Academia.eduAcademia.edu
Volume: I Issue/Num: 002 April/Avril –juin/June 2022 Published every tree months by the na onal Advanced School of Engineering and Applied Sciences Publié Trimestriellement par L’Ecole Na onale Supérieure Polytechnique de Maroua B.P./P.O. Box : 46 Maroua Tel: +237 22620890/22292852 Fax: +237-22291541/22293112 Email : enspm@univ-maroua.cm Siteweb : h p://www.enspm.univ-maroua.cm Revue Sahélienne d'Ingénierie et Sciences Appliquées Vol. 1(2), Janvier-Mars 2022 Sahelian Journal of Engineering and Applied Sciences Vol. 1(1), January-march 2022 SAHELIAN JOURNAL OF ENGINEERING AND APPLIED SCIENCES REVUE SAHELIENNE D'INGENIERIE ET SCIENCES APPLIQUEES EDITORIAL BOARD/COMITE DE RADACTION Editor-In-Chief/ Editeur en Chef Prof. Mohamadou Alidou Director National Advanced School of Engineering University of Maroua Maroua Cameroon, Editor/ Editeur Vol 1 (01)- 2022 Prof. Djoulde Darman Roger Departement of Food control and Quality University of Ngaoundere Ngaoundere-Cameroon Comité de lecture/ Editorial Board Members Prof. Okoh Kofi Applied and Environmental Research Group (AEMREG) University of Fort Hare Prof. Abdulkadir Eagal Centre of Sustainable Livelihoods of the Vaal University of Technology South Africa Dr Appolinaire Batoure Departement d’informatique IUT-Université de Ngaoundere Cameroun Dr Tchaya Guy Departement des Energies Renouvelables ENSPM Université de Maroua- Cameroun Dr Chelem Mayigue Departement de Physique Faculté des sciences Université de Maroua Dr Noubissié Eric Département de Génie chimique et environnement IUT Université de Ngaoundéré A-Avava Ndo Gabriel II Département de Génie Civil et Architecture Ecole Nationale Supérieure Polytechnique de Maroua Maroua Cameroun Editorial Office Contact Us/ Contact sahelian-enspm@univ-maroua.cm Help Desk/Aide et questions General enquiries/questions d’ordre générales helpdesksahelian@univ-maroua.cm Ethics & Compliance/ Ethique Cases of possible violation of publication ethics/ Cas de violation possible de l'éthique scientifique ethicsahelian@univ-maroua.cm Revue Sahélienne d'Ingénierie et Sciences Appliquées Vol. 1(2), Janvier-Mars 2022 Objectifs et Orientations La Revue Sahélienne d'Ingénierie Et Sciences Appliquées (RSIA) est une "Revue bilingue (français et Anglais) d'échanges entre Recherche et Développement" qui entend traiter des sujets ayant un impact direct sur le développement des sociétés des zones soudano sahéliennes ou soudano sahéliennes des Savanes Africaines et leur environnement naturel. Les thèmes couverts par la revue sont les sciences agronomiques, le génie civil, le génie rural, l’architecture, les sciences environnementales, la climatologie appliquée, les énergies renouvelables, le génie du textile et du cuir, l’hydrologie et le génie hydraulique, l’informatique et la télécommunication… et toutes autres disciplines qui préconisent les outils et méthodes des sciences de l’ingénieur pour résoudre les problèmes concrets ayant un impact direct sur le développement. Archives digitales La Revue Sahélienne d'Ingénierie et de Sciences Appliquées (RSIA) s'engage pour la préservation à long terme de son contenu. Tous les articles publiés par la revue sont conservés dans la banque numérique de l’ENSPM de l’Université de Maroua. En outre, la revue encourage les auteurs à archiver la version publiée de leurs articles dans leurs archives personnelles et institutionnelles et ainsi que sur d'autres sites Web appropriés. Mesures d’Impact Factor La Revue Sahélienne d'Ingénierie et de Sciences Appliquées (RSIA) fournira des métriques d'article pour chaque article publié. Les métriques d'article fournissent un enregistrement du nombre de vues reçues par l'article. Il conserve également un enregistrement du nombre de téléchargements du PDF en texte intégral. Article License/ licence Tous les articles publiés par La Revue Sahélienne d'Ingénierie et de Sciences Appliquées (RSIA) sont sous licence Creative Commons Attribution 4.0 International License. Cela permet à quiconque de copier, redistribuer, remixer, transmettre et adapter le travail à condition que le travail original et la source soient correctement cités. La citation doit inclure le DOI de l'article. La licence