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Abstract 

Organic photovoltaics (OPV) and hybrid organic-inorganic photovoltaics (HOPV) 

have the potential to provide alternative and economical energy sources; with the 

long-term goal of delivering renewable resources with longevity. Recent 

improvements in cell design and material combinations have revealed the true 

potential of this field. For this to be reached, continuous advancements in materials, 

concept development, encapsulation and scientific understanding are necessary. 

This thesis focuses on the use of zinc oxide (ZnO) in the field of both HOPVs and 

OPVs. ZnO had been successfully implemented for decades in a range of 

applications, including light emitting diodes and biological sensors due to its diverse 

chemical and physical properties along with the ease of fabrication. Initially ZnO is 

investigated as a direct replacement for a fullerene acceptor offering the potential of 

improved energetic matching to the donor material used. The latter stages of this 

thesis looks at the use of ZnO as an electron extracting layer for a polymeric active 

layer. 

Chapter 1 provides a brief introduction to the field of photovoltaics and the 

materials used in this thesis. In Chapter 2 an overview of the experimental 

techniques used is given. In Chapter 3, inverted HOPV devices are fabricated. The 

potential of ZnO as a promising electron acceptor is shown, utilizing the donor 

material boron subphthalocyanine chloride (SubPc), a typical small molecule (SM) 

organic semiconductor. X-ray photoelectron spectroscopy (XPS) shows subtle 

differences in the electronic structure of ZnO films in terms of Zn:O ratio when the 

processing temperature is varied, and Kelvin Probe (KP) revealed a significant 

difference in the surface work function.  Variation in annealing temperature is shown 

to improve the open circuit voltage (from 0.82 V to 1.23 V) of the device and 

therefore enhance the performance. 
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Chapter 4 compares two methods used to probe energy levels. The chapter 

compares the differences between the data obtained for identical ZnO samples using 

ultra-violet photoelectron spectroscopy (UPS) and KP. The surface composition is 

also monitored throughout by XPS. The chapter reveals that ZnO is susceptible to 

UV irradiation and the impact on the measurements is discussed.  

 

One of the main limitations of the planar HOPV is photocurrent. Chapter 5 looks to 

improve this through the implementation of a molybdenum oxide (MoOx) optical 

spacer layer. Optical modelling is initially used to predict the impact of varying the 

layer thickness of SubPc and MoOx. The model is developed further by including the 

diffusion length (LD) of the SubPc donor material. The improved estimates are 

compared to an experimental data set of 40 different thickness combinations. Optical 

optimisation resulted in a 62 % improvement in device performance, compared to 

the layer thicknesses used in Chapter 3. 

 

The use of ZnO as an electron extracting layer with a polymeric active layer is 

investigated in Chapter 6. Two methods for ZnO layer formation, electrodeposition 

(ED) and sol-gel (SG) are compared using two different transparent electrodes, 

indium tin oxide (ITO) and transparent gold (tAu). ED ZnO layers have issues with 

transparency and reproducibility lowering the overall averaged performance.    

 

This thesis highlights the important role ZnO can play in the development of OPV 

and HOPV devices. The research provides an important step for understanding the 

fundamental principles governing the operation of hybrid solar cells and helps to 

close the gap between TMO/polymer and TMO/SM devices. The performances of 

these TMO/SM devices reach efficiencies exceeding 0.70 %, compared to previous 

published devices only reaching 0.017 %. 
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1 Introduction 

 

1.1 World Energy Review  
 

Global energy demand has been increasing since the Industrial Revolution with vast 

energy requirements being a necessity for economic development. The U.S Energy 

Information Administration (EIA) has calculated the energy demand in terawatts 

(TW) since 1990 and estimated the future demand up to 2035. To date the average 

consumption is 18 TW worldwide and this is due to reach 25 TW in 2035.
1
 Early 

predictions expect this value to increase to 30 TW by 2050 in line with the growth of 

developing nations.  

Figure 1.1 shows a statistical review of world energy consumption published by 

British Petroleum (BP). The supply is mainly provided by fossil fuels 

(approximately 86 %).
2
 The reason for this is simple; fossil fuels are dominant in the 

energy market due to their abundance, government subsidies and the existing 

infrastructure from decades of expense. This contribution is significant compared to 

a field such as renewable energy, which at the moment provides a mere 8.5 % of the 

annual energy required. 

Realistically, fossil fuels can provide sufficient energy for the near future, but supply 

is not the only concern. Fossil fuels are not a clean source of energy, causing acid 

rain along with air, water and thermal pollution.
3
 Climate destruction is also an issue 

due to the release of harmful gases such as carbon dioxide, methane and nitrous 

oxides. One alternative energy source that has been suggested is nuclear power, but 

in light of the recent event in Fukushima in 2011 (with current clean-up cost 
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estimated to be $250 billion),
4
 it has to be questioned about its potential as a                

long-term energy solution. 

In an interesting study by Darling et al., the viability of different renewable sources 

to solve the 30 TW demand is calculated, with the ideal scenario offering a diverse 

collection of energy sources.
5
 It is estimated that hydropower, wind, ocean and 

geothermal could only feasibly supply 8 TW,
6
 unlike solar energy that has the 

potential of supplying 67 TW. This estimate is calculated using reasonable 

assumptions; solar cells covering 2 % of the Earth’s land surface (receiving ~560 

TW from the sun), and utilising devices with a power conversion efficiency (PCE) of 

only 12 %.   

 

 
 
Figure 1.1 Primary energy of world energy consumption of million tonnes of oil equivalent 

per year. The data was sourced from the BP statistical review of world energy 2013.
2 

 

 

Figure 1.2 shows the cumulative installed photovoltaic (PV) power worldwide, 

which is currently dominated by Europe, which has a total of 77 % of the PV market. 
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Germany alone has the largest share of any country worldwide by a substantial 

margin, with a remarkable 22 % of the cumulative power. In 2013, Germany 

generated 30 terawatts-hours (TWh) of PV power, which translated as 5.7 % of their 

net electricity consumption,
7
 with the country regarding PV as an essential source for 

sustainable energy in the future.  Currently Germany produces 29 % of their total net 

consumption from renewable energy sources, compared to the UK where the latest 

figures predict this could be 14 % (up from 4.1 % in 2012).
8
 

  

 

 
 
Figure 1.2 Cumulative installed PV power. The data was sourced from the BP statistical 

review of world energy 2013.
2 
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1.2  History of Photovoltaics  
 

The most significant discovery in the history of solar energy was the PV effect in 

1839 by Edmund Becquerel, a 19 year old French physicist.
9
 The next milestone was 

the discovery of photoconductivity in solid selenium by Smith,
10

 which lead to 

Professor William Grylls Adams and Richard Evans Day recording the production of 

electricity when selenium plates were exposed to light. In 1883 Charles Fritts 

devised a solar cell based on selenium wafers by compressing molten selenium 

between plates from two different metals. The selenium only adhered to one metal 

plate and gold leaf was pressed onto the exposed surface to create the first thin-film 

solar cell.
11

  

Despite all these developments it was not until 1941 that the first silicon solar cell 

was developed by Ohl using melt grown junctions, with a performance < 1 %.
12

 In 

1953 Bell Labs (Chapin, Fuller and Pearson) developed diffuse junctions and from 

here a remarkable improvement in performance was achieved in two years from 4.5 

% (1953),
13

 6 % (1954)
14

 to over 10 % (1955).
15

 The cells used a single-crystal 

silicon wafer for light absorption and a p-n junction for charge separation, marking 

the potential for silicon based cells. 

Since 1970 there has been a large-scale effort in the development of PV cells. 

Multicrystalline silicon solar cells have dominated the market with the share 

estimated at being ~ 90 %.
16

 This field has gained considerable interest due to 

crystalline silicon being a stable, non-toxic semiconductor. Further developments 

have focused on implementing surface passivation layers to reduce detrimental 

electronic activity, with the highest cell achieving a PCE of ~ 25 % efficiency with a 

crystalline silicon cell employing thermally grown silicon dioxide.
17

 Other silicon 
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technologies include thin film technology, where thinner layers are deposited on 

glass/stainless steel by sputtering, offering low cost, flexible devices. Amorphous 

silicon which has a larger band gap (Eg) of ~ 1.7 eV has also been optimised 

allowing the material to absorb more in the visible spectrum.  Despite significant 

progress, the theoretical maximum for a single-junction, stands at ~ 30 %.
18

 The 

efficiency is limited because the excess photon energy is larger than the optical band 

gap, leading to the production of heat via the scattering of photo-generated carriers.  

In the 1980’s, SERI (Solar Energy Research Institute) (which is now known as the 

National Renewable Energy Laboratory (NREL)) began testing some of the key 

silicon cells.
13

 Prior to this, the majority of devices were measured at 28 °C using a 

National Aeronautics and Space Administration (NASA) calibrated reference. SERI 

introduced other reference cells in 1984 which accounted for spectral mismatch and 

therefore all previous cell performances had to be corrected. Figure 1.3 shows a 

recent publication by NREL monitoring the improvement in certified solar cells of 

each generation. 
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Figure 1.3 Evolution of the best performing certified research cells taken from National 

Renewable Energy Laboratory (NREL), 2014.
19
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1.2.1 Advances in Small Molecule Organic Photovoltaics  

 

Organic semiconductor materials are extending the capabilities of modern electronic 

and photonic devices from light-emitting displays, to integrated organic circuits and 

organic photovoltaics (OPVs). This has become possible due to increasingly 

sophisticated designs, the ability to control architectures on the nanometre length 

scale, and the employment of new materials.
20

 

The field of OPVs has attracted considerable attention due to its potential for low 

cost solar energy conversion and its compatibility with non-rigid substrates. Organic 

materials allow many fabrication techniques to be employed that are simply not 

available for inorganic PVs,
20

 including the use of printable semiconductors and 

electrodes,
21 

spray coating,
22

 and spin coating,
23

 as well as the viability of large-

scale, low cost production methods such as roll-to-roll processing.
24, 25

 

Improvements have been achieved through the development of new absorbing 

materials, the use of interfacial layers (IL), novel multi-stack architectures and 

through the effective use of dopants.
26

   

It was not until the beginning of the twentieth century that photoconductivity was 

first measured for an organic compound, anthracene, by Pochettino (1906)
27

 and 

Volmer (1913).
28

  From here, the first OPV consisted of a single organic layer 

sandwiched between two metals of different work functions. This architecture relied 

on a Schottky barrier between the organic layer and the metal with a lower work 

function to separate charges.
29

 As this is an inefficient process, the early OPVs 

generally had PCE < 0.1 %.
30

 Many organic materials have since been shown to 

possess photovoltaic properties, from common dyes such as methylene blue to 

biological materials like chlorophyll and porphyrins. 
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In a breakthrough in 1986, Tang produced an OPV with an efficiency of 0.95 %, 1-2 

orders of magnitude larger than any other organic device that had previously been 

produced.
31

 The device fabricated by Tang employed a single donor-acceptor (D/A) 

heterojunction; a phthalocyanine derivative (a p-type semiconductor) and a perylene 

derivative (an n-type semiconductor). Tang proposed that the performances observed 

were due to the introduction of a field at the interface between the two materials; 

which aids the dissociation into free electrons and holes. Tang’s discovery prompted 

the rapid expansion in the field of OPVs.  

One further improvement to Tang’s structure has been the use of a bulk 

heterojunction (BHJ) structure which was first demonstrated by Hiramoto et al.
32

 In 

this work thermally evaporated organic materials formed a co-deposited three 

dimensional D/A structure. The BHJ structure has been widely adopted by the 

polymeric community as a higher probability of excitons reach the interface for 

dissociation, assisting the issue of short exciton diffusion length (LD) of many 

organic materials.
33,34

 One issue with a vacuum deposited BHJ however is the fine 

mixing means that there are not clear transport paths to the respective electrodes, 

leading to charge accumulation. One approach to improve this has been through the 

use of neat organic layers at either side of the BHJ mixed layer, aiding charge 

extraction, with interlayers in a DBP:C70 device showing an improvement in cell 

performance from 5.7 % to 6.4 %.
35

 

Another key progress has been through the development of new materials or the 

optimisation of IL. The use of finely tuned organic active layers allows absorption to 

be maximised and excitons to be dissociated with minimal energy loss. The 

development of new ILs has paved the way for the progress of inverted devices and 

tandem cells both of which heavily depend on the use of appropriately designed ILs. 
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ILs in inverted organic devices reverse the polarity of the device which can result in 

potential benefits such as improved current generation and increased stability.
36, 37

 

Tandem cells consist of two or more sub cells with complementary absorption 

stacked together to maximise absorption.
38

 These cells rely on current matching of 

each subcell and a highly transparent recombination zone for effective recombination 

from each sub cell.
39, 40

 This field of research has shown its potential for 

commercialisation, with cells achieving efficiencies of up to 12 %.
26
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1.3 Hybrid Devices 
 

Hybrid devices consist of two classes of materials with different properties, typically 

one organic and one inorganic, with the ultimate aim to form a new material 

combination with the most appealing properties of each.
41

 In an ideal sense, the aim 

of hybrid organic photovoltaics (HOPVs) is to add further advantages to the system, 

whilst maintaining low cost processability.
42

 The role of the inorganic layer varies 

depending on application, it can improve environmental stability,
43-45

 contribute to 

light absorption,
46

 increase induced charge transfer to the organic material,
47

 tailor 

physical dimensions of the architecture to improve cell performance,
48

 reduce cost or 

potentially increase the cell performance through modifying material properties to 

tune the band gap.
49

 A desirable inorganic material would be able to harness all such 

properties, with the potential of several materials HOPV devices have been discussed 

in a range of reviews.
42, 50, 51

  

 

1.3.1 Material Groups 

 

1.3.1.1  Cadmium Compounds 

 

Cadmium compounds have gained considerable interest with Greenham, Peng and 

Alivisatos first showing the potential of colloidal cadmium sulphide (CdS) and 

cadmium selenide (CdSe) nanocrystals as light harvesting materials in 1996.
52

 The 

nanocrystals were combined with the polymer poly(2-methoxy-5-(2’ethylhexyloxy)-

p-phenylenevinylene) (MEH-PPV)  and despite giving a PCE of ~ 0.1 % it showed 

the potential of this type of hybrid solar cell.  
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Cadmium based nanocrystals have proven to be a good candidate for hybrid devices 

for a number of reasons. Firstly they have absorption characteristics which can be 

tuned for efficient harvesting with increasing band gap seen with decreasing particle 

size for crystallite below 10 nm.
53

 For instance with CdSe nanoparticles the 

absorption maximum can be changed from 400 nm to 680 nm simply by varying 

particle size from ~ 1.5 nm to ~ 9 nm.
54, 55

 Particle size can also have an effect on the 

energy levels of the material, with a study by Brandenburg et al. showing an 

improvement in open circuit voltage (VOC) from 0.52 V to 0.74 V for a CdSe / 

poly(3-hexylthiophene) (P3HT) cell by reducing the CdSe particle size from 10 nm 

to 2.3 nm.
49

  

Another desirable feature about cadmium hybrid devices are that the materials have a 

well-established synthesis.
42

 This has resulted in some promising PCEs when 

utilising various geometries from nanorods, tetrapods to hyperbranched nanocrystals, 

with tetrapods to date showing the most efficient performances when combined with 

polymeric materials. Dayal et al. reported a certified PCE of 3.13 % under AM 1.5 G 

illumination and a peak external quantum efficiency (EQE) of 55 % using a CdSe 

tetrapod and the low bandgap polymer poly(2,6-(4,4-bis-(2ethylhexyl)-4H-

cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)) (PCPDTBT).
46

 

34 % of the absorption in the PCPDTBT : CdSe was attributed to CdSe resulting in a 

contribution to the EQE at ~480 nm. This shows the success of this material in 

contributing to the current and therefore improving the performance potential of the 

cell.  

The material has also been shown to have a excellent stability with a cadmium only 

device showing a remarkable 13.6 % improvement in PCE after 13,000 hours 

exposure to light (under 100 mW cm
-2

). These features show the potential of 
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cadmium as the inorganic component in HOPVs, the major drawback of these cells 

however is the toxicity and it is this that may limit the potential of cadmium cells in 

the energy market.   

 

1.3.1.2  Metal Oxides 

 

There has been a drive to replace toxic precursors with more environmentally 

friendly, low cost inorganic materials such as TiOx
56

 and ZnO.
57

 Both materials are 

wide band gap semiconductors, so do not contribute to the photocurrent of the 

device, but acts as an interface for charge separation and charge extraction to the 

electrode. They have desirable properties such as a higher mobility than their organic 

counterparts. To date, TiOx is the most widely studied transition metal oxide (TMO) 

due to the application for dye-sensitised solar cells (DSSC). However both materials 

have gained considerable scientific interest due to the ease of forming a family of 

architectures including vertically aligned nanorods, nanobelts and nanoribbons.
58, 59

 

TMO in hybrid devices can be optimised either in a regular structure or in inverted 

architecture where the polarity of the device is reversed and indium tin oxide (ITO) 

(the typical transparent conducting oxide (TCO) of choice) functions as an electron 

extracting electrode. Inverted architectures can often be more applicable for the 

formation of TMOs as they commonly involve high temperature treatments that 

would damage the organic layers. Heat treatment is a key requirement for high 

device performance as the electron transport layer needs to be smooth, continuous 

and sufficiently conductive.
60

 

To date this field has been dominated by the use of TMOs with polymeric donors 

such as poly(2-methoxy-5-(3’,7’-dimethyloctyloxy)1,4-phenylenevinylene) 
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(MDMO-PPV) and P3HT.
61-63

 In literature hybrid TMO : polymer devices have 

focused on three different architectures, shown schematically in Figure 1.4. These 

structures include: [a] a bilayer TMO/polymer structure; [b] a TMO/polymer BHJ 

cell and [c] TMO nanorod/polymer hybrid cell.  

 

 

 

 
Figure 1.4 Schematic of the three TMO (green) / polymer (purple) device architectures:     

[a] bilayer TMO/polymer, [b] BHJ TMO/polymer and [c] TMO nanorod/polymer.  

 

 

Arguably, the simplest structure is the bilayer architecture shown in Figure 1.4 [a], 

with the TMO deposited initially on the TCO followed by deposition of the 

polymeric material.
57

 Typically a bilayer TMO devices has a performance < 0.4 % 

owing to low current generation. This current generation is limited by the low 

interfacial area between the two materials. The PCE can be improved through 

doping of the TMO layer and using surface modification. Olson et al. improved the 

performance by doping a ZnO layer with Mg, altering the effective electronic band 

gap of the D/A interface and resulting in a maximum performance of 0.49 %.
64

 Goh 

et al. improved the performance of TiO2/P3HT devices from 0.34 % to 0.60 % 

through a series of molecule interface modifiers (para-substitued) benzoic acids and 

ruthenium (II) sensitizing dyes.
65

 However in both these devices despite the 

improvements, the current generation remained the limiting factor. 

[a] [b] [c]
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TMO/polymer BHJ architectures (Figure 1.4 [b]) can be used to improve the D/A 

interfacial area, leading to increased charge separation and therefore current 

generation. TMO nanoparticles can be processed in a range of organic solvents 

which gives the potential of blending the polymer materials.
66

 Another approach is 

in-situ synthesis, Davenas et al. have shown that titanium alkoxide can be 

hydrolysed in the bulk of the semiconducting polymer, leading to the formation of 

the BHJ structure.
67

 The most successful TMO/polymer cell to date has been the 

exceptionally high performance achieved by employing P3HT and ZnO 

nanocrystals,
68

  (PCE ~ 2 %) with the high short circuit current density (JSC) 

benefiting considerably from the increased D/A interfacial area. The authors 

investigated a range of film thicknesses and found that thicker BHJ layers led to 

phase separation on a smaller scale which is favourable due to increased charge 

separation at the D/A interface.  

Vertically aligned nanorods (NR) (Figure 1.4 [c]) are regarded as potentially the 

most ideal structure for hybrid TMO/polymer devices due to possibility of 

systematic growth of the nanorods, with a high interfacial area between the active 

materials and highly efficient charge transport pathways to the electrode. 

Experimentally however, this structure is not easy to achieve, with problems 

associated with reproducibility, polymer infilitration, wettability and slow kinetics. 

The degree of infiltration is influenced by numerous factors that need to be 

controlled including molecular weight of the polymer, the tendency to crystallise, 

solvent and surface interaction energy between the two materials.
51

 Despite this, 

early studies by Olson et al. showed a high performing ZnO/P3HT device of ~ 0.5 

%, the issues associated with this device however was the distance between the ZnO 

nanorods being in the order of 100 nm.
69

 This is problematic as the LD of the 
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polymer material is ~ 8 nm, so many of the excitons generated are unable to reach 

the interface and dissociate, limiting the potential current.
70

 This cell design has been 

successfully improved via a number of modifications by various groups. Baeten et 

al. showed that annealing the substrates to the melting temperature of the polymer 

improved the crystallinity of the polymer and in turn improved the performance, 

achieving 0.76 % for a ZnO/P3HT NR structure
71

 There has also been considerable 

improvement through the use of surface modifiers, with derivatized squarine 

molecules on the ZnO NR giving a PCE of 1.02 %.
72

 Another recent approach has 

been using an in-situ generated ZnO/P3HT on a scaffolded TiO2 NR array, enabling 

a much thicker active layer to be used and resulting in an optimum PCE of 2.46 %.
73

 

The substitution of the polymeric donor by different materials such as small 

molecule (SM) organic semiconductors offers an alternative means of improving the 

performance of HOPV devices.
74

 The use of vacuum deposition offers reproducible 

film growth on the nanometre scale and a well-defined TMO/organic heterojunction. 

Surprisingly, there have only been a few reports of these types of SM organic 

materials being used in a true D/A hybrid device. Two publications use copper 

phthalocyanine (CuPc); Sharma et al. used CuPc as a donor material with randomly 

dispersed zinc nanocrystals, however these devices had a poor JSC of 3.6 x 10
-5

 mA 

cm
-2

,
75 

whilst Shen et al. used CuPc only as a sensitizer in a ZnO/CuPc/P3HT 

device.
76  

Izaki et al. has also investigated TMO/SM with a 200 nm thick 

phthalocyanine/ZnO buffer/n-ZnO photovoltaic device which achieved a JSC of 1.5 x 

10
-2

 mA cm
-2

 and a PCE of 1.6 x 10
-3

 %.
77

 The most efficient TMO/SM cell to-date 

has been published by the same author who inserted a CuPc:Gallium doped ZnO 

BHJ layer between layers of CuPc and ZnO and achieved a PCE of 0.017 %.
78

 This 
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difference in PCE between TMO/polymer and TMO/SM is remarkable and suggests 

that future studies are needed reduce this difference in performance.  

 

1.3.2 Other ‘Hybrid’ Cells 

 

Other classes of solar cells have been termed as hybrid solar cells due to their use of 

inorganic and organic materials. DSSC were first demonstrated in the seminal paper 

by O’Regan and Grätzel in 1991.
79

 These cells replaced the classical solid-state 

junction device, forming a photo-electrochemical cell by contacting the 

semiconductor through the use of an electrolyte, liquid, gel or solid.
80

 The principle 

relies on five components: a mechanical support coated with a TCO; a sintered 

mesoporous semiconductor oxide layer (commonly anatase); a sensitizer attached to 

the surface of the semiconductor; an electrolyte containing a redox mediator and a 

counter electrode capable of regenerating the mediator.  

In a DSSC, the dye material is responsible for light harvesting and upon photo 

excitation, an electron is injected into the conduction band (CB) of the oxide. This 

electron travels through the semiconductor network to the contact and then through 

the external load to the counter electrode to reduce the redox mediator. The sensitizer 

is then regenerated.
48, 81, 82

 This diverse system has resulted in a wealth of studies 

with thousands of dyes being investigated and developments in electrolyte systems 

and mesoporous films.  

Since 2012, inorganic/organic halides with the perovskite structure have attracted a 

strong research interest due to their performance in solid state solar cells, delivering 

efficiencies of over 10 %.
83-85

 Perovskites are hybrid layered materials typically with 

a AMX3 structure where A is an organic cation (typically methylammonium, 
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ethylammonium or formadinium), M a smaller metal cation (Pb
2+

, Sn
2+ 

or Ge
2+

) and 

X an anion from the halide series (I
-
, Cl

- 
or Br

-
).

86
 Recent advancements in this field 

of hybrid devices have used CH3NH3PbI3 with a “meso-superstructured” metal 

oxide-framework infiltrated with the material to maximise the interfacial area.
83

 A 

10.9 % efficient cell was produced through the use of an insulating mesoporous 

alumina layer (replacing TiO2) which functions as an inert scaffold for the perovskite 

and results in electrons transporting through the material. Remarkably 15 % solar 

cells have also been shown in a planar junction without the need for a nanostructured 

acceptor.
87

 

These astonishing improvements in performance over two years has resulted in a 

considerable scientific effort due to the impact perovskite materials have on the 

future of renewable energy, with the energy pay back for these systems estimated to 

be less than one year.
88

 Numerous studies have looked at different architectures and 

contact layers incorporating this effective material class.
89-92

 However Pb
2+

 needs to 

be replaced with a less toxic alternative along with a deeper understanding of the PV 

principles and degradation mechanisms for the true potential to be realised. 
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1.4  Basic Semiconductor Theory 
 

The wavefunction for an atom such as hydrogen consists of a discrete energy level 

known as the atomic orbital (AO). When two atoms approach (i.e. forming a 

molecule of hydrogen), the addition of two AOs produces two molecular orbitals 

(MOs); a bonding orbital and an anti-bonding orbital. The bonding MO has an 

increased stability compared to a single AO with greater electron density between 

the two nuclei, therefore it is lower in energy. However the anti-bonding MO formed 

has a reduced stability compared to the individual AOs. This is shown schematically 

in Figure 1.5.  

In a more complex system, the overlap of all the AOs from each atom contribute to 

the overall MO, with N AOs = N MOs. For instance, in a ten AO system there are 

five bonding and five anti-bonding MOs. When there are a large number of AOs in 

the system, such as in the case of metals, the discrete energy levels are so closely 

spaced that the energy levels are considered to be nearly continuous.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 A schematic showing the position of the discrete energy levels, from a simple 

one atom system to a bulk metallic material. 
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Solid state materials can be classified into three groups; conductors, insulators and 

semiconductors. The classification of materials depends on the relative positions of 

the anti-bonding orbitals (the CB) and the bonding orbitals (the valence band, (VB)), 

shown in Figure 1.6. For a conductor, the CB is either partly filled (the Fermi level, 

EFs is located in the middle of the CB) or it overlaps with the VB so there is no Eg.  

If the material of interest has a band completely filled with electrons and an empty 

band above, the material has an Eg. The Eg is defined by the energy difference 

between the last filled energy band at T = 0 K (the VB) and the first unfilled band at 

T = 0 K (the CB). The conductivity of a material is extremely sensitive to how the 

discrete bands are filled and the magnitude of the Eg. An insulating material typically 

has an Eg ~ 4 eV, valence electrons form strong bonds with neighbouring atoms and 

no free electrons are available to participate in conduction. Semiconducting materials 

however are a class of materials that are in-between the two, with a typical Eg ~ 1 

eV, as the gap is sufficiently small, electrons can populate the CB with an input of 

energy.  

The Fermi-Dirac distribution, Equation 1.1, describes the occupation probability of 

an electron f(E) existing at a given energy, E, at temperature T.    

  𝑓(𝐸) =  
1

 𝑒
(
 𝐸−𝐸𝐹𝑠

𝑘𝐵𝑇
)
+1

                  Equation 1.1 

where kB is Boltzmann’s constant and EFs is the surface Fermi level. The EFs is 

defined as the energy at which the probability of occupation by an electron is exactly 

a half. From the Fermi-Dirac distribution, at absolute zero, all energy states below 

the EFs will be filled, and no electrons will have enough energy to rise. Equation 1.1 

describes the temperature dependence of a system on the occupation of the various 

bands. 
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Figure 1.6 A schematic showing the position of the energy levels for a conductor, insulator 

and semiconductor. 

 

 

There are two types of semiconductor material, intrinsic and extrinsic, shown in 

Figure 1.7. Pure semiconductors are intrinsic semiconductors meaning they have an 

equal number of electrons and holes and therefore the EFs is located half way 

between the VB and CB. For intrinsic semiconductors at room temperature, the 

occupation of thermally excited carriers tends to be very small, ~ 10
7
 electrons cm

-3 

(compared to metal which is in the region of 10
28

 electrons cm
-3

). For an organic 

material however, the level of the last filled energy level at T = 0 K is referred to as 

the highest occupied molecular orbital (HOMO) and the first unfilled level at T = 0 

K is the lowest unoccupied molecular orbital (LUMO).  

Extrinsic semiconductors differ as they have had substitutional atoms added to the 

lattice through doping (either n-type or p-type). For n-type extrinsic semiconductors, 

typically group IV semiconductors are doped with group V atoms such as 

phosphorous or arsenic. These atoms donate additional electrons to the lattice of the 

group IV material which increases the conductivity of the semiconductor. This shifts 
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the position of the EFs closer to the CB. For p-type extrinsic semiconductors 

however, group IV materials are doped with group III atoms such as boron resulting 

in an additional hole in the system, which improves the conductivity. This doping 

shifts the position of the EFs closer to the VB. 

Four key parameters can be obtained for each system and are indicated in Figure 

1.7. The work function (Ф) of a given material is defined as the energy required to 

remove an electron from the EFs to the vacuum level (VL). Also indicated on the 

diagram is the position of the electron affinity (EA) which is the difference from the 

CB edge to the VL, along with the ionization potential (IP) which is defined as the 

energy required to remove an electron from the VB to the VL. Finally the Eg is the 

minimum amount of energy required for an electron to be promoted to the CB. 

 

 

 

 

 

 

 

 

Figure 1.7 Energy level diagrams of a conducting material and the semiconducting 

materials: intrinsic inorganic, extrinsic n-type and extrinsic p-type. 
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1.5  Working Principles of OPVs 
 

The conversion of light to electrical energy relies of four consecutive steps, each 

with their own quantum efficiency (η). The first step involves the absorption of a 

photon (ηA) resulting in the formation of a neutral coulombically bound electron-

hole pair (exciton). This exciton then diffuses randomly throughout the layer (ηED) to 

an interface or region where charge separation occurs (ηCT). In the final step, charge 

collection (ηCC), the separated charges are transported to the appropriate electrodes. 

These four steps are summarised schematically for a typical planar heterojunction 

OPV device (Figure 1.8).  

