172.9 / 6.2 (tubeside)	CS with 3mm min 304L cladding	316L	n/a		n/a	intermittent duty	01

1. C - Condenser HE - Heat Exchanger RB - Reboiler STB - Steam Boiler 2. For Air Coolers CP - Cover Plate PT - Plug Type MT - Manifold Type BT - Billet Type

3. Rate = Total Fluid Entering Coldside And Applies To Condensers, Boilers And Heaters. 4. Coldside Design Temp Equals Design Air Temp. For Air Coolers 5. I - Induced F - Forced

6. For Air-Coolers, this is Bare Tube Area

PROJECT No.: 13074

Notes:

				EQUI	PMENT LIST	FOR HEA	Т ЕХСН	ANGERS			Rev.	ORIG	REV 01	F	REV 02		
E	OSTER WHEELER	Client:	The Energ	ies Technol	ogy Institute	Con	tract No:	13074			Ch'd	SEF				SHEET 6 of	8
	NERGY LTD.	Description:	CCS BEN	CHMARK R	EFRESH 2013						App.	SEF					
		Unit No:	2300/2500	MEA & CO	02 Compression	Unit					Date	07/10/2013					
		EXCHANGER	No.off	No.OF	TEMA			HEAT	DESIGN C	ONDITIONS	МАТЕ	RIAL	No.OF	FAN	TOTAL		
EQUIPMENT	DESCRIPTION	TYPE(1)/	x DUTY	SHELLS	TYPE(ST)/			T'FER	COLDSIDE(4)	HOTSIDE	PLATE/	TUBE(ST/AC)	BAYS/FANS	TYPE	FAN	REMARKS	RE
NUMBER		SUB-TYPE	%	(ST)	HEADER CONST(AC)	RATE(3)	DUTY	AREA(6)	TEMP/PRESS	TEMP/PRESS	SHELL	HEAD(AC)	(AC)	(5)	POWER		
					(2)	kg/hr	мw	m²	°C /barg	°C /barg					kW		
											CS with 3mm						
1/2 E-2311	Reflux Cooler	HE	2 x 50%	2	n/a	3171553	38.0	1085	49.0 / 4.7	115.1 / 3.5	min 304L cladding	316L	n/a	n/a	n/a		01
									(tubeside)		CS with 3mm						
1/2 E-2501	CO2 Compressor Stage 1 Cooler	HE	2 x 50%	1	n/a	32306	0.4	94	49.0 / 4.7	84.7 / 3.5	min 304L	316L	n/a	n/a	n/a		01
	Stage 1 Coolei								(tubeside)		cladding						
	CO2 Compressor		0		- 1-	004000		004			CS with 3mm	0401					
1/2 E-2502	Stage 2 Cooler	HE	2 x 50%	1	n/a	304966	3.6	601	49.0 / 4.7 (tubeside)	114.5 / 3.5	min 304L cladding	316L	n/a	n/a	n/a		01
	000.0								(tubeside)		CS with 3mm						
1/2 E-2503	CO2 Compressor Stage 3 Cooler	HE	2 x 50%	1	n/a	225524	2.7	480	49.0 / 4.7	114.5 / 6.1	min 304L	316L	n/a	n/a	n/a		01
			_						(tubeside)		cladding						_
1/2 E-2504	CO2 Compressor	HE	2 x 50%	1	n/a	284288	3.4	555	49.0 / 4.7	115.2 / 12.2	CS with 3mm min 304L	316L	n/a	n/a	n/a		01
	Stage 4 Cooler		2 × 00 /0		100	201200	0.1		(tubeside)	110.2 / 12.2	cladding	0.02					0.
	CO2 Compressor										CS with 6mm						
1/2 E-2505	Stage 5 Cooler	HE	2 x 50%	1	n/a	303576	3.6	580	49.0 / 4.7 (tubeside)	117.5 / 26.5	CA	316L	n/a	n/a	n/a		01
									(lubeside)								-
1/2 E-2506	CO2 Compressor Stage 6 Cooler	HE	2 x 50%	1	n/a	402556	4.8	714	49.0 / 4.7	125.4 / 59	CS with 6mm CA	316L	n/a	n/a	n/a		01
	Stage 0 Coolei								(tubeside)								
1/2 E-2507	CO2 Compressor	HE	2 x 50%	1	n/a	190710	2.3	202	49 / 4.7	100.0 / 105	CS with 6mm	316L	n/a	n/a	n/a		01
1/2 E-2307	Stage 7 Cooler	ΠE	2 X 50 /6		11/d	190710	2.5	202	(tubeside)	100.0 / 105	CA	310	11/d	11/d	n/a		01
									(CS with 6mm						
1/2 E-2508	CO2 Product Cooler	HE	2 x 50%	1	n/a	631577	7.6	996	49.0 / 4.7	109.9 / 158	CS with omm	316L	n/a	n/a	n/a		01
									(tubeside)								+
1/2 E-2509	Regen. Gas Electric	HE	2 x 50%													By Drier Package Vendor	
	Heater															vendor	
	Regen. Gas		0													By Drier Package	
1/2E-2510	Feed/Product Exchanger	HE	2 x 50%													Vendor	