de l'article est affichée à la fois sur la page du résumé et sur le PDF du texte intégral de chaque article Article Copyright Lorsqu'un article est publié dans La Revue Sahélienne d'Ingénierie et de Sciences Appliquées (RSIA), le ou les auteurs de l'article conservent le droit d'auteur. Les auteurs peuvent republier l'article dans le cadre d'un livre ou d'autres documents. Une déclaration de droit d'auteur est affichée à la fois sur la page du résumé et sur le PDF du texte intégral de chaque article. Sahelian Journal of Engineering and Applied Sciences Vol. 1(1), January-march 2022 Scope and orientations The Sahelian Journal of Engineering and Applied Sciences (RSIA) is a "Bilingual Journal » (French and English) dedicted for exchanges between Research and Development, concerning subjects having a direct impact on development of the populations from Sudano-Sahelian zones or Sudano-Sahelian African Savannas and their natural environment. The topics covered by the journal are agricultural sciences, civil engineering, rural engineering, architecture, environmental sciences, applied climatology, renewable energies, textile and leather engineering, hydrology and hydraulic engineering, IT and telecommunications… and all other disciplines that recommend the use of engineering sciences tools and methods to solve concrete problems with direct impact on development. Digital Archiving The Sahelian Journal of Engineering and Applied Sciences (RSIA) is committed to the long-term preservation of its content. All articles published by the journal are preserved by Portico. In addition, the journal encourages authors to archive the published version of their articles on their institutional repositories and as well as other appropriate websites. Metrics The Sahelian Journal of Engineering and Applied Sciences (RSIA) will provides article metrics for each published article. The article metrics provides a record of the number of views received by the article. It also keeps a record of the number of times the full-text PDF is downloaded. Licence All articles published by the Sahelian Journal of Engineering and Applied Sciences (RSIA) are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. Citation should include the article's DOI. The article license is displayed both on the abstract page and the fulltext PDF of each article Article Copyright When an article is published in The Sahelian Journal of Engineering and Applied Sciences (RSIA), the author(s) of the article retain the copyright. Author(s) may republish the article as part of a book or other materials. A copyright statement is displayed both on the abstract page and the full-text PDF of each article Revue Sahélienne d'Ingénierie et Sciences Appliquées Vol. 1(2), Janvier-Mars 2022 Sahelian Journal of Engineering and Applied Sciences Vol. 1(1), January-march 2022 SOMMAIRE/SUMARY ENVIRONNEMENT DE DEVELOPPEMENT INTEGRE (EDI) DES SYSTEMES D’ELECTRONIQUE DE PUISSANCE (SEP) A COMMANDE MLI MOYENNANT MATLAB/SIMULINK POUR ARDUINO..................................................................................... 9 INTEGRATED DEVELOPMENT ENVIRONMENT (IDE) OF POWER ELECTRONICS SYSTEMS (PES) WITH MLI CONTROL USING MATLAB/SIMULINK FOR ARDUINO......................................................................................................................................... 9 Ideal Oscar Libouga, Jean Benjamin Bidias, David Marcelin Mbengan, David Libouga Li Gwet , Gerard Ombick Boyekong ........ 9 APPLICATION DE L’ANALYSE FONCTIONNELLE POUR L’AMELIORATION D’UNE LAVEUSE DE PIECES MECANIQUES ......................................................................................................................................................................................................................... 19 APPLICATION OF FUNCTIONAL ANALYSIS FOR THE IMPROVEMENT OF A MECHANICAL PARTS WASHER............... 19 Jean Bosco SAMON ...................................................................................................................................................................................... 