 

 

 

 
 
Figure 1.8 A schematic showing the four steps of an OPV device (1) light absorption, ηA, 

(2) exciton diffusion, ηED, (3) exciton dissociation, ηCT and (4) charge collection, ηCC.  
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The EQE of the overall process is also shown in Figure 1.8, which is a product of 

each of the single steps: 

      𝐸𝑄𝐸 =  ηA ηED ηCT ηCC               Equation 1.2 

 

1.5.1 Absorption of Incident Photon ηA 

 

The absorption of an incident photon by either the donor or acceptor material results 

in the promotion of an electron from the HOMO/VB to the LUMO/CB providing the 

energy is greater than or equal to the Eg of the absorbing material. This process 

results in the formation of a neutral, coulombically bound mobile excited state called 

an exciton. The potential well over which the exciton is formed can be explored by 

looking at the relationship between the binding energy of two opposite charges: 

    𝐸𝐵 =  
𝑞2

4𝜋𝜀𝑟𝜀0𝑟𝑐
                      Equation 1.3 

where rc is the distance between two charges, εo is the permittivity of free space, εr is 

the dielectric constant and q is the electronic charge. This shows the correlation 

between the dielectric constant and the binding energy of the excitons formed. This 

relationship results in a striking difference between inorganic and organic materials. 

Inorganic materials have a much larger dielectric constant (ε ~ 15) and due to the 

large distance ~ 10 nm between the electron and hole they are screened from one 

another, which results in the formation of Wannier-Mott excitons.
93

 This results in a 

low coulombic attraction ~ 10 meV so the Wannier-Mott excitons can be separated 

into free charges by thermal dissociation at room temperature (~ 26 meV). For 

organic semiconductors however a Frenkel exciton is formed with a typical 
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interaction between the electron and hole in the range of several hundred meV.
94

 A 

Frenkel exciton forms due to the low dielectric constant of organic materials 

(typically ε ~3-5) resulting in the attractive coulomb potential well extending over a 

greater volume than for inorganic semiconductors.
95

 This is a result of the weaker 

non-covalent electronic interactions between organic molecules compared to strong 

interactions for covalently bonded inorganic materials such as silicon, and as a result 

the wave function of the electron is localised to individual molecules.
96

  

Charge-transfer excitons can also occur in overlapping conjugated systems, whereby 

owing to the dielectric constants of the organic materials, the binding energy is 

estimated to be one order of magnitude greater than kBT. The comparison between 

Frenkel, Wannier-Mott and charge transfer excitons is shown schematically in 

Figure 1.9.  

 

 
 
Figure 1.9 Schematic showing the three types of excitons formed depending on the 

dielectric constant of the material, a Wannier-Mott exciton, a Frenkel exciton and a charge-

transfer exciton. 
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The absorption quantum efficiency ηA is dependent on the absorption coefficient, the 

layer thickness and the internal reflections within the device.
29

 Organic materials 

have strong absorption coefficients, generally peaking at > 10
-5 

cm
-1

, but due to well 

defined absorption bands, the achievable spectral coverage is reduced, especially 

when compared to an inorganic material. In the ideal case, the absorbing materials 

would cover the whole wavelength range of the solar spectrum. This can be achieved 

by using donor and acceptor materials with complementary absorption and/or by 

using multiple absorbers in organic multijunction cells connected in series. Another 

approach to improve absorption can be utilising organic materials that have 

absorption bands at longer wavelengths, since around 50 % of photons have energies 

corresponding to the 600 – 1000 nm wavelength range.
97

  

 

1.5.2 Exciton Diffusion ηED 

 

The quantum efficiency of this process is related to the LD of the given material and 

the absorber layer thickness, giving a measure of the fraction of excitons that reach 

the D/A interface. The LD is defined by: 

LD = √Dτ       Equation 1.4 

 

where D is the diffusion coefficient and τ is the exciton lifetime. Typically the LD of 

an organic material is in the range of 5-20 nm, although literature values differ 

significantly. This means that if an exciton is generated at a length scale greater than 

the LD of the material the excitons are less likely to result in separated charges. There 
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are competing processes to contend with which cause decay of the exciton such as 

luminescence and radiative recombination.  

The movement of an exciton through a layer can be described in terms of random 

hops that are not influenced by the electric field.  This movement relies on resonance 

energy transfer in the form of Fӧrster energy transfer or Dexter energy transfer. Both 

processes are summarised in Figure 1.10. The movement of singlet excitons is 

usually described by a generalised Fӧrster energy transfer mechanism, as it preserves 

the spin of the two molecules.
98

 This long-range process uses resonant dipole-dipole 

coupling with the stipulation that donor-acceptor transitions must be allowed (i.e. an 

overlap of their absorption spectra). For singlet and triplet excitons, Dexter energy 

transfer is used which follows Wigner spin conservation rules (the overall spin 

angular momentum of the system should not change). This process occurs over a 

much shorter distance so hops are restricted to adjacent sites. 

 

 

Figure 1.10 A model showing the different types of energy transfer; [a] Fӧrster energy 

transfer and [b] Dexter energy transfer. 

 

[b]

[a]

Donor* Acceptor Acceptor*Donor

Donor* Acceptor Acceptor*Donor
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The low LD of the majority of organic semiconductors is a major limitation in 

producing efficient OPV cells, as the device architecture becomes a trade-off 

between absorption losses (due to low active layer thicknesses) and exciton diffusion 

losses (with excitons decaying back to the ground state before they reach an 

interface). Material design to improve crystallinity and reduce recombination sites is 

one approach to improving the LD of organic materials. Ideally the D/A 

heterojunction should be distributed so it is accessible by all excitons in the layer. 

This is achieved through the use of a BHJ architecture whereby the intermixing at 

length scales less than LD increases the charge generation due to more excitons 

reaching an appropriate interface, allowing for thicker active layers.  

 

1.5.3 Exciton Dissociation ηCT 

 

When an exciton reaches the D/A interface it undergoes charge transfer to form a 

geminate pair, with the hole remaining in the donor and the electron in the acceptor. 

This process is very efficient and happens in a matter of a few hundred 

femtoseconds.
99

 The electron-hole pair however still remains coulombically bound 

across the interface. From this state there are three possibilities: complete 

dissociation of the geminate pair (to make free charges carriers), relaxation of the 

geminate pair and recombination at the interface. To overcome the geminate pair 

binding energy an energy offset is required in the EA/IP of the acceptor/donor.
100

 

The mechanism of charge dissociation is still under debate in literature. The general 

consensus is that it occurs via a charge transfer (CT) state to charge separated states 

(CS), Figure 1.11 [a].
100

 One proposal suggests that this process is temperature and 

field dependent, whilst others have shown that the energy offset provides enough 
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energy for spontaneous dissociation, with the CT state more closely resembling that 

of free charges.
101, 102

 

 

 

Figure 1.11 [a] Organic energy level diagram adapted from Servaites et al..
100

 [b] is taken 

from reference 100. The red line shows the trend in PCE with different ΔELUMO offsets, the 

efficiency limits are also shown (blue line), along with the hypothetical enhanced PCE 

shown in grey.
100, 103

 

 

 

It is generally accepted in the literature that providing the LUMO offset (ΔELUMO) 

and HOMO offset (ΔEHOMO) between the donor and acceptor material is greater than 

0.3 eV (a typical exciton binding energy), efficient charge transfer occurs. Large ΔE 

values have a geminate pair dissociation yield approaching 100 %, and as a result 

these cells produce nearly ideal J-V curves, with high fill factors (FF). For moderate 

ΔE values however, experimental and modelling studies have shown that less 

photocurrent generated at low applied bias giving a reduction in FF. Owing to a 

large ΔE of 1.0 eV ideal J-V curves can be produced for P3HT:PCBM cells; 

however the problem with this is that over half of the exciton energy is expended 

during charge separation. Therefore for maximum performance there is a 

compromise between small ΔE to maximise the VOC whilst maintaining photocurrent 

generation and larger ΔE for efficient charge separation, with the ideal cell having 

high charge dissociation yields at low energy offsets.   
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The importance of this ΔE gap has been explored by Servaites et al. and a summary 

of their findings is shown in Figure 1.11 [b].
100

 The authors compared PCEs 

reported in literature to ΔELUMO gap (red line) and found that as the ΔELUMO gap is 

decreased the efficiency limit substantially increases. At large ΔELUMO values the 

current record efficiencies are in line with the modelled efficiency limits (blue line), 

however the same cannot be said for low ΔELUMO values. This shows the importance 

of truly understanding the significance of this energy gap, with the opportunity to 

improve PCEs (grey line) by optimising the materials and interface.
104

 

 

1.5.4 Charge Collection ηCC 

 

Once separated, the holes travel through the donor and the electrons through the 

acceptor material to their respective electrodes. In regular device architectures holes 

are transported to the transparent conductive electrode (TCE) and electrons to the 

metallic electrode. The electrical current an OPV device delivers depends on the 

yield of generated charges that are collected at the electrode to be extracted to the 

external circuit for current flow. The movement of charges through the layer depends 

on the mobility of the material, these are typically low for organic materials due to 

disorder and limited overlap of electronic wavefunctions (van der Waals 

interactions).
105

 The low mobility can be detrimental to device performance as it 

leads to charge build up. The energetics of both electrodes are also vital, with losses 

produced if the contacts are none ohmic. Ohmic contacts are usually achieved 

through the use of transport layers.  
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1.6 Material Properties 
 

1.6.1 Electrodes and Interlayers  

 

 

1.6.1.1 Electrodes 

 

Currently indium oxide In2O3, doped with approximately 10 % of tin oxide (SnO2) 

by weight, is the transparent conductor of choice as it offers the highest available 

transmissivity combined with a low electrical resistivity ~ 2 x 10
-4 

Ω cm
-1

.
106

 ITO 

has a Eg ~ 3.7 eV with a high optical transmission across the visible spectrum and is 

reflective in the IR regions.
107

 These properties deem ITO suitable for a broad range 

of applications including optoelectronic devices,
108, 109

 transparent heating elements 

for car and aircraft windows, infrared reflectors,
110

 displays and sensors.
111

 

ITO is an n-type degenerate semiconductor, with a free carrier density                                 

~ 10
20 

– 10
21

 cm
3
.
112

 This high level of carrier charge density is a consequence of the 

degeneracy caused by oxygen vacancies and tin dopants. Tin essentially replaces the 

In
3+

 in the cubic bixbyite structure of indium oxide forming an interstitial bond with 

oxygen. It is the combination of the tin doping and oxygen vacancies that contribute 

to the high conductivity of the film.
112, 113

 The quality of the ITO films produced 

depends on the technique and processing conditions, with magnetron sputtering 

commonly deemed the best technique to form low resistivity films. 

ITO is not without its limitations. The availability of indium is scarce,
114

 the 

production methods or surface treatment can lead to an inhomogeneous electrical 

conductivity,
115, 116

 the work function can vary in the presence of air or exposure to 

light
117

 and it is also incompatible with many common donor materials. Therefore 
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there has been a drive to find an appropriate replacement (discussed in more detail in 

Section 6.3.1). 

At the other side of the device is the metallic reflective back electrode which is an 

important feature for enhancing absorption within the active layers. In the literature 

the electrode of choice ranges from gold (Ф ~ 5.1 eV) to barium (Ф ~ 2.7 eV), with 

aluminium a common electrode of choice due to the abundance, low work function 

(Ф ~ 4.3 eV)  and compatibility with vacuum deposition. However if a pristine metal 

electrode is used, the devices tend to have a reduced performance as metal atoms can 

diffuse into the organic layer and due to the energetic mismatch between the active 

material and the work function of the metal.
118

     

 

1.6.1.2 Interlayers 

 

The drawbacks of bare electrodes have paved the way for ILs to be adopted as they: 

can improve layer homogeneity; act as a protection layer to the organics; can provide 

an ohmic contact with the active layer maximising the VOC of the device and have 

also been shown to improve device stability.
119, 120

 ILs can also act as an optical 

spacer layer or be used to invert the polarity of the device, allowing ITO to function 

as either a hole or electron extracting electrode, shown below in Figure 1.12. These 

layers can be semiconducting (inorganic or organic) or dipole layers such as self-

assembled monolayers
121, 122

 and salts (such as LiF and Cs2O3).
123, 124

 

  



 1 Introduction 

32 

 

 

 
 
Figure 1.12 Schematic of [a] a regular OPV structure and [b] an inverted architecture. The 

TCE, hole transporting layer (HTL), donor, acceptor, electron transporting layer (ETL) and 

metallic electrode are indicated. 

   

 

One of the most commonly used organic ILs for electron transport is bathocuproine, 

2,9-dimethyl-4,7-diphenyl-1,10,phenanthroline, (BCP), Figure 1.13. BCP can be 

vacuum deposited and is commonly inserted between the acceptor and the electron 

extracting electrode. BCP acts as an exciton blocking layer, preventing diffusion of 

the excitons to the electrode where they can be quenched, and it also protects the 

organic layer from damage.
125

 This has been shown in the case of a C60/Al interface, 

where without the addition of BCP, charge transfer states are created in the acceptor 

material (caused by aluminium) which is detrimental to the performance due to 

exciton quenching.
126

  

 

 

 

 

 

 

 

 
Figure 1.13 Molecular structure of BCP 
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Other organic ILs include the hole transporting material                                                                

poly(3,4-ethylenedioxithiophene) (PEDOT) which is usually doped with polystyrene 

sulfonic acid (PSS) to improve conductivity and solubility. PEDOT:PPS has been 

shown to modify the work function of the transparent electrode and improve the 

homogeneity of the surface.
22, 127

 As the material is highly transparent across the 

visible spectrum, thick layers of the material can be used with only minimal 

absorption of solar radiation. One of the concern about PEDOT:PPS is the fact that it 

is acidic in nature and retains water which has been shown to damage organic solar 

cells and etch the ITO  surface.
128-130

 As a result inorganic materials are typically 

used where possible.
129

  

Inorganic layers such as tungsten oxide (WOx),
131, 132

 nickel oxide (NiO),
133

 

vanadium oxide (V2O5),
134

 molybdenum oxide (MoOx),
135, 136

 TiOx
137

 and ZnO
36

 

have been successfully implemented with a range of OPV materials and 

architectures. Shrotryia et al. first successfully showed the potential of the inorganic 

layers V2O5 and MoOx for replacement of PEDOT:PSS in 2006.
124

 Prior to this date 

inorganic materials had been used as efficient hole injection materials in 

electroluminescent devices.
138

  

 

1.6.2 Zinc Oxide 

 

Zinc oxide is a versatile wide band gap inorganic semiconductor that has been 

beneficial across a broad range of industries. It is estimated that over 1.2 million 

tonnes are used each year, this covers a range of uses including pharmaceutical, 

rubber, concrete, additives in human/animal food and varistors.
139

 The versatility of 

ZnO stems from the fact that it can be processed using a number of methods 
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including electrodeposition (ED),
131

 pulsed laser deposition (PLD),
140

 spray 

pyrolysis,
141, 142

 and the sol-gel (SG) process,
143

 and it is widely used due to its low 

toxicity and its rich family of material properties and structures. The tunability of the 

material enables ZnO to be utilised in a range of electronic device applications such 

as light emitting diodes (LEDs),
144

 chemical and biological sensors,
145

 and 

HOPVs.
146

 

The compatibility with a wide range of processing methods is what has governed 

such an interest within the scientific community and it has been widely used in the 

literature with a large surge in the total number of relevant publications. This is 

shown in Figure 1.14 with a steady increase in ZnO related publications over the 

past ten years, including a rise in the studies focused purely on the application of 

ZnO in solar cells. The interest is fuelled due to the many desirable properties of 

ZnO, in particular for its use in optoelectronic applications such as its large exciton 

binding energy of 60 meV, high electron affinity and high electron mobility. ZnO is 

also a wide band-gap semiconductor (Eg ~ 3.3 eV at 300 K) making it a desirable IL 

in OPV devices.
147

 

As a material, ZnO preferentially crystallises in either a hexagonal wurtzite type 

structure or a cubic zinc blende structure whereby one zinc atom is surrounded by 

four oxygen atoms in a tetragonal structure and vice versa. This structure is typical 

of a sp
3 

covalent structure but ZnO also has substantial ionic contribution. ZnO is a 

direct band-gap semiconductor, with an electronic band structure of the CB 

minimum formed from the empty 4s states of Zn
2+

 (or antibonding sp
3
 states) and the 

VB  maximum formed from the occupied 2p orbitals of O
2-

 (or bonding sp
3 

states). 
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Intrinsic ZnO is insulating due to the lack of charge carriers, but with selective and 

careful doping, the electrical properties can be changed from an insulator to an n-

type semiconductor to a metal, with the possibility of doping up to 2 x 10
21 

cm
-3

 

charge carriers.
148

 This has been successfully achieved through the use of Group XIII 

dopants, such as gallium, indium and aluminium which are shallow and efficient 

donors, adding additional electrons into the zinc lattice and pushing the EFs towards 

the CB.
149

 The highest conductivity of 8.12 x 10
-5

 Ω cm
-1 

has been achieved with Ga-

doped ZnO (GaZnO), along with excellent transparency > 80 % making the material 

particularly appealing for TCO applications. It has been postulated that gallium is the 

most successful dopant for ZnO due to the atomic radii matching of Ga and Ga
3+ 

to 

that of Zn and Zn
2+

 compared to other dopants.
149-153

 As ZnO is a wide band gap 

semiconductor, bipolar doping is unusual, but p-type doping has been achieved with 

dopants from Group V (such as the addition of NH3 into hydrogen carrier gas with 

excess Zn). However, a high quality and reproducible method for creating layers 

with p-type conductivity is still under debate.
154, 155

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14 The total number of ZnO publications (black line) and the number 

corresponding to solar applications (blue line) from 2003 – 2013. The data was calculated 

from web of knowledge (accessed April 2014).  
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1.6.3 Photoactive Materials 

 

1.6.3.1 Phthalocyanines 

 

Phthalocyanines (Pcs) were first discovered accidentally in 1907 when they were 

produced as a bi-product in the chemical conversion of ortho-(1,2)-disubstituted 

benzene derivatives,
156

 but it was not until 1934 during a collaboration between 

Linstead and Imperial Chemical Industries Ltd that the structure and synthesis of 

phthalocyanines was determined.
157

 Pcs have been used in an extensive amount of 

industries and applications, covering anything from dyes and pigments, (with CuPc 

being the largest synthetic colourant used to date),
158

 to liquid crystals, chemical 

sensors and catalysts. Pcs are applicable to such a range of fields due to many 

desirable properties including: high degree of aromaticity, unique electronic spectra, 

singular chemical structure and the flexibility during synthesis.
159

 They have also 

received a great deal of attention as functional organic materials in organic field 

effect transistors (OFETs), organic light emitting diodes (OLEDs) and OPVs.  

Pcs are highly aromatic 18 π-electron macrocycles which consist of four 

diiminoisoindole units, nitrogen-fused around the central core. The central cavity can 

accommodate up to 70 metallic or non-metallic ions as well as forming a stable 

metal free complex (H2Pc). This degree of flexibility around the central cavity 

enables simple ways of altering the property of the molecule.
160

 If the various central 

atoms are exchanged for other elements, they change the energetic and absorption 

properties of the molecule due to interactions of the metal with the π-system. 

Absorption spectra for Pcs show a Q-band and a Soret B-band. The most commonly 

used Pcs in OPVs, CuPc and zinc phthalocyanine (ZnPc) have a Q-band peaking at 

~610 nm. If this central metal is replaced by others such as Sn, or Al (which exists as 
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a non-planar chloride) it causes the absorption to be shifted to longer wavelengths. 

Replacing the central atom can also alter the structure of the molecule, with both 

planar and non-planar molecules being formed. This is because larger metal atoms 

decrease the planarity of the molecule, changing the spatial structure and hence how 

it stacks. ZnPc and CuPc thin films tend to form herringbone structures depending 

on substrate and processing conditions. Chloroaluminium phthalocyanine (ClAlPc) 

however, which contains an Al metal centre with an out of plane Cl, is non-planar 

due to the dipole caused by the Cl atom, causing films to be largely amorphous.  

 

 

 

 
Figure 1.15 Molecular structures of the phthalocyanine family: [a] ClAlPc, [b] CuPc, [c] 

ZnPc, [d] H2Pc and [e] SubPc 

 

 

Subphthalocyanines (SubPc) are the lowest homologues of Pcs and consist only of a 
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diiminoisoindole units arranged round a boron atom with a substituent, usually a 

halogen. The molecule was discovered by Meller and Ossko whilst trying to produce 

boron phthalocyanine in 1972.
161

 The typical method for producing SubPc in good 

yield is the reaction of phthalonitrile with a boron trihalide, typically BCl3, and most 

effectively purified using a soxhlet extraction. SubPcs have a cone-shaped geometry 

(C3v) due to the loss of a ligand around the boron centre.
162

 This reduction in π-

conjugation also causes the Soret and Q-band in the UV-Vis spectra to shift to 

shorter wavelengths.
163

  

Pcs are utilised in OPVs as donor materials due to their high absorption coefficients, 

complementary absorption with fullerene based acceptors and the ability to vacuum 

deposit allowing for controlling growth down to the nanometre scale. SubPc offers a 

substantial advantage over other Pcs due to its low lying HOMO level reported to be 

5.6 eV in numerous studies.
134, 164

 This offers the potential of high VOC when paired 

with electron acceptor materials such as C60 giving the potential of improved PCEs. 

This has been shown by varying the donor layer with a C60 acceptor, the VOC 

increases from 0.45 V to 0.80 V to 1.05 V for CuPc, ClAlPc and SubPc 

respectively.
135

 This increase in VOC has resulted in an improvement in PCE from 1.0 

% to 2.6 % to 3.0 % respectively. Further studies have looked to exploit the 

properties of SubPc. A successful approach is achieved by peripheral substitution, 

for instance halogenating the molecule lowers the HOMO and LUMO positions 

enabling it to function as an effective acceptor material.
165
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1.6.3.2 Fullerenes 

 

In 1996 the Nobel Prize for Chemistry was awarded to Kroto, Curl and Smalley for 

their discovery of Buckminster-fullerene (C60) in 1985.
166

 The name was chosen 

after the architect R. Buckminster Fuller whose geodesic domes provided a guide to 

the cage structure. This discovery showed the potential of a range of cage like 

structures with unique and appealing properties. Krätschmer et al. introduced the 

second generation of fullerene research by proposing methods of producing C60 and 

other fullerenes in macroscopic quantities.
167

 This was achieved by using an arc to 

vaporize graphite in a helium environment. This enabled fullerene based materials to 

be used in a range of applications including OPV research, with a current high 

demand for this product resulting in a typical cost of ~ £30/g. 

The C60 structure is a truncated isohedron that consists of sixty carbon atoms that are 

linked to form a hollow cage structure (Figure 1.16 [a]). The polyhedron has sixty 

vertices and ninety bonds that make up twelve pentagons and sixty hexagons, with 

no five-membered ring adjacent to another. Due to its spherical nature not all of the 

carbons can be sp
2
 hybridised in nature (despite forming one double and two single 

bonds) as this would involve them all being in the same plane. Instead, due to the 

ring strain an intermediate is formed that is closer to sp
3 

(tetragonal) and is 

susceptible to nucleophilic attack from species such as oxygen which has been 

shown to causes a decrease in conductivity and enhanced recombination. 

C60 is a suitable acceptor material for OPV devices for a number of reasons. Firstly, 

due to the extended conjugated system it is able to accept between six and twelve 

electrons. Secondly has a relatively long LD (although values differ significantly in 

literature) as it is has a near-unity intersystem crossing (ISC) yield of singlet to 
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triplet excitons. The lifetime of the triplet state is orders of magnitude longer than the 

singlet state, increasing the overall LD.
168

 C60 also has one of the highest electron 

mobilities of an organic semiconductor, 5.1 x 10
-2

 V cm
-2

, stemming from extensive 

π overlap in the condensed phase.
169

 It also has a high electron affinity which makes 

it an energetically viable acceptor material when combined with a range of donors. 

There is however a drive to replace C60 to offer the ability to tune ΔELUMO depending 

on donor material used; this has led to the successful use of SMs or TMOs as an 

alternative acceptor material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16 Molecular structure of [a] C60 and [b] PCBM 

 

 

C60 has a low solubility in most organic solvents so therefore is typically vacuum 

deposited. Through the addition of organic groups the fullerene materials can be 

adapted for use with soluble donors, with the most heavily used acceptor for soluble 

devices being PCBM. This material was first shown in the BHJ device MEH-

PPV:PCBM by Yu et al. in 1995 and since has been utilised in numerous device 

architectures owing to the advantageous properties of fullerene based acceptors.
170

 

Also by the addition of more soluble groups to the fullerene cage, there is an 

O

OCH3[a] [b]
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increased saturation of the double bonds pushing the LUMO level closer to the VL. 

This has been successful in the formation of bis-PCBM adduct, enhancing the VOC of 

the device and subsequently the PCE.
171

 In the field of solution processed devices 

there has also been some drive to replace fullerene based materials but to date the 

efficiency has been limited at < 5 %, compared to 10 % using fullerene based 

acceptors.
172, 173

 There is also the necessity to understand what makes fullerene 

acceptors the ‘wonder materials’ when planar SMs, which promote enhanced charge 

transport and have increased absorption, are still significantly behind solution 

processed devices.  

 

1.6.3.3 Poly(3-hexylthiophene) 

 

P3HT has evolved to be one of the most suitable and widely used polymers for OPV 

cells, with over 5,500 publications to date.
174

 Considerable scientific research has 

focused on how to improve the performance of this material for applications in OPV 

devices. The main outcome has been related to the regioregularity (RR). A higher 

RR is achieved with an increased percentage of monomers adopting a head-to-tail 

configuration rather than head-to-head.
175

 An improvement in performance is 

obtained with a higher degree of RR due to the closer packing of the molecule 

improving the electroconductivity,
176

 field effect mobility
177

 and magnetic 

properties.
178

 RR P3HT also packs in a semi-ordered lamellae structure 

perpendicular to the substrate, increasing the interchain contributions and improving 

the stabilization of the P3HT chains.
179

 This results in a red shift in the absorption 

with a series of vibronic peaks at 510 nm, 550 nm and 600 nm.
180
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Figure 1.17 Molecular structure of P3HT 

 

 

P3HT is commonly combined with the soluble fullerene PCBM. Owing to the low 

LD of P3HT of 8.5 ± 0.7 nm,
70

 a P3HT:PCBM BHJ is the architecture of choice. The 

performance of the BHJ varies significantly within literature, with a number of 

articles addressing the performance differences,
174, 181, 182

 which has on the whole 

been linked to differences in RR, molecular weight and purity, with the current 

average performance being estimated at 3 %.
174

 Despite the variations, significant 

improvement has been found by a number of processing adaptations; mixed solvents 

without heat treatment,
180

 varying solvent,
183

 solvent vapour treatment
184

 and 

through the use of additives.
185
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1.7  Thesis Outline 
 

The role of the TMO ZnO is the prominent theme throughout this thesis. The uses of 

ZnO have been explored to look at the viability of this cheap versatile material to 

function in different organic solar cells. This thesis explores the suitability of ZnO as 

an acceptor material in planar HOPV, focusing on improving the low performance 

either by altering the ZnO processing conditions to optimise the energetic profile or 

through the use of an optimised spacer layer. The use of zinc oxide in its more 

universally preferred role as an electron extracting layer is also explored, comparing 

both the processing methods of film formation and the influence of the underlying 

TCE. 

Chapter 2 gives an overview of all experimental details required for thin film 

preparation along with thin-film analysis. Details are also included on the fabrication 

of devices and testing. 

Chapter 3 introduces the use of ZnO layers produced by SG methods for the 

formation of hybrid ZnO/SubPc solar cells. In this chapter the ZnO solutions were 

prepared in an acetone solvent, and spin coated onto ITO substrates. Initially the 

chapter focuses on fabrication requirements to ensure smooth, reproducible ZnO thin 

films. Processing conditions were then explored for the improvement and 

understanding of cell performance, with energetic profiling obtained using Kelvin 

Probe (KP) and x-ray photoelectron spectroscopy (XPS). The optimum ZnO film 

was then implemented with two other donor materials to show the compatibility of 

ZnO in other hybrid devices. 
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Chapter 4 explores the electronic structures of the same cell architecture 

(ZnO/SubPc) using ultra-violet photoelectron spectroscopy (UPS). The differences 

in results between the UPS and the XPS measurements explored in Chapter 3 are 

shown. The results obtained are discussed in terms of experimental difference and 

why each method may result in different conclusions. 

In Chapter 5 the use of an optical spacer layer in a ZnO/SubPc device is explored to 

monitor the changes in JSC with spacer layer thickness. The performance is predicted 

using optical modelling prior to cell growth, accounting for LD of the organic 

material. A series of cells are then fabricated and compared to the predicted values. 

The use of ZnO as an electron extracting layer is covered in Chapter 6. This chapter 

focuses on the use of ZnO in an inverted structure for both bilayer organic cells and 

BHJ polymer cells. A comparison between electrodeposition (ED) and SG derived 

ZnO films on ITO and transparent gold electrodes (tAu) is presented and the 

influence both transparent electrode and interlayer have on the performance of 

polymer solar cells is discussed. 

Chapter 7 concludes all the research presented along with the routes for future 

work. 
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2 Experimental 

 

2.1  Layer Preparation 
 

2.1.1 Substrate Cleaning 

 

All the films were grown on ITO coated glass (sheet resistance < 15 Ω sq
-1

) or quartz 

substrates. Two different ITO suppliers were used in this thesis. In Chapter 3, 4 and 

5 the supplier was Thin Film Devices. In Chapter 6 ITO supplied by Psiotec was 

used for ED to be consistent with previous research explored in this area.
131, 186

 The 

Psiotec ITO was supplied with a layer of photoresist which was removed using an 

acetone rinse prior to the standard cleaning procedure. All substrates were cleaned 

by rinsing then sonicating in: 30:70 decon:water, water, propan-2-ol followed by 

drying with nitrogen and treating with UV-ozone for thirty minutes.   

 

2.1.2 Solution Processing 

 

2.1.2.1  Sol-Gel Process 

 

The SG method is a versatile solution processing technique that allows for the simple 

production of high quality films at low cost. By utilizing the SG process, it is 

possible to fabricate advanced materials in a variety of forms: ultrafine or spherical 

powders, thin film coatings, fibres and porous or dense materials.
187, 188

 The process 

involves the transition of a solution system from a liquid colloid (sol) into a solid 

(gel) phase following the loss of solvent. This process forms a continuous network; 
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the sol loses its mobility and becomes able to maintain its shape due to the bond-

bridging between the sol gel particles. The SG method has been used in literature for 

a variety of applications beyond photovoltaics. Transition metal oxide gels include 

one of the most successful products, IROX
TM

, which is used to coat architectural 

glass with TiO2.
189

  

 

 
 

 
Figure 2.1 Schematic of the different processes of the SG process: [a] hydrolysis and 

condensation, [b] drying, [c] film formation and [d] sintering. The image has been adapted 

from Sol-Gel Science by C. Brinker and G. Scherer.
190

 

 

 

The sol, a liquid colloid, is a suspension in which the dispersed phase is small                         

(1-1000 nm), the impact of the size of the particles means that the interactions are 

dominated by short-range forces such as van der Waals (vdW) whilst gravitational 

forces are negligible. In the SG process the precursors typically consist of a metal or 

metalloid surrounded by various ligands. There are two approaches; an aqueous sol-

gel and non-aqueous (or non-hydrolytic) approach both of which have been explored 

extensively throughout the literature.
191, 192

 The aqueous route is typically used with 

metal oxide or metal alkoxide precursors as they react readily with water in a 
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hydrolysis reaction. One of the drawbacks of this approach is the high-reactivity of 

the precursors towards water which acts as both the ligand and solvent. This high-

reactivity means that the reaction conditions (pH, temperature, hydrolysis, 

condensation rate and the nature of anions) need controlling in order to ensure 

reproducible products. The non-aqueous process, however, typically results in 

uniform, complex morphologies with good dispersity in organic solvents due to the 

much lower reactivity of the oxygen-carbon bond lowering the reaction rate. They 

also extend the use of precursors to metal acetates and metal acetylacetonates. 

