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1
Introduction

This thesis deals with the simulation of energy transfer in the solar atmosphere, modeled
by the equations of magneto-hydrodynamics (MHD) with a gravity source term, and suit-
able initial and boundary conditions. The equations of ideal MHD describe the evolution
of macroscopic plasmas, and arise in many other contexts in astrophysics, and electrical
and aerospace engineering. The ideal MHD equations are a system of conservation laws
in multiple dimensions. The system is hyperbolic but not strictly hyperbolic, and the
solution structure is highly complex due to the presence of compound and intermediate
shocks, contact discontinuities, and genuinely multi-dimensional waves. Standard finite
volume methods are found to be unstable in multiple dimensions in space. One possible
reason is the role of the divergence constraint.

Given the complexity of the full MHD system, we consider the magnetic induction
equations as a model. Although linear, the induction equations lead to similar difficulties
in the discretization. A non-standard form of these equations, involving a source term
proportional to the divergence, is found to be symmetrizable. This term is discretized by
suitable, energy stable finite volume schemes. The key to obtain a stable scheme is a novel
upwind discretization of the source term. Furthermore, we consider the full MHD system,
and discretize a modified form of the equations (including a source term proportional to
the divergence). We derive stable schemes based on splitting the system into an extended
Euler part and the magnetic induction equations (with a source term). The extended Euler
system is discretized with suitable HLL-type approximate Riemann solvers, whereas the
magnetic induction equations are approximated with the above mentioned upwind scheme.
The combination leads to a numerically robust scheme for approximating the solutions of
the ideal MHD equations.

Next, we extend this approach to the Godunov-Powell form of the ideal MHD equa-
tions. This form is entropy symmetrizable as well as Galilean invariant. We design suit-
able approximate Riemann solvers and discretize the Godunov-Powell source term in an
upwinded manner. In addition, high order positivity preserving ENO and WENO recon-
structions are presented. Numerical experiments, illustrating the accuracy and stability
of the resulting schemes, particularly on fine meshes, are presented.

Another part of this thesis employs the finite volume framework for the ideal MHD
equations to simulate energy transfer in the solar atmosphere. A two dimensional model
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2 CHAPTER 1. INTRODUCTION

with appropriate steady states is considered. Suitable, non-reflecting boundary conditions
are discussed in detail. However, the key to obtain a robust scheme is to balance the
gravity source with the numerical flux and the Godunov-Powell source. The resulting
high order well-balanced schemes are tested on realistic configurations and are found to
resolve the complex physical phenomena quite well.

We begin this introduction with a brief description of the physical background needed
for understanding the modelling of the solar atmosphere.

1.1 Energy transfer mechanisms in the solar atmo-

sphere

The Sun is a main sequence star in the center of our solar system. It provides light, heat
and other forms of energy to Earth and comprises about 99% of the total mass in the solar
system. The Sun’s radius is about 7 × 105 kilometers, approximately 109 times Earth’s
radius, see [2] and [3]. Figure 1.1 shows a schematic view of the Sun.

Figure 1.1: Schematic view of the Sun. Source: [5].

Like most other stars, the Sun is made up mostly of atoms of the chemical element
hydrogen. About 94% of the atoms are hydrogen, 5.9% helium, and the remaining 0.1%
consist mainly of the elements oxygen, carbon, neon, nitrogen, magnesium, iron and
silicon. But hydrogen is the lightest of all elements, and so it accounts for only about
72% of the mass, while helium makes up around 26%.
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The inner layers of the Sun, and most of its atmosphere, consist of plasma. Plasma
is a partially ionized gas, in which a certain proportion of electrons are free rather than
being bound to an atom or a molecule. The degree of this ionization is the proportion of
atoms which have lost (or gained) electrons, and is controlled mostly by the temperature.
As the temperature increases, more and more atoms become ionized, and the atoms that
are ionized lose more and more electrons. The highest part of the solar atmosphere, called
the corona, has a temperature of about 4× 106K and is therefore strongly ionized.

The energy of the Sun comes from nuclear fusion reactions that occur deep inside the
Sun’s core. As described earlier, most of the atoms inside the Sun are positive ions of
the most common form of hydrogen. Thus, most of the Sun consists of single protons
and independent electrons. Because nuclei have a positive charge, they tend to repel one
another, but the core’s temperature and density are high enough to force nuclei together.
In the most common fusion process in the Sun, the so-called proton-proton chain, the final
nucleus after the fusion consists of two protons and two neutrons, a nucleus of the most
common form of helium. The mass of this nucleus is slightly less than the mass of the
four protons from which it forms. The lost mass is converted into energy. The amount of
energy can be calculated from the physicist Albert Einstein’s famous equation E = mc2.
In this equation, the symbol E represents the energy, m the mass that is covered, and c
the speed of light. This energy is released in high-energy photons (gamma rays) which are
absorbed in only a few millimeters of solar plasma and then re-emitted again in random
direction and at slightly lower energy. It takes a long time for radiation to reach the
Sun’s surface. Statistically a photon takes between 104 and 105 years to leave the Sun. At
the transparent ”surface” of the photosphere, the photons escape as visible light. Each
gamma ray in the Sun’s core is converted into several million visible light photons before
escaping into space. The additionally released neutrinos in the core react very rarely with
matter, unlike photons, so almost all are able to escape the Sun immediately.

1.1.1 Zones of the Sun

The Sun is generally divided into the core, the radiative zone, the convective zone, the
photosphere, and the atmosphere. The heliosphere, which may be considered the tenuous
outer atmosphere of the Sun, extends outward past the orbit of Pluto to the heliopause,
where it forms a sharp shock front with the interstellar medium, see figure 1.2.

The core extends from the center of the Sun about one-fourth of the way to the surface.
The core has about 2% of the Sun’s volume, but it contains almost half the Sun’s mass.
Its maximum temperature is more than 1.5× 107 K and its density reaches 1.5× 107 g

m3 ,
approximately 150 times the density of water on Earth. The high temperature and density
of the core result in immense pressure, i.e., about 2 × 1011 times Earth’s atmospheric
pressure at sea level. The core’s pressure supports all the overlying gas, preventing the
Sun from collapsing. Almost all the fusion in the Sun takes place in the core.

Surrounding the core is a huge spherical shell, known as the radiative zone. The outer
boundary of this zone is 70% of the way to the solar surface. The radiative zone makes
up 32% of the Sun’s volume and 48% of its mass. The radiative zone gets its name from
the fact that energy travels through it mainly by radiation. Photons emerging from the
core pass through stable layers of gas. But they scatter from the dense particles of gas so
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Figure 1.2: The tenuous outer atmosphere of the Sun, the solar wind, forms a sharp shock
front with the interstellar medium. Source: [6].

Figure 1.3: This figure shows the temperature and density distribution in the outer zones
of the Sun. The x-axis shows the height above the top of the photosphere in km. On the
left y-axis we find the temperature in Kelvin and on the right is the density in gram per
cubic centimeter. Source: “The Solar Results From Skylab” on [1].
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often that an individual photon takes statistically 105 years to pass through the zone.
The highest level of the solar interior, the convection zone, extends from the radiative

zone to the Sun’s surface. This zone consists of the ”boiling” convection cells. It makes
up about 66% of the Sun’s volume but only slightly around 2% of its mass. At the top of
the zone, the density is near zero, and the temperature is about 6×103 K. The convection
cells ”boil” to the surface because photons that spread outward from the radiative zone
heat them.

The lowest layer of the atmosphere is called the photosphere. The density in the lower
part of the photosphere is becoming low enough for the plasma to become transparent at
most frequencies of light, so that radiation can escape from the Sun. The photosphere is
about 500 km thick. Astronomers often refer to this part as the Sun’s surface, since this
is the part where the Sun becomes transparent. The photosphere consists of numerous
granules, which are the tops of granulation cells. These granulation cells are caused by
convection currents of the plasma within the convection zone and produce magnetic north
and south poles all over the surface of the Sun.

The next zone upwards is the chromosphere. As shown in figure 1.3, the coolest layer
of the Sun is a temperature minimum region about 500 km above the photosphere, with a
temperature of about 4× 103 K. For reasons not fully understood, the temperature rises
after this minimum up to about 104 K and is therefore hotter than that of the photosphere.
The most common feature in the chromosphere are spike-shaped structures called spicules.
The density of the chromosphere drops exponentially from 10−7 to 10−13 g

m3 , see figure 1.3.
The temperature of the chromosphere is about 2×104 K, and the corona is hotter than

5× 105 K, see figure 1.3. Between the two zones is a region of intermediate temperatures,
known as the transition region. This region receives much of its energy from the overlying
corona. The transition region is not fixed in space. In models, this region moves up
and down in the atmosphere every time a wave from below hits it. The thickness of the
transition region is a few hundred to a few thousand kilometers.

For the described structures in the Sun’s atmosphere the magnetic field of the Sun
plays an important role. The influence of the magnetic field on the plasma depends
on the ratio of the magnetic pressure to the gas pressure. Above the photosphere, the
magnetic pressure dominates the gas pressure and thus, we expect magnetic fields to play
an important role for the plasma motion in the Sun.

1.1.2 The magnetic field

The magnetic field of the Sun is generated by a physical process called the solar dynamo.
The big plasma motions in the Sun are the following two.

i) The Sun rotates more rapidly at the equator than at higher latitudes, illustrated in
figure 1.4.

ii) The inner parts of the Sun rotate more rapidly than the surface.

These different movements of the plasma cause shear stresses, especially at the tachocline,
a transition layer between the radiative zone and the convection zone. Since the Sun is
a very good electrical conductor (The ability of the positive and negative charges in a
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plasma to move relative to each other makes the plasma electrically conductive.), these
shear stresses produce a circular electrical current which, according to Ampere’s law,
produce a magnetic field. The detailed mechanism of the solar dynamo is not known, and
is the subject of current research, in which simulations like in the chapters 5, 6 and 7 play
an important role in order to understand the physical processes in the Sun.

Figure 1.4: The solar cycle. The differences in rotational speed stretch the magnetic field
lines. Source: [4].

In the photosphere and below the magnetic pressure is much smaller than the gas
pressure (figure 1.3), and the magnetic field is pushed around by the gas. This means
that the magnetic field becomes concentrated in the downflow regions at the edges of the
convection cells. The typical strength of the Sun’s magnetic field is only about twice that
of the Earth’s field. But when the Sun’s magnetic field becomes highly concentrated in
these small downflow regions, the field strength is around 103 times as great as the typical
strength. Above the photosphere the magnetic pressure becomes equal and then larger
than the gas pressure, and the magnetic field spreads out. In these regions where the
plasma is dominated by the magnetic pressure, the field lines guide ions and electrons
into the space above the sunspots. Vibrations, caused by the field being pushed around
by convection, are transmitted along the field, with growing amplitude as the gas density
drops. All these processes create a variety of features on the Sun’s surface and in its
atmosphere, the part that we can see, ranging from relatively cool, dark structures known
as sunspots to spectacular eruptions called flares and coronal mass ejections.

An important feature of the solar atmosphere is that the temperature decrease from
the core is reversed in the outer atmosphere, see figure 1.3. The heating of the atmo-
sphere is only just now becoming understood, using data from modern solar observation
satellites, and particularly from the results of numerical modeling. But the above descrip-
tion of the Sun implies that the simulation of the entire solar atmosphere is extremely
complicated, and involves multiple physical models. Hence, we concentrate on a part
of the atmosphere that includes the chromosphere. One of the important energy carri-
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ers in the solar atmosphere are convection generated waves from the inner layers of the
sun. They transport and deposit energy in the overlaying chromospheric and coronal
plasmas. The waves interact with complex magnetic fields generated by the plasma, and
these interactions affect the qualitative as well as the quantitative features of the energy
transfer. One of the most important models for simulating the processes in the solar
chromosphere are the so-called magneto-hydrodynamic (MHD) equations, together
with a gravitational source term.

1.2 Magneto-hydrodynamic equations (MHD)

The MHD equations are used in many interesting problems in astrophysics, solar physics,
and electrical and aerospace engineering, including the simulation of the processes in the
solar atmosphere. In these models, the variables of interest are the mass density of the
plasma ρ, the velocity field u = (u1, u2, u3)

T , the magnetic field B = (B1, B2, B3)
T , the

pressure p, and the total energy E. These unknowns follow certain physical conservation
or balance laws (see [66] for details).

1.2.1 Derivation of the MHD equations

The derivation of the ideal MHD equations in three spacial dimensions is described below.

i) Conservation of mass: Mass of a plasma is conserved, resulting in the standard
conservation of mass, namely

ρt + div(ρu) = 0.

ii) Faraday’s law: The magnetic flux across a surface S bounded by a curve δS is
given by Faraday’s law

− d

dt

∫
S

B · dS =

∫
δS

E · dl.

By using Stokes theorem and the fact that the electric field in a co-moving frame is
zero at infinite conductivity, Faraday’s law leads to

Bt + curl(B× u) = −u(divB). (1.2.1)

The above equation is termed the magnetic induction equation and can also be
written in the following divergence form,

Bt + div(u⊗B−B⊗ u) = −u(divB).

iii) Conservation of momentum: In differential form, the conservation of momentum
is

(ρu)t + div(ρu⊗ u + pI) = J×B− ρgen,

where J denotes the current density and I the 3 × 3 identity matrix. The action
of gravity enters the equation for the momentum via a source term, where g is
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the constant acceleration due to gravity in the direction en. The Lorentz force,
exerted by the magnetic field, is given by J × B. Under the assumptions of ideal
MHD, Ampere’s law expresses the current density as

J = curl(B).

Using standard vector identities results in the following semi-conservative form,

(ρu)t + div

(
ρu⊗ u + (p+

1

2
B2)I −B⊗B

)
= −B(divB)− ρgen.

iv) Conservation of energy: Defining the hydrodynamic energy of an ideal gas as

Ehd =
p

γ − 1
+

1

2
ρu2,

and using the conservation of this energy results in

Ehd
t + div((Ehd + p)u) = J · (B× u).

The right hand side represents the change in energy due to the magnetic field. By
using standard vector identities and Ampere’s law, we obtain

J · (B× u) = (B · ∂B
∂t
− (u ·B)(divB)− div(B ·B)u− (u ·B)B).

Defining the total energy of the plasma as E = Ehd + 1
2
B2, energy conservation

takes the form

Et + div((E + p+
1

2
B2)u− (u ·B)B) = −(u ·B)(divB).

Finally, since our model accounts for the action of gravity, we have to add a source
term, leading to

Et + div((E + p+
1

2
B2)u− (u ·B)B) = −(u ·B)(divB)− ρg(u · en),

where g is the constant acceleration due to gravity in the direction en.

Combining all the above balance laws leads to the following semi-conservative form of
the ideal MHD equations,

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u + (p+
1

2
|B|2)I −B⊗B) = −B(divB)− ρgen,

Bt + div(u⊗B−B⊗ u) = −u(divB),

Et + div((E + p+
1

2
|B|2)u− (u ·B)B) = −(u ·B)(divB)− ρg(u · en).

(1.2.2)
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Neglecting the gravity (g = 0), the above semi-conservative form is also called the
Godunov-Powell form of the MHD equations, and the source on the right-hand side
of (1.2.2) is called the Godunov-Powell source term. Magnetic monopoles have not
been observed in nature, although their existence has been hypothesized in a number
of quantum regimes by both the unified field theory and the string theory. Hence, it is
common to assume that the magnetic field is solenoidal, i.e., it satisfies the divergence
constraint,

div(B) ≡ 0. (1.2.3)

Under this constraint, the Godunov-Powell source terms in (1.2.2) is zero, and the con-
straint is explicitly added to the equations to obtain the following conservative standard
form of the ideal MHD equations,

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u + (p+
1

2
|B|2)I −B⊗B) = −ρgen,

Bt + div(u⊗B−B⊗ u) = 0,

Et + div((E + p+
1

2
|B|2)u− (u ·B)B) = −ρg(u · en),

divB = 0.

(1.2.4)

Taking divergence on both sides of the magnetic induction equation (1.2.1) yields,

(divB)t + div(u(divB)) = 0. (1.2.5)

This means that any solenoidal initial magnetic field remains divergence free. Hence, for
smooth solutions, the semi-conservative form (1.2.2) is equivalent to the standard form
(1.2.4), if the initial magnetic field is divergence free.

With g = 0, the equations of ideal MHD (1.2.4) are an example of a system of conser-
vation laws in multiple dimensions of the from

qt + f(q)x + g(q)y + h(q)z = 0.

These PDEs of the hyperbolic type are widely used for modeling phenomena in acoustics,
gas dynamics, elastodynamics, and bio-mechanics. In the physical derivation, hyperbolic
PDEs arise typically from problems involving wave motion or the transport of certain
substances, by assuming that a certain quantity is conserved. Conservation means that
the rate of change of the total amount of a substance contained in a domain Ω is equal
to the flux of that substance across the boundary of the same domain Ω.

In order to investigate the structure of a general hyperbolic partial differential equation
in one space dimension, i.e.,

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = 0, (1.2.6)

one has to analyze the local wave structure by linearizing the equations around a certain
state

Vt + A(V )Vx = 0, A = f ′ = fV ,

where A(V ) is the matrix Jacobian.
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1.2.2 Linear hyperbolic equations

The easiest case of the hyperbolic conservation law (1.2.6) is, when the flux function f is
linear, i.e.,

qt + Aqx = 0, A ∈ R
m×m. (1.2.7)

The equation (1.2.7) is called hyperbolic if A is diagonalizable with real eigenvalues.
For a linear hyperbolic PDE there exist eigenvalues λ1 ≤ ... ≤ λm and a complete set
of eigenvectors r1, ..., rm ∈ R

m, such that R = [r1|...|rm] is non-singular. By multiplying
(1.2.7) with R−1, we can rewrite this linear system as

R−1qt +R−1ARR−1qx = 0.

Introducing the so-called characteristic variables w(x, t) := R−1q(x, t) we can rewrite
the linear equation as

wt + Λwx = 0,

where Λ = diag(λ1, ..., λm). Using the characteristic variables, we can see that the linear
system decouples into m independent advection equations

wp
t + λpwp

x = 0, p = 1, ...,m.

Now we can solve the linear system (1.2.7) together with the initial condition q(x, 0) =
◦
q(x). The solution consists of m ”waves ” traveling at characteristic speeds λp

q(x, t) =
∑

p

wp(x, t)rp =
∑

p

◦
w

p
(x− λpt)rp.

Let us now investigate the hyperbolic structure of the linearized ideal MHD equations
(1.2.4).

1.2.3 The characteristic structure of ideal MHD

Consider the equation (1.2.4) in the x-direction. The equations in x-direction can be
written down in the following from

Wt + f(W)x = 0, (1.2.8)

where
W = (ρ, ρu1, ρu2, ρu3, B1, B2, B3, E)T ,

is the vector of conserved variables, and the flux f is given by

f(W) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
ρu2

1 + p̃
ρu1u2 −B1B2

ρu1u3 −B1B3

0
u1B2 − u2B1

u1B3 − u3B1

(E + p̃)u1 −B1(u1B1 + u2B2 + u3B3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where we have defined

p̃ = p+
B2

1 +B2
2 +B2

3

2
. (1.2.9)

The divergence constraint in one space dimension forces the magnetic field in x direction
(B1) to be constant in space and time, and thus act only as a parameter in the equations.
Defining the vector of primitive variables,

V = {ρ, u1, u2, u3, B1, B2, B3, p},

the system (1.2.4) reduces to the following quasilinear form in one dimension,

Vt + A1(V )Vx = 0. (1.2.10)

The expression for the Jacobian matrix A1 is

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1 p 0 0 0 0 0 0
0 u1 0 0 −B1

ρ
−B2

ρ
−B3

ρ
1
ρ

0 0 u1 0 −B2

ρ
−B1

ρ
0 0

0 0 0 u1 −B3

ρ
0 −B1

ρ
0

0 0 0 0 0 0 0 0
0 B2 −B1 0 −u2 u1 0 0
0 B3 0 −B1 −u3 0 u1 0
0 γp 0 0 (γ − 1)u ·B 0 0 u1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.2.11)

see for example [68]. Since the fifth row is zero, the matrix is evidently singular. This
leads to a zero eigenvalue, and we expect that this leads to problems in simulating the
equations. This zero eigenvalue is related to the fact that in one space dimension the
evolution equation for B1 is (B1)t = 0, and it is therefore common to remove the fifth
column and row (and hence remove B1 as a variable). On the other hand, using the
primitive form (1.2.2) of the MHD equations, we get the following Jacobian matrix

A′1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1 p 0 0 0 0 0 0
0 u1 0 0 −B1

ρ
−B2

ρ
−B3

ρ
1
ρ

0 0 u1 0 −B2

ρ
−B1

ρ
0 0

0 0 0 u1 −B3

ρ
0 −B1

ρ
0

0 0 0 0 u1 0 0 0
0 B2 −B1 0 −u2 u1 0 0
0 B3 0 −B1 −u3 0 u1 0
0 γp 0 0 (γ − 1)u ·B 0 0 u1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.2.12)

In the following, we will work with this Jacobian matrix A′1. Defining the sound speed

a2 =
γp

ρ
and b1,2,3 =

B1,2,3√
ρ
,

b2 = b21 + b22 + b23, b2⊥ = b22 + b23,
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λ1

fast

λ2

Alfvén

λ3

slow

λ4,5

shear

contact,

λ6

slow

λ7

Alfvén

λ8

fast

Figure 1.5: Eigenstructure of the MHD equations.

the eigenvalues of A′1 read

λ1 = u1 − cf , λ2 = u1 − b1, λ3 = u1 − cs, λ4 = λ5 = u1,

λ6 = u1 + cs, λ7 = u1 + b1, λ8 = u1 + cf ,
(1.2.13)

where cf and cs are given by

c2f =
1

2

(
a2 + b2 +

√
(a2 + b2)2 − 4a2b21

)
,

c2s =
1

2

(
a2 + b2 −

√
(a2 + b2)2 − 4a2b21

)
.

(1.2.14)

As all eigenvalues are real, the system is hyperbolic. The eigenvalues are ordered by
λ1 ≤ ... ≤ λ8 as cs ≤ b1 ≤ cf , see figure 1.5. The waves corresponding to λ1 and λ8 are
called fast waves, the ones corresponding to λ3 and λ6 slow waves, those corresponding
to λ2 and λ7 Alfvén waves, the wave associated with λ4 is called a contact wave, the
wave corresponding to λ5 is called a shear wave. However, the equations of ideal MHD
are nonlinear. This introduces a lot of additional interesting phenomena. Let us start by
studying the simplest nonlinear PDE.

1.2.4 Nonlinear Systems

The easiest nonlinear equation is the so-called Burgers’ Equation

qt +

(
1

2
q2

)
x

= 0. (1.2.15)

Even with initially smooth conditions, the solutions to this equation can develop disconti-
nuities in finite time. These discontinuities are called shocks. Additionally, the solution
can contain rarefaction waves. The name rarefaction comes from the fact that the
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(a) Initial condition. (b) Solution at t = 25.

Figure 1.6: The nonlinear Burgers equation. A shock and a rarefaction wave can be seen
in (b).

density q becomes more rarefied as the density increases smoothly. Figure 1.6 shows a
schematic behavior of the solutions to the Burgers’ equation.

Since solutions develop discontinuities, we have to define weak solutions. Following
[50], we define

Definition 1.2.1 (Weak solution). The function q(x, t) is a weak solution of the con-
servation law,

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = 0, (1.2.16)

with given initial data
◦
q(x) if the following condition holds∫ ∞

0

∫ ∞

∞
qφt + f(q)φxdxdt = −

∫ ∞

0

◦
q(x)φ(x, 0)dx (1.2.17)

for all continuously differentiable functions φ with compact support.

It can be shown that any weak solution also satisfies the integral form of the conser-
vation law, i.e.,

d

dt

∫ x2

x1

q(x, t)dx = f(q(x1, t))− f(q(x2, t)),∀x1, x2 ∈ R, (1.2.18)

and vice versa, [50].
In general, the weak solution to a conservation law is not necessarily unique. In order

to regain uniqueness, it is reasonable to look at a so-called entropy function η(q). This is
motivated from the second law of thermodynamics, stating that the entropy of an isolated
system, which is not in equilibrium, will tend to increase over time.

Definition 1.2.2 (Entropy inequality). A weak solution q satisfies the entropy inequal-
ity if ∫ ∞

0

∫ ∞

∞
η(q)φt + ψ(q)φxdxdt ≤ −

∫ ∞

0

η(
◦
q(x))φ(x, 0)dx (1.2.19)

for all φ ∈ C1
0(R × R) with φ(x, t) ≥ 0 ∀x, t. Furthermore, an entropy function is

admissible if and only if
ηT

q fq = ψT
q . (1.2.20)
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The weak entropy inequality chooses the physically relevant solution among all the
weak solutions.

In the linear case of a hyperbolic system of m equations, we know that for a solution
there are at any point x exactly m waves passing by at different speeds, and we observe a
superposition of these waves. In the nonlinear case, these waves are constantly interacting
with each other, and in addition they deform separately. These problems cannot be solved
analytically in general, and therefore we will look at special situations. We will introduce
several concepts in order to classify the nonlinear hyperbolic PDEs.

Shock waves and Hugoniot loci

In this section, we will describe isolated shock waves separating two constant states
(qL, qR). The relation that must hold across a shock and its speed of propagation comes
from the fact that across any shock the so-called Rankine-Hugoniot condition must
be satisfied. It is simply derived from applying the integral form of the conservation law
to the region of the jump.

Let q∗ be any fixed state. Then all states q that can be connected to q∗ by a shock
with speed s have to satisfy the Rankine-Hugoniot condition

s(q∗ − q) = f(q∗)− f(q), q∗ ∈ {qL, qR}. (1.2.21)

Remark 1.2.1. In the linear case (f(q) = Aq) this means solving

A(q∗ − q) = s(q∗ − q),

and therefore q∗ − q must be an eigenvector of the matrix A, and the propagation speed s
of the discontinuity is the corresponding eigenvalue λ.

q1

q2

1-shock

2-shock

q∗

r2(q
∗)

r1(q
∗)

Figure 1.7: Hugoniot Loci.

In the linear case, the states connected to a state q∗ by a shock will be straight lines.
In the general case, we can draw all the states q that can be connected to q∗ by shock
wave, by solving the Rankine-Hugoniot condition in the state space. This set of states is
called a Hugoniot locus. Figure 1.7 shows one example for the Hugoniot loci of a 2× 2
system.
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Simple Waves and Rarefactions

Another important case is to investigate solutions that are smoothly varying, but which
also have the property of being associated with only one characteristic family of the
system.

Definition 1.2.3 (Integral curve of a vector field). A smooth curve q̃(ξ), ξ ∈ R in state
space is called integral curve of the vector field rp, if

q̃′(ξ) ‖ rp(q(ξ)), (1.2.22)

for all ξ. Figure 1.8 shows a typical integral curve for a 2× 2 system.

q1

q2

rp(q)

integral curve

Figure 1.8: Integral curve.

A simple wave is a special solution to a conservation law with

q(x, t) = q̃(ξ(x, t)), (1.2.23)

where q̃(ξ) is an integral curve (ξ smooth).
A centered rarefaction wave is a special case of a simple wave in a genuinely

nonlinear field, in which ξ(x, t) = x/t. This means that the solution is constant on rays
through the origin, having the form

q(x, t) =

⎧⎪⎨
⎪⎩
qL if x/t ≤ λp(qL),

q̃(x/t) if λp(qL) ≥ x/t ≤ λp(qR),

qR if x/t ≥ λp(qR),

(1.2.24)

where λp is the pth eigenvalue.
The tendency of a simple wave to spread/steepen is given by the variation of the

eigenvector along the integral curve, i.e.,

d

dξ
λp(q̃(ξ)) = ∇λp(q̃(ξ)) · q̃′(ξ).

This can be used to define the following.

Definition 1.2.4. The pth field is called



16 CHAPTER 1. INTRODUCTION

• genuinely nonlinear, if

∇λp(q) · rp(q) �= 0, ∀q,

• and linearly degenerate, if

∇λp(q) · rp(q) ≡ 0, ∀q.

The property of genuine non-linearity insures that characteristics are always compress-
ing or expanding as q varies.

q1

q2

integral curve

contour lines of λp(q)

Figure 1.9: Integral curves and contour lines.

Non-strict hyperbolicity and non-convexity

The property of hyperbolicity means that all the eigenvalues are real (and we have a full
set of eigenvectors). However, we can further divide hyperbolicity into three different
cases. Let f : R

m → R
m.

Strict hyperbolicity means that the Jacobian of the flux f ′ has distinct eigenvalues
for all q ∈ R

m. Therefore the geometric multiplicity equals the algebraic multiplicity and
we have distinct eigenvectors forming a basis of R

m. It can be shown, using the implicit-
function theorem, that the Riemann problem can be uniquely solved for any qL, qR that
are sufficiently close together [50].

The system is called non-strictly hyperbolic if not all eigenvalues of f ′ are distinct,
but the geometric multiplicity still equals the algebraic multiplicity. Suppose q0 is the
point where the system is non-strictly hyperbolic, and there is an eigenspace with infinitely
many directions that are eigenvectors. It is possible for infinitely many integral curves
or Hugoniot loci to coalesce at such a point, called the umbilic point. This can lead
to over/under-compressive shocks, where more/less characteristics are impinging on the
shock, [50, 70].

A system is said to be weakly hyperbolic, if the eigenvalues of f ′ are real, but the
geometric multiplicity is smaller than the algebraic multiplicity. This means, we have a
defective matrix, and there is no full set of m linearly independent eigenvectors. This is,
however, still close to hyperbolic theory (a small perturbation of the matrix leads to a
full set of eigenvectors), but in addition we get singular shocks/delta shocks.

A further difficulty is the case of a non-convex flux function f . A flux function is
non-convex if it is neither genuinely nonlinear nor linearly degenerate. In order to get a
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valid entropy solution in this case, one can use the so-called convex-hull construction
leading to compound shocks, [50]. A compound shock is basically a shock followed
immediately by a rarefaction wave.

Let us now investigate the nonlinear structure of the ideal MHD equations (1.2.4).

1.2.5 Nonlinear structure of ideal MHD

For the ideal MHD equations, the eigenvalues (1.2.13) are not always distinctm and the
system is therefore not strictly hyperbolic. We still have that the geometric multiplicity
equals the algebraic multiplicity, and hence, the matrix is not defective, see section 1.2.4.
This non-strict hyperbolicity is a formidable obstacle to the development of mathematical
theory and numerical methods for MHD.

The non-strict hyperbolicity leads to the following degenerate cases displayed in the
figure 1.10.

• b1 = 0, b⊥ �= 0. In this case

– the fast waves are acoustic waves, and

– the slow waves and Alfvén waves combine to shear waves.

• b1 = 0, b⊥ = 0. Although this degeneracy is a special case of the first one, we mention
it separately since we expect to have this degeneracy. This case is the hydrodynamic
limit of the MHD equations, and therefore the MHD equations degenerate to the
Euler equations.

• b1 < a, b⊥ = 0. In this case, the fast waves are regular acoustic waves.

• b1 > a, b⊥ = 0. Here, the slow waves are regular acoustic waves.

• b1 = a, b⊥ = 0. This case is the so-called triple umbilic point.

In a general direction n ∈ R
3, ‖n‖2 = 1 the eigenvalues of the equations (1.2.2) are

given by ([12])

λ1,8 = u · n∓ cf , λ2,7 = u · n∓ b · n, λ3,6 = u · n∓ cs, λ4,5 = u · n.
It is well known that the eigenvectors of (1.2.10) have to be scaled properly in order
to be well-defined, see [68]. Here, we present these orthonormal set of entropy scaled
eigenvectors described in [12], using the symmetric form of the MHD equations. Using
the notation of [12, 68], we introduce the following normalizing factors,

α2
f =

a2 − c2s
c2f − c2s

, α2
s =

c2f − a2

c2f − c2s
.

Note that α2
f + α2

s = 1. Furthermore, we denote with n⊥ a unit vector orthogonal to n,
lying in the plane spanned by n and b. Then, the right eigenvector corresponding to the
contact wave λ4 is given by

re =

√
γ − 1

γ
(
√
ρ,0,0, 0)T ,
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λ1 λ2 = ... = λ7 λ8

(a) b1 = 0

λ1 = λ2 λ3 λ4,5 λ6 λ7 = λ8

(b) b1 < a, b⊥ = 0

λ1 λ2 = λ3 λ4,5 λ6 = λ7 λ8

(c) b1 > a, b⊥ = 0

λ1 = λ2 = λ3 λ4,5 λ6 = λ7 = λ8

(d) b1 = a, b⊥ = 0

Figure 1.10: Degenerate cases for ideal MHD.

and the eigenvector corresponding to the shear wave λ5 is

rs =

√
1

γ
(0,0, an, 0)T .

The eigenvectors corresponding to the Alfvén waves λ2 and λ7 are given by

r±A =

√
1

2

(
0,±

√
p

ρ
(n⊥ × n),

√
p

ρ
(n⊥ × n), 0

)T

,

where r+
A corresponds to λ2. The eigenvectors corresponding to the fast and slow waves

read,

r±f =

√
1

2γ

⎛
⎜⎜⎜⎝

αf
√
ρ

∓αf a2n+αsa((bn⊥)n−(bn)n⊥)√
ρcf

αsan
⊥

αf
√
ρa2

⎞
⎟⎟⎟⎠ , r±s =

√
1

2γ

⎛
⎜⎜⎜⎝

αs
√
ρ

∓sgn(b · n)
αsa(b·n)n+αf c2fn⊥

√
ρcf

−αfan
⊥

αs
√
ρa2

⎞
⎟⎟⎟⎠ .

The normalization factors αf and αs are not well-defined at the triple point where b1 = a
and b⊥ = 0. In this case, we use the fact that α2

f + α2
s = 1 and define αf = αs = 1/

√
2.

In the papers of the chapters 3, 4 and 5 we use a Roe-solver based on these eigenvectors.
Since this solver is based on the symmetric form of the equations, the matrix of the left
eigenvectors is given by L = RT .

The eigenvalue analysis ([68, 12]) of the standard form (1.2.4) (semi-conservative form
(1.2.2)) shows that the system is hyperbolic but not strictly hyperbolic. Solutions are
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typically complicated and contain interesting discontinuities like shock waves, contact
discontinuities, compound and intermediate shocks. Even for “simple” initial value prob-
lems, such as the Riemann problem, we do not have existence or well-posedness results.
Since it is not possible to find analytic solutions to the MHD equations in general, we
have to use numerical simulations as our main tool for studying the solutions of these
equations.

1.2.6 Finite Volume Schemes

In order to approximate the solution to a conservation law in the domain x ∈ [xl, xr], we
first divide the domain into cells. For simplicity, the domain is discretized by a uniform
grid with the grid spacing Δx. We set xi = xl + iΔx and Ii = [xi−1/2, xi+1/2). The cell
average of the unknown vector q at time tn is denoted by Qn

i . Any good numerical method
for conservation laws is based on the integral form of the equations [50], i.e.,

d

dt

∫ xi+1/2

xi−1/2

q(x, t)dx+ f(q(xi+1/2, t))− f(q(xi−1/2, t)) = 0.

These methods are known as Godunov-type schemes, see figure 1.11, and are based on
the so called REA algorithm, i.e., we iterate the following procedure

• given cell averages at some time level,

• Reconstruct cell averages by piecewise polynomials,

• Evolve the local Riemann problems (exactly or approximately),

• Average the evolved solution at the next time level.

The resulting fully discrete form of the scheme is

Qn+1
i = Qn

i −
Δt

Δx

(
F (Qn

i , Q
n
i+1)− F (Qn

i−1, Q
n
i )
)
.

tn

tn+1

tn+2

xi−1/2 xi+1/2xi−3/2 xi+3/2

Qn
iQn

i−1 Qn
i+1

Qn+1
i

F n
i−1/2 F n

i+1/2

Figure 1.11: Finite Volume scheme.

One essential requirement for a numerical method convergence, i.e., the numerical
solution should converge to the true solution of the differential equation as we refine the
grid. Generally, this requites the following two conditions
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• Consistency: The numerical flux should approximate the integral

F n
i+1/2 = F (Qn

i , Q
n
i+1) ≈

1

Δt

∫ tn+1

tn

f(q(xi+1/2, t))dt.

• Stability: For a method to be stable, there have to be estimates (in a suitable
norm) leading to a bound on the solution.

For a two point flux we have the following two conditions for consistency. For any
constant q̄ ∈ R we have,

F (q̄, q̄) = f(q̄) and |F (Qn
i , Q

n
i+1)− f(q̄)| ≤ Lmax(|Qn

i − q̄|, |Qn
i+1 − q̄|), (1.2.25)

for some constant L. For a method to be stable, we requite the following necessary
condition.

Definition 1.2.5 (CFL-condition). A numerical method can be convergent only if its
numerical domain of dependence contains the true domain of dependence of the PDE, at
least in the limit as Δt,Δx go to zero.

For FV schemes we have typically the following restriction on the size of the time step

max
i
|λn

i |
Δtn

Δx
≤ c, (1.2.26)

where λn
i is the largest eigenvalue of the flux f , and the constant c is the CFL-number of

the numerical method.
The following theorem states the importance of the method being based on the con-

servative form, see [50].

Theorem 1.2.1 (Lax-Wendroff theorem). Consider a sequence of grids indexed by j =
1, 2, ... with mesh parameters Δt(j),Δx(j) → 0 as j → ∞. Let Q(j)(x, t) denote the
numerical approximation computed with a consistent and conservative method on the jth
grid. Suppose that Q(j) converges to a function q as j →∞, i.e.,

‖Q(j) − q‖q → 0, as j →∞, (1.2.27)

where ‖ · ‖q is the usual norm in Lq. Then q(x, t) is a weak solution of the conservation
law.

One way to derive solvers for hyperbolic conservation laws is to use linearized Rie-
mann solvers. This means that instead of solving the local Riemann problems

qt + f(q)x = 0,

q(x, 0) =

{
Qn

i−1 , if x < 0,

Qn
i , if x > 0,

we linearize around some state ([67])

qt + Ai−1/2qx = 0,

q(x, 0) =

{
Qn

i−1 , if x < 0,

Qn
i , if x > 0,

where Ai−1/2 has to be
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• hyperbolic (diagonalizable with real eigenvalues),

• and consistent, i.e., Ai−1/2 → f ′(q̄) as Qn
j−1, Q

n
j → q̄.

There exist many possibilities for doing so. One possibility is to use

Ai−1/2 =
1

2

(
f ′(Qn

i−1) + f ′(Qn
i )
)
,

but this is not hyperbolic in general. In order to have a hyperbolic matrix, one chooses

Ai−1/2 = f ′
(
μ(Qn

i−1, Q
n
i )
)
.

Here μ is any average one can think of, but the two most commonly use are the arithmetic
average and the Roe average, if it is available.

Now we are left with a linear system, and we know how to solve this. We decompose
into waves,

Qn
i −Qn

i−1 =
m∑

p=1

αp
i−1/2r

p
i−1/2,

where the wave strength is given by αp
i−1/2 = lpj−1/2 · (Qn

j −Qn
i−1). Now the numerical flux

can be written as

f(Qn
i−1, Q

n
i ) =

1

2

(
f(Qn

i−1) + f(Qn
i )−

∑
p

αp
i−1/2|λp|rp

i−1/2

)
.

This approach is used in the Roe-type solvers. However, in general one has to use an
entropy fix, see for instance [39]. Another possibility is to use HLL-type solvers ([50])
named after Harten, Lax and van Leer. They resolve only a certain number of waves and
are in general nonlinear.

Both these approaches are limited to first order. In order to gain formally higher order
schemes, one has to use an appropriate polynomial reconstruction in the above described
REA algorithm. This has to be done in such a way that we do not introduce oscillations.
In addition, an appropriate Runge-Kutta time-stepping has to be used to have the same
order in space and time, see [50]. Popular methods include the ENO reconstruction ([40])
and the WENO reconstruction ([72]).

We start by summarizing the results of some standard first order finite volume schemes
for the approximation of the solutions of the ideal MHD equations in one dimension.

1.2.7 Finite Volume schemes for MHD in one dimension

Some of the standard ways to determine the numerical fluxes include HLL-type solvers,
like the ones described in [36, 59], and Roe-solvers, see [67]. A Roe-average for the ideal
MHD equations was developed in [24]. A special form of the Roe solver based on entropy
variables, proposed and tested in [12], will be used in some numerical experiments in this
dissertation.

The main problem with Roe solvers is that they can result in negative pressures and
densities. Among all HLL-type solvers for MHD, the two-wave solvers based on wave
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speeds suggested in [28] are the simplest to implement. They are provably positive (in
the sense that the pressure and density in the solution are positive) and entropy stable
but are too dissipative in most test problems. Three-wave HLL solvers based on heuristic
considerations have been developed in [53] and [36]. The solver of [36] is also provably
positive. A positivity preserving five wave solver for MHD was developed in [59]. Recently,
three-, five- and seven-wave approximate Riemann solvers have been designed in [20].
These solvers are proved to be positive. A thorough comparison of different HLL solvers
has been reported in [58, 73].

Table 1.1 shows a comparison of three different schemes for the standard one dimen-

error(ρ) [%] HLL HLL3 Roe
100 4.44 3.35 2.42
200 2.87 1.95 1.23
400 1.88 1.22 0.73
800 1.13 0.64 0.30

1600 0.62 0.28 0.10

error(B2) [%] HLL HLL3 Roe
100 3.32 2.75 1.89
200 2.04 1.56 0.85
400 1.29 0.97 0.50
800 0.75 0.51 0.18

1600 0.38 0.23 0.09

Table 1.1: Relative errors in L1 of the density ρ (left) and B2 (right) at time t = 0.5 for
the Brio-Wu shock tube for various meshes.

sional Brio-Wu shock tube, given by the initial data

(ρ, ρu, p,B) =

{
(1.0,+1.0, 0, 0, 0, 0.7, 0, 1.0), if x < 0.5,

(0.3,−0.3, 0, 0, 0, 0.7, 0, 0.2), otherwise.

The computational domain is (x, t) ∈ [0, 1.5]×[0, 0.5] with Neumann boundary conditions.
Two solvers are of the HLL-type, resolving two (HLL) and three (HLL3) waves of the
Riemann fan, and we also present the results for the Roe-solver. All standard schemes do
very well (see figure 1.12 for a comparison) on the Brio-Wu test-case and converge at the
expected first order rate.

However, any realistic modeling of physical phenomena, such as the wave propagation
in the solar atmosphere that we are interested in, is based on the MHD equations in
multiple dimensions. Therefore, we will describe the results of some standard numerical
schemes for approximating the solutions of MHD in multiple spacial dimensions.

1.2.8 Finite Volume schemes for MHD in multiple dimensions

Consider the ideal MHD equations (1.2.4) in the domain D = [XL, XR] × [YL, YR] ×
[ZL, ZR]. For simplicity, we consider a uniform grid in space with mesh points given by
xi = iΔx, yj = jΔy, and zk = kΔz, where Δx, Δy, and Δz are the mesh sizes in the x,
y, and z direction respectively ([50]). Let the Δtn denote the time step at the n-th time
level tn =

∑
m<n Δtm, and let the cell average at tn be denoted by Un

i,j,k. The time step
Δtn is determined by a suitable CFL condition.
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Figure 1.12: Results for the Brio-Wu shock tube with 200 grid points at t = 0.5. Reference
solution is the H5W scheme with 3200 grid points. Left: Energy. Right: Magnetic field
component B2.

With this notation, a general first order finite volume scheme reads

Un+1
i,j,k = Un

i,j,k −
Δtn

Δx

(
F (Un

i,j,k, U
n
i+1,j,k)− F (Un

i−1,j,k, U
n
i,j,k)

)
− Δtn

Δy

(
G(Un

i,j,k, U
n
i,j+1,k)−G(Un

i,j−1,k, U
n
i,j,k)

)
− Δtn

Δz

(
H(Un

i,j,k, U
n
i,j,k+1)−H(Un

i,j,k−1, U
n
i,j,k)

)
,

(1.2.28)

where F , G, and H are numerical fluxes consistent with the directional fluxes f , g, and
h respectively.

max(p) HLL HLL3 Roe
100×100 4.00 4.41 5.27
200×200 4.74 4.94 5.39
400×400 5.11 5.21 5.88
800×800 – – –

1600×1600 – – –

‖div(B)‖L1 HLL HLL3 Roe
100×100 1.92 2.81 7.77
200×200 1.77 2.93 6.94
400×400 1.47 2.60 5.64
800×800 – – –

1600×1600 – – –

Table 1.2: Maximum pressure (left) and the L1 norm of the standard discrete divergence
operator (right) at time t = π for the Orszag-Tang vortex, for different schemes using a
M ×M grid.

Table 1.2 presents the results for a standard test-case, the so-called Orszag-Tang vor-
tex. Here “-” means that the corresponding solver crashed due to negative pressure before
it could reach the final time t = π. The Orszag-Tang vortex is a well-known benchmark
test for two dimensional schemes for the MHD equations (see [80]). For this problem, the
initial data are given by

(ρ, ρu1, ρu2, ρu3, B1, B2, B3, p)

=
(
γ2,−ρ sin(y), ρ sin(x), 0,− sin(y), sin(2x), 0, γ

)
. (1.2.29)
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The computational domain is (x, t) ∈ [0, 2π]2 × [0, π] with periodic boundary conditions.

Looking at table 1.2, we find that the three standard solvers (HLL, HLL3, and Roe)
crash at a mesh size of 800 × 800 and higher, although the L1 norm of the standard
discrete divergence operator decreases with refining the mesh. Since there is no reference
solution for the Orszag-Tang vortex, it is quite common to use the maximum pressure as
a measure for dissipation. Less dissipation means higher maximum pressure. We observe
in table 1.2 that all the schemes get less and less dissipative as the mesh is refined, until
they crash due to negative pressure for fine enough meshes. The same behavior is seen in
other standard test-cases we have tested, including the Cloud-Shock interaction and the
Rotor problem, see chapter 3.

We want to investigate the observed instabilities here. One of the possible reasons
for these crashes is linked to the divergence constraint. The transition from one space
dimension to multiple dimensions is not trivial due to the singular matrix obtained from
restriction to one space dimension, see 1.2.11. The divergence constraint (1.2.3) in one
dimension implies that the normal magnetic field must be a constant in space. HLL-type
solvers like the ones described in [36, 59] use this information in their definitions of speeds
and states. For multi-dimensional MHD, the magnetic field in each normal direction is
no longer constant. Consequently, there is no straightforward way of how to extend the
HLL-solvers based on the standard form (1.2.4) to multiple dimensions. One possible
solution however, consists of using an average of the normal magnetic field across each
interface in the expressions. This somewhat arbitrary choice may destroy the stability
properties of the solvers. In the community of numerical simulations of the solutions to
the MHD equations, there has been considerable attention to the numerical treatment of
the divergence constraint. We will continue with a short summary of those results.

The divergence constraint

It is well-known that the treatment of the divergence constraint divB = 0 is a highly
non-trivial aspect. Standard finite volume schemes will generate divergence errors, and
these can induce instabilities, see [80]. Tóth puts it very nicely in [80]: “There is a big
difference between the view of theorists, who would generally insist that divB should be
exactly zero, and practitioners of numerical MHD, who usually take a more pragmatic
approach, and are satisfied with divB converging to zero as the grid resolution Δx and
the time step Δt approach zero. The justification for the latter approach is simple:
none of the numerical values agree to the analytical solution exactly, so why should one
insist that a specific combination of them, namely some numerical representation of divB
should be equal to the analytic value, i.e., zero. Ideally, one would like to have that
particular representation to be zero, which ensures that no unphysical effects arise. The
usual example for such an unphysical effect is acceleration of the plasma parallel to the
field lines (even if the unphysical force vanishes with increasing grid resolution, it may
be quite a nuisance when an equilibrium flow is to be modeled). For conservative shock-
capturing methods, however, it is impossible to define a particular discrete constraint
on the magnetic field that would avoid all unphysical effects. In particular, I prove in
Appendix A that a scheme cannot satisfy both the numerical conservation of momentum
and the requirement that the discretized acceleration due to the Lorentz force should be
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exactly perpendicular to the magnetic field in every grid cell. Due to these difficulties,
the usual practice is to choose some simple discretization of divB, but it should be clear
that the choice is always somewhat arbitrary.”

A popular method to remove divergence is the projection method of [22]. In this
method the non-solenoidal approximate magnetic field is corrected at each time step by
using an elliptic solver. Let B∗ be the magnetic field provided by some solver at time tn+1.
Using the well known unique decomposition of a vector field into a curl and a gradient
we can write this field as

B∗ = ∇×A +∇φ.
Thus, by solving the Poisson equation

∇2φ = ∇ ·B∗,

we can correct the magnetic field to have zero divergence by

Bn+1 = B∗ −∇φ.
The method leads to solenoidal fields but is computationally expensive on account of the
elliptic solver. Also, it depends on some discretization of the divergence operator divB.
The solution is projected to have zero divB for one such operator, while the norm of
the divergence might still be large using another discretization of the divergence, at least
for solutions containing shocks. This somewhat ad hoc method has other stability issues
discussed in [70, 80].

Another method for divergence cleaning consists in staggering the discretizations of
the velocity and magnetic field. This can be used to design methods leading to a (discrete)
divergence free magnetic field. Variants of this method have been proposed in [30, 26,
11, 70, 71] and references therein. Staggering of the variables leads to complications
when parallelizing the method and in designing variable grid methods. Unstaggered
variants of this approach have been proposed in [77, 78, 57]. A thorough comparison
of divergence cleaning methods was performed in [80]. Another potential problem with
both the staggering and projection techniques lies in their numerical stability. In chapter
3 we provide examples where the projection method is quite stable on coarse meshes but
exhibits instabilities when the mesh was refined. We have also observed similar behavior
for some of the staggered mesh methods.

A third alternative for divergence cleaning was proposed in [65] and consists of dis-
cretizing the semi-conservative Godunov-Powell form (1.2.2). Note that (1.2.5) suggests
the initial divergence errors will be transported out of the domain by the flow. We believe
that this approach is the most natural since it uses the form obtained from first principles.
Furthermore, this is the only way to symmetrize the equations of MHD. In addition, the
Godunov-Powell source term makes the equations Galilean invariant. For zero divergence
it is equivalent to the standard form. In [65, 66], a linearized solver is used to define
numerical fluxes and a simple centered discretization is proposed for the Godunov-Powell
source term in (1.2.2). However, in the paper presented in chapter 2 we have constructed
a simple test case showing that a centered discretization of the Godunov-Powell source
term can lead to numerical instabilities, even for the simple case of the linear magnetic
induction equation (1.2.1), see figure 1.13.
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This concludes the discussion of the numerical results available in literature. In all the
papers we emphasize the importance of the Godunov-Powell source term for numerical
simulations. Despite their formal equivalence, the two forms, (1.2.4) and (1.2.2), differ in
some respects.

i) We believe that it is more natural to consider and discretize the semi-conservative
form (1.2.2), since the derivation from first principles gives (1.2.2).

ii) Furthermore, (1.2.2) is Galilean invariant, whereas the standard form (1.2.4) is
not.

iii) From a mathematical perspective, the semi-conservative form (1.2.2) was shown to
be symmetrized by the physical entropy in [35], leading to stability estimates
[12]. The standard form (1.2.4) is not symmetrizable.

This thesis consists of 6 papers, and we begin by summarizing the results of the first
paper.

1.3 A stable upwind scheme for the induction equa-

tions

The linear magnetic induction equation (1.2.1) can be seen as a simple model equation for
MHD where we already know the velocity field. In this article (see chapter 2) we design
a numerical scheme which handles the divergence constraint in a suitable manner. We
design and analyze an upwind scheme based on the symmetrized version of the equations
(hence using the Godunov-Powell source term) in the non-conservative form. The scheme
is shown to converge to a weak solution of the equations due to an energy bound for
which the symmetization is essential. Furthermore, the discrete divergence produced by
the scheme is shown to be bounded. We report several numerical experiments that show
that the stable upwind scheme of this paper is robust. In order to show that it is necessary
to use a proper upwinding of the Powell source term we constructed the following initial
data for the induction equation (1.2.1).

u(x, y, t = 0) = (1, 2), and B1(x, y, t = 0) = B2(x, y, t = 0) =

{
2 if x > y,

0 otherwise.

(1.3.1)
Since u is constant, the exact solution of equation (1.2.1) is

B(x, y, t) = B0(x− t, y − 2t).

We can see from the results shown in figure 1.13 that the divergence preserving scheme
developed by Torrilhon and Fey ([77]) seems to be more accurate than the scheme using a
proper upwinding of the Godunov-Powell source term, at the expense of some oscillations,
as the solutions generated with the divergence preserving scheme are not total variation
diminishing (TVD), even in this simple case of constant velocity fields. The naive upwind
scheme (no Godunov-Powell source) gives a solution similar to the scheme that uses
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the Godunov-Powell source
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(d) stable upwind scheme
with upwinded Godunov-
Powell source

Figure 1.13: Approximations of B1(x, 0), t = 0.3, initial data given by (1.3.1).
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a proper upwinded Godunov-Powell source term, but it has one pronounced spike or
overshoot. The scheme using the central evaluation of the Powell source term is seen to be
unstable. This example shows that the Godunov-Powell source term has to be introduced
as well as upwinded in some manner in order to get stable results. The scheme developed
in this paper relies on an implicit upwinding due to the use of the Friedrichs form.

The difficulties for the induction equation only occur in multiple dimensions, similar
to the problems observed for standard solvers for MHD in section 1.2.8. In paper II we use
the knowledge about the induction equation in order to derive more stable finite volume
schemes for the MHD equations. This is achieved by splitting the MHD equations into
a fluid part and a magnetic part and using the stable solver derived in paper I for the
magnetic part.

1.4 MHD solver using a partial Godunov-Powell source

The magnetic induction equation is a simple model problem for MHD and has similar
numerical difficulties as the equations of MHD. It is non-strict hyperbolic and the
divergence constraint has to be handled carefully. Given our experience with the
induction equation, we expect that it is also not only necessary to introduce and discretize
the Godunov-Powell source term, but also that we need to use a proper upwinding of this
term. Therefore, we derived a splitting based finite volume scheme for the ideal MHD
equations (see chapter 3) based on the way the equations are actually derived from first
physical principles, where MHD consists of the coupling between the Euler equations
with source terms and the induction equation, see section 1.2.1.

ρt + div(ρu) = 0

(ρu)t + div
(
ρu⊗ u + pI

)
= J×B

Ehd
t + div

(
(Ehd + p)u

)
= J · (B× u)

Bt + div (u⊗B−B⊗ u) = −udiv(B)

div(B) = 0

From this form of the equations the feedback loop of plasma motion triggering the mag-
netic field which in turn triggers some plasma motion, is easy to see.

Both the Euler equations and the induction equation are very well known, and there-
fore, we can use specialized solvers for each part of the MHD equations in a splitting
approach. In the article presented in chapter 3 we designed finite volume schemes for the
equations of ideal magnetohydrodynamics, based on splitting these equations into a fluid
part and a magnetic induction part. The fluid part leads to an extended Euler system
with magnetic forces as source terms. Solutions of the Riemann problem for these set of
equations are approximated by suitable two and three wave HLL solvers. The magnetic
part is modeled by the magnetic induction equations which are approximated using sta-
ble upwind schemes devised in the paper of chapter 2. These two sets of schemes can be
combined either component by component, or by using an operator splitting procedure to
obtain a finite volume scheme for the MHD equations. Since only the induction equation
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uses the Godunov-Powell source term, the numerical schemes approximate the following
set of equations

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u + (p+
1

2
|B|2)I −B⊗B) = 0,

Et + div((E + p+
1

2
|B|2)u− (u ·B)B) = 0,

Bt + div(u⊗B−B⊗ u) = −u(divB),

(1.4.1)

and hence use only a “partial” Godunov-Powell source term. The resulting schemes are
simple to design and implement. These schemes are compared with existing HLL type
and Roe type schemes for MHD equations in a series of numerical experiments. These
tests reveal that the proposed schemes are robust and have a greater numerical resolution
than HLL type solvers, particularly in several space dimensions. In fact, the numerical
resolution is comparable to that of the Roe scheme on most test problems, with the
computational cost being at the level of a HLL type solver. Furthermore, the schemes are
remarkably stable even at very fine mesh resolutions and handle the divergence constraint
efficiently with low divergence errors.