19 A COMPUTER AID DESIGN APPROACH USED FOR TEACHING POWER ELECTRONICS CONVERTERS: A CASE STUDY OF PSIM AND MATLAB FOR THE MASTERING OF SINGLE PHASE INVERTERS ....................................................................... 25 UNE APPROCHE DE CONCEPTION D'AIDE INFORMATIQUE UTILISÉE POUR L'ENSEIGNEMENT DES CONVERTISSEURS D'ÉLECTRONIQUE DE PUISSANCE : UNE ÉTUDE DE CAS DE PSIM ET MATLAB POUR LA MAÎTRISE D'ONDULEURS MONOPHASÉS ............................................................................................................................................................................................ 25 Ideal Oscar Libouga, Jean Benjamin Bidias, Gerard Ombick Boyekong, David Libouga Li Gwet , David Marcelin Mbengan ...... 25 MINIATURIZED DUAL-BANDS MICROSTRIP PATCH ANTENNAE USING SIERPINSKI GASKET AND CARPET SLOTS FOR X AND KU BANDS APPLICATIONS ........................................................................................................................................................ 39 ANTENNES PATCH MICRORUBES MINIATURISÉES DOUBLE BANDES UTILISANT DES FENTES DE JOINT ET DE TAPIS SIERPINSKI POUR LES APPLICATIONS EN BANDES X ET KU ......................................................................................................... 39 Dokrom Froumsia, Essiben Dikoundou Jean-François, Houwe Alphonse , Kolyang .......................................................................... 39 RENDEMENT DE DENICKELAGE DE LA SOLUTION DE SULFATE DE COBALT DES USINES DE SHITURU/RDC EN PRESENCE DE COBALT, DE SOUFRE ELEMENTAIRE ET DU DIOXYDE DE SOUFRE ................................................................. 45 DENICKELING PERFORMANCE OF THE COBALT SULPHATE SOLUTION OF THE SHITURU/DRC PLANTS IN THE PRESENCE OF COBALT, ELEMENTAL SULFUR AND SULFUR DIOXIDE ...................................................................................... 45 Kongolo Bulof Géorges, Lumbu Simbi Jean-Baptiste, Kalunga Muya Richard, Kalenga Ngoy Pierre et Twite Kabamba Edmond. ......................................................................................................................................................................................................................... 45 INFLUENCE OF COTTON BARK AND RICE BALL ON THERMO-PHYSICAL CHARACTERISTICS OF CLAY BRICKS ........ 50 INFLUENCE DE L'ÉCORCE DE COTON ET DE LA BOULE DE RIZ SUR LES CARACTÉRISTIQUES THERMO-PHYSIQUES DES BRIQUES D'ARGILE ............................................................................................................................................................................ 50 Modjonda, Dieudonné Kaoga Kidmo, Danwe Raidandi ......................................................................................................................... 50 LA COLLABORATION ENTRE ARTISTES, ARCHITECTES ET INGÉNIEURS AU CAMEROUN ................................................. 59 COLLABORATION BETWEEN ARTISTS, ARCHITECTS AND ENGINEERS IN CAMEROON ..................................................... 59 Eloundou Longin Colbert ............................................................................................................................................................................ 59 Revue Sahélienne d'Ingénierie et Sciences Appliquées Vol. 1(2), Janvier-Mars 2022 Sahelian Journal of Engineering and Applied Sciences Vol. 1(1), January-march 2022 MINIATURIZED DUAL-BANDS MICROSTRIP PATCH ANTENNAE USING SIERPINSKI GASKET AND CARPET SLOTS FOR X AND KU BANDS APPLICATIONS ANTENNES PATCH MICRORUBES MINIATURISÉES DOUBLE BANDES UTILISANT DES FENTES DE JOINT ET DE TAPIS SIERPINSKI POUR LES APPLICATIONS EN BANDES X ET KU Dokrom Froumsia1, Essiben Dikoundou Jean-François 2, Houwe Alphonse 3, Kolyang4 1Department of Computer Science and Telecommunications (Computer Sciences Research Laboratory), National Advanced School of Engineering of Maroua, The University of Maroua, fdokrom@yahoo.fr, P.O. Box 46 Maroua, Cameroun, 2Department of Electrical Engineering, Advanced Teachers’ Training College for Technical Education, The University of Douala, P.O. Box 1872 Douala, Cameroun, 3Department of Marine Engineering, Limbe Nautical Arts and Fisheries Institute, P. O. Box 854 Limbe, Cameroun, 4Department of Computer Science and Telecommunications (Computer Sciences Research