Commonly the definition of “sol-gel” is not completely satisfied as many procedures 

despite producing a sol do not result in the formation a gel. This was the case in this 

thesis, where TMO dispersions were formed using the non-aqueous method, due to 

its simplicity. The reaction process only requires an organic solvent (acetone or 

ethanol), zinc acetate as the precursor and the addition of ethanolamine (5 – vol %) 

(specific details are included in Chapter 3 and 5). This resulted in solutions that 

were stabilised due to electrostatic and steric forces preventing agglomeration. Films 

were directly spin coated from this solution rather than encouraging the formation of 

a gel as this resulted in the most consistent and reproducible device performances.  

 

2.1.2.2  Spin Coating 

 

Spin-coating is a widely used technique for the production of highly reproducible 

films, commonly with transition metal oxides or solution processed BHJs such as 

P3HT:PCBM. The process involves the application of an excess of solution on to a 

substrate. The substrate is then rotated at high speeds (typically > 1000 rpm) to 

spread the fluid by centrifugal forces. The solvent used then evaporates to form a 
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solid homogeneous film. During the spin coating process the interaction between the 

substrate and solution layer are stronger than the interaction between the solution 

surface layer and air. This process is effective for lab scale substrates up to ~ 30 cm 

in diameter.  

 

 
 
Figure 2.2 The different stages of spin coating [a] solvent dispersed onto the substrate, [b] 

acceleration of the substrate, [c] flow dominated, [d] evaporation dominated and [e] 

schematic illustrating the spin coating process with the appropriate variables.
193

   

 

 

The film properties; thickness, morphology and surface topography depend on the 

rotational speed, spinning time, viscosity, volatility and concentration.
25

 When the 

disc is rapidly accelerated to high angular velocity, the solution is ejected from the 

disc, resulting in a thinner film. This is due to a combination of the adhesive forces at 

the interface of the liquid/substrate and the centrifugal forces acting on the rotating 

liquid.
194

 As the solvent evaporates, the concentration increases, increasing viscosity 

which changes the rheology of the solution. Typical spin coaters have a closed lid 

and although not airtight, it minimises any unwanted external affects which improves 

the film thickness uniformity.  

[a] [b]

[c] [d]

[e]



 2 Experimental 

49 

 

The required volume of ZnO solution was filtered (0.22 µm) immediately before 

spin coating. 50 µl of the solution was dropped onto the substrate and then the 

substrate was instantly rotated at 3000 rpm for one minute.  

   

2.1.2.3   Electrodeposition 

 

An alternative method for the production of thin films is ED, which has been 

modified more recently to be applicable for the formation of metal oxide thin films 

such as zinc oxide and was first used by Peulon et al.
195

 and Izaki et al.
196

 It involves 

dissolved precursors in aqueous solution (in this instance the metal hydroxide 

precursor) being reduced at the electrode leading to super saturation and 

precipitation of ZnO. There are problems associated with forming ZnO films for use 

in OPVs, firstly and most commonly is the film thickness. Thick ZnO layers can be 

detrimental to all parameters in OPV performance due to issues with charge 

extraction and reduction in layer transparency so therefore it is a necessity to keep 

layer thickness < 200 nm. The second is the orientation of the ZnO film, as the 

orientation and termination can greatly affect the work function and charge transport 

of the film.   

The details of the ED process are summarised schematically in Figure 2.3 which 

shows the three electrode system set up consisting of the working electrode onto 

which the ZnO is deposited (either ITO or transparent gold electrodes (tAu)), an 

Ag/AgCl/KCl (3.5 M) reference electrode and a platinum mesh counter electrode. 

The ED of ZnO onto ITO substrates has been previously optimised and the 

conditions were maintained for both ITO and tAu electrodes.
131, 186

 A 0.13 M 
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solution of Zn(NO3)2 was stirred and maintained at 85 °C, with a solution pH of 

2.5.
131, 186, 197

 A potential of  -1.3 V was applied versus the Ag/AgCl electrode and 

the deposition was stopped once a charge of 0.15 C cm
-2

 passed. The chemical 

process is summarised below and involves the reduction of NO3
-
 (which are used due 

to their high solubility and therefore fast deposition rates) at the cathode to form the 

hydroxide precursor which is key for the precipitation of ZnO.  

   NO3
-
 + H2O + 2e

-
  NO2

-
 + 2OH

-  
   Equation 2.1 

   Zn
2+

 + 2OH
-
  ZnO + H2O    Equation 2.2 

   Zn
2+ 

+ NO3
-
 + 2e

-
  ZnO + NO2

-   
Equation 2.3 

 

 

  

 

 
 

 
Figure 2.3 Schematic illustrating the electrodeposition process, with the Ag/Ag Cl reference 

electrode, ITO or transparent gold working electrode and the platinum mesh counter 

electrode.  

 

Stirring and held at

85 °C
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counter electrode
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electrode
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electrode
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2.1.3  Vacuum Deposition 

 

2.1.3.1  Material Purification 

 

Improved device efficiencies require materials of high purity and fine control over 

growth parameters during film formation. For this reason, most materials were 

purified by sublimation prior to deposition.
198,199

 The process consists of the impure 

material being placed in the end of a quartz tube under vacuum (10
-5

 mbar), which is 

heated with a tube furnace to ensure a controlled heating rate/time. Typically the 

temperature was raised by ~1 ºC per minute until the sublimation temperature is 

reached. Exposing only part of the quartz tube to the furnace sets up a thermal 

gradient, allowing the sublimed material to travel down the tube until it reaches the 

colder regions where it condenses. By the end of the process, only the desired 

material will be present in the middle of the tube, as materials that sublime at a lower 

temperature will travel further down the tube and those that sublime at a higher 

temperature will be left at the end of the tube.  

 

2.1.3.2  Organic Molecular Beam Deposition 

 

Organic molecular beam deposition occurs under a vacuum allowing the deposition 

of thin solid films with thicknesses ranging from molecular monolayers to a few 

hundred nanometres. The deposition conditions allow controlled and reproducible 

growth of complex architectures with well-defined thicknesses and growth rates.
200

 

Each material was deposited using a Kurt J. Lesker Spectros system and 

independently calibrated prior to use.  
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The purified materials are placed inside an evaporation source which is shown 

schematically in Figure 2.4 [a]. Deposition typically occurs at 10
-7 

mbar for 

increased control, and to prevent contamination and oxidation. The cell is heated to 

the materials sublimation temperature of the material, which is typically between 100 

°C and 450 °C for organic materials. A schematic of the spectros system is shown in 

Figure 2.4 [b] and includes a rotating shelf to ensure homogenous film formation 

along with a mechanical shutter so the desired material deposition rate can be 

achieved prior to deposition onto the substrate surface. Film thickness is measured 

using a quartz crystal microbalance (QCM) which calculates the mass per unit area 

by measuring the change in frequency of the crystal. The QCM values are calibrated 

by comparing deposited thickness to those measured by step-edge atomic force 

microscopy (AFM).  

 

 

 
 

Figure 2.4 [a] Diagram of an evaporation source showing the formation of a molecular 

beam of the purified material and [b] a schematic of the Kurt J Lesker spectros system 

used. 
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Figure 2.5 shows a schematic of the ITO substrate ([a]) and the device after all layer 

have been subsequently deposited ([b]). For device fabrication, organic materials are 

deposited onto the rotating substrate to ensure complete coverage of the ITO 

substrate. Metal oxides can also be deposited in the same way but require high 

temperature thermal sources. The top contact was achieved by evaporating 

aluminium through a shadow mask to give the required active area. The active area 

of the electrodes was varied from 0.06 cm
2
 to 1.00 cm

2
,
 
with the typical active area 

for cell fabrication being 0.16 cm
2
. Details about film growth (film thicknesses, rates 

etc.) for each vacuum deposited material are included in the relevant results section. 

 

 

 
 

 
Figure 2.5 [a] ITO substrate and [b] device schematic with individual layers indicated in 

the key. 

 

 

 

 

  

[a] [b]
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2.2 Thin Film Analysis 
 

 

2.2.1 Absorption spectroscopy 

 

Absorption spectroscopy is a simple analytical technique that is used in quantitative 

characterisation of solutions or thin films. Photons with specific wavelengths are 

absorbed by a material if they have an energy comparable to an allowed transition of 

the material. This absorption causes excitation of electrons to higher energy states 

with an optical spectrometer monitoring the reduction in light intensity this causes.  

The amount of light, I, transmitted through an absorbing compound can be related to 

its concentration by Beer-Lambert’s law: 

               𝐴 = −𝑙𝑜𝑔10 (
𝐼

𝐼𝑜
) =  𝜀 𝜆 𝑏𝑐  Equation 2.4         

The law states a logarithmic dependence between absorbance, A, and the ratio of the 

incident light intensity, Io, and the attenuated light leaving the sample, I. 𝜀 𝜆 is the 

molar extinction coefficient for a given wavelength, b is the path length and c is the 

concentration, given by moles per unit volume. In solids, the concentration is related 

to the molecular mass and density. For thin films, the molar extinction coefficient 

and concentration are defined by the absorptivity of the material, α. The film 

thickness is defined by the term, L. 

                 𝐴 = −𝑙𝑜𝑔10 (
𝐼

𝐼𝑜
) =  𝛼𝐿       Equation 2.5                       

In the field of photovoltaics, a simple technique such as UV-Vis absorption 

spectroscopy is essential. It enables the absorption characteristics of active layers to 
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be analysed, which is important for monitoring capability of the chosen materials to 

harvest as much of the solar spectrum as possible. It can also reveal a change in film 

structure with a more crystalline solid giving a red shift in the absorption spectra. 

The transmittance and band gaps of electrodes and interlayers (ILs) can also be 

measured which is important to ensure a limited amount of parasitic absorption.   

Electronic absorption spectra were obtained using a Perkin-Elmer Lambda 25 

spectrometer. 

 

 

2.2.2  Photoluminescence Spectroscopy 

 

Luminescence is the emission of light, with one of the forms being 

photoluminescence (PL) where the process is initiated by photoexcitation from any 

form of electromagnetic radiation. When a material is exposed to incident light of 

sufficient energy, photons are absorbed and electronic excitations are induced, this is 

shown in Figure 2.6, which shows schematically the different optical band-to-band 

excitations. After excitation, it decays to the lowest vibrational level of the excited 

state giving the excess energy to the surroundings/crystal lattice. From here, the 

system can relax from the excited state to the ground state. Since in this process 

energy is lost, the emitted photon will be of longer wavelength then the excited 

photon. This difference between the peak of the excitation band and emission band is 

known as a Stoke’s shift.   
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The excited states relax to their ground state either by radiative, kr, or non-radiative 

decay knr. If the relaxation process is radiative, the emitted light is 

photoluminescence.
202

 If the relaxation is non-radiative the energy has been 

dissipated into the surrounding crystal lattice. This decay has a lifetime, 𝜏, which 

depends on the material of interest.   

                𝜏 = 
1

𝑘𝑟+𝑘𝑛𝑟
        Equation 2.6                                

PL is a non-destructive technique that requires minimal sample preparation. It can be 

used to probe many important materials properties as it measures the energy of the 

 

 
 
Figure 2.6 Jablonski diagram showing an example of absorption and emission spectra.

201
 

Stokes shift is indicated. 
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emitted light which relates to the difference in energy levels between the transitions, 

and it also monitors the quantity of emitted light. This information can be used to 

infer the band gap of a material, impurities and defect levels as well as 

recombination and quenching efficiencies.  

A Fluorolog®-3 Spectrofluorometer from HoribaJobin Yvon was used for PL 

measurements. 

 

2.2.3 Ellipsometry 

 

Ellipsometry is a non-destructive optical technique that is used to study the change in 

polarisation of light when it is reflected or transmitted from a sample. It evolved 

from the work in the late 19
th

 century by Paul Drude who used polarised light to 

study optical properties and thickness of thin metallic films. The basic principle 

involves illuminating a sample with a collimated beam of polarised light and 

analysing the polarisation of the reflected beam. Ellipsometry is predominately used 

to measure film thicknesses, chemical composition, complex refractive index and 

uniformity.  

One possible set-up, illustrated below in Figure 2.7 involves a light source, 

polariser, sample, polarisation analyser and a detector. In this case the light beam is 

linearly polarised, and as it reflects from the surface of a sample it becomes 

elliptically polarised. As it interacts with a sample, any changes to the emerging 

beam can provide useful information that is specific to each material. The reflected 

light is passed through a second, rotating polariser and the intensity at each angle of 

the polariser is measured. When the light hits the detector, it is changed into an 

electronic signal and two parameters can be extracted, the phase difference (Δ) and 
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the amplitude ratio (Ω). These parameters are wavelength and angle of incidence 

specific. The parameters obtained (Δ, Ω) cannot be directly converted into the 

parameters of interest, so a model of the layer stack must be constructed. Regression 

analysis is then used to choose the best fitting model to provide the parameters of 

interest. The film thickness can be extracted from looking at the interference from 

light that is reflected from the surface and light that travels through the film. The 

optical properties, n (refractive index) and k (extinction coefficient) can also be 

obtained and it is these that are of interest for the field of OPVs. This is because the 

refractive index describes how light will propagate through a medium and the 

extinction coefficient is the imaginary part of the complex index of refraction and 

relates to absorption. 

 

 

 
 
Figure 2.7 Schematic of a general spectroscopic ellipsometry set up. 

  

 

The n and k values used in the optical model in this work were either obtained from 

literature or acquired at the University of Birmingham using a UVISEL ellipsometer 

(Jobin-Yvon/Horiba, UK) with a Xe light source, over the wavelength range of 250 – 

800 nm and at an incidence angle of 70 °. Film thicknesses and optical properties 

were modelled using a three phase ambient/film/quartz model, in which the layer 
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was assumed to be isotropic. An Adachi-new Forouhi dispersion formula was 

employed to obtain the optical constant for the film.
203, 204

  

 

2.2.4  Optical Modelling 

 

For OPVs the Beer-Lambert law cannot be used to calculate the absorption of each 

layer within the device because the layers are much thinner than the penetration 

depth and interference effects play a significant part. This is enhanced due to the 

highly reflective electrode commonly used and the difference in dielectric constants 

at each interface, both of which impact the optical electric field in the device.   

 

In order to determine the optical electric field intensity inside the device, optical 

modelling was carried out using the transfer matrix method, taking account of both 

material properties and potential reflection and interference effects which are 

important on this scale.
205

 
206

 This enables the absorption efficiency, or absorptance, 

𝜂𝐴 of a multilayer stack to be calculated: 

 

    𝜂𝐴 =  1 − 𝑇 − 𝑅,        Equation 2.7 

 

where T is transmittance and R is reflectance for each interface in the stack. The 

model does not account for diffuse scattering and assumes the each interface is 

optically flat. 

 

The optical electric field intensity for each wavelength in each layer can be 

calculated by this method, when the layer thicknesses and complex refractive indices 

(n and k) are known. Complex refractive index data in this work was either obtained 

experimentally by ellipsometry or from literature. 
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Optical modelling enables an estimation of ηA (the quantum efficiency of absorption 

within a film) and, by integrating against the solar spectrum (AM1.5G), an estimate 

of the current generation for each layer. This value however does not account for the 

losses associated with the other three steps in the operation of an organic solar cell. 

This means that unless a value for the internal quantum efficiency (IQE) can be 

accurately obtained, the prediction of JSC should be treated as the upper limit. The 

IQE can be estimated experimentally considering the EQE of the device, given that: 

 

   𝐼𝑄𝐸 =  𝜂𝐸𝐷𝜂𝐶𝐶𝜂𝐶𝑇 =  
𝐸𝑄𝐸

𝜂𝐴
        Equation 2.8       

 

The optical modeling script used in this thesis was originally created by Dr Felix 

Braun (Jenny Nelson’s Group, Imperial College London), but adapted by Dr Thomas 

Howells and used in Chapter 5.  To account for the diffusion length the output from 

the optical field calculations was input into a custom 1D finite difference diffusion 

equation solver with the optical calculations converted into an exciton generation 

rate at nanometre increments within the layer. Current generation is then defined as 

the flux of excitons through each dissociating interface. 

 

 

2.2.5  Atomic force microscopy 

 

Atomic force microscopy (AFM) is a versatile technique that can image, characterise 

and manipulate matter with high spatial resolution. It was invented by Binning et al. 

in 1986 and was first commercially available in 1989.
207

 The main benefit of AFM is 

that it can probe the features of both conductive and non-conductive samples, 
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monitoring the close range tip-sample interatomic interactions. This generates a 

topographical map of surface features. The technique provides vital information in 

the field of OPVs as the surface properties of a layer can have a significant effect on 

cell performance. 

An AFM set up is shown schematically in Figure 2.8. Located at the end of 

cantilever is the tip which is typically ~ 3-6 microns long. The amount of force 

between the tip and sample at any given time follows Hooke’s law and is dependent 

on the spring constant of the cantilever and distance between the tip and sample. The 

forces measured depend on the influence of attractive and repulsive forces as the tip 

approach the surface, shown in Figure 2.8 [a]. In the non-contact region (typically 

hundreds of angstroms from surface) the interactions between the cantilever and the 

surface are attractive, including electrostatic and van der Waals interactions. As the 

tip is brought closer (less than a few angstroms from the surface) the interatomic 

interactions between the cantilever and the surface are dominated by repulsive forces 

including hard sphere repulsion, repulsive van der Waals and electron-electron 

coulombic interactions. These repulsive forces cause the tip to bend up. 

When imaging the motion across the surface is controlled using a feedback loop and 

piezoelectronic scanners. The output from the laser is positioned on the parabolic 

end of the cantilever which is reflected into a photodetector with four quadrants, 

which generate a voltage proportional to the light hitting each quadrant. Any 

differences measured between the four segments indicate the position of the laser 

spot, this is relayed to the controller, ensuring the set point for deflection or 

amplitude is kept constant. A topographic image is obtained by the distance the 

scanner moves in the z direction being stored in the computer relative to the spatial 

variation in the x-y direction.
208

 Different scanning modes operate in different 
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regions of the curve, contact mode operates in the repulsive region, non-contact 

mode (where the tip does not contact the surface but oscillates above the absorbed 

fluid layer) uses the attractive region whereas tapping mode (also known as 

alternating contact mode) operates between the two. In contact mode, a tip is brought 

to the surface, ensuring that a tip-sample distance is maintained depending on the set 

point used. When the spring constant of the cantilever is less than the forces between 

the probe and sample, the tip starts to bend towards the surface. The sample is 

moved laterally and a feedback loop is used to keep the cantilever deflection 

constant by changing the probe height z while scanning in x and y and therefore a 

nearly constant force is maintained between tip and surface during imaging. The 

advantages of contact mode are the high lateral resolution and quick imaging of hard 

samples. Therefore, contact mode was utilised for imaging of some metal oxide thin 

films and when using conductive AFM. The drawbacks however is that contact 

mode can lead to large shear forces on the surface, damaging softer samples. 

All images of organic materials that would be susceptible to such damage were taken 

using tapping mode AFM. In tapping mode, the cantilever is oscillated close to its 

resonant frequency using a piezoelectric element. When the oscillating tip interacts 

with the surface the amplitude of the oscillations is dampened. An oscillation 

amplitude set point is chosen by the user, which ensures a constant tip-sample 

interaction is maintained by monitoring the oscillation amplitude using the four-

quadrant photodiode and controlled using the z-piezo and feedback loop. This allows 

an image of the surface to be obtained.  
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Figure 2.8 A schematic showing [a] the force curve obtained with increasing tip-sample 

distance (z) and [b] the AFM set-up.  

 

 

 

All images were taken using an Asylum Research MFP-3D using Olympus AC240-

TS Si cantilevers with a resonant frequency of 70 kHz and a tip radius of 9 nm. 

 

2.2.5.1 Conductive AFM 

 

Conductive atomic force microscopy (CAFM) can be used to characterise electrical 

properties of a sample at high resolution. A voltage is applied between the sample 

and the conductive AFM tip and the current flow is measured as a function of tip 

location whilst scanning the sample surface in contact mode. This results in 

simultaneously obtained topography images and current distribution maps. This is a 

useful property as it allows any changes in conductivity to be compared to any 

differences in features on the samples surface.  
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The MFP-3D was fitted with an ORCA integrated tip-holder and current 

preamplifier (20 nA) for CAFM measurements. Both the topography and current 

distribution images were obtained simultaneously using Au/Cr coated cantilevers 

which act as a nanoelectrode and form the top contact (Olympus TR400PB, tip 

radius < 40 nm, spring constant 0.06 N m
-1

).  A contact of silver paint was added to 

the film of interest and a sample bias was applied via a wire from the OCRA tip 

holder. A 500 MΩ resistor was used to limit the current.  

 

2.2.6  Electron Microscopy 

 

Electron microscopy (EM) utilises a beam of electrons to create an image of the 

specimen. This allows images with a higher magnification and greater resolution to 

be formed, compared to using a light microscope where the resolution is limited due 

to Abbe’s formula. Ruska demonstrated that a magnetic coil could act as an electron 

lens which led to the development of the electron microscope during his PhD in 

1933 and in 1986; Ruska won the Nobel Prize in Physics for his contribution to 

electron optics.  

EM can be carried out on bulk samples in the form of scanning electron microscopy 

(SEM) or on thin specimens on the films in the form of transmission electron 

microscopy (TEM). These techniques give the ability to image the sample down to 

the nanometre range as well as providing compositional and structural information of 

the film of interest. Both techniques utilise an electron beam to result in high-

resolution images of the specimen.  

SEM produces high-resolution images, revealing details in the 1-5 nm range through 

the use of electrons. A monochromatic stream of electrons is fired from the top of the 
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microscope by an electron gun which is held in a vacuum. The beam of electrons 

follows a vertical path as it is constricted by a series of electromagnetic lenses and 

apertures. The energy of the incident electron beam, Eb (adjusted via the acceleration 

voltage) defines the penetration depth into the sample whereas the electron-beam 

current Ib (adjusted by filaments or apertures) alters the electron-injection rate into 

the sample. 

When primary electrons hit the sample, energy can be lost by a variety of 

mechanisms, including secondary electrons (SEs), back scattered electrons (BSEs), 

auger electrons, light emission (cathodoluminescence) and x-ray emission. The 

electrons typically used for imaging are SEs, however BSEs which have more 

energy and a defined direction are also typically detected in high resolution SEMs 

and can provide information about the distribution of elements in the sample. The 

electrons are attracted and collected by a positively biased collector grid which then 

produces a signal.  

The sample must be electrically conductive and grounded in order to be imaged 

effectively; this prevents charging of the specimen which would occur because of the 

accumulation of static electric fields. For non-conductive samples this is achieved by 

sputtering a thin conductive layer of either Au, Au:Pd or carbon using a sputter 

coater held under low vacuum which ionises argon gas under an electric field. 

Argon, which is positively charged, accelerates into the material sources, knocking 

atoms from the surface and onto the sample.  
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Figure 2.9 Schematic of the SEM set-up.  

 

 

Images for this thesis were obtained using either a Zeiss 55VP SEM with SEs and 

BSEs detectors (Chapter 3) or a LEO Gemini 1525 field emission gun scanning 

electron microscope (FEG-SEM) with an accelerating voltage 5 kV (Chapter 6). 

 

2.2.7  X-Ray Diffraction  

 

X-ray diffraction (XRD) is a versatile, non-destructive technique that gives 

information about the chemical composition and crystallographic structure of a 

material. A crystal is the arrangement of solid atoms, ions or molecules in a 3D 

pattern, forming a symmetric motif. This regular, repeating array is called the crystal 

lattice, with each repeat unit forming a point within the lattice. The lattice points can 

be connected to form a 3D box and it is this that defines its unit cell. The unit cell is 

characterised by three unit vectors a, b, c and three angles α (between bc-axes), β 
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(between ac-axes) and γ (between ab-axes). The relationship between (a, b, c) and (α, 

β, γ) defines the unique shape and size of the unit cells and symmetry motif. The 

arrangement of unit cells must not have any space between them, so due to this 

restriction, the unit cells are constrained to 14 unique crystal lattices called Bravais 

lattices. The Miller indices define the orientation of the plane within the unit cell. 

The point at which the plane intercepts with the unit cell axes are defined by the 

Miller indices (hkl) which are indicated in Figure 2.10. The indices are given as a 

series of three integers (1/h, 1/k, 1/l), with a (100) plane indicated on the diagram. 

The arrangement forms a series of parallel planes with spacing, dhkl.
209

 

Bragg in 1912 defined a simple relationship to understand how diffraction related to 

relative positions of point objects in space. When a monochromatic x-ray beam with 

wavelength λ hits a surface at angle θ, the atomic planes cause interference as the x-

rays leave the crystal. Constructive interference is only observed when the reflected 

waves are in phase. This occurs when the difference in length of the path of incident 

and reflected waves are an integer number of wavelengths, n, of the wavelength of 

the incident x-rays. In these conditions Bragg’s law (Equation 2.9) is satisfied 

meaning that the reflected waves are in phase and hence interfering constructively, 

resulting in intense peaks known as Bragg’s peaks.  

                𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃                   Equation 2.9    
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Figure 2.10 Lattice parameters with lengths a, b, c and angles α, β, γ. A schematic of x-ray 

diffraction is also shown.  

 

 

In this study the XRD data was obtained by Dr Amy Cruickshank using Philips 

PANalytical X’Pert PRO MPD diffractometer, with Cu Kα radiation and a Ni filter, 

operated at 40 kV / 40 mA. 

 

2.3  Energetic Characterisation 

 

2.3.1  Kelvin Probe 

 

Kelvin probe (KP) is a non-destructive, non-contact analytical technique that 

measures changes in contact potential difference (CPD) between a reference material 

and a sample that have been brought into close proximity. Figure 2.11 shows the 
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energy level diagram with two materials of different work functions, the sample 

surface of interest (Фs) and gold oscillating tip (Фt). In Figure 2.11 [a] the tip and 

sample are not in electrical contact and are separated by a set distance, with the 

vacuum levels aligned. When two materials are in electrical contact, electrons flow 

from the material with a lower work function to the one with a higher work function, 

Figure 2.11 [b]. As the materials are set up as a parallel plate capacitor, surface 

charges form positive charges on the material of lower work function and negative 

charges on the material of higher work function. This creates an electric potential 

between the two materials and in response the electronic states shift relative to one 

another. This flow of charges induces an alignment of the Fermi levels and a 

potential gradient (VCPD).  

The tip is mounted just above the sample and is vibrating vertically at a given 

frequency. This creates an AC current which varies depending on distance from the 

sample. To measure the VCPD, an applied DC voltage is gradually ramped to nullify 

this current, indicated on Figure 2.11 [c] by VDC. Once this bias equals that of the 

VCPD but with the opposite direction, the applied bias is equal to the difference in 

work function between the two materials: 

Δ∅ = ∅s – ∅t.        Equation 2.10                                                        

The KP technique therefore can only detect the CPD and therefore the actual work 

function is deduced when referenced to the surface of material with a known work 

function. The material used as a reference was highly oriented pyrolytic graphite 

(HOPG, Ф = 4.475 eV) which is chosen as it is chemically inert and does not form 

significant interface dipoles with typical ambient contaminants. This is vital as due 

to the nature of the technique, the measurements are very sensitive to any changes to 
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the surface including absorption, evaporation, surface charging and oxide layer 

imperfections, so care must be taken in sample preparation.  

In this instance all measurements were carried out in a nitrogen filled glove box 

using a Besocke Delta Phi GmbH KP (Kelvin Probe S and Kelvin 07 electronic 

control) in a Faraday cage. The gold probe (2.5 mm diameter) was oscillated using a 

piezoelectric transducer which was positioned ~ 1 mm above the sample. For 

consistency samples were replicated and readings were taken at various locations 

across the surface.  

 

 
 
Figure 2.11 Electronic energy levels of the sample and conductive tip for three different 

cases [a] the tip and sample are separated by a set distance with no electrical contact, the 

work functions are also indicated ∅s and ∅t for the sample and tip respectively. [b] Tip and 

sample in electrical contact, the Fermi levels equalize and [c] external bias is applied (VDC) 

between the sample and the tip to nullify the CPD.
210
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2.3.2  Photoelectron Spectroscopy 

 

Photoelectron spectroscopy (PES) involves the measurement of the KE distribution 

of electrons ejected from a material illuminated by photons of a known energy, in 

order to study the composition and electronic state of the sample. The energy of the 

photoemitted electron is dependent on the energy of the incoming photon of energy 

(hv) and the energy state in which it existed. In x-ray photoelectron spectroscopy 

(XPS), soft x-rays are used (hv = 200 – 2000 eV) to examine core energy levels 

which have binding energies (EBE) that are specific to the atomic and chemical 

environment. Ultraviolet photoelectron spectroscopy (UPS) however, uses UV 

radiation (10 – 45 eV) to measure the outermost electrons held in the valence levels. 

Both XPS and UPS are summarised schematically in Figure 2.12. The basis of both 

of these techniques lies in the photoelectric effect for which Einstein won the Nobel 

Prize in Physics in 1921.
211

  

 
 
Figure 2.12 A schematic summarizing the energetics of the photoemission experiment. The 

positions of the VB, EFs and VL have been indicated. 
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2.3.2.1 X-Ray Photoelectron Spectroscopy (XPS) 

 

XPS utilises x-ray photons possessing a kinetic energy between 200 – 2000 eV, 

which causes the ionization of atoms via the photoemission of electrons with 

characteristic kinetic energies. The technique was pioneered by Siegbahn and co-

workers and is utilised for material composition and stoichiometric analysis of the 

material of interest.
212

  

The technique involves a sample, being held under vacuum that is irradiated with a 

high energy monochromatic beam. This is typically either a Mg Kα (1253.6 eV) or 

Al Kα (1486.6 eV) soft x-ray source. This interaction causes electrons to be emitted 

by the photoelectric effect, where conservation of energy requires that photons can 

induce electron emission from the solid as long as the photon energy is greater than 

the work function. The EBE of the emitted electron is given by 

               𝐸𝐵𝐸 = ℎ𝑣 −  ∅ − 𝐸𝐾𝐸 ,               Equation 2.11 

where h is Planck’s constant and v is the frequency of radiation in Hz, EKE is the 

kinetic energy of the emitted electron, and ∅ is the work function of the 

spectrometer. 