Here, we will present the results for the Orszag-Tang vortex (equation (1.2.29)) for
the splitting based solvers. We present numerical results with different schemes in Fig-
ure 1.14 and Table 1.2. Even though the initial data are smooth, the solution develops
discontinuities in form of shocks along the diagonals, together with a vortex in the center
of the domain. The solution has a rich structure consisting of shocks, vortices, and other
interesting smooth regions. The issues with any numerical scheme are resolution of the
shocks as well as the central vortex. Another issue is that of control of divergence in some
discrete norm. In fact, it is widely believed that lack of divergence control can lead to
negative pressures and hence crashes in this test case. So ensuring stability of the solver,
particularly at fine mesh resolutions is a challenge. There is no accepted reference solution
in this case, and many papers have used the maximum pressure as a measure of accuracy
of a scheme. We will compare the splitting based solvers with standard first order finite
volume schemes for MHD equations.

• HLL. Two wave HLL-type solver for full MHD, see [28].

• HLL3. HLL-type solver for full MHD resolving three waves designed in [53].

• Roe. Roe solver based on adding symmetric diffusion in the entropy variables, in
the spirit of [42] for Navier-Stokes equations and [12] for Euler equations.

• HLL/SUS.Splitting solver based on a two wave solver for the extended Euler equa-
tions and the stable upwind scheme for the induction equation.

• HLLC/SUS. Same as HLL/SUS but resolves the contact wave in addition.

• HLLC/TF. Same solver as HLLC/SUS for the extended Euler equations but uses
a divergence preserving scheme for the induction equation (see [77]).
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• HLLC/LxF. Same solver as HLLC/SUS for the extended Euler equations but uses
the Lax-Friedrichs scheme for the induction equation.

We plot the pressure on a 100×100 mesh in Figure 1.14 and compare HLL, HLL/SUS,
HLL3 and HLLC/SUS schemes for qualitative behavior. As shown in Figure 1.14, the
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Figure 1.14: This figure shows the pressure computed with (from top left to bottom right):
HLL2, HLL/SUS, HLL3 and HLLC/SUS on a 100× 100 mesh at time t = π.

differences of the different schemes is clearly seen. In particular, the HLL scheme is very
dissipative and the central vortex is not well resolved. Even the HLL3 scheme is quite
dissipative and the shocks along the diagonal are smeared. On the other hand, the schemes
based on splitting resolve the shocks very well. The central vortex is resolved by both the
HLL/SUS and the HLLC/SUS scheme, and the shocks are much sharper than the features
computed by the HLL3 solver for the full MHD equations. A thorough quantitative
comparison is provided by considering the maximum pressures in Table 1.2 for different
mesh resolutions. From table 1.3, we find that at relatively coarse mesh resolutions (up
to 400 × 400 mesh points), the splitting solvers have much higher resolutions (measured
in terms of maximum pressure) than the standard HLL and HLL3 solvers. In fact, even
the HLL/SUS leads to sharper resolution of the solution than the more expensive HLL3
solver. Similarly, both the splitting solvers compare very well with the Roe solver. In
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M HLL HLL3 HLL/SUS HLLC/SUS HLLC/LxF Roe
100 4.00 4.41 4.94 5.04 4.61 5.27
200 4.74 4.94 5.39 5.41 4.71 5.39
400 5.11 5.21 5.79 5.81 5.00 5.88
800 – – 6.05 6.07 5.26 –
1600 – – 6.21 6.22 5.52 –

M HLL HLL3 HLL/SUS HLLC/SUS HLLC/LxF Roe
100 1.92 2.81 4.17 4.28 0.00 7.77
200 1.77 2.93 3.23 3.32 0.00 6.94
400 1.47 2.60 2.46 2.50 0.00 5.64
800 – – 1.85 1.87 0.00 –
1600 – – 1.38 1.39 0.00 –

Table 1.3: Maximum pressure (top) and the L1 norm of the divergence (bottom) at time
t = π for the Orszag-Tang vortex, for different schemes using a M ×M grid.

fact, the HLLC/SUS leads to almost the same maximum pressure as the Roe solver. It
should be added that the computational cost of the Roe solver is considerably higher than
the HLLC/SUS solver.

One would expect that this high accuracy of the splitting based solvers should come
at a price of reduced stability. On the contrary, table 1.3 shows that the splitting based
solvers of this paper do not crash even for 1600 × 1600 mesh points and show increased
resolution on these very fine meshes. On the other hand, the standard HLL, HLL3 and
Roe solvers crashed on 800× 800 and finer meshes due to instabilities. Thus on this test
problem, the splitting based HLL solvers are at least as accurate as the Roe solver and
more accurate than the HLL solvers and are far more stable.

Seeing the big success of introducing and discretizing the (partial) Godunov-Powell
source term in the induction equation of the MHD equations, we expect a similar im-
provement for finite volume methods using the full Godunov-Powell source. The full
Godunov-Powell source term, coming from the derivation from physical principles, sym-
metrizes the ideal MHD equation and makes them Galilean invariant, whereas the partial
Godunov-Powell source term does not. Therefore, we derive an HLL-type solver, by
discretizing the full source term in an appropriate way.

1.5 MHD solver using the full Godunov-Powell source

The next step was to design a stable and high order accurate finite volume schemes for the
ideal MHD equations in multiple dimensions, see chapter 4. The finite volume schemes
are based on three- and five-wave approximate Riemann solvers of the HLL-type, with the
novelty that we allow for the magnetic field to vary. This is achieved by considering the
semi-conservative Godunov-Powell form of the MHD equations (1.2.2). The Godunov-
Powell source term is discretized in an upwind manner by utilizing the structure of the
HLL-type solvers. Second order versions of the ENO- and WENO-type are proposed,
together with suitable modifications to preserve positive pressure and density. The first
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and second order schemes are tested on a suite of numerical experiments demonstrating
a very satisfactory resolution and stability even on very fine meshes.

Again, we present the results for the Orszag-Tang vortex, see (1.2.29). We test a total
of six schemes:

H3 First order with the HLL three-wave solver,
H5 first order with the HLL five-wave solver,
H3E second order with HLL three-wave solver and ENO reconstruction,
H3W second order with HLL three-wave solver and WENO reconstruction,
H5E second order with HLL five-wave solver and ENO reconstruction,
H5W second order with HLL five-wave solver and WENO reconstruction.

All the second order schemes use a positivity preserving modification described in chapter
5.

We compute with all the six schemes and present the computed pressure at the final
time on a 200×200 mesh in figure 1.15. Both the first order H3 and H5 schemes are stable
but dissipative. The shocks are smeared, and the central vortex is not resolved. The H5

scheme is better at approximating the solution than the H3 scheme. The second order
schemes resolve the solution far better. The resolution of the shocks with the second order
schemes is very impressive. The smooth regions are also resolved quite accurately. We
computed a solution using the H5W scheme on a 4000 × 4000 mesh using a parallelized
version of the FV-code. Figure 1.16 shows the pressure. We observe that the H5W scheme
at this very fine mesh is stable and resolves the shocks as well as the central current sheet
very well. Furthermore, it looks like we reached mesh convergence at these kind of fine
meshes.

We also computed the well-known cloud-shock interaction (for details see chapter 5
in three dimensions. Figure 1.17 shows the results on a 200 × 200 × 200 mesh using a
parallelized version of the FV-code. Just as in the two dimensional case, a bow shock is
created as the shock wave hits the cloud of high density from the left. We can see that
the H5W solver resolves the bow-shock very well.

In the next step, we want to apply our knowledge of simulating the ideal MHD equa-
tions to simulating wave propagation in the solar atmosphere. This means we will derive
solvers using a cleverly upwinded Godunov-Powell source term in order to devise stable
numerical schemes for approximating the solutions of the MHD equations with a gravity
source term.

1.6 Simulating wave propagation in solar atmosphere

After developing accurate and stable schemes for the ideal MHD equations, we want to ap-
ply this knowledge to simulate real wave propagation in the stratified solar atmosphere, see
section 1.1. The problem of modeling wave propagation in idealized stellar atmospheres
has received considerable attention in the solar physics and astrophysics communities in
recent years (see [69, 18] and references therein). A typical situation of interest is to
model how convection generated waves from the inner layers of the Sun transport and
deposit energy in the overlaying chromospheric and coronal plasmas. The waves interact
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(a) H3 (b) H5

(c) H3E (d) H5E

(e) H3W (f) H5W

Figure 1.15: Pressure for the Orszag-Tang vortex on a 200 × 200 mesh at time t = 1
scaled to the extrema of the pressure in the reference solution.
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Figure 1.16: This figure shows the computed pressure for the Orszag-Tang vortex using
the H5W scheme on a 4000× 4000 mesh at time t = π.

Figure 1.17: This figure shows the computed pressure for the cloud-shock interaction
using the H5W scheme on a 200× 200× 200 mesh after the shock has hit the cloud.
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with complex magnetic fields generated by the plasma, and these interactions affect the
qualitative as well as quantitative features of the energy transfer.

Since we want to simulate waves in a regime where density has an exponential structure
(see the chromosphere in figure 1.3), we have to include the additional physical effect of
gravity. This means we look at equations of ideal magnetohydrodynamics with the gravity
source (1.2.2). We specify steady states, i.e., stationary solutions, that are of interest, as
they will serve as a background for the propagation of waves.

Hydrodynamic steady state

Assuming that the velocity u and the magnetic field B are zero, a simple calculation leads
to the following steady state,

u ≡ 0, B̄ ≡ 0, ρ(x, y) = ρ0e
− y

H , p(x, y) = p0e
− y

H , (1.6.1)

where the scale height H is given by H = p0

gρ0
, and p0 and ρ0 are the values of the pressure

and density at the bottom boundary of the domain. Note that the hydrostatic balance due
to gravity implies that the pressure and the density decay exponentially in the vertical
direction. Since we are modeling the chromosphere of the Sun, see figure 1.3, this is
exactly what we expect from a good model. Hence, very low pressures and densities can
be found at the top of the domain of interest.

Magnetic steady state

The hydrodynamic steady state assumes that the magnetic field is zero, but any realistic
description of solar plasmas cannot ignore the magnetic fields. The effects of the magnetic
field play a crucial role in the energy transfer, see for instance [18]. Steady states with
non-zero magnetic fields are easy to determine once the momentum balance in (1.2.4) is
rewritten as,

(ρu)t + div(ρu⊗ u + pI) = curl(B)×B− ρge2.

The above equation displays the role of the Lorentz force explicitly in the momentum
balance. Under the assumption that the velocity field is set to zero, the following magnetic
steady states are easy to obtain,

u ≡ 0, div(B) ≡ 0, curl(B) ≡ 0,

ρ(x, y) = ρ0e
− y

H , p(x, y) = p0e
− y

H .
(1.6.2)

Again, the exponential decay of the density is exactly what we expect from a good model,
since we are modeling the chromosphere of the Sun, see figure 1.3. The above conditions
require that the magnetic field is both divergence free and curl free, i.e., B is a force
free magnetic field. It is easy to obtain closed form solutions of such magnetic fields in
terms of harmonic functions (see chapters 5, 6 and 7). Note that the conditions on steady
magnetic fields are quite general, implying that there is a rich variety of magnetic steady
states satisfying (1.6.2). The next step is to have a model for wave propagation.
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Wave propagation

The propagation of waves is modeled as a perturbation of the steady state background
described above. This is done by sending in a sinusoidal (in time) sequence of waves
from the bottom boundary. These waves propagate across the domain, until they exit at
the top bondary. The waves are modeled by the following boundary conditions for the
normal velocity at the bottom (choosing the z-direction as the direction the gravity force
is acting)

u3(x, y, z = 0, t) = c sin (2πat)χ[x1,x2]×[y1,y2], (1.6.3)

where c is the amplitude and a the frequency of the wave. So the boundary conditions
act like a piston in the area [x1, x2]× [y1, y2].

In the article presented in chapter 5 we implemented and compared both HLL and
Roe type approximate solvers on a series of test problems. The gravity source term was
discretized by a method of fractional steps that preserved positivity. Boundary conditions
of the characteristic type and Neumann type were adapted to this model. The key step
was to introduce a novel mass balance for the boundary conditions.

Numerical results for hydrodynamic waves (see figure 1.18) showed that the Roe
solver together with balanced characteristic type boundary conditions was most effective
in computing waves. HLL three wave solvers were also quite effective in this case.

Computations in the presence of complex magnetic fields, however, led to a different
story. For the wave propagation, characteristic type boundary conditions were observed
to be unstable on fine meshes. Similarly, both the highly accurate Roe solver as well
as the more dissipative HLL2 solver were unstable. The combination of HLL3G/HLL3R
solvers together with modified Neumann type boundary conditions gave the best results.
However, the results were not as accurate as the hydrodynamic case.

One possibility to overcome these difficulties is to use higher order schemes of the
ENO/WENO type to increase accuracy and reduce numerical errors. However, the com-
putations presented in chapter 5 suggest caution - the more accurate Roe solver failed to
be stable. Therefore, we need to use higher order schemes based on nonlinear HLL type
solvers like HLL3G and HLL3R.

In the case of wave propagation without magnetic fields the article presented in chap-
ter 6 deals with these finite volume schemes, based on HLL-solvers and an ENO-WENO
second order interpolation. Figure 1.19 shows the significant gain of accuracy by applying
a WENO type second order. The HLL solvers and ENO-WENO second order interpola-
tion were found to be robust and accurate at computing the waves. The key ingredient
was a proper choice of non-reflecting and balanced Neumann type extrapolated boundary
conditions. The schemes, particularly at second order resolve both the steady states and
the propagating waves quite accurately.

Another possible cause of the instabilities observed in the article of chapter 5 might
be the discretization of the divergence constraint. As reported before, it is not clear
that divergence errors are responsible for the instabilities, and it is difficult to impose
boundary conditions with schemes that preserve discrete forms of divergence. Due to our
experience with the ideal MHD equations, we expect that an upwinded discretization of
the Godunov-Powell source term increases the stability of the scheme.

Some of the errors are due to lack of well-balancing of the source term, i.e, failure



1.6. PAPER IV-VI: SIMULATING WAVES IN SOLAR ATMOSPHERE 37

Simple Characteristic

HLL2

HLL3L

HLL3G

HLL3R

Roe

Figure 1.18: u1(x, z, 1.8) calculated with grid size 400×100, left column: simple boundary
conditions, right column: balanced characteristic boundary conditions.

(a) HLL first order (b) WENO second order

Figure 1.19: Comparison of the approximate u2 obtained from the first order HLL scheme
and a second order WENO scheme on a 400× 100 mesh at time t = 1.8.
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to preserve a discrete version of the magneto-hydrodynamic steady state (1.6.2) exactly.
We need to adapt existing procedures for well-balancing sources (see [7]) to the case of
stratified flows. These issues are addressed in the next and final paper.

1.6.1 Well-balanced scheme for wave propagation

In order to be able to successfully simulate the wave perturbation for the magnetic steady
state background (1.6.2) or to simulate really small perturbations (c = O(10−3)) of the
steady state, we need to develop well-balanced solvers.

In the paper of chapter 7 we consider numerical simulations of wave propagation in
an idealized stellar atmosphere. The configuration is modeled by considering a modified
MHD system based on the Godunov-Powell form of the ideal MHD equations, together
with an embedded steady magnetic field. The resulting equations are balance laws with
gravity source terms and background magnetic fields, playing the role of coefficients.

The system is simulated by finite volume schemes based on HLL three wave approx-
imate Riemann solvers and upwind discretizations of the Godunov-Powell source term.
The scheme is well-balanced by using local hydrostatic reconstructions of the density and
pressure and a suitable discretization of the gravity source term. Second order accurate
schemes are designed by suitable minmod and WENO reconstructions. The reconstruc-
tions are performed in terms of equilibrium variables to ensure well-balancing.

The resulting schemes are high order accurate, stable and well-balanced. They are
validated on a large suite of numerical experiments. The underlying physical phenomena
are quite complex and involve multiple scales and parameters.

Table 1.4 shows a comparison of how well the un-balanced and well-balanced schemes
preserve the steady state 1.6.2. The table clearly shows that the well-balanced schemes

L1-error in p H3 H3W H3WB H3WBM H3WBW
100x25 3.5e+2 6.3e+0 9.8e-20 2.5e-18 7.9e-17
200x50 1.2e+2 8.2e-1 1.6e-18 3.6e-18 4.1e-16
400x100 4.9e+1 1.0e-1 2.8e-18 3.5e-18 2.6e-15
800x200 2.2e+1 1.3e-2 4.6e-18 1.4e-17 2.0e-14

Table 1.4: Percentage relative L1 errors in p for different schemes on different meshes.
Left un-balanced schemes. Right well-balanced schemes

preserve the steady state to machine precision whereas the unbalanced schemes lead to
large errors. The errors in both sets of schemes are comparable to the errors in preserving
the hydrodynamic steady state. Hence, it is not possible to use unbalanced schemes
for approximating perturbations of steady states.

The well-balanced schemes perform very well, and are able to resolve very small per-
turbations as well as the complex physics to a high degree of accuracy. Figure 1.6.1
shows the numerical results for these well-balanced schemes with a very small perturba-
tion (c = 3e−3) to test the well-balancing properties of the schemes. The parallel and
perpendicular components (to the direction of the magnetic field) of the velocity field at
a resolution of 800× 200 points are shown in figure 1.6.1. All the three schemes are able
to capture the small perturbations quite accurately. The first order scheme is dissipative,
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Figure 1.20: Results for the strong magnetic background with small wave perturbations
(c = 3e−3) at t = 0.9 on a 800 × 200 mesh. The magnetic field-lines are shown in white
and the β-lines in black. The top row shows the speed in the direction of the magnetic
field-lines and the bottom row shows the speed perpendicular to the magnetic field-lines.
left column: H3WB, middle column: H3WBM , right column: H3WBW .

but the minmod and WENO schemes compute much sharper wave fronts. Compared to
the hydrodynamic wave propagation model, the waves in the direction of the magnetic
field are much more focused by the magnetic field. This is to be expected, as the mag-
netic field is strong. The Lorentz-force prohibits the plasma more and more to move
perpendicular to the magnetic field, as the magnetic field dominates more and more. The
highly accurate numerical resolution of the complex phenomena at very small amplitudes
illustrates the robustness of the well-balanced schemes.

1.7 Concluding remarks

In this thesis we have devised numerical methods for simulating the equations of ideal
magnetohydrodynamics (MHD). The methods are shown to be accurate and highly stable.
We have emphasized the importance of the Godunov-Powell source term for numerical
methods. It is necessary to keep the Godunov-Powell source from the derivation of first
physical principles as well as to discretize it in an appropriate “up-winded” manner. In
the second part of the thesis we constructed well-balanced finite volume methods for
simulating waves in the solar atmosphere. The model we used is very close to the real
conditions in the solar atmosphere, including the effect of gravity. Again, the numerical
methods are stable and produce very accurate results. Future projects include employ-
ing those schemes on more realistic three dimensional configurations with background
magnetic fields and perturbations given by observed data.
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Abstract

We consider the magnetic induction equation for the evolution of a magnetic field
in a plasma where the velocity is given. The aim is to design a numerical scheme
which also handles the divergence constraint in a suitable manner. We design and
analyze an upwind scheme based on the symmetrized version of the equations in the
non-conservative form. The scheme is shown to converge to a weak solution of the
equations. Furthermore, the discrete divergence produced by the scheme is shown
to be bounded. We report several numerical experiments that show that the stable
upwind scheme of this paper is robust.

2.1 Introduction

2.1.1 The Model

In this paper, we study the magnetic induction equation

∂tB + curl(B× u) = 0, (2.1.1)

where the unknown B = B(x, t) ∈ R
3 describes the magnetic field of a plasma in three

space dimensions with coordinate x = (x, y, z). The above equation models the evolution
of the magnetic field in the plasma which is moving with a prescribed velocity field u(x, t).
An immediate consequence of (2.1.1) is that the divergence of B is preserved in time, i.e.,

∂t (divB) = 0. (2.1.2)

Thus if the divergence is initially zero, it remains so.

41
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The equation (2.1.1) is augmented with suitable initial and boundary conditions. In
this paper, we focus on the Cauchy problem with the initial conditions

B(x, 0) = B0(x), x ∈ R
3.

If we write B = (B1, B2, B3)
t
and u = (u1, u2, u3)

t
, (2.1.1) reads

∂tB
1 − ∂y

(
u1B2 − u2B1

)
+ ∂z

(
u3B1 − u1B3

)
= 0,

∂tB
2 + ∂x

(
u1B2 − u2B1

)− ∂z

(
u2B3 − u3B2

)
= 0,

∂tB
3 − ∂x

(
u3B1 − u1B3

)
+ ∂y

(
u2B3 − u3B2

)
= 0.

For vectors a and b we use the notation

a⊗ b =

⎛
⎝a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

⎞
⎠ .

Then we can rewrite (2.1.1) in conservative form

∂tB + div (u⊗B−B⊗ u) = 0, (2.1.3)

where the divergence of the matrix is the vector obtained by taking the divergence of
the rows. The equation (2.1.1) can be derived from the full Maxwell’s equations for
electromagnetic fields by using the standard Lorentz transformations and the assumptions
that the electric field at rest for a plasma is zero and that the plasma is a perfect conductor
(so that we neglect the viscous terms). The details of the derivation of (2.1.1) can be
found in any standard book on electrodynamics, for example [43]. One of the key issues in
the design of numerical schemes for (2.1.1) is to handle the divergence constraint (2.1.2),
i.e., to ensure that some discrete version of (2.1.2) holds at least approximately.

Equation (2.1.1) arises in a wide variety of contexts in the electrodynamics of plasmas.
One important application is the equations of magnetohydrodynamics (MHD). MHD
models the motion of a plasma in a magnetic field. In this case, the Euler equations
of compressible gas dynamics are coupled with (2.1.1), see [64] for details. Numerical
methods for MHD must address the divergence constraint, and several methods have
been proposed in order to handle this constraint. These methods are in turn based on
methods which preserve some discrete form of the divergence of B.

In general, good numerical schemes for (2.1.1) is a step in the design of efficient
numerical schemes for MHD, and a good motivation for studying (2.1.1) numerically.
Our aim in this paper is to design, analyze and implement a simple upwind scheme for
(2.1.1) and show that it is stable for very general initial data and velocity fields. In
addition, the scheme also keeps divergence errors bounded and leads to sharp resolution
of discontinuities. We start with a description of the continuous problem.

2.1.2 The continuous problem

In general, (2.1.1) is a system of linear conservation laws in three dimensions, it is hyper-
bolic, but not strictly hyperbolic.
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In order to show existence of solutions to (2.1.1), we need to derive á priori estimates.
The standard procedure for hyperbolic equations in multi space dimensions is to sym-
metrize the system and derive an energy estimate. In order to do this we introduce the
operator

a · ∇ = a1∂x + a2∂y + a3∂z,

and write

curl(B× u) = Bdivu− udivB + (u · ∇)B− (B · ∇)u

=
(
u1B

)
x

+
(
u2B

)
y
+
(
u3B

)
z
− udivB− (B · ∇)u.

Thus (2.1.1) can also be recast as

∂tB +
(
u1B

)
x

+
(
u2B

)
y
+
(
u3B

)
z

= udivB + (B · ∇)u.

Then we see that a simple way to symmetrize (2.1.1) is to add a “source” term: (which
is supposed to be zero anyway!) −udivB, resulting in

∂tB + curl(B× u) = −udivB. (2.1.4)

Rewriting this, we find

∂tB + (u · ∇)B = −B(divu) + (B · ∇)u

= M(Du)B,
(2.1.5)

where the matrix M(Du) is given by

M(Du) =

⎛
⎝−∂yu

2 − ∂zu
3 ∂yu

1 ∂zu
1

∂xu
2 −∂xu

1 − ∂zu
3 +∂zu

2

∂xu
3 ∂yu

3 −∂xu
1 − ∂yu

2

⎞
⎠ .

The above source term was first introduced for the non-linear MHD equations by Godunov
in [35], see also [65, 12]. This strategy of using a source term to handle constraints is very
general and can be used for similar hyperbolic models involving other restrictions.

Let us write (2.1.4) as

∂tB + ∂x

(
u1B

)
+ ∂y

(
u2B

)
+ ∂z

(
u3B

)
= (B · ∇)u. (2.1.6)

Introducing the matrices Ai = uiI for i = 1, 2, 3, and

C = −
⎛
⎝ ∂xu

1 ∂yu
1 ∂zu

1

∂xu
2 ∂yu

2 ∂zu
2

∂xu
3 ∂yu

3 ∂zu
1

⎞
⎠ ,

we may further rewrite (2.1.6) as

∂tB + ∂x

(
A1B

)
+ ∂y

(
A2B

)
+ ∂z

(
A3B

)
+ CB = 0.

This system is symmetric in the sense of Friedrichs (the matrices Ai are symmetric).
Regarding the functions u1, u2 and u3 we assume that they are “sufficiently differentiable”,
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i.e., whenever a derivative of ui is appearing in our calculations, we assume that this is
a continuous and bounded function. Of course, this means that the matrices Ai are also
sufficiently smooth.

Observe that the above system is a special case of the more general problem

∂tv +
d∑

i=1

Θi(x, t)∂xi
v = Γ(x, t)v + f(x, t), v(x, 0) = v0(x), (2.1.7)

where the d× d matrices Θ1, . . . ,Θd,and B depend smoothly on x and t. We recall that
the system (2.1.7) is Friedrichs symmetric if there exists a matrix S0(x, t) ∈ C∞(Rd ×R)
that is symmetric and uniformly positive definite, and the matrices

S0(x, t)Θ
1(x, t), . . . , S0(x, t)Θ

d(x, t)

are symmetric for all (x, t) (see [13]). To analyze (2.1.7) one uses pseudo-differential
calculus. We have the following well-posedness result, see [13, Theorem 2.6].

Theorem 2.1.1. Suppose (2.1.7) has smooth coefficients and is Friedrichs symmetrizable.
Fix T > 0 and s > 1. Assume that f ∈ L2(0, T ;Hs(Rd)) and v0 ∈ Hs(Rd). Then there
exists a unique (weak) solution v ∈ C([0, T ];Hs(Rd))∩C1([0, T ];Hs−1(Rd)) of the Cauchy
problem (2.1.7). Moreover, there exists a constant, which is independent of the vector v,
such that for any t ∈ [0, T ]

‖v(·, t)‖2
Hs(Rd) ≤ C

(
‖v0‖2

Hs(Rd) +

∫ t

0

‖f(·, τ)‖2
Hs(Rd) dτ

)
.

If f ∈ C∞([0, T ];H∞(Rd)) and v0 ∈ H∞(Rd), then the solution v belongs to
C∞([0, T ];H∞(Rd)).

In the special case of a constant velocity field, the above equations decouple and reduce
to

∂tB + (u · ∇)B = 0,

and in this case we have the exact solution

B(x, t) = B0(x− ut), (2.1.8)

Clearly in this special case, the exact solution is actually TVD. In general, we do
not expect the initial data to be smooth. This is particularly true in the case of MHD
equations where the magnetic field can have discontinuities. As a consequence, we define
weak solutions of (2.1.1) by

Definition 2.1.1 (Weak solution). For all function u ∈ H1(R3) we call a locally integrable
function B a weak solution of (2.1.1) if for all smooth test functions Φ ∈ C1

0 , the following
integral identity holds,

∞∫
0

∫
Rn

BΦt + B (u · ∇) Φ dx dt =

∫
Rn

B0(x)Φ(x, 0) dx +

∞∫
0

∫
Rn

(B · ∇)uΦ dx dt. (2.1.9)
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Hence, weak solutions of (2.1.1) are defined in terms of the Friedrichs form (2.1.6).
The existence of these is a consequence of Theorem 1.1.

For simplicity we will concentrate on the two-dimensional case, i.e., ∂z = 0 and u3 = 0.
In this case (2.1.3) reads

∂tB
1 + ∂y

(
u1B2 − u2B1

)
= 0,

∂tB
2 − ∂x

(
u1B2 − u2B1

)
= 0,

(2.1.10)

∂tB
3 + ∂x

(
u1B3

)
+ ∂y

(
u2B3

)
= 0. (2.1.11)

The third equation is independent of the first two, and is such that if B3(x, y, 0) = 0,
then also B3(x, y, t) = 0. Hence we ignore (2.1.11) in the remainder of this paper.

2.1.3 Numerical Schemes

From the theory for the continuous problem, it is reasonable to require the following
properties of a “good” numerical scheme for (2.1.1),

(i.) The scheme should be upwind i.e., it should be able to resolve discontinuities in the
solution sharply even at first order.

(ii.) The scheme should be stable in the energy norm for a large class of initial data and
velocity fields.

(iii.) In the special case of constant velocity fields, the scheme should be TVD.

(iv.) Discrete versions of the divergence constraint should hold, at least approximately.

We shall consider first order schemes, since higher order extensions can be made once
an efficient first order scheme is available. Note that the second property is essential for
proving convergence, the third is a non-oscillatory property and the control of divergence
is essential for respecting the constraint on (2.1.1).

Before we continue with a technical description of some schemes, let us introduce some
useful notation. As usual, Δx and Δy denotes the spatial discretization parameters, these
are (small) positive numbers. For i and j in Z, let xi = iΔx, yj = jΔy, xi+1/2 = xi+Δx/2
and yj+1/2 = yj + Δy/2. Similarly we define the temporal discretization Δt, and set
tn = nΔt for n ≥ 0.

For a continuous function a(x, y), we set

ai,j = a (xi, yj) , i and j ∈ Z/2.

For any quantity {ai,j} let the forward/backward differences be denoted by

D±x ai,j = ±ai±1,j − ai,j

Δx
, D±y ai,j = ±ai,j±1 − ai,j

Δy
,

and the central differences

D0
x,y =

1

2

(
D+

x,y +D−x,y

)
.
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We also let the discrete time derivative be denoted by

D+
t b

n =
bn+1 − bn

Δt
,

for any quantity {bn}n≥0. Furthermore, set [a]+ = max {a, 0} and [a]− = min {a, 0}. We
shall need the following identities:

D±x (aibi) = aiD
±
x bi + bi±1D

±
x ai (2.1.12)

D±x
(
(ai)

2
)

= 2aiD
±
x ai ±Δx

(
D±x ai

)2
(2.1.13)

D0
x (ajbj) = ajD

0
x (bj) + bjD

0
x (aj) (2.1.14)

+
Δx2

2

[(
D+

x aj

) (
D−x D

+
x bj

)
+
(
D−x bj

) (
D−x D

+
x aj

)]
J∑

i=I

ai

(
D+

x bi
)

= −
J∑

i=I+1

(
D−x ai

)
bi +

1

Δx
(aJbJ+1 − aIbI) . (2.1.15)

We also let Iij denote the rectangle (xi−1/2, xi+1/2] × (yj−1/2, yj+1/2] and In
i,j the cube

Ii,j × [nΔt, (n+ 1)Δt).
When solving (2.1.10) numerically, we consider piecewise constant approximations

Bn
i,j ≈

1

|Ii,j|
∫

Ii,j

B(x, y, tn) dxdy,

in the fully discrete case, and

Bi,j(t) ≈ 1

|Ii,j|
∫

Ii,j

B(x, y, t) dxdy,

for semi-discrete approximations. To obtain functions defined for all x and t, we define

BΔt(x, y, t) =
∑
i,j

Bn
i,j1In

i,j
(x, y, t), and

BΔx(x, y, t) =
∑
i,j

Bi,j(t)1Ii,j
(x, y).

(2.1.16)

where 1Ω is the characteristic function of the set Ω. All the schemes for (2.1.10) which
we consider can be written as

D+
t Bn

i,j = Fi,j

(
u,BΔt(·, ·, tn)

)
or

d

dt
Bi,j(t) = Fi,j

(
u,BΔx(·, ·, t)) (2.1.17)

for various functions Fi,j.
The system (2.1.1) contains terms of the type ∂x(u

1B2), which we shall discretize in
an upwind manner. To this end we introduce the notation,

Dx {u,B}i,j = D−x
([
ui+1/2,j

]+
Bi,j

)
+D+

x

([
ui−1/2,j

]−
Bi,j

)
(2.1.18)
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=
[
uj+1/2,j

]−
D+

x Bi,j +
[
ui−1/2,j

]+
D−x Bi,j +Bi,jD

−
x ui+1/2,j.

An analogous expression defines Dy {u,B}. If u and B are smooth functions, then

∂x (uB) (xi, yj) = Dx {u,B}i,j +O(Δx).

Equipped with above notation, the standard upwind scheme for (2.1.10) reads

D+
t B

1,n
i,j = −Dy

{
u2, B1,n

}
i,j

+Dy

{
u1, B2,n

}
i,j
,

D+
t B

2,n
i,j = −Dx

{
u1, B2,n

}
i,j

+Dx

{
u2, B1,n

}
i,j
.

(2.1.19)

This scheme works well on many examples, but, it is not TVD when u is constant.
As Example 2.3.1 and Figure 2.3.1 indicates, the scheme gives sharp oscillations near
discontinuities in B. In addition, the scheme does not have an energy estimate. Regarding
the divergence constraint, the scheme does not preserve the central discrete divergence
operator given by,

div0(Bi,j) = D0
x(B

1
i,j) +D0

y(B
2
i,j).

In fact, the divergence errors can be very large in some numerical experiments. Since
preserving the divergence constraint is a key numerical issue, several approaches have
been suggested to couple upwinding of numerical schemes for (2.1.1) along with preserva-
tion/control of numerical divergence. The motivation behind most of these schemes is the
need for efficient schemes for the MHD equations. A good review of divergence preserving
schemes for MHD can be found in [80]. We now provide a very brief survey relevant to
the situation considered here.

Projection Methods

These methods are based on the Hodge decomposition of the magnetic field. At each time
step, the magnetic field obtained from (2.1.17), denoted B̃n+1, can be written as

B̃n+1 = gradΨ + curlΦ ⇒ ΔΨ = div
(
B̃n+1

)
.

Solving the last equation for Ψ and then setting

Bn+1 = B̃n+1 − gradΨ,

makes Bn+1 divergence free. The computational cost of this is significant, as one needs
to solve an elliptic equation at each time step. This method was proposed in [22].

Design of discrete divergence free operators/Staggering

Another strategy to control divergence errors is to use difference methods that preserve
some (not necessarily div0) discrete form of the divergence. An important contribution in
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this direction is the paper of Torrilhon and Fey [77], where following scheme was proposed

D+
t B

1,n
i,j =

1

2

(
D−y

(
ϕ1

i,j + ϕ1
i−1,j + ϕ2

i,j + ϕ2
i+1,j

)
+D+

y

(
ϕ3

i,j + ϕ3
i+1,j + ϕ4

i,j + ϕ4
i−1,j

))
,

D+
t B

2,n
i,j = −1

2

(
D−x

(
ϕ1

i,j + ϕ1
i,j−1 + ϕ4

i,j + ϕ4
i,j+1

)
+D+

x

(
ϕ2

i,j + ϕ2
i,j−1 + ϕ3

i,j + ϕ3
i,j+1

))
,

(2.1.20)

where
ϕk

i,j = ωk
i,j

(
u1

i,jB
2,n
i,j − u2

i,jB
1,n
i,j

)
,

and

ωk
i,j =

[
nk · ui,j

]+∑4
k=1 [nk · ui,j]

+ ,

n1 = (1, 1), n2 = (−1, 1), n3 = (−1,−1) and n4 = (1,−1).

This scheme preserves the following discrete divergence,

div∗(Bi,j) =
1

4

(
D0

x

(
B1

i,j+1 + 2B1
i,j +B1

i,j−1

)
+D0

y

(
B2

i+1,j + 2B2
i,j +B1

i−1,j

))
.

If B is smooth, div∗ differs from div0 by O(Δx2 + Δy2), with a constant depending on
the second derivatives of B. More details on this scheme can be found in [77, 78]. In
[77] this scheme is proved to be von Neumann stable if u is constant. However, we were
unable to prove that it is stable in the energy norm when the velocity field varies in space
and time. Also, the scheme is not TVD when the velocity field is constant, as is shown
in Example 2.3.1 and Figure 2.3.1. Some numerical experiments in Section 2.3 show
that even though the scheme preserves the discrete divergence div∗, the central discrete
divergence div0 is not preserved and can be large.

In [77, 78] it was remarked that the scheme (2.1.20) is equivalent to staggering the
discretizations of the velocity and magnetic fields. In this approach, the velocity and
magnetic fields in the x-direction are centered on the cell edges in the x-direction and
the velocity and magnetic fields in the y-direction are centered on the cell-edges in the
y-direction. This approach has been proposed in number a papers including [30, 11, 26,
71, 70] and details can be found in these references.

The main advantage of schemes based on this approach is the fact that some form of
discrete divergence is preserved. Unfortunately, it is not possible to prove energy bounds
(and hence convergence) for general non-constant velocity fields. Furthermore, these
schemes can be oscillatory near discontinuities as shown in some numerical examples in
this paper.

Schemes using the Godunov-Powell source term

Another common approach to controlling the divergence, at least in the context of non-
linear MHD equations, is to numerically solve (2.1.4) rather than (2.1.1). This approach
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was proposed by Powell in [65]. Formally, taking the divergence on both sides of (2.1.4)

∂t(div(B)) + (u · ∇) (divB) = − (divu) (divB) . (2.1.21)

Hence, any non-zero divergence is advected along u, and hopefully out of the computa-
tional domain.

Another key point about introducing the Godunov-Powell source term at the contin-
uous level is to symmetrize (2.1.1) and write it in the form (2.1.6) which results in the
derivation of energy estimates.

At the level of numerical schemes, one of the key issues is how to discretize the
Godunov-Powell source term. It is common in the literature to use a discretization of
the source term based on central differences (see, e.g., [53]).

Example 3.1 of this paper shows that such an approach might result in large oscillations
in the solution and should be avoided. In [65], the author incorporates the source term
into flux thus implicitly upwinding it.

Another way to upwind the Godunov-Powell source term is to discretize the Friedrichs
form (2.1.6). In [16], the authors propose high order discontinuous Galerkin methods
based on the “conservative” Friedrichs form (2.1.6) and show convergence results and
error estimates for the scheme. They use locally divergence free basis functions, but they
were unable to obtain any global divergence bound. The first order version the scheme
proposed in [16] leads to an upwind discretization of the Godunov-Powell source term.

If the Friedrichs form is used as a basis for discretization of (2.1.1), one can appeal to
the considerable literature that is devoted to finite volume schemes for Friedrichs systems.
A notable reference in this regard is the work of Vila and Villedeau [82], and other related
works of these authors. In [82], the authors analyze finite volume schemes for general
Friedrichs systems and show convergence results and error estimates under very general
assumptions. These results were further extended to even weaker solutions and error
estimates by Jovanovič and Rohde in [44]. Thus, any finite volume scheme based on the
Friedrichs form (2.1.6) falls into the framework of these papers.

Even though finite volume schemes based on the Friedrichs form (2.1.6) can be proved
to converge and have error estimates for very general velocity fields, it has not been possi-
ble to derive bounds on the discrete divergence produced by these schemes. Heuristically,
arguments of [65] imply that there is some control of divergence due to the fact that
schemes should satisfy some discrete version of (2.1.21), and any divergence created by
the scheme should be transported out of the domain. Yet, we have yet to find any rigorous
proof of this fact. Even in [16], the authors were able to use local divergence free elements
but were unable to control the divergence jump terms.

Another related problem with this approach, particularly in the context of the non-
linear MHD equations, is the fact that (2.1.4) is not conservative. Hence, the Rankine-
Hugoniot conditions are modified by the presence of the source term and this can lead to
incorrect propagation speeds for strong shocks as pointed out in [65]. Other references
attesting to this fact can be found in [80]. However, the errors are quite small. In case
of the linear induction equation, we were unable to find any such errors at linear contact
discontinuities in our numerical experiments.

Summing up, the two most common approaches to discretization of (2.1.1) are based
on staggering/preserving some form of the discrete divergence, or on introducing the
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Godunov-Powell source term (the Friedrichs form of the equations). Using schemes based
on staggering like in [77], one is able to preserve some form of discrete divergence exactly,
but it is not possible to prove energy estimates (and hence convergence) for non-constant
velocity fields. The resulting schemes can lead to oscillations near discontinuities even
for constant velocity fields. On the other hand, use of the Friedrichs form or upwinding
the Godunov-Powell source term leads to schemes for which we can prove energy esti-
mates, convergence and even convergence rates. These schemes are non-oscillatory near
discontinuities, at least for constant velocity fields. Yet, no rigorous control of the discrete
divergence is available.

Given this, we propose a new class of finite difference schemes for (2.1.1). These
schemes are based on the non-conservative form of the Friedrichs system (2.1.5). We use
point values of the velocity field coupled with a upwind discretization of the transport
terms. The sources in (2.1.5) are discretized by using central differences. Furthermore,
we need to add some extra numerical diffusion at points where the velocity field vanishes.
All these ingredients result in a scheme for which we are able to prove energy bounds,
maximum principles and show that the scheme converges to a weak solution (2.1.9). In the
case where the velocity field is constant, our scheme is TV D and preserves any consistent
discrete divergence operator. Most crucially, the upwind scheme of this paper has bounded
discrete divergence i.e., we are able to show that the standard discrete divergence div0

produced by this scheme is bounded in L2. Nevertheless, the resulting scheme is simple
to implement.

Compared with other results, our scheme is in the spirit of schemes based on the
symmetrized form of the equations. The key difference is that we discretize the non-
conservative form of the symmetrized equations and have to add some extra (very small)
numerical diffusion at sonic points (i.e., points where |u| = 0). This seems to be crucial to
obtain bounds on the discrete divergence. We were unable to rewrite the upwind scheme
of this paper in a form that falls directly into the class of schemes analyzed in [82, 44]
and hence, the general results of those papers do not apply to our scheme and the energy
estimates need to proved independently. Numerical results obtained with the scheme show
that the scheme is very robust, resolves the discontinuities well even at first order, and
does not generate spurious oscillations around discontinuities. We are planning to use
this upwind scheme for (2.1.1) in conjunction with suitable approximate Riemann solvers
for the fluid part in order to design efficient splitting schemes for the MHD equations in
a forthcoming paper [32].

The rest of this paper is organized as follows: in Section 2.2, we present the stable
upwind scheme in two space dimensions, and prove stability and convergence. In Sec-
tion 2.3, we present several numerical examples and compare the stable upwind scheme
with other schemes.

2.2 A Stable upwind scheme.

For simplicity, we restrict our presentation to two spatial dimensions. As stated in the
introduction, we are going to discretize the nonconservative version of the equation (2.1.5),
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which in two dimensions takes the form

(B1)t + u1(B1)x + u2(B1)x = −(u2)yB
1 + (u1)yB

2

(B2)t + u1(B2)x + u2(B2)x = (u2)xB
1 − (u1)xB

2.
(2.2.1)

Our scheme is initiated by setting

B0
i,j =

1

|Ii,j|
∫

Ii,j

B0(x, y) dxdy.

Regarding u, we either assume that u is a continuous function of x and y, or that we have
given u as a table ui,j. The following definitions are also useful

Mi,j =

(−D0
yu

2
i,j D0

yu
1
i,j

D0
xu

2
i,j −D0

xu
1
i,j

)
, (2.2.2)

and

(u ·Dupw)i,j =
[
u1

i,j

]−
D+

x +
[
u1

i,j

]+
D−x +

[
u2

i,j

]−
D+

y +
[
u2

i,j

]+
D−y (2.2.3)(

u ·D0
)

i,j
= u1

i,jD
0
x + u2

i,jD
0
y (2.2.4)

σδ(ui,j)(Δx
Δy ) ·D2 = σδ(u

1
i,j)ΔxD

+
x D

−
x + σδ(u

2
i,j)ΔyD

+
y D

−
y , (2.2.5)

where the auxiliary function σδ is an even smooth function such that

σδ(a) =

{
δ
2
, if |a| ≤ δ/2,

0, if |a| ≥ δ.

Furthermore, we demand that σ is non-increasing in the interval [0, δ] and that |σ′δ(a)| < 2
for all a.

Then the numerical scheme in the fully discrete form is given by

D+
t Bn

i,j +(u ·Dupw)i,j Bn
i,j = Mi,jB

n
i,j +σδ(ui,j)(Δx

Δy ) ·D2Bn
i,j, (i, j) ∈ Z

2, n ≥ 0. (2.2.6)

The semi-discrete version of this reads

d

dt
Bi,j + (u ·Dupw)i,j Bi,j = Mi,jBi,j + σδ(ui,j)(Δx

Δy ) ·D2Bi,j, t > 0,

Bi,j(0) = B0
i,j, (i, j) ∈ Z

2.
(2.2.7)

The semi-discrete form is an infinite system of ordinary differential equations,

d

dt
B = F(B),

where we can regard B ∈ �2 × �2, and F : �2 × �2 → �2 × �2 is given by

(F(B))i,j = − (u ·Dupw)i,j Bi,j +Mi,jBi,j + σδ(ui,j)(Δx
Δy ) ·D2Bi,j.
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For fixed Δx and Δy, it is not difficult to show that

‖F(B)‖�2×�2 ≤
C

min {Δx,Δy} ‖B‖�2×�2 .

Therefore F is Lipschitz continuous, and we have existence of a differentiable solution
B(t) at least for small t. The energy bound, Lemma 2.2.1, ensures that we do not have
any blow up in finite time. Therefore there exists a differentiable solution B(t) of (2.2.7)
for all t > 0.

Componententwise, (2.2.6) takes the form

D+
t B

1,n
i,j =− [

u1
i,j

]−
D+

x

(
B1,n

i,j

)− [
u1

i,j

]+
D−x

(
B1,n

i,j

)
− [

u2
i,j

]−
D+

y

(
B1,n

i,j

)− [
u2

i,j

]+
D−y

(
B1,n

i,j

)
−D0

y

(
u2

i,j

)
B1,n

i,j +D0
y

(
u1

i,j

)
B2,n

i,j

+ σδ(u
1
i,j)ΔxD

+
x D

−
x

(
B1,n

i,j

)
+ σδ(u

2
i,j)ΔyD

+
y D

−
y

(
B1,n

i,j

)
,

D+
t B

2,n
i,j =− [

u1
i,j

]−
D+

x

(
B2,n

i,j

)− [
u1

i,j

]+
D−x

(
B2,n

i,j

)
− [

u2
i,j

]−
D+

y

(
B2,n

i,j

)− [
u2

i,j

]+
D−y

(
B2,n

i,j

)
+D0

x

(
u2

i,j

)
B1,n

i,j −D0
x

(
u1

i,j

)
B2,n

i,j

+ σδ(u
1
i,j)ΔxD

+
x D

−
x

(
B2,n

i,j

)
+ σδ(u

2
i,j)ΔyD

+
y D

−
y

(
B2,n

i,j

)
,

(2.2.8)

We remark that the scheme is based on a upwind discretization of the nonconservative
symmetric form (2.2.1). In addition, to the upwind discretization we also need to add a
small amount of explicit numerical diffusion at the sonic points. This is necessary in the
subsequent analysis.

Using the notation
|a|δ = |a|+ σδ(a)

and (|u|δ(Δx
Δy ) ·D2

)
i,j

=
∣∣u1

i,j

∣∣
δ
ΔxD−x D

+
x +

∣∣u2
i,j

∣∣
δ
ΔyD−y D

+
y ,

the scheme (2.2.6) can also be rewritten using central discrete derivatives

D+
t Bn

i,j +
(
u ·D0

)
i,j

Bn
i,j = Mi,jBi,j +

1

2

(|u|δ (Δx
Δy ) ·D2

)
i,j

Bn
i,j. (2.2.9)

The semi-discrete form of this is obtained replacing D+
t by d/dt.

We are going to prove that both the fully discrete and the semi-discrete schemes have
solutions that are bounded in both the energy and the maximum norms. In addition,
we will also show that the semi-discrete scheme leads to a discrete divergence that is
bounded in the L2 norm. This is the main reason why we work with a discretization of
the non-conservative form of the Friedrichs system (2.2.1).

In addition to the energy and divergence bounds, we are going to show that the scheme
(2.2.8) converges to a weak solution (2.1.9) of the equation (2.1.6). To do this we need the
“conservative”, form i.e., the discrete form consistent with the two dimensional version of
(2.1.6). Since we use point values of the coefficient u in our scheme this is not completely
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straightforward. Using the discrete Leibnitz rule for the central differences (2.1.14), we
can rewrite (2.2.8) as,

D+
t B

1,n
i,j = −D0

x

(
u1

i,jB
1,n
i,j

)−D0
y

(
u2

i,jB
1,n
i,j

)
+D0

x

(
u1

i,j

)
B1,n

i,j +D0
y

(
u1

i,j

)
B2,n

i,j

+
1

2

(|u|δ (Δx
Δy ) ·D2

)
i,j
B1,n

i,j

+
Δx2

2

[(
D+

x u
1,n
i,j

) (
D−x D

+
x B

1
i,j

)
+
(
D−x B

1,n
i,j

) (
D−x D

+
x u

1
i,j

)]
+

Δy2

2

[(
D+

y u
2
i,j

) (
D−y D

+
y B

1,n
i,j

)
+
(
D−y B

1,n
i,j

) (
D−y D

+
y u

2
i,j

)]
(2.2.10)

D+
t B

2,n = −D0
x

(
u1

i,jB
2,n
i,j

)−D0
y

(
u2

i,jB
2,n
i,j

)
+D0

x

(
u2

i,j

)
B1,n

i,j +D0
y

(
u2

i,j

)
B2,n

i,j

+
1

2

(|u|δ (Δx
Δy ) ·D2

)
i,j
B2,n

i,j

+
Δx2

2

[(
D+

x u
1
i,j

) (
D−x D

+
x B

2,n
i,j

)
+
(
D−x B

2,n
i,j

) (
D−x D

+
x u

1
i,j

)]
+

Δy2

2

[(
D+

y u
2
i,j

) (
D−y D

+
y B

2,n
i,j

)
+
(
D−y B

2,n
i,j

) (
D−y D

+
y u

2
i,j

)]
(2.2.11)

Rewritten in the above form, (2.2.8) represents a consistent discretization of (2.1.6). Note
that (2.2.10) and (2.2.11), we use conservative central differences, a stabilizing diffusion
term and second order error terms due to the discrete Liebnitz rule.

We have not managed to write (2.2.8) as a special case of the class of finite volume
schemes that were presented and analysed in [82, 44]. The reason for this is the non-
conservative form of the scheme. This is reflected in the presence of error terms in the
conservative form (2.2.10) and (2.2.11) which have second derivatives in B multiplied by
derivatives of u, which can be of either sign. Hence, the results of [82, 44] do not apply
directly to our scheme.

2.2.1 Some estimates

Now we prove that BΔt satisfies some estimates which will allow us to conclude that{
BΔt

}
is weakly compact, and that any limit is a weak solution to (2.1.6). We start by

Lemma 2.2.1. Let
{
Bn

i,j

}
satisfy the scheme (2.2.6), and Δt the following CFL-condition

Δtmax

{
6 ‖u1‖L∞(R2)

Δx
,
6 ‖u2‖L∞(R2)

Δy
, 32δ

}
≤ 1

2
, (2.2.12)

Then
ΔxΔy

∑
i,j

∣∣Bn
i,j

∣∣2 ≤ eMnΔtΔxΔy
∑
i,j

∣∣B0
i,j

∣∣2 , (2.2.13)

where
M = 2M̄ + 4M̄2 + 6

(∥∥∂xu
1
∥∥

L∞ +
∥∥∂yu

2
∥∥

L∞
)
,

with
M̄ = max

i,j
‖Mi,j‖ .
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Furthermore for the solution of (2.2.7) we have that

ΔxΔy
∑
i,j

|Bi,j(t)|2 ≤ eMtΔxΔy
∑
i,j

∣∣B0
i,j

∣∣2 , t ≥ 0. (2.2.14)

Proof. We shall prove (2.2.13), the proof of (2.2.14) is simpler and uses the same basic
ideas. Using the notation

B2 = B ·B = (B1)2 + (B2)2,

and the discrete chain rule, (2.1.13), we find

2Bn
i,j ·D+

t Bn
i,j = − (u ·Dupw)i,j

((
Bn

i,j

)2
)

−Δx
(
−[u1

i,j

]− (
D+

x Bn
i,j

)2
+
[
u1

i,j

]+ (
D−x Bn

i,j

)2
)

(2.2.15)

−Δy
(
−[u2

i,j

]− (
D+

y Bn
i,j

)2
+
[
u2

i,j

]+ (
D−y Bn

i,j

)2
)

+ 2Bn
i,j ·Mi,jB

n
i,j + Bn

i,j ·D2
δ(u)i,jB

n
i,j.

For any quantity Zi,j, using summation by parts∑
i,j

Zi,jΔxσδ

(
u1

i,j

)
D+

x D
−
x Zi,j = −Δx

∑
i,j

D−x
(
Zi,jσδ

(
u1

i,j

))
D−x Zi,j

= −Δx
∑
i,j

Zi,jD
−
x

(
σδ

(
u1

i,j

))
D−x Zi,j + σδ

(
u1

i−1,j

) (
D−x Zi,j

)2

≤ −Δx
∑
i,j

σδ

(
u1

i−1,j

) (
D−x Zi,j

)2

+ 2
∑
i,j

∣∣D−x u1
i,j

∣∣ (|Zi,j|+ |Zi−1,j|) |Zi,j|

≤ −Δx
∑
i,j

σδ

(
u1

i,j

) (
D+

x Zi,j

)2
+ 4

∥∥∂xu
1
∥∥

L∞(R2)

∑
i,j

(Zi,j)
2 .

Since D+
x D

−
x = D−x D

+
x , we the term (D+

x Zi,j)
2 can be replaced by (D−x Zi,j)

2 above. There-
fore we have that∑

i,j

Zi,jΔxσδ

(
u1

i,j

)
D+

x D
−
x Zi,j

≤ −Δx

2

∑
i,j

σδ

(
u1

i,j

) ((
D+

x Zi,j

)2
+
(
D−x Zi,j

)2
)

+ 4
∥∥∂xu

1
∥∥

L∞(R2)

∑
i,j

(Zi,j)
2 ,

and similarly∑
i,j

Zi,jΔyσδ

(
u2

i,j

)
D+

y D
−
y Zi,j

≤ −Δy

2

∑
i,j

σδ

(
u2

i,j

) ((
D+

y Zi,j

)2
+
(
D−y Zi,j

)2
)

+ 4
∥∥∂yu

2
∥∥

L∞(R2)

∑
i,j

(Zi,j)
2 .
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Hence, we get∑
i,j

(
Bn

i,j ·D2
δ(u)i,jB

n
i,j

) ≤ −∑
i,j

Δx

2
σδ

(
u1

i,j

) ((
D+

x Bn
i,j

)2
+
(
D−x Bn

i,j

)2
)

Δy

2
σδ

(
u2

i,j

) ((
D+

y Bn
i,j

)
)2 +

(
D−y Bn

i,j

)
)2
)

+ 4
(∥∥∂xu

1
∥∥

L∞(R2)
+
∥∥∂yu

2
∥∥

L∞(R2)

)∑
i,j

(Bn
i,j)

2.

Note also that by the discrete Leibnitz rule (2.1.12), we have that for any quantity Zi,j,∑
i,j

(u ·Dupw)i,j Zi,j = −
∑
i,j

Zi,j

[
D+

x

[
u1

i,j

]+
+D−x

[
u1

i,j

]−
+D+

y

[
u2

i,j

]+
+D−y

[
u2

i,j

]−]
.

Using this on the first term on the right in (2.2.15) we find that∑
i,j

2Bn
i,jD

+
t Bn

i,j ≤
(
6
(∥∥∂xu

1
∥∥

L∞(R2)
+
∥∥∂yu

2
∥∥

L∞(R2)

)
+ 2M̄

)∑
i,j

(
Bn

i,j

)2

−
∑
i,j

Δx
(
−[u1

i,j

]− (
D+

x Bn
i,j

)2
+
[
u1

i,j

]+ (
D−x Bn

i,j

)2
)

Δy
(
−[u2

i,j

]− (
D+

y Bn
i,j

)2
+
[
u2

i,j

]+ (
D−y Bn

i,j

)2
)

−
∑
i,j

Δx

2
σδ

(
u1

i,j

) ((
D+

x Bn
i,j

)2
+
(
D−x Bn

i,j

)2
)

Δy

2
σδ

(
u2

i,j

) ((
D+

y Bn
i,j

)2
+
(
D−y Bn

i,j

)
)2
)
.

We also have that

D+
t

((
Bn

i,j

)2
)

= 2Bn
i,j ·D+

t Bn
i,j + Δt

(
D+

t Bn
i,j

)2
.

In order to balance the terms, we use the scheme (2.2.6), and the inequality(
ΔxD+

x D
−
x aj

)2 ≤ 2
((
D+

x aj

)2
+
(
D−x aj

)2
)
.