Laboratory), the University of Maroua, P.O. Box 46 Maroua, Cameroun. Accepted /Accepté X Month, 2021 ABSTRACT: This article presents a series of miniaturized microstrip patch antennae based on Sierpinski Gasket and Carpet slots. The antennae are structured by a rectangular patch truncated in the center by the Sierpinski gasket and Carpet on an FR-4 epoxy substrate with thickness of 1.5 mm. The Defected Patch Structure allows generating a dual-band and improves the characteristics of the antennae. The Sierpinski Gasket and Carpet slots structure of the obtained antennae contributed considerably to reduce the size up to 87% compared to the initial size. The proposed antennae are suitable for X and Ku band applications. The design and simulation are made using CADFEKO 7.0 to carry out the operations of the characteristics of the antennae. Key words: Miniaturization, Fractal geometry, radiation efficiency, CADFEKO. RESUME Cet article présente une série d'antennes patch microruban miniaturisées basées sur les fentes Sierpinski Gasket et Carpet. Les antennes sont structurées par un patch rectangulaire tronqué au centre par le joint Sierpinski et le tapis sur un substrat époxy FR-4 d'une épaisseur de 1,5 mm. La structure de patch défectueuse permet de générer une double bande et améliore les caractéristiques des antennes. La structure des fentes Sierpinski Gasket and Carpet des antennes obtenues a considérablement contribué à réduire la taille jusqu'à 87% par rapport à la taille initiale. Les antennes proposées conviennent aux applications en bande X et Ku. La conception et la simulation sont réalisées à l'aide de CADFEKO 7.0 pour effectuer les opérations des caractéristiques des antennes. Mots clés : Miniaturisation, Géométrie fractale, Efficacité de rayonnement, CADFEKO. INTRODUCTION Wireless communication is increasingly becoming part of human daily life whether in medicine, transport, safety or education. However, the miniaturization of wireless devices has been a predilection area for researchers. One of the important elements of those devices used in wireless communication is undeniably the antenna. The miniaturization of these objects leads to antennae sizes reduction. Therefore, the development of new antennae more miniaturized to meet the multifaceted needs in wireless communication becomes a major concern for antennae designers these last decades. However, the concern of having a broadband or multi-frequency antenna remains relevant. Microstrip patch antennae (MPA) are part of those antennae that easily adapt to any type of integration support. Hence the engagement of designers in a frantic race to develop antenna miniaturization techniques for connectivity of many mobile objects becomes a very challenging exercise. Nowadays, several methods and techniques of miniaturization of the antennae have been developed and proposed. Overall, these different approaches of miniaturization inevitably affect the efficiency of radiation when considering theoretical studies of antennae that relate the length of the antenna to its wavelength. The most common miniaturization techniques of MPA found in literature are: the modification of the radiating element [13], the miniaturization algorithms [4] and the materials used to manufacture these antennae [5-6]. The microstrip antenna miniaturization technique based on the modification of its geometry covers both the ground structure [7-9] and the radiating element. That approach has been widely because of its ease of design and the precision of its results as needed, in this sub-group is also classified the fractal technique. In this article, fractal geometry is used to design a Microstrip patch fractal antenna with slot from a rectangular antenna. Initially, the proposed miniaturized rectangular microstrip patch in [10] was simulated over the 9 GHz to 11 GHz range, and the antenna radiated at 10 GHz. Different fractal shapes are engraved on the radiating element to complete the main goal of this work which is to obtain a miniaturized antenna therefore electrically small, multi-frequency and wideband. The article is organized as follows: section II highlights on the various works carried out on miniaturized