The electrons that are emitted have a kinetic energy and some of the electrons are 

emitted at the correct angle to enter the hemispherical analyser. Changing the voltage 

between the inner and outer hemispheres brings electrons of different energies on to 

the channeltrons. Therefore by sweeping the analyser through the full kinetic energy 

range offered by the source, a plot of counts/sec versus kinetic energy is obtained. 

Modern analysers and x-ray sources offer resolution < 1 eV, therefore different 

chemical states can be clearly resolved. The binding energy is the difference between 
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the initial and final states of the atom during the photoemission process. The binding 

energy increases with atomic number and decreasing orbital quantum number, with 

any subtle variations being due to differences in chemical potential and 

polarizability. This rather simplistic view is expanded via the consideration of initial 

and final state effects.
213

 The p, d and f levels have two equivalent final states, spin 

up and spin down resulting in a doublet peak due to spin-orbit splitting ratio of 1:2 

(p1/2, p3/2) for the p levels, 2:3 (d3/2, d5/2) for the d and 3:4 (f5/2, f7/2) for f levels.  

XPS is a surface sensitive technique, the inelastic mean free path (IMFP) of electrons 

is small and therefore the electrons that are detected without undergoing inelastic 

energy losses originate from the top few atomic layers (up to 10 nm). The IMFP 

varies as a function of energy, so the “universal curve” which gives the average 

distance between inelastic collisions needs to be considered especially for 

compositional analysis.  Photoionisation can typically lead to the emission of two 

electrons, a photoelectron and an Auger electron. The photoelectron is illustrated in 

Figure 2.13 [a], these are the electrons leave the sample without energy loss and 

prove to be the most useful. As emission of an electron leaves behind a hole, an 

Auger electron emission or x-ray fluorescence can occur. Auger electron emission is 

the most common and typically occurs 10
-14

 seconds after photoemission. This is 

illustrated in Figure 2.13 [b] and involves an outer electron falling from a higher 

level to fill an initial core hole and the energy produced in this process leads to the 

emission of a second electron.  
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Figure 2.13 XPS emission for a model atom. [a] incoming photon causes emission of an 

electron from the core 1s level, [b] Auger emission – an outer electron falls into inner 

orbital vacancy, emitting a second electron. 

  

 

In this thesis, the measurements were taken ex-situ after loading into an ultra-high 

vacuum system with a base pressure of ~2 x 10
-11

 mbar. XPS measurements were 

performed using a monochromated Al Kα x-ray source (Omicron XM 1000, hv = 

1486.6 eV) and detected using an Omicron Sphera electron analyser at a take-off 

angle (TOA) of 90° or 30°. The TOA was varied to probe different depth due to 

different surface sensitivities. A pass energy of 10 eV was employed for both core 

levels and VB (resolution = 0.47 eV). Peak fitting and analysis is a key factor for 

data interpretation. In all instances, the binding energies of all spectral features were 

referenced to the C 1s peak for carbon contamination (284.6 eV), and a Shirley 

background was utilised in the analysis of the core levels. Peak fitting involves 

careful consideration of the bonding environment and therefore any effect this would 

have on the FWHM, for instance main metal peaks have a much narrower FWHM 

than a C 1s peak. For metal peaks asymmetric Lorentzian lineshapes were used, the 
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asymmetry occurring as a result of coupling with conduction band electrons. As well 

as elemental analysis, stoichiometric ratios can be accurately determined. These 

values were calculated by using the Schofield relative sensitivity factors (RSF) and 

variations of the IMFP with binding energy which are built in to CasaXPS, and an 

analyser transmission function calculated from polycrystalline Ag, Cu and Au 

foils.
214

 

 

2.3.2.2 Ultraviolet Photoelectron Spectroscopy (UPS) 

 

UPS is a similar process to XPS, but in this instance the sample is irradiated with 

photons of a much lower energy as the UV photons are generated from a helium 

discharge lamp. The gas, depending on the conditions, provides energy of 21.2 eV 

(He I) or 40.82 eV (He II) and this radiation is used to excite valence electrons. This 

allows the detection of VB or HOMO energy levels as well as work function 

measurements. A typical UPS spectrum is shown in Figure 2.14 given on a binding 

energy scale. This is calculated from Equation 2.11 as the energy source (hv) is 

known and the kinetic energy of the emitted electrons is measured using a 

hemispherical analyser. This spectrum is displayed such that the EFs is at 0 eV (by 

taking into account the work function of the spectrometer).  

At the secondary electron cut off (or high binding energy cut off), there is a tail of 

inelastically scattered electrons which have been emitted from the valence band 

states and scattered as they have approached the surface. Biasing the film is 

essential, as it moves the secondary electron cut-off from the drop-off in detection in 

the analyser, allowing the work function to be accurately determined.  
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∅𝑠𝑎𝑚𝑝𝑙𝑒 = ℎ𝑣 −  𝐵𝐸𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛             Equation 2.12 

At the other end of the spectrum, the low binding energies, the valence band 

emissions occur, which tend to be formed from a combination of narrow high 

density of states e.g. O 2s. This enables the HOMOonset or VBonset to be determined, 

calculated as an additional binding energy below the EFs of the material. This is 

useful in organic materials for calculating the ionisation potential (IP) when 

combined with the work function. 

   𝐼𝑃 = ∅ + HOMOonset.              Equation 2.13 

 

 

 
 

 
Figure 2.14 An example of an UPS spectrum, in this case for 12 nm of ClAlPc. The EF 

and Ø (calculated from the secondary electron cut off) have been indicated. The diagram 

on the right shows the low binding energy spectra, the HOMOonset is calculated by the 

intercept with the energy axis.  

 

 

Ultraviolet photoelectron spectroscopy (UPS) measurements were taken in the same 

UHV chamber as the XPS measurements. The spectra were obtained using He I 

emission (hv = 21.2 eV) from a Focus HIS 13 vacuum ultraviolet photon source, 

with an applied bias voltage of ~10 V.  
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2.4  Device Characterisation 
 

 

2.4.1  Sun and Solar Spectrum 

 

The sun is a blackbody emitter, a light source which absorbs all radiation on its 

surface and emits radiation based on its temperature. The spectral irradiance from a 

blackbody source is given by Planck’s radiation law: 

   𝐹 (𝜆) =  
2𝜋ℎ𝑐2

𝜆5 (exp(
ℎ𝑐

𝑘𝜆𝑇
)−1)

   Equation 2.14 

 where λ is the wavelength of light, T is the temperature of the blackbody (K), F is 

the spectral irradiance (W m
-2 

µm
-1

), h is Planck’s constant, c is the speed of light 

and k is Boltzmann’s constant.  The sun’s surface is called the photosphere and is 

modelled at a blackbody temperature of 5730 ± 90 K.
215

 

The solar radiation at the Earth’s surface varies throughout the day due to a variety 

of effects including atmospheric effects (such as absorption and scattering), time of 

day, variations in the atmosphere (e.g. water vapour, clouds), latitude of the location 

and seasons. These effects can have a distinctive impact on the radiation at the 

Earth’s surface, with specific gases such as ozone, water vapour and carbon dioxide 

absorbing photons, leading to troughs in spectral irradiance. The radiation loss 

through the atmosphere has an angle dependency which is defined by a value called 

the air mass (AM). AM 0, as shown in Figure 2.15, is the solar radiation that reaches 

a point just outside the Earth’s atmosphere and is used to estimate cell performance 

in space. AM 1 is when the sun is directly overhead, and thus is the minimum path 

length for light reaching the surface.  
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Figure 2.15 Schematic showing the air mass coefficient which is related to the path length 

through the Earth’s atmosphere.  

 

 

Due to the large number of variables, testing methods have had to be standardised in 

order to ensure fair comparisons between different organisations and for theoretical 

calculations and solar simulator design. This is achieved using a defined spectrum 

and power intensity. The typical standard in laboratory measurements is AM 1.5 G, 

equivalent to where the sun is at a 48.2° angle from the Earth’s surface. G stands for 

global radiation; including both diffuse sky radiation and direct (D) solar radiation. 

The American Society of Testing and Materials (ASTM) justified the AM 1.5 G 

standard “because they are representative of average conditions in the 48 contiguous 

states of the United States”.  The spectral profile of AM 0 and AM 1.5 G is shown in 

Figure 2.16 with the interactions with atmospheric compounds indicated on the 

graph. 
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Figure 2.16 Spectral profile for AM 0 (red line) and AM 1.5 Global (blue line). Also 

indicated are the spectral troughs caused by interaction with atmospheric compounds.  

 

 

Throughout this work, current density - voltage (J-V) measurements were recorded 

using a Keithley 2400 sourcemeter with a solar irradiation of AM1.5G simulated 

with a Newport Oriel solar simulator at an intensity of 100 mW cm
-2

. This was 

calibrated against a Fraunhofer calibrated silicon photodiode (PV Measurements 

Inc.) with a KG-5 filter.  

 

 

2.4.2  Current density-voltage Curves 

 

Current density-voltage curves (J-V) are used to characterise device performance 

under solar illumination. This is achieved by sweeping an applied bias across a 

defined operational range, whilst recording the current-density either in dark or 

illuminated conditions. An example J-V curve for a solar cell is shown below in 

Figure 2.17 both in the dark (dotted line) and under illumination (solid line). An 
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ideal dark curve follows that of a diode, with zero current density at negative bias 

and an exponential increase at forward bias for voltages larger than Vbi.   

 

 
 
Figure 2.17 An example of a typical OPV cell. The J-V characteristics are shown under dark 

conditions (blue dotted line) and under illumination (blue solid line). Also shown is the 

power produced by the cell (black solid line). The key parameters that can be extracted from 

this graph are also indicated.  

 

 

The illuminated J-V curve is a superposition of the J-V curve of the diode behaviour 

and that of the light-generated current, giving the diode law: 

   I =  I0  [exp
qV

nkBT
−  1] − IL    Equation 2.15 

where I is the net current flowing through the diode, I0 is the dark saturation current, 

V is the voltage applied across the terminals of the diode, q is the electron charge, n 

is the diode ideality factory, kB is the Boltzmann’s constant, T is temperature and IL is 

the light generated current. 

From the example solar cell, a number of parameters can be obtained. The JSC is the 

photocurrent density under zero applied bias giving a measure of the photocurrent 

collected at the electrodes. Assuming homogenous charge generation the short 
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circuit current is proportional to area of the cell so is therefore defined as a density. 

VOC defines the voltage across the cell under open-circuit conditions (i.e. at infinite 

load resistance) and occurs when the net current through the device is zero. The 

power produced by the cell can also be easily calculated due to the relationship of P 

= IV and the maximum power output (Pm) of the device defines the maximum 

current and voltage at maximum power, Jm and Vm. The FF gives the ideality of the 

J-V curves from the ratio of the maximum power output (dark purple box) to the 

theoretical maximum power output (light purple box), given by: 

          𝐹𝐹 =  
𝐽𝑚𝑉𝑚

𝐽𝑆𝐶𝑉𝑂𝐶
            Equation 2.16 

 

The PCE, the most important metric in an OPV cell is therefore given by: 

                 ɳ
𝑃

=  
𝐽𝑚𝑉𝑚 

𝑃𝑖𝑛𝑐
=  

𝐽𝑆𝐶𝑉𝑂𝐶𝐹𝐹

𝑃𝑖𝑛𝑐
                             Equation 2.17 

where Pinc is the incident optical power density (typically 100 mW cm
-2

 for AM 

1.5G solar spectrum) 

During operation, solar cells show non-ideal behaviour owing to the nature of the 

cell fabrication and because of this the efficiency is reduced due to the dissipation of 

power due to internal resistances. The most common of which are series resistance 

(RS) and parallel shunt resistance (RSH) and are included in the simple equivalent cell 

model highlighted in Figure 2.18.
216
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Figure 2.18 A simple equivalent cell model with a current source Jph. The series and shunt 

resistances are indicated by RS and RSH  respectively.
217

 

 

 

The impact of the RS and RSH is shown in Figure 2.19. The series resistance is 

estimated from the slope near VOC, and in an ideal case should be zero. The series 

resistance typically stems from issues associated with bulk resistances between the 

active layers and electrodes and contact resistances at interfaces.
218, 219

 RS can also 

increase if thicker layers are used, resulting in incomplete collection of photo 

generated charges. Controlling RS is paramount as it can have a dramatic impact on 

the FF on the device, and with very large RS values also cause the JSC to decrease.  

The RSH is parallel to the load and is responsible for current losses in the cell. The 

RSH can be estimated from the slope near the point of JSC. The cause of this 

resistance is due to recombination of charge carriers, and current leakage from 

pinholes and traps in the film. In an ideal solar cell, RSH would be infinite, so the 

current flowing through RSH is zero.  
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Figure 2.19 The effect of internal resistances on the shape of the J-V curves for [a] RS and 

[b] RSH.  

 

  

 

 

2.4.3  External Quantum Efficiency 

 

EQE defines the ratio of the number of charge carriers collected per photon at a 

particular wavelength (λ), and can be thought of as a monochromatic efficiency of a 

PV cell:  

    EQE (λ) =  
JSC (λ)

qN (λ)
      Equation 2.18 

where N (λ) is the incident photon density flux and q is the elementary charge. EQE 

provides important information about the contribution of each organic material to the 

performance of the cell, highlighting areas of the solar spectrum that could be 

improved from enhanced contribution.  

EQE measurements were obtained using light from a Sciencetech solar simulator 

with a xenon arc lamp and a computer controlled PTI monochromator. The intensity 
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of the mechanically chopped (510 Hz) monochromatic light was calibrated with a Si 

photodiode of known responsivity (818UV, Newport) as a reference cell before the 

current from the unknown device was measured in the same geometry. The current 

measurements were performed with a current-voltage amplifier (Femto DHPCA-

100) and lock-in amplifier (Stanford Research Systems SR 830 DSP). The lock-in 

amplifier is necessary for measuring small signals with lots of noise as it allows 

AC/DC noise to be rejected before the signal is measured. It enables the signal to be 

averaged to shorter time constants, allowing faster, more accurate results. The Si 

photodiode is used as a reference to determine the EQE of the device; the ratio of 

current produced by the device to that of the diode with a known response allows 

calculation of the unknown EQE as follows: 

 

   
𝐽𝑆𝐶 (𝜆) 𝑑𝑒𝑣𝑖𝑐𝑒

𝐽𝑆𝐶 (𝜆) 𝑟𝑒𝑓
=  

𝐸𝑄𝐸 𝑑𝑒𝑣𝑖𝑐𝑒

𝐸𝑄𝐸 𝑟𝑒𝑓
     Equation 2.19 

 

For a single active layer device, the EQE will show contribution only over the 

wavelength range given by the absorption spectra of the organic material (accounting 

for any optical effects). For cells with multiple layers however, accurate 

determination of the contribution of each material to the device can only be achieved 

if the absorption spectra of the materials do not greatly overlap. Ideally a device 

would have a high EQE response at each wavelength of the solar spectrum. 
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Figure 2.20 A diagram illustrating a typical set up of an EQE system.  
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3 Hybrid Device Fabrication 
 

 

3.1  Introduction 
 

3.1.1 Hybrid Devices 

 

ZnO is a good candidate for an alternative acceptor material as it has desirable 

properties such as efficient electron transport and the potential to tune the position of 

the CB resulting in controllable interface gaps (Ig) when combined with different 

donor materials. The Ig is defined as the difference between the HOMO of the donor 

and the LUMO of the acceptor. The Ig is known to be significant in the field of 

(H)OPVs as the maximum achievable VOC of the cell can be predicted by the Ig 

minus any losses due to thermodynamic and dissociation losses, band bending, 

energy losses at the contacts and recombination.
220-223

  

 

 
 
Figure 3.1 A schematic of a D/A heterojunction for two organic materials with the relative 

HOMO and LUMO level positions indicated. Also shown is the relative ΔLUMO gap. 
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For the most commonly used organic acceptor material, C60, one of the limitations is 

the poor VOC that is achieved with a significant number of organic donor materials 

due to the deep lying LUMO level (~ 4.5 eV), and therefore the associated losses as 

a result of an excessively large energy offset (ΔLUMO).
224, 225

 Therefore, despite C60 

functioning as an efficient acceptor material, there is the opportunity of improving 

the VOC further by exploiting other material combinations that increase Ig.
226

  

The properties of ZnO enable it to be used in a variety of HOPV architectures, the 

simplest of which being a bilayer structure with a single absorbing material, typically 

a polymer donor layer. The origin of the VOC for true hybrid cells is an area still 

under wide debate. If it is assumed that the Ig is directly related to the VOC of the 

device (similar to the organic-organic interface in OPVs), the use of different donor 

materials or tuning the energy levels of the metal oxide could result in large 

improvements in the VOC. Ferreria et al. investigated two ZnO deposition methods, a 

SG derived ZnO layer and the formation of ZnO nanoparticles synthesised in 

methanol.
227

 In a simple bilayer device with P3HT, the VOC was increased from 0.4 

V to 0.6 V simply by replacing the ZnO SG layer with ZnO nanoparticles. This was 

attributed to the increase in ZnO band gap, resulting in a larger Ig.  

Replacement of the polymer donor with a SM material to date has not achieved 

comparable performances.
75, 228

 Vacuum deposited SM are beneficial as they allow 

controlled growth of very thin layers of organic material, allowing the interface 

properties to be probed systematically in order to explore the impact of the 

inorganic/organic junction on device performance. There have been a limited 

number of studies investigating TMO/organic SM interfaces with reported HOPV 

performances considerably lower than that of TMO/polymer cells.
68
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3.1.2 Aims  

 

In this chapter the viability of ZnO as an acceptor material in HOPVs is investigated. 

ZnO layers are solution processed by the SG method as this offers a simple 

production method for high quality films at low cost. The morphological differences 

of SG derived thin films with processing condition are investigated. Using an 

optimised, reproducible ZnO layer, the effects of varying the processing temperature 

is investigated and equated to device performance. The films are subsequently 

characterised by a variety of methods including AFM to study any morphological 

differences and XPS to understand film properties and composition. Further 

energetic analysis is obtained using KP, monitoring any changes in surface work 

function. The results highlight that the performance of bilayer HOPV devices can be 

significantly enhanced simply by optimising the ZnO thin film processing 

conditions.  
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3.2  Film Optimisation  
 

3.2.1 Sol-gel process 

 

ZnO thin films were fabricated on either pre-patterned ITO coated glass substrates 

(Thin Film Devices, 145 nm ITO thickness) or quartz substrates following the four-

stage cleaning process outlined in Section 2.1 and exposure to UV/ozone for 30 

minutes. In this section the solution recipe, summarised schematically in Figure 3.2, 

consisted of a 0.15 M or 0.25 M precursor solution containing acetone (VWR, 99.9 

%), zinc acetate (Aldrich, 99.99 %) and 2-amino ethanol (Aldrich, 99.5 %, 5 % vol.) 

which were used as the solvent, solute and chelating agent respectively. In all 

instances the solution was stirred for 1 hour, then spin coated onto the desired 

substrates for 60 seconds at 3000 rpm. The films were then treated to different 

annealing temperatures for 1 hour in air to allow conversion to ZnO (~45 nm thick). 

 

 

 
 

Figure 3.2 A schematic summarising the procedure for generating ZnO thin films. 
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3.2.2 Morphology Control 

 

3.2.2.1 Nanoridged ZnO Thin Films 

 

Figure 3.3 shows AFM images of [a] a bare ITO substrate, [b] a 0.25 M ZnO thin 

film spun directly onto an ITO substrate and left to dry at room temperature and [c] a 

0.25 M ZnO thin film that has been annealed at 240 °C for 1 hour. The bare ITO 

substrate has a smooth surface morphology with a surface roughness parameter (Rq) 

of < 1 nm. When a ZnO film is spin coated and allowed to dry in ambient conditions, 

the result is a rough inconsistent film with an Rq of 10.2 nm (Figure 3.3 [b]). For the 

annealed film, Figure 3.3 [c], it can be seen that there is clear distinction in film 

morphology across the film surface, with nanoridged regions (centre of the image) 

and areas with a much smoother surface morphology. The 20 x 20 µm scan has an Rq 

of 6.6 nm when averaged across the entire film surface. A cross-sectional height 

(Figure 3.3 [d]) shows the inconsistency in film formation. The first 0-5 µm has a 

large height variation of up to ~ 35 nm from peaks to troughs, whereas the smooth 

section of the film has a height variation of less than 10 nm. Due to the strong desire 

for ZnO to spontaneously form nanoridges it is necessary to control the film 

fabrication procedure to ensure reproducible thin layers for the application in 

HOPVs. 
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Figure 3.3 AFM images of [a] a bare ITO substrate (Rq = 0.6 nm), [b] a spun ZnO thin film 

that has been left to dry in ambient conditions (Rq = 10.2 nm), [c] a ZnO thin film annealed 

to 240 °C highlighting the inconsistent morphology (Rq = 6.6 nm) and [d] the height profile 

is shown for blue line indicated on image [c]. This shows the differences in peak to trough 

distances when comparing the nanoridged and smooth area of the film.  

 

 

The thermal annealing step is crucial to convert the SG derived thin film to a ZnO 

layer. It also governs the orientation of the thin film during the evaporation of the 

solvent and is necessary for the removal of any organic contaminants. The 

nanoridged pattern on the surface of the ZnO thin films is a result of stress 

predominantly due to the differences in the thermal expansion coefficients of the 

ZnO film and the ITO substrate. This is a common and causes pattern features in 

films,
229, 230

 and happens when the film is being annealed, causing bending within 

the gelated film. Some remaining solvent gets trapped within the film, and as the 
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film is annealed this gets drawn from the structure and causes the network to contract 

and bend but not to fracture. Kwon et al. studied sol-gel derived ZnO films and 

found that the nanoridged structure was a prominent feature when the annealing 

temperature was greater than the boiling point of the specific solvent.
231

 In this 

instance, Kwon et al. found that annealing the film for prolonged periods of times 

did not alter the skeletal wavelengths of the individual wrinkles, with each giving a 

periodic wave pattern, but saw an increase in the number density of branches. 

 

 

3.2.2.2 Impact of Processing Temperature 

 

To study in the impact of processing temperature on the formation of nanoridged 

architectures, ZnO thin films were annealed at a range of temperatures for 1 hour. 

This is summarised in a series of 10 x 10 µm AFM scans shown in Figure 3.4 for 

0.25 M ZnO films annealed at [a] 120 °C, [b] 240 °C, [c] 360 °C and [d] 480 °C. At 

120 °C, a smooth homogenous morphology was formed with a Rq of 1.4 nm. If the 

annealing temperature is increased, a nanoridged ZnO structure was produced as 

shown in [b-d] with Rq values of 7.4 nm, 6.8 nm and 6.9 nm for a 240 °C, 360 °C 

and 480 °C respectively. From the AFM images there are no significant differences 

in nanoridge formation for [c] and [d] despite a significant change in processing 

temperature.   
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Figure 3.4 AFM images of sol-gel derived films annealed for 1 hour at different 

temperatures: [a] a film annealed to 120 °C (Rq = 1.4 nm), [b] 240 °C (Rq = 7.4 nm), [c] 360 

°C (Rq = 6.8 nm) and [d] 480 °C (Rq = 6.9 nm). 

 

 

 

 

3.2.2.3 Controlling Nanoridge Formation  

 

There have been a number of publications which focus on ZnO nanoridged thin films 

and their application as extracting layers for OPV devices. Chen et al. showed that 

nanoridged ZnO interlayers penetrate through the active layer of the polymer active 

materials causing large leakage currents and lowering the VOC.
232
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chloroform with a lower boiling point solvent to discourage penetration of the 

nanoridges due to increased evaporation rate. 

In order to create desirable smooth films the impact of post spin coating treatment 

was studied, carefully monitoring any differences in film morphology. After spin 

coating, films were either left to dry in ambient conditions for 15 minutes prior to the 

annealing step (shown in Figure 3.5 [a, c]) or placed immediately on the hot plate 

(Figure 3.5 [b, d, e, f]). As can be seen in Figure 3.5 [a, b] for a 0.25 M ZnO film 

annealed at      120 °C, regardless of the step prior to annealing both treatments result 

in a smooth film formation with an Rq < 1 nm. However, when the temperature is 

increased to 160 °C a change in morphology is seen between treatments. By leaving 

the film to dry in ambient conditions for a minimum of 15 minutes, a smooth 

homogenous film is formed with an Rq of 3 nm (Figure 3.5 [c]). If however, the 

films are directly placed on to the hot plate (following the spin coating step), the 

impact of annealing drives the spontaneous formation of the nanoridged network and 

gives an Rq of > 10 nm (Figure 3.5 [d]). Solution concentration is also an important 

factor with a smooth film formed regardless of the processing temperature if the 

concentration is lowered to 0.15 M. This is shown for a 120 °C film (Figure 3.5 [e]) 

and a 160 °C film (Figure 3.5 [f]) with both films annealed immediately after spin 

coating. 

Despite the 0.15 M solution consistently giving smooth homogeneous films, there 

was a series of problems when trying to implement this layer into devices. This is 

likely to be due to the low concentration of the solution, resulting in inconsistency 

between batches of solutions. It was therefore concluded that the 0.25 M solution 

would be used for spin coating, and the films would be left to dry in air prior to 
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annealing. These optimum conditions would be used to investigate the use of ZnO 

layers in hybrid devices.  

 

 
 
Figure 3.5 AFM images of films annealed to 120 °C with [a] a drying step and [b] 

annealed immediately; films annealed to 160 °C with [c] a drying step and [d] annealed 

immediately. Also shown are films processed at a lower solution concentration of 0.15 M 

and annealed immediately to [e] 120 °C and [f] 160 °C. 
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3. 3 Characterisation of the Optimised Layer 
 

In order to create a smooth reproducible morphology, ZnO thin films were spun from 

an optimised 0.25 M solution and left to stand in air for fifteen minutes before 

annealing. For the following section, the films were treated at two different 

annealing temperatures, 120 °C (ZnO120°C) and 160 °C (ZnO160°C) for 1 hour in air. 

 

3.3.1 Conductivity of ZnO layer 

 

CAFM was used to study the effect of the processing temperature on the surface 

conductivity of the ZnO thin films. Figure 3.6 shows simultaneously obtained 

topography images [a-b] and current distribution maps [c-d] of ZnO120°C [a, c, e] and 

ZnO160°C [b, d, f]. The topography of both films is similar, with a surface roughness 

of 0.9 nm for [a] ZnO120°C, whereas [b] ZnO160°C has a slightly higher surface 

roughness of 1.95 nm. The current distribution maps were acquired whilst applying a 

6 V bias, highlighting the distinct difference in the surface currents obtained by 

varying film preparation conditions. The average current for ZnO120°C was 63 pA [c], 

significantly lower than the average current of 1.2 nA obtained for ZnO160°C [d] 

under the same conditions. The differences in surface conductivity are likely to be 

due to different phases of the ZnO layer which influences the currents expected and 

hence the interaction between the tip and the surface.
233
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Figure 3.6 [a] Topographic AFM images of [a] 120 °C and [b] 160 °C and the 

corresponding current distribution maps at 6 V for [c] 120 °C and [d] 160 °C.  Histograms 

showing the current distributions are also shown for [e] ZnO120°C and [f] ZnO160°C. 
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3.3.2  Absorption spectroscopy 

 

The electronic absorption characteristics of the two films are summarised in Figure 

3.7; with the films exhibiting a high transparency of > 95 % across the visible and 

near-infrared range (400 – 700 nm). Eg were calculated from the absorption profiles 

by the method for non-crystalline semiconductors,
234, 235

 giving a relationship 

between the absorbance, α, and energy, E shown in Equation 3.1:
234, 235

 

 𝛼 ∝  
1

𝐸
 . ( 𝐸 − 𝐸𝑔 )2                               Equation 3.1 

By plotting the energy ( eV ) versus ( E x α ) 
½
, Eg can be estimated as the intercept 

with the energy axis, (shown in Figure 3.7 [b]) giving band gaps of 3.26 eV and 

3.15 eV, for ZnO120°C and ZnO160°C respectively. These values are consistent with the 

optical band gaps previously reported for ZnO thin films and show only slight 

variation between the two different processing temperatures.
150

  

 

 
 

Figure 3.7 [a] Transmittance data for a ZnO thin film spin-coated onto a quartz substrate 

with a quartz background for ZnO120°C (black solid line) and ZnO160°C (green solid line). [b] 

Determination of Eg by plotting (E x abs)
1/2

 as a function of energy (eV) and determining the 

intercept with the energy axis (shown with dotted lines). 
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3.3.3 Quenching Ability 

 

The effect of processing temperature on the ability of the layer to quench excitons 

from an absorbing donor material was studied by PL spectroscopy. Single layers of 

SubPc both with and without ZnO were grown on a quartz substrate at a deposition 

rate of 2 Å/s, and the PL spectra are shown in Figure 3.8. An excitation wavelength 

of 570 nm as it is the onset of the main absorption peak (see inset), with the PL 

response measured from 580 to 760 nm. (It should be noted here that the feature at > 

725 nm is a spectral response of the lamp/substrate). For a single layer of SubPc 

there are two characteristic peaks; one at 615 nm and one ~ 715 nm. The feature at 

615 nm is the response from the main absorption band of SubPc and a Stokes shift of 

15 nm can be seen.
236

 The peak at ~ 715 nm however is not featured in the 

absorption of SubPc (see inset) and is only present in the PL of a solid state film. 

The intensity of this feature can vary from growth to growth and the origin has not 

yet been explained in the literature, with one possible hypothesis being due to SubPc 

dimers present within the film. 

For ZnO to be able to effectively function as an electron acceptor the layer has to be 

able to quench any excitons generated within the SubPc film. A quenching efficiency 

can be estimated by normalising the PL intensity without the presence of a 

quenching layer and monitoring the overall reduction in intensity if a quenching 

layer is used. On addition of a ZnO layer the excitons generated in the SubPc film 

are quenched, showing a reduction of 20 % for ZnO120 °C (black solid line) and 40 % 

for the ZnO160 °C layer (green solid line) at 615 nm. The second feature at ~ 715 nm 

is also quenched by a similar amount. This study suggests that the ZnO film is 

capable of quenching excitons generated by the SubPc film, although the quenching 
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efficiency is low. These values suggest that both layers have acceptor properties and 

are able to dissociate excitons. Due to the large reduction in PL intensity for                

ZnO160 °C, and therefore the greater ability to dissociate excitons, it would be 

assumed that the film processed at the higher temperature would be more effective as 

an acceptor material. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Normalised PL spectra of a 15 nm SubPc film with and without a quencher 

layer. A single SubPc layer is shown (purple) and a SubPc layer deposited ontop of a 

ZnO120°C film (black solid line) and ZnO160°C film (green solid line). The inset shows the 

absorption of a 15 nm SubPc layer. 