Then (
D+

t Bn
i,j

)2 ≤ 2
(
(u ·Dupw)i,j Bn

i,j

)2

+ 4
(
Mi,jB

n
i,j

)2
+ 4

(
D2

δ(u)i,jB
n
i,j

)2

≤ 8

[([
u1

i,j

]−)2 (
D+

x Bn
i,j

)2
+
([
u1

i,j

]+)2 (
D−x Bn

i,j

)2

+
([
u2

i,j

]−)2 (
D+

y Bn
i,j

)2
+
([
u2

i,j

]+)2 (
D−y Bn

i,j

)2
]

+ 8
[(

Δxσδ

(
u1

i,j

)
D+

x D
−
x Bn

i,j

)2
+
(
Δyσδ

(
u2

i,j

)
D+

y D
−
y Bn

i,j

)2
]

+ 4M̄2
(
Bn

i,j

)2
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≤ 8

[([
u1

i,j

]−)2 (
D+

x Bn
i,j

)2
+
([
u1

i,j

]+)2 (
D−x Bn

i,j

)2

+
([
u2

i,j

]−)2 (
D+

y Bn
i,j

)2
+
([
u2

i,j

]+)2 (
D−y Bn

i,j

)2
]

+ 16

[
σ2

δ

(
u1

i,j

) ((
D+

x Bn
i,j

)2
+
(
D−x Bn

i,j

)2
)

+ σ2
δ

(
u2

i,j

) ((
D+

y Bn
i,j

)2
+
(
D−y Bn

i,j

)2
)]

+ 4M̄2
(
Bn

i,j

)2
.

Using the above and summing over i and j,

D+
t

∑
i,j

(
Bn

i,j

)2 ≤
∑
i,j

[∣∣∣[u1
i+1/2,j

]−∣∣∣ (8Δt
∣∣∣[u1

i+1/2,j

]−∣∣∣−Δx
) (
D+

x Bn
i,j

)2

+
[
u1

i−1/2,j

]+ (
8Δt

[
u1

i−1/2,j

]+ −Δx
) (
D−x Bn

i,j

)2

+
∣∣∣[u2

i,j+1/2

]−∣∣∣ (8Δt
∣∣∣[u2

i,j+1/2

]−∣∣∣−Δy
) (
D+

y Bn
i,j

)2

+
[
u1

i,j−1/2

]+ (
8Δt

[
u2

i,j−1/2

]+ −Δy
) (
D−y Bn

i,j

)2

+ σδ

(
u1

i,j

)(
16Δtσδ

(
u1

i,j

)− Δx

2

)((
D+

x Bn
i,j

)2
+
(
D−x Bn

i,j

)2
)

+ σδ

(
u2

i,j

)(
16Δt(σδ

(
u2

i,j

)− Δy

2

)((
D+

y Bn
i,j

)2
+
(
D−y Bn

i,j

)2
)]

+
(
2M̄ + 4M̄2 + 6

(∥∥∂xu
1
∥∥

L∞ +
∥∥∂yu

2
∥∥

L∞
))∑

i,j

(
Bn

i,j

)2

≤M
∑
i,j

(
Bn

i,j

)2
,

if the CFL-condition (2.2.12) holds. Now (2.2.13) follows by the discrete Gronwall in-
equality.

The CFL-condition (2.2.12) implies that the terms in front of (D±x,yB
n
i,j)

2 above are
all less than −Δx/2 or −Δy/2. Therefore, as a consequence of the proof, we also get a
bound on the spatial variation of Bn

i,j. Set

Υn
i,j =

Δx

2

((
−[u1

i,j

]−
+ σδ

(
u1

i,j

)) (
D+

x Bn
i,j

)2
+
([
u1

i,j

]+
+ σδ

(
u1

i,j

)) (
D−x Bn

i,j

)2
)

+
Δy

2

((
−[u2

i,j

]−
+ σδ

(
u2

i,j

)) (
D+

y Bn
i,j

)2
+
([
u2

i,j

]+
+ σ

(
u2

i,j

)) (
D−y Bn

i,j

)2
)
.
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By (2.2.15) and (2.2.13) the following bound holds

Δt
∑
i,j

Υn
i,j ≤ (M + 1)

∑
i,j

((
Bn

i,j

)2
+
(
Bn+1

i,j

)2
)

≤ 2 (M + 1) eM(n+1)Δt
∑
i,j

(
B0

i,j

)2
.

(2.2.16)

Since the scheme uses local upwinding and adds some numerical diffusion, the first part
of the updating is monotone in all its arguments. More concretely, set

f (Zi,j, Zi−1,j, Zi+1,j, Zi,j−1, Zi,j+1)

= Zi,j −Δt (u ·Dupw)i,j Zi,j + ΔtD2
δ(u)i,jZi,j.

Differentiation and positivity of the coefficients σδ and the CFL-condition (2.2.12) show
that

∂f

∂Zi,j

≥ 0,
∂f

∂Zi±1,j

≥ 0 and
∂f

∂Zi,j±1

≥ 0.

Next, we prove a bound for the supremum norm, defined as∥∥Bn
i,j

∥∥
L∞ = sup

i,j

∣∣B1,n
i,j

∣∣ + sup
i,j

∣∣B2,n
i,j

∣∣ .
Lemma 2.2.2. Let Bn

i,j be defined by the scheme (2.2.8). Then∥∥Bn
i,j

∥∥
L∞ ≤ eCnΔt

∥∥B0
i,j

∥∥
L∞ , (2.2.17)

where C = ‖∂xu
1‖L∞ + ‖∂yu

1‖L∞ + ‖∂xu
2‖L∞ + ‖∂yu

2‖L∞.

Proof. We write (2.2.6) as

B1,n+1
i,j = f

(
B1,n

i,j , B
1,n
i−1,j, B

1,n
i+1,j, B

1,n
i,j−1, B

1,n
i,j+1

)
−Δt

(
D0

yu
2
i,jB

1,n
i,j −D0

yu
1
i,j+1/2B

2,n
i,j

)
B2,n+1

i,j = f
(
B2,n

i,j , B
2,n
i−1,j, B

2,n
i+1,j, B

2,n
i,j−1, B

2,n
i,j+1

)
+ Δt

(
D0

yu
2
i+1/2,jB

1,n
i,j −Dy

0u
1
i+1/2,jB

2,n
i,j

)
.

Set αn = supi,j |B1,n
i,j | and β = supi,j |B2,n

i,j |. Since f(a, a, a, a, a) = a and f is increasing in
all its arguments, it follows that

αn+1 ≤ αn + Δt
(∥∥∂yu

2
∥∥

L∞ αn +
∥∥∂yu

1
∥∥

L∞ βn
)

βn+1 ≤ βn + Δt
(∥∥∂xu

2
∥∥

L∞ αn +
∥∥∂xu

1
∥∥

L∞ βn
)
.

Adding these two inequalities we obtain∥∥Bn+1
i,j

∥∥
L∞ ≤

∥∥Bn
i,j

∥∥
L∞ + Δt

(∥∥∂xu
2
∥∥

L∞ +
∥∥∂yu

2
∥∥

L∞
)
αn

+ Δt
(∥∥∂xu

1
∥∥

L∞ +
∥∥∂yu

1
∥∥

L∞
)
βn

≤ (1 + CΔt)
∥∥Bn

i,j

∥∥
L∞ .

Gronwall’s inequality concludes the proof of the lemma.
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Remark 2.2.1. If u is constant, i.e., u = (u1, u2) for two constants u1 and u2, we can
choose δ = 0 in the diffusion coefficients σδ This follows by taking δ ≤ min{|u1|, |u2|}
in the case where both u1, u2 are away from zero. The case where one or both of the
constant velocity fields is zero leads to a single advection equation and we ignore it here.
In this special case, the scheme (2.2.8) reduces to a particularly simple form,

D+
t B

1,n
i,j = −[u1

]−
D+

x

(
B1,n

i,j

)− [
u1
]+
D−x

(
B1,n

i,j

)
− [

u2
]−
D+

y

(
B1,n

i,j

)− [
u2
]+
D−y

(
B1,n

i,j

)
,

D+
t B

2,n
i,j =− [

u1
]−
D+

x

(
B2,n

i,j

)− [
u1
]+
D−x

(
B2,n

i,j

)
− [

u2
]−
D+

y

(
B2,n

i,j

)− [
u2
]+
D−y

(
B2,n

i,j

)
.

(2.2.18)

In this case, we have some additional properties. Firstly, we observe that now Lemma 2.2.1
and Lemma 2.2.2 give

ΔxΔy
∑
i,j

∣∣Bn
i,j

∣∣2 ≤ ΔxΔy
∑
i,j

∣∣B0
i,j

∣∣2 , and
∥∥Bn

i,j

∥∥
L∞ ≤

∥∥B0
i,j

∥∥
L∞

respectively. Also the operator (u ·D)i,j is independent of i and j. By Harten’s lemma,
see [50], and the monotonicity of f∣∣∣Bk,n

i,j

∣∣∣
B.V.

≤
∣∣∣Bk,0

i,j

∣∣∣
B.V.

, for k = 1, 2, (2.2.19)

where ∣∣∣Bk,n
i,j

∣∣∣
B.V.

= ΔyΔx
∑
i,j

∣∣∣D+
x B

k,n
i,j

∣∣∣ +
∣∣∣D+

y B
k,n
i,j

∣∣∣ .
If u is constant, then we also have that if some discrete divergence of B initially is zero,
then this will remain zero. To see this, let LBn

i,j be any finite linear combination of Bn
i,j

for various i’s and j’s, i.e.,

(LBn
i,j) =

2∑
m=1

N∑
k=1

αm
k B

m,n
i+σ(k),j+κ(k),

where σ and κ are functions taking integer values, and αm
k is a constant. Applying L to

the definition of the scheme gives

D+
t

(LBn
i,j

)
= −(u ·D)

(LBn
i,j

)
.

In particular, if LB0
i,j = 0 then LBn

i,j = 0 for n > 0. Since any discrete divergence is of
the same type as L, any zero initial discrete divergence will remain zero. We also remark
that for constant velocity, the CFL-condition can be relaxed to

Δtmax

{ |u1|
Δx

,
|u2|
Δy

}
≤ 1

2
. (2.2.20)

Hence, in the case of constant velocity fields, the scheme (2.2.8) is non-oscillatory and
preserves any discrete divergence operator. These are important structural properties of
the scheme and explain some of the results in the section on numerical experiments.
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2.2.2 Convergence

It follows directly from the L2 bound in Lemma 2.2.1 that that the sequence
{
BΔt

}
is

weakly compact in L2(R2 × [0, T ]). By the L2 bound we infer the existence of a function
B(x, y, t) such that

BΔt ⇀ B, in L2(R2 × [0, T ]) as Δt→ 0.

Theorem 2.2.1. Let Bn be defined by the scheme (2.2.8), and assume that ‖B0‖L2(R2)

is finite. If u ∈ C2(R2) with bounded derivatives, and Δt satisfies the CFL-condition
(2.2.12), then there exists a subsequence {Δtj} such that BΔtj ⇀ B in L2(R2 × [0, T ]).
Furthermore, the limit B = (B1, B2) is a weak solution of (2.1.6), with the property that

‖B(·, T )‖L2(R2) ≤ CT ‖B0‖L2(R2) , T ≥ 0,

where CT is a finite constant depending on u and T . The same results hold for the
approximations generated by the semi-discrete scheme (2.2.7).

Proof. We must show that B is a weak solution, and we shall do this for the first compo-
nent B1. Identical arguments apply to B2. To demonstrate that B is a weak solution of
(2.1.6) we must then show that B1 satisfies

Wϕ(B) :=

∫∫∫
R2×[0,∞)

B1∂tϕ+ u1B1∂xϕ+ u2B1∂yϕ−B1∂x(u
1)ϕ−B2∂y(u

1)ϕdxdydt

+

∫∫
R2

B1
0ϕ(x, y, 0) dxdy = 0, (2.2.21)

for all test functions ϕ ∈ C∞0 (Π), where Π = R
2 × [0,∞).

Choose a test function ϕ and set

ϕn
i,j =

1

ΔtΔxΔy

∫∫∫
In
i,j

ϕ(x, y, t) dxdydt.

In order to prove convergence to a weak solution (2.2.21), we need to work with the
“conservative form” of the scheme (2.2.10).

To save space, set Δ = ΔtΔxΔy, multiply (2.2.10) by Δϕn
i,j, sum over n = 0, . . . ,∞,

and (i, j) in Z
2, and sum by parts to arrive at

α1 + α2 + α3 + α4 + α5 + α6 + α7 + α8 + α9 + α10 + α11 + α12 = 0

where

α1 = Δ
∞∑

n=1

∑
i,j

B1,n
i,j D

−
t ϕ

n
i,j, α2 = ΔxΔy

∑
i,j

B1,0
i,j ϕ

0
i,j,

α3 = Δ
∞∑

n=1

∑
i,j

u1
i,jB

1
i,j(D

0
xϕ

n
i,j), α4 = Δ

∞∑
n=1

∑
i,j

u2
i,jB

1
i,j(D

0
yϕ

n
i,j),



60 CHAPTER 2. MAGNETIC INDUCTION EQUATION

α5 = −Δ
∞∑

n=1

∑
i,j

ϕn
i,jB

1
i,j(D

0
xu

1
i,j), α6 = Δ

∞∑
n=1

∑
i,j

ϕn
i,jB

2
i,j(D

0
yu

1
i,j),

and

α7 = −ΔxΔ
∞∑

n=1

∑
i,j

D+
x D

−
x (|u1

i,j|δϕn
i,j)B

1,n
i,j ,

α8 = −ΔyΔ
∞∑

n=1

∑
i,j

D+
y D

−
y (|u2

i,j|δϕn
i,j)B

1,n
i,j ,

α9 = (Δx)2Δ
∞∑

n=1

∑
i,j

D+
x (ϕn

i,jD
−
x (u1

i,j))D
+
x (B1,n

i,j ),

α10 = (Δy)2Δ
∞∑

n=1

∑
i,j

D+
y (ϕn

i,jD
−
y (u2

i,j))D
+
y (B1,n

i,j ),

α11 = −(Δx)2Δ
∞∑

n=1

∑
i,j

ϕn
i,jD

+
x D

−
x (u1

i,j)D
+
x (B1,n

i,j ),

α12 = (Δy)2Δ
∞∑

n=1

∑
i,j

ϕn
i,jD

+
y D

−
y (u2

i,j)D
+
y (B1,n

i,j ).

We claim that since BΔt ∈ L2(R2 × [0, T ]) for all finite T , all the terms α7, α8, . . . , α12

vanish a Δ → 0. We can estimate α7 and α8 as follows,

α2
7 ≤ Δx2

(
Δ
∑
n,i,j

(
D+

x D
−
x

(∣∣u1
i,j

∣∣
δ
ϕn

i,j

))2
)(

Δ
∑
n,i,j

(B1,n
i,j )2

)

≤ CΔx2 → 0, as Δx→ 0,

for some constant C which is independent of Δt. When we estimate α9, . . . , α12 we have
an extra Δx or Δy which can be used to “remove the discrete derivative” from B. This
is done for α9 as

α9 ≤ Δx
∑
n,i,j

∣∣D+
x

(
ϕn

i,jD
−
x u

1
i,j

)∣∣ (∣∣B1,n
i+1,j

∣∣ +
∣∣B1,n

i,j

∣∣)

≤ Δx

(∑
n,i,j

(
D+

x

(
ϕn

i,jD
−
x u

1
i,j

))2

)1/2 (
4
∑
n,i,j

(
B1,n

i,j

)2

)1/2

≤ CΔx,

for some constant C which is independent of Δt.
Using that BΔt ⇀ B as Δt → 0 and that u and ϕ are smooth enough, we can use

standard arguments to show that as Δt,Δx,Δy → 0,

α1 →
∫∫∫

Π

B1∂tϕdxdydt, α2 →
∫∫

R2

B1
0ϕ(x, y, 0) dxdy
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α3 →
∫∫∫

Π

u1B1∂xϕdxdydt, α4 →
∫∫∫

Π

u2B1∂yϕdxdydt

α5 →
∫∫∫

Π

∂x(u
1)B1ϕdxdydt, α6 →

∫∫
Π

∂y(u
1)B1ϕdxdydt

Hence, we have shown that the approximations defined by (2.2.10) and (2.2.11) converge
to a weak solution of (2.1.6).

2.2.3 Divergence Bounds

In this section, we show that we can bound the divergence of the semi-discrete scheme
(2.2.7) under certain assumptions.

In order to motivate some rather long calculations, we start by considering the exact
equations

B1
t + u1B1

x + u2B1
y = −u2

yB
1 + u1

yB
2 (2.2.22)

B2
t + u1B2

x + u2B2
y = u2

xB
1 − u1

xB
2. (2.2.23)

Setting d = B1
x + B2

y , differentiating the first equation with respect to x and the second
with respect to y and adding yields

dt + u1dx + u2dy = − (
u1

x + u2
y

)
d. (2.2.24)

Multiplying by 2d, and using Leibnitz’ rule (again) yields

d2
t +

(
u1d2

)
x

+
(
u2d2

)
y

= − (
u1

x + u2
y

)
d2. (2.2.25)

Integrating over x and y gives

d

dt
‖d(·, t)‖2

L2(R2) ≤ ‖divu‖L∞(R2) ‖d(·, t)‖2
L2(R2) . (2.2.26)

We wish to “replicate” this calculation for the approximations generated by the semi-
discrete scheme. There are three obstacles in the way of doing so, firstly the approxima-
tions do not satisfy (2.2.22) and (2.2.23), but (2.2.7). Secondly we used Leibnitz’ rule to
arrive at (2.2.24), this rule do not hold exactly for the discrete differentiation operators
D0

x and D0
y. Thirdly we used the chain rule to arrive at (2.2.24), this is not exact for

discrete derivatives.
We start by considering the scheme in the form (2.2.9), which reads

d

dt
B1

i,j = −u1
i,jD

0
xB

1
i,j − u2

i,jD
0
yB

1
i,j −

(
D0

yu
2
i,j

)
B1

i,j +
(
D0

yu
1
i,j

)
B2

i,j (2.2.27)

+
Δx

2

∣∣u1
i,j

∣∣
δ
D+

x D
−
x B

1
i,j +

Δy

2

∣∣u2
i,j

∣∣
δ
D+

y D
−
y B

1
i,j

d

dt
B2

i,j = −u1
i,jD

0
xB

2
i,j − u2

i,jD
0
yB

2
i,j +

(
D0

xu
2
i,j

)
B1

i,j −
(
D0

xu
1
i,j

)
B2

i,j (2.2.28)

+
Δx

2

∣∣u1
i,j

∣∣
δ
D+

x D
−
x B

2
i,j +

Δy

2

∣∣u2
i,j

∣∣
δ
D+

y D
−
y B

2
i,j.
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In order to replace the exact Leibnitz rule, for a smooth function a(x), and a sequence
{bi}, we have

D0 (aibi) = biD
0 (ai) +

1

2

(
ai+1D

+bi + ai−1D
−bi

)
= biD

0 (ai) +
1

2

[(
ai + a′iΔx+

Δx2

2
a′′

(
ξi+1/2

))
D+bi

+

(
ai − a′iΔx+

Δx2

2
a′′

(
ξi−1/2

))
D−bi

]
= aiD

0bi + biD
0ai ← “Leibnitz part”

+
Δx2

2
a′iD

+D−bi +
Δx2

4

(
a′′

(
ξi+1/2

)
D+bi + a′′

(
ξi−1/2

)
D−bi

)
︸ ︷︷ ︸

“discrete correction”

,

where we use the notation ai = a(xi), a
′
i = a′(xi) and ξi±1/2 is between xi and xi±1.

We shall first apply D0
x to (2.2.27), D0

y to to (2.2.28) and add the results. The “Leib-
nitz” part of this will give the discrete equivalent of (2.2.26), with central differences
replacing derivatives, and d replaced by

di,j = D0
xB

1
i,j +D0

yB
2
i,j.

Concretely we get

d

dt
di,j = −u1

i,jD
0
xdi,j − u2

i,jD
0
ydi,j −

(
D0

xu
1
i,j +D0

yu
2
i,j

)
di,j

+ discrete correction terms + terms from D+D−.
(2.2.29)

Next, we shall multiply this with di,j, and use the chain rule (2.1.13). In order to get
a useful form of the numerical diffusion, we must convert (2.2.29) to upwind form. The
formula for doing so reads

aiD
0bi = a+

i D
−bi + a−i D

+bi −Δx |ai|D+D−bi.

Consequently, the upwind form of the equation for the discrete divergence is

d

dt
di,j = −[u1

i,j

]−
D+

x di,j −
[
u1

i,j

]+
D−x di,j −

[
u2

i,j

]−
D+

y di,j −
[
u2

i,j

]+
D−y di,j

− (
D0

xu
1
i,j +D0

yu
2
i,j

)
di,j + Δx

∣∣u1
i,j

∣∣D+
x D

−
x di,j + Δy

∣∣u2
i,j

∣∣D+
y D

−
y di,j︸ ︷︷ ︸

“upwind diffusion”

+ discrete correction terms + terms from D+D−.

(2.2.30)
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Now we multiply this with 2di,j, and use the discrete chain rule (2.1.13) to get

d

dt
d2

i,j = −[u1
i,j

]−
D+

x d
2
i,j −

[
u1

i,j

]+
D−x d

2
i,j −

[
u2

i,j

]−
D+

y d
2
i,j −

[
u2

i,j

]+
D−y d

2
i,j

− (
D0

xu
1
i,j +D0

yu
2
i,j

)
d2

i,j

+Δx
([
u1

i,j

]− (
D+

x di,j

)2 − [
u1

i,j

]+ (
D−x di,j

)2
)

+Δy
([
u2

i,j

]− (
D+

y di,j

)2 − [
u2

i,j

]+ (
D−y di,j

)2
)
⎫⎬
⎭← signed terms

+ 2di,j

(
upwind diffusion + discrete correction + terms from D+D−

)
.

(2.2.31)
The next step is summing the above equation over i and j, using partial summation and
other tricks to bound the right hand side. The first four terms on the right hand side of
(2.2.31) are bounded as follows∣∣∣∣∑

i,j

[
u1

i,j

]−
D+

x d
2
i,j

∣∣∣∣ =

∣∣∣∣∑
i,j

D−x
([
u1

i,j

]−)
d2

i,j

∣∣∣∣
≤ ∥∥∂xu

1
∥∥

L∞(R2)

∑
i,j

d2
i,j.

The fifth term on the right side of (2.2.31) has the same type of bound. Therefore

d

dt
d2

i,j ≤ 3
(∥∥∂xu

1
∥∥

L∞(R2)
+
∥∥∂yu

2
∥∥

L∞(R2)

)∑
i,j

d2
i,j

+
∑
i,j

signed terms

+ 2di,j

(
upwind diffusion + discrete correction + terms from D+D−

)
.

Next, let us tackle the “discrete correction” terms. These are terms coming from applying
D0 to the first order differences in (2.2.27) and (2.2.28). Furthermore, these are essentially
of two types; a correction for D0

x applied to u1
i,jD

0
xB

1
i,j, and a correction for D0

x applied to(
D0

xu
2
i,j

)
B1

i,j. Now the correction part of D0
x(u

1
i,jD

0
xB

1
i,j) equals

Δx2

2
u1,′

i,jD
+
x D

−
x D

0
xB

1
i,j +

Δx2

4

(
u1,′′

i+1/2,jD
+
x D

0
xB

1
i,j + u1,′′

i−1/2,jD
−
x D

0
xB

1
i,j

)
. (2.2.32)

We must multiply this by 2di,j and sum over i and j and bound the result. For the second
term of this part of the correction we have∣∣∣∣14 ∑

i,j

u1,′′
i+1/2,j2di,jΔx

2D+
x D

0
xB

1
i,j

∣∣∣∣
≤ 1

2

∥∥∂2
xu

1
∥∥

L∞(R2)

∑
i,j

|di,j| 1
2

(∣∣B1
i+2,j

∣∣ +
∣∣B1

i+1,j

∣∣ +
∣∣B1

i,j

∣∣ +
∣∣B1

i−1,j

∣∣)
≤ 1

2

∥∥∂2
xu

1
∥∥

L∞(R2)

(∑
i,j

d2
i,j +

∑
i,j

(
B1

i,j

)2
)
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The sum coming from the third term in (2.2.32) has the same bound. To bound the sum
coming from the first term in (2.2.32) we use summation by parts∣∣∣∣12 ∑

i,j

2di,ju
1,′
i,jΔx

2D+
x D

−
x D

0
xB

1
i,j

∣∣∣∣
=

1

2

∣∣∣∣∑
i,j

D−x
(
u1,′

i,jdi,j

)
Δx2D−x D

0
xB

1
i,j

∣∣∣∣
=

1

2

∣∣∣∣∑
i,j

(
u1,′

i,jD
−
x di,j + di−1,jD

−
x u

1,′
i,j

)
Δx2D−x D

0
xB

1
i,j

∣∣∣∣
≤ ∥∥∂2

xu
1
∥∥

L∞(R2)

∑
i,j

d2
i,j +

(
B1

i,j

)2

+
1

2

∥∥∂xu
1
∥∥

L∞(R2)

∑
i,j

Δx

4ε

(
D−x B

1
i,j

)2
+ Δxε

(
D−x di,j

)2
,

where ε is a positive number yet to be determined. The last term here looks threatening,
but we shall look for countermeasures. Next the correction part of D0

x((D
0
xu

2
i,j)B

1
i,j) is

ci,j :=
Δx2

2
D0

x

(
u2,′

i,j

)
D+

x D
−
x B

1
i,j

+
Δx2

4

(
D0

x

(
u2,′′

i+1/2,j

)
D+

x B
1
i,j +D0

x

(
u2,′′

i−1/2,j

)
D−x B

1
i,j

)
.

(2.2.33)

Now we can use Δx2 to remove both discrete derivatives of B1
i,j in the first term, and one

from B1
i,j and one from u2,′′

i,j in the second term, and conclude that∑
i,j

ci,j2di,j ≤ C
∥∥∂2

xu
2
∥∥

L∞(R2)

∑
i,j

d2
i,j +

(
B1

i,j

)2
,

where C equals 8, and is in any case independent of Δx.
The rest of the discrete correction terms are similar to those we have bounded, and

we end up with the bound∑
i,j

2di,j (discrete correction)

≤ C
(∥∥∂2

xu
1
∥∥

L∞(R2)
+
∥∥∂2

yu
1
∥∥

L∞(R2)
+
∥∥∂2

xu
2
∥∥

L∞(R2)
+
∥∥∂2

yu
2
∥∥

L∞(R2)

)
×
∑
i,j

(
d2

i,j + B2
i,j

)
+ C

(∥∥∂xu
1
∥∥

L∞(R2)
+
∥∥∂yu

1
∥∥

L∞(R2)
+
∥∥∂xu

2
∥∥

L∞(R2)
+
∥∥∂yu

2
∥∥

L∞(R2)

)
×
∑
i,j

1

ε

(
Δx

(
D−x B

1
i,j

)2
+ Δy

(
D−y B

2
i,j

)2
)

+ ε
(
Δx

(
D−x di,j

)2
+ Δy

(
D−y di,j

)2
)
,

(2.2.34)
for some finite constant C which does not depend on Δx or Δy.
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Now we bound the terms coming from the “upwind diffusion”, here we must bound
terms like∑

i,j

2di,jΔx
∣∣u1

i,j

∣∣D+
x D

−
x di,j ≤ −2Δx

∑
i,j

D−x
(∣∣u1

i,j

∣∣ di,j

)
D−x di,j

= −2Δx
∑
i,j

∣∣u1
i,j

∣∣ (D−x di,j

)2 − di−1,jD
−
x

∣∣u1
i,j

∣∣D−x di,j

≤ −2Δx
∑
i,j

∣∣u1
i,j

∣∣ (D−x di,j

)2
+ 10

∥∥∂xu
1
∥∥

L∞(R2)

∑
i,j

d2
i,j.

Then we have that∑
i,j

2di,j (upwind diffusion)

≤ −
∑
i,j

Δx
∣∣u1

i,j

∣∣ (D−x di,j

)2
+ Δy

∣∣u2
i,j

∣∣ (D−y di,j

)2

+ 10
(∥∥∂xu

1
∥∥

L∞(R2)
+
∥∥∂yu

2
∥∥

L∞(R2)

)∑
i,j

d2
i,j.

(2.2.35)

Then we turn to the “terms from D+D−”. These are the result of applying D0
x to

the second order differences in (2.2.27), D0
y to the second order differences in (2.2.28) and

adding the results. We have that

D0
x

(
Δx

2

∣∣u1
i,j

∣∣
δ
D+

x D
−
x B

1
i,j +

Δy

2

∣∣u2
i,j

∣∣
δ
D+

y D
−
y B

1
i,j

)

=
Δx

2

[∣∣u1
i,j

∣∣
δ
D+

x D
−
x D

0
x

(
B1

i,j

)
+

1

2

(
D−x D

+
x B

1
i+1,jD

+
x

∣∣u1
i,j

∣∣
δ
+D+

x D
−
x B

1
i−1,jD

−
x

∣∣u1
i,j

∣∣
δ

)]

+
Δy

2

[∣∣u2
i,j

∣∣
δ
D+

y D
−
y D

0
x

(
B1

i,j

)
+

1

2

(
D−y D

+
y B

1
i+1,jD

+
x

∣∣u2
i,j

∣∣
δ
+D+

y D
−
y B

1
i−1,jD

−
x

∣∣u2
i,j

∣∣
δ

)]

and

D0
y

(
Δx

2

∣∣u1
i,j

∣∣
δ
D+

x D
−
x B

2
i,j +

Δy

2

∣∣u2
i,j

∣∣
δ
D+

y D
−
y B

2
i,j

)

=
Δx

2

[∣∣u1
i,j

∣∣
δ
D+

x D
−
x D

0
y

(
B2

i,j

)
+

1

2

(
D−x D

+
x B

2
i,j+1D

+
y

∣∣u1
i,j

∣∣
δ
+D+

x D
−
x B

2
i,j−1D

−
y

∣∣u1
i,j

∣∣
δ

)]

+
Δy

2

[∣∣u2
i,j

∣∣
δ
D+

y D
−
y D

0
y

(
B2

i,j

)
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+
1

2

(
D−y D

+
y B

2
i,j+1D

+
y

∣∣u2
i,j

∣∣
δ
+D+

y D
−
y B

2
i,j−1D

−
y

∣∣u2
i,j

∣∣
δ

)]
.

Adding these we get

“terms from D+D−” =
Δx

2

∣∣u1
i,j

∣∣
δ
D+

x D
−
x di,j +

Δy

2

∣∣u2
i,j

∣∣
δ
D+

y D
−
y di,j

+ second order corrections.
(2.2.36)

Multiplied by 2di,j and summed over i and j, a typical term from the “second order
corrections” can be estimated as∑

i,j

(
ΔxD+

x D
−
x B

1
i,j+1D

+
y

∣∣u1
i,j

∣∣
δ

)
di,j

= −
∑
i,j

Δx
(
D−x B

1
i,j+1

)
D−x

(
D+

y

∣∣u1
i,j

∣∣
δ
di,j

)
= −

∑
i,j

Δx
(
D+

x B
1
i,j

) ((
D−x D

+
y

∣∣u1
i,j

∣∣
δ

)
di,j +D+

y

∣∣u1
i−1,j

∣∣
δ
D−x di,j

)
≤ ∥∥∂2

xyu
1
∥∥

L∞(R2)

∑
i,j

4
(
B1

i,j

)2
+ 2d2

i,j

+
∥∥∂yu

1
∥∥

L∞(R2)

∑
i,j

Δx

4ε

(
D+

x B
1
i,j

)2
+ Δxε

(
D−x di,j

)2
.

Applying this to all the terms in the second order corrections, we get∑
i,j

(second order corrections) 2di,j

≤ 2
(∥∥∂2

xyu
1
∥∥

L∞(R2)
+
∥∥∂2

xxu
1
∥∥

L∞(R2)
+
∥∥∂2

xyu
2
∥∥

L∞(R2)
+
∥∥∂2

yyu
2
∥∥

L∞(R2)

)
×
∑
i,j

(
4B2

i,j + 2d2
i,j

)
+ 4

(∥∥∂xu
1
∥∥

L∞(R2)
+
∥∥∂yu

1
∥∥

L∞(R2)
+
∥∥∂xu

2
∥∥

L∞(R2)
+
∥∥∂yu

2
∥∥

L∞(R2)

)
×
∑
i,j

1

4ε

(
Δx

(
D−x B

1
i,j

)2
+ Δy

(
D−y B

2
i,j

)2
)

+ ε
(
Δx

(
D−x di,j

)2
+ Δy

(
D−y di,j

)2
)

(2.2.37)
Now the first terms on the right of (2.2.36) will save the day. When multiplied by 2di,j,
the first of these yields∑

i,j

Δx di,j

∣∣u1
i,j

∣∣
δ
D+

x D
−
x di,j = −

∑
i,j

ΔxD−x
(
di,j

∣∣u1
i,j

∣∣
δ

)
D−x di,j

= −
∑
i,j

Δx
∣∣u1

i,j

∣∣
δ

(
D−x di,j

)2
+ Δxdi−1,jD

−
x

∣∣u1
i,j

∣∣
δ
D−x di,j

≤ −
∑
i,j

Δx
∣∣u1

i,j

∣∣
δ

(
D−x di,j

)2
+ 5

∥∥∂xu
1
∥∥

L∞(R2)

∑
i,j

d2
i,j.
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Similarly we have that∑
i,j

Δy di,j

∣∣u2
i,j

∣∣
δ
D+

y D
−
y di,j ≤ −

∑
i,j

Δx
∣∣u2

i,j

∣∣
δ

(
D−y di,j

)2
+ 4

∥∥∂yu
2
∥∥∑

i,j

d2
i,j.

Collecting all our bounds, we find that there are finite constants C�, � = 1, . . . , 4, depend-
ing only on u1, u2 and their first and second derivatives, such that

d

dt

∑
i,j

d2
i,j ≤ C1

∑
i,j

d2
i,j + C2

∑
i,j

B2
i,j + C3

1

ε

∑
i,j

Δx
(
D−x B

1
i,j

)2
+ Δy

(
D−y B

2
i,j

)2

+

(
C4ε− δ

2

)∑
i,j

(
Δx

(
D−x di,j

)2
+ Δy

(
D−y di,j

)2
)
.

Remembering that δ is a fixed positive number, we now choose ε positive, but so small
that (C4ε − δ/2) ≤ 0. Next use the estimates (2.2.16) and (2.2.14), multiply by ΔxΔy
and integrate over the interval (0, t) to get the divergence bound:

Lemma 2.2.3. Assume that u ∈ C2(R2). Let {Bi,j(t)} be defined by (2.2.7) and define
the discrete divergence

dn
i,j(t) = D0

x

(
B1

i,j(t)
)

+D0
y

(
B2

i,j(t)
)
.

Then

ΔxΔy
∑
i,j

(di,j(t))
2 ≤ eCt

(
ΔxΔy

∑
i,j

|di,j(0)|2 + ΔxΔy
∑
i,j

|Bi,j(0)|2
)

(2.2.38)

for some finite constant C depending only on δ and on u and its derivatives up to second
order.

Remark 2.2.2. If the limit of the scheme; B, has bounded first and second derivatives,
and the approximate solution BΔx has uniformly (in Δx and Δy) bounded first and
second differences, then the terms hidden behind “discrete correction terms” and “terms
from D+D−” in (2.2.29) will be O(Δx) + O(Δy). Hence if div(B(x, y, 0)) = 0, also
div(B(x, y, t)) = 0 for t > 0. Furthermore,

div0(BΔx(x, y, t)) = O(Δx) +O(Δy).

2.3 Numerical examples

In this section, we test the stable upwind scheme (SUS) (2.2.8) and compare it with
other schemes. We present test cases where we compare the performance of SUS with
the standard upwind scheme (2.1.19), and with the scheme of Torrilhon and Fey (2.1.20),
which we henceforth refer to as the TF scheme.
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2.3.1 Example 1

The first example uses

u = (1, 2), and B1
0(x, y) = B2

0(x, y) =

{
2 if x > y,

0 otherwise.
(2.3.1)

Since u is constant, the exact solution is

B(x, y, t) = B0(x− t, y − 2t).

As a computational domain we use (x, y) ∈ [−0.5, 0.5]2 and Neumann boundary condi-
tions. All schemes we tested used a CFL-number of 1/2. In Figure 2.3.1 we show how
some schemes compute the approximation at t = 0.3, with Δx = Δy = 0.01. We see
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Figure 2.3.1: Approximations of B1(x, 0, 0.3), initial data given by (2.3.1).From left to
right: SUS, TF, standard upwind, central Powell.

that the TF scheme seems to be more accurate than the SUS scheme, at the expense of
some oscillations as the solutions generated with the TF scheme are not TV D even in
this simple case of constant velocity fields. The standard upwind scheme, (2.1.19), gives
a solution similar to SUS, but with one pronounced spike. The scheme called “central
Powell” is the result of central evaluation of the Powell source term, and is seen to be
unstable. This example shows that the Godunov-Powell source term has to be introduced
as well as upwinded in some manner in order to get stable results. The SUS scheme relies
on an implicit upwinding due to the use of the Friedrichs form.

2.3.2 Example 2

The goal of this example is to investigate how the discrete divergence introduced by the
SUS scheme varies with Δt, as well as to compare the SUS scheme with the TF scheme.

In order to do this we choose divergence free initial data given by

B1
0(x, y) = ∂yA(x, y), B2

0(x, y) = −∂xA(x, y), where A =
1

2π
sin(2πx) sin(2πy) + y − x,

and
u = (1, 1) + 0.25(cos(2πx) + 2 sin(2πy), sin(2πx) + 2 cos(2πy)).
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To compute approximations we use periodic boundary conditions in the domain (x, y) ∈
[−0.5, 0.5]2 and t ∈ [0, 0.5]. Although in violation of the CFL-condition (2.2.12), both
the SUS and the TF scheme use the CFL-number 1/2. Figure 2.3.2 shows how the
discrete divergence(s) for both schemes vary with Δx. We have not shown div∗ for the
TF scheme, since this remains very small throughout the computation. We have used
Δx = Δy = 2−6, 2−7, . . . , 2−11. From Figure 2.3.2 we see that both div0 and div∗ seem

6 7 8 9 10 11
10−2

10−1

100

Δ x = Δ y = 2−k

er
ro

r

L1 − norm

div0 SUS
div* SUS
div0 TF

6 7 8 9 10 11
10−2

10−1

100

Δ x = Δ y = 2−k

er
ro

r

L2 − norm

div0 SUS
div* SUS
div0 TF

Figure 2.3.2. Discrete divergences for the
SUS and the TF schemes for the approximate
solutions as t = 0.5, as a function of Δx. Top
left: L1 norm, top right: L2 norm, left: L∞

norm.

to converge to zero for the SUS scheme at the expected first order accuracy, but div0

does not seem to converge to zero for the TF scheme, although this scheme preserves
div∗ to machine precision. This example indicates that although a scheme preserves some
discrete divergence, other discrete divergences need not be small.

Since the SUS-scheme proposed here is not conservative, it is interesting to see how
much of B is lost. We have measured the relative conservation error defined as

100×
2∑

i=1

| ∫∫ Bi,Δt(x, y, t)−Bi,Δt(x, y, 0) dxdy|
| ∫∫ Bi,Δt(x, y, 0) dxdy|

Δx = 2−6 Δx = 2−7 Δx = 2−8 Δx = 2−9 Δx = 2−10 Δx = 2−11

SUS 1.4577 0.7774 0.4019 0.2044 0.1031 0.0518

Table 2.3.1: Relative conservation errors for the SUS scheme.

From table 2.3.1, it is clear that although some mass is lost due to the fact that SUS
scheme is not conservative, the errors are quite small and converge to zero as the mesh is
refined at the expected first order of accuracy.
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2.3.3 Example 3

If u(x, y) = (−y, x), i.e., a rotation around the origin, the solution to (2.1.3) in two space
dimensions is given by

B(x, t) = R(t)B0(R(−t)x),

where R(t) is a rotation matrix for a rotation with angle t. This means that B(x, 2π) =
B0(x), which makes comparisons between approximations and the exact solution easy.
We have taken the initial data from [77],

B0(x, y) = 4

( −y
x− 1

2

)
e−20((x−1/2)2+y2). (2.3.2)

Note that div (B0) = 0. We have used the computational domain (x, y) ∈ Ω = [−1, 1]2 and
Neumann boundary conditions, and compared the SUS and the TF schemes. In table 2.3.2
we show the relative L2 errors produced by the schemes, for Δx = Δy = 2−5, . . . , 2−10,
where both schemes used the CFL-number 1/2. The relative error is defined as

e = 100×
∥∥BΔt(·, 2π)−BΔt(·, 0)

∥∥
L2(Ω)

‖BΔt(·, 0)‖L2(Ω)

.

Although we observed that the two schemes produced solutions which were different in

Δx = 2−5 Δx = 2−6 Δx = 2−7 Δx = 2−8 Δx = 2−9 Δx = 2−10

SUS 79 61 42 26 15 8
TF 67 52 36 23 13 7

Table 2.3.2: Relative errors for the SUS and TF schemes with initial data given by (2.3.2).

some details, both schemes have comparable L2 errors. Also the numerical convergence
rate of both schemes is slightly less than one. Therefore, for a scheme to work reasonably
well, it does not seem crucial that it preserves some discrete divergence.

2.3.4 Example 4

The analysis presented in this paper can easily be extended to a time dependent velocity
filed u = u(x, t). Therefore we present an example with a time dependent velocity
field. This velocity field originates from a simulation of the well-known test case for
magnetohydrodynamics called the “Orszag-Tang vortex”, and is given as a table1 un

i,j.
We have used the computational domain (x, y) ∈ [0, 2π]2 with periodic boundary

conditions, and t ∈ [0, π]. The initial magnetic field is

B0(x, y) =

(− sin(y)
sin(2x)

)
.

In this example, Δt is not constant, and the time steps are given in the table. Although
u is initially smooth, it develops shocks after some time steps. The test used Δx =
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Figure 2.3.2: The approximations at t = π, left column: SUS, right column: TF.
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Δy = 2π/300. Figure 2.3.2 shows the approximations generated by the SUS and the TF
schemes for this example. The solution is complicated, with many features, but we see
that the schemes produce similar results. In Figure 2.3.3 we illustrate this by plotting the
approximation to B1 along the lines y = (122/300)× 2π and y = (293/300)× 2π. From
this figure, we see that the TF scheme resolve discontinuities better, but since it is less
stable, some of the “spikes” are numerical artifacts and reflect the lack of TV D property
in the TF scheme. We should emphasize that even though our analysis requires that the
velocity field u is sufficiently smooth, we have found that the SUS scheme works very well
even for non-smooth velocity fields.

Figure 2.3.3: Left: B1(x, 2.54, π), right: B1(x, 6.13, π).

2.4 Conclusions

Based on these numerical experiments, we conclude that the stable upwind scheme (2.2.8)
proposed in this paper is robust, efficient and reasonably accurate compared with other
first order schemes.

Regarding divergence preservation, the divergence errors generated by the scheme are
small and converge to zero with Δt. Furthermore, two different discrete forms of the
divergence are of the same magnitude. On the other hand, even though the scheme of
Torrilhon and Fey (2.1.20) preserves one form of discrete divergence, it does not preserve
other discrete divergences. Therefore, we think that if a numerical scheme for (2.1.1) is
stable, exact divergence preservation is not necessary to obtain good results.

We also remark that it is straightforward to extend our result to three space dimen-
sions, i.e., B = (B1, B2, B3)(x, y, z), by upwinding the Godunov-Powell source term. We
plan to extend the ideas presented here both to unstructured meshes and higher orders
in a forthcoming paper.

1This table can be downloaded from http://folk.uio.no/~franzf/OT300x300.tar.gz
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Abstract

We design finite volume schemes for the equations of ideal magnetohydrodynam-
ics (MHD) and based on splitting these equations into a fluid part and a magnetic
induction part. The fluid part leads to an extended Euler system with magnetic
forces as source terms. This set of equations are approximated by suitable two and
three wave HLL solvers. The magnetic part is modeled by the magnetic induction
equations which are approximated using stable upwind schemes devised in a re-
cent paper [31]. These two sets of schemes can be combined either component by
component, or by using an operator splitting procedure to obtain a finite volume
scheme for the MHD equations. The resulting schemes are simple to design and
implement. These schemes are compared with existing HLL type and Roe type
schemes for MHD equations in a series of numerical experiments. These tests reveal
that the proposed schemes are robust and have a greater numerical resolution than
HLL type solvers, particularly in several space dimensions. In fact, the numerical
resolution is comparable to that of the Roe scheme on most test problems with
the computational cost being at the level of a HLL type solver. Furthermore, the
schemes are remarkably stable even at very fine mesh resolutions and handle the
divergence constraint efficiently with low divergence errors.

3.1 Introduction

Many interesting problems in astrophysics, solar physics, electrical engineering and aerospace
engineering are based on modeling the evolution of plasmas. Most models involve the

73
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equations of magneto-hydro dynamics (MHD) which read

ρt + div(ρu) = 0,

(ρu)t + div

(
ρu⊗ u +

(
p+

1

2
B2

)
I −B⊗B

)
= 0,

Et + div

((
E + p+

1

2
B2

)
u− (u ·B)B

)
= 0,

Bt + div (u⊗B−B⊗ u) = 0,

divB = 0,

(3.1.1)

where ρ denotes the density, u = {u1, u2, u3} and B = {B1, B2, B3} denote the velocity
and the magnetic fields respectively, p the pressure and E the total energy of the plasma.
The variables are related by the following ideal gas equation of state

E =
p

γ − 1
+

1

2
ρ|u|2 +

1

2
|B|2 , (3.1.2)

with γ being the gas constant. The above system is a system of conservation laws (with
a constraint) in three dimensions on the following form

Vt + f(V )x + g(V )y + h(V )z = 0,

divB = 0,

with V = (ρ, ρu1, ρu2, ρu3, E,B1, B2, B3) being the vector of conserved variables and
f , g and h are the directional fluxes in the x, y and z directions respectively. The
constraint that the divergence field should be solenoidal is a consequence of the fact that
magnetic monopoles have not been observed in nature. A complete derivation of the
MHD equations along with a description of the hypotheses on its validity is presented in
[66]. We summarize the basic steps in the derivation below,

3.1.1 Derivation of the model:

We non-dimensionalize all the quantities following [66] and choose units suitably so that
the permeability of the medium is set to 1. Then the equations (3.1.1) are derived from
the following set of physical laws,

Conservation of mass:

The conservation of mass takes the following differential form (mass conservation for
plasmas being the same as that of fluids),

ρt + div(ρu) = 0. (3.1.3)
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Faraday’s law:

By using Maxwell’s equations, the Stokes theorem and the fact that the electric field in a
co-moving frame is zero, Faraday’s law for the magnetic flux across a surface S bounded
by a curve δS is given by

− d

dt

∫
S

B · dS =

∫
δS

E · dl
becomes

Bt + div(u⊗B−B⊗ u) = −u(divB). (3.1.4)

The right hand side is proportional to divB and is often omitted due to the divergence
constraint. Equation (3.1.4) is referred to as the magnetic induction equation and can be
considered as the special form of Maxwell equations governing the evolution of magnetic
fields due to the action of a given velocity field u.

Conservation of momentum:

In differential form, the conservation of momentum for a plasma is given by,

(ρu)t + div(ρu⊗ u + pI) = J×B, (3.1.5)

where J denotes the current density and I the 3× 3 identity matrix. The above equation
results from the fact that the momentum of the plasma changes due to the pressure and
action of the Lorentz force J×B exerted by the magnetic field. Under the assumptions
of ideal MHD, Ampere’s law expresses the current density as

J = curl(B). (3.1.6)

Use of standard vector identities results in the following “semi-conservative” form,

(ρu)t + div

(
ρu⊗ u + (p+

1

2
B2)I −B⊗B

)
= −B(divB). (3.1.7)

Due to the divergence constraint, one usually neglects the right hand side of the above
equation to get the momentum conservation in (3.1.1).

Conservation of energy:

Defining the hydrodynamic energy of an ideal gas as

Ehd =
p

γ − 1
+

1

2
ρu2,

and using the conservation of this energy results in

Ehd
t + div((Ehd + p)u) = J · (B× u). (3.1.8)

The right hand side represents the change in energy due to the magnetic field. Using
standard vector identities and Ampere’s law, we obtain

J · (B× u) = (B · ∂B
∂t
− (u ·B)(divB)− div(B ·B)u− (u ·B)B).
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Defining the total energy of the plasma as E = Ehd + 1
2
B2, energy conservation takes the

form

Et + div((E + p+
1

2
B2)u− (u ·B)B) = −(u ·B)(divB). (3.1.9)

Using the divergence constraint results in the energy equation in (3.1.1). Combining all
the above we get

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u + (p+
1

2
|B|2)I −B⊗B) = −c1B(divB),

Et + div((E + p+
1

2
|B|2)u− (u ·B)B) = −c1(u ·B)(divB),

Bt + div(u⊗B−B⊗ u) = −c2u(divB),

(3.1.10)

with constants c1 = c2 = 1. Note that this form of the equations is symmetrizable by the
results of [35]. An explicit inclusion of the divergence constraint means taking c1 = c2 = 0,
and this is the standard form of the MHD equations (3.1.1).

We remark that MHD equations can be thought of as a combination of fluid dynamics
coupled with magnetic fields. In fact, the “physical” form of these equations are a com-
bination of the fluid equations (3.1.3), (3.1.5) and (3.1.8) (with magnetic forces acting on
them) and the magnetic induction equation (3.1.4). Collecting these equations, we can
obtain the “physical” form

ρt + div(ρu) = 0,

(ρu)t + div(ρu× u + pI) = J×B,

Ehd
t + div((Ehd + p)u) = J · (B× u),

Bt + div(u⊗B−B⊗ u) = −u(divB).

(3.1.11)

This system is non-conservative. We will use this “physical” splitting of the equation into
the fluid part and a magnetic part in order to design efficient finite volume schemes for
(3.1.1).

As remarked earlier, the MHD equations are a system of conservation laws in three
dimensions. A calculation of eigenvalues of the Jacobians (see [68] for details) shows
that the equations are hyperbolic but not strictly hyperbolic. In particular, the fast,
slow and Alfven waves coincide at the triple point, and this can lead to considerable
difficulties in the analysis of the model. Furthermore, a naive scaling of eigenvectors leads
to singularities, and the eigenvectors must be properly scaled. Well-defined eigensystems
for MHD equations have been proposed in [68] and [12]. Nonlinearities in the equations
result in formation of discontinuities such as shock waves and contact discontinuities. The
complex structure of the equations leads to intermediate shocks and compound shocks
which are difficult to analyze and simulate. A detailed description of the analytical and
numerical difficulties concerning MHD equations can be found in [70].

In the absence of analytical results, the main approach in dealing with these equations
has to been to devise efficient numerical schemes to approximate their solutions. For a
long time finite volume methods have been the preferred means to solve conservation laws
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numerically. These methods are based on approximating the integral form of the conser-
vation law inside each cell or control volume. Numerical fluxes at each cell interface are
based on either exact or approximate Riemann solvers. Higher order accuracy in space
is obtained by using non-oscillatory ENO/WENO type piecewise polynomial functions.
Time integration is performed by using high order stability preserving Runge-Kutta meth-
ods. A detailed account of finite volume schemes for conservation laws can be found in
[50].

The crucial ingredient in the design and performance of any finite volume method
is a suitable choice of the numerical flux function at cell interfaces. Usually, numerical
fluxes are built either from exact or approximate solutions to Riemann problems at each
cell interface. Exact solutions (even to Riemann problems) for the MHD equations are
very complicated (and largely unavailable), and are therefore seldom used in numerical
methods. Hence, approximate Riemann solvers for the MHD equations are widely used.
These solvers are either of the Roe (linearized) or the HLL (non-linear) types. Roe solvers
based on either a simple average of the Jacobians across each interface or the Roe average,
see [67], can be used as approximate Riemann solvers. A Roe-average for the ideal MHD
equations was developed in [24]. A special form of the Roe solver based on entropy
variables, proposed and tested in [12], will be used in some numerical experiments in this
paper.

The main problem with Roe solvers is that they can result in negative pressures and
densities. Another issue is the high computational cost of these solvers. As a consequence,
an attractive alternative has been to use HLL solvers, see [50]. These non-linear solvers are
based on approximating the wave structure of the full Riemann problem by a simplified
wave structure. The one dimensional form of the MHD equations result in seven waves
for each Riemann problem. HLL solvers approximate the solution by fewer waves. The
two-wave solvers based on wave speeds suggested in [28] are the simplest to implement.
They are provably positive (in the sense that the pressure and density in the solution
are positive) and entropy stable, but are too dissipative in most test problems. Three-
wave HLL solvers based on heuristic considerations have been developed in [53] and [36].
The solver of [36] is also provably positive. A positivity preserving five wave solver for
MHD was developed in [59]. Recently, three-, five- and seven-wave approximate Riemann
solvers have been designed in [20]. These solvers are proved to be positive. A thorough
comparison of different HLL solvers has been reported in [58, 73].

There is no clear choice for an ideal HLL solver. Some of the solvers are too dissipative
but guarantee positive pressures and densities. Some are complicated to design and
implement and can be costly in terms of computational resources, particularly in several
space dimensions. The computational results indicate that the three-wave solver of [53]
appears to be the least dissipative among HLL three-wave solvers, whereas the solvers of
[36] and [20] are provably positivity preserving. However, none of the HLL three-wave
solvers have the resolution of the Roe solver. Given the above factors, there is considerable
scope for designing a simple HLL type two or three wave solver for the MHD equations
which are less dissipative and hence, have more resolution than the available HLL two or
three wave solvers and a resolution comparable to the Roe solver. Our main aim in this
paper is to design such a HLL type solver. We would also like to point out that recent
papers [58, 73] have extensively compared different HLL solvers and concluded that the
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five wave solver designed in [59] is very robust and has a resolution comparable to the
Roe solver.

A key issue in the design of numerical schemes for the MHD equations in several space
dimensions is how to handle the divergence constraint. A standard numerical scheme is
not going to satisfy a discrete version of the divergence constraint exactly, and even for
smooth solutions will give divergence errors controlled by the truncation error. When
the solution contains shocks, the discretization can lead to large divergence errors which
may result in negative densities and pressures. There has been wide interest in designing
numerical schemes which enforce, or control the divergence constraint. Popular methods
include using projection onto divergence free fields, see [22], this involves solving an elliptic
equation at each time step. Another popular choice is to stagger the grids or design
updates which preserve some discrete divergence. An incomplete list of references dealing
with this approach includes [30, 26, 11, 70, 71, 77] and references therein.

Another simple method to deal with the divergence constraint was proposed by Powell
in [65]. This involves using the symmetrizable version of MHD equations (3.1.10) derived
earlier this section with c1 = c2 = 1. Taking divergence of the magnetic field in (3.1.10)
results in

(divB)t + div(u(divB)) = 0. (3.1.12)

Hence, any non-zero divergence introduced by a numerical discretization should be swept
away from the domain by the velocity field by this approach, provided that the boundaries
are absorbing. A detailed comparison of different methods for divergence cleaning is
reported in [80].

The HLL or Roe solvers mentioned earlier, are not designed to handle the divergence
constraint. In fact, most of them are based on a locally one dimensional form of the MHD
equations which presupposes that the normal component of the magnetic field across an
interface is constant. Although this assumption is valid in one dimension, one has to use
some ad hoc procedure to extend the HLL solvers to multiple space dimensions. It would
be desirable to design a solver that also handles the divergence constraint and can be
extended to several space dimensions in a natural way. Another aim of this paper is to
design a solver that addresses the divergence constraint.

