CS 422/522 Design & Implementation
of Operating Systems

Lecture 1: Introduction

Zhong Shao
Dept. of Computer Science
Yale University

Today's lecture

Why study operating systems ?

What is an OS? What does an OS do?
History of operating systems
Principles of operating system design
+ Course overview

- course information

- schedule, assignments, grading and policy

- other organization issues
- see web pages for more information

8/29/18

OS is pervasive

L

J_\
Desktop

Mobile

S

cloud

&5

Financial

¥

Transportation ﬁ

Health

em Aviation

Environment

OS is pervasive

j -
D Desktop

Mobile

S
&5

Financial

/ 0s
/ Hardware
cloud K\\\\\~_—//// Aviation

¥

Transportation

Applications Alealth

Environment

8/29/18

OS is pervasive & extremely important

Crash Accident

Aﬁbbile

Apphcahons Life

Hardware
cldud K_-—//// Loss

¢/:

.

7/,
Financial

Environment

OS is no longer for a single machine

9 Sean Everett (Follow)
Fou EO PROME telligence, EIR Th n (acq. Humani

The New Battleground: Car Operating
Systems

How Apple, Google, Samsung, Tesla, NVIDIA and B\ackBorry are
already competing behind the scenes ~ recomme nEv 1

Operating System: like BlackBerry’s QNX, which Ford is using, but also Apple’s
CarOS and Android Auto extended to full OS. Currently folks are just running a
.y fork of Ubuntu or the Ro...

The software running on the SDC should be standardized, in my opinion an
open source base would be the right approach, similar with what we have in
Android ecosystem.

This approach will ensure auto makers cooperation and allow everyone to
contribute to the SDC ecosystem, and provide faster advanced, safe and
consistent...

8/29/18

OS is no longer for a single machine

Harvard TECHNOLOGY

RS Smart Cities Are Going
to Be a Security
Nightmare

by Todd Thibodeaux
In the fictional world of the video game Watch Dogs, you can play a hacktivist whe
takes over the |centraJ operating systeml of a futuristic, hyper-connected Chicago.
With control over the city’s security system, you can spy on residents using
surveillance cameras, intercept phone calls, and cripple the city’s critical

infrastructure, unleashing a vicious cyberattack that brings the Windy City to its

knees. https://hbr.org/2017/04/smart-cities-are-going-to-be-a-security-nightmare

OS in media / movies & on reddit

¢ OS1in HER https://www.youtube.com/watch?v=6V01B5kVsCO

* Hollywood OS http://wiki.c2.com/?HollywoodOs

& Social Network classroom scenes
https://www.youtube.com/watch?v=-3Rt2_9d7Jqg

+ Should every CS major take operating systems?

https://www.reddit.com/r/compsci/comments/50g019/
should every cs_major take operating systems/

+ How a course in operating systems changed me?

https://www.reddit.com/r/programming/comments/2n0Onw5/
how_a_course_in_operating_systems_changed_me/

8/29/18

Why study operating systems ?

¢ Understand how “computers” work under the hood
- Magic for "infinite” CPUs, memory devices, network computing
- Tradeoffs btw. performance & functionality, division of labor btw. HW & SW
- Combine language, hardware, data structures, and algorithms

¢ Become a much better "programmer & architect” with a
deeper level of “computational thinking" skills

+ Help you make informed decisions
- What “computers” to buy? should I upgrade the HW or the 0S?
- What's going on with new “computers”?

+ Give you experience in hacking systems software
“this system is so slow, can I do anything about it 2"

What’s interesting?

¢ OS is a key part of a computer system
- it makes our life better (or worse)
- it is “magical” and we want to understand how
- it has “power” and we want to have the power

+ OS is complex
- how many procedures does a key stroke invoke?

- real OS is huge and insanely expensive to build
* Windows 8: many years, thousands of people. Still doesn’ + work well

+ How to deal with complexity?
- decomposition into many layers of abstraction
- fail early, fail fast, and learn how to make things work

8/29/18

What is an OS?

Software to manage

a computer’s

resources for its
users & applications

(C

@

APP

Operating System

Hardware

Users

User-mode

Kernel-mode

Hardware

o
®

APP APP APP
System System System
Library Library Library

File System

TCP/IP Networking

Kernel-user Interface
(Abstract virtual machine)

Virtual Memory

Scheduling

Hardware Abstraction Layer

(

Hardware-Specific Software
and Device Drivers

N

Disk

Y

Processors Address Translation

[Network]

i
|

Graphics Processor

N

8/29/18

What is an 0S?

Android architecture & system stack

From https://thenewcircle.com/s/post/1031/android_stack_source_to_device &
http://en.wikipedia.org/wiki/Android_(operating_system)

Android Stack: From Source to Device
APPLICATIONS

System Apps User Apps
Contacts Phone Browser Device: /sysismiapp/ Device: /datalapp!
src: packages/ devicamarakanajaipha/app
API
S —— oy
Android Framework Libraries
Window Cor Dovice: /systom/ramework/ (androi.”)