antennae using fractal geometry, section III describes the model and the design methodology. The results are discussed in section IV. 1. Related works Fractal shapes have interesting characteristics due to their geometric properties of self-similarity and space filling. They have been widely explored in the antennae design. The fractal-shapes encountered in literature are: Sierpinski carpet and gasket, Koch fractal, Hilbert, Peano, Minkowski…Certain fractal structures result in multi-band and other broadband behavior. Koch's snowflake fractal objects have been favored by many broadband antenna designers. In [11], a modified starshaped patch, thus snowflake Koch-shaped with a partial slot ground plane and an I-shaped parasitic element located under the radiating element. However, with the disturbance of its ground plane by inserting an L-shaped and inverted U-shaped slots, thus a super-wide- bandwidth that could cover the frequency band from 650 MHz to 20 GHz. A similar approach to the previous one is used in [12] to obtain a dual very large band antenna. The principle used in that case consisted to add a rectangle between the fed-line and the radiation element after the first iteration of Koch Snowflake after the top triangle was removed. Moreover, an Embed slot element completed the design of the antenna which was able to achieve a dual very large band: the first band covered from 3.4892 GHz to 10.0392GHz and the second from 10.9013 GHz to 16.3989 GHz. Various studies have investigated different Minkowski fractal shapes as well as combined with other fractal shapes to significantly reduce the size of MPA while maintaining the efficiency of its radiation in the desired range. In [13], a Minkowski Island microstrip antenna is obtained after the second iteration on a square patch fed by proximity coupling with partial ground plane. The proposed antenna resonated at a single frequency and its dimension was reduced up to 58% of the initial square patch. While designing a microstrip patch antenna for the GPS and 3G IMT-2000 handsets in [14], a Minkowski-type pre-fractal was used after the second iteration on the patch to obtain a miniaturized antenna. The design process resulted in the different Minkowski fractal Revue Sahélienne d'Ingénierie et Sciences Appliquées Vol. 1(2), Janvier-Mars 2022 shapes as described in figure 2 [14] which related the principle of reducing the size of the antenna according to the variation of the fractal shape generator. This resulted in a 64% decrease in the antenna size while it achieved a required dual band satisfying the purpose for which it was intended. In [15], the Minkowski fractal shape was also used to design fractal antennae for microwave applications from a basic square patch initiator. By applying successively Minkowski principle up to the second iteration which consisted in removing the middle third of each side by a fraction of 1/11, thus, the antenna obtained could achieve a variation of resonance frequency from 1 GHz to 0.636 GHz, and about 14% size reduction from the basic square patch antenna. As mentioned earlier, the Sierpinski geometry is well known for their multi-frequency characteristics and their considerable degree of antenna size reduction. However, all forms of Sierpinski have been explored. In [16], a miniaturized hexagonal Sierpinski Gasket fractal microstrip antenna was designed and fabricated from a hexagonal patch where several triangular slots of different dimensions were loaded. The design principle in this case consisted to load after the fourth iteration, 240 triangular slots of 0.5 reduction factor on the hexagonal Sierpinski Gasket when passing from one iteration to the next as presented respectively the details of the design and the model manufactured in figures 6, 14 [16]. However, the proposed model exhibited dual polarization performance and hexaband. While the patch area had been reduced by 68.4% and its perimeter had been increased by 168.8%. Various studies have investigated different Sierpinski shapes as well as Sierpinski Fractal Bowtie approach to miniaturize as in [17]. A Sierpinski Fractal Bowtie patch antenna was designed and fabricated on an FR-4 substrate epoxy of 