                                                                                                                    

 

 

3.3.4 Energetic Analysis 

 

To gain insight into the influence of processing temperature on ZnO composition, 

the films were further characterised using XPS at a take-off angle of 90 °. The full 

survey spectra is shown in Figure 3.9 [a] with all main features labelled, there are no 

extra features present when comparing the film annealed to 120 °C (black solid line) 
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ZnO120 °C and ZnO160 °C, with two peaks observed, 2p3/2 (1020.8 eV) and 2p1/2 (1043.9 

eV) in a 2:1 ratio due to spin-orbit splitting.  

There are more significant differences however when looking at the O 1s for the two 

films, which coincide with differences in ratios. Figure 3.9 [c], shows the 

comparative study of the core O 1s region, which comprises two unique components, 

a wurtzite lattice component with zinc coordinated to oxygen (O1sA, 529.4 eV), and 

a broad O 1s (O1sB, 530.8 eV) which can be attributed to contaminants. The full 

width half-maximum (FWHM) of the two components differs, 1.09 and 1.85 eV for 

O1sA and O1sB respectively. This is due to the difference in bonding environment, 

with a narrower peak a result of coordination to the Zn atom. Also, O1sB is 

significantly wider due to surface adsorbates such as surface carbonaceous species 

such as CO, CO2, CO3
2-

.
151

 Surface adsorbates are a significant feature due to the 

surface sensitivity of XPS (with an estimated penetration depth in the region of 5-10 

nm). The two main contaminants present in O1sB can also be attributed to materials 

present in the SG process, COH from the ethanolamine stabiliser and COO
-
 (BP > 

300 °C) which can be identified as the oxygen present in the zinc acetate raw 

material. Stoichometric analysis of each sample was obtained by comparing the 

elemental composition of zinc to oxygen, which is summarised in Table 3.1. The 

ratios are calculated using the Schofield relative sensitivity factors (RSFs) which are 

built in to the software of CasaXPS and the analyser transmission function.  

The ratio of Zn 2p : O 1sB decreases from 1 : 1.42 for ZnO120°C  to 1 : 0.96 for 

ZnO160°C, due to the removal of the raw material contaminants. The presence of 

contaminants is also apparent when looking at the C1s spectra for each film, shown 

in Figure 3.9 [d]. This C1s spectra is fitted with three main components, the first 
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due to C-C and C-H at 284.6 eV and at higher binding energies the ethanolamine 

(285.7 eV, C-NH2 and C-OH) and zinc acetate precursor (289.3 eV, COO
-
). 

 

 

 
 
Figure 3.9 XPS spectra of [a] survey scan, [b] Zn 2p which contains two peaks Zn 2p3/2 

and Zn 2p1/2 in a 2:1 ratio owing to spin-orbit splitting, [c] O 1s, where two components 

are present O 1sA (bound ZnO) and O 1sB (contaminants present) and [d] C 1s. Both films, 

120 °C (black solid line) and 160 °C (green solid line) are shown. 
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Table 3.1 A summary of the binding energies, FWHM and compositions (%) for Zn 2p and 

O 1s contributions. 

 
 

 

 

 

eV 
120 °C 

FWHM 
 

% 
 

eV 
160 °C 

FWHM 
 

% 

Zn 2p 3/2 1020.8 1.54 28.6 1020.8 1.53 28.8 

Zn 2p 1/2 1044.0 1.60 27.9 1043.9 1.58 29.2 

O 1s A 529.4 1.09 13.9 529.4 1.16 18.8 

O 1s B 530.8 1.85 29.6 530.9 1.79 23.2 

       

Zn 2p 3/2 : O 1s 

A 

  1 : 0.49   1 : 0.64 

Zn 2p 3/2 : O 1s B   1 : 1.42   1 : 0.96 
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3.4  Impact of processing temperature 
 

The role of defect states and the impact they have on carrier concentration and the 

work function is still widely debated. A recent paper by Greiner et al. reported that a 

change in cationic oxidation state can result in a significant change in the work 

function of the TMO layer.
237

 This in turn could have an effect on the capability of 

the metal oxide to work as an electron acceptor due to variations of the ZnO CB and 

VB with respect to the VL, and in turn exciton dissociation at the interface with the 

organic donor material. As shown in Section 3.3.4, by increasing the processing 

temperature by 40 °C, there is a change in the stoichiometry of the ZnO films with a 

Zn 2p3/2  : O1sA ratio of 1 : 0.49 for ZnO120°C to 1 : 0.64 for ZnO160°C. This suggests 

that an increase in temperature leads to an increase in the conversion to ZnO, which 

may in turn alter the work function of the layer.  

 

 
 

Figure 3.10 VB onset for ZnO120°C (black solid line) and ZnO160°C (green solid line). The VB 

onset is calculated by the intercept with the binding energy axis. 
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KP measurements were carried out to determine the work function of the two ZnO 

films. There is a significant difference in the work function of the layers, from 3.20 

eV to 3.80 eV for ZnO120°C and ZnO160°C respectively. The VB edge XPS spectra for 

the two ZnO films are shown in Figure 3.10 to provide further understanding of the 

electronic properties. The position of the EFs was determined by extrapolating the 

leading edge of the VB photoemission to the intercept with the background level. 

The EFs for ZnO120°C is 2.20 eV above the VB, giving a VB position of 5.40 eV 

below the VL. In the case ZnO160°C, the EFs is similar at 2.25 eV, but the film has a 

much deeper VB position of 6.05 eV below the VL owing to the larger measured 

work function. The CB of the ZnO films has been estimated from the optical band 

gap (Figure 3.7) of these thin films to give a CB position relative to the measured 

VB by XPS of 2.14 eV (ZnO120°C) and 2.90 eV (ZnO160°C). This is summarised 

schematically in Figure 3.11.  

 

 
 

 

Figure 3.11 Energy level diagrams for [a] ZnO120 °C / SubPc and [b] ZnO160 °C / SubPc with 

deposition of 1 and 5 nm of SubPc. The positions of the EFs, VB and CB of the ZnO layers 

were determined by KP, XPS and UV-Vis respectively. 
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By sequentially depositing thin layers of the SubPc onto the ZnO surface further 

information can be gained about the electronic properties of the D/A interface. It is 

key to note here that unlike the small interfacial dipoles formed at an organic-organic 

interface, large VL shifts would be expected for an inorganic-organic interface. 

Therefore, measurements indicating the energy level offsets in this region are 

essential for understanding device parameters.
226, 238

 Figure 3.11 shows the change 

in work function with subsequent growth of SubPc, measured using KP. For 

ZnO120°C the work function is increased from 3.20 eV to 3.40 eV with addition of 1 

nm SubPc, resulting in a VL shift of 0.20 eV. The work function increases further to 

3.90 eV for a 5 nm SubPc layer. With deposition on ZnO160 °C there is only a subtle 

change in work function from 3.80 eV to 3.90 eV, and a small resultant vacuum level 

shift, for both the 1 and 5 nm thicknesses of the SubPc. The work function saturates 

past 5 nm of SubPc, and remains constant at 3.90 eV for both ZnO thin films.  

The position of the HOMO level of SubPc is included in Figure 3.11, which is 

calculated by assuming an ionisation IP for SubPc of 5.70 eV.
134, 164

 For 

organic/organic junctions the Ig of the D/A interface, is known to directly influence 

VOC. If the same principle is used here, the maximum obtainable VOC can be 

estimated from the difference between the HOMOSubPc and EFs. This estimation is 

made due to the n-type nature of ZnO thin films and the presence of gap states that 

have been shown to lie close to the materials EFs and can extract electrons.
59

 Band 

bending in the near interfacial region of the organic (< 5 nm) would be expected to 

provide an additional driving force for photocurrent extraction, and hence a larger 

expected VOC. Thus, the interfacial region is of more significance than the bulk (> 5 

nm) collection levels of the organic.  Thereby, if you consider the difference in 
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HOMO onsets with a 1 nm SubPc layer, the Ig decreases from 2.30 Ev (ZnO120°C) to 

1.80 eV (ZnO160°C) and hence a resultant decrease in cell VOC would be expected.  
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3.5  Device Fabrication 
 

To validate this hypothesis, bilayer HOPV cells were fabricated with the 

architecture: ITO / ZnO (45 nm) / SubPc (15 nm) / MoOx (15 nm) / Al. A control 

device without the use of ZnO was also grown for comparison: ITO / SubPc (15 nm) 

/ MoOx (15 nm) / Al. This is represented schematically below in Figure 3.12 which 

shows a summary of the energy levels of the materials used. The predicted work 

function of the transparent electrode ITO and back contact Al is also shown. 

 

 
 

Figure 3.12 Schematic showing the energy levels for the inverted hybrid device ITO / ZnO 

(45 nm)/ SubPc (15 nm) / MoOx (15 nm) / Al. The bilayer architecture is also shown.   

 

 

The key device parameters are shown in Table 3.2, with the corresponding J-V plots 

in Figure 3.13 [a]. The thickness of the SubPc layer was kept constant at 15 nm as it 

is in line with previously published exciton diffusion lengths.
239, 240 

The control 

device did not employ any ZnO to emphasise the role of ZnO as an efficient electron 

acceptor. The devices with a ZnO layer significantly outperform the control device, 
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which has a low JSC of 0.67 mA cm
-2

 and a PCE of only 0.05 %, demonstrating 

clearly the suitability of ZnO as an inorganic electron acceptor in these HOPV 

devices. 

As predicted, there is a significant improvement in VOC from 0.82 V for ZnO160°C to 

1.18 V for ZnO120°C, demonstrating clearly the direct correlation between Ig and the 

achievable VOC for these hybrid devices. Another factor contributing to the difference 

in VOC could be the suppression in dark current due to lower mobility of the films. 

However this affect is likely to be more of a secondary causation.  

 

The voltage achieved for this cell is very high for a single junction cell and shows 

the potential of SM organic donors to be utilised with TMO acceptors for high 

performance. The enhanced Ig, along with the high IP SubPc donor results in higher 

VOC values than obtained with polymeric alternatives such as P3HT, which typically 

yield values less than 0.7 V.
227

 There is approximately a 1 eV difference between the 

predicted Ig and the measured VOC of the device, which is not uncommon for 

excitonic solar cells due to the losses associated such as the exciton binding energy, 

recombination of charge transfer states and the diffusion of charge carriers to the 

electrodes.
102

 Also owing to the nature of the ZnO film and the fact that there are 

likely to be gap states near to/around the EFs it is difficult to pinpoint the exact 

energy at which charges will be extracted. 

 

The wide band gap ZnO electron accepting layer has high transparency across the 

entire visible range, so does not contribute to the photocurrent generation during 

device operation. This is shown in Figure 3.13 [b], with the SubPc layer only 

contributing to the EQE for both device architectures, despite this, the optimised 

ZnO/SubPc hybrid devices gave a relatively high JSC of > 1.5 mA cm
-2

. This is far 
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greater than other TMO/small molecule hybrid devices, where the best published 

value for JSC currently stands at 0.015 mA cm
-2

.
77

 This indicates that both films are 

both efficient at splitting excitons at the interface with SubPc, also shown by PL in 

Figure 3.8 which had a reduction in PL intensity of the SubPc film of 20 % and 

40 % for ZnO120°C and ZnO160°C respectively. 

 

 

 
 

Figure 3.13 [a] Averaged J-V plots under illumination of 100 mW cm
-2

 for the control 

device (blue line), ZnO120 °C (black solid line) and ZnO160 °C (green solid line), also shown 

is the corresponding dark J-V plots (dotted lines). [b] Representative EQE for each device. 

 

 

The main limitation of the devices is the low FF of 0.25 and 0.29 for ZnO120°C and 

ZnO160°C respectively, and this is likely to be due to a photoconductivity effect in the 

layer, with shunts being exposed when scanning. Despite a 6 V bias being applied 

during the CAFM measurements there is a poor averaged surface current of 63 pA 

for ZnO120°C which can be seen in Figure 3.5 [c]. The average current is greatly 

improved to 1.2 nA for ZnO160°C (Figure 3.5 [d]) which in turn explains the 

improvement in FF to 0.29. This is likely to be due to removal of impurities and 

adsorbates on the surface at the higher annealing temperature (seen by XPS), 

improving the surface conductivity and resistance. Despite the low FF, the PCE of 
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the devices increases from 0.39 % (ZnO160°C) to 0.47 % (ZnO120°C) merely by a 40 

°C decrease in the ZnO processing temperature, with the improvement primarily 

attributed to the increase in VOC. The voltage exceeds that of SubPc/C60 devices, 

which are reported at approximately 1.05 V,
135

 showing the potential of ZnO as a 

low temperature, cheap scalable alternative to C60 for use in bilayer HOPV cells.
241

 

 

Table 3.2 Averaged HOPV device characteristics for hybrid devices: ITO/ ZnO (120 °C, 160 ᵒC) / 

SubPc (15 nm) / MoOx (15 nm) / Al and the control device without an acceptor layer. 

 

 

Temp (°C) JSC ( mA cm
-2 

) VOC (V) FF PCE (%) 

ZnO120 °C 1.61 1.23 0.23 0.45 

ZnO160 °C 1.65 0.82 0.29 0.38 

Control 0.67 0.24 0.32 0.05 
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3.6  Donor Layer Comparison 
 

The relationship between Ig and VOC in HOPVs can also be explored using donors 

with varying IP values. To study this, HOPVs using three different donor materials 

(SubPc, ClAlPc, P3HT) were fabricated on the ZnO120 °C layer. SubPc and ClAlPc 

were vacuum deposited directly onto the ZnO substrate with a layer thickness of 20 

nm. A solution processed donor P3HT was also used for comparison. 200 mg of 

P3HT was dissolved in 1 mL of 1,2-dichlorobenzene in a nitrogen filled glove box 

and left to stir overnight. The solution was then filtered prior to spin coating at 800 

rpm onto the ZnO substrate, giving an overall active layer thickness of ~ 15 nm. This 

film was annealed to 140 °C for 20 minutes. For all devices a 15 nm MoOx layer was 

used as the hole transporting layer with an aluminium back reflective electrode. 

The J-V curves and EQE for each of the three donor materials are shown in Figure 

3.14 and the performance parameters are summarised in Table 3.3. From the J-V 

curves it can be seen that there is also a significant change in the JSC of each device. 

It should be noted here that due to the different absorption coefficients, absorption 

maxima of each material and the LD for each, all devices would need to be 

individually optimised. The importance of optical considerations will be discussed 

further in Chapter 5. The EQE for each device matches the absorption spectra of the 

donor material showing that in all three systems, ZnO does not contribute to the 

photocurrent. The FF of each system also differs significantly which could be due to 

a difference in recombination dynamics for each D/A interface,
242

 or another likely 

cause is a mobility mismatch between the two different types of material.
243

  

By utilising three different donor materials with different HOMO levels, 5.7 eV 

(SubPc), 5.4 eV (ClAlPc) and 5.0 eV (P3HT), the magnitude of the Ig will reduce 
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with respect to the position of the ZnO EFs. This is shown schematically in Figure 

3.14 [c]. The VOC decreases from 1.12 V to 0.82 V to 0.47 V for SubPc, ClAlPc and 

P3HT with ZnO respectively, directly in line with the predicted changes from the Ig. 

This result helps to verify the assumption that the Ig is comparable to that of an 

organic-organic interface and shows the potential of this type of HOPV with a 

variety of organic SMs. 

 

 
 
Figure 3.14 [a] Averaged J-V plots under illumination of 100 mW cm

-2
 for SubPc (purple 

solid line), ClAlPc (light blue solid line) and P3HT (orange solid line). Also shown are the 

corresponding dark J-V plots (dotted lines). [b] The EQE for SubPc (purple), ClAlPc (blue) 

and P3HT (orange). [c] A schematic of the three organic donors used with different HOMO 

levels ranging from 5.7 eV to 5.4 eV to 5.0 eV for SubPc, ClAlPc and P3HT  with respect to 

the ZnO acceptor layer. 
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Table 3.3 Averaged HOPV device characteristics for the three different hybrid devices: 

ITO/ ZnO (120 °C) / donor / MoOx (15 nm) / Al. 

 

Temp (°C) JSC ( mA cm
-2 

) VOC (V) FF PCE (%) 

SubPc 2.10 1.12 0.24 0.58 

ClAlPc 1.08 0.82 0.32 0.29 

P3HT 0.76 0.59 0.47 0.23 
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3.7  Conclusions 
 

Chapter 3 demonstrates that ZnO films fabricated using the SG process can be 

incorporated in HOPV devices with a SM organic donor layer. The effect of 

processing temperature and processing conditions on the morphology of ZnO has 

been shown. It is clear that the processing steps need to be controlled in order to 

create reproducible films. This can be achieved either by leaving the film to dry at 

room temperature prior to annealing. 

An optimised smooth (Rq < 1 nm) ZnO thin film was then further characterised by a 

range of techniques including XPS, UV-Vis and KP. The impact of processing 

temperature (at 120 °C or 160 °C) was closely studied in order to monitor any 

changes in the ratio of the ZnO 2p3/2 : O1sA. A more oxygen deficient ZnO film 

resulted in a decrease in the work function of the layer, from 3.80 eV from ZnO160 °C 

to 3.20 eV for ZnO120 °C but an increase in the overall Ig with a SubPc donor. HOPV 

devices showed an increase in VOC of 0.36 V, from 0.82 V for ZnO160 °C to 1.18 V for 

ZnO120 °C, a consequence of the increased Ig between the SubPc / ZnO. The results 

demonstrate that ZnO can be used as an electron acceptor SM hybrid planar bilayer 

cells achieving a PCE of 0.45 %, two orders of magnitude larger than previously 

reported small molecule hybrid cells.
75, 77, 241

  

Three different donor materials were utilised with the optimised ZnO thin film to 

study if the Ig could be directly related to the VOC of the device. Two vacuum 

deposited layers, SubPc and ClAlPc were compared to the solution processed P3HT 

donor. This decrease in Ig in the series of cells resulted in a decrease in VOC from 1.12 

V (SubPc) to 0.82 V (ClAlPc) to 0.47 V (P3HT).  



 4 Evaluation of energetic measurement techniques 

116 

 

4 Evaluation of energetic measurement techniques 

 

4.1  Introduction 
 

UPS is a technique that is commonly used to investigate the energetic difference 

between the HOMO level and the EFs, as well providing the work function of a given 

material. It is this measurement of IP (that can be inferred from the addition of the 

HOMOonset and the work function) that makes UPS a more informative technique 

than other methods such as KP. It is also appealing as the measurements are taken in 

UHV conditions. For UPS, a negative bias is necessary to enable electrons with low 

kinetic energies to be detected efficiently. This is important as it means that values 

obtained by UPS will represent the lowest energy at which electrons are able to 

escape under the UV radiation, whereas KP gives a measure of the average work 

function under the tip and therefore can lead to an overestimation.
244, 245

 

UPS however is not without its issues. It must be stressed that care should be taken 

when comparing literature values as large variations can occur. This can simply be 

due to differences in sample preparation methods, conditions and handling of the 

materials. This is due to two factors, firstly the surface sensitivity of UPS (typical 

penetration depth ~ 5 nm) makes the measurements very susceptible to surface 

contamination, and also due to the irradiation damage that can be caused from 

exposing the sample to intense UV radiation, typically He I (21.2 eV). This high 

intensity photon irradiation can cause changes to the surface composition of 

materials, particularly to metal oxide materials if prepared ex-situ.
246
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Of course, energetic determination is not just limited to UPS and KP, there have 

been a variety of reports looking at energetic changes using a number of techniques. 

Cyclic voltametry (CV) has been used to study the electrochemical properties of an 

analyte in solution allowing the HOMO of an organic material to be measured.
247

 

LUMO levels can be estimated by the absorption onset of the organic material, or 

more accurately through the use of inverse photoemission spectroscopy (IPES) by 

measuring the emission of photons after exposure to an electron beam.
248

 All of these 

methods provide a useful insight into the energetics of materials that are pivotal to 

device performance. Variations in results obtained between each method however 

can occur and this must be carefully considered when sourcing values from 

literature.  

Detailed discussions surrounding the issues associated with UPS however remain 

limited, with a small number of studies looking into variability in particular for metal 

oxides. In a study by Davis et al., 
245

 the authors discuss the need to calculate IP 

without UHV conditions. In this paper, photoelectron spectroscopy in air (PESA) is 

presented as an alternative to UPS. The method relies on a monochromatic UV 

source which ionises oxygen molecules in air allowing determination of IP in an 

ambient environment, and the authors showed the validity of this technique. 

Alternatively, Gutmann et al. investigated the impact of UV and X-ray radiation on 

TiO2 surfaces and found that a reduction in work function of 0.5 eV occurred due to 

the photochemical hydroxylation of oxygen vacancies present on the TiO2 surface.
249

 

This study concluded that the high energy photon source is responsible, measuring 

only a 0.02 eV shift in work function using low intensity x-ray photoemission 

spectroscopy (LIXPS).  
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4.1.1 Aims 

 

The aim of this section is to highlight the issues surrounding the different methods 

for calculating energetic values and to outline the care that must be taken in order to 

accurately determine both work function and IP. In order to do this, the same devices 

as discussed in Chapter 3 are investigated using UPS and this is compared to the 

data presented previously. This chapter outlines the issues encountered using these 

techniques on metal oxide layers that are not grown in-situ, discussing surface 

contamination and also the impact of UV radiation on sensitive materials such as 

ZnO. The change in IP and work function as a function of time compared to any 

changes in composition that are observed by XPS is also shown.   
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4.2  UPS Studies on ZnO 
 

4.2.1 Probing energy levels of sol-gel ZnO 120 °C 

 

UPS studies were carried out to determine the electronic characteristics of the ZnO 

and SubPc films. Figure 4.1 shows the UPS spectra obtained with sequential 

deposition of thin layers of the organic material of interest, SubPc. UPS 

measurements were taken as the thickness of SubPc was varied from 1 nm to 15 nm 

(device layer thickness). This approach is used due to the small probing depth of 

UPS, allowing a thickness profile of the interface to be obtained, which is 

represented in the schematic.  

Analysis of the spectra presented in Figure 4.1 revealed a work function of 3.10 eV 

for ZnO120 °C sample. As discussed previously, this low work function is likely to be 

due to oxygen vacancies which act as n-type dopants, decreasing the work function 

of the oxide when compared to the stoichiometric material.
237

 Greiner et al. 

discussed the effect of adsorption of gas-phase molecules altering the work function 

of the metal oxide thin film, a problem which is associated with using solution based 

processes (compared to in-situ growth) to form ZnO films.
237

 They also highlight 

that leaving a sample in vacuum for several hours can alter the work function by up 

to 0.5 eV. With this in the mind, the work function was measured immediately after 

loading into UHV. The addition of 1 nm thick SubPc film results in a significant VL 

shift of 0.50 eV, due to an increase in the work function to 3.60 eV. The work 

function increases further, to 3.85 eV, in the case of a 5 nm thick SubPc layer where 

the work function saturates.  
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The energy difference from the EFs to the HOMO/VB onset can also be obtained 

from UPS measurements. ZnO120 °C has the VBonset of 4.20 eV below the EFs 

resulting in an IP of 7.30 eV.  For ZnO120 °C / SubPc 1 nm the HOMOonset is 2.05 eV 

below the EFs and due to the significant increase in work function there is significant 

band bending which results in pinning of the SubPc LUMO to the ZnO EFs. The 

HOMOonset saturates at 1.90 eV with a 5 nm SubPc thickness, giving SubPc an IP of 

5.75 eV which is comparable to values previously reported.
164

 
 
It should be noted 

here that the work function and HOMOonset are not material constants as the 

HOMOonset is measured in reference to the substrate EFs and is due to charge transfer 

between substrate and organic. 

UPS does not allow for calculation of the CB/LUMO levels of the material. Instead 

these have been estimated from the optical band gap (UV-Vis, Section 3.3.2) for 

ZnO, while the band gap for SubPc has been obtained from literature.  

 

 
 
Figure 4.1 A schematic of the values obtained, along with the corresponding UPS spectra. 

To simplify the diagram this has only been shown for ZnO120 °C (black line), ZnO120 °C / 1 nm 

SubPc (red line) and ZnO120 °C / 5 nm SubPc (blue line).  
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4.2.2 Probing energy levels of sol-gel ZnO 160 °C 

 

Values obtained from UPS measurements for ZnO160 °C are shown in Figure 4.2. The 

work function is measured at 3.70 eV with a marginal shift for ZnO160 °C / SubPc 1 nm 

to 3.75 eV. With 5 nm of SubPc the work function increases to 3.85 eV, resulting in 

a small VL shift. The VB for ZnO160 °C is 3.90 eV below the EFs giving an IP of 7.60 

eV, 0.3 eV greater than ZnO120 °C. The HOMOonset for ZnO160 °C / SubPc 1 nm is 1.80 

eV below the EFs which is substantially smaller when compared to ZnO120 °C / SubPc 

1 nm. As before however, the HOMO saturates at 1.90 eV for ZnO160 °C / SubPc 5 nm 

giving SubPc an IP of 5.75 eV. 

 

 

 
 
 

Figure 4.2 A schematic of the values obtained from UPS, along with the spectra from which 

these numbers were obtained. To simplify the diagram this has only been shown for 

ZnO160 °C (black line), ZnO160 °C / 1 nm SubPc (red line) and ZnO160 °C / 5 nm SubPc (blue 

line).  
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4.3  Comparison of Techniques  
 

The UPS data in Section 4.2 is compared to the values obtained in Section 3.4 to 

monitor if altering the experimental method changed the findings. Ideally both 

studies should give the same results as identical films were used (ZnO120 °C / 160 °C / 

SubPc). Both sets of results support the findings that the energetic profile of ZnO can 

be altered simply by varying the processing temperature. By altering the energy 

levels, the interface energetics is changed which impacts the VOC of a device.  

The issue however between these two studies is that the absolute values of the CB 

and VB positions are significantly different depending on the technique used. This is 

shown schematically in Figure 4.3, which shows the obtained values at both 

temperatures. The diagram also indicates which technique was used to obtain the 

results (UPS, UV-vis, KP or XPS). It should be noted that the method to calculate Eg 

(using UV-Vis) was consistent throughout. 

The work function values are similar for both methods, with KP giving values on 

average 0.1 eV higher. This is not entirely surprisingly as KP gives the average work 

function beneath the oscillating tip. The measurement of the VBonset however is 

significantly different and introduces concerns when evaluating which technique to 

use. When using XPS, the VBonset is measured at 2.20 eV and 2.25 eV below the EFs 

for ZnO120 °C and ZnO160 °C respectively. UPS however calculates the VBonset at 4.20 

eV and 3.90 eV below the EFs for ZnO120 °C and ZnO160 °C respectively. As a 

consequence of the VB position when the CB is estimated (from the Eg), the level is 

significantly lower than the EFs, 0.96 eV and 0.78 eV below the EFs for ZnO120 °C and 

ZnO160 °C respectively. This phenomenon is not seen when using XPS to calculate 

VBonset.  
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Figure 4.3 A schematic showing the energetic values obtained for a ZnO120 °C and ZnO160 °C 

SG derived film. The diagrams indicate the CB and VB positions for each system and also 

the method used to obtain this value. When UPS is used, the CB position is calculated as 

being over 0.7 eV below the EFs for both ZnO films. 

 

 

 

4.3.1 Charge neutrality level 

 
The CB lying below the EFs has been previously reported in the literature for 

TCOs.
250

 This property has been explored when studying the cause of conductivity 

in these layers. Common for all the TCOs studied is the size mismatch between the 

large cation and the oxygen anion as well as the highly electronegative nature of the 

O 2s orbital. Various studies have found that if the oxygen vacancies are significant 

enough, one CB level is present that is significantly below the rest. This is referred to 

as the CB minimum (CBM).  
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The CBM was explored by King et al. who suggested that it was due to a difference 

in the position of the charge neutrality level (CNL), shown schematically in Figure 

4.4.
250

 All defects, impurities and surface states either have donor-like or acceptor-

like character resulting in states lying close to either the CB (donor states) or the VB 

(acceptor states). The CNL is defined as the point at which they have equal acceptor 

and donor like properties. If there is a tendency for these states to be donor-like, 

(common for TCOs), the EFs lies below the CNL and the CBM is low lying (Figure 

4.4 [b]).  

 

 
 
Figure 4.4 Schematic adapted from King et al. showing the energetic and common band 

bending for [a] conventional semiconductors and [b] transparent conducting oxides.
250

 

 

 

This work suggests that the low lying CBM is entirely plausible. The position of the 

CBM is dependent on both the material and the film carrier concentration (which 

denotes the number of electrons and holes that participate in conduction). The low 

lying CBM is found when using UPS, a widely recommended technique. There are 

discrepancies however for this material set as the ZnO thin films produced from the 

SG method have a low conductivity, so it is unlikely that this explanation can be 

applied here, placing doubt on whether this low lying CB is a realistic conclusion. 
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4.4  Film Stability with Various Techniques  
 

 

4.4.1 UPS 

 

As UPS is surface sensitive the measurements are susceptible to surface 

contamination, and also irradiation damage can be caused from exposing the sample 

to intense UV radiation, typically He I (21.2 eV). To monitor any variability in UPS 

measurements with film degradation, a sample prepared ex-situ was loaded in a 

UHV system and immediately tested to minimise the time the sample spent under 

vacuum. The process was optimised to ensure the sample was positioned and 

immediately measured to minimise film degradation before any data was obtained. 

The samples were then scanned repeatedly for one hour to monitor any changes in 

the spectral features with UV radiation.   

 

4.4.1.1  UPS degradation of ZnO120 °C 

 

The degradation of the ZnO120 °C film during UPS measurements is shown in Figure 

4.5. The results show that UV radiation impacts both the work function values and 

the VBonset. The work function is lowered by 0.55 eV after exposure to UV radiation 

for one hour, with the biggest change occurring in the first few minutes (a 0.25 eV 

reduction after four minutes exposure). This is significant as experimentally any 

delay in obtaining measurements, changes in data acquisition time and even direction 

of measurement (i.e. low to high kinetic energy) can result in major variations in the 

values obtained. This is problematic as there is likely to be a change in work function 
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of the film in the time it takes to set-up the technique even when care is taken to 

ensure this process is as reproducible as possible.  

 

 

 
 
Figure 4.5 Variation in the UPS spectra with time for ZnO120 °C with subsequent scans 

indicated by the arrows for [a] the entire kinetic range, [b] the work function and [c] the 

VBonset. A schematic is also shown ([d]) highlighting the change that occurs after exposure to 

UV radiation for 1 hour. 

 

 

A change in work function for ZnO under UV conditions has been reported 

elsewhere in the literature,
251-253

 with an increase seen in the photoconductivity of 

ZnO upon exposure to UV light. It has been hypothesised that this enhancement 
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occurs as UV radiation introduces holes which are attracted to charged oxygen 

molecules on the surface and therefore induce desorption of oxygen absorbed from 

the surface. This has been investigated in numerous OPV reports investigating 

improvement in ZnO based devices upon “photo-annealing”.
252

 There have been 

limited publications however about whether UPS can therefore be deemed as a 

suitable technique for the measurement of any metal oxides that are UV sensitive. 