Man Manager P
Stc: rameworks/oase/corel

Package Telephony Location Binder----- - e

Manager Man Manager ervice System Services
Dovice: systom/app

LIBRARIES ANDROID RUNTIME sre:
rameworks/Dase/cmas/system_servar
- = rameworks/baseicore!

Surface Media Core

Manager Framework S Librari - 7~
Dalvik Runtime

OpenGLIES FreeType _— Dovice: system/oindaiikvm and /syste fubin/app_process
INE-eeee e T
Innrroolbox
Dovice:
e
LINUX KERNEL '

stc:systomicorer

Display Camera Bluetooth Flash Memory Binder (IPC)

Driver Driver Driver Driver Driver
Linux Kernel

use Keypad WiFi Audio Power Not part ot (n0sP)

Driver Driver Driver Drivers Management

What is an 0OS?

Visible software components of the Linux desktop stack
From http://en.wikipedia.org/wiki/Linux

idgets for
3D Application
Desktop w 2D Appllcatlon Medla Appllcatlon .N and Plasma

Desktop Shells: User Interface Toolkits (in the form of libraries) tu Android

Display server: System libraries: Alternative display servers:

binder ashmem pmem
wakelocks logger ...

Linux kernel

weston, clayton, mutter, Kiin

metacity

ed)

8/29/18

8/29/18

What is an 0S?

Linux Kernel Map: Kernel components are sorted into different

stacks of abstraction layers based on their underlying HW devices
From http://www.makelinux.net/kernel map/

memory

disk controllers network controllers

-

What is an 0OS?

Web browsers

Web Page Web Page

Good Web Site— «— Evil Web Site

Cloud computing

| Database |

APP APP APP | Operating System |

Browser

_— ey
S— e —

Operating System

| Cloud Software |

Server Server Server

Server |

Multi-user

database systems Other instances: multiplayer
games, internet, social

networking app, blockchain, ...

Operating system roles

+ Referee:
- Resource allocation among users, applications
- Isolation of different users, applications from each other
- Communication between users, applications

¢ Illusionist
- Each application appears to have the entire machine to itself

- Infinite number of processors, (near) infinite amount of
memory, reliable storage, reliable network transport

* Glue
- Libraries, user interface widgefts, ...

Example: file systems

¢ Referee

- Prevent users from accessing each other's files without
permission
- Even after a file is deleted and its space re-used

¢ Illusionist
- Files can grow (nearly) arbitrarily large

- Files persist even when the machine crashes in the middle of a
save

¢ Glue
- Named directories, printf, ...

8/29/18

8/29/18

Question

¢ What (hardware, software) do you need to be able to
run an untrustworthy application?

Question

+ How should an operating system allocate processing
time between competing uses?
- Give the CPU to the first to arrive?

- To the one that needs the least resources to complete? To
the one that needs the most resources?

10

Example: web service

(1) ()

HTTP GET index.html Read file: index.html

Client Server index.html

(4) ©)

HTTP web page File data

+ How does the server manage many simultaneous client
requests?

+ How do we keep the client safe from spyware embedded
in scripts on a web site?

+ How to make updates o the web site so that clients
always see a consistent view?

What does an OS do ?

¢ OS converts bare HW into nicer abstraction
- provide coordination: allow multiple applications/users to work
together in efficient and fair way (memory protection,
concurrency, file systems, networking)
- provide standard libraries and services (program execution,
I/0 operations, file system manipulations, communications,
resource allocation and accounting)

+ For each OS areaq, you ask
- what is the hardware interface --- the physical reality ?

- what is the application interface (API) --- the nicer
abstraction?

8/29/18

11

Example of OS coordination: protection

Goal: isolate bad programs and people (security)

Solutions:
- CPU Preemption
* give application something, can always take it away (via clock interrupts)
- Dual mode operation

* when in the OS, can do anything (kernel-mode)
* when in a user program, restricted to only touching that program's
memory (user-mode)
- Interposition
* OS between application and "stuff"
* track all pieces that application allowed to use (in a table)
* on every access, look in table to check that access legal

- Memory protection: address translation

Example: address translation

Restrict what a program can do by restricting what it can touch!

¢ Definitions:
- Address space: all addresses a program can touch
- Virtual address: addresses in process' address space
- Physical address: address of real memory
- Translation: map virtual to physical addresses

¢ Virtual memory
- Translation done using per-process tables (page table)
- done on every load and store, so uses hardware for speed

- protection? If youdon't want process to touch a piece of
physical memory, don't put franslation in table.

8/29/18

12

OS history
MVS Multics
MS/DOS VMS VM(37O UNIX
Windows BSD UNIX Mach
Windows NT VM\;Vare Linux NEXT MacOS
Windows 8 MacOS X
s nfluence
Descendant Android iOS

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Challenges in writing OS

¢ Concurrent programming is hard

+ Hard to use high-level programming languages

- device drivers are inherently low-level

- real-time requirement (garbage collection? probably not)

- lack of debugging support (use simulation)

+ Tension between functionality and performance

Portability and backward compatibility

- many APIs are already fixed (e.g., GUI, networking)
- OS design tradeoffs change as HW changes !