4.4 dielectric constant. After the second iteration of rectangular slotted Sierpinski Fractal Bowtie as shown in figure 1 [17], the size was reduced up to 58.2% and a hexa-band frequency was achieved, suitable for L, C, S, and X bands communication. In general, documented cases have shown that the Sierpinski fractal technique is used much more for multi-frequency antennae designs while Koch's snowflake approach has proven their ability to design ultra-wideband antennae. Within the framework of this study, we will use several fractal figures loaded on a rectangular patch antenna and compare the degree of their respective size reduction as well as the obtained performances. 2. Models and Design methodology The design and manufacture principles of MPAs are the simplest compared to other types of antennae [21]. In this study, it was used a miniature rectangular microstrip patch antenna with rectangular ground plane. These two radiating plates are separated by the substrate material in epoxy glass FR4 with a dielectric constant 4.4 of height of 1.5 mm. The dimensions were obtained from the well-developed equations in [10] and conform to the standard in wireless transmission. They are summarized in Table [1] below. This model was simulated in a frequency range from 9 GHz to 11GHz and the resonant frequency of 10 GHz was achieved. But, expanding the simulation frequency band from 8 GHz to 20 GHz, the frequency increased to 10.2 GHz, exhibiting good adaption impedance. From this already electrically small antenna according to the concepts developed by Wheeler and Chu [22-23], we have successively loaded Sierpinski gasket and carpet structure Sahelian Journal of Engineering and Applied Sciences Vol. 1(1), January-march 2022 on the rectangular microstrip antenna as shown in figure 1 to obtain different models presented in figure 2. Table 1: Basic miniaturized MPA parameters as depicted in [10] Geometric parameters Value (mm) Substrate Width (Ws) 15 Substrate Length (Ls) 10 Patch Width (W) 8.13 Patch Length (L) 5 Thickness (h) 1.5 Notch width (Wl) 0.3 Notch depth (y) 0.8 In Figure 2 (a), an equilateral triangle of side equal to half the width of the patch is loaded at the center of the patch and a quarter of this triangle is then added to the center of the previous one. In short, three slots of small identical equilateral triangles of size / of the width of the patch are introduced at the center of the antenna the area of each of , therefore . is these triangle slots is . removed from the patch, which is equivalent to a reduction of patch to 0.97% of its original area. In the second iteration, the number of triangular slots with side one eighth of the width of the patch goes up to 9. The construction mechanism of the Sierpinski carpet was used in the design of the model of Figure 2 (b) according to the approach advocated by this fractal geometry and 87% of reduction was achieved. The models of the antennae mentioned in figure 2 have been designed using the CADFEKO 7.0.1 software. It is well suited to the design of small antennae but it becomes ineffective against large antennae. This software integrates the best known numerical analysis methods such as the moment method (MOM) and the finite element method (FEM). The simulation by this software gave satisfactory results which can be exploited in the field of satellite communication. Ws W y L Ls Wl Figure 1: Modified basic miniaturized MPA 1. Simulated results and discussion As specified above, the initial patch without central slot, by simulating it in a range of 8 GHz to 20 GHz, the radiation frequency of 10.2 GHz is achieved. However, the introduction of either the Sierpinski carpet or gasket slots has optimized the performance of antennae in both cases. The obtained antennae become dual-band but exhibiting different characteristics. In figure 3, we can observe that the model with the Sierpinski gasket shape slot at the first iteration that the inner resonance frequency band F1 = 11.47 GHz is much more restricted and presents the voltage standing wave ratio (VSWR) equal to 1.34, a reflection coefficient of -16.21dB and a gain of 7.5 dBi. Revue Sahélienne d'Ingénierie et Sciences Appliquées Vol. 1(1), Janvier-Mars 