The approximate Riemann solvers that we design in this paper are based on the
“physical form” (3.1.11) of the MHD equations. This form suggests a natural splitting of
the equations into a fluid and a magnetic part. The fluid part is the Euler equations of
hydrodynamics along with Lorentz forces exerted on the fluid due to the magnetic field
(3.1.5). Hence, we can use approximate Riemann solvers of the HLL type for the Euler
equations, these are well known in the literature, see [76] for details. We will use both a
standard HLL two-wave solver as well as a HLLC three-wave solver for the Euler equation
part of (3.1.11). It is not enough to treat the hydrodynamic part only. The right hand
side of the fluid equations in (3.1.11) involves magnetic forcing terms and these terms
have to discretized suitably. Since the forcing terms involve derivatives, we must upwind
these derivatives. Furthermore, we need to enforce conservation of the variables. In order
to do so, we will work with the first three equations of (3.1.1) (the conservative form) and
treat the magnetic field as a coefficient in this extended Euler system and devise suitable
HLL two wave and three wave solvers for this extended system.
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The magnetic field is evolved by the magnetic induction equation (3.1.4). This is a
linear system and has been studied extensively, see [16, 77] and references therein. Despite
being a linear system, (3.1.4) is not easy to deal with numerically. In a recent paper [31],
we pointed out some of the difficulties involved in numerically approximating (3.1.4). We
also developed a class of upwind schemes based on the form (3.1.4) without explicitly
enforcing the divergence constraint and showed that the scheme converges and that the
discrete divergence is bounded in L2. In this paper we use the upwind schemes from [31]
to approximate the magnetic part of (3.1.11).

We can also use the simple Lax-Friedrichs scheme to approximate (3.1.4). This scheme
is very dissipative, but preserves a discrete version of the divergence constraint. Another
class of schemes that can be used are the divergence preserving upwind schemes of [77].
When we implemented this scheme, we found that the resulting scheme for (3.1.1) was
oscillatory.

Thus we emphasize that the main idea behind the schemes presented in this paper is to
“split” the MHD equations into a fluid part and a magnetic part, and to use tailor made
schemes for each part to devise a scheme for the full system. The choice of schemes for
both the Euler part as well as the magnetic part, and the method to patch them together
have to made judiciously in order to obtain a robust scheme for the MHD equations.
The numerical resolution of these schemes is higher (in some cases, considerably higher)
than that of HLL solvers and is comparable to the Roe solver. Furthermore, the splitting
based schemes turn out to be remarkably stable at fine mesh resolutions. It is well known
that computing at fine mesh resolutions results in lower numerical difffusions leading to
instabilities. These instabilities can cause the pressure and density to be negative and
the scheme crashes consequently. Most standard solvers for the MHD equations exhibit
this behaviour. On the other hand, the splitting based schemes are quite stable and
do not crash even for fine mesh resolutions. However, these schemes might still exhibit
instabilites like the carbuncle phenomena which effect even very robust finite volume
solvers for the Euler equations as well as MHD equations. Based on their stability as
well as good resolution, simplicity of design and low computational cost, we believe that
these schemes can be used as an alternative to both Roe solvers as well as HLL solvers in
practical codes and do not require any extra divergence cleaning.

The rest of the paper is organized as follows:-In Section 3.2, we present both the
extended Euler solver as well as the upwind schemes for the induction equation and
present the approximate Riemann solver for the MHD equations. These schemes are
compared with existing HLL and Roe solvers in a set of numerical experiments in both
one and two space dimensions in Section 3.3 and we summarize the contents of this paper
in Section 3.4.

3.2 Numerical schemes.

In this section, we design finite volume schemes based on splitting the ideal MHD equa-
tions into its fluid part and magnetic part. Consider the ideal MHD equations (3.1.1) in
the domain D = [XL, XR]× [YL, YR]× [ZL, ZR]. For simplicity, we consider a uniform grid
in space with mesh points given by xi = iΔx, yj = jΔy and zk = kΔz where Δx, Δy
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and Δz are the mesh sizes in the x, y and z directions respectively. Let the Δtn denote
the time step at the n-th time level tn =

∑
m<n Δtm, be determined by a suitable CFL

condition, and let the cell average at tn be denoted by Un
i,j,k.

With this notation, a general first order finite volume scheme reads

Un+1
i,j,k = V (Un

i−1,j,k, U
n
i,j−1,k, U

n
i,j,k−1, U

n
i,j,k, U

n
i+1,j,k, U

n
i,j+1,k, U

n
i,j,k+1),

= Un
i,j,k −

Δtn

Δx

(
F (Un

i,j,k, U
n
i+1,j,k)− F (Un

i−1,j,k, U
n
i,j,k)

)
− Δtn

Δy

(
G(Un

i,j,k, U
n
i,j+1,k)−G(Un

i,j−1,k, U
n
i,j,k)

)
− Δtn

Δz

(
H(Un

i,j,k, U
n
i,j,k+1)−H(Un

i,j,k−1, U
n
i,j,k)

)
,

(3.2.1)

where F , G and H are numerical fluxes consistent with the directional fluxes f , g and h
respectively. The numerical fluxes will be determined by the splitting procedure outlined
in the introduction.

3.2.1 Schemes for the extended Euler system:

As mentioned before, we use the natural splitting of the MHD equations and divide the
equations into a hydrodynamic and a magnetic part. We start with approximate Riemann
solvers for the hydrodynamic part. This amounts to considering the mass, momentum
and energy equations in (3.1.1), regarding the magnetic field as a known function that is
constant in t. This results in the following extended Euler equations

ρt + div(ρu) = 0,

(ρu)t + div

(
ρu⊗ u +

(
p+

1

2
B2

)
I −B⊗B

)
= 0,

Et + div

((
E + p+

1

2
B2

)
u− (u ·B)B

)
= 0,

(3.2.2)

where the total energy E is given by the equation of state (3.1.2), and the magnetic field
B is playing the role of a coefficient. This is a a hyperbolic conservation law where the
fluxes depend on the location through B,

U e
t + f e(U e,B)x + ge(U e,B)y + he(U e,B)z = 0, (3.2.3)

with U e = {ρ, ρu1, ρu2, ρu3, E} being the conserved fluid variables and f e, ge, he are the di-
rectional fluxes in (3.2.2). Defining the vector of primitive variables V e = [ρ, u1, u2, u3, p],
we get the following quasilinear form the equation (3.2.2)

V e
t + A1,e(V e,B)V e

x + A2,e(V e,B)V e
y + A3,e(V e,B)V e

z = Se(V,B, DB),
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with DB denoting the matrix of partial derivatives of B. Consider any unit vector n =
(n1, n2, n3) and take un := u · n, the directional Jacobian is given by

A1,en1 + A2,en2 + A3,en3 = Ae · n =

⎛
⎜⎜⎜⎜⎝
un ρn1 ρn2 ρn3 0
0 un 0 0 1

ρ
n1

0 0 un 0 1
ρ
n2

0 0 0 un
1
ρ
n3

0 a1 a2 a3 un

⎞
⎟⎟⎟⎟⎠ ,

where

a1 = γn1p+ (γ − 1)
(
n1(B2 − (B1)2)−B1(n2B2 + n3B3)

)
,

a2 = γn2p+ (γ − 1)
(
n2(B2 − (B2)2)−B2(n1B1 + n3B3)

)
,

a3 = γn3p+ (γ − 1)
(
n3(B2 − (B3)2)−B3(n1B1 + n2B2)

)
.

, The eigenvalues of the directional Jacobian are

λ1,5 = un ∓ 1√
ρ

√
a · n, and λ2,3,4 = un.

The two extreme eigenvalues λ1 and λ5 correspond to acoustic waves with the sound
speed being modified due to the presence of the magnetic field. The middle eigenvalues
correspond to contact discontinuities and shear waves. If B = 0, the system reduces to
the Euler equations and the matrix is non strictly hyperbolic. For B �= 0, the above
system is only weakly hyperbolic.

For notational simplicity, denote the extended sound speed in the x-direction as

a1,e =
1√
ρ

√
γp+ (γ − 1)((B2)2 + (B3)2).

Then the eigenvalues in the x-direction are given by

λ1,5 = u1 ∓ a1,e and λ2,3,4 = u1. (3.2.4)

Our aim is to design approximate Riemann solvers of the HLL type for this extended
system (3.2.2). We start with a simple two wave solver,

HLL solver

We consider the extended Euler system (3.2.2) in the x-direction. The main feature
of HLL solvers, see [50], is to approximate the true Riemann solution with a wave fan
containing fewer waves, all of which are moving discontinuities. Thus for fixed time t, the
approximate Riemann solution of a HLL solver is a piecewise constant function of x.

We start by defining the HLL solver which approximate the Riemann solution of
(3.2.2) (in general containing 5 waves) with a wave fan containing only two waves. Let
U e

L,R, BL,R denote the conserved fluid variables and magnetic field to the left and right of
an interface. Then define the left and right fluxes by,

f e
L = f e

(
U e

L,
(BL + BR)

2

)
f e

R = f e

(
U e

R,
(BL + BR)

2

)
. (3.2.5)
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Note that we freeze the magnetic field locally in time and assume it to be constant across
the Riemann fan. This essentially amounts to staggering the coefficient in (3.2.2). This
strategy for dealing with coefficients in conservation laws was also used in [45]. Let se

L

and se
R denote the left and right wave speeds and U e

∗ , f
e
∗ the middle state and middle flux

respectively. Conservation of U e implies that

f e
R − f e

∗ = se
R(U e

R − U e
∗ ), f e

∗ − f e
L = se

L(U e
∗ − U e

L)

Solving the above equations results in

U e
∗ =

f e
R − f e

L − se
RU

e
R + se

LU
e
L

se
L − se

R

, f e
∗ =

se
Rf

e
L − se

Lf
e
R + se

Ls
e
R(U e

R − U e
L)

se
R − se

L

. (3.2.6)

Once the wave speed are defined, the numerical flux across the interface can be written

F e,hll = F e

(
U e

L, U
e
R,

(BL + BR)

2

)
=

⎧⎪⎨
⎪⎩
f e

L if se
L > 0

f e
∗ if se

L < 0 < se
R

f e
R if se

R < 0

. (3.2.7)

The wave speeds se
L and se

R are defined as in [28], let Â1,e denote the arithmetic-average
of the Jacobians A1,e

L and A1,e
R , then the wave speeds are given by

se
L = min

{
u1

L − a1,e
L , û1 − ˆa1,e

}
se

R = max
{
u1

R + a1,e
R , û1 + ˆa1,e

} (3.2.8)

where û1 and ˆa1,e are the normal velocity and the extended sound speed of the averaged
Jacobian respectively. This solver is design to approximate only the outermost waves
of the Riemann solutionand will not approximate contact discontinuities or shear waves
very well. The choice of the wave speeds by comparing with an averaged Jacobian is
an attempt to replicate the strategy of [28] of using Roe-averages to increase resolution
at isolated shocks. We were unable to obtain a Roe-matrix for the extended Euler sys-
tem. Furthermore, the above choice of wave speeds doesn’t imply that the scheme will
resolve isolated fast magnetosonic shocks exactly due to the splitting but will hopefully
approximate such discontinuities with good accuracy.

HLLC solver

HLL three-wave solvers model the action of the two outer waves (as the HLL solver) as
well as the contact/shear wave. Hence we must define three speeds se

L ≤ se
M ≤ se

R. The
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approximate three wave solver and the corresponding numerical flux have the form

U e,hllc =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
U e

L if se
L > 0,

U e,∗
L if se

L < 0 < se
M ,

U e,∗
R if se

M < 0 < se
R,

U e
R if se

R < 0,

F e,hllc = F e,hllc

(
U e

L, U
e
R,

(BL + BR)

2

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f e

L if se
L > 0,

f e,∗
L if se

L < 0 < se
M ,

f e,∗
R if se

M < 0 < se
R,

f e
R if se

R < 0,

(3.2.9)

Local conservation implies that

se
LU

e,∗
L − f e,∗

L = se
LU

e
L − f e

L, se
MU

e,∗
R − f e,∗

R = se
MU

e,∗
L − f e,∗

L

and se
RU

e
R − f e

R = se
RU

e,∗
R − f e,∗

R .
(3.2.10)

Solving the above equations, we obtain the following expressions for f e,∗
L and f e,∗

R

f e,∗
L = f e

∗ −
se

L(se
R − se

M)

se
R − se

L

ΔU e,∗, f e,∗
R = f e

∗ +
se

R(se
M − se

L)

se
R − se

L

ΔU e,∗, (3.2.11)

where ΔU e,∗ = U e,∗
R − U e,∗

L and f e
∗ is the middle flux of the HLL solver (3.2.6).

We follow [53] and determine the two middle states by the following simple observation

ΔU e,∗ = α(U e
R − U e

L),

where α is a constant to be determined, thus the jump across the middle wave is propor-
tional to the difference between the left and right states. The case of α = 0 corresponds
gives the HLL solver. When α = 1, the solver gives an isolated single discontinuity.
We choose se

L and se
R as the Einfeldt speeds given in (3.2.8). Since the middle wave is

supposed to model the contact discontinuity, se
M is chosen as the corresponding velocity

of the averaged Jacobian Â1,e i.e., se
M = û1. Let c∗ = |a1,e

L − se
M | and

s =
‖Δf e − se

MΔU e‖
‖ΔU e‖ ,

where ΔU e = U e
R−U e

L, Δf e = f e
R− f e

L and ‖C‖ =
∑

k

∣∣Ck
∣∣. The factor α is then defined

by

α = max

{
0, 1− s

c∗

}
This choice of α is motivated by the following argument. Consider the quantity

‖Δf e − se
MΔU e‖ .

At an isolated contact discontinuity, the above is equal to zero. Thus α = 1 should
represent this situation adequately. Similarly, if an isolated shock is present, then α
should be equal to zero and

‖Δf e − se
MΔU e‖ = c∗ ‖ΔU e‖ .
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This implies that the above linear interpolation gives the correct values of α in this regime.
It is straightforward to extend the HLL and the HLLC solvers to three dimensions.

Let F e,hllc, Ge,hllc and He,hllc be HLLC fluxes consistent with f e, ge and he and defined by
(3.2.11) with the obvious modifications in the y and z directions. Let the discrete time
derivative for any function b be denoted

D+
t b

n =
bn+1 − bn

Δt
,

and the average of two states across an interface as

bl+1/2 =
bl + bl+1

2
.

Similarly we define the discrete spatial derivatives as

D±x bi,j,k = ±bi±1,j,k − bi,j,k
Δx

,

with analogous definitions of D±y and D±z . Then the HLLC scheme in three dimensions
reads

D+
t U

e,n
i,j,k = −D−x F e,hllc

(
U e,n

i,j,k, U
e,n
i+1,j,k,Bi+1/2,j,k

)
−D−y G

e,hllc
(
U e,n

i,j,k, U
e,n
i,j+1,k,Bi,j+1/2,k

)
−D−z H

e,hllc
(
U e,n

i,j,k, U
e,n
i,j,k+1,Bi,j,k+1/2

) (3.2.12)

The HLL solver is extended to three space dimensions analogously.
As a shorthand notation we write

U e,n+1
i,j,k = V e,hllc (U e,n

... ,B
n
...,Δt

n) ,

to indicate a single application of the HLLC scheme with a timestep Δtn.

Remark. The usual approach in designing a HLLC solver for Euler equations (see [76])
uses the fact that the pressure and normal velocities are constant across the middle wave
and that the tangential velocities only jump across the middle wave. Plugging these as-
sumptions into (3.2.10) results in a slightly different version of the HLLC solver for the
extended Euler system (3.2.2), with formulas similar to those obtained in [36] for the
MHD equations. We have found that the numerical results with this solver are slightly
more dissipative than those obtained with the solver described here.

3.2.2 Schemes for the induction equation

The next step in this splitting procedure is to devise an efficient scheme for the induction
equations (3.1.4). Rewriting the induction equation using the divergence constraint we
obtain,

∂tB + curl(B× u) = 0, (3.2.13)

and this implies
∂t (divB) = 0. (3.2.14)



3.2. NUMERICAL SCHEMES. 85

Thus if the divergence is initially zero, it remains so and satisfies the divergence constraint
in (3.1.1). The above equation is a linear hyperbolic system but not strictly hyperbolic.
In general (see [31]), it is not possible to symmetrize (3.2.13) without explicitly using
the divergence constraint. One way to symmetric these equations is to write them in the
Godunov-Powell form (3.1.4) mentioned in the introduction. Following [31] and using
standard vector identities, we can obtain the following symmetrized form of the system
(3.2.13),

∂tB + u1∂x (B) + u2∂y (B) + u3∂z (B) = (B · ∇)u−B(divu). (3.2.15)

For a given smooth velocity field u, it is easy to prove that weak solutions to the above
equation exist, are unique and satisfy an energy estimate, see [31] for the relevant ref-
erences. It seems essential to rewrite (3.2.13) in the symmetric form (3.2.15) in order
to obtain well-posedness. Furthermore, all the above forms are equivalent if the initial
divergence is zero and the solutions are sufficiently smooth.

Our aim in this section is to present efficient numerical schemes for the induction
equation. The schemes should be stable in a suitable sense and not introduce too much
divergence errors. Furthermore, it is obviously important that they should work effec-
tively with the HLL Euler solvers of the last section to yield a robust scheme for the
MHD equations. To simplify the presentation, we consider the induction equation in two
dimensions,

∂tB
1 + ∂y

(
u1B2 − u2B1

)
= 0,

∂tB
2 − ∂x

(
u1B2 − u2B1

)
= 0.

(3.2.16)

Consider a given velocity field u and a uniform discretization in both the x and y directions
with mesh sizes Δx and Δy. We start with the following notation, for a continuous
function a(x, y), we set

ai,j = a (xi, yj) , i and j ∈ Z/2,

and define and the central differences

D0
x,y =

1

2

(
D+

x,y +D−x,y

)
.

Furthermore, set [a]+ = max {a, 0} and [a]− = min {a, 0}.

The Lax-Friedrichs scheme

The simplest scheme for the hyperbolic system (3.2.16) is the Lax-Friedrichs scheme. Set
φn

i,j = B1,n
i,j u

2,n
i,j −B2,n

i,j u
1,n
i,j and define this scheme as

D+
t B

1,n
i,j =

1

Δt

[(
Δx

2

)2

D+
x D

−
x

(
B1,n

i,j

)
+

(
Δy

2

)2

D+
y D

−
y

(
B1,n

i,j

)]

+D0
y

(
φn

i,j

)
,

D+
t B

2,n
i,j =

1

Δt

[(
Δx

2

)2

D+
x D

−
x

(
B2,n

i,j

)
+

(
Δy

2

)2

D+
y D

−
y

(
B2,n

i,j

)]

−D0
x

(
φn

i,j

)
.

(3.2.17)



86 CHAPTER 3. SPLITTING SCHEMES FOR MHD

Note that this scheme is based on using a second central difference for the flux coupled
with a artificial diffusion term. In general, this scheme is too dissipative for practical
applications, but if the central discrete divergence is constant, the scheme preserves this
central divergence. To be concrete, let the central discrete divergence be defined as

dn
i,j = div0(Bn

i,j) = D0
x(B

1,n
i,j ) +D0

y(B
2,n
i,j ). (3.2.18)

Under the Lax-Friedrichs scheme, the evolution of dn
i,j reads

dn+1
i,j = dn

i,j +

(
Δx

2

)2

D+
x D

−
x

(
dn

i,j

)
+

(
Δy

2

)2

D+
y D

−
y

(
dn

i,j

)
.

Thus if dn
i,j = 0, the above identity implies that dn+1

i,j ≡ 0 and the scheme preserves
divergence free fields.

As shorthand notation for a single application of the Lax-Friedrichs scheme we write
Bn+1

i,j = Wm,LxF(un
...,B

n
...,Δt

n).

Divergence preserving upwind schemes

As mentioned in the introduction, there exists an extensive literature devoted to devising
suitable upwind schemes which preserve some form of discrete divergence in (3.2.16). We
present the divergence preserving scheme of Torhillon and Fey [77] as an example. This
scheme is given by

D+
t B

1,n
i,j =

1

2

(
D−y

(
ϕ1

i,j + ϕ1
i−1,j + ϕ2

i,j + ϕ2
i+1,j

)
+D+

y

(
ϕ3

i,j + ϕ3
i+1,j + ϕ4

i,j + ϕ4
i−1,j

))
,

D+
t B

2,n
i,j = −1

2

(
D−x

(
ϕ1

i,j + ϕ1
i,j−1 + ϕ4

i,j + ϕ4
i,j+1

)
+D+

x

(
ϕ2

i,j + ϕ2
i,j−1 + ϕ3

i,j + ϕ3
i,j+1

))
,

(3.2.19)

where
ϕk

i,j = ωk
i,j

(
u1

i,jB
2,n
i,j − u2

i,jB
1,n
i,j

)
,

and

ωk
i,j =

[
nk · ui,j

]+∑4
k=1 [nk · ui,j]

+ ,

n1 = (1, 1), n2 = (−1, 1), n3 = (−1,−1) and n4 = (1,−1).

This scheme preserves the following discrete divergence,

div∗(Bi,j) =
1

4

(
D0

x

(
B1

i,j+1 + 2B1
i,j +B1

i,j−1

)
+D0

y

(
B2

i+1,j + 2B2
i,j +B1

i−1,j

))
.

If B is smooth, div∗ differs from div0 by O(Δx2 + Δy2), with a constant depending on
the second derivatives of B. More details on this scheme can be found in [77, 78]. We
write this scheme as Bn+1

i,j = Wm,TF(un
...,B

n
...,Δt

n).
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A stable upwind scheme

It is desirable to have a scheme which is stable in the L2 norm, and which does not create
spurious oscillations. The natural starting point to design a scheme with these properties
is the Godunov-Powell form (3.1.4), and then use the symmetrized form (3.2.15). This
strategy was adopted in [31] and [16]. Introduce the following notation,

Dx {u,B}i,j = D−x
([
ui+1/2,j

]+
Bi,j

)
+D+

x

([
ui−1/2,j

]−
Bi,j

)
(3.2.20)

=
[
uj+1/2,j

]−
D+

x Bi,j +
[
ui−1/2,j

]+
D−x Bi,j +Bi,jD

−
x ui+1/2,j.

An analogous expression defines Dy {u,B}. If u and B are smooth functions, then

∂x (uB) (xi, yj) = Dx {u,B}i,j +O(Δx).

Then the stable upwind from [31] takes the form

D+
t B

1,n
i,j =

(
Dy

{
u1,n, B2,n

}
i,j
−Dy

{
u2,n, B1,n

}
i,j

)
−
[
u1,n

i−1/2,j

]+

D−x
(
B1,n

i,j

)− [
u1,n

i+1/2,j

]−
D+

x

(
B1,n

i,j

)
−
[
u1,n

i,j−1/2

]+

D−y
(
B2,n

i,j

)− [
u1,n

i,j+1/2

]−
D+

y

(
B2,n

i,j

)
,

D+
t B

2,n
i,j = −

(
Dx

{
u1,n, B2,n

}
i,j
−Dx

{
u2,n, B1,n

}
i,j

)
−
[
u2,n

i−1/2,j

]+

D−x
(
B1,n

i,j

)− [
u2,n

i+1/2,j

]−
D+

x

(
B1,n

i,j

)
−
[
u2,n

i,j−1/2

]+

D−y
(
B2,n

i,j

)− [
u2,n

i,j+1/2

]−
D+

y

(
B2,n

i,j

)
.

(3.2.21)

Hence, the above scheme is based on upwinding the Godunov-Powell source term in
(3.1.4). This scheme can also be written down in terms of the non-conservative sym-
metric form (3.2.15). Under the assumptions of sufficiently smooth velocity fields, it is
shown to be stable in L2 and hence converges to a weak solution of the magnetic induction
equation. Furthermore, in the simple case of constant velocity fields, the above scheme
is TVD. Numerical experiments indicating robustness of this scheme were presented in
[31]. As mentioned before, the introduction of the Godunov-Powell source term results
in divergence errors being transported by the velocity field, and one would like control
these errors, but unfortunately we have not been able to prove that the divergence re-
mains bounded in L2. Nevertheless, numerical experiments indicate that the divergence
generated by the scheme remaines small.

Note also that this scheme requires evaluation of the velocities at the cell interfaces.
We do this by averaging, i.e.,

un
i+1/2,j =

1

2

(
un

i+1,j + un
i,j

)
.

We write this scheme as Bn+1
i,j = Wm,SUS(un

...,B
n
...,Δt

n).
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A stable “non-conservative” upwind scheme

Since the SUS-scheme of the last section did not lead to a rigorous divergence bound,
the authors designed a slightly modified version of this scheme in [31] for which it was
possible to establish L2 bounds on the discrete divergence.

This upwind scheme is based on the non-conservative symmetric form (3.2.15) and
hence we refer to it as the stable non-conservative upwind scheme (SUS-N). Define the
auxiliary function σδ as an even smooth function such that

σδ(a) =

{
δ
2
, if |a| ≤ δ/2,

0, if |a| ≥ δ.

Furthermore, we demand that σ is non-increasing in the interval [0, δ] and that |σ′δ(a)| < 2
for all a. Then in two dimensions, the scheme reads

D+
t B

1,n
i,j =− [

u1,n
i,j

]−
D+

x

(
B1,n

i,j

)− [
u1,n

i,j

]+
D−x

(
B1,n

i,j

)
− [

u2,n
i,j

]−
D+

y

(
B1,n

i,j

)− [
u2,n

i,j

]+
D−y

(
B1,n

i,j

)
−D0

y

(
u2,n

i,j

)
B1,n

i,j +D0
y

(
u1,n

i,j

)
B2,n

i,j

+ σδ(u
1,n
i,j )ΔxD+

x D
−
x

(
B1,n

i,j

)
+ σδ(u

2,n
i,j )ΔyD+

y D
−
y

(
B1,n

i,j

)
,

D+
t B

2,n
i,j =− [

u1,n
i,j

]−
D+

x

(
B2,n

i,j

)− [
u1,n

i,j

]+
D−x

(
B2,n

i,j

)
− [

u2,n
i,j

]−
D+

y

(
B2,n

i,j

)− [
u2,n

i,j

]+
D−y

(
B2,n

i,j

)
+D0

x

(
u2,n

i,j

)
B1,n

i,j −D0
x

(
u1,n

i,j

)
B2,n

i,j

+ σδ(u
1,n
i,j )ΔxD+

x D
−
x

(
B2,n

i,j

)
+ σδ(u

2,n
i,j )ΔyD+

y D
−
y

(
B2,n

i,j

)
,

(3.2.22)

Note that we add a small amount of explicit numerical diffusion at the points u = 0 in
addition to upwinding the derivatives. In [31], we were able to show that the approximate
solutions generated by the above scheme (3.2.22) are bounded in L2 and the standard
central discrete divergence (3.2.18) is also bounded in L2 under the assumptions that
velocity field is sufficiently smooth. Furthermore, the approximate solutions are TV D
when the velocity field is constant. We write an application of a single step with this
scheme as Bn+1

i,j = Wm,SUS−N (un
...,B

n
...,Δt

n).

Remark. It is straightforward extend all the above schemes to three space dimensions.
For the sake of clarity we give the full three dimensional form of the SUS scheme. The
extension of the other schemes to three dimensions is analogous.

D+
t B

1,n
i,j,k = −Dy

{
u2,n

i,j,k, B
1,n
i,j,k

}
+Dy

{
u1,n

i,j,k, B
2,n
i,j,k

}
−Dz

{
u3,n

i,j,k, B
1,n
i,j,k

}
+Dz

{
u1,n

i,j,k, B
3,n
i,j,k

}
−
([
u1,n

i− 1
2
,j,k

]+

D−x (B1,n
i,j,k) +

[
u1,n

i+ 1
2
,j,k

]−
D+

x (B1,n
i,j,k)

)

−
([
u1,n

i,j− 1
2
,k

]+

D−y (B2,n
i,j,k) +

[
u1,n

i,j+ 1
2
,k

]−
D+

y (B2,n
i,j,k)

)

−
([
u1,n

i,j,k− 1
2

]+

D−z (B3,n
i,j,k) +

[
u1,n

i,j,k+ 1
2

]−
D+

z (B3,n
i,j,k)

)
,
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D+
t B

2,n
i,j,k = −Dx

{
u1,n

i,j,k, B
2,n
i,j,k

}
+Dx

{
u2,n

i,j,k, B
1,n
i,j,k

}
−Dz

{
u3,n

i,j,k, B
2,n
i,j,k

}
+Dz

{
u2,n

i,j,k, B
3,n
i,j,k

}
−
([
u2,n

i− 1
2
,j,k

]+

D−x (B1,n
i,j,k) +

[
u2,n

i+ 1
2
,j,k

]−
D+

x (B1,n
i,j,k)

)

−
([
u2,n

i,j− 1
2
,k

]+

D−y (B2,n
i,j,k) +

[
u2,n

i,j+ 1
2
,k

]−
D+

y (B2,n
i,j,k)

)

−
([
u2,n

i,j,k− 1
2

]+

D−z (B3,n
i,j,k) +

[
u2,n

i,j,k+ 1
2

]−
D+

z (B3,n
i,j,k)

)
,

D+
t B

3,n
i,j,k = −Dx

{
u1,n

i,j,k, B
3,n
i,j,k

}
+Dx

{
u3,n

i,j,k, B
1,n
i,j,k

}
−Dy

{
u2,n
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3.2.3 Combining the schemes

In order to obtain a scheme for the full MHD equations, we can now piece together the
schemes for the hydrodynamic part with the schemes for the induction equation.

This can be done either simultaneously, resulting in update formula

U e,n+1
i,j,k = V e,type1 (U e,n

... ,B
n
...,Δt

n) ,

Bn+1
i,j,k = Wm,type2 (un

...,B
n
...,Δt

n) ,
(3.2.23)

or sequentially, in which case we have the update formula

U e,n+1
i,j,k = V e,type1 (U e,n

... ,B
n
...,Δt

n) ,

Bn+1
i,j,k = Wm,type2

(
un+1

... ,Bn
...,Δt

n
)
.

(3.2.24)

Here “type1” is either “HLL” or “HLLC”, and “type2” is one of “LxF”, “TF”, “SUS”
or “SUS-N”. Therefore all possible combinations give 16 possible update formulas. Fur-
thermore, we can also reverse the order in the sequential update (3.2.24) by evolving the
magnetic part first, followed by the evolution of the fluid part. We found no difference in
the numerical results by reversing orders in (3.2.24).

Remark. Note that both the above schemes are consistent with the form (3.1.10) of the
MHD equations with constants c1 = 0 and c2 = 1. This form is a special form of the
equations which conserves mass, momentum and energy and has the Godunov-Powell
source term only in the induction equations. This form is also formally equivalent to
(3.1.1) for divergence free data.
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Remark. The splitting schemes based on (3.2.24) are formally first order in both space
and time. It is easy to increase the spatial accuracy by a standard ENO/WENO type non-
oscillatory piecewise polynomial reconstruction. Second order formal accuracy in time
can be accomplished by a Strang splitting, and further increased by using standard strong
stability preserving Runge-Kutta methods.

3.3 Numerical examples

We are going to test the splitting schemes of the last section on a variety of numerical
experiments in both one and two space dimensions. These experiments have been used
in the literature on numerical schemes for MHD equations as benchmark test cases to
compare different methods. The key issues are both accuracy and stability. Since the
schemes of this paper are first order methods, we will compare them with three standard
first order finite volume schemes for MHD equations: 1) a HLL two wave solver (see [28])
for the full MHD equations which we will refer to as the HLL2 solver, 2) a HLL three
wave solver for the MHD equations designed in [53], referred to HLL3 solver and 3) a Roe
solver. The Roe solver that we use is based on adding symmetric diffusion in the entropy
variables, in the spirit of [42] for Navier-Stokes equations and [12] for Euler equations.
This Roe solver has better accuracy as well as stability compared to the standard Roe
solvers used in the literature. More details about this Roe solver will be reported in a
forthcoming paper. In terms of computational cost, the HLL2 solver is as costly as the
HLL/SUS solver, the HLL3 solver has the same cost as the HLLC/SUS solver and the
Roe solver is the most expensive. So, we will see whether the HLL/SUS and HLLC/SUS
solvers do better than the HLL2 and HLL3 solvers respectively and how they compare
with the Roe solver.

Remark. With a small choice of δ, e.g., δ = min {Δx,Δy} /2, we observed no difference
between the SUS and the SUS-N solvers. Therefore we choose to report results using the
SUS scheme only.

We concentrate on one- and two dimensional examples, therefore we let the compu-
tational domain [XL, XR]× [YL, YR] be discretized uniformly in each direction leading to
mesh sizes of Δx and Δy respectively. The time step is determined by the following CFL
condition

max
i,j

{|u1,n
i,j |+ a1,e,n

i,j , |u2,n
i,j |+ a2,e,n

i,j

}
Δtn

min {Δx,Δy} ≤ 1,

where al,e,n
i,j is the extended sound speed in the l-th direction in the cell Ii,j. We run the

numerical experiments at the same CFL number of 0.45.
We use the following notation for errors, let WM be a component of the numerical

solution given by a scheme using a M × M grid, and WR the same component of a
reference solution. We define the relative error as

REp
M(W ) = 100×

∥∥WM −WR
∥∥

p

‖WR‖p

,
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where ‖·‖p is the discrete Lp norm. In this way we refer to e.g., RE1
100(ρ), denoting the

relative difference in L1 between the density calculated on a 100×100 grid and a reference
density.

We have used γ = 5/3 and the simultaneous update formula (3.2.23) in all examples.
We found that using the sequential update (3.2.24) gave very similar results.

3.3.1 Shock tube

We start with a one dimensional shock tube test case. The initial conditions are given by

(
ρ, ρu1, ρu2, ρu3, B

1, B2, B3, p
)

=

{
(1.0,+1.0, 0.0, 0.0, 0.7, 1.0, 0.0, 1.0), if x < 0.5

(0.3,−0.3, 0.0, 0.0, 0.7, 0.2, 0.0, 0.2), otherwise.
(3.3.1)

The computational domain is (x, t) ∈ [0, 1.5]×[0, 0.5] with Neumann boundary conditions.
All schemes use the CFL-number 0.45. The Riemann problem has a complicated solution
containing shocks, rarefactions and contact discontinuities. We test different schemes on
this problem and report the results in Figure 3.3.1 and Table 3.3.1. We compute a ref-
erence solution with the standard HLL2 solver using 8000 mesh points. The results in
Figure 3.3.1 compare the HLLC/LxF, HLL/SUS and HLLC/SUS schemes with 400 mesh
points on this problem. As shown in this figure, all three schemes resolve the compli-
cated solution fairly well with the HLLC/SUS scheme being the least dissipative and the
HLLC/LxF being the most dissipative. Note that HLLC/LxF is much less dissipative
than the standard LxF scheme for a system, since the “Euler part” is approximated with
a HLL solver. Table 3.3.1 gives a more quantitative comparison of the schemes. In this

M HLL HLL3 HLL/SUS HLLC/SUS HLLC/LxF HLLC/TF Roe
100 4.44 3.35 4.49 3.26 3.30 3.22 2.42
200 2.87 1.95 2.65 1.90 2.08 1.86 1.23
400 1.88 1.22 1.73 1.18 1.26 1.15 0.73
800 1.13 0.64 1.02 0.62 0.73 0.61 0.30
1600 0.62 0.28 0.55 0.27 0.37 0.26 0.10

M HLL HLL3 HLL/SUS HLLC/SUS HLLC/LxF HLLC/TF Roe
100 3.32 2.75 3.06 2.81 3.56 2.09 1.89
200 2.04 1.56 1.77 1.55 2.14 1.25 0.85
400 1.29 0.97 1.11 0.95 1.35 0.73 0.50
800 0.75 0.51 0.60 0.48 0.74 0.40 0.18
1600 0.38 0.23 0.29 0.21 0.34 0.16 0.09

Table 3.3.1: Relative errors, RE1
M(ρ) (top) and RE1

M(B2) (bottom), at time t = 0.5 for
the Brio-Wu shock tube for various mesh sizes M .

table, a “–” means that the scheme crashed due to negative density or pressure. We show
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Figure 3.3.1: Results for the Brio-Wu shock tube
at time t = 0.5 with HLL/SUS, HLLC/SUS and
HLLC/LxF with 400 mesh points compared with the
reference solution.
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relative errors in L1 on different meshes for both the density and a component of the mag-
netic field and compare the HLL, HLL3, HLL/SUS, HLLC/SUS, HLLC/LxF, HLLC/TF
and Roe schemes.

From the table, all the splitting based solvers yielded reasonably small errors for
this problem. Surprisingly, the errors due to the HLLC/LxF scheme are not very high
and this implies that the split scheme is much less dissipative than a standard Lax-
Friedrichs scheme would have been. In fact, this scheme has lower errors than the standard
HLL scheme. As expected the HLLC/SUS scheme had lower errors than the HLL/SUS
scheme and these errors were comparable to the HLLC scheme. The HLLC/TF had the
best resolution among the splitting solvers in this case. Unfortunately, the approximate
magnetic field was oscillatory. This is to be expected as in [31], we demonstrated via a
numerical experiment that the TF scheme leads to oscillations around discontinuities and
this might be the reason for the instabilities reported here.

Comparing the splitting schemes with the standard schemes, we see from the above
table that the errors due to the HLL/SUS scheme and the HLLC/SUS scheme are com-
parable to those generated by the HLL scheme and HLL3 scheme respectively. For the
density, the HLLC/SUS scheme has slightly greater resolution than the HLL3 scheme.
Furthermore, none of the HLL two and three wave solvers presented above have the reso-
lution comparable to the Roe solver particularly in the density variable. However, recent
papers [58, 73] have reported that the HLL five wave solver has comparable accuracy as
the Roe solver.

This experiment indicates that the splitting scheme are comparable to the standard
HLL two-three wave schemes in one space dimension. We have performed tests with other
shock tubes and obtain similar qualitative and quantitative results.

One of the key robustness criteria in one dimensional MHD is whether the numerical
schemes yield approximations with positive pressure and density. It is well known that the
Roe solver is not positivity preserving and the references cited in the introduction prove
that the HLL2 solver and other HLL three and five solvers are proved to be positivity
preserving. We are unable to provide a proof that our splitting based solvers are positivity
preserving in one space dimension. However, numerical tests indicated that these solvers
do preserve positive pressue and density in practice. In order to test this assertion, we
present the following numerical experiment.

3.3.2 Super-fast expansion

This test problem has been used in [59] and other references therein as a test of positivity
preservation for one dimensional MHD solvers. The set up is a shock tube with initial
data,(

ρ, ρu1, ρu2, ρu3, B
1, B2, B3, p

)
=

{
(1.0,−3.1, 0, 0, 0, 0.5, 0, 0.45), if x < 0.5

(1.0, 3.1, 0, 0, 0, 0.5, 0, 0.45), otherwise.
(3.3.2)

The data has been selected in such a manner that the exact solution is an expansion
with fast wave mach number equal to 3.1. The solution contains very low densities and
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pressures and is designed to test positivity of solvers. As expected, the HLL2 and HLL3
solvers retained positivity and the Roe solver crashed due to negative pressure. Similarly,
the HLLC/LxF solver retained positivity. We present the results for the HLL/SUS and
HLLC/SUS solvers in Figure 3.3.2, where we plot the logarithm of the pressure computed
by the HLL/SUS and the HLLC/SUS solvers for 400 and 1600 mesh points. The figure
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Figure 3.3.2: Numerical results for the superfast expansion problem. We show log10(P )
at time t = 0.2 with both HLL/SUS and HLLC/SUS solvers. Left: 400 mesh points and
Right:1600 mesh points

clearly demonstrates that both solvers retain positivity. The HLLC/TF scheme crashed
due to oscillations.

This experiment doesn’t prove that our HLL/SUS and HLLC/SUS schemes are posi-
tivity preserving. However, based on this and many other one dimensional numerical tests,
we can conclude that these solvers are robust for one-dimensional problems. Encouraged
by these results, we move on to two-dimensional test problems.

3.3.3 Orszag-Tang Vortex

The so-called Orzag-Tang vortex is a well-known benchmark test for two dimensional
schemes for the MHD equations (see [80]) . For this problem, the initial data are given
by

(
ρ, ρu1, ρu2, ρu3, B

1, B2, B3, p
)

=
(
γ2,−ρ sin(y), ρ sin(x), 0.0,− sin(y), sin(2x), 0.0, γ

)
. (3.3.3)

The computational domain is (x, t) ∈ [0, 2π]2 × [0, π] with periodic boundary conditions.
We present numerical results with different schemes in Figure 3.3.3 and Table 3.3.2.

Even though the initial data are smooth, the solution develops discontinuities in form
of shocks along the diagonals, together with a vortex in the center of the domain. The
solution has a rich structure consisting of shocks, vortices and other interesting smooth
regions. The issues with any numerical scheme are resolution of the shocks as well as the
central vortex. Another issue is that of control of divergence in some discrete norm. In
fact, it is widely believed that lack of divergence control can lead to negative pressures
and hence crashes in this test case. So ensuring stability of the solver, particularly at fine
mesh resolutions is a challenge. There is no accepted reference solution in this case and
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many papers have used the maximum pressure as a measure of accuracy and of a scheme.
We plot the pressure on a 100× 100 mesh in Figure 3.3.3 and compare HLL, HLL/SUS,
HLL3 and HLLC/SUS schemes for qualitative behavior. As shown in Figure 3.3.3, the
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Figure 3.3.3: This figure shows the pressure computed with (from top left to bottom
right): HLL2, HLL/SUS, HLL3 and HLLC/SUS on a 100× 100 mesh at time t = π.

differences in resolving the solution are much more pronounced in this case. In particular,
the HLL scheme is very dissipative and the central vortex is not well resolved. Even the
HLL3 scheme is quite dissipative and the shocks along the diagonal are smeared. On
the other hand, the schemes based on splitting resolve the shocks very well. The central
vortex is resolved by both the HLL/SUS and the HLLC/SUS scheme, and the shocks are
much sharper than the features computed by the HLL3 solver for the full MHD equations.
A thorough quantitative comparison is provided by considering the maximum pressures
in Table 3.3.2 for different mesh resolutions. From Table 3.3.2, we find that at relatively
coarse mesh resolutions (upto 400 × 400 mesh points), the splitting solvers have much
higher resolutions (measured in terms of maximum pressure) than the standard HLL and
HLL3 solvers. In fact, even the HLL/SUS leads to sharper resolution of the solution
than the more expensive HLL3 solver. Similarly, both the splitting solvers compare very
well with the Roe solver. In fact, the HLLC/SUS leads to almost the same maximum
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M HLL HLL(Pr) HLL3 HLL3(Pr) HLL/SUS HLLC/SUS HLLC/LxF Roe
100 4.00 4.01 4.41 4.42 4.94 5.04 4.61 5.27
200 4.74 4.76 4.94 4.95 5.39 5.41 4.71 5.39
400 5.11 – 5.21 – 5.79 5.81 5.00 5.88
800 – – – – 6.05 6.07 5.26 –
1600 – – – – 6.21 6.22 5.52 –

M HLL HLL(Pr) HLL3 HLL3(Pr) HLL/SUS HLLC/SUS HLLC/LxF Roe
100 1.92 0.00 2.81 0.00 4.17 4.28 0.00 7.77
200 1.77 0.00 2.93 0.00 3.23 3.32 0.00 6.94
400 1.47 – 2.60 – 2.46 2.50 0.00 5.64
800 – – – – 1.85 1.87 0.00 –
1600 – – – – 1.38 1.39 0.00 –

Table 3.3.2: Maximum pressure (top) and the L1 norm of the divergence defined by
(3.2.18) (bottom) at time t = π for the Orszag-Tang vortex, for different schemes using a
M ×M grid.

pressure as the Roe solver. It should added that the computational cost of the Roe solver
is considerably higher than the HLLC/SUS solver.

One would expect that this high accuracy of the splitting based solvers should come
at a price of reduced stability. On the contrary, Table 3.3.2 shows that the splitting based
solvers of this paper do not crash even for 1600 × 1600 mesh points and show increased
resolution on these very fine meshes. On the other hand, the standard HLL, HLL3 and
Roe solvers crashed on 800× 800 and finer meshes due to instabilities. Thus on this test
problem, the splitting based HLL solvers are at least as accurate as the Roe solver and
more accurate than the HLL solvers and are far more stable.

One possible explanation of this behavior is divergence errors. We compute the stan-
dard discrete divergence (3.2.18) and show the results in Table 3.3.2. The initial data has
zero divergence, but the solution has several shocks, and numerical solutions may have
non-zero divergence. The standard HLL, HLL3 and Roe does not preserve the divergence
constraint. The splitting based solvers have some divergence cleaning built into them
since they are based on adding the Godunov-Powell source term. Yet, we observe that
on coarse meshes, the HLLC/SUS scheme has larger divergence errors than the HLL3
scheme. This could be due to the periodic boundary conditions which re-introduce any
non-zero divergence swept away from the domain. Observe from Table 3.3.2, that the
divergence errors due to the HLL/SUS and HLLC/SUS reduce with increasing mesh res-
olution. In fact, the divergence error due to the HLLC/SUS is lower than the errors due
to both HLL3 scheme and the Roe scheme on the 400× 400 mesh. This behaviour of the
divergence error might be a reason for the robustness of the splitting based solvers.

Even the HLLC/LxF scheme is fairly robust and we did not observe any crashes. The
numerical resolution of the HLLC/LxF scheme is inferior to that of the HLL/SUS and
the HLLC/SUS schemes in this case, even though HLLC/LxF preserve divergence. The
HLLC/TF scheme crashed even on the coarse 100× 100 mesh in this test case.

In order to investigate the connection between divergence errors, stability and overall
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accuracy, we have tested versions of the HLL, HLL3 and Roe solvers with additional
divergence “cleaning”. As mentioned in the introduction, a wide variety of divergence
cleaning procedures have been proposed, and their relative merits/demerits have been
discussed at length, see [80] and references therein. On this particular problem, we decided
to couple the HLL and HLL3 solvers with divergence cleaning by the projection method
designed in [22] and described in [80]. The projection method is based on the Hodge
decomposition of B and involves projecting B to a divergence free field at the end of each
time step by solving a Poisson equation. We chose the central form of discrete divergence
(3.2.18) and solve the resulting discrete Poisson’s equation by a preconditioned conjugate
gradient method suggested in [80]. The method is considerably (by several orders of
magnitude) more expensive than the basic finite volume schemes as the Poisson solver
is used at every time step. The resulting schemes were called HLL(Pr) and HLL3(Pr)
indicating that the HLL and HLL3 solvers were coupled with projection based divergence
cleaning. The quantitative results with the HLL(Pr) and HLL3(Pr) schemes are shown
in table 3.3.2. As shown in this table, for coarse meshes up to 200 × 200 mesh – the
HLL(Pr) and HLL3(Pr) keep divergence zero. But, the quality of numerical solution is
very very similar to that of the HLL and HLL3 schemes. In fact, the accuracy (measured
by the maximum pressure) is practically unchanged when the HLL and HLL3 solvers
were equipped with divergence cleaning. This indicates that controlling divergence or
preserving the divergence constraint does not increase the accuracy of the scheme. More
surprisingly, the HLL(Pr) and HLL3(Pr) schemes crashed even on a 400 × 400 mesh at
times close to t = π/3 i.e., at one-third of the final time. The results obtained just
before the crash showed oscillations near the shocks, and these oscillations may have
caused negative pressure. One possible explanation of the oscillations is that the Poisson
solver is second order accurate and can introduce slight oscillations. Without divergence
cleaning, the HLL and HLL3 solvers did not crash at this mesh resolution (although they
crashed on finer meshes).

This test indicates that divergence errors are not necessarily the only cause of insta-
bilities on multi-dimensional MHD simulations, and that divergence cleaning itself can
cause instability.

Hence, from this test problem, it appears that the splitting based HLL/SUS and
HLLC/SUS solvers are both more accurate (and as accurate as the Roe solver) as well as
stable compared with the standard schemes.

3.3.4 Rotor Problem

This two dimensional test problem is another standard benchmark for numerical solutions
of the MHD equations and was first reported in [80].

The computational domain is (x, t) ∈ [0, 1]2 × [0, 0.295] with artificial Neumann type
boundary conditions. The initial data are given by

ρ =

⎧⎪⎨
⎪⎩

10.0 if r < 0.1,

1 + 9f(r) if 0.1 ≤ r < 0.115,

1.0 otherwise,
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with r(x) = |x− (0.5, 0.5)| and

f(r) =
23− 200r

3
.

The other variables are initially

(
ρu1, ρu2

)
=

⎧⎪⎨
⎪⎩

(−(10y − 5)ρ, (10x− 5)ρ) if r < 0.1,

(−(10y − 5)f(r)ρ, (10x− 5)f(r)ρ) if 0.1 ≤ r < 0.115,

(0.0, 0.0) otherwise,(
ρu3, B1, B2, B3, p

)
=
(
0.0, 2.5/

√
π, 0.0, 0.0, 0.5

)
.

The initial velocity and magnetic fields are such that the variables are rotated in the
domain. The pressure drops to very low values in the center, and this test case is set up
in order to determine how a scheme handles low pressures. We present numerical results
in Table 3.3.3 and in Figure 3.3.4. In Figure 3.3.4, we plot the pressure at the final time on
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Figure 3.3.4: Pressure at t = 0.295 for the Rotor problem on a 200× 200 mesh. Top left:
HLL, top right: HLL/SUS, bottom left: HLL3, bottom right: HLLC/SUS.

a 200× 200 mesh and compare the HLL, HLL3, HLL/SUS and HLLC/SUS schemes. At
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this resolution, we see that the differences in the all the solvers is not as pronounced as the
Orszag-Tang vortex even though the HLLC/SUS has the best resolution among the four
solvers. We compute the solutions on a series of meshes and report results in Table 3.3.3.
In the absence of any accepted measure of errors, we report divergence errors in the L1

norm. From the table, we find that the HLL/SUS and HLLC/SUS solvers are stable
even at the fine resolution of 1600 × 1600 mesh points. Despite the very low pressures,
these solvers did not crash for any of the mesh resolutions that we ran in this case. On
the other hand, the HLL, HLL3 and Roe solvers crashed at the resolution of 800 × 800
mesh points due to negative pressures. The divergence errors generated with both the
HLL/SUS and HLLC/SUS schemes were quite low on this test problem. The HLLC/LxF
scheme was stable but dissipative while the HLLC/TF crashed at all resolutions that we
tested . To further investigate the effect of divergence errors on stability, we decided to

M HLL HLL2(Ps) HLL3 HLL3(Ps) HLL/SUS HLLC/SUS Roe
100 6.9e-2 6.4e-2 1.1e-1 9.7e-2 7.1e-2 7.8e-2 1.2e-1
200 6.3e-2 6.2e-2 9.3e-2 9.4e-2 5.5e-2 6.1e-2 1.0e-1
400 5.2e-2 – 7.3e-2 – 4.3e-2 4.6e-2 9.9e-2
800 – – – – 3.2e-2 3.4e-2 –
1600 – – – – 2.3e-2 2.5e-2 –

Table 3.3.3: The discrete divergence defined by (3.2.18) at t = 0.295 for the Rotor problem
using a M ×M grid.

test a different divergence cleaning technique (than the projection approach used for the
Orszag-Tang vortex) for the HLL and HLL3 solvers. As this problem has non-reflecting
boundary conditions, we can employ divergence cleaning by the Godunov-Powell source
term technique [65]. We implement the discretization of the Godunov-Powell source term
described in [66] where the authors used a central discretization of the divergence terms on
the right hand sides of (3.1.10) and evaluated the rest of the right hand side at the given
cell. The resulting HLL and HLL3 schemes together with this discretization of the source
term were denoted by HLL(Ps) and HLL3(Ps), and the divergence errors are shown in
Table 3.3.3. As shown in this table, the Powell source term did not affect the divergence
errors much. Furthermore, both HLL(Ps) and HLL3(Ps) crashed on a 400 × 400 mesh.
This crash was probably due to slight oscillations introduced by the source term. In [31],
we showed that central discretizations of Powell source term can lead to oscillations even
for the induction equation (3.1.4). This also happens for the MHD equations as shown
by this test example.

3.3.5 Two-dimensional Riemann problem

This two-dimensional Riemann problem was proposed in [78] as test case to compare
stability, resolution as well as divergence control. The computational domain is (x, t) ∈
[0, 0.8]2× [0, 0.1] with Neumann boundary conditions. The initial conditions are given by

(ρ, p) =

{
(10, 15), if x < 0.4, y < 0.4,

(1, 1/2), otherwise.
(3.3.4)
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Furthermore B = 1/
√

2(1, 1, 0) and ρu = 0.
This is a two-dimensional Riemann problem and the solution has a fairly complicated

structure. In Table 3.3.4 we present the divergence errors in L1. The most notable feature

M HLL HLL3 HLL/SUS HLLC/SUS HLLC/TF Roe
125 2.9e-1 2.9e-1 2.9e-1 2.9e-1 5.8e-3 3.1e-1
250 2.9e-1 3.0e-1 2-9e-1 2.9e-1 4.9e-3 3.1e-1
500 3.0e-1 3.0e-1 2.9e-1 2.9e-1 3.5e-1 3.1e-1
1000 3.0e-1 3.0e-1 2.9e-1 2.9e-1 – 3.1e-1
2000 3.0e-1 3.0e-1 3.0e-1 3.0e-1 – 3.1e-1

Table 3.3.4: Two dimensional Riemann problem; the L1 norm of the discrete divergence
defined by (3.2.18), using a M ×M mesh.

of this table is that the divergence does not seem to decrease under mesh refinement.
However, the quality of the computed solutions does not seem to suffer from this, and
we observe numerical convergence. The divergence errors are roughly the same for all
schemes. That the divergence errors did not prevent a convergence is also illustrated in
Figure 3.3.5, where we show the B2 component computed for the HLLC/SUS scheme for
the different mesh sizes. From this figure it is apparent that the approximations converge
to some limit as the mesh size decreases. In this test case, none of the schemes other than
the HLLC/TF crashed, even at 2000× 2000 mesh points.

3.4 Conclusion

We have presented finite volume schemes for the ideal MHD equations. Our schemes are
based on splitting the ideal MHD equations into two parts: a fluid part consisting of an
extended Euler system (3.2.2) with the magnetic forces as source terms, and a magnetic
part consisting of the magnetic induction equation (3.1.4) with fluid velocity driving the
evolution of the magnetic field. The extended Euler equations are solved by designing
HLL two wave and HLL three wave solvers with staggered magnetic fields. This form of
the equations leads to an implicit upwinding of the magnetic force terms while retaining
conservation of the fluid variables. The magnetic induction equation is solved by stable
upwind schemes designed in a recent paper [31]. The schemes are based on adding a
suitable Godunov-Powell source term and upwinding this source term. The two types of
schemes are combined either simultaneously or using an operator-splitting procedure.

We have tested the schemes in a series of benchmark numerical experiments and com-
pared them with standard HLL and Roe type approximate Riemann solvers. In the
one-dimensional test cases, the HLL/SUS and the HLLC/SUS schemes are comparable
in their accuracy to the standard HLL and HLL three wave solvers. The HLLC/LxF
scheme was also reasonably accurate. HLLC/TF scheme was even more accurate than
the HLLC/SUS scheme but the resulting approximations contained small oscillations. Al-
though we were unable to prove that HLL/SUS and HLLC/SUS are positivity preserving
in one space dimension, we present numerical evidence showing that these schemes are
positivity preserving in practice.
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Figure 3.3.5: Convergence under mesh refine-
ment for the HLLC/SUS scheme with initial data
given by (3.3.4).
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The differences between the schemes were more pronounced in the two-dimensional
test cases. We observed that the splitting based HLL/SUS and HLLC/SUS schemes were
more accurate than the standard HLL and HLL-three solvers on coarse meshes. In fact,
the HLLC/SUS scheme was as accurate as the Roe scheme on some experiments. On fine
meshes, the standard schemes crashed due to negative pressures, whereas the HLL/SUS,
HLLC/SUS and HLLC/LxF scheme were stable and led to a good approximation of
complex flow features. Furthermore, we also added extra divergence cleaning to the
standard HLL and HLL-three solvers in form of the projection method and the discretized
Godunov-Powell source term. These divergence cleaning technique did not increase the
stability of the standard HLL solvers. This should be contrasted with the robustness
observed for the splitting, particularly on very fine meshes.

Given the fact that the HLL/SUS and HLLC/SUS schemes are simpler to design,
easier to implement, as accurate and more stable than the standard HLL three and Roee
solvers, these schemes can replace existing HLL and Roe solvers in practical computations.
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Abstract

We design stable and high-order accurate finite volume schemes for the ideal
MHD equations in multi-dimensions. The finite volume schemes are based on three-
and five-wave approximate Riemann solvers of the HLL-type, with the novelty that
we allow a varying normal magnetic field. This is achieved by considering the
semi-conservative Godunov-Powell form of the MHD equations. The Godunov-
Powell source term is discretized in an upwind manner by utilizing the structure
of the HLL-type solvers. Second-order versions of the ENO- and WENO-type are
proposed, together with suitable modifications to preserve positive pressure and
density. The first- and second-order schemes are tested on a suite of numerical
experiments demonstrating a very satisfactory resolution and as stability even on
very fine meshes.

