Composition Theorems for Differential Privacy

Composition Theorems for Differential Privacy

We will define a composition of mechanisms $\mathcal{M}_1, \mathcal{M}_2, ..., \mathcal{M}_k$ as $\mathcal{M}(x)$, Where $\mathcal{M}(x) = \langle \mathcal{M}_1(x), \mathcal{M}_2(x), ..., \mathcal{M}_k(x) \rangle$

Composition Theorems for Differential Privacy

We will define a composition of mechanisms $\mathcal{M}_1, \mathcal{M}_2, ..., \mathcal{M}_k$ as $\mathcal{M}(x)$, Where $\mathcal{M}(x) = \langle \mathcal{M}_1(x), \mathcal{M}_2(x), ..., \mathcal{M}_k(x) \rangle$

Basic Composition

If $\mathcal{M}_1, ... \mathcal{M}_k$ are each (ϵ, δ) differentially private, then:

 \mathcal{M} is $(k\epsilon, k\delta)$ differentially private

If we are willing to tolerate an increase in the δ term, the privacy parameter ϵ only needs to degrade proportionally to \sqrt{k} :

Advanced Composition

If $\mathcal{M}_1, ... \mathcal{M}_k$ are each (ϵ, δ) differentially private then for all $\delta' > 0$,

$$\mathcal{M} \ is \ \left(O\left(\sqrt{k\log\left(1/\delta'\right)}\cdot\epsilon+k\epsilon\left(e^{\epsilon}-1\right)\right), k\delta+\delta'\right) \ \textit{differentially private}.$$

Definition (differentially private) For $\epsilon \geq 0$, $\delta \in [0,1]$, we say that randomized mechanism $\mathcal{M}: X^n \longrightarrow R$ is (ϵ, δ) differentially private if for every two neighboring DBs $x \sim x' \in X^n$ (DBs that differ on one row), the output distribution of mechanism \mathcal{M} on x should be "similar" to that of \mathcal{M} on x' with $1 - \delta$ "confidence":

$$\forall S \subseteq R, Pr\left[\mathcal{M}\left(x\right) \in S\right] \leq e^{\epsilon} \cdot Pr\left[\mathcal{M}\left(x'\right) \in S\right] + \delta$$

Definition (differentially private) For $\epsilon \geq 0$, $\delta \in [0,1]$, we say that randomized mechanism $\mathcal{M}: X^n \longrightarrow R$ is (ϵ, δ) differentially private if for every two neighboring DBs $x \sim x' \in X^n$ (DBs that differ on one row), the output distribution of mechanism \mathcal{M} on x should be "similar" to that of \mathcal{M} on x' with $1 - \delta$ "confidence":

$$\forall S \subseteq R, Pr\left[\mathcal{M}\left(x\right) \in S\right] \leq e^{\epsilon} \cdot Pr\left[\mathcal{M}\left(x'\right) \in S\right] + \delta$$

Definition $((\epsilon, \delta)$ -indistinguishable) We call two random variables Y and Y' taking values in $R(\epsilon, \delta)$ -indistinguishable if:

$$\forall S \subseteq R, Pr[Y \in S] \leq e^{\epsilon} \cdot Pr[Y' \in S] + \delta, \ and$$
$$Pr[Y' \in S] \leq e^{\epsilon} \cdot Pr[Y \in S] + \delta$$

Another interpretation for differentially private mechanism \mathcal{M} is that for every two neighboring DBs $x \sim x' \in X^n$, The output distribution of mechanism \mathcal{M} on x and x' are (ϵ, δ) -indistinguishable variables.