2022 Sahelian Journal of Engineering and Applied Sciences Vol. 1(1), January-march 2022 a b Figure 1: Figure 2: Fractal geometries structures of the proposed antennae: (a) With Sierpinski triangle gasket slot loaded, (b) With Sierpinski Carpet slot loaded On the other hand, the upper band is wide, up to 3.29 GHz in with adaptation impedance of -28dB and a gain of 6 dBi. Compared to the model with Sierpinski gasket slot, the model with Sierpinski carpet slot having twice of the area of the previous slot shows a better impedance adaptation at its lower band compared to its upper band reaching -27.42. However, the characteristics of the lower band which the resonance frequency is reached at 11.2 GHz by its gain G = 7.5 dBi, VSWR = 1.09. As for the upper band from 14.88 GHz to 17.86 GHz, less adaptive shows a reflection coefficient of -16.89. a b Figure 3: Smith chart of models after the first iteration (a) with Sierpinski gasket, (b) with Sierpinski carpet Frequency (GHz) Figure 2: The graph of the reflection coefficients versus frequency of the models with the Sierpinski gasket slots in blue and the Sierpinski carpet in red dot at the second iteration From figure 4 above, are shown the Smith charts of the model with Sierpinski gasket slot figure 4 (a) and of the model with Sierpinski carpet figure 4 (b). The VSWRs of these two models are less than 2, therefore, the results are satisfactory. These antennae can be used for X and Ku band applications. Subsequently, the two fractal slots used pass to the second iteration, the simulation results show frequency bands almost identical to the models with fractal slots in the first iteration. For the one with Sierpinski gasket slot, the lower band remains at 11.47 GHz, less adaptive than the previous one, with a reflection coefficient of 13 dB, a VSWR of 1.58 and a gain of 7.5 dBi. Frequency (GHz) Figure 4: Radiation diagrams of the two proposed models with (a) Sierpinski Gasket and (b) Sierpinski Carpet slots at the second iteration 41 Revue Sahélienne d'Ingénierie et Sciences Appliquées Vol. 1(2), Janvier-Mars 2022 However, the higher band has a better impedance matching to the resonant frequency as shown in figure 5. The simulations results of the miniaturized rectangular microstrip patch are summarized in the table below. From table 2, it is noticed that the two antennae obtained are also quite adequate for X and Ku bands applications Sahelian Journal of Engineering and Applied Sciences Vol. 1(1), January-march 2022 3. 4. 5. 6. Frequency = 11.47 GHz Frequency = 16.67 GHz 7. 8. 9. 10. b Frequency = 11.2 GHz Frequency = 17.47 GHz Figure 6: Radiation diagrams of the two proposed models with (a) Sierpinski Gasket and (b) Sierpinski Carpet slots at the second iteration CONCLUSION A series of Microstrip patch antenna with Sierpinski Gasket and Carpet slots in the center of the radiating element has been presented in this article. These antennae presented . The simplified geometries, compact size of 8.13 5 process of its miniaturization by slots allowed reducing considerably the size of the antennae. The design and the simulations were carried out by using CADFEKO software. The results obtained from the final models are, therefore, satisfactory and cover the X and Ku band applications. REFERENCES 1. A. A. Rakholiya and N. V. Langhnoja, “A review on miniaturization techniques for microstrip patch antenna”, International Journal of Advance Research and Innovative Ideas in Education, vol. 3, No 2, pp. 4281 - 4287, 2017. 2. M. Rashid, M. E Munir, K. Mahmood, and J. Khan,” Design of Miniaturized Multiband Microstrip Patch Antenna using Defected Ground Structure”. 11. 12. 13. 14. 