8/29/18

13

Challenges in writing OS (cont'd)

+ Reliability
- Does the system do what it was designed to do?
¢ Availability
- What portion of the time is the system working?
- Mean Time To Failure (MTTF), Mean Time to Repair
+ Security
- Can the system be compromised by an attacker?
+ Privacy

- Data is accessible only to authorized users

Main techniques & design principles

*

Keep things simple !

Use abstraction
- hide implementation complexity behind simple interface

Use modularity
- decompose system into isolated pieces

But what about performance
- find bottlenecks --- the 80-20 rule
- use prediction and exploits locality (cache)

What about security and reliability?

More research is necessary!

8/29/18

14

Course information

Required textbook:

Operating Systems: Principles & Practice (2" Edition) by T.
Anderson and M. Dahlin

information, assignments, & lecture notes are available on-line
we won't use much paper

Official URL: http://flint.cs.yale.edu/cs422

for help, go to the piazza site:
https://piazza.com/yale/fall2018/cpsc422522

Course information (cont'd)

¢ 13 week lectures on OS fundamentals
- class participation is strongly recommended

¢ Course requirements
- 70% on assignments (asl - as6)
- 30% closed-book, in-class midterm (Monday, November 5t)

+ Assignments (asl-as6) and course policies
build a small but real OS kernel, bootable on real PCs.

2 persons / team (one person team is OK t0o).
6 free late days (3 day late max per assignment).

extensive hacking (in C & x86 assembly) but highly rewarding

8/29/18

15

Programming assignments

Assignment topics (tentative)

- Bootloader & physical memory management
- Container and virtual memory management
- Process management & trap handling

- Multicore and preemption

- File system

- IPC, Shell, and Extensions

¢ How

- Each assignment takes two weeks
- Most assignments due Thursdays 11:59pm

¢ The Lab

- Linux cluster in ZOO (3" Floor of AKW or Room 111 at 17HH)
- You can setup your own machine to do projects

Programming assignments (cont'd)

Based on mCertiKOS (Yale FLINT) & JOS (from MIT)

User-space User-space Virtual Vitual | | Virtual || Certified |Uncertified
Machine Manager Device 1 Device N App App
Trap Trap Handlers
(interrupts, exceptions, system call handlers)
Virtualization AMD SVM Abstraction
(primitives for VMCB & NPT)
Process
Process & Thread Management & IPC Certified
Thread Kernel
MM Memory Management
(Physical Memory & Virtual Memory Management)
Drivers
Preinit
HwW PIC Timer IDE
Sl RETER (i8259) (i8254) Controller

8/29/18

16

Programming assignments (cont'd)

Break kernel interdependency by insisting
on careful layer decomposition ot e

Toispatch vm_init
D vm init
TTrapAg vm_int

¢ With the right methodology, every CS s e

VMCS vmes init

major should be able to write an OS .-

EPTOD ept init

kernel from scratch

3

guestmem
guestmem
guestmem

SysCall

guestmen [VM[Proc]ArgloRz[pMes]Shiem pegdcontainer

questmem
quest mem
quest mem
quest mem
quest mem
quest mem

quest mem

[

i
e [P shutom
ics [

PProc proc. it

User-space User-space Virtual

Machine Manager

o [— PIPCINNO thread init

Vitual | Vitual
App App

Device 1 Device N

PThread thread init
PTDINO abq_init
‘ PCUID abq int

Trap Handlers
(interrupts, exceptions, system call handlers)

Virtualization 'M Abstraction

(primitives for VMCB & NPT)

PKCINtO share.ini

absiract mem
abstract mem
absiract mem
abstract mem

abstract mem

abstract mem

Priap| Shiem

IcR2
| Container|

Pien
[kcua[pwer|

Process & Thread Management & IPC Certified MShareOp

share_init
Kernel

MShintro pmap_init

Process
Thread

MPMap pmap_init
MPTB o1 init
MPTI pt int
MPTKern piken_int

Memory Management
or

(Physical Memory & Virtual Memory Management)

‘ MShare share_init
MM ‘ ‘

Drivers MPTCom picom_init
& Pre PIC Driver Timer Driver IDE Driver SVM Driver M e
Preinit MPTInvo pmem int
MAT pmem it
MATO pmem it

HW
PIC imer IDE
o Dmer e MATIntro bootioader
MContainer baotoader

cPU Memory

abstract mem
abstract mem
abstract mem

abstract mem

abstract mem
abstract mem

machine mem
machine mem
machine mem
machine mem

Pap [poge

[

cr2
Container

page
=

Comaner] nos [285]

Gonaine] nps [851

i

ovaner oos L]

Prolnit bootoader

machine mem

8/29/18

17