Lemma Two random variables Y and Y' are (ϵ, δ) indistinguishable if and only if there are two events E = E(Y) and E' = E'(Y') such that:

- $Pr[E], Pr[E'] \ge 1 \delta$, and
- $Y|_E$ and $Y'|_{E'}$ are $(\epsilon, 0) indistinguishable$

Lemma Two random variables Y and Y' are (ϵ, δ) indistinguishable if and only if there are two events E = E(Y) and E' = E'(Y') such that:

- $Pr[E], Pr[E'] \ge 1 \delta$, and
- $Y|_E$ and $Y'|_{E'}$ are $(\epsilon, 0) indistinguishable$

We will mark the bad group as:

$$Bad = \{r_i : e^{\epsilon} P_{Y'}(r_i) \le P_Y(r_i)\}$$

since Y and Y' are (ϵ, δ) indistinguishable, it holds that:

$$P_Y(Bad) \le e^{\epsilon} P_{Y'}(Bad) + \delta.$$

Which means that:

$$\gamma = \sum_{r_i \in Bad} P_Y(r_i) - e^{\epsilon} P_{Y'}(r_i) \le \delta$$

We will define the event \bar{E} as follows:

$$\forall r_i \in Bad. \ if \ Y = r_i \ than \ \bar{E} \ happens \ with \ probability \ \frac{P_Y(r_i) - e^{\epsilon} P_{Y'}(r_i)}{P_Y(r_i)}.$$

We get that

$$P(\bar{E}) = \sum_{r_i \in Bad} P_Y(r_i) \cdot \frac{P_Y(r_i) - e^{\epsilon} P_{Y'}(r_i)}{P_Y(r_i)} = \gamma \le \delta$$

We have fixed the bad cases when $e^{\epsilon}P(Y'=r) \leq P(Y=r)$ by looking at

$$P(Y = r|E) = \frac{P(Y = r)}{P(E = r)},$$

But, while doing so, we also scale the cases where $P(Y=r) \leq P(Y'=r)$

We will correct it by reduce the same γ from P(Y'). We will mark group S as:

$$s = \{r_i : (P_Y(r_i) \le P_{Y'}(r_i)\}\$$

We will correct it by reduce the same γ from P(Y'). We will mark group S as:

$$s = \{r_i : (P_Y(r_i) \le P_{Y'}(r_i))\}$$

and define event \bar{E}' to happened with probability γ by reducing the gap between P(Y) and P(Y') in S.

Overall:

- $P(\bar{E}), P(\bar{E}') \leq \delta \longrightarrow P(E), P(E') > 1 \delta$
- $P(Y|E) \le e^{\epsilon} P(Y'|E) \longrightarrow Y|_E$ and $Y'|_{E'}$ are $(\epsilon, 0) indistinguishable$

Basic Composition

If $\mathcal{M}_1, ... \mathcal{M}_k$ are each (ϵ, δ) differentially private, then:

 \mathcal{M} is $(k\epsilon, k\delta)$ differentially private

Advanced Composition

If $\mathcal{M}_1, ... \mathcal{M}_k$ are each (ϵ, δ) differentially private then for all $\delta' > 0$,

$$\mathcal{M}$$
 is $\left(O\left(\sqrt{k\log\left(1/\delta'\right)}\cdot\epsilon+k\epsilon\left(e^{\epsilon}-1\right)\right),k\delta+\delta'\right)$ differentially private.

To simplify the proof, we will assume that:

- \bullet $\delta = 0$
- $\epsilon \le 1$ s.t. $\epsilon (e^{\epsilon} 1) \approx \epsilon^2$
- $k < 1/\epsilon^2$

The tuple
$$\left(O\left(\sqrt{k\log\left(1/\delta'\right)}\cdot\epsilon+k\epsilon\left(e^{\epsilon}-1\right)\right),k\delta+\delta'\right)$$
 become $\left(O\left(\sqrt{k\log\left(1/\delta'\right)}\cdot\epsilon\right),\delta'\right)$

$$L_{\mathcal{M}}^{x \to x'}(r) = \ln \left(\frac{Pr\left[\mathcal{M}\left(x\right) = r\right]}{Pr\left[\mathcal{M}\left(x'\right) = r\right]} \right) = -L_{\mathcal{M}}^{x' \to x}(r)$$

$$L_{\mathcal{M}}^{x \to x'}(r) = \ln \left(\frac{Pr\left[\mathcal{M}\left(x\right) = r\right]}{Pr\left[\mathcal{M}\left(x'\right) = r\right]} \right) = -L_{\mathcal{M}}^{x' \to x}(r)$$