3. Rate = Total Fluid Entering Coldside And Applies To Condensers, Boilers And Heaters. 4. Coldside Design Temp Equals Design Air Temp. For Air Coolers 5. I - Induced F - Forced

6. For Air-Coolers, this is Bare Tube Area

					EQUIPN	IENT LIS	T FOR PUM	PS		F	Rev.		ORIG	REV 01	REV 02		
्रम्	FOSTER WHEELEF	Client:		The Energies T	echnology Inst	itute	Contract No	: 13074	ļ	c	Ch'd		SEF			SHEET 7 of	F 8
W	ENERGY LTD.	Description:		CCS BENCHM	ARK REFRES	H 2013				4	Арр.		SEF				
		Unit No:		2300/2500	MEA & CO2 C	Compressior	n Unit			C	Date		07/10/2013				
						·						•					
		PUMP	No.off	DRIVE	DESIGN	PUMP	DIFF	TURB. DRIVE	OPERATING		ne	DESIGN COI		POWER	MATERIAL		
EQUIPMENT	DESCRIPTION	TYPE(1)/	x DUTY	TYPE (2)		EFFIC'Y	PRESSURE	STEAM P	TEMP / SG			TEMP/PRE		EST/RATED	CASING/ROTOR	REMARKS	RE
NUMBER		SUB-TYPE	%	OP./SPARE	m³/hr	%	kPa	barg	°C	сР		°C b	arg	kW			
1/2/3 P-2301 A/B	DCC Cooler Pump	Centrifugal	6 x 33%	electric	33		379		50.3 0.9	988 0.	.541	75.3	5.35	4.6	316L SS / 316L SS	number of items the	oc 0'
1/2/3 P-2302 A/B/C/D	Rich Solvent Pump	Centrifugal	12 x 11%	electric	890		352		52.1 1.0)51 1.	.088	77.1	5.00	116	CS/CS	number of items the	oc 01
1/2/3 P-2303 A/B/C/D	Lean Solvent Pump	Centrifugal	8 x 16.5%	electric	920		419		99.0 0.9	996 0.	.440	124.0	6.58	142	316L SS / 316L SS	number of items the	oc 01
1/2/3 P-2304 A/B/C	Semi-Lean Solvent Pump	Centrifugal	6 x 25%	electric	594		224		103.0 1.0)13 0.	.428	128.0	3.59	49	CS/CS	number of items the	oc 01
1/2/3 P-2305 A/B/C/D	Extraction Pump	Centrifugal	12 x 11%	electric	834		252		54.3 1.0)38 1.	.041	79.3	3.63	78	CS/CS	number of items the	oc 01
1/2/3 P-2306 A/B	Absorber Pumparound Pump	Centrifugal	6 x 33%	electric	14		126		40.6 0.9	993 0.	.685	65.6	1.97	0.05	316L SS / 316L SS	number of items the	oc 01
1/2 P-2306 A/B	Stripper Reflux Pump	Centrifugal	4 x 50%	electric	53		147		30.0 1.0)52 0.	.845	55.0	2.70	1.8	316L SS / 316L SS	number of items the	oc 01
																	+
Notes:	1. Differential pressure	to be confirm	ed after co	lumn design	1	1	1	1						1	1	1	