4.1 Introduction

Many interesting problems in astrophysics, solar physics and engineering involve macro-
scopic plasma models and are usually described by the equations of ideal magneto-
hydrodynamics (MHD). In these models, the variables of interest are the mass density of
the plasma ρ, the velocity field u = (u1, u2, u3)

T , the magnetic field B = (B1, B2, B3)
T ,

the pressure p and the total energy E. The unknowns obey the following conservation
(balance) laws (see [66] for details),

(i.) Conservation of mass: Mass of a plasma is conserved, resulting in the standard mass
conservation,

ρt + div(ρu) = 0.

103
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(ii.) Faraday’s law: The magnetic flux across a surface S bounded by a curve δS is given
by Faraday’s law

− d

dt

∫
S

B · dS =

∫
δS

E · dl.

By using Stokes theorem and the fact that the electric field in a co-moving frame is
zero at infinite conductivity, Faraday’s law leads to

Bt + curl(B× u) = −u(divB). (4.1.1)

The above equation is termed the magnetic induction equation and can also be
written in the following divergence form,

Bt + div(u⊗B−B⊗ u) = −u(divB).

(iii.) Conservation of Momentum: In differential form, the conservation of momentum is

(ρu)t + div(ρu⊗ u + pI) = J×B,

where J denotes the current density and I the 3× 3 identity matrix. The Lorentz
force exerted by the magnetic field is given by J × B. Under the assumptions of
ideal MHD, Ampere’s law expresses the current density as

J = curl(B).

Using standard vector identities results in the following semi-conservative form,

(ρu)t + div

(
ρu⊗ u + (p+

1

2
B2)I −B⊗B

)
= −B(divB).

(iv.) Conservation of energy: Defining the hydrodynamic energy of an ideal gas as

Ehd =
p

γ − 1
+

1

2
ρu2,

and using the conservation of this energy results in

Ehd
t + div((Ehd + p)u) = J · (B× u).

The right hand side represents the change in energy due to the magnetic field. By
using standard vector identities and Ampere’s law, we obtain

J · (B× u) = (B · ∂B
∂t
− (u ·B)(divB)− div(B ·B)u− (u ·B)B).

Defining the total energy of the plasma as E = Ehd + 1
2
B2, energy conservation

takes the form

Et + div((E + p+
1

2
B2)u− (u ·B)B) = −(u ·B)(divB).
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Combining all the above balance laws leads to the following semi-conservative form of the
ideal MHD equations,

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u + (p+
1

2
|B|2)I −B⊗B) = −B(divB),

Bt + div(u⊗B−B⊗ u) = −u(divB),

Et + div((E + p+
1

2
|B|2)u− (u ·B)B) = −(u ·B)(divB).

(4.1.2)

The above semi-conservative form is also called the Godunov-Powell form, and the source
on the right-hand side of (4.1.2) is called the Godunov-Powell source term. Magnetic
monopoles have not been observed in nature (although their existence has been hypoth-
esized in a number of quantum regimes by both the unified field theory as well as string
theory). Hence, it is common to assume that the magnetic field is solenoidal, i.e., it
satisfies the divergence constraint,

div(B) ≡ 0. (4.1.3)

Under this constraint, the source terms in (4.1.2) are zero and the constraint is explicitly
added to the equations to obtain the following conservative standard form of the ideal
MHD equations,

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u + (p+
1

2
|B|2)I −B⊗B) = 0,

Bt + div(u⊗B−B⊗ u) = 0,

Et + div((E + p+
1

2
|B|2)u− (u ·B)B) = 0,

divB = 0.

(4.1.4)

Taking divergence on both sides of the magnetic induction equation (4.1.1) yields,

(divB)t + div(u(divB)) = 0. (4.1.5)

This means that any solenoidal initial magnetic field remains divergence free. Hence, for
smooth solutions, the semi-conservative form (4.1.2) is equivalent to the standard form
(4.1.4), if the initial magnetic field is divergence free.

Despite their formal equivalence, the two forms, (4.1.4) and (4.1.2), differ in some re-
spects. We believe that it is more natural to consider and discretize the semi-conservative
form (4.1.2), since the derivation from first principles gives (4.1.2). Furthermore, (4.1.2)
is Galilean invariant, whereas the standard form (4.1.4) is not. From a mathematical per-
spective, the semi-conservative form (4.1.2) was shown to be symmetrized by the physical
entropy in [35], leading to stability estimates [12]. The standard form (4.1.4) is not
symmetrizable.

The standard form (4.1.4) (semi-conservative form (4.1.2)) is a system of conservation
(balance) laws. Eigenvalue analysis, see [68, 12], shows that the system is hyperbolic but
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not strictly hyperbolic. Solutions are typically complicated and contain interesting dis-
continuities like shock waves, contact discontinuities, compound and intermediate shocks.
Even for “simple” initial value problems, such as the Riemann problem, we do not have
existence or well-posedness results. This means that numerical simulations are the main
tools to study solutions of these equations.

Finite volume schemes are among the most efficient and widely used numerical meth-
ods for the numerical solution of conservation (balance) laws. In these methods (see
[50]), the computational domain is divided into cells, and cell-averages of the conserved
quantities are evolved by integrating the balance law over the cell. The update requires
numerical fluxes, defined in terms of exact or approximate solutions of Riemann problems
(along the normal direction) at each cell interface. Higher-order spatial accuracy is recov-
ered by employing non-oscillatory piecewise polynomial reconstructions like second-order
TVD ([81]), higher-order ENO ([40]) and WENO ([72]) methods. Higher-order temporal
accuracy results from using stability-preserving Runge-Kutta methods ([37]).

Finite volume schemes for the MHD equations have been employed with a fair amount
of success. The Riemann problem is too complicated to solve exactly ([79]), and approx-
imate Riemann solvers are employed to define numerical fluxes. Linearized solvers of the
Roe-type ([68, 24]) have been devised but often give negative pressures and densities, see
[32] for examples. An alternative is to use approximate Riemann-solvers of the HLL-type
([41]). These solvers approximate the wave-structure of the Riemann problem, with up to
eight waves, by a smaller number of waves. Three-wave HLL solvers have been designed
in [53, 36, 20] and five-wave solvers in [59, 20]. Some of these solvers ([36, 59, 20]) are
proved to preserve positive pressures and densities. They also typically ensure that the
second law of thermodynamics is not violated, referred to as entropy stability, which is
not easily achieved with linearized solvers. Numerical results showing the robustness of
these HLL-solvers, particularly in one space dimension, have been presented, see [59, 20].

However, the extension of one-dimensional numerical fluxes to approximate multi-
dimensional MHD in standard form (4.1.4) is not straightforward. The divergence con-
straint (4.1.3) in one-dimension implies that the normal magnetic field must be a constant
in space. HLL-type solvers like the ones described in [36, 59] use this information in their
definitions of speeds and states. For multi-dimensional MHD, the magnetic field in each
normal direction is no longer constant. Consequently, it is not trivial to extend the HLL-
solvers in this case. One possible solution consists in using an average of the normal
magnetic field across each interface in the expressions. This somewhat arbitrary choice
may destroy the stability properties of the solvers.

Another highly non-trivial aspect in several dimensions is the treatment of the di-
vergence constraint divB = 0. Standard finite volume schemes will generate divergence
errors, and these can induce instabilities, see [80]. A popular method to remove diver-
gence is the projection method of [22]. In this method the non-solenoidal approximate
magnetic field is corrected at each time step by using an elliptic solver. The method leads
to solenoidal fields, but is computationally expensive on account of the elliptic solver.
Other stability issues with this method have been discussed in [70, 80].

A popular divergence cleaning method consists in staggering the discretizations of the
velocity and magnetic field, this can be used in to design methods leading to a (discrete)
divergence free magnetic field. Variants of this method have been proposed in [30, 26,
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11, 70, 71] and references therein. Staggering of the variables leads to complications
when parallelizing the method, and in designing variable grid methods. Unstaggered
variants of this approach have been proposed in [77, 78, 57]. A thorough comparison
of divergence cleaning methods was performed in [80]. Another potential problem with
both the staggering and projection techniques lies in their numerical stability. In a recent
paper [32], we provided examples where the projection method was quite stable on coarse
meshes, but exhibited instabilities when the mesh was refined. We have also observed
similar behavior for the staggered mesh methods.

A third alternative for divergence cleaning was proposed in [65] and consists of dis-
cretizing the semi-conservative Godunov-Powell form (4.1.2). In [65, 66], a linearized
solver is used to define numerical fluxes and a simple centered discretization is proposed
for the Godunov-Powell source term in (4.1.2). Note that (4.1.5) suggests the initial di-
vergence errors will be transported out of the domain by the flow. In a recent paper
[31], examples were constructed showing that a centered discretization of the Godunov-
Powell source term can lead to numerical instabilities, even for the simple case of the
linear magnetic induction equation (4.1.1). Hence, the Godunov-Powell source term has
to be suitably “upwinded” to obtain stable discretizations. Suitable discretizations of a
modified form of (4.1.2) based on splitting and on relaxation were proposed in [32] and
[21] respectively. The solvers of [21] were proved to be positivity preserving and entropy
stable. Second-order extensions of this approach have been presented in a recent paper
[83].

Our aim in this paper is to design a stable and high-order accurate finite volume
scheme for the semi-conservative form (4.1.2) of ideal MHD in multi-dimensions. We base
our approach on the following three ingredients,

• We derive HLL-type three-wave and five-wave approximate Riemann solvers for
the semi-conservative form (4.1.2). The fluxes are defined in terms of approximate
solutions to Riemann problems (in the normal direction) at each interface. The
main difference between existing solvers and our approach lies in the fact that we
allow the normal magnetic field to vary across the interface. The resulting solvers
extend the three-wave solver of [36] and the highly popular five-wave solver of [59]
to non-constant normal magnetic fields and hence trivially to multi-dimensions.

• We discretize the Godunov-Powell source term in (4.1.2) by using the states and
speeds of the HLL solvers to calculate the source term in each direction. This is
simply and naturally achieved by taking the usual cell averages. Thus, the source
term is automatically upwinded.

• Second-order spatial accuracy is obtained by designing suitable ENO and WENO-
type reconstructions. Standard ENO-WENO reconstructions are modified to ensure
that the resulting schemes preserve positive pressures and densities. We rely on the
results of [14, 62] and of a recent paper [83] to design these modifications. Second-
order accurate discretizations of the Godunov-Powell source term are also proposed.
Second-order temporal accuracy is obtained by using Runge-Kutta methods.

The above ingredients are combined to obtain a second-order finite volume scheme for
MHD equations (4.1.2) in multi-dimensions. The resulting schemes are very simple to
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implement. Although we are unable to provide rigorous stability proofs, we validate the
resulting schemes on a wide variety of benchmark numerical experiments. The numerical
results on a sequence of meshes (including uncommonly fine meshes) demonstrate that
both the first- and the second-order versions of our schemes are numerically stable.

Stability is the key to numerically resolve details on very fine meshes. We would like
to mention that highly resolved solutions are not widely reported in the literature, we
suspect that this is due to numerical instabilities.

The rest of this paper is organized as follows: the numerical schemes are presented in
Section 4.2 and the numerical experiments are reported in Section 4.3.

4.2 Numerical Schemes

For notational simplicity, we focus on the semi-conservative form of the MHD equations
(4.1.2) in two space dimensions,

Wt + f(W)x + g(W)y = s1(W,Wx) + s2(W,Wy), (4.2.1)

where

W = (ρ, ρu1, ρu2, ρu3, B1, B2, B3, E)T ,

is the vector of conserved variables, and the fluxes are given by

f(W) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρu2
1 + π1 − B2

1

2

ρu1u2 −B1B2

ρu1u3 −B1B3

0
u1B2 − u2B1

u1B3 − u3B1

(E + π1)u1 − u1
B2

1

2
−B1(u2B2 + u3B3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

g(W) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
ρu1u2 −B1B2

ρu2
2 + π2 − B2

2

2

ρu1u3 −B1B3

u2B1 − u1B2

0
u2B3 − u3B2

(E + π2)u2 − u2
B2

2

2
−B2(u1B1 + u3B3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where we have defined

π1 = p+
B2

2 +B2
3

2
, π2 = p+

B2
1 +B2

3

2
. (4.2.2)
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Similarly, the Godunov-Powell source terms in (4.1.2) can be written explicitly as

s1(W,Wx) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0,

−(
B2

1

2
)x

−B2(B1)x

−B3(B1)x

−u1(B1)x

−u2(B1)x

−u3(B1)x

−u1(
B2

1

2
)x − (u2B2 + u3B3)(B1)x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

s2(W,Wy) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0,
−B1(B2)y

−(
B2

2

2
)y

−B3(B2)y

−u1(B2)y

−u2(B2)y

−u3(B2)y

−u2(
B2

2

2
)y − (u1B1 + u3B3)(B2)y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that we have used the chain rule B1(B1)x = (
B2

1

2
)x and for B2(B2)y. While true for

smooth solutions, this formula may no longer hold when the magnetic field has disconti-
nuities. However, using this formulation proved to be robust in practice.

We approximate (4.2.1) in a domain x = (x, y) ∈ [Xl, Xr]× [Yb, Yt]. For simplicity, the
domain is discretized by a uniform grid in both directions with the grid spacing Δx and
Δy. We set xi = Xl + iΔx and yj = Yb + jΔy, and Ii,j = [xi−1/2, xi+1/2)× [yj−1/2, yj+1/2).
The cell average of the unknown vector W at time tn is denoted Wn

i,j.
A standard finite volume scheme (first-order in both space and time) is obtained by

integrating the balance law (4.2.1) over the cell Ii,j and the time interval [tn, tn+1] with
tn+1 = tn +Δtn, where the time-step Δtn is determined by a suitable CFL condition. The
resulting fully-discrete form of the scheme is

Wn+1
i,j = Wn

i,j−
Δtn

Δx
(Fn

i+1/2,j−Fn
i−1/2,j)−

Δtn

Δy
(Gn

i,j+1/2−Gn
i,j−1/2)+Δtn(S1

i,j+S2
i,j). (4.2.3)

The flux Fn
i+1/2,j = F(Wn

i,j,W
n
i+1,j) and the source S1

i,j are hence determined from a
solution to the following Riemann problem,

Wt + f(W)x = s1(W,Wx), W(x, 0) =

{
WL x < 0,

WR x > 0.
(4.2.4)

Similarly, the flux G and the approximation of the Godunov-Powell source term S2 are
given in terms of a Riemann problem in the y-direction. The Riemann problem (4.2.4)
has an intricate solution involving up to eight waves. Therefore the solution to (4.2.4)
is in practice replaced by a so called approximate Riemann solver (see e.g. [50]). The
purpose of this section is to derive two such solvers. They will be given as functions of
x/t (similarly to the exact solution), and we must ensure local conservation in order to
end up with a scheme of the semi-conservative form (4.2.3).
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4.2.1 HLL three-wave solver

To derive this solver we follow the approach of [36]. The approximate solution and fluxes
for (4.2.4) are given by

WHLL3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

WL if x
t
≤ sL,

W∗
L if sL <

x
t
< sM ,

W∗
R if sM < x

t
< sR,

WR if sR ≤ x
t
,

FHLL3 (WL,WR) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

FL if x
t
≤ sL,

F∗L if sL <
x
t
< sM ,

F∗R if sM < x
t
< sR,

FR if sR ≤ x
t
.

(4.2.5)
Note that we do not enforce F = f(W). The reason is that we allow π1 of (4.2.2) to be a
free variable, hence taking the role of the relaxation pressure in [20]. For consistency we

have to set π1 = p +
B2

2+B2
3

2
in FL and FR. The outer wave speeds sL and sR model the

fast magneto-sonic waves and are defined as in [36, 28], i.e.,

sL = min {u1L − cfL, ū1 − c̄f} , sR = max {u1R + cfR, ū1 + c̄f} , (4.2.6)

where ū1 and c̄f are the normal velocity and the fast wave speed of the Jacobian matrix
A((WL + WR)/2) respectively. This choice is important for numerical stability and
accuracy.

In order to describe the solver, we need to determine the speed of the middle wave sM

and the intermediate states W∗
L,W

∗
R. We follow [36] in letting the middle wave model a

material contact discontinuity. Hence, the velocity field and the tangential magnetic fields
are assumed to be constant across the middle wave. This allows defining u∗ = u∗L = u∗R,
B∗2 = B∗2L = B∗2R and B∗3 = B∗3L = B∗3R. Furthermore, the difference in our solver and the
three-wave solver of [36] lies in the fact that we consider a non-constant normal magnetic
field B1. The normal magnetic field B1 only jumps across the middle wave (modeling the
linear degenerate ”divergence wave” implied by (4.1.5)) and is constant across the outer
waves.

We will impose local conservation across each wave to determine the various states.
Local conservation across the outermost waves means that

sLW∗
L − F∗L = sLWL − FL, sRWR − FR = sRW∗

R − F∗R. (4.2.7)

Conservation across the middle wave sM involves taking the source term s1 in (4.2.4) into
account. The conservation relation is given by,

sMW∗
R − sMW∗

L = F∗R − F∗L + s1,∗ (4.2.8)

where

s1,∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

− (B1R)2−(B1L)2

2−B∗2(B1R −B1L)
−B∗3(B1R −B1L)
−u∗(B1R −B1L)

−u∗1 (B1R)2−(B1L)2

2
− (u∗2B

∗
2 + u∗3B

∗
3)(B1R −B1L)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (4.2.9)
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amounts to integrating the source s1 in (4.2.4) across the wave fan (as described in the next
section). The above expression follows from the assumption that B1 jumps only across
the middle wave while the velocity field and tangential components of the magnetic field
remain constant. The use of the source term in the above conservation relations is the
key difference in our approach and the one used in [36].

For any middle speed sM , a straightforward application of the conservation relations
(4.2.7) determines unique values of ρ∗θ given by

ρ∗θ = ρθ
u1θ − sθ

sM − sθ

, θ ∈ {L,R} (4.2.10)

Using conservation across all the three waves (adding (4.2.7) and (4.2.8)) results in the
global conservation relation,

FR − FL = sRWR − sLWL + (sM − sR)W∗
R + (sL − sM)W∗

L + s1,∗. (4.2.11)

We can use the intermediate density states (4.2.10) and global conservation (4.2.11) to
obtain

sM = u∗1 =
π1R − π1L + ρRu1R(u1R − sR)− ρLu1L(u1L − sL)

ρR(u1R − sR)− ρL(u1L − sL)
.

Similarly, one uses local conservation (4.2.7) across the two outer waves to obtain the
intermediate “relaxed” pressures,

π∗1θ = π1θ + ρθ(u1θ − sθ)(u1θ − sM), (4.2.12)

for θ ∈ {L,R}. Note that conservation across the middle wave automatically implies
that π∗1L = π∗1R, and that (4.2.12) confirms this assertion. The next step is to determine
the tangential velocity and magnetic field. Using global conservation across the wave fan
(4.2.11), we obtain that the intermediate values u∗σ and B∗σ satisfy the following two linear
equations,

αu∗σ − βB∗σ = cσ, −βu∗σ − ζB∗σ = dσ, σ ∈ {2, 3},
where

cσ = ρRuσR(u1R − sR)− ρLuσL(u1L − sL)− (B1RBσR −B1LBσL),

dσ = BσR(sR − u1R)−BσL(sL − u1L)− (B1LuσL −B1RuσR),

α = ρR(u1R − sR)− ρL(u1L − sL), ζ = sR − sL, β = B1R −B1L.

(4.2.13)

Solving the linear system (4.2.13), the intermediate tangential components of velocity and
magnetic field are obtained as,

u∗σ =
ζcσ − βdσ

αζ + β2
, B∗σ =

−αdσ − βcσ
αζ + β2

. (4.2.14)

Remark 4.2.1. In general, the denominator; αζ + γ2, in (4.2.14) can become small,
leading to a degeneracy in the states. A simple calculation shows that αζ + γ2 �= 0 if
(ρRc

R
f +ρLc

L
f )(sR−sL) > (B1R−B1L)2. This condition can be ensured by “widening” the
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wave fan slightly by modifying the fast wave speeds in (4.2.6). The resulting conditions
are

sR ≥ u1R +
1

2
(max((u1L − u1R), 0)) + c̃fR, sL ≤ u1L − 1

2
(max((u1L − u1R), 0))− c̃fL,

(4.2.15)
where

c̃2fθ =
γpθ

ρθ

+
B2

1θ

ρθ

(1 + ε) +
B2

2θ +B2
3θ

ρθ

+

√
(
γpθ + |B|2θ

ρθ

)2 − 4
γpθB2

1θ

ρ2
θ

, θ ∈ {L,R},

for some small positive ε. Using the conditions (4.2.15) to widen the wave fan ensures
that the denominator αζ + β2 is never zero and the states are well defined.

Finally, the intermediate total energy states are determined by local conservation
relations (4.2.7) to be

E∗θ =
Eθ(u1θ − sθ) + π1θu1θ − π∗1θsM +

B2
1θ

2
(u1θ − sM)

sM − sθ

+
B1θ(B2θu2θ +B3θu3θ −B∗2θu

∗
2θ −B∗3θu

∗
3θ)

sM − sθ

,

for θ ∈ {L,R}. Hence, all the intermediate states are determined explicitly. The in-
termediate fluxes are obtained in terms of the intermediate states by local conservation
(4.2.7),

F∗L = FL + sL(W∗
L −WL), F∗R = FR + sR(W∗

R −WR).

Combining the above expressions for the states and the fluxes, we write down our explicit
flux formula for the three-wave solver as

FH3

i+1/2,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fi,j , if sL,i+1/2,j > 0,

F∗i,j , if sL,i+1/2,j ≤ 0 ∧ sM,i+1/2,j ≥ 0,

F∗i+1,j , if sM,i+1/2,j < 0 ∧ sR,i+1/2,j ≥ 0,

Fi+1,j , if sR,i+1/2,j < 0.

(4.2.16)

Note that this may be discontinuous at sM,i+1/2,j = 0 according to (4.2.8). Hence our
choice of FH3 in that case is merely a convention. It is the proper addition of the source
term which ensures that the scheme is continuous.

Remark 4.2.2. If we assume that the normal magnetic field B1 is constant i.e., B1L =
B1R, then the three-wave solver defined above reduces to the three-wave solver derived in
[36]. Hence, our three-wave solver extends the standard three-wave solver of [36] for the
case of a non-constant normal magnetic field.

4.2.2 Discretization of the Godunov-Powell source term

In this section we explain (4.2.8), and specify the discrete source S1,n
i,j in (4.2.3). The

discrete source must be consistent with the Godunov-Powell source term in x-direction



4.2. NUMERICAL SCHEMES 113

s1(W,Wx). It will be determined from our solution of the Riemann problem (4.2.4)
along the x-direction at the cell interfaces (xi+1/2, yj). The HLL three-wave approximate
Riemann solver of the previous section provide us with the assumptions we need: The
normal magnetic field jumps only across the contact-discontinuity modeled by the middle
wave, while the velocity field and the tangential components of the magnetic field are
constant across the middle wave.

Let T be a quantity that is constant with value T ∗ across the middle wave, then

(TB1
x)(x, t) = T ∗(B1R −B1L)δ(x+ tu∗1), (4.2.17)

where δ denotes the Dirac delta function. If we assume that |u∗1|Δtn ≤ Δx, integrating
TB1

x over (0,Δtn)× (−Δx, 0) yields

1

Δx

∫ Δtn

0

∫ 0

−Δx

TB1
xdxdt = ΔtnT ∗

B1R −B1L

Δx
1{u∗

1<0}, (4.2.18)

where 1A denotes the characteristic function of the set A. Integration over (0,Δtn) ×
(0,Δx) leads to

1

Δx

∫ Δtn

0

∫ Δx

0

TB1
xdxdt = ΔtnT ∗

B1R −B1L

Δx
1{u∗

1>0},
under the same restriction, |u∗1|Δtn ≤ Δx. Similarly, by again using the assumption that
B1 jumps only across the contact and T remains constant across it, we obtain that

1

Δx

∫ Δtn

0

∫ 0

−Δx

T (
B2

1

2
)xdxdt = ΔtnT ∗

B2
1R −B2

1L

2Δx
1{u∗

1<0},

and
1

Δx

∫ Δtn

0

∫ Δx

0

T (
B2

1

2
)xdxdt = ΔtnT ∗

B2
1R −B2

1L

2Δx
1{u∗

1>0}. (4.2.19)

Hence, we can derive (4.2.8) from (4.2.18)-(4.2.19) by observing that we must have

s1,∗ =

∫ tn+1

tn

∫ Δx

−Δx

s1(WH3 ,WH3
x )dxdt.

The final scheme is defined by evolving the piecewise constant function Wi,j according
to the approximate Riemann solver (4.2.5), and then taking the cell average of the con-
served quantities. Hence, the scheme is determined by (4.2.7)-(4.2.8), yielding (4.2.16),
and

S1,n
i,j = s1,∗

i−1/2,j1{(sM,i−1/2,j≥0)} + s1,∗
i+1/2,j1{(sM,i+1/2,j<0)}, (4.2.20)

where s1,∗
i±1/2,j is defined in (4.2.9). For the case that sM,i+1/2,j = 0 our choice here was

dictated by our choice in (4.2.16). Integration along the y-direction is taken care of by
the midpoint rule.

We emphasize that the discrete Godunov-Powell source term in each cell consists of
contributions from Riemann solutions at the bordering interfaces and depends on the sign
of the middle wave at each interface. Thus, the Godunov-Powell source term is suitably
upwinded. Note that assuming the normal magnetic field B1 to be constant for the whole
domain leads to the source term being zero. This approach is novel (but see [20]), and is
very different from the usual centered discretization of the Godunov-Powell source term
([66] and other references therein).
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4.2.3 HLL five-wave solver

The three-wave solver of the previous section does not model Alfvén waves precisely, and
instead diffuse these waves more than necessary. Alfvén waves can be approximated better
by extending the three-wave solver to an HLL type five-wave solver. In addition to the
three waves with wave speeds sL, sR and sM , we add two new waves with speeds s∗L and
s∗R respectively with the requirement that sL ≤ s∗L ≤ sM ≤ s∗R ≤ sR. Hence, solution
of the Riemann problem at each interface is approximated by four intermediate states
W∗

L, W∗∗
L , W∗∗

R and W∗
R. A five-wave solver for ideal MHD equations with constant

normal magnetic fields was developed in [59] and we will extend this solver to the case of
non-constant normal magnetic fields below.

The outer-wave speeds sL and sR are determined by (4.2.6) (using the correction
(4.2.15)) as in the three-wave solver. We assume that the normal velocity is constant
across the three inner waves i.e.,

sM = u∗1L = u∗∗1L = u∗∗1R = u∗1R, (4.2.21)

as the inner waves model a contact discontinuity and Alfvén waves, and the normal
velocity remains constant across all three of them. Similarly, the waves with speeds s∗L
and s∗R model Alfvén waves. Hence, as in [59], the density and the “relaxed” pressures
are constant across them leading to

ρ∗∗θ = ρ∗θ, π∗∗1θ = π∗1θ, θ ∈ {L,R}.
Furthermore, the wave with speed sM models a contact discontinuity and the tangential
components of the velocity and the magnetic field remain constant across it leading to

u∗∗σL = u∗∗σR = u∗∗σ , B∗∗σL = B∗∗σR = B∗∗σ , (4.2.22)

for σ ∈ {2, 3}. The normal magnetic field should only jump across the middle wave,i.e,

B∗1θ = B∗∗1θ = B1θ, θ ∈ {L,R}. (4.2.23)

As a result of (4.2.22) and (4.2.23), the Godunov-Powell source term takes the same form
as in (4.2.9) with u∗σ, B

∗
σ being replaced by u∗∗σ and B∗∗σ for σ ∈ {2, 3}. We denote this

source term by s∗∗,1.
Using local conservation (4.2.7) across the outermost waves and (4.2.21), we obtain

unique values of ρ∗θ of the form,

ρ∗θ = ρθ
u1θ − sθ

sM − sθ

, θ ∈ {L,R}. (4.2.24)

Conservation across the entire wave fan leads to the following relation,

FR−FL = sRWR−sLWL+(s∗R−sR)W∗
R+(sM−s∗R)W∗∗+(s∗L−sM)W∗∗

L +(sL−s∗L)W∗
L+s1,∗∗.

(4.2.25)
We can use the intermediate density states (4.2.24) and global conservation (4.2.25) to
obtain the following expression for the middle speed,

u∗1,L = u∗1,R = sM =
π1R − π1L + ρRu1R(u1R − sR)− ρLu1L(u1L − sL)

ρR(u1R − sR)− ρL(u1L − sL)
.
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Note that this is the same expression as the middle speed in the three-wave solver. Sim-
ilarly, one uses local conservation (4.2.7) across the two outer waves to obtain the inter-
mediate “relaxed” pressures,

π∗1θ = π1θ + ρθ(u1θ − sθ)(u1θ − sM),

for θ ∈ {L,R}. Note that π∗1L = π∗1R. Following [59], we can use conservation across the
outer-most waves (4.2.7) and obtain a system of two linear equations for u∗σθ and B∗σθ for
σ = {2, 3}. These equations can be explicitly solved to obtain,

u∗σθ = uσθ +
B1θBσθ(u1θ − sM)

ρθ(u1θ − sθ)(sM − sθ)− (B1θ)2
, B∗σθ = Bσθ

ρθ(u1θ − sθ)
2 − (B1θ)

2

ρθ(u1θ − sθ)(sM − sθ)− (B1θ)2
.

(4.2.26)

Remark 4.2.3. The denominator in the above states (4.2.26) can become zero. This
will typically occur in the degenerate case that the Alfvén speed |B1|/√ρ approaches the
fast speed cf . Therefore, it is natural to switch to the three-wave solver of the previous
section when ∣∣ρθ(u1θ − sθ)(sM − sL)− (B1θ)

2
∣∣ < ερθc

2
fθ

for some small ε > 0.

The intermediate energy states can be determined by local conservation (4.2.7) as

E∗θ =
Eθ(u1θ − sθ) + π1θu1θ − π∗1θsM +

B2
1θ

2
(u1θ − sM)

sM − sθ

+
B1θ(B2θu2θ +B3θu3θ −B∗2θu

∗
2θ −B∗3θu

∗
3θ)

sM − sθ

,

for θ ∈ {L,R}. The local conservation relations across the new waves imply that

s∗L = sM − |B1L|√
ρ∗L
, s∗R = sM +

B1R√
ρ∗R
.

Hence the Alfvén wave speeds are accurately represented. Note that we use essentially
the same Alfvén speeds as in [59], but account for the variation of the normal magnetic
field across the contact discontinuity. Furthermore, conservation across the new waves
reduces to

B∗∗σ −B∗σL = sign (B1L)
√
ρ∗L(u∗∗σ − u∗σL), B∗∗σ −B∗σR = −sign (B1L)

√
ρ∗R(u∗∗σ − u∗σR).

(4.2.27)
These relations are identical to the exact Alfvén wave jump conditions. They imply that

u∗∗σ =
sign (B1L)

√
ρ∗Lu

∗
σL + sign (B1R)

√
ρ∗Ru

∗
σR +B∗σR −B∗σL

sign (B1L)
√
ρ∗L + sign (B1R)

√
ρ∗R

B∗∗σ =
sign (B1L)

√
ρ∗RB

∗
σL + sign (B1R)

√
ρ∗LB

∗
σR +

√
ρ∗Lρ

∗
R(u∗σR − u∗σL)

sign (B1L)
√
ρ∗R + sign (B1R)

√
ρ∗L

(4.2.28)
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Remark 4.2.4. Observe that if

sign (B1R) �= sign (B1L) and ρ∗R = ρ∗L, (4.2.29)

the relations (4.2.27) can not be solved, and the formulas (4.2.28) break down. In this
case we relax to the HLL three-wave solver of the previous section. This should be seen
in light of the discontinuity in the jump conditions (4.2.27) in the nonstrictly hyperbolic
case B1 = 0. Furthermore, if B1L = 0 and B1R �= 0 or vice versa, we get meaningful
formulas, but we need to check that the jump conditions across the middle wave hold.
They become

SMW∗
L − F∗L = SMW∗∗

R − F∗∗R + s1,∗∗,

which is easily verified. When B1L = B1R = 0, it simply means that s∗L = sM = s∗R,
hence we do not need to calculate the ∗∗-states. The jump conditions are again easily
verified, if we assume that the source s1,∗∗ is zero (which is the limiting value away from
(4.2.29)). Hence, the numerical fluxes and sources can be calculated in the same manner
as for non-zero B1.

Finally, the remaining energy states are given by conservation across the Alfvén waves
resulting in,

E∗∗θ = E∗θ +
B1θ(B

∗
2θu

∗
2θ +B∗3θu

∗
3θ −B∗∗2 u

∗∗
2 −B∗∗3 u

∗∗
3 )

s∗θ − sM

for θ ∈ {L,R}. This completes a description of the states of the five-wave solver. The
corresponding fluxes can be determined by local conservation and the numerical flux is
obtained similar to the formula (4.2.16). We remark that whenever B1L = B1R, the above
solver reduces to the five-wave solver derived in [59].

For the discretization of the corresponding Godunov-Powell source term in this case,
we use exactly the same arguments as in the case of the three-wave solver (as B1 jumps
only across the middle wave where the velocity and the tangential magnetic fields are
constant) to obtain that

S1,n
i,j = s1,∗∗

i−1/2,j1{sM,i−1/2,j≥0} + s1,∗∗
i+1/2,j1{sM,i+1/2,j<0},

where s1,∗∗
i±1/2,j is defined as in (4.2.9) with the ∗∗ replacing the ∗ states.

4.2.4 Fluxes and sources in the y-direction

We have completed a description of the numerical flux F and discretized source S1 in the
x-direction. In-order to complete the scheme (4.2.3), we need to specify the numerical
flux in the y-direction G and the corresponding Godunov-Powell source term S2. This is
straightforward as the form of equations in each direction is similar.

The numerical flux G is defined in terms of both a three-wave solver and a five-wave
solver. The three-wave solver is analogous to the states and fluxes obtained in (4.2.5)
with normal velocity u2 and normal magnetic field B2. Similarly, the discretized source
term S2 is similar to S1 defined in (4.2.20). The only change is to replace the normal
velocity and magnetic fields to u2 and B2 respectively. The five-wave solver is analogously
defined. The specification of G,S2 completes the description of the scheme (4.2.3).
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4.2.5 Second-order accurate schemes

The finite volume scheme (4.2.3) is first-order accurate in both space and time. For
practical applications, we need higher order of accuracy. We will design a finite volume
scheme based on (4.2.3) that is second-order accurate in both space and time. The semi-
discrete form of this scheme is given by,

d

dt
Wi,j = F i,j = − 1

Δx
(Fi+1/2,j−Fi−1/2,j)− 1

Δy
(Gi,j+1/2−Gi,j−1/2)+ S̃1

i,j + S̃2
i,j, (4.2.30)

where Wi,j(t) is the cell-average of the unknown at time t. We will define the numerical
fluxes F,G and the sources S̃1, S̃2 below.

It is standard ([50]) to replace the piecewise constant approximation Wi,j with non-
oscillatory piecewise linear reconstructions in-order to obtain second-order spatial accu-
racy. There are a variety of reconstructions including the popular TVD-MUSCL limiters
([81]). We will use second-order ENO reconstruction ([40]) and WENO reconstruction
([72]) as these procedures can be easily extended to obtain even higher-order schemes.

ENO Reconstruction:

Given the cell averages Wi,j, we reconstruct in the primitive variables
Vi,j = {ρi,j,ui,j,Bi,j, pi,j}. Define the ENO-differences in each direction as

DxVi,j =

{
Vi+1,j −Vi,j if Γx

i,j ≤ 1,

Vi,j −Vi−1,j otherwise.
DyVi,j =

{
Vi,j+1 −Vi,j if Γy

i,j ≤ 1,

Vi,j −Vi,j−1 otherwise.

where

Γx
i,j =

|ψ(Vi+1,j)− ψ(Vi,j)|
|ψ(Vi,j)− ψ(Vi−1,j)| , Γy

i,j =
|ψ(Vi,j+1)− ψ(Vi,j)|
|ψ(Vi,j)− ψ(Vi,j−1)| ,

and ψ for some function ψ called the global smoothness indicator. We use ψ(V) = ρ+B2.
Note that for piecewise linear reconstruction, the ENO procedure reduces to providing

a limiter for the slopes in each direction. The reconstructed piecewise linear function is
each cell Ii,j is denoted by

Vi,j(x, y) = Vi,j +
1

Δx
DxVi,j(x− xi) +

1

Δy
DyVi,j(y − yj).

The reconstructed conservative variables can be easily obtained by transforming the re-
constructed primitive variables.

WENO procedure:

As an alternative to the above reconstruction, consider the following cell-gradients

D̄xVi,j =
(
ωx

i,j (Vi+1,j −Vi,j) +
(
1− ωx

i,j

)
(Vi,j −Vi−1,j)

)
,

D̄yVi,j =
(
ωy

i,j (Vi,j+1 −Vi,j) +
(
1− ωy

i,j

)
(Vi,j −Vi,j−1)

)
,
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where the weights are given by,

ωx
i,j =

a0
i,j

a0
i,j + a1

i,j

, a0
i,j =

1

3(ε+ βx,0
i,j )

, a1
i,j =

2

3(ε+ βx,1
i,j )

,

ωy
i,j =

b0i,j
b0i,j + b1i,j

, b0i,j =
1

3(ε+ βy,0
i,j )

, b1i,j =
2

3(ε+ βy,1
i,j )

,

where ε is a small positive number, and the parameters are given by

βx,0
i,j = (ψ(Vi+1,j)− ψ(Vi,j))

2, βx,1 = (ψ(Vi,j)− ψ(Vi−1,j))
2,

βy,0
i,j = (ψ(Vi,j+1)− ψ(Vi,j))

2, βy,1 = (ψ(Vi,j)− ψ(Vi,j−1))
2,

and the indicator function ψ is defined above. The corresponding linear reconstruction is
given by,

Vi,j(x, y) = Vi,j +
1

Δx
D

x
Vi,j(x− xi) +

1

Δy
D

y
Vi,j(y − yj). (4.2.31)

Note that the choice of weights implies that the WENO approximation (4.2.31) is third-
order accurate for smooth solutions (at least in one-space dimension).

Both the ENO and WENO reconstructions suffer from a common problem: the re-
constructed densities and pressures may not be positive. Since the positivity of density
and pressure is absolutely essential for obtaining any physically meaningful results, the
reconstructions have to be modified further. A simple modification consists of further
limiting the slope in either direction. Let Dxρ and Dxp be the ENO-gradients of density
and pressure in the x-direction, we follow [62] and introduce the following clipping,

Dx,cρi,j = max {−ωρi,j,min {ω,Dxρi,j}} , Dx,cpi,j = max {−ωpi,j,min {ω,Dxpi,j}} ,

where ω < 2 is a positive parameter. Simple calculations show that the above modification
ensures that the reconstructed pressure and density remain positive. We choose ω = 1.9
in our simulations. Similarly in the y-direction, we have

Dy,cρi,j = max {−ωρi,j,min {ω,Dyρi,j}} , Dy,cpi,j = max {−ωpi,j,min {ω,Dypi,j}} .

However, this only guarantees positivity of the reconstructed variables, not for the updated
ones. A further modification of the gradients was suggested in a recent paper [83]. Denote

Dx,cVi,j = {Dx,cρi,j, D
xui,j, D

xBi,j, D
x,cpi,j} ,

Dy,cVi,j = {Dy,cρi,j, D
yui,j, D

yBi,j, D
y,cpi,j} ,

and

Lx
i,j =

1

8

(
ρi,j

(
|Dxui,j|2 + |DxBi,j|2 +

1

2
(min {0, ρi,j (ui,j ·Dxui,j)})

))
+

1

2ρi,j

(Dx,cρi,j)
2 |Dxui,j|2 ,
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Ly
i,j =

1

8

(
ρi,j

(
|Dyui,j|2 + |DyBi,j|2 +

1

2
(min {0, ρi,j (ui,j ·Dyui,j)})

))
+

1

2ρi,j

(Dy,cρi,j)
2 |Dyui,j|2 ,

Ri,j =
pi,j

γ − 1
.

Then, we further modify the gradients by

D̂xVi,j = Dx,cVi,j

√
Ri,j

max{Lx
i,j, Ri,j} , D̂yVi,j = Dy,cVi,j

√
Ri,j

max{Ly
i,j, Ri,j} .

Thus D̂x, D̂y are the gradients that we use for the final reconstruction. The choice of this
modified gradient has been motivated in recent papers [83]. With an underlying posi-
tivity preserving first order scheme and an appropriate treatment of the Godunov-Powell
source term, this modification ensures positivity of the updated pressure and density. The
reconstructed states are now given by

V̂i,j(x, y) = Vi,j +
1

Δx
D̂xVi,j(x− xi) +

1

Δy
D̂yVi,j(y − yj). (4.2.32)

A similar procedure can be used for the WENO-gradients to obtain a modified WENO
reconstruction.

The reconstructed primitive variables correspond to the reconstructed conservative
function Ŵi,j(x, y). Define the point-values,

WE
i,j = Ŵi,j(xi+1/2, yj), WW

i,j = Ŵi,j(xi−1/2, yj),

WN
i,j = Ŵi,j(xi, yj+1/2), WS

i,j = Ŵi,j(xi, yj+1/2).

We can use the above defined values to define the second-order numerical fluxes as

Fi+1/2,j = F
(
WE

i,j,W
W
i+1,j

)
, Gi,j+1/2 = G

(
WN

i,j,W
S
i,j+1

)
,

where F,and G are given by either the three-wave solver or the five-wave solver of the
previous section. Similarly, the second-order source terms can be calculated as

S1
i,j = s1,∗

i−1/2,j1{sM,i−1/2,j≥0} + s1,∗
i+1/2,j1{sM,i+1/2,j<0},

where s1,∗
i+1/2,j is defined as in (4.2.9), but with the values Wi,j, Wi+1,j replaced by

Wi+1/2,j, WW
i+1,j. The source S2

i,j in the y-direction is defined analogously. Observe
that for smooth solutions, the discretized source S1

i,j vanishes to truncation order with
(BE

1 )i,j − (BW
1 )i+1,j. Hence, we need to add an extra term for second-order consistency.

However, this term should vanish when S1
i,j becomes significant at jumps (see e.g., [7] for

an analogous situation). We suggest the following simple modification,

S̃1
i,j = S1

i,j +

⎛
⎜⎜⎝

0
Bi,j

ui,j ·Bi,j

ui,j

⎞
⎟⎟⎠ 1

Δx
D̂xB1

i,j.
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The term S̃2
i,j in the y-direction is analogously defined. A similar form of the discrete

source was found to be very stable in [83]. Note that S̃1,2
i,j , are consistent second-order

discretizations of the Godunov-Powell source terms s1,2. Hence, we have completed a
description of the (formally) second-order accurate in space semi-discrete scheme (4.2.30).

4.2.6 Time Stepping:

The standard scheme for a first order approximation in time is the forward-Euler time
stepping, formally written

Wn+1
i,j = Wn

i,j + ΔtnFn
i,j

where Fn
i is defined in (4.2.30). For overall second-order schemes, we use the second-order

strong-stability preserving Runge-Kutta (SSP) time stepping ([37]),

W∗
i,j = Wn

i,j + ΔtnFn
i,j,

W∗∗
i,j = W∗

i,j + ΔtnF∗
i,j,

Wn+1
i,j =

1

2
(Wn

i,j + W∗∗
i,j).

The time step is determined by a standard CFL condition. This completes our description
of the finite volume schemes for (4.2.1).

4.3 Numerical Experiments

We will validate the first- and second-order finite volume schemes on a series of numerical
experiments in both one- and two-space dimensions. We test a total of six schemes:

H3 First order with the HLL three-wave solver,
H5 first order with the HLL five-wave solver,
H3E second order with HLL three-wave solver and ENO reconstruction,
H3W second order with HLL three-wave solver and WENO reconstruction,
H5E second order with HLL five-wave solver and ENO reconstruction,
H5W second order with HLL five-wave solver and WENO reconstruction.

All the second order schemes use the positivity preserving modifications (4.2.32). The
first order schemes are evolved with a CFL number of 0.45 (which is theoretically sound
due to excluding wave interactions in the cells), and the second order schemes use a CFL
number of 0.9. In all our computations we use γ = 5/3.

Regarding the measurement of errors, if we have a reference solution available, then
we define the relative error as

100× ‖α− αref‖
‖αref‖ ,

where α is (a component of) the numerical approximation and αref is (the same component
of) the reference solution, and ‖ · ‖ is some (usually L1) norm.
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Brio-Wu shock tube

This is a standard one-dimensional numerical test case for ideal MHD ([23]). The initial
conditions are given by

(ρ, ρu, p,B) =

{
(1.0,+1.0, 0, 0, 0, 0.7, 0, 1.0), if x < 0.5,

(0.3,−0.3, 0, 0, 0, 0.7, 0, 0.2), otherwise.

The computational domain is (x, t) ∈ [0, 1.5]×[0, 0.5] with Neumann boundary conditions.
Note that the normal magnetic field is constant. Therefore, the H3 scheme and H5 scheme
reduce to the solvers presented in [36] and [59] respectively. However, the four higher-order
schemes are different from those presented in the literature. We present the computed
total energy and the magnetic field B2 with the schemes at time t = 0.5 in figure 4.3.1.
The reference solution in this case is calculated with the H5W second-order scheme on a

Figure 4.3.1: Results for the Brio-Wu shock tube with 200 grid points at t = 0.5. Reference
solution is the H5W scheme with 3200 grid points. Left: Energy Right: Magnetic field
component B2

mesh with 3200 points. The solution is quite complicated containing shock waves, contact
discontinuities and rarefaction waves. As expected, the H5 scheme is more accurate than
theH3 scheme, particularly near Alfvén waves. The second-order schemes are clearly more
accurate than the first-order schemes. The differences are also illustrated in Table 4.3.1,
showing the relative percentage errors in the L1 norm of the total energy on a sequence
of meshes. The table confirms the observations obtained from the figure. The H5 scheme
is more accurate than the H3 scheme. Both the formal first-order accurate schemes have
an average convergence rate close to 0.7 . The second-order schemes are more accurate
than the first-order schemes with considerably smaller errors. The H5E and H5W are
slightly more accurate than the correspondingH3E and H3W scheme. Similarly, H3E and
H3E schemes are slightly more dissipative than the H3W and H5W schemes respectively.
The second-order schemes have an average rate of convergence around 1. This is to be
expected as the solution contains discontinuities, and the order of accuracy deteriorates
near these.
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M H3 rate H3E rate H3W rate
50 2.2e-00 1.3e-00 1.3e-00

100 1.5e-00 0.6 7.9e-01 0.7 7.2e-01 0.9
200 9.8e-01 0.6 5.0e-01 0.7 4.6e-01 0.6
400 5.3e-01 0.9 1.9e-01 1.4 1.7e-01 1.4
800 3.4e-01 0.6 1.1e-01 0.8 9.7e-02 0.8

1600 1.9e-01 0.8 5.4e-02 1.0 4.4e-02 1.1

M H5 rate H5E rate H5W rate
50 1.7e-00 1.2e-00 1.2e-00

100 1.2e-00 0.5 7.1e-01 0.8 6.5e-01 0.9
200 7.4e-01 0.7 4.4e-01 0.7 4.1e-01 0.7
400 3.7e-01 1.0 1.6e-01 1.5 1.4e-01 1.6
800 2.2e-01 0.8 9.6e-02 0.7 8.3e-02 0.8

1600 1.2e-01 0.9 4.8e-02 1.0 3.9e-02 1.1

Table 4.3.1: Relative percentage errors for the total energy in L1 at time t = 0.5 and the
order of convergence for the Brio-Wu shock tube for various mesh sizes M using the H5W
scheme with 3200 grid points as a reference solution.

Godunov-Powell Magnetic Advection

This test case is constructed to demonstrate the performance of the schemes in one-
dimension with a non-constant normal magnetic field. Consider the one-dimensional
semi-conservative form of the MHD equations (4.1.2) with the following initial data,

(ρ, u1, u2, u3, B1, B2, B3, p) = (1, 1, 0, 0, 1− c sin(2πx), 0.5, 0, 0, 0.5),

where c is a constant. A straightforward calculation shows that the exact solution is given
by,

(ρ, u1, u2, u3, B1, B2, B3, p) = (1, 1, 0, 0, 1− c sin(2π(x− t)), 0.5, 0, 0, 0.5),

Thus, the solution consists of advection of the normal magnetic field due to the presence
of the Godunov-Powell source term. Note that putting c = 0 gives a constant solution.
The aim is to take non-zero values of c and test the schemes. It turns out that any
standard scheme like the three-wave solver of [36] or the five-wave solver of [59] crashes
almost immediately if c > 0.01 due to unphysical state values. This is not unexpected
since these schemes are based on the form (4.1.4) which needs the normal magnetic field
to be a constant in space. Hence, this test case is vital in showing the effectiveness of our
new schemes based on the semi-conservative form.

We consider this problem on a domain [0, 1] and c = 1 with periodic boundary con-
ditions. Figure 4.3.2 shows the approximate normal magnetic field B1 at time t = 1.
The H3 and H5 schemes approximate the solution like any standard first-order scheme for
linear advection. The second-order schemes resolve the solution much better, and there
is very little visual difference between the exact solution and the second-order schemes at
this mesh resolution. Further study of the approximation is reported in the Table 4.3.2,
which shows the relative percentage errors in L1 for the magnetic field B1 on a sequence
of meshes. There is no difference between the H3 and H5 solvers. Both the first-order
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Figure 4.3.2: B1 distribution for Powell magnetic advection test with 200 grid points.

schemes have the expected rate of convergence 1. Among the second-order schemes, the
WENO based H3W and H5W are more accurate than their ENO based counterparts. In
fact, the observed order of convergence for the ENO schemes is 2, but the WENO schemes
approach an order of convergence close to 3. This is on account of the design of a WENO
scheme where third-order is achieved for piecewise linear reconstruction. Note that the
positivity-preserving modifications have not reduced the orders of accuracy of either the
ENO or the WENO schemes. Thus, this experiment demonstrates that our schemes ap-
proximate the semi-conservative form (4.1.4) in one-dimension quite well, particularly for
problems with perturbations from constant normal magnetic fields (standard schemes fail
in these cases).

M H3 rate H3E rate H3W rate
50 9.4e-00 3.2e-00 2.2e-00

100 5.1e-00 0.9 9.9e-01 1.7 6.0e-01 1.9
200 2.8e-00 0.9 2.9e-01 1.8 1.5e-01 2.0
400 1.5e-00 0.9 8.7e-02 1.7 3.5e-02 2.1
800 8.1e-01 0.9 2.4e-02 1.9 7.3e-03 2.3

1600 4.1e-01 1.0 6.4e-03 1.9 1.2e-03 2.6
3200 2.1e-01 1.0 1.7e-03 1.9 1.5e-04 3.0

M H5 rate H5E rate H5W rate
50 9.4e-00 3.2e-00 2.2e-00

100 5.2e-00 0.9 9.9e-01 1.7 6.0e-01 1.9
200 2.8e-00 0.9 2.9e-01 1.8 1.5e-01 2.0
400 1.5e-00 0.9 8.7e-02 1.7 3.5e-02 2.1
800 8.1e-01 0.9 2.4e-02 1.9 7.3e-03 2.3

1600 4.1e-01 1.0 6.4e-03 1.9 1.2e-03 2.6
3200 2.1e-01 1.0 1.7e-03 1.9 1.5e-04 3.0

Table 4.3.2: Relative percentage errors for B1 at time t = 1 and the order for the Powell
magnetic advection test for various mesh sizes M .
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Rotor Problem:

We start considering two-dimensional numerical experiments with this standard example
(introduced in [11], considered in [80] among others). The computational domain is
(x, t) ∈ [0, 1]2 × [0, 0.295] with Neumann boundary conditions. The initial data are given
by

ρ =

⎧⎪⎨
⎪⎩

10.0 if r < 0.1,

1 + 9f(r) if 0.1 ≤ r < 0.115,

1.0 otherwise,

with r(x) = |x− (0.5, 0.5)| and

f(r) =
23− 200r

3
.

The other variables are initially

(
ρu1, ρu2

)
=

⎧⎪⎨
⎪⎩

(−(10y − 5)ρ, (10x− 5)ρ) if r < 0.1,

(−(10y − 5)f(r)ρ, (10x− 5)f(r)ρ) if 0.1 ≤ r < 0.115,

(0.0, 0.0) otherwise,(
ρu3, B1, B2, B3, p

)
=
(
0.0, 2.5/

√
π, 0.0, 0.0, 0.5

)
.

This describes a dense rotating region surrounded by static plasma with a uniform mag-
netic field. The pressure drops to very low values in the center. The main difficulty in
the numerical solution of this problem is the low pressure, particularly on fine meshes. As
stated in the introduction, most results presented in the literature show the approxima-
tion obtained on relatively coarse meshes. On coarse meshes, the numerical dissipation is
large and provides some stability. However, computations on fine meshes lead to crashes
due to negative pressures (see [32] for illustrations of this). We compute with all the six
schemes and show the computed pressures at time t = 0.295 and on a mesh with 200×200
mesh points in Figure 4.3.3. The figure shows that both the first-order schemes provide
a stable but diffusive approximation and the H5 scheme is more accurate than the H3

scheme. The second-order schemes are much more accurate and capture the shocks and
smooth regions sharply at this resolution. For a more elaborate quantitative study of this
problem, we compute solutions on a very fine 1600 × 1600 mesh and find that all the
six schemes are stable and approximate the solution very well. We show the computed
pressure with the H5 scheme on a 1600× 1600 mesh in Figure 4.3.4.

We tabulate the relative percentage errors in L1 for the pressure with respect to
this reference solution and present them in table 4.3.3. The table shows that the first-
order H5 scheme is (about thirty percent) more accurate than the first-order H3 scheme.
However, the second-order schemes are much more accurate than the first-order schemes.
Sometimes, the gain in accuracy is an order of magnitude by using a second-order scheme.
There is a gain in accuracy using the H5 solver together with a second-order scheme.
Similarly, the WENO-based schemes H3W and H5W are more accurate than their ENO-
based counterparts. The observed rate of convergence for the first-order schemes is around
0.5 and that of the second-order schemes is better than 1 (except at the lowest resolutions).
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(a) H3 (b) H5

(c) H3E (d) H5E

(e) H3W (f) H5W

Figure 4.3.3: Pressure for the rotor problem on a 200 × 200 mesh at time t = 0.295 all
scaled to the extrema of the pressure obtained for a 200× 200 mesh.
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Figure 4.3.4: This figure shows the pressure for the rotor problem on a 1600× 1600 mesh
at time t = 0.295 using the H5W scheme.

M H3 rate H3E rate H3W rate
50 10.0e-00 5.3e-00 5.1e-00

100 7.7e-00 0.4 3.1e-00 0.8 2.9e-00 0.8
200 5.3e-00 0.5 1.6e-00 1.0 1.4e-00 1.1
400 3.5e-00 0.6 7.6e-01 1.1 6.3e-01 1.2
800 2.2e-00 0.7 3.5e-01 1.1 2.8e-01 1.2

M H5 rate H5E rate H5W rate
50 9.2e-00 4.6e-00 4.4e-00

100 6.6e-00 0.5 2.5e-00 0.9 2.3e-00 0.9
200 4.5e-00 0.6 1.3e-00 0.9 1.1e-00 1.1
400 2.8e-00 0.7 6.0e-01 1.1 5.1e-01 1.1
800 1.7e-00 0.7 2.7e-01 1.2 2.0e-01 1.4

Table 4.3.3: Relative percentage errors in L1 for the pressure at time t = 0.295 for the
rotor problem for various mesh sizes M using the H5W scheme on a 1600× 1600 mesh as
a reference solution.
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Another key issue in numerical simulations of multi-dimensional MHD is the behaviour
of divB. Note that the initial magnetic field is divergence free, hence the solutions of
(4.2.1) are expected remain divergence free. However, the schemes we use do not preserve
any discrete divergence. We consider the standard second order discrete divergence,

div(B)i,j =
(B1)i+1,j − (B1)i−1,j

2Δx
+

(B2)i,j+1 − (B2)i,j−1

2Δy
(4.3.1)

and present the L1 norm of the above discrete divergence in Table 4.3.4. As expected,
all the six schemes produce a nonzero discrete divergence. However, the values are quite
small, and seem to be decreasing with increasing mesh size. Note that the divergence
values are higher with the second-order schemes than with the first-order schemes. This
is not unexpected as the second-order schemes resolve the shocks within fewer mesh
points and hence generate a larger discrete divergence. Perhaps data such as these,
although commonly reported, primarily point towards the difficulty of numerically evalu-
ating derivatives at underresolved flow features. The key point is that divergence errors
are not effecting the stability of the schemes as all the schemes are stable even at the
finest mesh resolution of 1600×1600 mesh. This is unusual, and we have not come across
other papers presenting solutions on comparable mesh sizes. As an example, the reference
solutions in [80] were computed on a 400× 400 mesh.