Figure 4.5 [c] also shows a significant change of 1.05 eV in IP from 7.75 eV to 6.70 

eV. The change is significant as the VBonset is fundamental to the material. This 

suggests that UV radiation causes a reduction in O 2p intensity, therefore changing 

the VB states and it is not merely the removal of contamination layers.   

 

 

4.4.1.2  UPS degradation of ZnO160 °C 

 

The change in both work function and VBonset also occurs for ZnO160 °C, but the 

reduction is less significant. Under the same UV conditions the work function 

changes from 3.80 eV to 3.65 eV and the change mainly occurs during the initial 

scan and stabilises quickly. There is still however a large shift in VBonset of the film 

from 7.70 eV to 7.15 eV, pushing the estimated CB position closer to the EFs. The 

data is shown in Figure 4.6 and represented schematically in Figure 4.6 [d]. This 

highlights that even with an increased annealing temperature; the ZnO film is still 

susceptible to UV radiation. 
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Figure 4.6 Variation in the UPS spectra with time for ZnO160 °C for [a] the whole spectra, [b] 

the work function and [c] the VBonset. A schematic is also shown ([d]) highlighting the 

significant change that occurs after exposure to UV radiation for 1 hour.  

 

 

 

4.4.1.3  Changes to film composition 

 

To monitor the changes to the film composition under UV radiation, XPS spectra 

were recorded before and after the 1 hour exposure to UV detailed above. Figure 4.7 

shows the O 1s spectra recorded at a take-off angle of 90°. The component at ~ 529 

eV is the bulk ZnO component (O 1sA), whereas the component at a higher binding 

energy arises from atmospheric contamination (O 1sB), typically due to molecules 
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such as water and hydroxides which have been absorbed. It is clear from the spectra 

that there is a significant change under the exposure to a UV source, with the 

variation shown quantitatively in Table 4.1.  

After UV exposure, there is no change in the peak position of each feature but the 

percentage composition however changes significantly. The ratio for ZnO 2p3/2 : O 

1sA changes from 1 : 0.43 to 1 : 0.50 at 120 °C, suggesting the UV radiation triggers 

further conversion of the starting materials to ZnO. There is no such change for 

ZnO160 °C with any subtle differences being within the error of the technique. For 

both films however there is a significant removal of the contamination layer of 19 % 

and 15 % for ZnO120 °C and ZnO160 °C respectively. This verifies that the changes in 

work function for both films are likely to be due to the removal of the contamination 

layer at the surface. 

 

 
Table 4.1 A comparison of the percentage composition for both films indicating the changes 

in composition after the UPS measurements. The measurements were obtained at a TOA of 

90°. 

 

 
 

90° TOA 120 °C  160 °C  

 Fresh After UPS Fresh After UPS 

 

 

eV % eV % eV % eV % 

Zn 2p3/2 1021.0 39.4 1021.0 41.6 1021.3 43.6 1021.3 45.5 

O 1sA 529.5 16.9 529.5 20.7 529.9 29.6 529.9 30.2 

O 1sB 530.8 43.4 530.8 37.7 531.3 26.8 531.3 24.3 

         

Zn 2p: O 1sA 1 : 0.43 1 : 0.50 1 : 0.68 1 : 0.66 

Zn 2p: O 1sB 1 : 1.11 1 : 0.90 1 : 0.62 1 : 0.53 
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Figure 4.7 O 1s spectra of the ZnO film at a take-off angle of 90° is shown before and after 

exposure to a UV source for [a] ZnO120 °C and [b] ZnO160 °C with the bulk component (red 

line, O 1sA) and contamination layer (green line, O 1sB) indicated.  

 

 

 

 

4.4.1.4  Angle dependence 

 

To look more closely at the role of surface contaminants the experiment was 

repeated with a fresh sample at a take-off angle of 30°. The percentage of surface 

contaminants increases significantly, which is to be expected due to the reduction in 

penetration depth. There is also more contribution from oxygen in the ZnO lattice, 

suggesting that more of the surface is oxygen terminated as the penetration depth is 

likely to be in the range of 5 Å. 
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Table 4.2 A comparison of the percentage composition for both films indicating the changes 

in composition after the UPS measurements. The measurements were obtained at a TOA of 

30°. 

 
 

30° TOA 120 °C  160 °C  

 Fresh After UPS Fresh After UPS 

 

 

eV % eV % eV % eV % 

Zn 2p3/2 1021.0 34.3 1021.0 35.4 1021.4 38.6 1021.4 40.6 

O 1sA 529.5 18.5 529.5 22.5 530.0 30.8 530.0 34.6 

O 1sB 530.8 47.2 530.8 42.2 531.4 30.6 531. 24.9 

         

Zn 2p: O 1sA 1 : 0.54 1 : 0.64 1 : 0.80 1 : 0.85 

Zn 2p: O 1sB 1 : 1.38 1 : 1.19 1 : 0.79 1 : 0.61 

         

 

 

The angle dependence at both processing temperatures is more clearly represented 

by the bar charts in Figure 4.8, considering only the elemental composition of Zn 

2p3/2 and O 1s. It can be seen that for ZnO120 °C this is clearly dominated by the 

influences of surface contaminants, exceeding 35 % even after exposure to UV 

radiation for 1 hour. The level of contaminants is significantly lower at 160 °C 

showing that increasing the annealing temperature does results in either the removal 

of more contaminants from the fabrication step or a reduction in the sticking 

coefficient of the adsorbates.  

Zhang et al. studied the impact of core level XPS on single crystals of ZnO, 

distinguishing between Zn and O termination faces.
254

 The surface coverage of each 

is not affected by the presence of a contamination layer providing the thicknesses are 

equivalent. The contamination layer however does alter the O 1s spectra 

considerably (similarly to those in Figure 4.7), but owing to the binding energy 

being in excess of 1 eV removed from the bulk ZnO component, it was concluded 
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there was no impact on accurate determination of the ZnO bound in the lattice. The 

impact of contaminants on Zn and O terminated ZnO(001) surfaces was explored 

further by Coppa et al. looking at methods of effectively removing surface layers.
255

 

It was found that extreme conditions (0.05 Torr of 20 % O2 / 80 % He plasma at 525 

°C for 30 minutes) were necessary to do so. As well as complete removal of the 

contamination peak in the XPS spectra, a 0.5 eV shift in the UPS was observed. 

 

 
Figure 4.8 Bar charts showing the distribution of elements at TOA of 90° and 30° for [a] 

ZnO120 °C and [b] ZnO160 °C.  
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4.4.2 XPS 

 

The results presented in Section 4.4.1 show significant changes with exposure time 

using UPS. If the desire is to limit radiation damage to the surface, the lower count 

rates in XPS (and thereby longer exposure times) have often resulted in XPS being 

deemed a non-viable technique to measure the VB of TCOs such as ZnO. In a 

publication by Greiner et al. it is suggested that XPS is an inadequate method for the 

determination of VBonset values due to the increased power of radiation and extended 

acquisition times (> 2 hr).
237

 To investigate this claim, numerous scans on the two 

ZnO films were obtained over a 2 hr period, and are shown in Figure 4.9. The data 

highlights the need for long acquisition times in order to reduce the signal to noise 

ratio and hence obtain a more accurate VBonset value. It is clear however that there 

are no significant differences between the first, last and averaged scans shown by the 

red, blue and green lines respectively, with no significant change in VBonset despite 

exposure to an x-ray source for 2 hours. 

 

 
 

Figure 4.9 VB XPS spectra obtained by repeated measurements over a 2 hour period for [a] 

ZnO120 °C and [b] ZnO160 °C. The first, last and averaged scans are indicated by the red, blue 

and green lines respectively.  
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This investigation clearly contradicts other reports stating that XPS is an inadequate 

technique for obtaining VBonset values due to prolonged use of a soft x-ray source. 

The work presented here shows that it is more than just exposure time that needs to 

be considered when stipulating which technique would be most appropriate for data 

acquisition. The low count rate of XPS is due to a less intense source and also the 

variation in the photoionization cross section for O 2s and Zn 4s, shown in Figure 

4.10 needs to be considered. The photoionization cross section shows the probability 

that a photon of a given energy (from 10 eV – 1500 eV) can be absorbed by an atom 

to emit an electron from its electronic state.  The cross section is ~ two orders of 

magnitude higher for incident He I (21.2 eV) than an Al Kα (1486.6 eV) source, 

highlighting how susceptible the ZnO film is to UV radiation even during limited 

exposure times. 

 

 
 
Figure 4.10 The photo-ionization cross section of Zn 4s and O 2p from 10 eV – 1500 eV. 

The values were obtained from Sincrotrone Trieste SCpA (www.elettra.trieste.it). 
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4.4.3 KP with light 

 

The sensitivity of metal oxides to UV light is not just limited to solution processed 

fabrication methods. ITO substrates formed from sputtering were investigated to 

monitor the impact of light on the substrate work function. To achieve this freshly 

ITO substrates were exposed to ozone and loaded into a nitrogen filled glove box 

and the substrates were placed under a light source of 100 mW cm
-2

 AM 1.5 G either 

in the presence of a 400 nm UV longpass filter or left as loaded. The work function 

was measured by KP, monitoring the change in 5 minute intervals over a two hour 

period (Figure 4.11 [a]). Without a UV filter, the work function is reduced by 0.55 

eV simply by exposure to the light source for 5 minutes. Subsequent changes from 

this point on are then more gradual. In the presence of a UV filter however, there is 

no significant change in recorded work function, with the value fluctuating around 

4.9 eV ± 0.1 eV.  

The impact of a change in work function under illumination is shown by the inverted 

device ITO / C60 / SubPc / MoOx / Al. The J-V scans under constant illumination are 

shown in Figure 4.11 [b]. Upon initial scan, there is an S-shaped kink, which has 

been related to reduced interface recombination velocity at one of the electrodes and 

is detrimental to the FF of the cell.
256

 By exposing the film to light there is a 

reduction in the s-shaped kink under constant illumination, resulting in an 

improvement in the FF. This can be attributed to the work function of the substrate 

aligning more closely with that of the acceptor material C60, improving the overall 

device performance.
117

 The mechanism postulated is analogous to other metal oxides 

where the UV irradiation induces photogenerated holes which recombine with 
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absorbed O2
-
 releasing O2. This removes the surface dipole thereby reducing the 

work function of the film. 

 

 

 
 
Figure 4.11 [a] Change in work function of an ITO substrate with and without the use of a 

UV filter, [b] the change in cell performance of an ITO / C60 / SubPc / MoOx / Al device 

under exposure to 100 mW cm
-2

 AM 1.5G. The change in work function with and without a 

UV filter is also explored for [c] ZnO120 °C and [d] ZnO160 °C.   
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AM 1.5G with or without a UV filter with the work function measured in 5 minute 

increments. Figure 4.11 shows the change in work function for [c] ZnO120 °C and [d] 

ZnO160 °C. Without a filter, the work function lowers by 0.5 eV ± 0.1 eV with only 5 

minutes of light exposure and this value remains stable over the 90 minutes. When a 

UV filter is used however, the change in work function is less significant, with a 0.2 

eV and 0.1 eV reduction for ZnO120 °C and ZnO160 °C respectively. This value reduces 

more gradually over the 90 minute period to 0.32 eV and 0.35 eV from the initial 

value showing that with a UV filter the change in work function is substantially 

reduced even with prolonged periods of light exposure. This highlights that the 

modification to the ZnO film surface is caused by the presence of UV light 

regardless of the intensity of the source.  
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4.5  Conclusion 
 

The aim of this section was to provide an overview as to why despite initial energetic 

profiling using UPS, further exploratory work resulted in questions about the 

reliability of the results. The benefits of UPS as a technique are widely discussed in 

literature as it provides the absolute minimum in work function value due to biasing 

of the film. This is unlike KP which can only provide an average relative work 

function under an oscillating tip when compared to a reference material such as 

HOPG. Therefore it is widely accepted in literature that UPS measurements should 

be taken where possible as this technique is deemed to have more merit. 

It has been concluded that ZnO thin films deposited using the SG process, cannot be 

investigated using UPS as the values obtained are not accurate and reproducible. 

Experimentally it is difficult to ensure that the exposure time to the He source is both 

constant and minimal with repeated measurements resulting in a large variation in 

absolute values. For KP on the other hand, there was less variability in measured 

work function over a large sample set, and the film represents the surface that will be 

used for the formation of hybrid devices. 

The use of XPS analysis before and after UPS exposure has revealed that the main 

spectral change is due to removal of the contaminant layer, exposing more of the 

bound ZnO sample. This results in a significant change in both the work function of 

the film and the VBonset (such a change has not been discussed in literature). The use 

of VB XPS has shown that there is no significant change in values recorded over the 

required acquisition time using a soft x-ray source so therefore it presents an 

alternative method for calculating the VBonset for metal oxide thin films.  
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These simple experiments highlight the care that must be taken when obtaining 

energetic values from UPS. It should be noted that the film which is being 

investigated should be explored in detail to discover whether UPS can be deemed an 

accurate way of obtaining work function and VB/HOMOonset values. There is also 

the consideration of which technique accurately represents that of a working device 

with KP/XPS carried out in the dark whereas UPS may give a more accurate 

indication of a working system due to exposure to UV light. However, the delicate 

nature of some of these films to a UV source (either using simulated AM 1.5G 

irradiation or UPS) shows that it is not merely related to power of radiation. This is a 

key problem when using UPS to construct an energetic diagram and helps explain 

why there is such a significant spread in reported values.   
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5 Optical Spacing 

 

5.1  Introduction 
 

5.1.1 Background 

 

There has been a drive to improve the JSC in the field of OPV, which is limited due 

to the narrow absorption bands of the organic materials utilised and the unfavourable 

overlap with the solar spectrum.
257

 The poor absorption is due to the significant 

difference between the optical penetration depth and the charge transport within the 

layers. If the active layer thickness is increased to enhance the absorption, (and 

hence the JSC), there are considerable losses which mean that the improvement in 

absorption does not result in an improved device performance. This is a result of 

unbalanced charge transport, increased probability of charge recombination and 

often a reduction in the internal electric field.
258

 

Many light trapping schemes have been explored to improve the overall JSC 

including surface texturing, which increases the cell absorption by scattering, 

periodic nanostructures,
259

 photonic crystals
260

 and micro cavities.
261

 There are 

questions surrounding the experimental complexities with many of these approaches 

and whether they could be considered as viable options for large scale fabrication of 

OPV devices. This is mainly because of the problems in controlling film formation 

on a nanometre scale, without having any detrimental impact on cell performance.
262

  

A simple method to improve absorption is through the use of an optical spacer layer. 

To function effectively this layer must not have a strong absorption of solar 
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illumination, have appropriate energy levels to inject or collect either hole/electron 

(depending on cell architecture), be robust to subsequent layers (whether this be 

organic materials or a hot metal electrode deposition) and be sufficiently 

conductive.
263

 This layer is typically placed in between the active materials and the 

reflective back metal contact. This is because the light intensity is zero at the 

metallic electrode, so a spacer can be implemented to place the active material in a 

more favourable optical field, improving the overall absorption in the layer.  

 

 
 

Figure 5.1 [a] The total absorptance of a SubPc/C60 device without (blue solid line) and with 

(black solid line) a reflective metal contact and [b] the wavelength dependence of the 

absorptance for SubPc/C60 device without (blue solid line) and with (black solid line) a 

metallic electrode. 
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wavelength dependence [b] for a SubPc (15 nm)/C60 (40 nm) active layer with and 

without a reflective electrode. The figure highlights the importance of utilising a 

reflective back contact to maximise light absorption, with an aluminium electrode 

increasing the EQE contribution across all wavelengths.  

This principle has been successfully implemented in many different device 

architectures, exploring a range of spacer layers investigated. For a polymeric 

device, Kim et al. have demonstrated this concept in a BHJ OPV cell by utilizing a 

solution processed TiOx layer as a spacer layer between the polymeric blend active 

layer and the metal electrode. The result is a substantial improvement of up to ~ 40 

% in EQE across the spectral range, which results in an enhancement of 50 % in the 

JSC of the device.
264

 A similar improvement was seen elsewhere using a 39 nm ZnO 

layer, showing a strong correlation between theoretical and experimental active layer 

dependence across a wide range of active layer thicknesses.
257

 

Another important field for the use of spacer layers is in multistack devices where 

the performance is typically dictated by the current limiting cell providing there are 

no changes in the electric field in the device. There have been numerous reports on 

the most effective layers that can be used in this instance and the importance of 

placing different band gap materials in the most effective architecture possible to 

match the optical properties.
265

 For polymeric tandems for instance, as the layer 

thickness of each subcell is considerably higher than a SM device it is most effective 

to place the low band gap polymer in the back cell so low energy photons pass 

through the front cell and are not absorbed.
266

 There are also instances whereby the 

use of a spacer layer may not lead to improved device performance, placing a cell in 

an interference minimum lowering the overall cell performance.
39

 Therefore careful 
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theoretical and experimental studies are required for each different cell architecture 

to ensure the overall absorption has reached its potential.  

 

5.1.2 Aims 

 

The aim of the chapter is to bridge the gap between polymer and SM hybrid solar 

cells to show that SM materials can be a viable planar HOPV cell by improving the 

overall JSC of the device through the careful implementation of an optical spacer 

layer. In this work a MoOx interlayer is used as a hole extracting layer due to its 

good energy level alignment with the HOMO of SubPc,
267

 and it also protects the 

sensitive organic SubPc layer from damage during deposition of the Al electrode. 

Furthermore, MoOx is exploited as an optical spacer layer in the inverted HOPV 

devices, by varying the distance of the SubPc layer from the Al electrode. From an 

experimental perspective, vacuum deposition of SubPc and MoOx allows a highly 

controlled film growth process,
24

 with accuracy on the subnanometre scale. This 

makes it possible to tailor the device layer thicknesses to the optimal structure 

predicted by optical modelling.
263

 The ZnO/SubPc devices demonstrate that the use 

of high absorption coefficient SM organic semiconductors combined with high 

quality TMO films creates a viable opportunity to produce new types of HOPV cells. 

 

 

  



 5 Optical Spacing 

144 

 

5.2  Film Optimisation and Characterisation 
 

5.2.1 Sol-gel process 

 

In this chapter, the SG recipe from Chapter 3 was modified in order to improve long 

term solution stability, allowing the same solution to be used for multiple batches of 

devices. A 0.25 M precursor solution containing ethanol (Aldrich, denatured) and 

zinc acetate (Aldrich, 99.99 %) was left to stir vigorously at 80 °C for 2 hours before 

the stabiliser, 2-amino ethanol (Aldrich, 99.5 %, 5 % vol.) was added. The solution 

was left at 60 °C, and allowed to stir overnight prior to spin coating on to ITO coated 

substrates.
36

 The freshly spin coated films were left in air for fifteen minutes before 

being annealed to 160 °C for 1 hour in air to covert to ZnO. This process is 

summarised schematically in Figure 3.2 and the process was adapted from a method 

published by Kyaw et al., where a ZnO electron selective layer was used to invert 

the polarity of the device for the use in solution processed SM BHJ solar cells.
36

 The 

Kyaw et al. method utilised a 0.1 M solution in the SG process, but following ZnO 

film optimisation a 0.25 M was deemed to be more desirable due to an improved 

reproducibility and consistency across the batches. 

 

 

5.2.2 Morphology and Structure 

 

Due to the strong tendency of ZnO to form a variety of nanostructures, as shown in 

Chapter 3, the film treatment was controlled to ensure reproducible thin film layers. 

Figure 5.2 shows AFM images of [a] the ZnO thin film as spincoated and [b] 

following the annealing step. For consistent smooth homogenous morphology (Rq < 
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1.0 nm), all samples were left for 15 minutes at room temperature prior to heating 

and as a result the surface roughness was lowered from [a] 5.6 nm to [b] < 1.0 nm. 

The film thickness was determined using step-edge AFM measurements, giving 

films approximately 30 nm thick. 

 

 

 
 
Figure 5.2 AFM images of: [a] ZnO films prior to heat treatment (Rq = 5.6 nm) and [b] ZnO 

with a drying step resulting in smooth homogeneous film formation (Rq = < 1.0 nm). 

 

 

In this study, the organic donor, SubPc was directly deposited by vacuum deposition 

on top of the ZnO films. Therefore, it is desirable to study the impact of morphology 

on subsequent growth of organic layers. Figure 5.3 shows AFM images of a 15 nm 

SubPc layer directly deposited at 2 Å/s on top of either a bare ITO substrate or 

directly onto a ZnO film that had been annealed to 160 °C. The surface shows a 

similar morphology on both substrates and no increase in surface roughness as a 

result of the morphology of the underlying layer. This shows that ZnO as an acceptor 

layer is not causing any changes in film growth which could result in a current 

leakage.  
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Figure 5.3 AFM topographical images of [a] ITO / 15 nm SubPc (Rq = 0.9 nm) and [b] 

ITO / ZnO / 15 nm SubPc. (Rq = 0.9 nm).  

 

 

 

5.2.3 Absorption spectroscopy 

 

The electronic absorption characteristics are summarised in Figure 5.4, with the 

transmittance of the [a] ZnO and [b] MoOx shown along with [d] the absorption 

spectra of SubPc. The transmission of ZnO on a quartz substrate is > 95 % across all 

wavelengths. The optical band gap has also been calculated from the energy ( eV ) 

versus ( E x α )
1/2

 plot shown in the inset, from the method for non-crystalline semi-

conductors (Equation 3.1) giving a band gap of 3.05 eV.  

The transmittance of the hole extracting layer and optical spacer, MoOx, was 

measured on a quartz substrate for a 5, 20, 40, 60 and 80 nm thick films, (Figure 5.4 

[b]). At low MoOx thicknesses (5 nm) the layer does not significantly compete for 

absorption with SubPc as the transparency is > 95 % at 590 nm. As the thickness of 

MoOx is increased, the transparency decreases across all wavelengths, but remains 

above 70 % even with the use of an 80 nm layer. The location of the high 

transmittance peak is sensitive to layer thickness, with a peak at 390 nm for a 60 nm 
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layer and 420 nm for an 80 nm layer. This shows that any subtle difference in film 

thickness would affect not only the intensity but the position of the peak. The shift in 

transmittance of the MoOx thin film is due to optical effects within the layer. Figure 

5.4 [c] shows the optical modelling of MoOx on a quartz substrate confirming the 

presence of this high transmission peak at 80 nm.  

 

 
 
Figure 5.4 [a] The transmission of ZnO 160 °C (green line) on a quartz substrate is 

shown, the inset shows the energy ( eV ) versus ( E x α )
1/2 

plot [b] the transmittance for 5, 

20, 40, 60 and 80 nm thick MoOx layer [c] transmittance of a 5, 20, 40, 60 and 80 nm 

thick MoOx layer calculated by optical modelling [d] the electronic absorption spectra on 

a quartz substrate for 10, 15, 20 and 25 nm of SubPc. 
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The absorption of SubPc is also shown, and resembles that of other phthalocyanine 

materials with a shift to shorter wavelengths as a result of a reduction in ring size 

from 18-π system to 14-π system.
162

 Figure 5.4 [d] shows the absorption of 10, 15, 

20 and 25 nm thick layers of SubPc on a quartz substrate. The absorption can be 

explained by the Gouterman Four Orbital Model, which gives a theory for the two 

bands due to mixing of two HOMO and two LUMO levels giving rise to two excited 

states.
268, 269

 One state is lower in energy, the Q band, which is the origin of the 

SubPc absorption maximum located at 590 nm and an associated vibronic band at 

540 nm, and one higher in energy, the Soret B band, located at 310 nm.  

 

5.2.4 Refractive index 

 

The refractive index data was either acquired from literature or obtained using a 

UVISEL ellipsometer (Jobin-Yvon/Horiba, UK) with a Xe light source, over the 

wavelength range of 250 – 800 nm and at an incidence angle of 70 °. For ZnO thin 

films there is a wealth of previously published data available, however any slight 

tweak to the synthetic method results in significant changes to film thickness and 

properties. Due to the sensitivity in production method, identical ZnO layers 

(outlined in Section 5.2.1) were deposited on silicon and quartz substrates. The 

optical properties of MoOx thin films were also investigated, in this instance various 

thickness were vacuum deposited on quartz and silicon substrates. The refractive 

index data for these materials is shown in Figure 5.5 [a]. Film thicknesses and 

optical properties were modelled using a three phase ambient/film/quartz model, in 

which the layer was assumed to be isotropic. An Adachi-new Forouhi dispersion 

formula was employed to obtain the optical constant for the film.
203, 204

 Refractive 
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index data for SubPc is widely available in literature, and is shown in Figure 5.5 

[b].
163

   

 

 

 
 
Figure 5.5 Extinction coefficient (k, dashed lines) and refractive index (n, solid lines) [a] 

ZnO (green) and MoOx (black) obtained using a UVISEL ellipsometer and [b] SubPc 

(purple) where the data was obtained from literature.
163
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5.3 Optical Modelling 
 

5.3.1 Electric Field 

 

In a planar heterojunction, the photocurrent generated in OPVs is restricted due to 

the limit placed on the layer thickness by the LD, so that the excitons generated can 

diffuse to the heterojunction and be dissociated prior to non-radiative relaxation.
270

 

The LD of SubPc has been reported to vary between 8 and 28 nm,
239, 240

 significantly 

lower than the optical penetration depth and as a consequence, when light travels 

through a film in this thickness range it is only partially absorbed. Owing to the 

thickness of the donor layer material being below the optical penetration depth, 

interference occurs within the layer due to the reflective electrode. It is therefore 

critical that this thin layer is placed at a maximum in the optical field to maximise 

exciton generation. 

 

Figure 5.6 [a] shows the optical electrical field for the layer architecture ITO / ZnO 

(30 nm) / SubPc (10 nm) / MoOx (5 nm) / Al with respect to the aluminium 

electrode. The positions of subsequent layers are indicated schematically by different 

coloured boxes, MoOx (blue), SubPc (purple) and ZnO (green). Since SubPc is the 

only current contributor and is significantly out of its absorption maximum, the 

number of photons that can be absorbed within the layer are limited. The optical 

electric field differs with material properties and thicknesses owing to the complex 

refractive indices of the interlayers. The impact of increasing the MoOx layer 

thickness to 40 nm is shown in Figure 5.6 [b]. The donor material is placed further 

into its absorption maximum at 590 nm improving absorption in the cell, showing in 

this instance MoOx functions as an optical spacer layer. There is potential to improve 



 5 Optical Spacing 

151 

 

this further, however if this layer thickness is increased further to 80 nm, shown in 

Figure 5.6 [c], the electric field at 590 nm significantly decreases reducing the 

potential number of photons that can be harvested with this architecture. This 

demonstrates very clearly the need for consideration of the optical properties and 

tuning of the spacer layer thickness.  

 

This feature needs to be considered across all wavelengths and total absorption plots 

are shown in Figure 5.6 [d-f] for a [d] 5 nm, [e] 40 nm and [f] 80 nm MoOx layer. 

This diagram considers the photons absorbed from 300 to 800 nm within each layer 

of the cell architecture, rather than considering the electric field at one wavelength. 

As can be seen with the blue box, MoOx does absorb some of the overall light 

(typically below 400 nm, as shown in Figure 5.4 [b]), which in turn will limit the 

overall absorption possible with the SubPc layer. It can however clearly be seen that 

the overall absorptance within the cell for a 10 nm active layer thickness is greatly 

improved with a spacer layer 40 nm thick.  
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Figure 5.6 Electric field plots at the SubPc absorption maximum (λ = 590 nm), showing a 

low field strength with 5 nm MoOx [a] and an improved field strength with 40 nm MoOx 

[b], this is reduced for 80 nm MoOx [c] The total absorptance (across all wavelengths) is 

also shown with respect to the aluminium electrode for 5 nm MoOx [d], 40 nm MoOx [e] 

and 80 nm MoOx [f]. The positions of the materials with thickness are indicated by blue, 

purple and green boxes for MoOx, SubPc and ZnO respectively. 
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5.3.2  Predicted Current Generation 

 

The HOPV cell architecture: ITO/ZnO (30 nm)/SubPc (x nm)/MoOx (y nm)/Al with 

varying active layer thickness, SubPc, x, from 10 to 25 nm and MoOx optical spacer 

film thickness, y, from 10 to 80 nm was modelled in order to monitor the impact a 

spacer layer would have on current generation. Figure 5.7 [a] shows a contour plot 

of the modelled current in the cell, by considering the total absorption in the cell 

with only SubPc contributing to the current. With a 10 nm SubPc layer, the 

estimated current generation increases by 162 % simply by increasing the MoOx 

thickness from 10 to 50 nm, with a predicted JSC of 2.0 and 4.9 mA cm
-2

 

respectively. Any further increase in spacer layer thickness results in a decrease in 

the predicted current since the active layer is no longer placed in its absorption 

maximum. In this instance an IQE of 100 % is assumed. As the thickness of SubPc is 

increased, the model predicts an increase in current generation as the layers are more 

absorbing. As the SubPc layer thickness increases, it is predicted to be less 

susceptible to changes in MoOx thickness, shown by a smaller improvement of 39 % 

in current for 25 nm SubPc from a 10 nm (5.2 mA cm
-2

) to a 40 nm (7.2 mA cm
-2

) 

MoOx layer.   

 

The limitation of this model is that is assumes that the IQE (ηED, ηCT, ηCC) is not 

dependent on the layer thickness of each component. To account for the LD of the 

organic material, the output from the optical field calculations was input into a 

custom 1D finite difference diffusion equation solver with the optical calculations 

converted into an exciton generation rate at nanometre increments within the layer, 

assuming a LD of 10 nm for SubPc.
239, 240

 Further assumptions are necessary, firstly 

that the ZnO/SubPc boundary is fully exciton dissociating, the SubPc/MoOx 
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boundary is exciton blocking, whilst recombination is considered based on the 

exciton lifetime and exciton density at each position in the layer. This is iterated until 

a steady state solution is achieved, with excitons quenched at the ZnO/SubPc 

boundary considered to be generating useable current, with ɳCC = 100%. Figure 5.7 

[b] shows a contour plot of the modelled current generation in the cell.  

 

 

 
 
Figure 5.7 Contour plot of [a] exciton generation with SubPc versus MoOx thickness, [b] 

the modelled current generation with a diffusion correction (assuming SubPc has an LD = 10 

nm). 