15. International Journal of Advanced Computer Science and Applications, vol. 9, No 6, 2018. G. Varamini, A. Keshtkar, and M. Naser-Moghadasi, “Miniaturization of microstrip loop antenna for wireless applications based on metamaterial metasurface”, AEU - International Journal of Electronics and Communications, vol. 83, pp. 32-39, 2018. M. Lamsalli, A. El Hamichi, M. Boussouis, N. Amar Touhami, and T. Elhamadi, “Genetic algorithm optimization for Microstrip patch antenna miniaturization”. Progress in Electromagnetics Research Letters, vol. 60, pp. 113-120, 2016. R. Varma , S. K. Sharma, and Birbal Singh, “Miniaturization of Microstrip Patch Antenna Using Metamaterial”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 3, No 5, pp. 9652-9661 , 2014. L. Ramagowri, A. T. Ramena, and S. Lakshmi, “Miniaturization and Performance Enhancement of Multiband Microstrip Patch Antenna using Metamaterial”, International Journal for Scientific Research & Development vol. 3, No 9, pp. 423-427, 2015. M. M. Rahman, M. S. Islam, H. Y. Wong, T. Alam, and M. T. Islam, “Performance Analysis of a Defected Ground-Structured Antenna Loaded with Stub-Slot for 5G Communication”. Sensors, Vol. 19, No 11, pp 1-15, 2019. D. Nataraj and G. Karunakar, “Design and Research of Miniaturized Micro Strip Slot with and without Defected Ground Structure”, International Journal of Recent Technology and Engineering, Vol. 8, No 2S11, pp. 391-398, 2019. D. Singh, A. Thakur, and V. M. Srivastava, (2018). “Miniaturization and Gain Enhancement of Microstrip Patch Antenna Using Defected Ground with EBG”, Journal of Communications, Vol. 13, No. 12, pp, 730-736, 2018. O. Oulhaj, N. A. Touhami, M. Aghoutane, and A. Tazon, “A Miniature Microstrip Patch Antenna Array with Defected Ground Structure,” International Journal of Microwave and Optical Technology, Vol. 11, No. 1, pp. 32-39, 2016. M. Manohar, (2019) “Miniaturised low‐profile super‐ wideband Koch snowflake fractal monopole slot antenna with improved BW and stabilized radiation pattern”. IET Microwaves, Antennes & Propagation, Vol. 13, No. 11, pp. 1948-1954, 2019. H. Tizyi, A. Najid, F. Riouch, A. Tribak, A. Mediavilla, “Miniaturized Ultra Wideband Microstrip Antenna Based on a Modified Koch Snowflake Geometry for Wireless Applications”, American Journal of Electromagnetics and Applications, Vol. 3, No. 6, pp. 3842, 2015. I. P. E. Duta Nugraha, I. Surjati, and S. Alam, “Miniaturized Minkowski-Island Fractal Microstrip Antenna Fed by Proximity Coupling for Wireless Fidelity Application”, TELKOMNIKA (Telecommunication Computing Electronics and Control), Vol. 15, No. 3, 1119-1126, 2017. J. K. Ali, and A. S. A. Jalal, “A Miniaturized Multiband Minkowski-Like Pre-Fractal Patch Antenna for GPS and 3G IMT-2000 Handsets”, Asian Journal of Information Technology, vol. 6, n°5, pp. 584-588, 2007 S. Archana, K. S. Manish, “Design and Simulation of Miniaturized Minkowski Fractal Antennas for microwave applications”, International Journal of Advanced Research in Computer and Communication Engineering, vol. 3, n°1, pp. 5309-5311, 2014. Revue Sahélienne d'Ingénierie et Sciences Appliquées Vol. 1(1), Janvier-Mars 2022 16. 17. 18. 19. Sahelian Journal of Engineering and Applied Sciences Vol. 1(1), January-march 2022 D. Tiwari, J. A. Ansari, A. K. Saroj and M. Kumar, “Analysis of a Miniaturized Hexagonal Sierpinski Gasket fractal microstrip antenna for modern wireless communications”, AEU - International Journal of Electronics and Communications, 123, 153288, 2020. G. Ramalakshmi and Rao P. Mallikarjuna, “A miniaturized 2-itertion rectangular slotted Sierpinski Fractal Bowtie antenna for multiband applications”, Materials Today: Proceedings, pp. 1-6, 2021. Y. Wang, J. Guan, Y. Geng and C. Feng, “A Miniaturised LS Peano Fractal Antenna for Partial Discharge Detection in Gas Insulated Switchgear”, Sensors & Transducers, Vol. 240, No. 1, pp. 19-25, 2020. M. Kaur and J. S. Sivia, “Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm”, International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 1, pp. 1-11, 2019. 20. 21. 22. 23. 43 Y. Wang, C. Feng and J. Guan, “UHF LS Peano fractal antenna for PD GIS detection”, Journal of Electromagnetic Waves and Applications, Vol. 34, No. 13, pp. 1797-1811, 2020. R. Garg, P. Bhartia, I. Bhal and A. Ittipiboon, “Microstrip antenna design handbook” (Artech House, MA, USA, 2001). H. A. Wheeler, “The Spherical Coil as an Inductor, Shield, or Antenna”, Proceedings of the IRE, vol. 46, n°9, pp. 1595-1602, 1958. G. A. Mavridis, D. E. Anagnostou, and M.T. Chryssomallis, “Evaluation of the Quality Factor, Q, of Electrically Small Microstrip-Patch Antennas [Wireless Corner]”. IEEE Antennas and Propagation Magazine, vol. 53, n°4, pp. 216-224, 2011.