				EQUI	PMENT LIST FO	OR PACK	AGE EQUIPM	ENT		Rev.	ORIG	REV 01	REV 02		
	FOSTER WHEELEF	R Client	t:	The Energies 1	Fechnology Institute		Contract No:	13074		Ch'd	SEF			SHEET 8 of	
\ \W /	ENERGY LTD.	Description	n:	CCS BENCHM	IARK REFRESH 20	13				App.	SEF				
<u> </u>		Unit No		2300/2500	MEA & CO2 Corr	pression U	Init			Date	07/10/2013				
		•	-	2000/2000		.p. oco.o o				2410	0111012010			-	
QUIPMENT	DESCRIPTION	EQUIPMENT TYPE(1)/ SUB-TYPE	No.off x DUTY %	DRIVE TYPE (2) OP./SPARE	DIMENSIONS DIAM./HGT/ LENGTH	AREA	CAPACITY	FLOW	PRESS OPER./DIFF. barg /	DESIGN CONDS TEMP/PRESS	EST/RATED	MATERIAL BODY/CA	COOL.TOWER WBT °C / APP °C /	REMARKS	RI
					mm	mm ²	m³	kg/hr	bar	°C / barg	kW		CWT °C (3)		
	DCC Circulation Water Filter	F	2 x 50%				3	29811	3.85 / 0.7			Shell: 304L SS Internals: 304 SS		Packing = Activated Carbon	d c
/2 F-2302	Absorber Wash Water Filter	F	2 x 50%				12.3	12238.5	0.122 / 0.1			Shell: 304L SS Internals: 304 SS		Packing = Activated Carbon	d c
/2 F-2303	Lean Solvent Filter	F	2 x 50%				100	100012	0.387 / 0.1			Shell: 304L SS Internals: 304 SS		Packing = Activated Carbon	0 ^t
/2 F-2501	Dehydration Fines Filter	F	2 x 50%											By Drier Package Vendor	
	Regeneration Fines Filter	F	2 x 50%											By Drier Package Vendor	
	Soda Ash Injection Package		2 x 50%												c
/2 PK-2501	CO2 Drier Package	Mol Sieve	2 x 50%				3503 m3/h	182589.4 kg/h 0.075 wt% water	24.9 / 0.9					Product spec <50 ppmv water	C
															-
															\downarrow

2. VFD - Variable Frequency Motor Driver

3. WBT - Wet Bulb Temperature APP - Approach Temperature CWT - Cooling Water Inlet Temperature

CLIENT: ETI ECT TITLE: CCS BENCHMARK REFRESH 2013 CONTRACT: 13074

DEV//OION	<u> </u>	4	<u> </u>	<u>^</u>
REVISION	0	1	2	3
DATE	Oct-13			
BY	SEF			
CHECKED				
APPROVED				
		OAO DEOVO		

CASE: NGCC POWER PLANT WITH 90% POST-COMBUSTION CO2 CAPTURE AND 18% EXHAUST GAS RECYCLE

Train	ltem	Description	Specification	Remarks
1 - 2	GT-3201	Gas Turbine (2 x 50% Train)	365.478 MWe Output Turbine generator	MHI M701F5 machine
1 - 2		HRSG (2 x 50% Train)	410.09 MW Duty (14 Coils)	
1 - 2	D-3201	Deaerator (2 x 50% Train)	435.88 tph	part of HRSG package
1 - 2	P-3201 A/B	HP BFW Pumps (4 x 50% Train)	1457.8 kW, 329.0 m3/h, 28.4 barg suction, 139.0 barg discharge, CS	
1 - 2	P-3202 A/B	MP BFW Pumps (4 x 50% Train)	445.55 kW 425.9 m3/h, 3.34 barg suction, 28.4 barg discharge, CS	
1 - 2	P-3203 A/B	LP BFW Pumps (4 x 50% Train)	38.4 kW 435.9 m3/h, 2.49 barg suction, 3.34 barg discharge, CS	
1 - 2	D-3204	HP Steam Drum (2 x 50% Train)	302.1 tph	part of HRSG package
1 - 2	D-3203	MP Steam Drum (2 x 50% Train)	48.75 tph	part of HRSG package
1 - 2	D-3202	LP Steam Drum (2 x 50% Train)	41.15 tph	part of HRSG package
1 - 2	E-3215	Fuel Gas Preheater (2 x 50% Train)	8827 kW Duty, 67665 kg/h process stream flow, 325 m2 heat transfer area, Carbon Steel	
1	E-3301	Vacuum Condenser (1 x 100% Train)	844.16 tph condensate; 3.5 kPa (abs), 236.6 MW, 33,724 m2 heat transfer area, Carbon Steel	ref. duty = 371.8 MW
1	P-3301 A/B/C	Condensate Pumps (3 x 50% pumps, 1 x 1	422.08 tph condensate, 423.24 m3/h, 115.5 kW, -0.978 barg suction, 5.53 barg discharge, CS	
1	ST-3301	Steam Turbine (1 x 100% Train)	233.2 MWe Output Turbine generator; 140 bar, 566 °C; 27 bar, 565 °C; 4.2 bar, 292 °C	
1 - 2	Z-3201	Stack (2 x 50%)		part of HRSG package
1 - 2	C-3201	Recycle DCC Column (2 x 50%)	3 sieve trays, 7.55m ID, 15.1m T/T, 1,116 tph water, 456,tph flue gas, CS with 3mm 304L cladding	
1 - 2	E-3217	Recycle DCC Cooler (2 x 50%)	22540 kW Duty, 1,116,000 kg/h process water flow, 4222 m2 HT area, 316SS tubes, shell	CS with 3mm 304L claddin
1 - 2	P-3204 A/B	Recycle DCC Pumps (6 x 25% Train)	41.6 kW 570 m3/h, 0.02 barg suction, 2 barg discharge, SS	
	1			
	1			
	1			