 

 

Unsurprisingly due to a given LD of 10 nm the estimated current generation for an 

optimised cell is at its highest for thinner SubPc layers, with no favourable increase 

in current generation with an increase in the active layer thickness. This is because as 

the layer thickness increases, despite there being an increase in exciton generation, 

there is a lower proportion that are able to reach the interface to be separated into 

free charges for useable current. The current however is greatly affected when MoOx 

is utilised as an optical spacer layer. Considering a 10 nm SubPc layer, with a typical 

MoOx hole transporting layer thickness of 10 nm, the model predicts a JSC of 1.4 mA 

cm
-2

. By increasing the thickness to 50 nm, a 155 % improvement in the JSC is 

M
o
O

x
T

h
ic

k
n
e
s
s

(
n
m

)

M
o
O

x
T

h
ic

k
n
e
s
s

(
n
m

)

SubPc Thickness ( nm )SubPc Thickness ( nm )

J
S

C
 id

e
a
l IQ

E
 =

 1
0
0
 %

[a] [b]

J
S

C
 ( m

A
 c

m
-2 )



 5 Optical Spacing 

155 

 

estimated, reaching 3.5 mA cm
-2

. With any further increase in spacer layer thickness, 

the predicted current decreases due to the SubPc layer no longer being placed in the 

absorption maximum. If a thicker SubPc layer is modelled the impact of the spacer 

layer is greatly reduced as a proportion of the active layer is already positioned 

further away from the reflective back contact. Considering a 25 nm SubPc layer, the 

predicted current varies from 2.16 to 2.62 to 0.92 mA cm
-2

 for a 10, 40 and 80 nm 

MoOx layer respectively.  
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5.4  Device Fabrication 
 

Devices using the HOPV inverted architecture ITO / ZnO (30 nm) / SubPc (x nm) / 

MoOx (y nm) / Al were fabricated. Following the solution processed ZnO acceptor 

layer, all subsequent layers were vacuum deposited onto the prepared films before 

the Al electrode was deposited through a shadow mask to give an active area of 0.16 

cm
2
. The SubPc layer was deposited at a rate of 2 Å s

-1
 and the MoOx layer at a 

reduced rate of 0.3 Å s
-1

 to prevent damage to the underlying organic material. A 

total of 40 devices were fabricated with varying layer thickness of SubPc, x, and 

MoOx, y, in order to compare the predicted currents (Figure 5.7 [b]) to the 

experimental values.  

Figure 5.8 [a] shows the J-V curves of the planar inverted HOPV devices under both 

illumination and dark conditions for a 15 nm SubPc layer with a 10, 40 and 80 nm 

MoOx layer, with key parameter changes compared to MoOx thickness (Figure 5.8 

[b]). A high VOC of 1.10 V is achieved due to the large offset between the low lying 

SubPc HOMO and the EFs (discussed in detail in Chapter 3). From Figure 5.8 [b], 

it can also be seen that the FF, although limiting the cell performance at ~ 0.25, does 

not change with spacer layer thickness, suggesting that the MoOx layer is sufficiently 

conductive to allow good transport of holes to the Al electrode even at thicknesses 

approaching 100 nm.  

 

The VOC also remains constant across all devices, and as a result the individual 

device performance is largely dependent on the JSC. There is a clear improvement in 

JSC with an increase in spacer layer thickness from 1.51 mA cm
-2

 (10 nm) to 2.48 

mA cm
-2

 (40 nm) where it reaches its maximum, but a further increase to an 80 nm 
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layer results in a lower JSC of 1.85 mA cm
-2

, due to positioning the SubPc layer out 

of its absorption local maximum. As a result, the PCE improves from 0.45 % (10 

nm) to 0.73 % (40 nm), before a reduction to 0.55 % with an 80 nm spacer layer.  

 

 

 
 
Figure 5.8 Summary of device performance for a 15 nm layer [a, b] and a 25 nm layer        

[c, d]. J-V plots of the HOPV device with varying MoOx thicknesses are shown in [a] and 

[c], with the corresponding dark J-V plots are shown as dotted lines. [b] and [d] show a 

summary of all device parameters with varying MoOx thicknesses.  

 

 

If the thickness of SubPc is increased further to beyond the predicted LD, despite the 

predicted increase in absorption within the layer, there is a trade off with the number 

of excitons that are dissociated at the SubPc / ZnO interface. The model however 

does predict an improvement in JSC with an increase in spacer layer thickness, this is 
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replicated in the device performance. Devices with 25 nm of SubPc show a clear 

improvement in JSC with thicker MoOx layers from 1.31 mA cm
-2

 (10 nm) to 2.32 

mA cm
-2

 (40 nm) where it reaches its maximum, further increase to an 80 nm layer 

results in a poor JSC of 0.51 mA cm
-2

, shown in Figure 5.8 [c-d]. The overall trend in 

PCE follows the same increasing trend with 0.30 % (10 nm), 0.70 % (40 nm) and 

0.15 % (80 nm), over a two-fold increase in performance with a 40 nm spacer layer. 

One thing to note is the FF of these devices, if the SubPc layer deposited is 

significantly thicker than its LD, it would be expected that the FF would be lowered 

with respect to the 15 nm SubPc devices. This is not the case in this instance, 

suggesting that the issue with conductivity of the ZnO layer significantly impacts the 

device performance and is the major obstacle for improving these hybrid 

architectures further. 

 

The contour plots shown in Figure 5.9 show the comparison of [a] the modelled 

current generation with a diffusion correction to [b] that of the experimental JSC for 

the 40 different cell architectures discussed earlier.  When comparing these values 

there is a good agreement between the predicted and experimental values, with larger 

currents observed at SubPc thicknesses between 10 and 15 nm, and a steady 

improvement in current as the MoOx thickness is increased up to ~ 40 nm. It is clear 

however that there is a discrepancy between the absolute values, with the model 

overestimating the predicted current generation for each device. This is simply 

because other loss mechanisms such as charge transport and charge recombination 

are not accounted for within the model, therefore losses can be expected 

experimentally.  
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Figure 5.9 Contour plot of [a] the modelled current generation with a diffusion correction 

(assuming SubPc has an LD = 10 nm) and [b] the experimental JSC for a 40 different cell 

architecture with varying SubPc and MoOx thicknesses. 

 

 

Figure 5.10 [a] compares the EQE spectra of devices with a 15 nm SubPc layer and 

MoOx layer thicknesses of 10, 40 and 80 nm. Also shown is the EQE response for a 

typical C60/SubPc device and one device without the presence of an acceptor layer or 

dissociating interface. This device has been used as a control to show that the ZnO 

does in fact function as an efficient acceptor, improving the response of the SubPc 

donor layer. The EQE maximum of the fullerene-based device is in the same spectral 

range as the SubPc, but an additional high EQE response at lower wavelengths (~ 

350 nm) is seen which matches the absorption of C60. These devices therefore would 

have a higher overall current as there are two materials contributing, which span the 

spectral range. The peak EQE at approximately 590 nm varies from 19 % (10 nm) to 

32 % (40 nm) to 29 % (80 nm) for ZnO/SubPc. This is a significant contribution 

given that the peak EQE is 4.8 % when no acceptor layer is present and only reaches 

28 % when the efficient acceptor C60 is used. When compared to the control device, 

there is a more than four-fold increase in EQE which provides good evidence for the 

claim that the ZnO is behaving as an efficient electron acceptor, rather than the 
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device exhibiting only Schottky-like behavior. The EQE of SubPc with a 25 nm 

layer is also shown, Figure 5.9 [b], with MoOx layer thickness of 10, 40 and 80 nm, 

the peak EQE varies from 20 to 27 to 9 %.  The optimum EQE response is achieved 

for a 15 nm SubPc layer with a MoOx thickness of 40 nm, with a peak at 32 % which 

is comparable to other D/A heterojunctions published, such as SubPc/F16CuPc.
271

   

 

 

 
 
 

Figure 5.10 External quantum efficiency of the devices with [a] a 15 nm SubPc layer and 

[b] a 25 nm SubPc layer. Also shown in [a] is the EQE comparison to a C60/SubPc device 

and a reference device without the presence of an acceptor layer. In all cases the contribution 

at around ~590 nm is from the SubPc layer. 
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5.5  Conclusion 
 

 

Chapter 5 aims to address the issue of low performing hybrid organic solar cells. 

This is achieved through the use of the inorganic optical spacer layer MoOx. The 

success of this strategy was predicted first by optical modelling and then confirmed 

experimentally. Optical modelling was used to predict the layer thicknesses required 

for optimum cell performance and the models accuracy was further improved by 

adding a diffusion length parameter, as without it the model simply predicts an 

improvement in JSC with a thicker active layer.  

 

A series of 40 devices were subsequently fabricated to compare the models 

predictions to the cell performance of the hybrid organic-inorganic bilayer device. 

The SubPc and MoOx layers were vacuum deposited allowing for fine control of 

layer thickness on a sub nanometre scale. The MoOx layers were deposited at a 

reduced rate ( 0.3 Å s
-1 

) to ensure the thick MoOx layers did not damage the 

underlying organic material. The results showed that with the use of an optical 

spacer layer, SubPc is shifted into its maximum optical electric field intensity, 

thereby achieving improved absorptance. The optimised device gave a high JSC of 

2.48 mA cm
-2

 and a PCE of 0.73 %, placing the ZnO/SubPc system in direct 

competition with polymer/TMO planar system, as well as nanostructured hybrid 

devices showing the potential of this type of hybrid cell. 
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6 Electron Extracting Layers 

 

6.1 Aims  
 

The aim of this chapter is to study the use of ZnO in the role as an electron extracting 

layer for both SM and polymeric active layers. Initially the commonly used vacuum 

deposited SubPc/C60 heterojunction is investigated in a regular and inverted 

architecture highlighting the issues associated with using BCP in an inverted 

architecture. An optimised ZnO thin film is studied for its viability as an alternative 

material for use with SM OPV devices.  

This is expanded further by investigating a polymer blend, P3HT:PCBM. This 

system is used as it is a well-known polymeric device which has been widely 

reported in the literature. The benefit of using an optimised photoactive system 

published elsewhere is that in controlled conditions any changes in device 

performance could solely be attributed to the interlayer used. In collaboration with 

Imperial College London, the formation of ED layers is explored as an alternative 

method to derive ZnO layers. The ED layer was deposited on either ITO or a 

transparent gold electrode that had been previously reported as a competitive 

electrode for the use in OPVs.
272

 ZnO interlayers deposited either by ED or the SG 

process are processed on the two electrodes and the films are characterised and their 

performances compared.  
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6.2  SubPc/C60 system 
 

6.2.1 Absorption Spectroscopy 

 

The SubPc/C60 system is widely used in SM OPV cells due to the complementary 

absorption of the organics and the large interface gap at the D/A interface.
164

 Figure 

6.1 shows the absorption of SubPc and C60 and the corresponding transmittance of 

the hole transporting layer (HTL) MoOx. The 40 nm C60 layer exhibits strong 

absorption in both the UV (300-400 nm) and visible spectrum (up to 700 nm). Due 

to the high transparency of the MoOx layer, it is not likely to negatively impact the 

possible JSC that can be generated within the active layer.  

 

 
 
Figure 6.1 The transmission of 5 nm MoOx layer (black line) on a quartz substrate and the 

absorbance of a 15 nm SubPc layer (purple line) and 40 nm C60 layer (orange line).  

 

 

 

6.2.2 Regular vs Inverted Devices 

 

Conventionally SubPc/C60 is grown in a regular device architecture utilising ITO as 

the hole extracting electrode. With this regular architecture, BCP is commonly used 
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as the exciton blocking layer and a sacrificial layer to prevent damage from the hot 

Al on the active layers.
273

 Owing to the insulating properties of BCP, a thin layer (8 

nm) is necessary for optimum device performance as with thicker layers there is an 

increased RS leading to a reduction in FF.
274, 275

 The deposition of Al on top of BCP 

is paramount to good device performance, as the deposition of Al causes defects 

states within the BCP which improves charge extraction and therefore 

performance.
206

 Alternative layers including tris(acetylacetonato)ruthenium (III) 

(ru(acac)3), self-assembled monolayers (SAMs) or metal oxides such as TiOx, ZnO 

or aluminium doped zinc oxide (AZO),
273

 have been suggested as alternatives as 

they do not require cathode induced damage for good charge transport.  

The need for hot metal deposition to ensure good charge transport means there is an 

issue with adopting an inverted architecture when using BCP. In order to study this 

two cells were grown, an optimised regular: ITO / MoOx (5 nm) / SubPc (15 nm) / 

C60 (40 nm) / BCP (8 nm) / Al and optimised inverted: ITO / BCP (8 nm) / C60 (40 

nm) / SubPc (15 nm) / MoOx (15 nm) / Al device. The energy diagrams and a 

schematic of each cell is summarised in Figure 6.2. The averaged J-V curves and 

cell performance parameters are subsequently summarised in Figure 6.3 [a] and 

Table 6.1 respectively. It can be seen that the regular device structure shows good 

photovoltaic behaviour (as published elsewhere)
135

 and there is no issue with charge 

extraction as can be seen by the relatively high FF of 0.52. The VOC of 1.07 is also in 

line with predictions for this system, showing that there are no issues with energetic 

alignment at either electrode/interlayer interface. As a result a reasonable high PCE 

of 2.64 % is achieved. 
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Figure 6.2 Schematic showing the energy levels for the regular device ITO / MoOx (5 nm) 

/ SubPc (15 nm) / C60 (40 nm) / BCP (8 nm) / Al. A schematic comparing the regular and 

inverted architecture is also shown.   

 

 

For an inverted architecture the BCP layer is deposited directly onto the ITO 

substrate resulting in an immediate issue with charge extraction shown by the very 

pronounced s-shaped kink. This kink suggests that there is charge accumulation 

somewhere in the device. One plausible suggestion is that electrons are being 

collected at a lower rate, leading to electrons being accumulated at the BCP/C60 

interface. This introduces a barrier for charge extraction, reducing the FF to 0.40 and 

the VOC is subsequently reduced to 0.97, resulting in a PCE of 1.82 %. The 

performance of the inverted device rapidly improves as a function of exposure to 

AM 1.5G illumination from a solar simulator (as shown in Figure 6.3 [b]), showing 

that there is a reduction in charge build up resulting in an improvement in the FF and 

PCE to 0.49 and 2.08 % respectively. The organic materials however still degrade 
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despite being encapsulated and a reduction is JSC is seen so the PCE is unable to 

match that of the regular device architecture.  

  

 
 
Figure 6.3 [a] J-V curves for the regular (black line) and inverted (red line) SubPc / C60 

device structures with the corresponding dark J-V curves (dotted lines). [b] J-V curves for 

the inverted devices scanning once a minute for 200 minutes. The arrows indicate the 

direction of parameter change with subsequent scans. 

 

 

 
Table 6.1 Averaged device characteristics for the regular ITO / MoOx (5 nm) / SubPc (15 

nm) / C60 (40 nm) / BCP (8 nm)/ Al and inverted ITO / BCP (8 nm) / C60 (40 nm) / SubPc 

(15 nm) / MoOx (15 nm) / Al device architecture. The performance characteristics of the 

inverted architecture after 30 minutes and 200 minutes degradation are also shown. 

 

Architecture Time (mins) JSC ( mA cm
-2 

) VOC (V) FF PCE (%) 

Regular 0 4.76 1.07 0.52 2.64 

Inverted 0 4.68 0.97 0.40 1.82 

Inverted 30 4.35 0.99 0.49 2.08 

Inverted 200 3.62 1.00 0.45 1.65 
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6.2.3 ZnO as an ETL 

 

In order to function as an effective transport layer, there are many desirable 

properties the interlayer must have such as high transparency, low cost, scalability 

and the correct energetics. As discussed earlier and shown through the 

implementation of MoOx as an optical spacer in Chapter 5, metal oxides are a 

promising alternative to organic interlayers such as BCP. ZnO is a good candidate as 

it provides good energy alignment with C60, can be processed by a range of methods 

and exhibits a relatively high transparency regardless of film thickness. In this 

chapter the ZnO layer was formed from a 0.25 M ZnO solution in 2-propanol, with 

an optimised layer produced at a spin speed of 5000 rpm. The film was subsequently 

annealed at 160 °C for 1 hour and allowed to cool slowly to room temperature prior 

to deposition of the active layers. 

 

 

 
 
Figure 6.4 [a] Averaged J-V curves showing a comparison of the various electron extracting 

layers: no interlayer (blue solid line), BCP (red solid line), and ZnO (black solid line), the 

corresponding dark curves are also shown (dotted lines) and [b] ZnO (black solid line) and 

the dark J-V plots, initial (dotted line) and the dark J-V after exposure to light (dashed line). 
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Figure 6.4 [a] and Table 6.2 show a performance comparison between inverted 

devices using the optimised ZnO layer to that of a bare ITO substrate and the BCP 

interlayer from the same batch of devices to reduce any variation due to external 

factors. If the electron acceptor, C60, is deposited directly onto the ITO substrate, the 

cell performance is significantly lowered across all device parameters. The VOC is 

lowered to 0.82 V due to a large energetic mismatch between the work function of 

ITO and the electron affinity of the C60 acceptor. This results in a significant barrier 

for charge extraction with a reduced FF and thus a JSC of only 3.05 mA cm
-2

. If BCP 

is used the performance is similar to that discussed previously, with a lower FF, VOC 

and in this instance the JSC is lower at 3.90 mA cm
-2

. The use of an optimised ZnO 

layer results in a significantly higher cell performance due to a JSC of 5.37 mA cm
-2

 

and a FF of 0.65.  It must be noted that there is an issue however with the behaviour 

of the cells dark curves, with the J-V dark curve showing little diodic behaviour at 

negative bias. This occurs across all the SG processed ZnO interlayers used in this 

section, and exists only until the device is illuminated, shown in Figure 6.4 [b]. 

When the dark curve is rescanned after exposure to light a more typical diodic 

behaviour is seen, likely due to an improved mobility of the ZnO film after light 

exposure.  

 
Table 6.2 Averaged device characteristics for the inverted device: ITO / interlayer (varied) / 

C60 (40 nm) / SubPc (15 nm) / MoOx (15 nm) / Al. 

 

 

Interlayer JSC ( mA cm
-2 

) VOC (V) FF PCE (%) 

None 3.05 0.82 0.43 1.07 

BCP 3.90 1.01 0.46 1.77 

ZnO160 °C 5.37 1.05 0.65 3.42 
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6.3  ZnO with polymer blend 
 

6.3.1 Transparent Conductive Electrodes 

 

To function as a TCE, the material should have a low sheet resistance, high 

transparency and ideally be applicable to large scale manufacture. To date, ITO is 

the electrode of choice for most optoelectronic devices due to high carrier 

concentration and high transparency across the visible and near infrared spectral 

range. ITO has been produced from a wide range of methods including magnetron 

sputtering and ion beam sputtering to produce smooth, high quality films. Indium, 

the principal material of ITO, is scarce and costly (due to high demand), with a 

recent study by Azzopardi et al. attributing most of the material cost (> 31 %) due to 

the ITO electrode alone.
114

  The impact of this is that the long term demand for ITO 

for all optoelectronic applications may be difficult to meet.
276, 277

  

Aside from cost, ITO is not without its problems. There are issues when considering 

flexible OPVs attributed to the brittle nature of conductive oxide electrodes,
278

  poor 

energetic alignment with many organics, and the incompatibility with some methods 

of film production. High temperature annealing is a key step for the majority of 

methods for achieving low sheet resistances. This however is not viable for flexible 

polyethylene terephthalate (PET), so the resulting sheet resistance typically is > 60 Ω 

sq
-1

. With all this is mind there has been a strong research drive to present viable 

alternatives. These include AZO (which is lower in cost but still has issues with 

mechanical flexibility),
279, 280

 conductive polymers,
22, 127

 graphene,
281, 282

 carbon 

nanotubes
283

 and metal grids.
284
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Stec et al. have investigated the use of 8 nm thick Cu, Ag, Au and Cu/Ag bilayer 

electrodes on either glass or flexible PET and PEN substrates.
272, 285

 In these studies, 

evaporation of atmospherically stable metals is suggested as a simple alternative to 

ITO. One of the issues associated with the use of metals is their highly absorbing 

nature, which can be somewhat addressed through the use of randomly distributed 

micrometer-sized apertures improving the overall transparency.   

 

6.3.2 Deposition Techniques 

 

Two ZnO deposition methods were compared; ED and SG. These films were 

processed on two TCEs, ITO (Psiotec or Thin Film Devices) and ultrathin gold 

electrodes on glass (tAu). Transparent Au (tAu, ~ 11 Ω sq
-1

) electrodes were 

supplied that were formed using a mixed mono-layer of the molecular adhesives 3-

aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropryltrimethoxysilane 

(MPTMS), with 8.4 nm of Au deposited on top at a rate of 0.1 nm s
-1

.
272

 For the SG 

process a ZnO film was prepared following the method discussed in Section 6.2.3 to 

give two different substrates, one on the ITO electrode (ITO / ZnOSG) and the other 

using tAu (tAu / ZnOSG).  

ED was carried out using a method previously published elsewhere
186

 which has 

been discussed in detail in Section 2.1.2.3. This process again generated two 

different ZnO films, one using ITO as the working electrode (ITO / ZnOED) and the 

other using tAu (tAu / ZnOED). It should be noted here that a different ITO supplier 

was used for the ED process; this is because longer substrates were required in order 

for an electrical contact to be attached to the top of the substrate. Following 
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deposition, the substrate was then cleaved to match the area of the ITO and tAu 

substrates used in the SG process.   

 

6.3.3 Transmittance 

 

The transparencies of each of the four layers are compared in Figure 6.5, with 

reference to each electrode. The ITO / ZnOSG layer has a high transparency (> 90 %) 

across the visible range, greater than that of the electrode due a change in refractive 

index causing the film to be antireflective. Film production via ED results in a much 

thicker layer (necessary to ensure complete coverage) and thus negatively impacts 

the transparency of the layer, which peaks at 520 nm with a transparency of 87 %. 

The estimated Eg from is shown in the inset of Figure 6.5 [a]/[b], with the two 

different methods giving an Eg of 3.20 eV and 2.97 eV for ITO / ZnOSG and ITO / 

ZnOED respectively.  

Transparency is one of the main limitations for the use of tAu in OPVs, which 

remains < 60 % across the majority of the visible spectrum. The highly absorbing 

nature of gold means that despite only an 8.4 nm layer, the number of photons that 

can be absorbed is still limited, lowering the JSC. Similarly to the ITO electrode, tAu 

/ ZnOSG has an increased transparency owing to optical reflections when compared 

to the reference. The Eg is estimated in the inset, giving 3.20 eV and 2.94 eV for tAu 

/ ZnOSG and tAu / ZnOED respectively, similar to the values obtained for each on 

ITO.   
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Figure 6.5 Transmittance data shown for [a] an ITO substrate, SG derived ZnO layer and 

ED film and [b] a tAu electrode, and the electrode with a SG or ED ZnO layer. For all ZnO 

films, the Eg has also been calculated by plotting (E x abs) 
1/2

 as a function of energy (eV) 

and is shown in the insets.   

 

 

 

 

6.3.4 Surface Morphology and Conductivity 

 

6.3.4.1  Electrodes  

 

The surface morphology of each layer was investigated using contact mode AFM 

with CAFM used to study the difference in surface conductivity across each of the 

electrodes. Figure 6.6 shows simultaneously obtained topography images and 

current distribution maps along current and height cross-sections for ITO (supplied 

by Thin Film Devices, ITOA), ITO (supplied by Psiotec, ITOB) and tAu. These three 

electrodes were cleaned using the typical four-stage cleaning process and exposed to 

ozone for 30 minutes. The films were then left to stand in air for one hour. The 

surface roughness of 2.3 nm, 4.8 nm and 2.3 nm was measured for ITOA, ITOB and 
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tAu respectively. In this instance the Psiotec substrates (ITOB) had a larger surface 

roughness with platelets of the ITO visible in Figure 6.6 [b]. The ITOA and tAu 

electrodes however had a smooth continuous morphology which can be seen in 

Figure 6.6 [a] and [c]. 

High, continuous electrode conductivity is paramount for OPV devices to ensure 

effective charge collection and to lower any resistive issues. It is also a necessary 

parameter for the ED as the process relies on the substrate conductivity for film 

formation. Figure 6.6 shows the current distribution maps for [d] ITOA, [e] ITOB 

and [f] tAu electrode. The maps for all films were acquired whilst applying the same 

+100 mV bias, indicating that any changes in surface conductivity is due to the 

electrode. It can be clearly seen that there is a large variation in surface conductivity, 

with some areas of little or no conductivity and other areas showing the conductive 

nature in all electrodes. The distribution of current is significantly different between 

samples. For ITOA the variation of current is lower, with the majority lying close to 

200 pA, with only 8.9 % of the film having a current of less than 50 pA. For ITOB 

however, the range is much greater with a significant proportion of the surface 

exhibiting low surface conductivity (57.4 % of the surface is below 50 pA). From the 

cross-section it is clear that there is no relation between surface conductivity and 

topography. For the tAu substrate there are several raised features on the films 

surface that exhibit poor conductivity.   
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Figure 6.6 Topographic AFM images of [a] ITO (Psiotec, ITOA), [b] ITO (Psiotec, ITOB) 

and [c] tAu and corresponding current distribution maps at +100 mV bias for [d] ITOA, [e] 

ITOB and [f] tAu. A cross section of both topography and current distribution is shown in [g] 

ITOA, [h] ITOB and [i] tAu. 
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6.3.4.2  Impact of Ozone Exposure 

 

Conductivity is introduced to indium oxide (InO) (a wide bandgap insulator) via 

interstitial tin dopants and removal of oxygen from the InO lattice. This can result in 

non-uniform reactivity and doping of the ITO substrate, leading to variations in 

electrical properties. Armstrong et al. have used CAFM to look at the issues 

associated with this and the impact of the cleaning process.
116, 286

 The authors studied 

the existence of contamination layers, as clean ITO has been found to have high 

reactivity to H2O and common surface contaminants, which leads to variations 

across the ITO surface.
287, 288

 The study found that samples that were 

detergent/solvent cleaned had only 10 – 20 % of the surface with a current greater 

than 0.5 nA (with -1 V bias applied), but noted that the conductivity varied 

significantly between samples. The conductivity was shown to greatly improve 

either with oxygen plasma or acid treatment; however despite enhanced electrical 

activity this was only short lived.  

Figure 6.7 shows a similar study with ITOB subject to the same four-stage cleaning 

process, but one substrate was exposed to air for one hour and the other substrate had 

been freshly exposed to ozone. The topography shows minimal difference in surface 

roughness measured (4.8 nm and 4.4 nm). Histograms for both films are also shown 

and as discussed previously ITOB has a large proportion of the film with a surface 

current below 100 pA (61 %). Also seen in the histogram is another peak at ~ 200 

pA, showing there is a proportion of the film that is significantly more conductive. 

For the film freshly exposed to ozone, the majority of the film has a higher surface 

conductivity, with only 10.2 % of the surface having a current less than 400 pA. The 

current distribution maps show despite the ozone treatment, there are still sections of 



 6 Electron Extracting Layers 

176 

 

the film that are effectively dead spots, with little or no conductivity (3.9 % below 

100 pA). This improvement in conductivity with exposure to ozone is unsurprising 

and is consistent for all the substrates used in this study. 

 

 
 
Figure 6.7 Topographic AFM images of [a] ITOB and [b] ITOB immediately after exposure 

to ozone. Current distribution maps are also shown, with a bias of 100 mV for [c] ITOB, and 

200 mV for [d] ITOB film freshly exposed to ozone. Histograms are also shown [e] and [f].  
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6.3.4.3 CAFM of ED ZnO films 

 

The electrode shown in Figure 6.7 is placed into a 0.13 M Zn(NO3)2
 
solution 

maintained at 85 °C for the ED process. As it is clear that the surface conductivity 

can be lowered substantially just leaving the film in air, it is therefore apparent that 

method for ZnO deposition is going to be faced with some issues, with the surface 

conductivity altering dramatically prior to ZnO deposition. Small changes in 

timescales between cleaning and ED are likely to directly impact the ZnO films 

formed.  

Figure 6.8 shows the topography AFM and current distribution for both the ED 

films (with a +500 mV bias applied). For the ITO / ZnOED the surface roughness of 

the film is 23 nm. One plausible reason for this high roughness is the changes in 

conductivity of the various sections/faces of the ITO substrate causing the deposition 

to be inhomogeneous. Due to the polycrystalline nature of ITO, the growth of the 

ZnO layer is likely to differ depending on surface conductivity and the orientation 

and crystallinity of the ITO. This results in areas of the sample where there is no 

growth of the ZnO layer, likely to be due to the dead spots on the ITO substrate. This 

can be seen more clearly in the SEM image in the inset of Figure 6.8 [a] which 

shows an area with dead spots where there is no growth of the ZnO layer and the 

underlying ITO substrate can be seen. The rough surface is also highlighted in the 

cross section, showing height variation of up to 70 nm, which may hinder the 

performance of the OPVs. The current distribution for ITO / ZnOED is shown in 

Figure 6.8 [c], with an average current of 105 pA. There is a variation in surface 

conductivity but this occurs consistently across the film with no large areas of poor 

conductivity. 
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Figure 6.8 Topographic AFM images of [a] ITOB / ZnOED and [b] tAu / ZnOED and current 

distribution maps are also shown, with a bias of +500 mV applied for [c] ITOB / ZnOED, and 

[d] tAu / ZnOED. A cross section of both topography and current distribution is also shown in 

[e] ITOB / ZnOED and [f] tAu / ZnOED. The inset in [a] shows an SEM image of ITOB / 

ZnOED with holes through to the substrate. 
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For the tAu, owing to its smooth surface and consistently high conductivity across 

the film, this is likely to aid the deposition of ZnO and the result can be seen in 

topography image of tAu / ZnOED in Figure 6.8 [b]. The deposition of ZnO is 

consistent across the film, and the film has a much lower surface roughness of 7.6 

nm, with smaller crystallities when compared to Figure 6.8 [a]. However despite a 

lower overall surface roughness the tAu / ZnOED film has issues with conductivity. 

This can be seen in Figure 6.8 [d] and this is a key feature at various locations 

across the substrate. These large area (~ 1 µm
2
) dead spots do not relate to any 

change in morphology, more clearly seen in Figure 6.8 [f]. The inconsistency in 

surface conductivity of the tAu / ZnO film results in 80 % of a film with a current 

below 50 pA for this section of the film.   

 

6.3.4.4  CAFM of sol-gel derived ZnO films 

 

The variation of surface conductivity for the SG derived films on ITOA and tAu has 

also been studied and the results are shown in Figure 6.9. Owing to the low 

conductivity of the films generated by the SG process a +2 V bias was required for 

both films. The topographic image of ITO / ZnOSG has a nanoridged structure, 

resulting in a surface roughness of 3.8 nm. The interesting feature is that the current 

distribution map also exhibits a nanoridged structure with variation in conductivity; 

the areas of high/low current however differ to the topography image. On average 

the features of the film with a large height appear to have a lower conductivity; this 

however is not consistent for the entire film. The average current for this film was 

measured at 58 pA. It can also be seen from the histogram in Figure 6.9 [g] that 

there is a high proportion of the film with low current ~ 20 pA. There is also a 
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variation in surface conductivity with only 20 % of the film having a current greater 

than 200 pA.  

The surface roughness for the tAu / ZnOSG is lower at 1.2 nm showing a smoother 

film formation when using the tAu with no pronounced nanoridged structure seen. 