M H3 H3E H3W H5 H5E H5W
50 2.2e-01 2.5e-01 2.1e-01 2.2e-01 2.4e-01 2.2e-01

100 1.7e-01 1.9e-01 1.8e-01 1.7e-01 2.0e-01 1.9e-01
200 1.4e-01 1.8e-01 1.6e-01 1.5e-01 1.9e-01 1.6e-01
400 1.3e-01 1.8e-01 1.5e-01 1.2e-01 1.6e-01 1.4e-01
800 1.1e-01 1.7e-01 1.5e-01 9.6e-02 1.5e-01 1.2e-01

1600 1.0e-01 1.6e-01 1.4e-01 8.2e-02 1.4e-01 1.2e-01

Table 4.3.4: The L1-norm of the discrete divergence at time t = 0.295 for the rotor
problem for various mesh sizes M .

Orszag-Tang vortex

This commonly used benchmark test ([80]) has initial conditions given by

(ρ, ρu,B, p) =
(
γ2,−γ2 sin(πy), γ2 sin(πx), 0,− sin(πy), sin(2πx), 0, γ

)
. (4.3.2)

The computational domain is (x, t) ∈ [0, 2]2 × [0, 1] with periodic boundary conditions.
Even though the initial data are smooth, the solution develops shocks near the diag-

onals and a current sheet in the center of the domain. The solution also has interesting
smooth features. We compute with all the six schemes and present the computed pressure
at the final time on a 200 × 200 mesh in Figure 4.3.5. Both the first-order H3 and H5

schemes are stable but dissipative. The shocks are smeared and the central vortex is not
resolved. The H5 scheme is better at approximating the solution than the H3 scheme. The
second-order schemes resolve the solution far better. The resolution of the shocks with
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(a) H3 (b) H5

(c) H3E (d) H5E

(e) H3W (f) H5W

Figure 4.3.5: Pressure for the Orszag-Tang vortex on a 200 × 200 mesh at time t = 1
scaled to the extrema of the pressure in the reference solution.
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the second-order schemes is very impressive. The smooth regions are also resolved quite
accurately. We compute the a reference solution using the H5W scheme on a 1600× 1600
mesh. Figure 4.3.6 shows the pressure of the reference solution. We observe that the H5W
scheme at this very fine mesh is stable and resolves the shocks as well as the central current
sheet very well. Table 4.3.5 shows relative percentage L1 errors in pressure on a sequence
of meshes. As shown in the table, the first-order H5 scheme has lower errors than the

Figure 4.3.6: This figure shows the computed pressure for the Orszag-Tang vortex using
the H5W scheme on a 1600× 1600 mesh at time t = π.

first-order H3 scheme. Similarly, the second-order schemes significantly outperform (by
an order of magnitude) the first-order schemes. In particular, the WENO-based schemes
have lower errors than the ENO-based ones. Note that the second-order H5W scheme is
the most accurate with respect to the errors and has the best rate of convergence of about
1.3. The results are consistent with those obtained for the rotor problem.

We also calculated the discrete divergence for this test case. The results of this was
very similar to the divergence measured for the rotor problem.

Cloud-Shock Interaction

This is a benchmark test describing the interaction of a dense region (cloud) at rest with
a moving shock. The computational domain is (x, t) ∈ [0, 1]2 × [0, 0.06] with artificial
Neumann type boundary conditions. The initial conditions consist of a shock moving to
the right initially located at x = 0.05, and a circular cloud of density ρ = 10 and radius
r = 0.15 centered at x = (0.25, 0.5).

ρ =

⎧⎪⎨
⎪⎩

3.86859 if x < 0.05,

10.0 if |x− (0.25, 0.5)| < 0.15,

1.0 otherwise,

u =

{
(11.2536, 0, 0) if x < 0.05,

(1.0, 0, 0) otherwise,
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M H3 rate H3E rate H3WE rate
50 3.6e+01 1.5e+01 1.4e+01

100 2.9e+01 0.3 8.8e-00 0.8 8.0e-00 0.8
200 2.2e+01 0.4 5.0e-00 0.8 4.4e-00 0.9
400 1.5e+01 0.6 2.6e-00 0.9 2.4e-00 0.9
800 1.0e+01 0.6 1.5e-00 0.8 1.3e-00 0.9

M H5 rate H5E rate H5W rate
50 2.9e+01 1.2e+01 1.1e+01

100 2.3e+01 0.3 7.1e-00 0.8 6.2e-00 0.8
200 1.6e+01 0.5 4.0e-00 0.8 3.4e-00 0.9
400 1.1e+01 0.5 2.0e-00 1.0 1.6e-00 1.1
800 7.2e-00 0.6 8.3e-01 1.3 5.9e-01 1.4

Table 4.3.5: Percentage relative errors in L1 for pressure at time t = π for the Orszag-
Tang vortex for various mesh sizes M using the H5W scheme on a 1600× 1600 mesh as
a reference solution.

p =

{
167.345 if x < 0.05,

1.0 otherwise,

B =

{
(0, 2.18261820,−2.18261820) if x < 0.05,

(0, 0.56418958, 0.56418958) otherwise.

The cloud is initially in hydrostatic equilibrium with the surrounding fluid. The bubble
should stay stationary whereas the shock travels towards it, hits it and starts interacting
with it. This interaction generates a bow shock in the front, tail shocks in the rear and
we expect the creation of interesting turbulent-like structures where the cloud interacts
with the shock. A graphical description of this complex evolution is provided in figure
4.3.7 where the total energy at four different times is plotted on a 200 × 200 mesh with
the H3W scheme. Again, we compute the solutions with all the six schemes and present
numerical results of the total energy on a very fine mesh 1600×1600 mesh with all the six
schemes in Figure 4.3.8. The figure illustrates the stability of all the six schemes at this
fine mesh resolution. The first-order schemes are a bit dissipative and do not approximate
the turbulent like structures that are visible in the second order computations. The second
order schemes are much more accurate with good resolution of the shocks as well as the
turbulent-like structures in the bubble. The differences between the first-order and the
second-order schemes are considerable while there are some minor differences between the
ENO and WENO approximations.

In this test case we found the discrete divergence to be larger than in the other test
cases, with L1 norms in the range 0.1–4.0. Furthermore we did not observe a strong
convergence to zero as the mesh was refined. This might be due to the strong shocks
present in this test case. However, there is no sign that these divergence errors affect
either the stability or the resolution of the schemes.
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(a) t=0.015 (b) t=0.03

(c) t=0.045 (d) t=0.06

Figure 4.3.7: Energy distribution for the cloud-shock interaction at four different times
on a 200× 200 mesh with the H3W scheme.
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(a) H3 (b) H5

(c) H3E (d) H5E

(e) H3W (f) H5W

Figure 4.3.8: Energy distribution for the cloud-shock interaction on a 1600× 1600 mesh
at time t = 0.06.



4.4. CONCLUSION 133

4.4 Conclusion

We describe finite volume schemes for the MHD equations in the semi-conservative form
(4.1.2). This form is symmetrizable as well as Galilean-invariant. Furthermore, the form
of the semi-conservative version of the equations in several dimensions is similar to that
in one-space dimension, enabling us to design one-dimensional schemes that are easily
generalized to multidimensional data. We design suitable three-wave and five-wave ap-
proximate Riemann solvers. Both solvers can handle the presence of non-constant normal
magnetic fields and can be thought of as extensions of the highly popular three-wave
and five-wave solvers of [36] and [59] respectively. The Godunov-Powell source term is
discretized in a novel manner by using the waves and states of the approximate Riemann
solver. The resulting first-order schemes can be extended to second-order spatial accuracy
by using ENO and WENO-type reconstructions. The reconstructions need to be modified
to preserve positive pressures and densities.

We test the schemes on a variety of numerical experiments in both one- and two-space
dimensions. The results obtained by the schemes (particularly the second-order versions)
were impressive, both with respect to stability and accuracy. In particular, the schemes
were able to compute the solutions for the advection of varying normal magnetic field
in one-dimension and the expected orders of convergence were obtained. The benchmark
two-dimensional numerical experiments showed that the schemes were very stable, even on
fine meshes. It is well known that computing two-dimensional MHD on very fine meshes
leads to stability problems and the schemes of this paper were able to handle these fine
mesh resolutions. Similarly, the accuracy of the schemes was impressive. Among the
schemes, the HLL five-wave solver was better in terms of resolution (even at second-
order) than the HLL three-wave solver. Similarly the WENO-based schemes were more
accurate than the ENO-based schemes. The highly resolved solutions (obtained on very
fine meshes) can serve as benchmark reference solutions for future computations. Discrete
values of divB were low in general and reduced as the mesh was refined. Divergence errors
did not affect either the stability or the accuracy of the resulting solutions.

Based on the numerical evidence, we conclude that using the semi-conservative form of
the MHD equations, with very careful discretizations of the fluxes and the Godunov-Powell
source term together with proper high-order reconstructions is a very appealing strategy
for designing robust schemes for MHD equations. These robust schemes are trivial to
extend to three dimensions and we aim to employ them for more realistic astrophysical
simulations in a forthcoming paper. Similarly, designing higher than second-order schemes
is a work in progress.
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Abstract

We present a model for simulating wave propagation in stratified magneto-
atmospheres. The model is based on equations of ideal MHD together with gravi-
tational source terms. In addition, we present suitable boundary data and steady
states to model wave propagation. A finite volume framework is developed to sim-
ulate the waves. The framework is based on HLL and Roe type approximate Rie-
mann solvers for numerical fluxes, a positivity preserving fractional steps method
for discretizing the source and modified characteristic and Neumann type numerical
boundary conditions. Second-order spatial and temporal accuracy is obtained by
using a ENO piecewise linear reconstruction and a stability preserving Runge-Kutta
method respectively. The boundary closures are suitably modified to ensure mass
balance. The numerical framework is tested on a variety of test problems both for
hydrodynamic as well as magnetohydrodynamic configurations. It is observed that
only suitable choices of HLL solvers for the numerical fluxes and novel Neumann
type boundary closures yield stable results for numerical wave propagation in the
presence of complex magnetic fields.

5.1 Introduction

There is considerable interest in the astrophysics community regarding the problem of
wave propagation in magnetized stellar atmospheres. The main theme of this research is
to determine how convection generated waves transport and deposit energy in the over-
lying chromospheric and coronal plasmas. Models aim to explain the observed energy
distribution in interesting astrophysical objects like the sun. The mathematical descrip-
tion of the underlying physical processes in realistic magneto-atmospheres is extremely
complicated. The models for this wave heating problem include the equations of ideal
magneto-hydrodynamics (MHD) together with complicated source and diffusion terms.
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In addition, radiative transfer and non-equilibrium thermodynamics also play leading
roles. These models are described by systems of nonlinear partial differential and integral
equations in three dimensions, coupled with realistic initial and boundary data. The issue
of determining model parameters along with proper initial and boundary data requires
considerable observational work.

It is not possible to obtain analytical solutions for the full model or even extremely
simplified versions of it. Also for these equations, theoretical results concerning exis-
tence, uniqueness and qualitative behavior are currently unavailable. Therefore, in order
to investigate these models, one must resort to numerical methods. Even this task faces
formidable difficulties due to nonlinearity and sheer computational complexity. A detailed
account of the physical processes involved in wave propagation along with extensive ref-
erences to the corresponding astrophysics literature can be found in in [69, 18].

In [69, 18], the authors consider a relatively simple model for wave propagation in the
solar atmosphere. This model takes into account the equations of compressible ideal MHD
along with gravitational source terms, supplemented by a description of the underlying
steady states. Waves in the “solar” atmosphere are modeled by inducing perturbations of
these steady states. We adopt the modeling framework of the above papers as a starting
point of this work and develop a class of schemes of the finite volume type to simulate this
model. A complete description of these schemes involves suitable approximate Riemann
solvers for the ideal MHD equations, proper treatment of the gravitational source term
and an appropriate implementation of boundary conditions.

The core of the model we consider consists of the equations of ideal MHD. Conse-
quently, most of the computational effort is directed at MHD solvers. The MHD equa-
tions are an example of a system of non-linear hyperbolic conservation laws. Solutions
of these equations develop discontinuities such as shock waves and contact discontinuities
even for smooth initial data. Furthermore, the MHD equations are not strictly hyperbolic
and contain a large number of waves. Some of the characteristic fields are not convex (i.e.
genuinely nonlinear except in some subset of state space), and the resulting solutions can
have intermediate and compound shocks. All these issues have to be addressed in order
to design efficient numerical methods for ideal MHD.

Finite volume methods are a popular type of numerical framework for approximating
solutions to conservation laws. These methods are based on approximating the integral
form of the conservation law on each cell or control volume. Numerical fluxes at each
cell interface are based on either exact or approximate solutions of Riemann problems at
the interface. Higher order of accuracy in space can be obtained by using non-oscillatory
ENO/WENO type piecewise polynomial functions in each cell. Higher order accuracy
in time is obtained by using suitable Runge-Kutta solvers. A detailed account of these
methods is presented in [50].

In this paper, we will consider approximate Riemann solvers of the HLL type (see
[50]) when constructing numerical fluxes. These solvers are based on approximating the
solution of Riemann problems by a piecewise constant function containing fewer disconti-
nuities than there are waves in the exact solution. A complete description of the solver is
provided by specifying the wave speeds and intermediate states. The ideal MHD equations
have seven waves (in one space dimension). Typical HLL solvers for the MHD equations
involving 2, 3, 5 and 7 waves have been developed. Among these are the 3 wave solvers
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of [53] and[36], the 5 wave solver of [59] and the 3, 5 and 7 wave solvers of [20, 21]. The
latter ones are based on an extended Suliciu type relaxation system.

Another alternative is to use linearized approximate Riemann solvers. In this case,
the exact solution of Riemann problems at each cell interface is replaced by an exact
solution of a suitable linearization of the non-linear flux function across the interface.
The resulting solvers are denoted as Roe type approximate Riemann solvers for systems
of conservation laws (see [50]) for details). These solvers are known to have high accuracy,
in particular they resolve isolated discontinuities exactly. Roe type solvers for ideal MHD
have been developed in [23], [24],[8] and other references therein.

When choosing an approximate Riemann solver, the key issues are computational
cost, accuracy and stability. One essential stability criteria for ideal MHD is maintaining
positive density and pressure. Another desirable property for a solver is that a discrete
entropy condition should hold, in which case the solver is said to be entropy stable. In one
space dimension, the standard HLL two wave solver, three wave solver of [36], five wave
solver of [59] and the relaxation based solvers of [20, 21] are provably positivity preserving
1. The three wave solver of [53] has not been proven to be positivity preserving. It is well
known that Roe type solvers are not positivity preserving. The solvers of [20, 21] are also
entropy stable. However, for MHD all these results are valid in only one space dimension.

The above schemes are restricted to first-order accuracy in both space and time. We
use standard piecewise linear ENO ([40]) reconstruction to obtain second-order spatial ac-
curacy. Second-order accuracy in time is obtained by using the strong stability preserving
(SSP) Runge-Kutta method ([37]).

When simulating stratified atmospheres, the numerical treatment of the gravitational
source term has to be taken into account. The presence of this source term leads to
interesting steady states that need to be preserved. Furthermore, waves are modeled as
perturbations of these steady states. The pressure and density at a steady state decay
exponentially in the vertical direction due to the presence of gravity, which leads to very
low densities and pressures at the top of the computational domain. Since preserving
positivity is a challenge for any solver, this problem is particularly acute in stratified
atmospheres. We treat the source term by using the method of fractional steps and
identify suitable stability conditions and discretizations which still keep the HLL solvers
positivity preserving. Second-order accurate fractional steps is obtained by using Strang
splitting ([50]).

The next issue that needs to be addressed for the simulation of waves is that of
boundary conditions. For simplicity, consider a two-dimensional model with x- and z-
directions being associated with the horizontal and vertical directions respectively. Since
we are interested in simulating a small part of the solar atmosphere, we use periodic
boundary conditions at the x-boundary. At the bottom z-boundary, we have to prescribe
boundary conditions in order to model incoming waves. At the top z-boundary, we need
to implement numerical boundary conditions that minimize reflections when waves (from
the bottom of the domain) reach this boundary. Furthermore, this boundary should
not generate any waves or numerical artifacts that affect the quality of the solution in
the interior of the domain. The vertical boundary conditions have to retain the mass

1We define a positivity preserving scheme as a scheme that ensures that density and pressure remains
positive under a suitable CFL-condition.
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balance and not lead to conservation errors. Conservation errors will force solutions away
from the steady state. Since the solutions have very low pressures at the top boundary,
conservation errors can easily lead to negative pressures and densities.

We adapt the non-reflecting characteristic boundaries developed in [78, 79, 63] to this
problem. The adaptation is complicated on account of the complex eigenstructure and the
non-strict hyperbolicity of the equations. We also introduce an alternative implementa-
tion of the non-reflecting boundary conditions of [78, 79]. Additionally, we have to adapt
the boundary conditions in order to ensure mass balance. Another alternative implemen-
tation of boundary conditions is to modify simple Neumann type numerical boundary
conditions to enforce mass balance. This choice might lead to greater amount of reflec-
tions. Furthermore, we propose a novel set of boundary conditions based on extrapolating
(by an exponential profile) the pressure and the density from the interior of the domain
into the ghost cells together with Neumann type conditions for the velocity and magnetic
fields. We compare all the boundary conditions in numerical experiments.

The aim of the paper is to develop a finite volume based numerical framework that
simulates wave propagation in an idealized magneto-atmosphere. We implement different
first- and second-order accurate HLL type solvers as well as Roe solvers for the finite
volume fluxes and compare them in a series of experiments. The sources are discretized by
using a method of fractional steps that keeps pressures and densities positive. The model is
completed by boundary conditions of the characteristic type as well as Neumann type that
are modified to ensure mass balance in the domain. All the above ingredients are combined
together to obtain a finite volume framework that can simulate waves in stratified magneto
atmospheres. We emphasize that a successful simulation of wave propagation requires
proper choices of all the above ingredients and we present them in this paper.

The rest of the paper is organized as follows: in Section 5.2, we present the model of the
idealized solar atmosphere and specify the detailed eigenstructure of ideal MHD equations.
The approximate Riemann solvers are described and compared in a series of numerical
experiments in Section 5.3. In section 5.4, we explain the numerical approximation of
the gravity source term and provide a complete description of the boundary conditions in
Section 5.5. Numerical experiments for wave propagation in the idealized solar atmosphere
are provided in Section 5.6.

5.2 The model

In this section, we present the equations and initial and boundary conditions modeling an
idealized solar atmosphere. The basic equations of the model are the equations of ideal
MHD along with source terms due to gravity given by

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u + (p+
1

2
|B|2)I −B⊗B) = −ρge3,

Bt + div(u⊗B−B⊗ u) = 0,

Et + div((E + p+
1

2
|B|2)u− (u ·B)B) = −ρg(u · e3),

div(B) = 0.

(5.2.1)
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where ρ is the density, u = {u1, u2, u3} and B = {B1, B2, B3} are the velocity and
magnetic fields respectively, p is the thermal pressure, g is constant acceleration due to
gravity , e3 = {0, 0, 1}, E is the total energy determined by an ideal gas equation of state
of the form,

E =
p

γ − 1
+

1

2
ρ|u|2 +

1

2
|B|2. (5.2.2)

where γ is the adiabatic gas constant. The above equations describe the conservation of
mass, momentum and energy and the evolution of the magnetic field due to the velocity. In
addition, magnetic monopoles have not been observed in nature and this fact is modeled by
the constraint that the divergence of the magnetic field remains zero during the evolution.

In condensed form, the above equations (5.2.1) can be written as a system of balance
laws of the form,

Ut + (f(U))x + (g(U))y + (h(U))z = S(U), (5.2.3)

where U is the vector of conserved variables, f , g and h are the directional fluxes and S
is the source.

For simplicity, we consider the equations in two dimensions. The x coordinate repre-
sents the horizontal direction and the z coordinate the vertical direction. In particular
this means that no variable depends on y, i.e., ∂y ≡ 0 in (5.2.1). We consider (5.2.1) in
the domain [0, X]× [0, Z] where X and Z are positive numbers. Next, we specify steady
states (stationary solutions) that are of interest as they will serve as a background for the
propagation of waves.

5.2.1 Hydrodynamic steady state.

To begin with, we assume that the magnetic field B is set to zero implying that the model
is driven by ideal compressible hydrodynamics. In addition, the atmosphere is assumed
to be steady by setting the velocity field u to zero. With this ansatz the pressure and the
density have to satisfy the following ordinary differential equation

∂p

∂z
= −ρg. (5.2.4)

We look for solutions of (5.2.4) satisfying p(x, z) = cρ(x, z) for some constant c and for
all x and z, which amounts to assuming an isothermal atmosphere. This is a reasonable
approximation since we are interested in simulating the region around the lower chromo-
sphere of the sun where the temperature remains approximately constant. Substituting
this into (5.2.4) leads to the following hydrodynamic steady state,

u = 0, B = 0, ρ(x, z) = ρ0e
− z

H , p(x, z) = p0e
− z

H . (5.2.5)

where the scale height H is given by H = p0

gρ0
and p0 and ρ0 are the values of the pres-

sure and density at the bottom boundary of the domain. Observe that the pressure and
density decay exponentially with height, giving very low values near the top of the com-
putational domain. As a consequence, when we are performing numerical calculations of
small perturbations of this state, retaining positivity of pressure and density (particularly
at the top of the computational domain) is going to be a key difficulty.
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5.2.2 Magnetic steady states

Any realistic description of the solar atmosphere has to include magnetic fields. Hence,
we need to calculate steady states of (5.2.1) with non-trivial magnetic fields. Momentum
balance in (5.2.1) can also be written as

(ρu)t + div(ρu⊗ u + pI) = curl(B)×B− ρge3

This form makes the role of gravity and the Lorentz force explicit. The magnetic steady
state is a stationary solution of (5.2.1) with the additional ansatz that p = cρ, curl(B) = 0
and u = 0. This corresponds to stationary and Lorentz-force free fields. Substituting the
above ansatz into (5.2.1), we obtain that the density and the pressure is given by (5.2.5).
Furthermore, since the magnetic field B is assumed to be such that curl(B) ≡ 0 and
div(B) ≡ 0, it can be expressed in terms of vector harmonic functions. As we consider
a small part of the solar atmosphere and assume periodic boundary conditions in the
horizontal direction, we choose to express the magnetic field in terms of a finite number
of modes in a Fourier expansion. A resulting steady state is given by

u = 0, B2 = 0, p(x, z) = p0e
− z

H , ρ(x, z) = ρ0e
− z

H ,

B1(x, z) =
M∑

k=0

fk sin

(
2kπx

X

)
e−

2πkz
X ,

B3(x, z) =
M∑

k=0

fk cos

(
2kπx

X

)
e−

2πkz
X ,

(5.2.6)

where fk’s are the Fourier coefficients corresponding to the data B1(x, 0) and B3(x, 0) at
the bottom boundary and M is the total number of Fourier modes for the boundary data.
We choose B2 ≡ 0 as the resulting magnetic field is planar. This is done for simplicity.

A simple calculation shows that (5.2.6) is indeed a steady state of (5.2.1). Furthermore,
the pressure and density have an exponential decay along the vertical direction. The
magnetic field is quite complicated and leads to a genuinely multi-dimensional description
of the model. These factors complicate design of numerical schemes.

5.2.3 The characteristic structure of ideal MHD

For the sake of completeness we give some details regarding the eigensystem of the MHD
equations. Consider the equation (5.2.1) in the x-direction without gravity i.e., g = 0.
The divergence constraint in one space dimension forces the magnetic field in x direction,
B1, to be constant in space and time, and thus act only as a parameter in the equations.
Defining the vector of primitive variables,

V = {ρ, u1, u2, u3, B2, B3, p}

the system (5.2.1) reduces to the following quasilinear form in one dimension,

Vt + A1(V )Vx = 0. (5.2.7)
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For the precise expression for the Jacobian matrix A1, see [68]. Defining the speeds

a2 =
γp

ρ
and b1,2,3 =

B1,2,3

√
ρ
,

b2 = b21 + b22 + b23, b2⊥ = b22 + b23,

the eigenvalues of A1 read

λ1 = u1 − cf , λ2 = u1 − b1, λ3 = u1 − cs, λ4 = u1,

λ5 = u1 + cs, λ6 = u1 + b1, λ7 = u1 + cf ,

where cf and cs are given by

c2f =
1

2

(
a2 + b2 +

√
(a2 + b2)2 − 4a2b21

)
,

c2s =
1

2

(
a2 + b2 −

√
(a2 + b2)2 − 4a2b21

)
.

(5.2.8)

The waves corresponding to λ1 and λ7 are called fast waves, the ones corresponding to
λ3 and λ5 slow waves, those corresponding to λ2 and λ6 Alfvén waves and the wave
associated with λ4 is called a contact wave. As the above eigenvalues are real, the system
is hyperbolic. But the eigenvalues are not always distinct, and the system is not strictly
hyperbolic. This non-strict hyperbolicity is a formidable obstacle to the development of
mathematical theory and numerical methods for MHD.

It is well known that the eigenvectors of (5.2.7) have to be scaled properly in order
to be well-defined. We now present the orthonormal set of eigenvectors first described in
[68]. The right and left eigenvectors corresponding to the contact wave λ4 are given by,

re = (1, 0, 0, 0, 0, 0, 0)T , le =
1

a2

(
a2, 0, 0, 0, 0, 0,−1

)
.

Define β2,3 = b2,3

b⊥
. Then, the eigenvectors corresponding to the Alfvén waves λ2 and λ6

are given by

r±A = (0, 0,±β3,∓β2,−√ρβ3sign (b1) ,
√
ρβ2sign (b1), 0)T ,

l±A =
1

2
(0, 0,±β3,∓β2,−β3sign (b1) /

√
ρ, β2sign (b1) /

√
ρ, 0) ,

where r+
A and l+A correspond to λ2.

As in [68], we introduce the following normalizing factors,

α2
f =

a2 − c2s
c2f − c2s

, α2
s =

c2f − a2

c2f − c2s
.

Note that α2
f + α2

s = 1. The eigenvectors corresponding to the fast and slow waves read,

r±f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

αfρ
±αfcf

∓αscsβ2sign (b1)
∓αscsβ3sign (b1)

αs
√
ρaβ2

αs
√
ρaβ3

αfρa
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, r±s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

αsρ
±αscs

∓αfcfβ2sign (b1)
∓αfcfβ3sign (b1)

αf
√
ρaβ2

αf
√
ρaβ3

αsρa
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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l±f =
1

2a2

(
0,±αfcf ,∓αscsβ2sign (b1) ,∓αscsβ3sign (b1) , αsa

β2√
ρ
, αsa

β3√
ρ
,
αf

ρ

)
,

l±s =
1

2a2

(
0,±αscs,∓αfcfβ2sign (b1) ,∓αfcfβ3sign (b1) , αfa

β2√
ρ
, αfa

β3√
ρ
,
αs

ρ

)
.

The normalization factors αf and αs are not well-defined at the triple point where b1 = a
and b⊥ = 0. In this case, we use the fact that α2

f + α2
s = 1, β2

2 + β2
3 = 1 and define

αf = αs = β2 = β3 = 1/
√

2.

5.3 Approximate Riemann solvers

In this section we review the different approximate Riemann solvers that we want to
test. Consider the ideal MHD equations (5.2.1) with g = 0 in the domain [0, X]× [0, Z].
We divide this into I × K cells (or control volumes), and define xi = −Δx/2 + iΔx,
i = 0, . . . , I + 1, and zk = −Δz/2 + kΔz, k = 0, . . . , K + 1, so that zk+1/2 = kΔz. Let Ii,k
denote the control volume [xi−1/2, xi+1/2)× [zk−1/2, zk+1/2). The cell average of the vector
of conserved variables at time tn over the cell Ii,k is given by Un

i,k. Let Δ = min{Δx,Δz},
then the time step Δtn is chosen by the CFL condition,

max
i,k

{∣∣u1,n
i,k

∣∣ + cf1,n
i,k ,

∣∣u3,n
i,k

∣∣ + cf3,n
i,k

} Δtn

Δ
≤ 1 (5.3.1)

where cfj,n
i,k is the fast speed in the j-th direction in the cell Ii,k . Then, a general finite

volume scheme is written,

Un+1
i,k = F (

Un
i−1,k, U

n
i,k−1, U

n
i,k, U

n
i+1,k, U

n
i,k+1

)
,

= Un
i,k −

Δtn

Δx

(
F n

i+1/2,k − F n
i−1/2,k

)− Δtn

Δz

(
Hn

i,k+1/2 −Hn
i,k−1/2

)
,

(5.3.2)

where the numerical fluxes are functions of the neighboring cell averages, i.e.,

F n
i+1/2,k = F

(
Un

i,k, U
n
i+1,k

)
, Hn

i,k+1/2 = H
(
Un

i,k, U
n
i,k+1

)
.

These numerical fluxes should be such that F (A,B) is an approximation to the solution
at x = 0 of the Riemann problem in the x direction for (5.2.1). To be concrete, if U
satisfies

Ut + f(U)x = 0, U(x, 0) =

{
UL x < 0,

UR x > 0,

then F (UL, UR) ≈ f(U(0, t)). The numerical flux H(UL, UR) is defined analogously.
We will use approximate Riemann solvers of the HLL type, see [50], in order to define

the numerical fluxes.

5.3.1 HLL2 solver

The number “2” denoting this approximate Riemann solver means that we approximate
the full Riemann solution using two moving discontinuities (waves). Let UL,R and fL,R
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denote the left and right state and flux respectively. If the speed of the two waves are
sL and sR then the constant state in between these waves, U∗ will be determined from
conservation by

fR − f∗ = sR (UR − U∗) , f∗ − fL = sL (U∗ − UL) ,

where f∗ denotes the numerical flux between these two waves. Solving the above equations
yields

U∗ =
fR − fL − sRUR + sLUL

sL − sR

, f∗ =
sRfL − sLfR + sLsR(UR − UL)

sR − sL

. (5.3.3)

Then, the numerical flux can be written as

F hll2(UL, UR) =

⎧⎪⎨
⎪⎩
fL if sL ≥ 0,

f∗ if sL < 0 < sR,

fR if sR ≤ 0.

(5.3.4)

It remains to define the waves speeds sL and sR, and we do this as in [28]. Let Ū =
(UL + UR)/2, then the wave speeds are given by

sL = min
{
u1

L − cfL, ū1 − c̄f
}
, sR = max

{
u1

R + cfR, ū1 + c̄f
}
, (5.3.5)

where ū1 and c̄f are the normal velocity and the fast wave speed of A(Ū) respectively.
This solver only approximates the outermost (fast) waves of the Riemann solution and
can be very dissipative, particularly at contact discontinuities.

5.3.2 HLL3 solvers

This type of solver uses three moving discontinuities to approximate the solution of the
Riemann problem. Let the UL,R and fL,R be as before. With this notation a HLL3 solver
gives the approximate solution

Uhll3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
UL if sL ≥ 0,

U∗L if sL < 0 < sM ,

U∗R if sM < 0 < sR,

UR if sR ≤ 0,

F hll3 (UL, UR) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
fL if sL ≥ 0,

f ∗L if sL < 0 < sM ,

f ∗R if sM < 0 < sR,

fR if sR ≤ 0,

(5.3.6)

where the outer wave speeds sL and sR are given by (5.3.5) and the middle wave speed is
given by sM . Local conservation implies,

sLU
∗
L − f ∗L = sLUL − fL, sMU

∗
R − f ∗R = sMU

∗
L − f ∗L, sRUR − fR = sRU

∗
R − f ∗R.

(5.3.7)
From this we obtain the following expressions for f ∗L and f ∗R

f ∗L = f∗ − sL(sR − sM)

sR − sL

ΔU∗, f ∗R = f∗ +
sR(sM − sL)

sR − sL

ΔU∗, (5.3.8)

where ΔU∗ = U∗R − U∗L and f∗ is given by (5.3.3).
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HLL3L solver:

In [53], the author determines the two middle states by making the following ansatz,

ΔU∗ = α(UR − UL),

where α is a parameter to be determined. If we set α = 0 the middle wave disappears
and we get the HLL2 solver. When α = 1, an HLL3 solver will give a single discontinuity
approximating the contact wave.

Since the middle wave is supposed to model the contact discontinuity, we can choose
the middle wave speed as the corresponding velocity of the Jacobian A(Ū), i.e., sM = ū1.
Set c∗ = |c̄f − sM | and

s =
|Δf − sMΔU |

|ΔU | ,

where ΔU = UR − UL and Δf = fR − fL, the interpolation factor α is then defined as

α = max

{
0, 1− s

c∗

}

This heuristic choice of α, which was suggested in [53], is motivated by the following
argument. If the true solution of

Vt + A(Ū)Vx = 0, V (x, 0) =

{
UL x < 0,

UR x > 0,

consisted of a single contact discontinuity, then Δf = sMΔU , which gives s = 0 and
α = 1. Similarly, if the solution consisted of a single fast shock with speed sM + c̄f (a
particular form of the HLL2 solution) s = c∗, which gives α = 0.

Although the pressure and density computed by this solver are not provably posi-
tive, the HLL3L solver gives satisfactory numerical results on many test problems (see
Section 5.6).

HLL3G solver

A positivity preserving HLL three wave solver was proposed by Gurski in [36]. We use the
notation of the previous section and the fluxes are defined in (5.3.6). We choose sL and
sR as the Einfeldt speeds of (5.3.5) and the middle speed sM as the normal Roe velocity
as in the HLL3L solver. Then from the conservation equations (5.3.7), we can express the
middle states in terms of sM ,

ρ∗L = ρL
(sL − u1

L)

(sL − sM)
, ρ∗R = ρR

(sR − u1
R)

(sR − sM)

p∗ = pL + ρL(u1
L − sL)(u1

L − sM) +
|BL|2

2
.

(5.3.9)

Note that the pressure does not jump across the contact discontinuity modeled by the
middle wave. Since we are considering (5.2.1) in one dimension, B1 is taken to be a
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constant. The tangential components of the velocity and the magnetic field do not jump
across the contact discontinuity and hence

u2,∗
L = u2,∗

R = u2,∗, B2,∗
L = B2,∗

R = B2,∗.

Identical expressions hold for u3 and B3, and we substitute them into the conservation
equations in order to get (in the case when B1 �= 0),

u2,∗ =
ρLu

2
L(u1

L − sL)− ρRu
2
R(u1

R − sR) + 0.5(B1(B2
R −B2

L)

ρL(u1
L − sL)− ρR(u1

R − sR)

u3,∗ =
ρLu

3
L(u1

L − sL)− ρRu
3
R(u1

R − sR) + 0.5(B1(B3
R −B3

L)

ρL(u1
L − sL)− ρR(u1

R − sR)

B2,∗ =
B2

L(u1
L − sL)−B2

R(u1
R − sR) +B1(u2

R − u2
L)

sR − sL

B3,∗ =
B3

L(u1
L − sL)−B3

R(u1
R − sR) +B1(u3

R − u3
L)

sR − sL

E∗L =
0.5(|BL|2u1

L) + (pLu
1
L + EL(u1

L − sL)− sMp
∗) +B1(B∗

L · u∗L −BL · uL)

sM − sL

E∗R =
0.5(|BR|2u1

R) + (pRu
1
R + ER(u1

R − sR)− sMp
∗) +B1(B∗

R · u∗R −BR · uR)

sM − sR

If B = 0 we can find the relevant formulas in [36]. The pressure and density computed
using this solver are always positive. In [36], the author noted that a modified version
of this solver resolves Alfvén and slow waves better, but we found that this modification
might lead to negative pressures in some of our simulations, and hence we use the original
version of this solver.

HLL3R solver:

In [20] and [21], an MHD 3-wave solver is derived from a relaxation system as an extension
of the work for hydrodynamics in [19]. This solver is positivity preserving, and it also
satisfies a discrete entropy inequality. We refer to [20] and [21] for justification, and only
describe the solver here. First assume that the outer wave speeds sL = uL − cL/ρL and
sR = uR + cR/ρR are given for some positive cL, cR. Define the relaxation pressure

πL,R =

(
p+

1

2
B2 − (B1)2,−B1B2,−B1B3

)
L,R

.

Then define the intermediate states

u∗ = uL
∗ = uR

∗ =
cLuL + cRuR + πL − πR

cL + cR
,

π∗ = πL
∗ = πR

∗ =
cRπL + cLπR + cLcR(uL − uR)

cL + cR
.

These are constant across the middle wave, so we can define the middle wave speed
sM = u1

∗. The intermediate state values for ρ, B2,3 and E are given by B1 being constant,
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and
BL,R

ρL,R

−B1πL,R

c2L,R

=
B∗

L,R

ρ∗L,R

−B1 π∗
c2L,R

,

eL,R +
(BL,R)2

2ρL,R

− π2
L,R

2c2L,R

= e∗L,R +

(
B∗

L,R

)2

2ρ∗L,R

− π2
∗

2c2L,R

.

Finally, adopting the notation of (5.3.6), the numerical flux is given by

f ∗L,R =
(
ρu1, ρu1u + π, u1B−B1u, Eu1 + π · u)∗

L,R
.

The coefficients cL and cR are given by

cL = ρL

(
a0

L +
1

2
(γ + 1)XL

)
, cR = ρR

(
a0

R +
1

2
(γ + 1)XR

)
with γ as in the equation of state (5.2.2),

XL = (u1
L − u1

R)+ +
(π1

R − π1
L)+

√
γρLpL + ρRcRf

, XR = (u1
L − u1

R)+ +
(π1

L − π1
R)+

√
γρRpR + ρLcLf

,

and a0
L,R given by (using the notation of (5.2.8))

(a0
L,R)2 =

1

2

⎛
⎝a2 +

b2

ξ
+

√(
a2 +

b2

ξ

)2

− 4a2
b21
ξ

⎞
⎠

L,R

,

with ξL,R =

(
cf + 1

2
(γ − 1)X

cf + 1
2
(γ + 1)X

)
L,R

.

5.3.3 Roe Solver

Although our focus in this paper is on the approximate Riemann solvers of the HLL type,
we briefly describe the Roe solver in order to compare it with the HLL solvers as well as
to use it in our implementation of non-reflecting characteristic boundary conditions.

Given two states UL, UR across an interface, let Â (see [24]) be the Roe matrix associ-
ated with UL, UR (the simple average A(UL+UR

2
) also suffices for most practical purposes).

Let R̂, L̂ be the right and left eigenvector matrices associated with Â. We can use the
Roe-Balsara eigensystem used in section 2 for the eigen-system decomposition, then the
Roe solver ([67]) is given by,

FRoe(UL, UR) =
1

2
(fL + fR − R̂|Λ̂|L̂(UR − UL)) (5.3.10)

where |Λ̂| = diag{|λ̂1|, . . . , |λ̂7|} with λ̂’s being the eigenvalues of the Roe-matrix. This
flux needs to be augmented with some standard entropy fix like the Harten ([38]) or
Harten-Hyman ([39]) entropy fix in order to comply with the entropy condition. We
use the Harten fix ([38]) in the numerical experiments presented later. It is well known
that the Roe solver is a linearized, low dissipative solver that resolves isolated shocks
exactly. Furthermore, it doesn’t necessarily preserve positivity leading to problems when
it is implemented in our solar atmosphere model.
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Remark 5.3.1. The above HLL and Roe solvers are based on the one-dimensional form
of the equations and require that the normal magnetic field Bi for i = 1, 3 is constant in
each direction. However, in multi dimensional computations, the normal magnetic field is
no longer constant. Hence, we need to suitably modify the solvers for multidimensional
problems.

We use a simple modification, in the i-th direction, we use Bi =
Bi

L+Bi
R

2
in our for-

mulas to define the numerical fluxes in each direction. This simple modification does not
guarantee that the solver remains positive but works reasonably well in all the numeri-
cal experiments that we performed. A careful modification of the solvers to make them
handle genuinely multidimensional data requires a suitable discretization of the Powell
source term, see [65] and, for HLL3R, [21].

5.3.4 Numerical Experiments

We will compare all the above solvers in a series of numerical experiments. Furthermore,
for all numerical examples in this paper we use γ = 5/3.

Regarding the measurement of errors, if we have a reference solution available, then
we define the relative error as

100× ‖α− αref‖
‖αref‖ ,

where α is (a component of) the numerical approximation and αref is (the same component
of) the reference solution, and ‖ · ‖ is some norm.

The Brio-Wu shock tube

We start with a one-dimensional test case proposed in [23]. The initial data are given by

ρ0 =

{
1.0 if x < 1.0,

0.3 if x ≥ 1.0,
u1

0 = 0, u2
0 = 0, u3

0 = 0,

B1
0 = 0.7, B2

0 =

{
0.0 if x < 1.0,

1.0 if x ≥ 1.0,
B3

0 = 0, p0 =

{
1.0 if x < 1.0,

0.1 if x ≥ 1.0.

The computational domain is (x, t) ∈ [0, 1.5]×[0, 0.35], and we use Neumann type artificial
boundary conditions for x = 0 and x = 1.5. The numerical results for 200 mesh points
at time t = 0.35 are shown in figure 5.3.1 and are compared in table 5.3.1. We calculate
the reference solution using the HLL3L solver and 8000 mesh points. As seen from the
error table as well as from Figure 5.3.1, the different solvers do quite well at resolving
the complicated solution which has a large number of waves. The error table shows that
the Roe-scheme has the best resolution, and the other schemes give very similar results.
As expected, all the schemes exhibit a convergence order roughly between 1

2
and 1 as the

number of mesh points increases. Among the HLL solvers, the HLL2 solver seems to be
the most dissipative and least accurate.
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Figure 5.3.1: Results for the Brio-Wu shock tube for 200 mesh points at time t = 0.35.
Top left: ρ, top right: u1, bottom left: B2 and bottom right: P

Relative errors
in ρ.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M HLL HLL3L HLL3G HLL3R Roe
100 4.42 3.35 3.71 3.49 2.64
200 3.21 2.31 2.61 2.33 1.60
400 1.92 1.25 1.50 1.30 0.72
800 1.19 0.73 0.91 0.77 0.37
1600 0.64 0.31 0.43 0.34 0.10

Relative errors
in B2.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M HLL HLL3L HLL3G HLL3R Roe
100 3.64 2.91 3.45 3.38 2.36
200 2.68 2.16 2.59 2.34 1.43
400 1.43 1.07 1.39 1.21 0.50
800 0.88 0.67 0.88 0.76 0.29
1600 0.43 0.28 0.43 0.34 0.11

Table 5.3.1: Relative errors in L1 for the density and B2 for the Brio-Wu shock tube using
M mesh points.
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An expansion problem

From the previous experiment, the Roe solver was found to be most accurate. However,
it is well known that the Roe solver fails to be positivity preserving. We present a test
case illustrating this phenomenon. Consider the initial data,

ρ0 = p0 ≡ 1, u2
0 = u3

0 = B1
0 = B3

0 ≡ 0,

u1
0 =

{
−4.0 if x < 0.7,

4.0 if x ≥ 0.7,
B2

0 =

{
1.0 if x < 0.7,

−1.0 if x ≥ 0.7.

and the computational domain [0, 0.14]× [0, 0.12] and test all the solvers on this test case.
The data is set up in a manner such that the exact solution loses mass in the center of
the domain and the resulting pressure and density are quite close to zero. The numerical
results for the pressure at 400 mesh points near the final time is shown in figure 5.3.2.
From figure 5.3.2, the HLL solvers do well in this case in resolving very low pressures

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Brio-Wu X - Pressure - time=0.011796

HLL2
HLL3L
HLL3R
HLL3G

Figure 5.3.2: Results for the pressure in the expansion problem for 400 mesh points at
time t = 0.12 with all the HLL solvers

near the center of the domain. There are minor differences in the resolution between
different HLL solvers. On the other hand, the Roe solver crashed on this test problem at
time t = 0.004 i.e about 4 percent of the final time, showing that its high accuracy and
resolution comes at a price i.e low stability particularly with respect to negative pressures.
This example serves as a caution in using the Roe solver on problems involving stratified
atmosphere, as low pressures are expected at the top boundary.
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The Orszag-Tang vortex

This is a commonly used two dimensional test problem, see e.g. [80], with initial data
given by{

ρ0, u
1
0, u

2
0, u

3
0, B

1
0 , B

2
0 , B

3
0 , p0

}
=
{
γ2,− sin(y), sin(x), 0,− sin(y), sin(2x), γ

}
.

The computational domain is (x, y, t) ∈ [0, 2π]2 × [0, 2.85] with periodic boundary condi-
tions in space. The initial data are smooth but shocks form even for small times. The
solution also contains a vortex structure in the center of the domain, and it is a com-
putational challenge to resolve the shock-vortex interaction. Note that divB0 = 0. In
Figure 5.3.3, we show the pressure at time t = 2.85 and compare the HLL3L, HLL3R,
HLL3G and Roe solvers on a uniform 200×200 mesh. From the figure, it is clear that the
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Figure 5.3.3: The pressure in the Orszag-Tang vortex at time t = 2.85 on a 200 × 200
mesh. Top left: HLL3L, top right: HLL3G, bottom left: HLL3R and bottom right: Roe

Roe scheme is the least dissipative and that the HLL3G scheme is the most dissipative.
The HLL3R has better resolution than the HLL3L solver for this particular problem,
although the differences are minor.

For this problem a reference solution is not available, and it is common to use the
pressure at the center of the domain as a measure of the accuracy of approximate solutions.
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In Table 5.3.2 we show the maximum pressure for the various solvers on a sequence of
meshes. It is generally assumed that the maximum pressure correlates with the quality of
the approximation. From table 5.3.2, it is clear that the Roe solver is the most accurate.

M HLL HLL3L HLL3G HLL3R Roe
100 4.00 4.41 4.01 4.90 5.27
200 4.74 4.94 4.73 5.38 5.39
400 5.11 5.21 5.09 5.59 5.88
800 - - - 5.97 -

Table 5.3.2: Maximum pressure for the Orszag-Tang vertex on anM×M grid for t = 2.85.
A “-” indicates that the computation was stopped due to negative pressure or density.

Among the HLL solvers, the HLL3R solver seems to have the best resolution. However,
when we refine the mesh up to 800 mesh points in either direction, all the solvers except
the HLL3R solver crash on account of negative pressures with the symbol − denoting a
crash of the solver. Even the HLL3R solver crashed on a 1600× 1600 mesh.

One possible reason might be the discretization of the divergence constraint ([9]).
Since none of our solvers are divergence preserving, and although the divergence of B0

is zero, for t > 0 discretizations of the divergence may not necessarily remain small. It
has been speculated that these divergence errors are the source of the instabilities and
negative pressures and densities experienced with many solvers. Therefore we exhibit the
L1 norm of the central difference approximation to the divergence in Table 5.3.3. The
divergence errors are quite large. Nevertheless, they do not seem to influence the quality
of the solution (as measured by the maximum pressure). Furthermore, the HLL3R solver
had the largest divergence errors, yet this was the only solver which managed to compute a
solution on the 800×800 mesh. From the available data, it also seems that the divergence
errors decrease with increasing mesh size. These preliminary observations indicate that

M HLL HLL3L HLL3G HLL3R Roe
100 1.92 2.81 1.86 9.66 7.77
200 1.77 2.93 1.71 8.28 6.94
400 1.47 2.60 1.44 6.95 5.64
800 - - - 6.03 -

Table 5.3.3: The L1 norm of the central discrete divergence for the Orszag-Tang vertex,
calculated on a sequence of meshes.

the relationship between accuracy, positivity and divergence preservation is likely to be
a complicated one. Similar features were observed in other two-dimensional numerical
experiments like the Rotor problem ([80]).

Remark 5.3.2. We would like to mention that divergence cleaning for MHD is a very
active research area and many methods to preserve discrete versions of the divergence
constraint have been proposed. See [80] for a comparison of different divergence cleaning
methods. We don’t consider such methods here as it is difficult to design stable boundary
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closures for these methods and boundary conditions are key ingredient in our numerical
recipe.

Another approach would be to add the Godunov-Powell source term (see [65]) that
transports divergence errors out of the domain. However, this method requires a very
careful “upwind” discretization of the source term. Furthermore, all divergence cleaning
procedures suffer from stability problems, particularly for string test cases ([10]). Hence,
we restrict ourselves to schemes without any special divergence cleaning in this paper.

5.3.5 Second-order accurate scheme

The above finite volume (5.3.2) is first-order accurate in both space and time. Hence,
the schemes were quite dissipative atleast on coarse meshes in the numerical experiments
presented above. Most realistic applications require the design of a scheme with higher-
order spatial and temporal accuracy. The semi-discrete form of this scheme is given by

d

dt
Ui,k = F i,k = − 1

Δx
(Fi+1/2,k − Fi−1/2,k)− 1

Δz
(Hi,k+1/2 −Hi,k−1/2), (5.3.11)

where Ui,k(t) is the cell-average of the unknown at time t. Note that we have dropped
time dependence in (5.3.11) for notational convenience. We will define the numerical
fluxes F,H below.

It is standard ([50]) to replace the cell averages Ui,k by non-oscillatory piecewise linear
reconstructions in-order to obtain second-order spatial accuracy. There are a variety of
reconstructions including the popular TV D MUSCL limiters ([50]). However, we will use
second-order ENO reconstruction ([40]) as this procedure can be easily extended to obtain
even higher-order schemes.

ENO Reconstruction:

Given the cell averages Ui,k, define the ENO-gradients in each direction as

DxUi,k =
1

Δx

{
Ui+1,k − Ui,k , if Γx

i,k ≤ 1

Ui,k − Ui−1,k , otherwise.
, DzUi,j =

1

Δz

{
Ui,k+1 − Ui,k , if Γz

i,k ≤ 1

Ui,k − Ui,k−1 , otherwise.

(5.3.12)
where

Γx
i,k =

|Ψ(Ui+1,k)−Ψ(Ui,k)|
|Ψ(Ui,k)−Ψ(Ui−1,k)| , Γz

i,k =
|Ψ(Ui,k+1)−Ψ(Ui,k)|
|Ψ(Ui,k)−Ψ(Ui,k−1)| ,

and Ψ is a global smoothness indicator. We use Ψ(U) = ρ + |B|2 as the smoothness
indicator as it provides adequate representation of all the discontinuities in the solution
of the Riemann problem for the MHD equations. Other global smoothness indicators can
also be used. Note that for piecewise linear reconstruction, the ENO procedure reduces
to providing a limiter for the slopes in each direction. The reconstructed piecewise linear
function is each cell is denoted by,

U i,k(x, z) = Ui,k +DxUi,k(x− xi) +DzUi,k(y − yk). (5.3.13)
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We define the following point values,

UEi,k = U i,k(xi+1/2, zk), UWi,k = U i,k(xi−1/2, zk),

UNi,k = U i,k(xi, zk+1/2), USi,k = U i,k(xi, yk+1/2).

We use the above defined values to define the second-order numerical fluxes as

Fi+1/2,k = F (UEi,k, UWi+1,k), Hi,k+1/2 = H(UNi,k, USi,k+1),

where F,H are given by any of the HLL2, HLL3L, HLL3G, HLL3R and Roe solvers of
the previous section. This completes the description of the second-order spatial accurate
semi-discrete scheme (5.3.11).

Second-order time stepping:

We augment the second-order spatially accurate scheme (5.3.11) with the following strong-
stability preserving TV D second-order accurate Runge-Kutta time stepping ([37]),

U∗i,k = Un
i,k + ΔtnFn

i,k,

U∗∗i,k = U∗i,k + ΔtnF∗i,k,
Un+1

i,k =
1

2
(Un

i,k + U∗∗i,k),

(5.3.14)

where F is the residual in the semi-discrete scheme (5.3.11). The time step Δtn is deter-
mined by a standard CFL condition.

5.3.6 Numerical Experiments with second-order schemes:

We present a one-dimensional numerical experiment to demonstrate the gain in accuracy
for a second-order scheme. We choose the Brio-Wu shock tube of the previous subsection
and show the results obtained with second-order schemes in figure 5.3.4. We show the
density and B2 computed on a mesh with 200 points. In-order to prevent cluttering in the
figure, we present the results with just three schemes: HLL2, HLL3L and HLL3R in both
the first-order (spatial and temporal) and second-order (spatial and temporal) versions.
The results show that there is a large gain in accuracy and resolution by going to second-
order. In particular, notice the sharp resolution of the contact discontinuity (even for the
HLL2 solver). Furthermore, the differences between the solvers are far less pronounced
in the second-order versions than in the first-order ones. A quantitative confirmation of
the above observations is provided in the error table 5.3.4 where we present the relative
errors in pressure on a sequence of meshes for both the first- and second-order versions of
the HLL-solvers. The results show that the second-order errors schemes have lower errors
than the first-order schemes. The different second-order schemes with HLL2, HLL3L
and HLL3R solvers are very similar in their numerical performance. Furthermore, the
observed rate of convergence for the first-order schemes is around 0.7 and for the second-
order schemes is around 1.05. This is expected as the presence of discontinuities in the
solution erodes the expected convergence rates. The above test case serves to demonstrate
the improvement obtained by using second-order accurate schemes. We will present two-
dimensional second-order numerical results in the section on wave propagation.
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Figure 5.3.4: The density and the magnetic field B2 in the Brio-Wu shock tube at time
t = 0.35 on a 200 mesh comparing first and second-order schemes.

M HLL2 HLL2(2nd) HLL3L HLL3L(2nd) HLL3R HLL3R(2nd)
50 4.2 3.2 3.4 3.0 4.2 3.2

100 2.5 0.79 1.4 1.19 2.0 0.76 1.3 1.20 2.5 0.69 1.5 1.1
200 1.6 0.64 0.82 0.77 1.3 0.62 0.75 0.8 1.6 0.8 0.82 0.87
400 0.90 0.83 0.31 1.40 0.67 0.95 0.28 1.42 0.92 0.75 0.32 1.35
800 0.58 0.63 0.17 0.86 0.48 0.79 1.16 0.84 0.57 0.64 0.17 0.91

Table 5.3.4: Relative percentage errors for the pressure in L1 at time t = 0.35 and the
order of convergence for the Brio-Wu shock tube for various mesh sizes M taking the
HLL3L scheme with 6400 grid points as a reference solution.
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5.4 Discretization of the source term

In order to complete the description of a finite volume scheme of the last section, it
remains to include the gravity source term in (5.2.1). As stated before, a key issue that
has to be considered is to discretize the source term in an appropriate manner so that the
updated pressures and densities remain positive and the interesting steady states (5.2.5)
and (5.2.6) are preserved to a sufficient degree of accuracy. The source term is included by
the method of fractional steps or operator splitting. In the first step, we need to update
the fluxes in the finite volume scheme.

In this step, we advance the approximate solution Un
i,k by a finite volume method using

the approximate Riemann solvers of the previous section. This results in the following
scheme,

U
n+1/2
i,k = F (

Un
i−1,k, U

n
i,k−1, U

n
i,k, U

n
i+1,k, , U

n
i,k+1

)
, (5.4.1)

where F is the update function given in (5.3.2).
In the next step, we update U by solving the following ordinary differential equation,

Ut = S(U), (5.4.2)

where S represents the right hand side of (5.2.1). This means that the cell average
Un+1

i,j = U(Δt) where U is the solution of the differential equation

d

dt
U(t) = S(U(t)), U(0) = U

n+1/2
i,k .

We can solve this ODE by any suitable numerical method. However, due to the simple
form of S, we are able to calculate the exact solution as

Un+1
i,k = U

n+1/2
i,k

+ Δt

(
0, 0, 0,−gρn+1/2

i,k , 0, 0, 0,−ρn+1/2
i,k u

3,n+1/2
i,k g +

ρ
n+1/2
i,k g2Δtn

2

)
.

(5.4.3)

Remark 5.4.1. If the update function F in (5.4.1) is positivity preserving, it is desirable
that the scheme retains this positivity. If we use the exact update, (5.4.3), a straight-
forward calculation shows that the positivity still holds. If we use an implicit Euler method
the resulting scheme is positive, while if we use an explicit Euler method, positivity holds
for sufficiently small Δt.

If W denotes the solution operator of (5.4.2), then the resulting scheme reads

U
n+1/2
i,k = F (

Un
i−1,k, U

n
i,k−1, U

n
i,k, U

n
i+1,k, , U

n
i,k+1

)
,

Un+1
i,k = W

(
U

n+1/2
i,k

)
.