W	FOSTER		T: ETI E: CCS BENCHMARK REFRESH 2013 T: 13074	REVISION DATE BY CHECKED APPROVED	0 Oct-13 SEF	1	2	3
CASE: NGCC POWER PLANT WITH 0% POST-COMBUSTION CO ₂ CAPTURE AND 18% EXHAUST GAS RECYCLE								
Train	ltem	Description	Specification			Remarks		
1 - 2	GT-3201	Gas Turbine (2 x 50% Train)	365.478 MWe Output Turbine generator				MHI M701F5 machine	
1 - 2		HRSG (2 x 50% Train)	410.09 MW Duty (14 Coils)					
1 - 2	D-3201	Deaerator (2 x 50% Train)	435.89 tph				part of HRSG package	
1 - 2	P-3201 A/B	HP BFW Pumps (4 x 50% Train)	1457.8 kW, 329.0 m3/h, 28.4 barg suction, 139.0 barg discharge, CS					
1 - 2	P-3202 A/B	MP BFW Pumps (4 x 50% Train)	445.55 kW 425.9 m3/h, 3.34 barg suction, 28.4 barg discharge, CS					
1 - 2	P-3203 A/B	LP BFW Pumps (4 x 50% Train)	38.4 kW 435.9 m3/h, 2.49 barg suction, 3.34 barg discharge, CS					
1 - 2	D-3204	HP Steam Drum (2 x 50% Train)	302.1 tph				part of HRSG package	
1 - 2	D-3203	MP Steam Drum (2 x 50% Train)	48.75 tph				part of HRSG package	
1 - 2	D-3202	LP Steam Drum (2 x 50% Train)	41.15 tph				part of HRSG package	
1 - 2	E-3215	Fuel Gas Preheater (2 x 50% Train)	8827 kW Duty, 67665 kg/h process stream flow, 3	325 m2 heat transfe	r area, Carbon	Steel		
1	E-3301	Vacuum Condenser (1 x 100% Train)	844.16 tph condensate; 3.5 kPa (abs), 470.3 MW, 67,026 m2 heat transfer area, Carbon Steel				ref. duty =	= 371.8 MW
1	P-3301 A/B/C	Condensate Pumps (3 x 50% pumps, 1 x	422.08 tph condensate, 423.24 m3/h, 115.5 kW, -0.978 barg suction, 5.53 barg discharge, CS					
1	ST-3301	Steam Turbine (1 x 100% Train)	330.144 MWe Output Turbine generator; 140 bar, 566 °C; 27 bar, 565 °C; 4.2 bar, 292 °C					
1 - 2	Z-3201	Stack (2 x 50%)					part of HR	SG package
1 - 2	C-3201	Recycle DCC Column (2 x 50%)	3 sieve trays, 7.55m ID, 15.1m T/T, 1,116 tph water, 456,tph flue gas, CS with 3mm 304L cladding					
1 - 2	E-3217	Recycle DCC Cooler (2 x 50%)	22550 kW Duty, 1,116,000 kg/h process water flow, 2226 m2 HT area, 316SS tubes, shell			CS with 3mm 304L cladding		
1 - 2	P-3204 A/B	Recycle DCC Pumps (6 x 25% Train)	41.6 kW 570 m3/h, 0.02 barg suction, 2 barg discharge, SS					