The histogram for the tAu substrate however differs with a much lower average 

current of 44 pA. In this instance, only 0.5 % has a current greater than 200 pA.  This 

shows that even though the films appear to have no distinctive differences in 

topography, the conductivity is influenced by the underlying substrate. This is not 

entirely surprising, as the way in which a SG derived film is formed depends heavily 

on the surface properties of the underlying layer. 
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Figure 6.9 Topographic AFM images of [a] ITOA / ZnOSG and [b] tAu / ZnOSG along with 

current distribution (+2 V bias) for [c] ITOA / ZnOSG, and [d] tAu / ZnOSG. Cross section of 

both topography and current distribution are shown in [e] ITOA / ZnOSG and [f] tAu / ZnOSG 

with histograms of current distributions for [g] ITOA / ZnOSG and [h] tAu / ZnOSG. 

 

5

4

3

2

1

0

µ
m

543210
µm

400

300

200

100

0

pA

5

4

3

2

1

0

µ
m

543210
µm

-2

-1

0

1

2

nm

543210
µm

300

250

200

150

100

50

0

543210

µm

3

2

1

0

-1

-2

3000

2500

2000

1500

1000

500

0

5

4

3

2

1

0

µ
m

543210
µm

-6

-4

-2

0

2

4

6

nm

543210
µm

20

10

0

-10

H
e

ig
h

t 
( 

n
m

 )

800

600

400

200

0

C
u

rr
e

n
t 

( 
p

A
 )

543210

µm

40

30

20

10

0

x
1

0
3

5004003002001000

pA

H
e

ig
h

t 
( 

n
m

 )
C

u
rr

e
n
t 

( 
p

A
 )

5004003002001000

pA

[a]

[c]

[e]

[b]

[d]

[f]

[g] [h]

5

4

3

2

1

0

µ
m

543210
µm

400

300

200

100

0

pA



 6 Electron Extracting Layers 

182 

 

6.3.5 Structural Characterisation 

 

The XRD data obtained for both substrates with and without the ED layer is shown 

in Figure 6.10. The SG derived layers have not been shown as due to poor 

crystallinity only the peaks corresponding to the underlying substrate were seen. For 

the ED layers, the substrate peaks have been indicated by an asterisk. The XRD data 

for the ITO electrode shows polycrystalline behaviour, with a (222) preferred 

orientation (JCPDS 01-076-0152). For the gold substrate however, the XRD 

indicates one orientation (111) (JCPDS 00-004-0784).  

When the ZnO layers are deposited on top of the ITOB and tAu electrodes, the 

growth is multidirectional showing that the film is polycrystalline regardless of the 

underlying electrode. The preferred orientation for both is the same (002), however 

the textured coefficients differ with each orientation; this is shown in Table 6.3. The 

table shows the peaks which have been identified as Wurtzite ZnO (JCPDS 01-080-

0074) and the textured coefficients (TC) for each ZnO reflection. The texture 

coefficient has been calculated from the following: 

    𝑇𝐶(ℎ𝑘𝑙) =  
𝐼 (ℎ𝑘𝑙)

𝐼0(ℎ𝑘𝑙)
/ 

1

𝑛
 ∑

𝐼 (ℎ𝑘𝑙)

𝐼0 (ℎ𝑘𝑙)
       Equation 6.1 

TC(hkl) is the texture coefficient of each specific plane (hkl), I(hkl) is the measured 

intensity, I0(hkl) is the relative intensity factor of the JCPDS and n is the number of 

peaks that have been considered.
289

 As shown in Table 6.3 the ZnO polycrystalline 

film consists of significant non polar (100), (101) and polar (002) faces.  
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Figure 6.10 XRD of the ITO / ZnOED film (black solid line) and the tAu / ZnOED. For 

reference the XRD of the substrates is also shown and subsequently for the ED layers the 

peaks corresponding to the substrate have been indicated with an asterisk.  

 

 

 

 
Table 6.3 TC values for the ED ZnO films showing the differences in crystal plane 

orientation showing the Miller indices (hkl) and the peak positions (2θ (°)). The ZnO TC 

values were calculated using Wurtzite ZnO (JCPDS 01-080-0074). 

 

 
 

ZnO 

reflection 

(hkl) 

2θ (°) Texture Coefficient 

(TC(hkl)) 

       ITO B-ED ZnO  tAu  B-ED ZnO  

100 31.8 0.90 0.29 

002 34.5 2.93 2.39 

101 36.3 0.82 0.39 

102 47.5 0.67 0.57 

110 56.6 0.50 0.11 

103 62.8 0.70 0.73 

112 68.0 0.49 0.24 
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6.3.6 Compositional Differences 

 

To understand any differences in composition of the ZnO thin films, XPS data was 

obtained for each thin film. The Zn and O spectra have been summarised in Table 

6.4 which shows the difference between the Zn : O ratio for both the oxygen bound 

to zinc in the lattice (O 1sA) and the oxygen corresponding to impurities trapped 

within the film (O 1sB). Figure 6.11 shows the O 1s spectra for each film, with the 

ZnO O 1sA (red peak) at 530.0 eV and the O 1sB (green peak) at around 531.0 eV. 

The O 1sB peak has a broader FWHM (~1.95) due to the overlap for each of the 

species present which cannot be individually identified. The measured counts are 

shown by the grey line with the corresponding envelope shown by the dotted black 

(ITO) and blue (tAu) lines.  

The Zn 2p3/2 : O1sA ratio remains constant with electrode despite deposition method.  

For the ITO substrates the ratio is ~1 : 0.70 for both SG and ED layers whereas when 

the tAu electrode is used, the films are more oxygen deficient, and ZnO is produced 

has a Zn 2p3/2 : O1sA ratio of ~1 : 0.60. This is a subtle but noticeable difference 

between the two electrodes. The contaminants levels however show a significant 

difference in the Zn 2p3/2 : O1sB ratio which is related to the deposition method, with 

SG giving a ratio of ~ 1 : 0.65 on both electrodes whereas ED has a ratio > 1 : 1.00. 

The high O1sB components are not entirely surprising, owing to the methods of 

deposition for each ZnO thin film. For the SG process impurities are mainly due to 

surface contaminants with some contribution caused by reagents being trapped 

within the film. For the ED however the process involves dipping the substrate into a 

0.13 M Zn(NO3)2 held at 85 °C. Despite this being a successful low temperature 

method leading to high film crystallinity without the need of thermal annealing, it 
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does however mean contaminants can be readily trapped at the films surface. Fryar et 

al. investigated the effect of fluid layers on different terminated ZnO faces and found 

the ZnO can stabilise thick fluid layers on its surface which are then difficult to 

remove merely by drying.
233

 In particular, the O-terminated surface is hydrophilic so 

electrons in the dangling bonds on the face can react strongly with H
+ 

ions. XPS is 

surface sensitive and therefore further analysis would be necessary to investigate any 

change in stoichiometry with film depth. 

 
Table 6.4 A summary of the binding energies (eV), FWHM and compositions (%) for the 

Zn 2p3/2 and O1s contributions as shown above in Figure 6.11. This first table shows the two 

SG derived layers; ITO / ZnOSG, tAu / ZnOSG and the second table shows the ED layers; ITO 

/ ZnOED and tAu / ZnOED. 

 

 

 
 

 

 

 

eV 
ITO SG  
FWHM 

 

% 
 

eV 
tAu SG 

FWHM 
 

% 

Zn 2p 3/2 1021.3 1.60 43.6 1021.4 1.57 43.7 

O 1s A 529.9 1.15 29.6 529.9 1.19 25.8 

O 1s B 531.3 1.97 26.8 531.5 1.73 30.5 

       

Zn 2p 3/2 : O 1s A   1 : 0.68   1 : 0.59 

Zn 2p 3/2 : O 1s B   1 : 0.62   1 : 0.70 

 

 

 

eV 
ITO ED  
FWHM 

 

% 
 

eV 
tAu ED 

FWHM 
 

% 

Zn 2p 3/2 1021.4 1.63 25.9 1021.4 1.55 28.5 

O 1s A 530.0 1.13 17.8 530.0 1.04 26.6 

O 1s B 531.5 1.88 31.9 531.4 2.15 28.6 

       

Zn 2p 3/2 : O 1s A   1 : 0.69   1 : 0.58 

Zn 2p 3/2 : O 1s B   1 : 1.23   1 : 1.01 
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Figure 6.11 XPS spectra of O 1s showing it is composed of two species, the red peak is O 

1sA (bound ZnO) and green peak is of the O 1sB (contaminants).   

 

 

 

 

 

6.3.7 Work function measurements 

 

In order to understand the differences between the processing methods in terms of 

the electronic properties of the thin films, UPS measurements were carried out. The 

films were prepared ex-situ and loaded into a UHV system. The UPS spectra for 

each of the four films are shown in Figure 6.12. As chemisorbed species on the 

surface can alter the electronic properties, ideally the surface would either be 

prepared in a UHV environment, or undergo polishing and annealing steps to ensure 
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any contaminants were removed from the films surface. This however is not 

applicable for solution processed thin films due to the severity of this cleaning 

preparation step. Uhlrich et al. investigated impact of ozone exposure, and annealing 

polar and non-polar ZnO single crystals and found that annealing could result in a 

change in ionization potential > 0.4 eV.
290

 

It is apparent from the UPS measurements that for the SG process the values are 

consistent for each substrate and are similar to those measured in Chapter 4. For 

both ITO / ZnOSG and tAu / ZnOSG the work function of the measured layers is 3.80 

eV and the VB onset a further 3.90 eV from the EFs giving a VB position of 7.70 eV. 

However, for the ED layers the work function of each film differs with a work 

function of 3.95 eV and 3.50 eV for ITO / ZnOED and tAu / ZnOED respectively. The 

VB onset also differs with a value of 5.10 eV (ITO / ZnOED) and 5.40 eV (tAu / 

ZnOED) below the EFs. As a result the VB positions measured are very similar at 9.05 

eV on an ITO substrate and 8.90 eV on a gold electrode. This deeper VB is in line 

with measured values recorded for a range of ZnO thin film production methods 

published elsewhere,
36, 62

 and is summarised schematically in Figure 6.12. Due to 

the instability of the ZnO under UV light highlighted in Chapter 5, it should be 

noted that there is some uncertainty surrounding these values due to the subtle 

changes in surface contaminants (likely to be removed under UV light) which can 

have a dramatic impact on the values recorded during UPS. To minimise these 

issues, all samples were subjected to the same conditions before loading with a bias 

of 10.0 V in order to give a direct comparison between each film.  
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Figure 6.12 UPS spectra for [a] ITO / ZnOSG, [b] tAu / ZnOSG, [c] ITO / ZnOED and [d] tAu 

/ ZnOED. A schematic is also shown for each to highlight the differences in measured energy 

levels.  

 

 

 

6.3.8 Device Performance 

 

The inverted polymer devices, electrode ITO/tAu / ZnO SG/ED / P3HT:PCBM / WOx (10 

nm) / Al were fabricated. WOx was used in this instance due to improved energy 

level alignment with the polymeric donor P3HT. For the polymer blend, 20 mg of 

both P3HT and PCBM were dissolved in 1 ml of 1,2-dichlorobenzene in a nitrogen 

filled glove box and left to stir overnight. A filtered solution (0.20 µm, PTFE filter) 

was spin coated onto the previously prepared substrates (ITO / ZnOSG, ITO / ZnOED, 

t-Au / ZnOSG, t-Au / ZnOED) at 1000 rpm, slow dried at room temperature under a 

petri dish and then annealed at 140 °C for 20 minutes. WOx was vapour deposited 

using a Kurt J. Lesker Spectros system onto the prepared films followed by an Al top 
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contact through an electrode shadow mask, giving an active area of 0.06 cm
2
. An 

active area of 0.06 cm
2
 was used due to the inconsistency of the ITO / ZnOED film 

formation and to reduce the likelihood of pixels shorting. All devices were tested 

under a nitrogen atmosphere in a sealed sample holder. The device architecture is 

shown schematically for each of the two electrodes in Figure 6.13. 

 

 

 
 
Figure 6.13 A schematic of the different device architecture used in this section. 

 

 

 

Figure 6.14 [a] shows the J-V curves of the bilayer devices under both dark and 

illumination conditions with only the TCE and/or the electron transport layer (ETL) 

varied. The device parameters for each are summarised in Table 6.5. The JSC for 

each of the devices follows the expected trend from the transparency of the electrode 

/ ETL shown in Figure 6.13 with the ITO / ZnOSG device having the highest JSC of 

9.66 mA cm
-2

. This is reduced by 6 % if an ED derived ZnO layer is used as the 

interlayer, merely due to the reduction in transparency across the visible spectrum. 

There is also a larger variation in JSC for ITO / ZnOED across pixels and devices 

shown by a standard deviation of 1.02 compared to 0.59 for the SG layer. This is due 

to the differences in transparency across the film for the ED layer. The JSC of the tAu 

ZnO sol gel / ED

P3HT/PCBM

WOx

tAu

ZnO sol gel / ED

P3HT/PCBM

WOx

ITO

[a] [b]
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electrodes are significantly lower due to the issues with transparency of the gold 

films maximising only at ~ 60 %. When a ZnO layer is deposited on top, the 

transparency of the film significantly increases due to optical properties of the thin 

film. As a result the devices have an averaged JSC of 8.15 and 7.49, a 16 % and 22 % 

reduction in JSC for tAu / ZnOSG and tAu / ZnOED respectively when compared to 

ITO / ZnOSG. 

 
Table 6.5 Averaged device characteristics for four different devices: electrode ITO/tAu / ZnO 

SG/ED / P3HT:PCBM / WOx / Al. The standard deviation for each parameter is shown in 

brackets. 

 

 

 

 

Electrode Method JSC ( mA cm
-2 

) VOC (V) FF PCE (%) 

ITO SG 9.66 (0.59) 0.57 (0.02) 0.57 (0.05) 3.22 (0.43) 

ITO ED 9.11 (1.02) 0.53 (0.02) 0.48 (0.03) 2.38 (0.42) 

tAu SG 8.15 (1.07) 0.57 (0.01) 0.59 (0.04) 2.82 (0.53) 

tAu ED 7.49 (1.11) 0.39 (0.13) 0.40 (0.10) 1.28 (0.79) 

 

The FF is another feature which is affected by the choice of deposition method. For 

the SG method a FF of ~ 0.58 is achieved for both electrodes. This is typical for a 

P3HT:PCBM system and similar values have been published elsewhere.
174 

The 

reduction in FF to 0.48 and increase in RS for ITO / ZnOED can be attributed to the 

increase in surface roughness compared to that of the SG derived films, as shown 

earlier in Figure 6.8. However for tAu / ZnOED the averaged FF is considerably 

lower at 0.40 with a large variation across pixel resulting in a standard deviation 

0.10. Unlike ITO / ZnOED this cannot be attributed to the large surface roughness, 

which is in the region of 10 nm so other losses must be considered in this instance. 
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As can be seen by the averaged J-V curve, the device is very leaky and has issues 

with a lower RSH. 

The VOC of the devices also varies considerably. Unsurprisingly with the same 

energetics shown in Figure 6.12 the VOC of the SG derived layers is constant 

regardless of electrode, with a VOC of 0.57 which is the expected value for this device 

architecture. The VOC for the ED layers however is reduced to 0.53 V for ITO / 

ZnOED and the averaged VOC is much lower for the tAu (0.39 V). The main issue 

with the tAu / ZnOED device is the inconsistency across pixels due to leaks with a 

variation between 0.18 V and 0.56 V and therefore the averaged VOC is considerably 

lower than voltages achieved on some pixels.   

Due to the issues associated with the ED thin films the device performance is 

therefore noticeably lower. The PCE for the SG derived layers are 3.22 % and 2.82 

% for ITO / ZnOSG and tAu / ZnOSG respectively, with the difference due to the 

transparency issues associated with the Au electrode. The PCE was 2.38 % (ITO / 

ZnOED) and 1.28 % (tAu / ZnOED). The fundamental issue with the ITO / ZnOED 

films is the roughness of the formed layer, and the overall film thickness (> 230 nm 

measured by SEM), reducing the overall transparency. This is an issue with ED as a 

technique as maintaining controlled growth with thin metal oxide layers to ensure it 

does not have an adverse effect on transparency is difficult. One of the suggestion 

for increased film roughness is due to the polycrystalline nature of the ITO resulting 

in different growth rates of the ZnO on the different crystal faces, supported by the 

low roughness when using gold as the substrate which only has one preferred 

orientation (111). The issue with the tAu / ZnOED devices however is not initially 

apparent when just considering the surface roughness of the film. CAFM explored in 

Section 6.3.3.3 showed that despite the film exhibiting a low surface roughness there 
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are large dead spots across the film (> 1 µm
2
) and this is a common feature at various 

locations across the film which in turn is likely to cause variations in both VOC and 

FF.  

Figure 6.14 [b] shows the EQE for each of the device architectures used. In this 

instance due to a large variation from pixel to pixel, an EQE has been used that best 

represents the average performance of the cell. The first thing to note is that for ED 

layers, the onset in EQE response does not occur until 330 nm, this matches the 

transmittance spectra shown in Figure 6.5, with a thick ZnO layer varying the 

optical properties of the film. The EQE also scales with the measured currents for 

each, with the main limitation in EQE response for the tAu substrates, limiting the 

response of the PCBM in the EQE. The ITO / ZnOSG has the highest EQE response 

across nearly all wavelengths, with a maximum value of 55 % at 510 nm.    

 

 
 
Figure 6.14 [a] Averaged current density vs voltage characteristics for ITO / ZnOSG (black 

solid line), ITO / ZnOED (red solid line), tAu / ZnOSG (blue solid line) and tAu / ZnOED 

(green solid line). The corresponding dark current density-voltage plots are shown with the 

dotted lines. Also shown in [b] is a representative EQE of the all the devices used (solid 

line), with the corresponding transmittance for each film.    
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6.4  Conclusions 
 

In this chapter the use of ZnO as an ETL has been explored focusing on two 

commonly used active layers. In the first section of this chapter the combination of a 

solution processed ZnO layer is explored with the commonly used vacuum deposited 

small molecules SubPc / C60. A SG derived ZnO layer was optimised showing it to 

be a viable alternative to BCP when adopting an inverted architecture. BCP, a highly 

insulating material, requires the introduction of defects states to effectively extract 

charges. This is normally achieved when a hot metal contact is deposited on top. 

This process does not occur when an inverted architecture is adopted, and although 

the FF can be improved by illumination on the film by the time a respectable FF is 

reached, the illumination causes a reduction in the cells performance due to a lower 

JSC. 

ED and SG derived ZnO films were also compared, but owing to the large surface 

roughness of the ED films the performance was explored using a P3HT:PCBM 

active layer. In this section, the film characteristics were compared with particular 

interest in how the substrate used can impact the deposition of the ZnO film. This 

was achieved by using a tAu substrate as a direct comparison to the commonly used 

ITO. The main limitation of the tAu film is the transmission which is > 30 % lower 

than that of ITO.  

These studies found that the surface morphology varied depending on deposition 

technique with a nanoridged structure (discussed previously in Chapter 3) for SG 

films, but this was not a feature for the ED materials regardless of substrate. The 

transmission of the ED films was also lower across all wavelengths due to the issues 

with controlling film growth and thickness using this technique. Over several 



 6 Electron Extracting Layers 

194 

 

batches of ZnO ED deposited films, the film thickness was on average recorded at 

200 nm, compared to 40 nm for SG films.  

As well as film thickness, another key issue with ED process is the impact of dipping 

the film into a solution as this is likely to impact the surface conductivity and 

therefore the deposition of the subsequent ZnO layers. This phenomenon was 

explored using CAFM, and it was found that the conductivity of the electrodes could 

be improved through ozone exposure but this was only temporary with the current 

typically reducing to around 100 pA when being left in air. CAFM also highlighted 

issues with the films that cannot be seen in the topography. This was insightful for 

explaining why there was such a variation in cell performance for tAu / ZnOED 

despite the films surface appearing smooth and homogenous, the surface had large 

areas with little or no conductivity. This results in a low PCE of 1.28 % for a 

P3HT:PCBM device, compared to 3.22 % for the ITO / ZnOSG film.  
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7 Conclusions and Future Work 

 

7.1  Overview 
 

Continuous advancements in materials, concept development and scientific 

understanding are necessary in order to make (H)OPV a viable, clean renewable 

energy source. Despite OPVs surpassing the 10 % milestone, more research is 

imperative to ensure this source reaches it potential as a cost effective energy power 

source. One field of OPVs that has attracted considerable scientific output is the use 

of inverted cell architectures, with a low work function modified ITO as a 

transparent electron extracting electrode. Inverted architectures are desirable as they 

offer the potential of using solution processed low work function IL for electron 

transport with a heat treatment step if required, preventing damage to the active 

layer. The architecture can also improve light harvesting as with active materials in 

an alternate position. Therefore there is the potential to place the D and A in a more 

favourable optical field depending on the band gap of the material. This thesis has 

focused on optimising a ZnO layer and improving cell performance in inverted OPV 

and HOPV devices. 

 

7.1.1 ZnO as an acceptor material 

 

ZnO is a widely published, extensively researched oxide semiconductor. This 

material is considered for a broad range of applications due to its large piezoelectric 

coefficient, low cost, non-toxicity and abundance. Chapter 3 focused on the use of 
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ZnO as an alternative acceptor material in a true hybrid device. This field has been 

dominated by ZnO combined with polymeric materials and the results have been 

noteworthy, at 2 % efficiency, considering only one material contributes to the JSC. 

The performance with SM organic semiconductor materials however, have shown 

significantly less potential, with the highest performing cell currently standing at 

0.017 %.
78

 The focus of this chapter was to close the gap on the performances of the 

two types of hybrid cells.  

Initial studies concentrated on the morphology of ZnO thin films which are prone to 

readily and spontaneously form nanostructures. Controlling the morphology of these 

layers is vital in order to ensure reproducible smooth layers for reliable and 

consistent device performance. This was achieved by controlling the concentration, 

annealing temperature and processing conditions. The optimum annealing 

temperature and conditions were essential as they governed the removal of the 

organic components from the precursor blend necessary. The orientation of the film 

due to differences in thermal expansion of the ZnO film and ITO substrates which 

often result in a nanoridged film were also controlled. Smooth ZnO thin films were 

produced using an optimised 0.25 M solution which was spin coated then left to 

stand in air for fifteen minutes before annealing.  

The optimised film was utilised with a SubPc organic donor layer for the formation 

of hybrid devices. The principle of hybrid solar cells and interfacial states formed 

between the inorganic and organic layer are still not fully understood, so an 

assumption has to be made that the energetics at the interface determine the 

maximum achievable VOC, similar to an organic/organic heterojunction. XPS and KP 

measurements of the ZnO/SubPc interface showed that the ZnO preparation 

conditions, particularly the annealing temperature, have a significant impact on the 
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composition of the ZnO layers and the electronic properties of the interface, most 

notably the work function and hence the Ig. The performances achieved significantly 

outperform other results in the same field in the literature, with a PCE of 0.38 % 

(ZnO120 °C) and 0.45 % (ZnO160 °C). The difference in cell performance was attributed 

to a change in VOC between the two device architectures, with the lower temperature 

processing at 120 °C resulting in a ZnO work function of 3.20 eV and the highest 

VOC of 1.18 V, a consequence of the increased Ig. These results suggest that the use 

of SM organic semiconductors with high quality TMO films represent a good 

opportunity to produce new types of HOPV devices, with precise control of donor 

material offered by vacuum deposition. 

 

7.1.2  Probing material energetics 

 

Chapter 4 investigated two techniques commonly used to form an energetic profile 

at the interface between two materials of interest. UPS is widely regarded as the 

technique of choice because it provides the absolute minimum work function as a 

result of film biasing as opposed to KP which provides the average work function. 

UPS also provides additional information, the HOMO/VB onset, whereas only the 

VB onset can alternatively be probed using XPS due to the photoionization cross 

section. 

Despite the two techniques providing similar conclusions to explain performance 

differences with processing temperature, the respective positions of CB/VB of ZnO 

were significantly different. In order to investigate this further, UPS measurements 

were obtained every minute for one hour. This revealed a significant decrease in 

work function directly related to exposure time. Due to sensitivity of the ZnO films, 
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scanning direction (i.e. from low to high/high to low kinetic energy), scan rate and 

subtle differences in start time/film alignment made a considerable difference to the 

values obtained. These changes corresponded to a removal of contaminants at the 

surface (investigated by XPS before and after the UPS measurements). From this 

study, it should be noted that the material under investigation should be explored in 

detail to discover whether UPS is an accurate way of obtaining the work function 

and VB/HOMOonset values alike prior to publication. 

 

7.1.3 Improvement in JSC 

 

One of the main limitations of the hybrid solar cells discussed in Chapter 3 was the 

low JSC.  The implementation of an optical spacer layer has proven to be a beneficial 

approach to reduce these losses and has been successfully implemented in a range of 

devices. In Chapter 5 this potential for cell improvement was considered further. 

The hybrid cell architecture was modelled using n and k data obtained for the 

optimised ZnO thin film. Unsurprisingly, when just considering light absorption by 

the active layers, the model predicted a significant increase in current due to the 

increased number of photons absorbed with thicker donor layers. In reality, this of 

course was not the case, with an increase in film thickness resulting in a reduction in 

FF due to increased recombination and an imbalance of charges. To account for this, 

the diffusion length (taken from literature) was implemented into the model, giving 

an exciton generation rate at nanometre increments within the layer and a revised 

prediction of the current with different thicknesses of the donor and spacer layer. 

To confirm the success of this strategy, the predicted model was evaluated 

experimentally. By increasing the MoOx thickness from 10 to 40 nm the JSC 
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remarkably increased by 64 % from 1.51 mA cm
-2

 to 2.48 mA cm
-2

, and resulted in a 

similar 62 % improvement in PCE from 0.45 % to 0.73 %. If the spacer layer 

thickness is increased further, the photocurrent decreased due to shifting the SubPc 

layer out of its maximum optical electric field intensity. The optimised device also 

gave a high peak EQE response of 32 %, placing the ZnO/SubPc system in direct 

competition with the state-of-the-art polymer/TMO planar system. 

 

7.1.4 ZnO as an Efficient Electron Extracting Layer 

 

Efficient charge selective contacts in OPV devices are a critical layer in order to 

minimise any recombination losses and extract the maximum achievable 

performance for a given system. ZnO as a potential electron extracting layer was 

investigated in Chapter 6. Initially ZnO was presented as a direct replacement for 

BCP which is inefficient when grown in an inverted architecture as it requires the 

introduction of defect states for efficient cell performance. An optimised ZnO layer 

was shown to be a viable alternative for inverted architectures giving a PCE of 3.42 

% with a C60 / SubPc active layer. 

Alternate ZnO layers were formed by the ED process (Imperial College London). 

Owing to the high surface roughness of these films, a polymeric active layer, 

P3HT:PCBM was deemed the most suitable active material combination. The 

performances of these cells were compared to the optimised ZnO SG derived layers. 

The use of different transparent conductive electrodes (ITO and tAu) were also 

explored to investigate how the underlying electrode can impact ZnO film formation.  
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The main difference between electrodes was the transmission with tAu > 30 % lower 

than that of ITO. The transmission was also reduced for the ED films due to issues 

with controlling film growth and complications with minimising overall film 

thickness (commonly resulting in a film thickness > 200 nm) and resulted in rougher 

films when compared to the SG process. 

The practicality of the ED process was investigated using CAFM. The process of ED 

relies on a conductive electrode which is held in the required solution until the 

processing conditions have been applied. CAFM revealed that merely leaving the 

electrodes in air resulted in a reduction in current with 61 % of the surface below 100 

pA (at a +100 mV bias), which is likely to cause issues when depositing the ZnO 

film. The technique was also insightful for explaining why the tAu / ZnOED had low 

cell performance despite the films surface appearing smooth and homogenous, with 

CAFM revealing large areas with little or no conductivity.  

It was concluded that in all instances the ITO outperformed the tAu electrodes. The 

main parameter for this was the JSC due to a higher transmittance of the electrode. 

Also, in all instances the SG films outperformed the ED films. This was due to a 

reduction in FF likely to be due to an increased surface roughness when adopting an 

ED route for ZnO film production and a reduced optical transparency. The 

performance was further reduced for tAu / ZnOED , with a low PCE of 1.28 % for a 

P3HT:PCBM device due to issues in conductivity, compared to 3.22 % for the ITO / 

ZnOSG film. This shows the viability of the ZnOSG film as an extracting layer in 

combination with polymeric donor materials.  

  



 7 Conclusions and Future Work 

201 

 

7.2  Future work 
 

The work presented here provides an important step in understanding the 

fundamental principles governing the operation of hybrid solar cells and probing the 

interface between two different material classes. In order to truly reach their 

potential the research community ideally needs to continue investigate the impact of 

combining two materials with such dissimilar dielectric constants and mobilities.  

It has been widely published that ideally the donor material should have a band gap 

of ~ 1.5 eV to be able to harvest a large proportion of the solar spectrum while still 

maintaining a LUMO level offset sufficient enough for charge extraction.  Inorganic 

materials offer a potential partnership to the organic donor material due to the ability 

to tune the energy levels through the alterations to the processing steps or as a result 

of modifications to the dimensions of a nanoparticle. This, if successfully 

implemented offers tunability and the potential of maximising the VOC. The 

reproducibility, scalability and stability are of course all fundamental features that 

need to be met for hybrid solar cells to be a potential long term solution. 

The work demonstrated in Chapter 3 revealed that ZnO thin films are a potential 

acceptor material, with a simple SG method processing effective layers. The 

ZnO/SubPc device architecture was the first of its kind in the field with any 

significant performance. This shows that the TMO/SM architecture is worth 

developing further, with future work focusing on improving the FF of the devices 

(attributed to a poor surface conductivity). This potentially can be achieved by either 

altering the production method or by introducing dopants such as gallium to the SG 

recipe to increase the conductivity and therefore improve the FF.  
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The study revealed significant differences in performance simply by varying the 

processing temperature by 40 °C. XPS was effectively used to gain insight into the 

impact this had on properties of the film at the surface which is vital when 

considering the formation at the interface. Secondary Ion Mass Spectrometry (SIMS) 

could potentially be another interesting technique offering the potential of 

composition changes within the film with depth.  

Chapter 4 highlights a very important issue when obtaining energetic measurements 

using a UV source. This development is significant in the field, as the susceptibility 

of the material to a UV source is not commonly mentioned in literature. This is 

applicable in a broad sense as the possibility of film damage during data acquisition 

needs to be ruled out. This research is significant as literature values that previously 

have been accepted may not provide the most accurate results. 

The material combination of an inorganic acceptor and small molecule donor offers 

the potential of inverted tandem cells, with each sub cell only having one material 

contributing to the overall JSC. This offers the potential of harvesting across the 

entire solar spectrum, while maintaining the properties of the inorganic material 

throughout each sub-cell. A future consideration should be to use a ZnO/organic 

molecule solution processed blend or implementing ZnO vertically-aligned 

nanostructures to provide a higher interfacial area between the donor and acceptor 

material and for efficient charge transfer. This work is necessary to truly close the 

gap on the hybrid inorganic/polymeric research as prior to this study; ZnO with an 

organic small molecule has not shown any potential as a working material 

combination. 
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