Definition (KL-Divergence). The Kullback—Leibler divergence between two random variables Y and Z taking values from the same domain is defined to be:

$$D(Y||Z) = \mathbb{E}_{y \sim Y} \left[\ln \frac{Pr[Y = y]}{Pr[Z = y]} \right]$$

$$L_{\mathcal{M}}^{x \to x'}(r) = \ln \left(\frac{Pr\left[\mathcal{M}\left(x\right) = r\right]}{Pr\left[\mathcal{M}\left(x'\right) = r\right]} \right) = -L_{\mathcal{M}}^{x' \to x}(r)$$

Definition (KL-Divergence). The Kullback—Leibler divergence between two random variables Y and Z taking values from the same domain is defined to be:

$$D(Y||Z) = \mathbb{E}_{y \sim Y} \left[\ln \frac{Pr[Y=y]}{Pr[Z=y]} \right]$$

Notice that
$$\mathbb{E}_{r \sim R} \left[L_{\mathcal{M}}^{x \to x'}(r) \right] = D\left(\mathcal{M}_i(x) \| \mathcal{M}_i(x') \right)$$

The Max Divergence between two random variables Y and Z is defined by:

$$D_{\infty}(Y||Z) = \max_{S \subseteq Supp(Y)} \left[\ln \frac{Pr[Y \in S]}{Pr[Z \in S]} \right].$$

And finally, the δ -Approximate Max Divergence between Y and Z is:

$$D_{\infty}^{\delta}(Y||Z) = \max_{S \subseteq Supp(Y): Pr[Y \in S] \ge \delta} \left[\ln \frac{Pr[Y \in S] - \delta}{Pr[Z \in S]} \right].$$

$$L_{\mathcal{M}}^{x \to x'}(r) = \ln \left(\frac{Pr\left[\mathcal{M}\left(x\right) = r\right]}{Pr\left[\mathcal{M}\left(x'\right) = r\right]} \right) = -L_{\mathcal{M}}^{x' \to x}(r)$$

Lemma If \mathcal{M}_i is ϵ differentially private, where $\epsilon \leq 1$, than

$$E_{r \in R} \left[L_{\mathcal{M}_i}^{x \to x'}(r) \right] = D \left[\mathcal{M}_i(x) \| \mathcal{M}_i(x') \right] \le 2\epsilon^2$$

Advanced Composition

If $\mathcal{M}_1, ... \mathcal{M}_k$ are each (ϵ, δ) differentially private then for all $\delta' > 0$,

$$\mathcal{M}$$
 is $\left(O\left(\sqrt{k\log\left(1/\delta'\right)}\cdot\epsilon\right),\delta'\right)$ differentially private.

Lemma (Hoeffding's Inequality). Let $X_1, ..., X_k$ be independent real-valued random variables such that for every i, X_i is bounded by $[a_i, b_i]$, than:

$$Pr(S_k \ge E[S_k] + t) \le \exp\left(\frac{-2t^2}{\sum_{i=1}^k (b_i - a_i)^2}\right),$$

where
$$S_k = \sum_{i=1}^k X_i$$

Advanced Composition

If $\mathcal{M}_1, ... \mathcal{M}_k$ are each (ϵ, δ) differentially private then for all $\delta' > 0$,

$$\mathcal{M}$$
 is $\left(O\left(\sqrt{k\log\left(1/\delta'\right)}\cdot\epsilon\right),\delta'\right)$ differentially private.

Lemma (Azuma's Inequality). Let C_1, \ldots, C_k be real-valued random variables such that for every $i \in [k]$, $Pr[|C_i| \le \alpha] = 1$ and for every c_1, \ldots, c_{i-1} , we have

$$E[C_i|C_1=c_1, \dots C_{i-1}=c_{i-1}] \leq \beta$$

Than, for every z > 0, we have

$$Pr\left[\sum_{i=1}^{k} C_i > k\beta + z\sqrt{k} \cdot \alpha\right] \le e^{-z^2/2}$$