(5.4.4)

Remark 5.4.2. The above splitting is first-order accurate in time. It is straightforward to
extend it to second-order accuracy by using the fairly standard Strang splitting procedure
([50]). However, numerical experiments didn’t show a big improvement using this proce-
dure and we will show results only the above splitting, even when second-order accurate
spatial and temporal discretizations are employed for evolving the homogeneous part.
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5.5 Non-reflecting characteristic boundary conditions

To complete the description of the numerical scheme (5.4.4) we now specify boundary
values. As is standard for finite volume methods, this will be done by specifying values
in ghost cells outside the computational domain.

Since we are aiming at modeling a small part of a stratified atmosphere we use periodic
boundary values in the x direction. This amounts to setting Un

0,k = Un
I,k and Un

I+1,k = Un
1,k

for k = 1, . . . , K.
At the bottom boundary we specify the values in the ghost cells, i.e., we set Un

i,0,
i = 1, . . . , I. This is supposed to model an inflow situation.

The top boundary has no physical significance, and its placement is a function of
computational resources, most notably available storage and computing speed. The values
in the ghost cells at the top of the computational domain are supposed to model the “rest
of space”. Therefore, waves should not be reflected from this numerical boundary, and
we do not wish this boundary to generate any other numerical artifacts. Furthermore, we
have to ensure that no mass leaks out via the top boundary. We also want these boundary
conditions to result in a stable discretization which keeps density and pressure positive.

There is considerable amount of research on numerical boundary conditions. A very
incomplete list includes [29, 47] and references therein. In [78], the author designed
boundary conditions based on the characteristic decomposition for the Euler equations of
gas dynamics. The “no-reflection” property is ensured by discretizing derivatives suitably.
This scheme was extended to multiple space dimensions by a locally one-dimensional
projection. Some further modifications were proposed by [63]. This characteristic based
approach is very popular in the computational fluid dynamics community. They have been
advocated as suitable boundary conditions for MHD equations and we present a version
of this approach to the ideal MHD equations in this paper. Furthermore, we provide
an alternative formulation of the characteristic boundary conditions of [78, 79] in terms
of linearized solvers. This alternative formulation is easier to implement with the finite
volume procedure used in the interior of the computational domain. They also reveal
that the resulting schemes may lead to negative pressures and densities. The resulting
boundary conditions are designed to minimize reflections but are not well-balanced; i.e,
don’t ensure mass balance in the domain and lead to leakage of mass. We introduce a novel
modification of the boundary conditions in order to ensure mass balance in the domain.
This modification implies that there are some reflections from the boundary as information
has to be propagated to the interior in order to preserve mass balance. Therefore this
modification must be made in a such a way that the magnitude of reflections remains
small. We begin with a description of the characteristic boundary conditions below,

5.5.1 Characteristic boundary conditions

Consider the partially linearized equations (5.2.1) in the primitive form,

Ut + AUz = S̄(U), (5.5.1)

where S̄(U) = S(U) − f(U)x, and A is the Jacobian dh(U0) evaluated at some constant
U0. We consider this equation for z = Z, i.e., at the top boundary. Let R and R−1
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be an orthonormal eigensystem corresponding to A. Then we can diagonalize (5.5.1) by
introducing the vector of characteristic variables W = R−1U . The equations decouple to
yield,

Wt + ΛWz = R−1S̄ (5.5.2)

where Λ = diag {λ1, λ2, . . . , λ7}. We can use the Roe-Balsara eigensystem of Section 5.2.3
as the orthogonal eigensystem of A. Let ĵ be such that λj ≤ 0 for j ≤ ĵ and λj > 0
for j > ĵ. If j ≤ ĵ the characteristics of the jth equation of (5.5.2) are moving in
the negative z-direction, i.e., they are incoming. Similarly, for j > ĵ the characteristics
associated with the jth equation in (5.5.2) are outgoing. The basis of the characteristic
boundary conditions of [78, 79] is to discretize the z-derivative based on the direction of the
characteristics. If the characteristic is outgoing, then we use an upwind derivative. This
is possible as all the information is taken out of the domain. While if the characteristic
is incoming, information is supposed to flow into the domain. However, we don’t want
any information to go into the domain, and we will set the derivative in the incoming
characteristics to zero. This is the basis of the “no incoming wave” philosophy of the
characteristic type boundary conditions. When implementing this in practice, we use a
single row of ghost cells, located at k = K + 1. This row is updated using a discretized
version of (5.5.2) or (5.5.1), where we specify values for the characteristic variables in the
ghost cells depending on the direction of the corresponding characteristics.

This update of the ghost cells is consistent with the direction of the flow and implies
that there are no “incoming” waves into the domain and reflections are small. The
algorithm for the update of the ghost cells reads

Algorithm 5.5.1.

Step 1 Given Un
i,K and Un

i,K+1, choose a suitable Jacobian matrix An
i,K+1/2 determined by

these two values. Two examples are the Jacobian evaluated at the average of Un
i,K

and Un
i,K+1 and the Roe matrix given in [24].

Step 2 Compute the Roe-Balsara eigensystem

Rn
i,K+1/2 and

{
λ1,n

i,K+1/2 . . . , λ
7,n
i,K+1/2

}
from An

i,K+1/2. Using this eigensystem, compute the characteristic variables

W n
i,K = R−1,n

i,K+1/2U
n
i,K and W n

i,K+1 = R−1,n
i,K+1/2U

n
i,K+1.

Step 3 Compute the vector dn
i,K+1/2 =

{
d1,n

i,K+1/2, . . . , d
7,n
i,K+1/2

}
by

dj,n
i,K+1/2 =

{
λj,n

i,K+1/2

W j,n
i,K+1−W j,n

i,K

Δz
if λj,n

i,K+1/2 > 0,

0 otherwise,

where W j,n
i,k is the characteristic weight in the (i,K) cell for the j-th characteristic

field at the n-th timestep.
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Step 4 The update of the ghost cells then reads

Un+1
i,K+1 = Un

i,K+1 −
Δtn

Δx

(
F n

i+1/2,K+1 − F n
i−1/2,K+1

)
−ΔtnRn

i,K+1/2d
n
i,K+1/2 + ΔtnS

(
Un

i,K+1

) (5.5.3)

The above algorithm describes the implementation of the characteristic boundary con-
ditions for the ideal MHD equations with the gravitational source term. The key step
is step 3 above where the spatial derivative at the boundary is computed. Note that
this is based on the “no incoming wave” philosophy of [78, 79]. It turns out that this
boundary condition can be formulated in an alternative manner. This alternative formu-
lation is easier to use and more revealing about what happens when we use non-reflecting
characteristic boundary conditions. We give the alternative formulation below.

Algorithm 5.5.2.

Step 1 Compute Λn
i,K+1/2 and Rn

i,K+1/2 as in Algorithm 5.5.1.

Step 2 Set

W j,n
i,K+1/2 =

{
W j,n

i,K if λj,n
i,K+1/2 > 0,

W j,n
i,K+1 otherwise,

and set Un
i,K+1/2 = Rn

i,K+1/2W
n
i,K+1/2.

Step 3 The update of the ghost cells then reads

Un+1
i,K+1 = Un

i,K+1 −
Δtn

Δx

(
F n

i+1/2,K+1 − F n
i−1/2,K+1

)
− Δtn

Δz
An

i,K+1/2

(
Un

i,K+1 − Un
i,K+1/2

)
+ ΔtnS

(
Un

i,K+1

) (5.5.4)

In this formulation we see that what we are doing is adding (yet) another ghost cell
at (i,K + 2), setting the value at this ghost cell to Un

i,K+1 and then updating Un
i,K+1 via

a Roe type solver.
Thus, the “non-reflecting” characteristic boundary conditions in this formulation are

based on linearizing the equations at the boundary and using a Neumann-type boundary
condition as the normal derivative is taken to be zero by putting the same value on the
second ghost cell. In the lemma below we show that Algorithms 5.5.1 and 5.5.2 give the
same result.

Lemma 5.5.1. Let Un
i,K and Un

i,K+1 be given and An
i,K+1/2 be the linearization defined

above. Let dn
i,K+1 be calculated as in Step 3 of Algorithm 5.5.1 and Un

i,K+1/2 be defined
as in Step 2 of Algorithm 5.5.2. Then

An
i,K+1/2(U

n
i,K+1 − Un

i,K+1/2) = ΔzRn
i,K+1/2d

n
i,K+1/2, (5.5.5)

and thus the two algorithms give the same result.
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Proof. For clarity, we momentarily suppress “i” and “n” in our notation. Set

ĵ = argmax
j

{
λj

K+1/2 ≤ 0
}
,

and set ĵ = 0 if λj
K+1/2 > 0 for all j. Then

WK+1 −WK+1/2 =
{

0, . . . , 0,W ĵ+1
K+1 −W ĵ+1

K , . . . ,W 7
K+1 −W 7

K

}
.

From Step 3 of Algorithm 5.5.1 we get

ΔzdK+1 =
{

0, . . . , 0, λĵ+1
K+1/2

(
W ĵ+1

K+1 −W ĵ+1
K

)
, . . . , λ7

K+1/2

(
W 7

K+1 −W 7
K

)}
.

Therefore

AK+1/2

(
UK+1 − UK+1/2

)
= RK+1/2ΛK+1/2R

−1
K+1/2

(
UK+1 − UK+1/2

)
= RK+1/2ΛK+1/2

(
WK+1 −WK+1/2

)
= RK+1/2dK+1.

Hence, both the above formulations are equivalent. The second formulation based on
linearization and zero Neumann boundary conditions is very easy to use with the finite
volume framework of this paper. Numerical non-reflecting boundary conditions for finite
volume methods often use zero Neumann boundary conditions in ghost cells (see [50]).
The above lemma establishes that the characteristic boundary conditions of [78, 79, 63]
are of the same spirit and one has to replace the finite volume solver at the boundary
with a Roe solver to obtain the characteristic boundary conditions. This also paves the
way for further analysis of these boundary conditions in the finite volume framework.
Furthermore, it exposes a potential problem. As we discovered the Roe solver is not
positivity preserving, so using it at the top boundary where the pressures are expected to
be very low might lead to instabilities. Hence, characteristic boundary conditions might
run into problems near low pressures. We will investigate this issue further in numerical
experiments.

5.5.2 “Balanced” Boundary conditions.

When simulating stratified atmospheres we expect the density and pressure to be very
low near the top boundary of the computational domain. Furthermore, we desire to
preserve the steady states (5.2.5) and (5.2.6) at least approximately also in our numerical
approximations. This means that mass should not “leak” from the top boundary, since
such leakage is likely to lead to negative pressure or density. Hence, we have to balance
the boundary conditions suitably.

The strategy to “balance” the boundary conditions at the top boundary is based on the
following argument. The crucial step in Algorithm 5.5.1 is Step 3 where the vector dn

i,K+1
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is computed. If the j-th characteristic is outgoing, then using a upwind discretization is
consistent with the direction of propagation.

If the j-th characteristic is incoming, we set dn,j
i,k+1 = 0. The reasoning behind this is

based on the “no incoming wave” philosophy. However, in order to balance the boundary
conditions, we need to introduce some information from outside the domain. One rea-
sonable way of doing so is to put conditions on the incoming characteristics. A (semi)
discrete discretization of the jth equation of (5.5.2) reads

dW n,j
i,K+1

dt
+ dn,j

i,K+1 =
(
Rn,−1

i,K+1/2S̄
)j

.

Since, we aim to preserve the steady states (5.2.5), (5.2.6), and calculate perturbations
of them, it is reasonable to enforce the following steady state condition for the incoming
characteristics,

dW n,j
i,K+1

dt
= 0,

which is obtained by setting,

dn,j
i,K+1 =

(
Rn,−1

i,K+1/2S̄
)j

.

This modification ensures some form of mass balance across the boundary as the incoming
characteristic variables are kept steady, and will only affect Algorithm 5.5.1 in Step 3,
whose modified version now reads.

Step 3, balanced Set

S̄n
i,K+1 = Rn,−1

i,K+1/2

(
S
(
Un

i,K+1

)− F n
i+1/2,K+1 − F n

i−1/2,K+1

Δz

)
.

Then

dj,n
i,K+1/2 =

{
λj,n

i,K+1/2

W j,n
i,K+1−W j,n

i,K

Δz
if λj,n

i,K+1/2 > 0,

S̄j,n
i,K+1 otherwise.

Note that we enforce the steady state condition only on the incoming characteristic vari-
ables. No conditions are imposed on the outgoing characteristic variables. The non-zero
values for the incoming characteristic variables ensure the mass-balance, and (unfortu-
nately) this means that the “no-reflection” condition is violated and there will be some
reflections from the top boundary.

Remark 5.5.1. The second-order version of the characteristic-boundary conditions is
much more involved ([63]) and requires using second-order differences in Step 3 of Algo-
rithm 5.5.1. We will not consider the second-version in the remaining part of the paper
as it led to numerical instabilities.
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5.5.3 Simple Boundary conditions

Lemma 5.5.1 provided a connection between characteristic boundary conditions and zero
Neumann boundary conditions. Characteristic boundary conditions are equivalent to
zero Neumann boundary conditions if the given finite volume solver is replaced at the
boundary by a Roe solver. We can also use the zero Neumann boundary conditions by
specifying the ghost cell value to be the same as the value in the last physical cell of the
domain. However, this boundary implementation is not balanced. We can balance it by
the following simple modification. We compute the ghost cell values as follows,

ρn+1
i,K+1 = ρ0

i,K+1, P n+1
i,K+1 = P 0

i,K+1,

Bn+1
i,K+1 = B0

i,K+1, un+1
i,K+1 = un+1

i,K ,
(5.5.6)

where U0
i,K+1 are the values of the variables initially in the ghost cell. These conditions

imply that ρ, P and B in the ghost cells are set to their initial values. This step ensures
mass and magnetic field balance across the boundary. Furthermore, we put Neumann
boundary conditions for the velocity u which should minimize reflections when waves
from the interior reach the top boundary. It is quite straight-forward to extend (5.5.6)
to second-order accurate schemes. For second-order schemes, we need to specify values
in two layers of ghost cells in each boundary. Periodic boundary conditions along the x-
boundary are trivial to implement in the second-order version. The above simple boundary
conditions lead to the following values in the outermost ghost layer at the top boundary,

ρn+1
i,K+2 = ρ0

i,K+2, P n+1
i,K+2 = P 0

i,K+2,

Bn+1
i,K+2 = B0

i,K+2, un+1
i,K+2 = un+1

i,K−1.
(5.5.7)

5.5.4 Extrapolated Neumann Boundary conditions:

Numerical experiments will show that the simple Neumann boundary conditions (5.5.6)
presented above lead to large reflections and the characteristic type boundary conditions
are potentially unstable (due to the lack of positivity), particularly for magnetic fields.
Hence, we design a different set of boundary conditions that are stable, preserve the
mass balance and keep reflections at the top boundary low. These boundary conditions
are inspired by the specific structure of the exponentially decaying steady state pressure
and density profiles in (5.2.5) and (5.2.6). The first-order version of these extrapolated
boundary conditions are the of the form,

ρn+1
i,K+1 = ρn+1

i,K e−
Δz
H , P n+1

i,K+1 = P n+1
i,K e−

Δz
H , ∀i,

un+1
i,K+1 = un+1

i,K , Bn+1
i,K+1 = Bn+1

i,K .
(5.5.8)

The above boundary conditions extrapolate the pressure and density in the ghost cells
based on the exponential decay profile in (5.2.5),(5.2.6). The velocity and magnetic fields
are simply mirrored in the ghost cells. The differences between the extrapolated boundary
conditions in (5.5.8) and the simple boundary conditions in (5.5.6) lies in the way the
pressure and the density are extrapolated from the interior by using a exponential decay
rather than keeping the pressure and density fixed to their initial values. Furthermore, a
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Neumann condition is used for the magnetic field rather than keeping it fixed to the initial
value. The second-order version of these boundary conditions are based on specifying the
following values at the outermost ghost layer of the top boundary,

ρn+1
i,K+2 = ρn+1

i,K e−
2Δz
H , P n+1

i,K+2 = P n+1
i,K e−

2Δz
H , ∀i,

un+1
i,K+2 = un+1

i,K−1, Bn+1
i,K+2 = Bn+1

i,K−1.
(5.5.9)

Note that the above boundary condition is very simple to implement.

5.6 Wave propagation: Numerical experiments

In this section, we use the complete scheme including approximate Riemann solvers for
the numerical fluxes, proper discretization of source terms and boundary conditions to
simulate wave propagation in an idealized solar atmosphere. We present four different
sets of experiments, two without the magnetic field and two including the magnetic field.

5.6.1 Hydrodynamics: Steady state

We begin with simulations of the hydrodynamic steady state (5.2.5). The computational
domain is [0.4]×[0, 1]. The initial conditions are given by the steady state (5.2.5) with scale
height H = 0.158, initial pressure p0 = 1.13 and gravitational constant g = 2.74. Periodic
boundary conditions are used for the x-boundary. We test with the first- and second-order
versions of all the schemes proposed in this paper and with all three boundary conditions
at the top and bottom boundaries i.e, the characteristic type boundary conditions, the
Neumann-type simple boundary conditions (5.5.6),(5.5.7) and the extrapolated Neumann
boundary conditions (5.5.8),(5.5.9). The aim of this experiment is to see if the steady
state is preserved to a reasonable degree of accuracy.

The exact form of boundary conditions didn’t matter in this steady state experiment
and different boundary conditions led to similar qualitative results. Hence, we present
results only with the extrapolated boundary conditions in Table 5.6.1. In this table, we
present absolute errors in L1 for the pressure at the final time with the first- and second-
order versions of the HLL3G and HLL3R solvers. The results show that the steady state
is not preserved exactly. For the first-order schemes, the errors are quite large (of order
one). The HLL3R solver is slightly more accurate than the HLL3G solver. However, the
gain in accuracy obtained by using a second-order scheme is considerable. The errors are
reduced by two or three orders of magnitude and are quite low when one uses the second-
order schemes in this case. Also, the table demonstrates that the second-order schemes
result in the expected rates of convergence 2 in this case. The rates of convergence with
the first-order schemes show large variability (mostly due to the large errors) and the
trend suggests that we get a rate of close to one by refining the mesh further. We are
not presenting the corresponding results with the HLL2, HLL3L and Roe solvers as these
solvers gave very similar results. The HLL2 solver was slightly less accurate than the
HLL3G or HLL3R solvers and the HLL3L and Roe solvers were slightly more accurate.
The differences were much less pronounced when using the second-order versions of these
solvers. Similarly, the mass balance in the boundary conditions was absolutely essential.
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M HLL3G HLL3G (2nd) HLL3R HLL3R (2nd)
50 4.7e+ 1 2.1e− 1 2.4e+ 1 1.6e− 1
100 6.2e− 0 2.9 4.9e− 2 2.09 4.0e− 0 2.58 3.8e− 2 2.07
200 1.6e− 0 1.9 1.2e− 2 2.09 1.2e− 0 1.73 9.5e− 3 2.0
400 6.2e− 1 1.36 3.1e− 3 1.95 4.9e− 1 1.29 2.4e− 3 1.98

Table 5.6.1: Absolute errors in p and the rate of convergence for first- and second-order
versions of the HLL3G and HLL3R schemes for the hydrodynamic steady state at t = 1.8
on a 4M ×M mesh.

Using any of the boundary conditions without the balance led to errors, several orders of
magnitude more than the errors with the balanced versions of the boundary conditions.

5.6.2 Hydrodynamics: Wave propagation

The next step is to numerically simulate a hydrodynamic wave propagation model. The
computational domain is the same as in the previous experiment and we use a balanced
form of the boundary conditions at the top boundary. The propagation of waves is
initiated by sending in a sinusoidal (in time) sequence of waves from the bottom boundary
and letting them propagate across the domain and (hopefully) exit at the top. The
hydrodynamic steady state (5.2.5) serves as the background for the propagation of waves.
At the bottom boundary, the pressure, density and tangential velocities are specified by a
simple boundary condition analogous to (5.5.6). The waves are modeled by the following
boundary conditions for the normal velocity at the bottom,

u3,n+1
i,−1 = c sin

(
6πtn+1

)
χ[1.85,1.95] (5.6.1)

Hence, we model the bottom boundary as a localized piston in the interval [1.85, 1.95]
sending in sinusoidal waves. These waves move up the domain and are modified by the
flow equations. In Figure 5.6.1 we show u3 at t = 1.8 computed using different solvers
and boundary conditions. The results presented in figure 5.6.1 show that there is very
little difference between the HLL3G and HLL3R solvers when the boundary condition is
fixed. In fact all the five solvers showed very similar results for a given boundary condition
and we choose to present the results with the HLL3G and HLL3R solvers. However, the
differences in boundary conditions at the top boundary are much more pronounced. The
simple boundary conditions (5.5.6) reflect the waves considerably and are quite unsuitable
for simulating wave propagation. The reflection is reduced quite a bit by employing
either the characteristic boundary conditions or the extrapolated boundary conditions
(5.5.8). The results with the characteristic and extrapolated boundary conditions are a
bit different, on account of differences in the bottom boundary conditions. It is difficult
to decide which one is better in the current example although the extrapolated boundary
conditions seem to be slightly better at reducing reflections.

The effect of using second-order schemes is shown in figure 5.6.2 in which we present
u3 at time t = 1.8 with the first- and second-versions of the HLL3G and HLL3R solvers
and the extrapolated Neumann type boundary conditions (5.5.8),(5.5.9) This figure shows
that the second-order results are much less dissipative and the wave fronts are resolved
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(a) HLL3G,Simple (b) HLL3R,Simple

(c) HLL3G,Characteristic (d) HLL3R,Characteristic
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Figure 5.6.1: u3(x, z, 1.8) for the hydrodynamic wave propagation with the HLL3G and
HLL3R schemes with different boundary conditions at the top boundary on a 400× 100
mesh.
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(b) HLL3R,first- order, Extrapolated
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Figure 5.6.2: Results for u3 at time t = 1.8 for the hydrodynamic wave propagation on
a 400 × 100 mesh with the first- and second-order versions of the HLL3G and HLL3R
solvers with the extrapolated Neumann type boundary conditions.
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quite sharply at this resolution. The reflections are also quite low indicating the robust-
ness of the extrapolated boundary conditions. Summarizing, the hydrodynamic simu-
lations suggest that the HLL solvers are quite robust and the steady state is preserved
reasonably well, atleast with the second-order accurate schemes. However, the bound-
ary conditions at the top boundary have to chosen carefully. The simple Neumann type
boundary conditions (5.5.6) preserve mass balance but lead to high reflections. The re-
flections are reduced somewhat for the characteristic-type boundary conditions but these
are complicated to implement and expensive (atleast for the second-order versions). The
extrapolated boundary conditions (5.5.8), (5.5.9) are very simple to implement and have
atleast as low reflections as the characteristic boundary conditions. Furthermore, they al-
low robust and accurate simulations of waves when combined with second-order spatially
and temporally accurate schemes.

5.6.3 Magneto-hydrodynamics: Steady states

A realistic model of the solar atmosphere must account for the magnetic field. To test
the boundary conditions of the last section on this more complicated problem, we first
examined how the various methods manage to preserve the magnetohydrodynamic steady
state (5.2.6). The hydrodynamic variables and the computational domain were the same
as in the previous section, while the magnetic field was given in terms of its Fourier
components, see (5.2.6). These are listed in (5.6.2). (The X in (5.2.6) is in this case equal
to 4.)

{f0, f1, . . . , f14} = 10−1
{
0.21, −0.10, 0.11,

− 0.11, 0.10, −0.08, 0.07, −0.05, 0.03, −0.02, 0.01,

− 0.008, 0.005, −0.002, 0.001
}
.

(5.6.2)

The above magnetic field is both divergence and curl free and is complicated on account
of the Fourier modes. However, the coefficients of the larger modes are very small and
the initial modes dominate. We choose such a magnetic field to test whether the schemes
can handle a realistic configuration. Our aim is to test the solvers (in both first- and
second-order versions) and the boundary conditions. The results were very different from
the hydrodynamic case, particularly with regards to stability.

First, the characteristic type boundary conditions were quite unstable and led to
crashes due to oscillations and negative pressures. This is not entirely unexpected as
the alternative characterization of the characteristic boundary conditions in Lemma 5.5.1
shows that these boundary conditions use the Roe solver at the boundary. The Roe
solver is known to have problems with low pressures and densities, as is the case at the
top boundary. Hence, the characteristic boundary condition (used with any of the solvers)
is quite unstable with magnetic fields. The simple boundary conditions (5.5.6) are more
stable but lead to large errors. The extrapolated Neumann boundary conditions (5.5.8)
were found to the most stable among the three alternatives as well as the most accurate.

Furthermore, the HLL3L and Roe solvers fail to be stable with this magnetic field
(even on the coarsest mesh) resulting in crashes due to negative pressures. This was
independent of the boundary condition used. The HLL2 solver is stable but inaccurate.



5.7. CONCLUSION 167

The best results were obtained with the HLL3G and HLL3R solvers, together with the
extrapolated boundary conditions (5.5.8),(5.5.9) and we show results obtained with them
in tables 5.6.2. The pressure errors shown in table 5.6.2 establish that the differences

Mesh HLL3G HLL3G (2nd) HLL3R HLL3R (2nd)
200× 50 2.3e+ 1 1.5e− 1 2.5e+ 1 1.6e− 1
400× 100 4.2e+ 0 2.45 3.6e− 2 2.05 4.0e+ 0 2.64 3.8e− 2 2.07
800× 200 1.5e+ 0 1.48 9.0e− 3 2.0 1.3e+ 0 1.62 9.2e− 3 2.04

Table 5.6.2: Absolute errors in p and the rate of convergence for first- and second-order
versions of the HLL3G and HLL3R schemes for the magneto-hydrodynamic steady state
at t = 1.8 on a sequence of meshes with the extrapolated Neumann boundary conditions.

between the HLL3G and HLL3R solvers are minor in this case. The HLL3L and Roe
solvers crashed even on the coarsest mesh. However, the errors are large and of the order
one for the first-order schemes. The convergence rates for first-order schemes are better
than expected, probably on account of the large errors on these meshes. The second-order
schemes are much more (two to three orders of magnitude) accurate in this case and the
expected rates of convergence are obtained. Observe that the errors are very similar to
those obtained for the hydrodynamic steady case (table 5.6.1).

5.6.4 Magneto-hydrodynamics:Wave propagation

We use the same initial condition as the steady state computation (5.2.6) and introduce
waves by sinusoidally perturbing the bottom boundary like in (5.6.1). The wave propaga-
tion results are presented by showing u3 at time t = 1.8 with the HLL3G solver (in both
first- and second-order versions) and the extrapolated Neumann type boundary conditions
(5.5.8),(5.5.9) in figure 5.6.3. The norm of the magnetic field |B|2 is also shown in the fig-
ure 5.6.3. We present the results only with the HLL3G solver as the second-order version
of HLL3R solver crashed on some meshes in this case. From 5.6.3, the HLL3G solver and
the extrapolated boundary conditions seem to be robust in simulating the waves. Observe
that the magnetic field is perturbed on account of the waves. The second-order scheme
is more accurate and resolves the wave-fronts sharply.

5.7 Conclusion

Summing up, we proposed a model for wave propagation in stratified magneto-atmospheres.
The model was based on the ideal MHD equations with gravitational source term. The
object of interest was to simulate waves by perturbing steady states. Both hydrody-
namic and magneto-hydro dynamic steady states were considered and waves introduced
by perturbing the bottom boundary. Numerical difficulties included employing appropri-
ate approximate Riemann solvers, suitable discretizations of the gravity source term and
design of numerical boundary conditions to maintain stability, mass balance and reduce
reflections at the top boundary.
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Figure 5.6.3: Results for u3 and |B|2 at time t = 1.8 for the magneto-hydrodynamic wave
propagation on a 400× 100 mesh with the first- and second-order versions of the HLL3G
solver with the extrapolated Neumann type boundary conditions.



5.7. CONCLUSION 169

We implemented various approximate Riemann solvers of both the HLL-type and
Roe-type. Second-order accuracy in space was obtained by using a ENO-type limiter.
Temporal accuracy was increased to second-order by employing Runge-Kutta discretiza-
tions. No special form of divergence cleaning was used in this paper. The solvers were
compared on some benchmark one-dimensional and two-dimensional test cases.

The gravity source term was discretized by using a fractional steps method that pre-
served positivity. The choice of source discretization didn’t influence the results to a
great extent. A critical issue was the use of numerical boundary conditions at the top
boundary. A characteristic type boundary condition was used (together with modifica-
tions to ensure mass balance). This boundary condition was characterized in terms of
a Roe solver, thus revealing a potential problem with preservation of positive densities
and pressures. A simple Neumann type boundary condition (fixing density and magnetic
fields at the boundary to their initial value) was also used. A novel extrapolated Neu-
mann type boundary condition was proposed. This boundary condition extrapolated (by
a exponential profile) the values of the density and pressure along with Neumann type
conditions for the velocity and magnetic fields.

Computations with the hydrodynamic steady state showed a considerable improve-
ment in accuracy by using second-order schemes. Hydrodynamic wave propagation re-
vealed that the extrapolated boundary condition was as good ad the characteristic bound-
ary condition with the added advantages of being cheaper to implement and faster to runs.
The differences between the solvers for hydrodynamics were minor.

The magneto-hydrodynamic computations (for steady states as well as waves) were
much more difficult on account of numerical instabilities. The HLL3L and Roe solvers
crashed in most cases. Similarly, the characteristic boundary conditions were quite unsta-
ble. On the other hand, the HLL3G and HLL3R solvers, together with the extrapolated
Neumann boundary conditions were quite robust, particularly at second-order. The errors
were however larger than in the hydrodynamics cases. Another problem was instabilities
when strong magnetic fields were used. All the solvers and boundary conditions led to
instabilities in this case. These could be on account of divergence errors or the fact that
the schemes didn’t preserve a discrete version of the steady state exactly. These questions
are going to be addressed in a forthcoming paper.

Acknowledgments. The National Center for Atmospheric Research is sponsored by
the National Science Foundation.
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Abstract

We model wave propagation in stellar atmospheres by compressible gas dynam-
ics, together with gravitational source terms. Finite volume schemes based on ap-
proximate Riemann solvers , non-oscillatory reconstructions and novel non-reflecting
boundary conditions are designed and shown to be efficient in preserving steady
states and simulating propagating waves.

6.1 Introduction

The problem of wave propagation in stellar atmospheres has generated considerable at-
tention in the astro-physics community. The main theme of this research is to study the
effect of waves generated in the stellar atmosphere and their impact on the energy balance.
Although, most realistic models include magnetic fields (see [18] and references therein
for a detailed physical description), a lot of qualitative and quantitative information can
be obtained by studying simpler models that ignore magnetic fields.

We consider the hydrodynamic version of the model proposed in [18]. The resulting
model consists of the Euler equations of compressible gas dynamics together with source
terms modeling the action of gravity. The gravitational source terms serve to model the
stratification of the stellar atmosphere. In addition, one needs to consider realistic steady
states that reflect hydrostatic balance. These steady states serve as the background for
the wave propagation. The waves are modeled by inducing sinusoidal perturbations of
the steady state.

Even at the level of this very simple model of wave propagation, it is impossible to
obtain any realistic analytical (or semi-analytical) solutions. The Euler equations are

171
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a system of non-linear conservation laws and the solutions of these equations (even for
smooth initial data) consist of discontinuities like shock waves and contact discontinuities.
Furthermore, we have to consider the model in multi-space dimensions and no global
existence and uniqueness results for the Euler equations are available in this case. Hence,
numerical simulations are the main tools for obtaining detailed information about the
wave propagation.

Finite volume methods are the most popular methods (see [50]) for simulating conser-
vation laws. These methods are based on dividing the computational domain into cells
or control volumes. The method consists of updating cell-averages of the unknown in
terms of interface fluxes. The numerical fluxes are obtained by solving Riemann prob-
lems either exactly or approximately in the direction, normal to the interface. The finite
volume scheme based on piecewise constant approximations in each cell is restricted to
first-order accuracy in both space and time. Higher-order accuracy in space is obtained by
using non-oscillatory piecewise polynomial reconstructions. High-order time integration
is performed by suitable Runge-Kutta solvers.

Finite volume schemes for gas dynamics have undergone extensive development in
the last few decades. In particular, it is well known that the Riemann problems are
very expensive to solve exactly at each interface. Consequently, suitable approximate
Riemann solvers have been developed. In this paper, we will focus on the non-linear
approximate Riemann solvers of the HLL type ([50]). These solvers are very simple to
implement and are proved to preserve positive densities and pressures ([28]). This stability
requirement is essential in problems involving stratification as the pressure and density
decrease exponentially with height. Hence, the pressure and density at the top of the
model is very low leading to stability issues with linearized approximate Riemann solvers
of the Roe-type ([50]). Furthermore, the first-order versions of finite volume schemes
smear shocks and contact discontinuities and approximate the smooth parts of the waves
with a large error (due to the order of accuracy). Hence, it is essential to use high-order
schemes to resolve wave propagation to a reasonable extent. Another issue that needs
to be addressed is the discretization of the gravitational source term. In particular, the
interesting hydrostatic states need to be preserved to a high-degree of accuracy.

The key issue in simulating wave propagation in stellar atmospheres is the treatment
of boundary conditions. Since, we are interested in modeling only a small part of the
atmosphere, one can use periodic boundary conditions in the horizontal directions. At
the bottom vertical boundary, we need to impose suitable inflow boundary conditions
in-order to start the wave motion. However, the top vertical boundary is an artificial
one due to the truncation of the computational domain. We have to design suitable
non-reflecting boundary conditions so that waves reaching the top boundary can exit the
domain without large amounts of reflection. Furthermore, the top boundary shouldn’t
generate numerical waves that spread inside the domain. In addition, the boundary
conditions should maintain mass balance in the domain. These considerations imply that
the design of numerical boundary conditions at the top boundary is very involved.

Our aim in this paper is to simulate wave propagation in a model stellar atmosphere.
We need the following ingredients : a robust modeling framework with steady states of
interest, a suitable numerical flux of the approximate Riemann solver type, high-order non-
oscillatory reconstructions, proper discretization of the source term and suitable numerical
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boundary conditions. We present the model and use HLL type approximate Riemann
solver to define our first-order accurate finite volume scheme. We also use suitable ENO-
WENO type reconstructions to obtain formal second-order accuracy. The source term is
discretized in a standard way. We introduce novel Neumann type boundary conditions
that are stable, maintain mass balance, are computationally cheap and reduce reflections
at the top boundary. Some of the results of this paper (the model included magnetic
fields) were presented in a recent paper [33]. However, the high-order extensions and
specific form of boundary conditions are new.

6.2 The model

The idealized stellar atmosphere (ignoring magnetic fields) is modeled by the Euler equa-
tions of gas dynamics, together with the gravitational source terms. For simplicity, we
consider a two dimensional domain and the equations take the form,

ρt + (ρu)x + (ρv)z = 0,

(ρu)t + (ρu2 + p)x + (ρuv)z = 0,

(ρv)t + (ρuv)x + (ρv2 + p)z + (ρuv)z = −ρg,
Et + ((E + p)u)x + ((E + p)v)z = −ρvg,

(6.2.1)

where ρ is the density, p is the pressure, u = {u, v} is the velocity field and g is the
constant acceleration due to gravity. In addition, the energy E is given by the ideal gas
equation of state,

E =
p

γ − 1
+

1

2
ρ(u2 + v2), (6.2.2)

where γ is the gas constant. Note that x- denotes the horizontal direction and z- denotes
the vertical direction in the above model. Introducing the vector of unknowns U =
{ρ, ρu, ρv, E}, (6.2.1) can be written in the following compact form,

Ut + f(U)x + h(U)z = S(U), (6.2.3)

where the fluxes f, h and source S can be identified from (6.2.1). Note that (6.2.3)
represents a system of two-dimensional balance laws. Denoting the direction Jacobians
as (A,B) = (∂Uf, ∂Uh), a simple direct calculation ([50]) shows that the eigenvalues of A
are u, u, u± a and the eigenvalues of B are v, v, v± a where a is the sound speed given by

a =

√
γp

ρ
.

Hence, the system (6.2.3) is hyperbolic. Furthermore, the characteristic fields are either
genuinely non-linear or linearly degenerate. We consider (6.2.1) in the domain [0, X] ×
[0, Z] where X and Z are positive numbers. Next, we specify steady states (stationary
solutions) that are of interest as they will serve as a background for the propagation of
waves.
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Hydrodynamic steady state.

We assume that the atmosphere is assumed to be steady by setting the velocity field u to
zero. With this ansatz the pressure and the density have to satisfy the following ordinary
differential equation

∂p

∂z
= −ρg. (6.2.4)

We look for solutions of (6.2.4) satisfying p(x, z) = cρ(x, z) for some constant c and for
all x and z, which amounts to assuming an isothermal atmosphere. This is a reasonable
approximation since we are interested in simulating the region of the stellar atmosphere
where the temperature remains approximately constant. Substituting this into (6.2.4)
leads to the following hydrodynamic steady state,

u = 0, v = 0, ρ(x, z) = ρ0e
− z

H , p(x, z) = p0e
− z

H . (6.2.5)

where the scale height H is given by H = p0

gρ0
and p0 and ρ0 are the values of the pressure

and density at the bottom boundary of the domain.

6.3 Finite Volume schemes

We consider (6.2.3) in the domain [0, X] × [0, Z]. We divide this uniformly into I × K
cells (or control volumes), and define xi = −Δx/2 + iΔx, i = 0, . . . , I + 1, and zk =
−Δz/2+kΔz, k = 0, . . . , K+1, so that zk+1/2 = kΔz. Let Ii,k denote the control volume
[xi−1/2, xi+1/2) × [zk−1/2, zk+1/2). The cell average of the vector of conserved variables at
any time t over the cell Ii,k is given by Ui,k(t). Then, a standard finite volume scheme
([50]) in semi-discrete form is given by,

d

dt
Ui,k = F (Ui−1,k, Ui,k−1, Ui,k, Ui+1,k, Ui,k+1) ,

= − 1

Δx

(
Fi+1/2,k − Fi−1/2,k

)− 1

Δz

(
Hn

i,k+1/2 −Hn
i,k−1/2

)
+ S(Ui,k),

(6.3.1)

where we have suppressed the time dependence of all the quantities and the numerical
fluxes are functions of the neighboring cell averages, i.e.,

Fi+1/2,k = F (Ui,k, Ui+1,k) , Hi,k+1/2 = H (Ui,k, Ui,k+1) .

These numerical fluxes should be such that F (A,B) is an approximation to the solution
at x = 0 of the Riemann problem in the x-direction for (6.2.1). To be concrete, if U
satisfies

Ut + f(U)x = 0, U(x, 0) =

{
UL x < 0,

UR x > 0,
(6.3.2)

then F (UL, UR) ≈ f(U(0, t)). The numerical flux H(UL, UR) is defined analogously.
The key issue is to determine the numerical fluxes Fi+1/2,k and Hi,k+1/2. As stated

before, we will use the following approximate Riemann solver to define the numerical
fluxes.
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6.3.1 HLL Solver

Approximate Riemann solvers are approximate solutions of the Riemann problem (6.3.2)
that approximate the full Riemann structure by a lower number of moving discontinuities.
The simplest approximate Riemann solver is the two-wave HLL ([50]) solver where we
approximate the full Riemann solution using two moving discontinuities (waves). Let
UL,R and fL,R denote the left and right state and flux respectively. If the speed of the two
waves are sL and sR then the constant state in between these waves, U∗ will be determined
from conservation by

fR − f∗ = sR (UR − U∗) , f∗ − fL = sL (U∗ − UL) ,

where f∗ denotes the numerical flux between these two waves. Solving the above equations
yields

U∗ =
fR − fL − sRUR + sLUL

sL − sR

, f∗ =
sRfL − sLfR + sLsR(UR − UL)

sR − sL

. (6.3.3)

Then, the numerical flux can be written as

F hll2(UL, UR) =

⎧⎪⎨
⎪⎩
fL if sL ≥ 0,

f∗ if sL < 0 < sR,

fR if sR ≤ 0.

(6.3.4)

It remains to define the waves speeds sL and sR, and we do this as described in [28]. Let
Ū = (UL +UR)/2 be the arithmetic average of the states, then the wave speeds are given
by

sL = min{uL − aL, ū− ā}, sR = max{uR + aR, ū+ ā}, (6.3.5)

where ū and ā are the normal velocity and the sound speed of A(Ū) respectively. This
solver only approximates the outermost (fast) waves of the Riemann solution. This implies
that the solver can be dissipative at approximating contact discontinuities. However, the
solver is stable, i.e, it is proved to have positive pressures and densities (see [28]). We
focus on this simple solver for the rest of this paper for the simplicity of presentation. We
emphasize that less dissipative solvers like the HLL three-wave solver and the linearized
Roe solver can also be used. Similarly one can define the numerical flux Hi,k+1/2 by using
a HLL solver corresponding to the z- direction.

6.3.2 High-Order schemes

The above finite volume scheme (6.3.1) is restricted to first-order of accuracy in space.
We can recover higher order of spatial accuracy by using fairly standard non-oscillatory
piecewise polynomial reconstructions by the ENO ([40]) or WENO ([72]) procedure. We
provide a very brief outline of these procedures below for the sake of completeness.
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ENO procedure:

We will approximate the cell-average in the cell Ii,k by a piecewise linear function. For
simplicity, we consider interpolation in the x-direction only. Using the three neighboring
cell averages Ui−1,k, Ui,k, Ui+1,k, we compute the differences UR

i,k = Ui+1,k −Ui,k and UL
i,k =

Ui,k − Ui−k. Using the above differences, we compute,

DxUi,k =
M(UL

i,k, U
R
i,k)

Δx
,

where the non-linear function M simply selects the state that has the least absolute
value of both states. Thus, we select the smoothest available stencil for reconstruction
in this procedure. Using the above, we compute a piecewise linear reconstruction in the
x-direction and denote it as

px
i,k = Ui,k +DxUi,k(x− xi).

Similarly, we can compute a piecewise linear function in the z-direction pz
i,k by consider-

ing the cell-averages Ui,k, Ui,k−1, Ui,k+1 and repeating the ENO procedure outlined above.
We use the tensor product of px

i,k and pz
i,k and denote pi,k as the second-order accurate

piecewise bilinear reconstruction in the cell Ii,k. One can similarly obtain higher-order
ENO reconstructions by considering wider stencils and selecting the one with the most
smoothness.

WENO procedure:

Another alternative to the ENO reconstruction is the WENO reconstruction. In this
procedure, we use both UL

i,k and UR
i,k (defined above) to define the following gradient,

D̄x
i,k =

1

Δx
(αx

i,kU
L
i,k + (1− αx

i,k)U
R
i,k),

where the weight αx
i,k is chosen to in-order to ensure that the stencil which is smoother

has more weight. The details of the choice of WENO weights can be found in [S] and
we omit them due to space constraints. Note that in the WENO procedure, the linear
reconstruction uses information from both stencils and hence, one can in principle recover
third-order of accuracy for smooth solutions. We then use D̄x

i,k to define the piecewise
linear approximation,

px
i,k = Ui,k + D̄xUi,k(x− xi).

The above procedure can be repeated in the z-direction and the resulting tensor product
is used to define a bi-linear approximation pi,k in the cell Ii,k.

Denote the following,

UEi,k = pi,k(xi+1/2, yk), UWi,k = pi,k(xi−1/2, yk),

UNi,k = pi,k(xi, yk+1/2), USi,k = pi,k(xi, yk−1/2).

where pi,k is defined by either the ENO or the WENO procedure. Then, the finite volume
scheme (6.3.1) is formally second-order accurate if we re-define the numerical fluxes as

Fi+1/2,k = F (UEi,k, UWi+1,k), Hi,k+1/2 = H(UNi,k, USi,k+1).
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6.3.3 Time stepping

The above scheme (6.3.1) is semi-discrete and we need to use a suitable time-stepping
routine. For the first-order spatial approximation, we use the standard forward-Euler
time stepping,

Un+1
i,k = Un

i,k + ΔtnFn
i,k,

where F is the right-hand side of (6.3.1) and Δtn is the time-step at the n-th time level.
For the second-order schemes, we use the second-order strong-stability preserving Runge-
Kutta time stepping,

U∗i,k = Un
i,k + ΔtnFn

i,k, U∗∗i,k = U∗i,k + ΔtnF∗i,k,
Un+1

i,k =
1

2
(Un

i,k + U∗∗i,k).

The time step is determined by a standard CFL condition.

6.3.4 Source discretization:

In (6.3.1), the source is disrectized by an explicit evaluation, even for the second-order
accurate schemes. Note that this retains the overall second-order accuracy of the entire
scheme. This choice works well in practice. However, one can use more sophisticated
discretizations of the source term based on a fractional steps method. One such choice in
[33] led to a scheme which was still provably positive in the presence of sources.

6.3.5 Boundary conditions:

We use periodic boundary conditions in the x-direction. Note that the second-order
schemes require two rows of ghost cells and the periodic boundary conditions can be
easily used to specify them in the horizontal direction. The top boundary is artificial and
we need non-reflecting boundary conditions there. The simplest choice is to use standard
Neumann-type boundary conditions by setting the ghost cell values as

Un+1
i,K+1 = Un+1

i,K , ∀i,

Similarly, we can specify the ghost cell value Un+1
i,K+2 as Un+1

i,K−1 for second-order schemes.
This choice is naive as it doesn’t preserve the delicate mass balance in (6.2.5) and leads to
mass leaking out of the top boundary and the resulting numerical errors are unacceptably
large.

An alternative Neumann-type balanced boundary condition was first proposed in [33].
The ghost cell values were specified as,

ρn+1
i,K+1 = ρ0

i,K+1, P n+1
i,K+1 = P 0

i,K+1, ∀i
un+1

i,K+1 = un+1
i,K , vn+1

i,K+1 = vn+1
i,K .

(6.3.6)

Analogously, we can define the ghost cell values in the outermost layer for second-order
schemes. The above conditions imply that ρ and P in the ghost cells are set to their
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initial values. This step ensures mass balance across the boundary. Furthermore, we put
Neumann boundary conditions for the velocity which should minimize reflections when
waves from the interior reach the top boundary. However, as shown in [33], the numerical
errors were still large on account of reflections at the top boundary.

In-order to further minimize reflections and maintain mass balance, we take advantage
of the structure of the steady state (6.2.5) and define the following extrapolated ghost
cell values,

ρn+1
i,K+1 = ρn+1

i,K e−
Δz
H , P n+1

i,K+1 = P n+1
i,K e−

Δz
H , ∀i,

un+1
i,K+1 = un+1

i,K , vn+1
i,K+1 = vn+1

i,K .
(6.3.7)

In this case, we are extrapolating the steady state values of the density and pressure to
the ghost cells. This should maintain mass-balance and handle small perturbations of
the steady state (6.2.5). A Neumann-type boundary condition is used for the velocity
field. For second order schemes, we specify the following values in the outermost ghost
cell layer,

ρn+1
i,K+2 = ρn+1

i,K−1e
− 3Δz

H , P n+1
i,K+2 = P n+1

i,K−1e
− 3Δz

H , ∀i,
un+1

i,K+2 = un+1
i,K−1, vn+1

i,K+2 = vn+1
i,K−1.

(6.3.8)

Numerical boundary conditions at the bottom boundary can be defined analogously. An-
other possible choice of boundary conditions are the characteristic-type balanced bound-
ary conditions proposed in [33]. We refer the reader to this paper for details about these
boundary conditions. The description of the finite volume schemes is complete with the
specification of boundary conditions.

6.4 Numerical Experiments

We test the schemes on a set of numerical experiments in this section. We have the fol-
lowing combinations of solvers and boundary conditions: first-order HLL solver with the
fixed-Neumann boundary condition (6.3.6) and forward Euler time stepping (denoted
as HLLFN), first-order HLL solver with the extrapolated-Neumann boundary condi-
tion (6.3.7) and forward Euler time stepping (denoted as HLLEN), second-order ENO-
type HLL solver with the extrapolated-Neumann boundary condition (6.3.7),(6.3.8) and
Runge-Kutta time stepping (denoted as ENOEN) and second-order WENO-type HLL
solver with the extrapolated-Neumann boundary condition (6.3.7),(6.3.8) and Runge-
Kutta time stepping (denoted as WENOEN). For the sake of comparison, we will also
present results computed with the first-order HLL solver with the balanced characteristic
boundary conditions of [33] and forward Euler time stepping (denoted as HLLCB).

6.4.1 Hydrodynamics: steady state

We consider (6.2.1) in [0, 4]× [0, 1]. The initial conditions are given by the hydrodynamic
steady state (6.2.5) with the scale height H = 0.158, initial pressure p0 = 1.13 and
gravitational constant g = 2.74. The computation is carried up to time t = 2. Our aim
is to ensure that the steady state (6.2.5) is preserved by our schemes to a high degree of
accuracy. The numerical errors in L1 for the pressure and the acoustic Mach number in
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the vertical direction on a series of meshes are presented in Table 6.4.1. The errors are
calculated with respect to the exact solution which is given by the steady state (6.2.5)
in this case. The table clearly shows that the schemes preserve the steady state quite

Errors in the
Mach number

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mesh size HLLFN HLLEN ENOEN
200x50 1.0e− 1 1.5e− 2 5.1e− 3
400x100 5.2e− 2 3.4e− 3 1.4e− 3
800x200 2.1e− 2 8.1e− 4 3.7e− 4

16000x400 8.6e− 3 1.9e− 4 9.4e− 5

Relative errors
in p

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mesh size HLLFN HLLEN ENOEN
200x50 8.6e− 1 11.9e− 1 2.2e− 3
400x100 4.4e− 1 4.4e− 1 1.1e− 4
800x200 2.0e− 1 1.9e− 1 8.9e− 5
1600x400 9.0e− 2 9.0e− 2 3.8e− 5

Table 6.4.1: Scaled L1 errors for the HLLFN , HLLEN and ENOEN at the hydrody-
namic steady state for t = 2.

well even though they are not well-balanced in design. The errors are low and converge
to zero at the expected rates. The use of extrapolated boundary conditions (6.3.7) leads
to an order of magnitude lower errors in the velocity as shown by the lower errors with
the HLLEN scheme than the HLLFN scheme although the difference in pressure errors is
negligible. Furthermore, the second-order ENOEN scheme is much more accurate than
the first-order schemes particularly at preserving pressure. The gain in resolution by using
second-order schemes is about two orders of magnitude more than the first-order schemes.
The WENO based WENOEN scheme gave similar results to the ENOEN scheme and we
omit them in the table.

6.4.2 Wave propagation:

We use the same domain as in the previous experiment. The propagation of waves is
initiated by sending in a sinusoidal (in time) sequence of waves from the bottom boundary
and letting them propagate across the domain and (hopefully) exit at the top. The waves
are modeled by the following boundary conditions for the normal velocity at the bottom,

u3,n+1
i,−1 = c sin

(
6πtn+1

)
χ[1.85,1.95] (6.4.1)

Hence, we model the bottom boundary as a localized piston in the interval [1.85, 1.95]
sending in sinusoidal waves. These waves move up the domain and are modified by
the flow equations. We start by comparing different boundary conditions at the top
boundary and show the velocity v at time t = 1.8 on a 400× 100 mesh with the HLLFN,
HLLCB and HLLEN schemes in figure 6.4.1. The figure clearly shows that the HLLEN
scheme resolves the wave propagation far better than the HLLFN and HLLCB. The
magnitude of reflections generated using the extrapolated boundary conditions (6.3.7)
is much lower than those generated using the fixed boundary conditions (6.3.6). More
surprisingly, the extrapolated boundary conditions also lead to lower reflections than
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the characteristic type boundary conditions proposed in [33]. Considering the fact that
the extrapolated boundary conditions are computationally cheaper than characteristic
type boundary conditions clearly suggests them to be well suited for numerical wave
propagation. Further evidence of the robustness of this approach is provided in figure
6.4.2 where we compare the HLLEN, ENOEN and WENOEN schemes at the same mesh
resolution. The second-order schemes are hardly distinguishable from each other but lead
to sharper wave fronts compared to the first-order HLLEN scheme. All the three schemes
based on the extrapolated boundary conditions resolve the curved wave-fronts quite well
and the magnitude of the numerical reflections from the top boundary is quite low.

(a) HLLFN (b) HLLCB

(c) HLLEN

Figure 6.4.1: Approximate v obtained the three first-order schemes and different boundary
conditions on a 400× 100 mesh at time t = 1.8.

To summarize, we model wave propagation in stellar atmospheres numerically by
solving the Euler equations with source terms. Finite volume schemes based on HLL
solvers and ENO-WENO second order interpolation was found to be robust and accurate
at computing the waves. The key ingredient was a proper choice of non-reflecting and
balanced Neumann type extrapolated boundary conditions. The schemes, particularly at
second-order resolve both the steady states and the propagating waves quite accurately.
The model considered needs to be extended by adding magnetic fields. The presence of
magnetic fields complicates the entire design framework and has been simulated in [33]
with first-order schemes. We will extend the new boundary conditions and high-order
schemes to stratified magneto-atmospheres in a forthcoming paper.
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(a) HLLEN (b) ENOEN

(c) WENOEN

Figure 6.4.2: Approximate v obtained from the three schemes with extrapolated boundary
conditions (6.3.7) and different order on a 400× 100 mesh at time t = 1.8.



182 CHAPTER 6. FV METHODS FOR WAVE PROPAGATION (EULER)



7
High order well balanced finite volume schemes for
simulating wave propagation in stratified magnetic

atmospheres

F. G. Fuchs, A. D. McMurry, S. Mishra, N.H. Risebro, K. Waagan
preprint

Dedicated with appreciation to Prof. Ragnar Winther on his 60th Birthday.

Keywords: Conservation laws, MHD, Divergence constraint, Upwinded Source terms

Abstract

Wave propagation in idealized stellar atmospheres is modeled by the equations
of ideal MHD, together with the gravity source term. The waves are modeled
as small perturbations of isothermal steady states of the system. We consider a
formulation of ideal MHD based on the Godunov-Powell form, with an embedded
potential magnetic field appearing as a coefficient. The equations are discretized
by finite volume schemes based on approximate Riemann solvers of the HLL type
and upwind discretizations of the Godunov-Powell source terms. Local hydrostatic
reconstructions and suitable discretization of the gravity source term lead to a well-
balanced scheme, i.e., a scheme which exactly preserves a discrete version of the
relevant steady states. Higher order of accuracy is obtained by employing suitable
minmod, ENO and WENO reconstructions, based on the equilibrium variables, to
construct a well-balanced scheme. The resulting high order well-balanced schemes
are validated on a suite of numerical experiments involving complex magnetic fields.
The schemes are observed to be robust and resolve the complex physics well.

7.1 Introduction

The problem of modeling wave propagation in idealized stellar atmospheres has received
considerable attention in the solar physics and astrophysics communities in recent years
(see [69, 18] and references therein). A typical situation of interest is to model how
convection generated waves from the inner layers of the sun transport and deposit energy
in the overlaying chromospheric and coronal plasmas. The waves interact with complex

183
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magnetic fields generated by the plasma and these interactions affect the qualitative as
well as quantitative features of the energy transfer.

In [69, 18], these complex phenomena were modeled in terms of the equations of
Magnetohydrodynamics (MHD) in two space dimensions, together with a gravitational
source term given by

ρt + div (ρu) = 0,

(ρu)t + div

(
ρu⊗ u +

(
p+

1

2

∣∣B̄∣∣2) I − B̄⊗ B̄

)
= −ρge2,

B̄t + div
(
u⊗ B̄− B̄⊗ u

)
= 0,

Et + div

((
E + p+

1

2

∣∣B̄∣∣2)u− (
u · B̄)

B̄

)
= −ρg (u · e2) ,

div(B̄) = 0,

(7.1.1)

where ρ is the density, u = {u1, u2, u3} and B̄ = {B̄1, B̄2, B̄3} are the velocity and
magnetic fields respectively, p is the thermal pressure, g is constant acceleration due to
gravity , e2 represents the unit vector in the vertical (y-) direction. E is the total energy,
for simplicity determined by the ideal gas equation of state:

E =
p

γ − 1
+

1

2
ρ |u|2 +

1

2

∣∣B̄∣∣2 , (7.1.2)

where γ > 1 is the adiabatic gas constant. The above equations represent the conservation
of mass, momentum and energy and the Magnetic induction equations for the evolution
of the magnetic field. The momentum conservation is affected by the Lorentz force due to
the magnetic field and by the gravitational force. The total energy is the sum of the energy
due to the pressure and the kinetic and magnetic energies. The gravitational potential
energy is modeled by the source term on the right hand side of the energy equation. The
divergence constraint on the magnetic field reflects the fact that magnetic monopoles have
not been observed in nature.

The above equations (7.1.1) posses a rich variety of steady states that are of interest
in modeling wave propagation. Two interesting steady states considered in [69, 18] and
in a recent paper [33] are given as follows.

Hydrodynamic steady state

This steady state assumes that the velocity u and magnetic field B̄ are set to zero.
Furthermore, we are interested in chromospheric plasmas where the temperature is ap-
proximately constant ([18]) and one can assume that the atmosphere is isothermal. A
simple calculation ([33]) with the above assumptions leads to the following steady state:

u ≡ 0, B̄ ≡ 0, ρ(x, y) = ρ0e
−y/H , p(x, y) = p0e

−y/H . (7.1.3)

where the scale height H is given by H = p0/gρ0 and p0 and ρ0 are the values of the
pressure and density at the bottom boundary of the domain. Note that the hydrostatic
balance due to gravity implies that the pressure and the density decay exponentially in
the vertical direction. Hence, very low pressures and densities can be found at the top of
the domain of interest.
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Magnetic steady state

The hydrodynamic steady state assumes that the magnetic field is zero. Any realistic
description of solar plasmas cannot ignore the effect of magnetic field since it plays a
crucial role in the energy transfer ([18]). Steady states with a magnetic field are easy to
determine once the momentum balance in (7.1.1) is rewritten as

(ρu)t + div (ρu⊗ u + pI) = curl(B̄)× B̄− ρge2.

The above equation displays the role of the Lorentz force explicitly in the momentum
balance. Under the assumption that the velocity field is set to zero, the following magnetic
steady states are easy to obtain,

u ≡ 0, div(B̄) ≡ 0, curl(B̄) ≡ 0,

ρ(x, y) = ρ0e
−y/H , p(x, y) = p0e

−y/H .
(7.1.4)

The above conditions require that the magnetic field is both divergence free and curl free.
It is easy to obtain closed form solutions of such magnetic fields in terms of harmonic
functions ([33] and in section 7.2). Note that the conditions on steady magnetic fields are
quite general and imply that there is a rich variety of magnetic steady states (7.1.4).

The usual method in modeling waves is to consider them as small perturbations of
the above steady states. The equations (7.1.1) are supplemented with the steady states
(7.1.3), (7.1.4) as initial conditions. Since, we are interested in a small part of the solar
atmosphere, periodic boundary conditions are imposed in the horizontal (x-) direction.
The waves are pushed into the domain by imposing suitable inflow boundary conditions
at the bottom boundary. One expects the wave forms to be distorted due to interactions
with the magnetic field and the action of gravity. The distorted waves exit the domain
through the top boundary. The top boundary is an artificial boundary and suitable
numerical boundary conditions need to be imposed in order to ensure that the waves exit
the domain without large reflections.

Equations of form (7.1.1) are examples of systems of balance laws (conservation laws
with source terms). Solutions of such equations develop discontinuities such as shock
waves and contact discontinuities, even for smooth initial data. Hence, solutions have
to be considered in the weak sense. The MHD equations are hyperbolic but not strictly
hyperbolic, since different characteristic speeds can coincide.

If the eigenvectors of the Jacobian matrix of the flux functions are to be used in
computations, then these must be suitably scaled (see [68, 12] for detailed descriptions).
The structure of discontinuities of the MHD equations is quite complicated as the flux
functions are non-convex ([79]).

We remark that (even in one space dimension) global existence and uniqueness results
have not been obtained at the current time.

Hence, numerical simulations of these equations is the main tool of study and analysis.
Finite volume methods ([50]) are among the most popular tools for discretizing non-linear
balance laws like (7.1.1). The computational domain is divided into control volumes or
cells. The method consists of discretizing an integral version of a balance law like (7.1.1)
over each cell to obtain a time update of the cell averages of the unknown. The key step
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in the update is to determine numerical fluxes by solving local Riemann problems at each
cell interface (along the normal direction). The source term in the balance law (7.1.1) can
be discretized in several ways. Higher order accuracy in space can be obtained by using
non-oscillatory piecewise polynomial reconstructions like the MUSCL ([81]), ENO ([40])
and WENO ([72]) reconstructions. High order temporal accuracy is obtained by using
strong stability preserving Runge Kutta methods ([37]).

Finite volume schemes for ideal MHD equations have undergone considerable devel-
opment in the last fifteen years. In one space dimension, finite volume schemes for MHD
equations include the linearized solvers developed in [68, 24]. Other schemes are the non-
linear HLL type solvers designed in [53, 36, 59, 20, 21, 32] and other references therein.
The linearized Roe-type solvers are less dissipative than the HLL type solver but can
lead to unphysical negative densities and pressures. The non-linear HLL type solvers like
the ones designed in [36, 59, 20] are proved to preserve positive densities and pressures.
Comparisons between different approximate Riemann solvers are performed in papers like
[33, 73, 58].

In one space dimension, the divergence constraint in (7.1.1) implies that the normal
magnetic field is constant in space. This information is used in the design of some of the
above approximate Riemann solvers. However, the nature of MHD equations in multi
space dimensions is different. The divergence constraint in several dimensions does not
imply that the normal magnetic field is constant. Hence, it is not straightforward to
extend one dimensional MHD schemes to several dimensions.

It is also difficult to satisfy the divergence constraint itself. Standard schemes may
not preserve the constraint in a discrete manner and divergence errors are speculated to
lead to numerical instabilities and unphysical oscillations ([80]). Several methods have
been designed to deal with the divergence constraint in MHD codes. Popular choices
include the projection method, in which the magnetic field is projected unto a zero di-
vergence field by solving an elliptic equation at each time step ([22]), a method which
is computationally expensive. A cheaper alternative is the parabolic cleaning method of
[55] and [27]. Another popular method of handling the divergence constraint is the use
of staggered grids to ensure that a particular form of discrete divergence is zero. Several
versions of staggered grid methods exist, and an incomplete list includes those developed
in [11, 26, 30, 54, 71, 70, 73, 78, 80] and other references therein. A possible disadvantage
of staggered grid methods is the complexity of the book-keeping at the code level, leading
to overheads in parallelizing the code. It is also more difficult to obtain numerical stability
for these schemes, since some of the theoretical basis of finite volume schemes is lost.

A different divergence cleaning procedure was presented in [65, 66] where a slightly
different form of the ideal MHD equations (with a source term proportional to diver-
gence) was discretized. This form, also called the Godunov-Powell form happens to be
symmetrizable ([35]) and Galilean invariant, while the standard form (7.1.1) is neither
symmetrizable nor Galilean invariant. Furthermore, in the Godunov-Powell form diver-
gence errors are transported out of the domain with the flow ([65]). Similar ideas were
presented in [27]. A possible pitfall of this procedure was pointed out in recent papers
[31, 32]. Examples were presented to argue that the Godunov-Powell form needs to be
discretized in a suitable manner for numerical stability. Various upwind discretizations of
a partial form of the Godunov-Powell source term were proposed recently in [20, 83, 32].
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The Godunov-Powell form makes it mathematically feasible to deal with data not sat-
isfying the divergence constraint. Hence, it allows constructing one-dimensional schemes
that immediately extend to accurate and remarkably robust multidimensional schemes, as
carried out by the authors in [34] (see also [83]). The method involved designing suitable
three- and five wave HLL type solvers and discretizing the Godunov-Powell source term
in an upwind manner. The source discretization involved utilizing the structure of the
approximate Riemann solver. Positivity preserving high order ENO and WENO recon-
structions were also proposed. The resulting schemes were high order accurate and robust
in computations, particularly on very fine meshes. The numerical schemes designed in
[34] constitute an attractive framework for robust simulations of models involving MHD
equations.

In order to extend existing finite volume methods for the ideal MHD equations to
the balance law (7.1.1), we need to discretize the terms due to gravity in a suitable
manner. The resulting scheme should be able to handle very low pressures and densities
(see the exponential structure in (7.1.4)) at the top of the domain. Furthermore, waves
are very small perturbations of the steady states (7.1.3), (7.1.4), and a robust scheme
approximating (7.1.1) must preserve discrete versions of the steady states (7.1.3), (7.1.4)
to a reasonable degree of accuracy, so that waves can be resolved. Another hurdle is
the issue of suitable numerical boundary conditions at the top boundary. This boundary
condition must ensure mass balance and low reflections.

A recent paper [33] illustrated some of the problems in extending existing finite volume
methods to simulate wave propagation involving models like (7.1.1). In [33], the gravity
source term was discretized by a fractional steps method ([50]) and characteristic type
boundary conditions ([63, 75]) were used at the top boundary. However, these methods
led to significant numerical instabilities and large boundary reflections, particularly on
problems with strong magnetic fields. In fact, none of the schemes considered in [33] were
stable on wave propagation problems with strong magnetic fields. The lack of robust
finite volume schemes preserving discrete steady states was a persistent problem.

Finite volume methods which preserve steady states in balance laws are called well-
balanced. Many balance laws like shallow water equations with bottom topography ([52])
and Euler equations for gas flows in nozzles ([49]) involve balance laws with interesting
steady states. Well-balanced schemes for the shallow water equations with topography
have been designed in many recent papers including [52, 7, 60, 61, 25] and other refer-
ences therein. Well-balanced schemes for nozzle flows are considered in [48, 49] among
others. The most popular form of well-balancing a scheme is to use local hydrostatic
reconstructions. A different approach is considered in [46]. To the best of our knowledge,
no well-balanced schemes for simulating wave propagation in stratified atmospheres has
been designed, even in the absence of magnetic fields.

The aim of this paper is to design a robust finite volume scheme to simulate waves
modeled as perturbations of steady states (7.1.3), (7.1.4) in the balance law (7.1.1). Our
approach consists of the following ingredients,

• We follow the approach of [74, 66] and consider a modified formulation of the balance
law (7.1.1). The modified form includes the Godunov-Powell source term discussed
earlier. It also considers an embedded steady magnetic field like (7.1.4) and solves
for perturbations of the magnetic field as a coefficient. This approach is motivated
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by the fact that we are interested in small perturbations of the steady magnetic field
(7.1.4).

• The resulting modified MHD system is discretized by a finite volume method, similar
to the schemes of [34]. The numerical fluxes are calculated by a suitable three
wave approximate Riemann solver of the HLL type. The Godunov-Powell term is
discretized in an upwind fashion. Minmod, ENO and WENO reconstructions are
used to obtain higher order accuracy.

• A novel form of well balancing is designed by using suitable local hydrostatic recon-
structions in the numerical fluxes. The gravity source term is also well-balanced.
Novel piecewise linear reconstructions are proposed to obtain a second-order accu-
rate well-balanced scheme.

• Well-balanced Neumann type boundary conditions are proposed to reduce reflections
and ensure stability at the top boundary. These conditions are very similar to the
extrapolated Neumann boundary conditions of [33].

The above ingredients are combined to obtain robust well-balanced high order finite
volume schemes for wave propagation in stratified magneto-atmospheres. The schemes
are tested on a suite of numerical experiments including perturbations of hydrodynamic
steady states (7.1.3). However, the main interest is to study wave propagation as pertur-
bations of the magnetic steady states (7.1.4). We consider realistic magnetic fields and
simulate wave propagation. The numerical results illustrate both accuracy and stability of
the schemes. The schemes are employed to describe complex physical phenomena accom-
panying wave propagation. Particular attention is paid to examine the role of magnetic
fields in influencing waves. The numerical results show qualitative agreement with the
ones presented in [18], and demonstrate considerable improvements over the results of [18]
with respect to modeling very small perturbations of steady states, long time integration
and interaction of waves with the top boundary.

The remaining part of the paper is organized as follows: in Section 7.2, we describe a
modified formulation of (7.1.1). The high order accurate well-balanced schemes are pre-
sented in Section 7.3. In Section 7.4, we present various numerical experiments demon-
strating the computational efficiency of the schemes. We describe some of the complex
physical phenomena underlying wave propagation in this section. Contents of the papers
are summarized in Section 7.5.

7.2 The Model

Deriving the ideal MHD equations with gravity (7.1.1) from the first principles with-
out explicitly using the divergence constraint results in the following semi-conservative
Godunov-Powell form of the equations, (see [34] for a detailed derivation in the absence
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of gravity),

ρt + div(ρu) = 0,

(ρu)t + div

(
ρu⊗ u +

(
p+

1

2

∣∣B̄∣∣2) I − B̄⊗ B̄

)
= −B̄(divB̄)− ρge2,

B̄t + div(u⊗ B̄− B̄⊗ u) = −u(div B̄),

Ēt + div

((
E + p+

1

2

∣∣B̄∣∣2)u− (u · B̄)B̄

)
= −(u · B̄)(div B̄)− ρg (u · e2) .

(7.2.1)
The system is coupled with an ideal gas equation of state (7.1.2) and all the quantities in
(7.2.1) are as defined before. The difference between the standard form (7.1.1) and the
Godunov-Powell form (7.2.1) are the explicitly div B̄-dependent source terms in (7.2.1).
Taking divergence on both sides of (7.2.1), we obtain

(div B̄)t + div
(
u
(
div B̄

))
= 0. (7.2.2)

Hence, initial divergence free fields remain divergence free under time evolution in (7.2.1).
Furthermore, the Godunov-Powell system is Galilean invariant ([66]) and symmetrizable
([35]). Hence, our starting point will be the Godunov-Powell form (7.2.1) instead of the
standard form (7.1.1).

Motivated by our interest in modeling wave propagation as perturbations of steady
states (7.1.3), (7.1.4), we consider a further modification of the system (7.2.1). Assume
that there exist a magnetic field B̃ satisfying the following assumptions,

B̃t = 0, div(B̃) = 0, and curl(B̃) = 0. (7.2.3)

Specific examples of such fields will be given in the sequel. Next, we define perturbations
B about this potential field B̃ by,

B = B̄− B̃.

We plug in the above form in (7.2.1) and after some calculations (see [66]), we obtain the
following modified system,

ρt + div(ρu) = 0,

(ρu)t + div

(
ρu⊗ u +

(
p+

1

2
|B|2 + B̃ ·B

)
I −B⊗B− B̃⊗B−B⊗ B̃

)
= −

(
B + B̃

)
(div B)− ρge2,

Bt + div
(
u⊗B−B⊗ u + u⊗ B̃− B̃⊗ u

)
= −u(divB),

Et + div

((
E + p+

1

2
|B|2 + B · B̃

)
u− (u ·B)B−

(
u · B̃

)
B̃

)
= −(u ·B)(div B)− ρg (u · e2) ,

(7.2.4)

where E = p
γ−1

+ 1
2
|B|2 + 1

2
ρ|u|2. The variable of interest is now the perturbed magnetic

field B and the background magnetic field B̃ satisfying (7.2.3) appears as a coefficient in
the above equations.



190CHAPTER 7. WELL-BALANCED SCHEMES FOR WAVE PROPAGATION (MHD)

Remark 7.2.1. The only assumptions used in deriving (7.2.4) are given by (7.2.3). In
particular, no linearization assumptions were made nor was any condition imposed on
the magnitude of B. Hence, the above equations (7.2.4) can be thought of as another
equivalent form of the MHD equations with gravity (7.1.1).

We will discretize the above equations (7.2.4) in the remaining part of this paper.
Writing (7.2.4) explicitly in two space dimensions results in

Ut + (f(U, B̃)x + g(U, B̃)y = s1(U, B̃) + s2(U, B̃) + sg(U), (7.2.5)

where

U = {ρ, ρu1, ρu2, ρu3, B1, B2, B3, E}

is the vector of conserved variables and B̃ = {B̃1, B̃2, B̃3} is any background magnetic field
defined by (7.2.4). The above form clearly illustrates that the fluxes and the Godunov-
Powell source term depend on the coefficient B̃. Hence, (7.2.5) is an example of a balance
law with spatially varying coefficients. Such equations have many interesting properties
(see [56]) for a detailed exposition). The fluxes in (7.2.5) are given by

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu1

ρu2
1 + π1 − B2

1

2
− B̃1B1

ρu1u2 −B1B2 − B̃1B2 −B1B̃2

ρu1u3 −B1B3 − B̃1B3 −B1B̃3

0

u1

(
B2 + B̃2

)
− u2

(
B1 + B̃1

)
u1

(
B3 + B̃3

)
− u3

(
B3 + B̃3

)
(E + π1)u1 − u1

B2
1

2
−
(
B1 + B̃1

)
(u2B2 + u3B3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu2

ρu1u2 −B1B2 − B̃1B2 −B1B̃2

ρu2
2 + π2 − B2

2

2
− B̃2B2

ρu2u3 −B2B3 − B̃2B3 −B2B̃3

0

u2

(
B2 + B̃2

)
− u2

(
B2 + B̃2

)
u2

(
B3 + B̃3

)
− u3

(
B3 + B̃3

)
(E + π2)u2 − u2

B2
2

2
−
(
B2 + B̃2

)
(u2B2 + u3B3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(7.2.6)

where we have defined

π1 = p+
B2

2 +B2
3

2
+B2B̃2 +B3B̃3, π2 = p+

B2
1 +B2

3

2
+B1B̃1 +B3B̃3. (7.2.7)
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Similarly, the Godunov-Powell source terms in (7.2.1) can be written explicitly as

s1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0,

−
(

B2
1

2

)
x
− B̃1 (B1)x

−
(
B2 + B̃2

)
(B1)x

−
(
B3 + B̃3

)
(B1)x

−u1 (B1)x

−u2 (B1)x

−u3 (B1)x

−u1

(
B2

1

2

)
x
− (u2B2 + u3B3) (B1)x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, s2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0,

−
(
B1 + B̃1

)
(B2)y

−
(

B2
2

2

)
y
− B̃2 (B2)y

−
(
B3 + B̃3

)
(B2)y

−u1 (B2)y

−u2 (B2)y

−u3 (B2)y

−u2

(
B2

2

2

)
y
− (u1B1 + u3B3) (B2)y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.2.8)

Note that we have used the chain rule B1(B1)x = (
B2

1

2
)x as well as a similar rule for

the product B2(B2)y. While true for smooth solutions, this formula may no longer hold
when the magnetic field has discontinuities. However, choosing this definition of the
non-conservative product was found to be robust in practice (see [34]).

Finally, the gravitational source term is given by

sg = {0, 0,−ρg, 0, 0, 0, 0,−ρu2g}. (7.2.9)

Considering the primitive variables V = {ρ,u,B, p}, we can write (7.2.5) in the quasilinear
form

Vt + AVx +BVy = S̃,

where (A,B) = (∂Uf , ∂Ug) are the flux Jacobians. Set B̄ = B + B̃, denoting the sound

speed a2 = γp
ρ

and b1,2,3 = B̄1,2,3√
ρ

, b2 = b21 + b22 + b23, b
2
⊥ = b22 + b23, the eigenvalues of A are

calculated (see [66]) as

λ1 = u1 − cf , λ2 = u1 − b1, λ3 = u1 − cs, λ4 = u1,

λ5 = u1, λ6 = u1 + cs, λ7 = u1 + b1, λ8 = u1 + cf ,
(7.2.10)

where cf , cs are given by

c2f =
1

2

(
a2 + b2 +

√
(a2 + b2)2 − 4a2b21

)
, c2s =

1

2

(
a2 + b2 −

√
(a2 + b2)2 − 4a2b21

)
.

The waves corresponding to λ1, λ8 are termed as fast waves, ones corresponding to λ3, λ6

as slow waves, those corresponding to λ2, λ7 as Alfvén waves and the wave associated with
λ4,5 is a contact or shear wave. Note that the coefficient B̃ enters into the expressions of
the eigenvalues. The eigenvalues of B (in the y-direction) are analogously defined.

7.2.1 Steady states

As in the introduction, we assume that u ≡ 0 and that B̃ satisfies the potential field
assumptions (7.2.3). Furthermore if the perturbation B ≡ 0 and an isothermal atmosphere
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is assumed, i.e, p = Cρ for some constant C, then simple calculations (see [33]) lead to
the following steady states of (7.2.4),

u = 0, B = 0, ρ(x, y) = ρ0e
−y/H , p(x, y) = p0e

−y/H . (7.2.11)

where the scale height H is given by H = p0/gρ0 and p0 and ρ0 are the values of the
pressure and density at the bottom boundary of the domain. Observe that the above
steady state is not necessarily hydrodynamic, since only the perturbation B is assumed
to be zero. The magnetic field is manifest in (7.2.4) through the background field B̃.

Hydrodynamic steady state

So far, the background field B̃ only satisfies (7.2.3). Specific solutions of the assumptions
(7.2.3) lead to a classification of possible steady states. The simplest solution of (7.2.3)
is given by

B̃ ≡ 0. (7.2.12)

The steady state (7.2.11) together with zero background field (7.2.12) is called the hy-
drodynamic steady state. It is equivalent to the hydrodynamic steady state (7.1.3) of
(7.1.1).

Magnetic steady states

Non-trivial solutions of (7.2.3) lead to interesting magnetic steady states. Note that solu-
tions of (7.2.3) can be characterized by vector harmonic functions. We use the following
Fourier expansion of vector harmonic functions (see also [33]),

B1(x, y) =
M∑

k=0

fk sin

(
2kπx

X

)
e−

2πky
X , B2(x, y) =

M∑
k=0

fk cos

(
2kπx

X

)
e−

2πky
X , B3(x, y) ≡ 0,

(7.2.13)
where the fk’s are Fourier coefficients corresponding to the background magnetic field at
the bottom of the domain and M is total number of Fourier modes. Note that the above
field (7.2.13) can be quite complicated with a large number of modes. However, even
more general solutions of (7.2.3) can be found, particularly those with non-zero B3. We
restrict ourselves to fields of the form (7.2.13) in our numerical simulations. The steady
state (7.2.11) with a background field like (7.2.13) is called a magnetic steady state.

Remark 7.2.2. A big advantage of using the modified formulation (7.2.4) is that it
allows for a unified treatment of steady states. Observe that all isothermal steady states
of (7.2.4) are given by (7.2.11). The difference between individual steady states lies in
the choice of the background field B̃. This enables us to use a single characterization of
isothermal steady states and design well-balanced schemes which preserve them.

7.3 Numerical Schemes

For notational simplicity, we focus on the MHD equations (7.2.1) in two space dimensions.
The extension to three space dimensions is straightforward. We approximate (7.2.5) in
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a domain x = (x, y) ∈ [Xl, Xr] × [Yb, Yt]. For simplicity, the domain is discretized by a
uniform grid in both directions with the grid spacing Δx and Δy. We set xi = Xl + iΔx
and yj = Yb + jΔy. The indices are 0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny. Set xi+1/2 = xi + Δx/2
and yj+1/2 = yj + Δy/2, and let Ii,j = [xi−1/2, xi+1/2) × [yj−1/2, yj+1/2) denote a typical
cell. The cell average of the unknown state vector W (approximating U) over Ii,j at time
tn is denoted Wn

i,j.

7.3.1 First order schemes

A standard finite volume scheme (first-order in both space and time) (see [50]) is obtained
by integrating the balance law (7.2.5) over the cell Ii,j and the time interval [tn, tn+1) with
tn+1 = tn +Δtn, where the time-step Δtn is determined by a suitable CFL condition. The
resulting fully-discrete form of the scheme is

Wn+1
i,j = Wn

i,j−
Δtn

Δx
(Fn

i+1/2,j−Fn
i−1/2,j)−

Δtn

Δy
(Gn

i,j+1/2−Gn
i,j−1/2)+Δtn(S1,n

i,j +S2,n
i,j +Sg,n

i,j ).

(7.3.1)
The numerical fluxes F, G and discretized sources S1, S2 and Sg are specified in the
following sections.

Numerical flux and Godunov-Powell source in the x-direction

As in [34], we determine the numerical flux Fn
i+1/2,j and the source term S1,n

i,j from the

(approximate) solution of the following Riemann problem

Wt + f
(
W, B̃M

)
x

= s1
(
W, B̃M ,Wx

)
, W(x, 0) =

{
WL x < 0,

WR x > 0,
(7.3.2)

where f and s1 are defined in (7.2.6) and (7.2.8) respectively. The Riemann initial data
in terms of primitive variables are

VL = {ρn
i,j,u

n
i,j,B

n
i,j, p

n
i,j}, VR = {ρn

i+1,j,u
n
i+1,j,B

n
i+1,j, p

n
i+1,j}. (7.3.3)

The data WL,WR (in terms of conservative variables) is easily obtained from the primitive
variables. The coefficient B̃M in (7.3.2) is given by the average,

B̃M = B̃i+1/2,j =
B̃i,j + B̃i+1,j

2
. (7.3.4)

Hence, we stagger the coefficient B̃ in defining the approximate Riemann solver. This
approach is a popular discretization of balance laws with coefficients ([45]) and results in
a simplification of the Riemann problem.

The HLL three wave solver

There are eight possible waves in the exact solution of the Riemann problem (7.3.2). We
will approximate these eight waves with three waves, i.e, two representing the outermost
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fast waves and a middle wave approximating the material contact discontinuity. This
approximate solution and fluxes for (7.3.2) are given by

WH3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

WL if x
t
≤ sL,

W∗
L if sL <

x
t
< sM ,

W∗
R if sM < x

t
< sR,

WR if sR ≤ x
t
,

FH3

(
WL,WR, B̃M

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

FL if x
t
≤ sL,

F∗L if sL <
x
t
< sM ,

F∗R if sM < x
t
< sR,

FR if sR ≤ x
t
.

(7.3.5)
Note that we do not enforce F = f(W, B̃M). The reason is that we allow π1 of (7.2.7) to
be a free variable, hence taking the role of the relaxation pressure in [20]. For consistency

we have to set π1 = p+
B2

2+B2
3

2
+B2B̃2 +B3B̃3 in FL and FR. The outer wave speeds sL

and sR model the fast magneto-sonic waves and are defined as in [36, 28], i.e.,

sL = min {u1L − cfL, ū1 − c̄f} , sR = max {u1R + cfR, ū1 + c̄f} , (7.3.6)

where ū1 and c̄f are the normal velocity and the fast wave speed of the Jacobian matrix
A((WL + WR)/2) respectively. This choice is important for numerical stability and
accuracy.

In order to describe the solver, we need to determine the speed of the middle wave
sM and the intermediate states W∗

L,W
∗
R. The middle wave models a material contact

discontinuity. Hence, the velocity field and the tangential magnetic fields are assumed
to be constant across the middle wave. This allows us to define u∗ = u∗L = u∗R, B∗2 =
B∗2L = B∗2R and B∗3 = B∗3L = B∗3R. As in [34], the normal magnetic field B1 is not assumed
to be constant but jumps only across the middle wave (modeling the linear degenerate
“divergence wave” implied by (7.2.2)), and B1 is constant across the outer waves. The
only difference between the solver designed here and the three wave solver described in
[34] is the fact that we include a coefficient B̃M in our expressions and we must account
for it in the conservation relations below.

We impose local conservation across each wave to determine the various states. Local
conservation across the outermost waves means that

sLW∗
L − F∗L = sLWL − FL, and sRWR − FR = sRW∗

R − F∗R. (7.3.7)

Conservation across the middle wave sM involves taking the source term s1 in (7.3.2) into
account. The conservation relation reads

sMW∗
R − sMW∗

L = F∗R − F∗L + s1,∗ (7.3.8)

where

s1,∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−B2
1R−B2

1L

2
− B̃1M (B1R −B1L)

−
(
B∗2 + B̃2M

)
(B1R −B1L)

−
(
B∗3 + B̃3M

)
(B1R −B1L)

−u∗ (B1R −B1L)

−u∗1 B2
1R−B2

1L

2
− (u∗2B

∗
2 + u∗3B

∗
3) (B1R −B1L)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7.3.9)
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This amounts to integrating the source s1 in (7.3.2) across the wave fan as described
in the next section. The above expression follows from the assumption that B1 jumps
only across the middle wave while the velocity field and the tangential components of the
magnetic field remain constant.

For any middle speed sM , a straightforward application of the conservation relations
(7.3.7) determines unique values of ρ∗θ given by

ρ∗θ = ρθ
u1θ − sθ

sM − sθ

, θ ∈ {L,R} (7.3.10)

Using conservation across all the three waves (adding (7.3.7) and (7.3.8)) results in the
global conservation relation,

FR − FL = sRWR − sLWL + (sM − sR)W∗
R + (sL − sM)W∗

L + s1,∗. (7.3.11)

We can use the intermediate density states (7.3.10) and global conservation (7.3.11) to
obtain

sM = u∗1 =
π1R − π1L + ρRu1R(u1R − sR)− ρLu1L(u1L − sL)

ρR(u1R − sR)− ρL(u1L − sL)
.

Similarly, one uses local conservation (7.3.7) across the two outer waves to obtain the
intermediate “relaxed” pressures,

π∗1θ = π1θ + ρθ(u1θ − sθ)(u1θ − sM), (7.3.12)

for θ ∈ {L,R}. Note that conservation across the middle wave automatically implies
that π∗1L = π∗1R, and that (7.3.12) confirms this assertion. The next step is to determine
the tangential velocity and magnetic field. Using global conservation across the wave fan
(7.3.11), we obtain that the intermediate values u∗σ and B∗σ satisfy the following two linear
equations,

αu∗σ − βB∗σ = cσ, −βu∗σ − ζB∗σ = dσ, σ ∈ {2, 3},
where

cσ = ρRuσR (u1R − sR)− ρLuσL (u1L − sL)

− (B1RBσR −B1LBσL)− B̃1M (BσR −BσL) ,

dσ = BσR (u1R − sR)−BσL (u1L − sL)

− (B1LuσL −B1RuσR) + B̃σM (u1R − u1L)− B̃1 (uσR − uσL) ,

α = ρR (u1R − sR)− ρL (u1L − sL) ,

ζ = sR − sL,

β = B1R −B1L.

(7.3.13)

Solving the linear system (7.3.13), the intermediate tangential components of velocity and
magnetic field are obtained as

u∗σ =
ζcσ − βdσ

αζ + β2
, B∗σ =

−αdσ − βcσ
αζ + β2

. (7.3.14)



196CHAPTER 7. WELL-BALANCED SCHEMES FOR WAVE PROPAGATION (MHD)

Remark 7.3.1. In general, the denominator; αζ + γ2, in (7.3.14) can become small,
leading to a degeneracy in the states. A simple calculation shows that αζ + γ2 �= 0 if
(ρRc

R
f +ρLc

L
f )(sR−sL) > (B1R−B1L)2. This condition can be ensured by “widening” the

wave fan slightly by modifying the fast wave speeds in (7.3.6). The resulting conditions
are

sR ≥ u1R +
1

2
(max((u1L − u1R), 0)) + c̃fR, sL ≤ u1L − 1

2
(max((u1L − u1R), 0))− c̃fL,

(7.3.15)
where

c̃2fθ =
γpθ

ρθ

+
B̄2

1θ

ρθ

(1 + ε) +
B̄2

2θ + B̄2
3θ

ρθ

+

√
(
γpθ + |B̄|2θ

ρθ

)2 − 4
γpθB̄2

1θ

ρ2
θ

, θ ∈ {L,R},

for some small positive ε and B̄σθ = Bσθ + B̃σM with σ ∈ {1, 2, 3}. Using the conditions
(7.3.15) to widen the wave fan ensures that the denominator αζ + β2 is never zero and
the states are well defined.

Finally, the intermediate total energy states are determined by local conservation
relations (7.3.7)

E∗θ =
1

sM − sθ

(
Eθ (u1θ − sθ) + π1θu1θ − π∗1θsM +

B2
1θ

2
(u1θ − sM)

+
(
B1θ + B̃1M

)
(B2θu2θ +B3θu3θ −B∗2θu

∗
2θ −B∗3θu

∗
3θ)

)
,

for θ ∈ {L,R}. Hence, all the intermediate states are determined explicitly. The in-
termediate fluxes are obtained in terms of the intermediate states by local conservation
(7.3.7),

F∗L = FL + sL(W∗
L −WL), F∗R = FR + sR(W∗

R −WR).

Combining the above expressions for the states and the fluxes, we write down our explicit
flux formula for the three-wave solver as

FH3

i+1/2,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fi,j , if sL,i+1/2,j > 0,

F∗i,j , if sL,i+1/2,j ≤ 0 ∧ sM,i+1/2,j ≥ 0,

F∗i+1,j , if sM,i+1/2,j < 0 ∧ sR,i+1/2,j ≥ 0,

Fi+1,j , if sR,i+1/2,j < 0.

(7.3.16)

Note that this may be discontinuous at sM,i+1/2,j = 0 according to (7.3.8). Hence our
choice of FH3 in that case is merely a convention. It is the proper addition of the source
term which ensures that the scheme is continuous.

Discretization of the Godunov-Powell source term

In this section we explain (7.3.8), and specify the discrete source S1,n
i,j in (7.3.1). The

discrete source must be consistent with the Godunov-Powell source term in x-direction
s1(W, B̃,Wx). It will be determined from our solution of the Riemann problem (7.3.2)
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along the x-direction at the cell interfaces (xi+1/2, yj). The HLL three wave approximate
Riemann solver of the previous section provide us with the assumptions we need: The
normal magnetic field jumps only across the contact-discontinuity modeled by the middle
wave, while the velocity field and the tangential components of the magnetic field are
constant across the middle wave.

We follow the presentation in [34] and let T be a quantity that is constant with value
T ∗ across the middle wave, then

(TB1
x)(x, t) = T ∗(B1R −B1L)δ(x+ tu∗1), (7.3.17)

where δ denotes the Dirac delta function. If we assume that |u∗1|Δtn ≤ Δx, integrating
TB1

x over (0,Δtn)× (−Δx, 0) yields

1

Δx

∫ Δtn

0

∫ 0

−Δx

TB1
xdxdt = ΔtnT ∗

B1R −B1L

Δx
1{u∗

1<0}, (7.3.18)

where 1A denotes the characteristic function of the set A. Integration over (0,Δtn) ×
(0,Δx) leads to

1

Δx

∫ Δtn

0

∫ Δx

0

TB1
xdxdt = ΔtnT ∗

B1R −B1L

Δx
1{u∗

1>0},

under the same restriction, |u∗1|Δtn ≤ Δx. Similarly, by again using the assumption that
B1 jumps only across the contact and T remains constant across it, we obtain that

1

Δx

∫ Δtn

0

∫ 0

−Δx

T

(
B2

1

2

)
x

dxdt = ΔtnT ∗
B2

1R −B2
1L

2Δx
1{u∗

1<0},

and
1

Δx

∫ Δtn

0

∫ Δx

0

T

(
B2

1

2

)
x

dxdt = ΔtnT ∗
B2

1R −B2
1L

2Δx
1{u∗

1>0}. (7.3.19)

Hence, we can derive (7.3.8) from (7.3.18)-(7.3.19) by observing that we must have

s1,∗ =

∫ tn+1

tn

∫ Δx

−Δx

s1
(
WH3 , B̃M ,W

H3
x

)
dxdt.

The final scheme is defined by evolving the piecewise constant function Wi,j according to
the approximate Riemann solver (7.3.5), and then taking the cell average of the conserved
quantities. Hence, the scheme is determined by (7.3.7)-(7.3.8), yielding (7.3.16), and

S1,n
i,j = s1,∗

i−1/2,j1{(sM,i−1/2,j≥0)} + s1,∗
i+1/2,j1{(sM,i+1/2,j<0)}, (7.3.20)

where s1,∗
i±1/2,j is defined in (7.3.9). For the case that sM,i+1/2,j = 0 our choice here was

dictated by our choice in (7.3.16). Integration along the y-direction is taken care of by
the midpoint rule.

We emphasize that the discrete Godunov-Powell source term in each cell consists of
contributions from Riemann solutions at the bordering interfaces and depends on the sign



198CHAPTER 7. WELL-BALANCED SCHEMES FOR WAVE PROPAGATION (MHD)

of the middle wave at each interface. Thus, the Godunov-Powell source term is suitably
upwinded. Note that assuming the normal magnetic field B1 to be constant for the whole
domain leads to the source term being zero. This approach follows [34],[20] and is very
different from the usual centered discretization of the Godunov-Powell source term ([66]
and other references therein).

Thus, we have completed the descriptions of the numerical fluxes F and the source S1

in (7.3.1).

Remark 7.3.2. The above fluxes and sources are designed using a three wave solver.
An alternative would be to design a five wave solver like in [59],[34]. This solver models
Alfvén waves in addition to the outer most fast waves and the contact discontinuity. We
can follow the steps of [33] to design a five wave solver for (7.3.2) by taking into account
contributions of the coefficient B̃.

Fluxes and sources in the y-direction

The numerical flux G and discrete Godunov-Powell source term S2 in (7.3.1) are similarly
described in terms of the following Riemann problem

Wt + g(W, B̃m)y = s2(W, B̃m,Wy), W(y, 0) =

{
WB y < 0,

WT y > 0,
(7.3.21)

where g, s2 are defined in (7.2.6) and (7.2.8) respectively. The natural way to specify
initial data WT,B in the above problem is to use the states WB = Wn

i,j and WT = Wn
i,j+1.

However, this approach leads to a scheme that does not preserve discrete versions of the
interesting steady states (7.2.11). Therefore we must design suitable fluxes in order to
design well-balanced schemes.

Local Hydrostatic reconstructions

Instead of just using the cell averages below and above the interface as data in (7.3.21),
we utilize the special structure of the isothermal steady states (7.2.11) and perform a local
hydrostatic reconstruction inside the cell, i.e., we observe that the pressure and density at
steady state (7.2.11) have an exponentially decaying profile. We use the same structure
locally inside a cell to define

VB = {ρn,−
i,j+1/2,u

n
i,j,B

n
i,j, p

n,−
i,j+1/2}, VT = {ρn,+

i,j+1/2,u
n
i,j+1,B

n
i,j+1, p

n,+
i,j+1/2}, (7.3.22)

where the reconstructed density and pressure are given in terms of extrapolated cell
averages by

ρn,−
i,j+1/2 = ρn

i,je
−Δy
2Hn

i,j , pn,−
i,j+1/2 = pn

i,je
−Δy
2Hn

i,j ,

ρn,+
i,j+1/2 = ρn

i,j+1e
Δy

2Hn
i,j+1 , pn,+

i,j+1/2 = pn
i,je

Δy
2Hn

i,j+1 ,

(7.3.23)

with the local scale height Hn
i,j =

pn
i,j

/
(gρn

i,j). The above sub-cell hydrostatic reconstruction

has been inspired by the approach of [7] to design well-balanced schemes for the shallow
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water equations with bottom topography. It involves using the steady state density and
pressure (7.2.11) to define the reconstructed densities and pressures at the cell edges in
the y-direction.

The data WB and WT (in terms of conservative variables) are easily obtained from
the primitive variables VB, VT . The coefficient B̃m in (7.3.21) is given by the average,

B̃m = B̃i,j+1/2 =
B̃i,j + B̃i,j+1

2
. (7.3.24)

Hence, we stagger the coefficient B̃ in defining the approximate Riemann solver as in the
previous section.

An approximate Riemann solution of the problem (7.3.2) in terms of the HLL three
wave solver of the previous section is easily obtained by repeating the approach of de-
scribing the solver in the x-direction. This can be used to describe the flux G and source
S2. Note that the difference between the design of the fluxes and Godunov-Powell sources
in the x- and the y-directions is due to the use of local hydrostatic reconstructions of the
density and the pressure in the y-direction.

Discretization of the gravitational source term

We need to discretize the gravity source term to define Sg in (7.3.1). Instead of using
a simple evaluation of the gravity term (it does not involve any derivatives) inside each
cell, we follow an approach suggested in [7] for shallow water equations with topography
to define

Sg,n
i,j =

{
0, 0,

pn,−
i,j+1/2 − pn,+

i,j−1/2

Δy
, 0, 0, 0, 0,−ρn

i,ju
n
2,i,jg

}
. (7.3.25)

where pn,−
i,j+1/2, p

n,+
i,j−1/2 are defined in (7.3.23). We will prove that this discretization of the

gravity source term is consistent, and that it ensures well-balancing of the scheme.

Boundary conditions:

In order to complete our description of the scheme (7.3.1), we need to specify boundary
conditions in both directions. As mentioned before, we use periodic boundary conditions
in the horizontal x-direction by setting,

Wn
0,j = Wn

Nx,j, Wn
Nx+1,j = Wn

1,j. (7.3.26)

In the vertical y-direction, we use the following balanced Neumann type boundary con-
ditions,

Wn
i,0 = Wn

i,1e
Δy
Hi , Wn

i,Ny+1 = Wn
i,Ny

e
−Δy

Hi . (7.3.27)

This completes the description of the first order scheme (7.3.1). Some properties of this
scheme are summarized in the theorem below,

Theorem 7.3.1. Consider the scheme (7.3.1) approximating the system (7.2.5). This
scheme has the following properties,
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(i.) The scheme (7.3.1) is consistent with (7.2.4), and it is first order accurate in both
space and time (for smooth solutions).

(ii.) The scheme (7.3.1) is well-balanced and preserves discrete versions of the steady
state (7.2.11), i.e, given data satisfying

un
i,j = 0, Bn

i,j = 0, ρn
i,j = ρ0

i,je
−yj
H , pn

i,j = p0
i,je

−yj
H , (7.3.28)

and any background field B̃, then the numerical update Wn+1
i,j is

Wn+1
i,j ≡Wn

i,j.

Proof. We start by proving consistency of (7.3.1). The flux F and discrete source S1 are
clearly consistent. Observe from (7.3.23) that (ρn,±

i,j+1/2, p
n,±
i,j+1/2) → (ρn

i,j, p
n
i,j) as Δy → 0.

Hence, G and S2 are also clearly consistent. The consistency of the gravitational source
term Sg in (7.3.25) is a consequence of the following elementary identity,

pn,−
i,j+1/2 − pn,+

i,j−1/2

Δy
= −gρn

i,j

e
Δy

2Hn
i,j − e

−Δy
2Hn

i,j

Δy
Hn

i,j

= −gρn
i,j +O(Δy2). (7.3.29)

In fact, (7.3.29) shows that the gravity source term Sg in (7.3.25) is in fact second order
accurate. The first-order accuracy of (7.3.1) is very easy to check.

To prove that scheme (7.3.1) is well-balanced, we observe that the data (7.3.28) are
constant in the x-direction. Therefore, the flux differences F n

i+1/2,j − F n
i−1/2,j are zero for

1 ≤ i ≤ Nx and for all j (including the boundaries). The source terms S1 and S2 are zero
because Bn

i,j = 0 for all i, j (including the boundaries).
Insert the data (7.3.28) into (7.3.23) and we obtain,

ρn,−
i,j+1/2 = ρn

i,je
−Δy
2H = ρ0

i,je
−yj
H e

−Δy
2H = ρ0

i,je
−yj
H e

−Δy
H e

Δy
2H = ρn

i,j+1e
Δy
2H = ρn,+

i,j+1/2.

A similar calculation holds for the pressure. Consequently for all i, j (including the bound-
aries),

ρn,−
i,j+1/2 = ρn,+

i,j+1/2, un
i,j = un

i,j+1 = 0

pn,−
i,j+1/2 = pn,+

i,j+1/2, Bn
i,j = Bn

i,j+1 = 0.
(7.3.30)

Hence the numerical flux G is

Gn
i,j+1/2 = g

(
ρn

i,j+1/2, 0, 0, p
n
i,j+1/2, ρ

n
i,j+1/2, 0, 0, p

n
i,j+1/2, B̃i,j+1/2

)
and by consistency of the flux in (7.2.6), we have

Gn
i,j+1/2 = G(ρn

i,j+1/2, 0, 0, p
n
i,j+1/2, B̃i,j+1/2) = (0, 0, pi,j+1/2, 0, 0, 0, 0, 0), (7.3.31)

Similarly an explicit evaluation of the gravity source term (7.3.25) yields,

Sg,n
i,j =

{
0, 0,

pn
i,j+1/2 − pn

i,j−1/2

Δy
, 0, 0, 0, 0, 0

}
.
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Therefore combining the above two expressions, we obtain

Gn
i,j+1/2 −Gn

i,j−1/2

Δy
= Sn,g

i,j for all i and j.

Using the above identity in (7.3.1) and the fact that flux differences in the x-direction
and the Godunov-Powell source terms vanish leads to

Wn+1
i,j ≡Wn

i,j.

Hence, the scheme (7.3.1) is well balanced with respect to the discrete steady state
(7.3.28).

Remark 7.3.3. It is important that the scheme produces positive states, i.e., states
with positive values of density and pressure. For zero gravity and a constant B̃, the
positivity conditions of [83] (see also [15]) apply. They amount to ensuring that the state
3Wn

i,j−Wn,−
i,j+1/2−Wn,+

i,j−1/2 is positive. In our case this means that 3−2cosh(Δy/(2Hi,j)) >
0, which holds as long as the local scale height Hi,j is reasonably resolved. For general
B̃ the techniques of [83] do not apply unless we include some form of Godunov-Powell
source contribution from B̃. However, we want to avoid such a contribution for the sake
of well-balancing, and in practice it should be quite small for smooth B̃. Finally, when
gravity is added, density trivially remains positive, while we expect pressure to remain
positive at resolved scale heights.

7.3.2 The second order scheme

The finite volume scheme (7.3.1) is first order accurate in both space and time. For
practical applications, we need higher order of accuracy. We will design a finite volume
scheme based on (7.3.1) which is second order accurate in both space and time. At any
time t, given the cell averages Wi,j(t), the semi-discrete form of this scheme is given by

d

dt
Wi,j = F i,j = − 1

Δx
(F̃i+1/2,j − F̃i−1/2,j)− 1

Δy
(G̃i,j+1/2 − G̃i,j−1/2) + S̃1

i,j + S̃2
i,j + Sg

i,j.

(7.3.32)
The numerical fluxes F,G and the sources S̃1, S̃2 are defined below.

It is standard (see [50]) to replace the piecewise constant approximation Wi,j with
a non-oscillatory piecewise linear reconstruction in-order to obtain second-order spatial
accuracy. There are a variety of reconstructions including the popular TVD-MUSCL
limiters [81], ENO reconstruction [40] and WENO reconstruction [72]. The ENO and
WENO reconstructions can be extended to even higher orders of accuracy.

A standard reconstruction is performed in terms of the conservative variables W. How-
ever, such a reconstruction may not preserve discrete steady states like (7.2.11). Hence, we
introduce a novel reconstruction procedure (see [7, 60] for well-balanced reconstructions
of shallow water equations with topography) based on the following equilibrium variables,

Ri,j = {Lρi,j,ui,j,Bi,j,Lpi,j} , (7.3.33)
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where
Lρi,j = log(ρi,j), Lpi,j = log(pi,j).

Next, we use the equilibrium variables in each cell to define non-oscillatory slopes inside
each cell by the following procedures,

Minmod Reconstruction (MM)

Given the cell averages Wi,j, we calculate the equilibrium variables Ri,j defined in (7.3.33).
Define the Minmod-differences in each direction as

DxRi,j = minmod(Ri+1,j −Ri,j,Ri,j −Ri−1,j),

DyRi,j = minmod(Ri,j+1 −Ri,j,Ri,j −Ri,j−1)
(7.3.34)

where

minmod(a, b) =
1

2
(sgn(a) + sgn(b)) min(|a|, |b|).

Note that the limiting is performed componentwise.

ENO Reconstruction

Given the cell averages Wi,j, calculate the equilibrium variables Ri,j by (7.3.33). Define
the ENO-differences in each direction as

DxRi,j =

{
Ri+1,j −Ri,j if Γx

i,j ≤ 1,

Ri,j −Ri−1,j otherwise,
DyRi,j =

{
Ri,j+1 −Ri,j if Γy

i,j ≤ 1,

Ri,j −Ri,j−1 otherwise,
(7.3.35)

where

Γx
i,j =

|ψ(Vi+1,j)− ψ(Vi,j)|
|ψ(Vi,j)− ψ(Vi−1,j)| , Γy

i,j =
|ψ(Vi,j+1)− ψ(Vi,j)|
|ψ(Vi,j)− ψ(Vi,j−1)| ,

for some function ψ called the global smoothness indicator. Here V denotes the primitive
variables Vi,j = {ρi,j,ui,j,Bi,j, pi,j}. We use ψ(V) = ρ+ B2. This choice of ψ is just one
possibility and other choices can be made. However, this choice is quite robust in practice
(see [34]). Note that for a piecewise linear reconstruction, the ENO procedure reduces to
providing a limiter for the slopes in each direction.

WENO procedure

As an alternative to the above reconstruction, consider the following cell-differences

DxRi,j =
(
ωx

i,j (Ri+1,j −Ri,j) +
(
1− ωx

i,j

)
(Ri,j −Ri−1,j)

)
,

DyRi,j =
(
ωy

i,j (Ri,j+1 −Ri,j) +
(
1− ωy

i,j

)
(Ri,j −Ri,j−1)

)
,

(7.3.36)

where the weights are given by,

ωx
i,j =

a0
i,j

a0
i,j + a1

i,j

, a0
i,j =

1

3(ε+ βx,0
i,j )

, a1
i,j =

2

3(ε+ βx,1
i,j )

,

ωy
i,j =

b0i,j
b0i,j + b1i,j

, b0i,j =
1

3(ε+ βy,0
i,j )

, b1i,j =
2

3(ε+ βy,1
i,j )

,
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where ε is a small positive number, and the parameters are given by

βx,0
i,j = (ψ(Vi+1,j)− ψ(Vi,j))

2, βx,1 = (ψ(Vi,j)− ψ(Vi−1,j))
2,

βy,0
i,j = (ψ(Vi,j+1)− ψ(Vi,j))

2, βy,1 = (ψ(Vi,j)− ψ(Vi,j−1))
2,

and the indicator function ψ is defined above. The WENO reconstruction leads to a
third-order accurate approximation.

Remark 7.3.4. The above procedures do not necessarily lead to schemes that preserve
positive pressure. A provably positive scheme, at least for constant B̃, can be obtained
with the framework outlined in recent papers [83, 34] with suitable modifications. We did
not observe problems with positivity in our numerical simulations in this paper. One sta-
bilizing factor was the use of logarithms of the pressure and density in the reconstruction,
which automatically ensures positivity of the reconstructed pressure and density. Hence,
we omit details of positivity preserving modifications here and refer the reader to [83, 34]
for details.

All the above procedures supply slopes DxRi,j and DyRi,j and can be used to define
the following reconstructed piecewise linear function is each cell Ii,j denoted by

Ri,j(x, y) = Ri,j +
1

Δx
DxRi,j(x− xi) +

1

Δy
DyRi,j(y − yj). (7.3.37)

where the gradients Dx,y may be defined by the minmod (7.3.34), ENO (7.3.35) or WENO
(7.3.36) procedures. The reconstructed primitive variables are obtained from the recon-
structed equilibrium variables by the following simple transformation,

Vi,j(x, y) =
{
eLρi,j(x,y),ui,j(x, y),Bi,j(x, y), e

Lpi,j(x,y)
}
.

Hence, the reconstruction procedure outlined here entails taking a logarithm of the pres-
sure and density, reconstruct in these variables and transforming back via an exponential
to obtain the reconstructed primitive variables. The conservative variables can be trivially
obtained from the primitive variables and are denoted by the piecewise linear function
Wi,j(x, y).

Define the point values,

WE
i,j = Wi,j(xi+1/2, yj), WW

i,j = Wi,j(xi−1/2, yj),

WN
i,j = Wi,j(xi, yj+1/2), WS

i,j = Wi,j(xi, yj+1/2).

We use these point values to define the numerical fluxes by

F̃i+1/2,j = F
(
WE

i,j,W
W
i+1,j, B̃i+1/2,j

)
, G̃i,j+1/2 = G

(
WN

i,j,W
S
i,j+1, B̃i,j+1/2

)
,

where F,and G are given by the three wave solver of the previous section. The value of
the staggered coefficient B̃ is given by a simple evaluation,

B̃i+1/2,j = B̃(xi+1/2, yj), B̃i,j+1/2 = B̃(xi, yj+1/2).
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The above choice ensures second-order accuracy for smooth (say C2) coefficients B̃. In
case the coefficient is not smooth enough, or given by cell averages, we can reconstruct
the coefficient on a staggered mesh. A crucial difference between the first order and the
second order fluxes is the definition of G. In the first order scheme, hydrostatic recon-
structions (7.3.23) were used to define the flux in the y-direction. The piecewise linear
reconstruction in terms of the equilibrium variables (7.3.33) automatically ensures local
hydrostatic balance and further modification of the reconstructed densities and pressures
is unnecessary.

Similarly, the second-order source terms can be calculated as

S1
i,j = s1,∗

i−1/2,j1{sM,i−1/2,j≥0} + s1,∗
i+1/2,j1{sM,i+1/2,j<0},

where s1,∗
i+1/2,j is defined as in (7.3.9), but with the values Wi,j and Wi+1,j replaced by

WE
i,j and WW

i+1,j and a second order equivalent value of coefficient B̃. The source S2
i,j in

the y-direction is defined analogously. Observe that for smooth solutions, the discretized
source S1

i,j vanishes to truncation order with (BE
1 )i,j − (BW

1 )i+1,j. Hence, we need to add
an extra term for second-order consistency. However, this term should vanish when S1

i,j

becomes significant at jumps (see e.g., [7] for an analogous situation). We suggest the
following simple modification,

S̃1
i,j = S1

i,j +

⎛
⎜⎜⎝

0

Bi,j + B̃i,j

ui,j ·Bi,j

ui,j

⎞
⎟⎟⎠ 1

Δx
DxB1

i,j.

The term S̃2
i,j in the y-direction is defined analogously. A similar form of the discrete

source was found to be very stable in [83]. Note that S̃1,2
i,j are consistent second-order

discretizations of the Godunov-Powell source terms s1,2. A similar form of the discrete
source was found to be very stable in [83, 34]. Note that S̃1,2

i,j , are consistent second-order
discretizations of the Godunov-Powell source terms s1,2.

The gravity source term Sg
i,j is defined by (7.3.23) and (7.3.25) (omitting the n-

superscript in (7.3.25) for compatibility of notation). Note that (7.3.29) established that
the source term (7.3.25) is second-order accurate.

Boundary conditions for the second order scheme

The boundary is treated in the following way. We need to specify two layers of ghost cells
in each direction for a second order scheme. We have periodic boundary conditions in the
x-direction, i.e., for 1 ≤ j ≤ Ny we have

W0,j = WNx,j, W−1,j = WNx−1,j, WNx+1,j = W1,j, WNx+2,j = W2,j (7.3.38)
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In the y-direction, we use extrapolated Neumann boundary conditions. In terms of the
equilibrium variables, where Lρi,j = log(ρi,j) and Lpi,j = log(pi,j), we take

Lρi,d = Lρi,1 +
(1 + d)Δy

Hi,1

, Lρi,Ny+1+d = Lρi,Ny − (1 + d)Δy

Hi,Ny

ui,d = ui,1+d, ui,Ny+1+d = ui,Ny−d

Lpi,d = Li,1 +
(1 + d)Δy

Hi,1

, Lpi,Ny+1+d = Lpi,Ny −
(1 + d)Δy

Hi,Ny

Bi,d = Bi,1+d, Bi,Ny+1+d = Bi,Ny−d,

(7.3.39)

for 1 ≤ i ≤ Nx and d ∈ {0, 1} in order to define all the values in the ghost cells. This
amounts to using the extrapolated Neumann type boundary conditions of [33] for the
primitive variables.

Time Stepping

The standard scheme for a first order approximation in time is the forward Euler time
stepping, formally written

Wn+1
i,j = Wn

i,j + ΔtnFn
i,j

where Fn
i is defined in (7.3.32). For second-order schemes, we use the second-order

strong-stability preserving Runge-Kutta (SSP) time stepping (see [37])

W∗
i,j = Wn

i,j + ΔtnFn
i,j,

W∗∗
i,j = W∗

i,j + ΔtnF∗
i,j,

Wn+1
i,j =

1

2
(Wn

i,j + W∗∗
i,j).

The time step is determined by a standard CFL condition.
The properties of the second-order scheme are summarized in the theorem below,

Theorem 7.3.2. Consider the scheme (7.3.32) approximating the system (7.2.5). This
scheme has the following properties,

(i.) The scheme (7.3.32) is consistent with (7.2.5) and is second-order accurate.

(ii.) The scheme (7.3.32) is well-balanced and preserves a discrete version of the steady
state (7.2.11), i.e, given data satisfying

ui,j = 0, Bi,j = 0, ρi,j = ρ0
i,je

−yj
H , pi,j = p0

i,je
−yj
H , for all i and j, (7.3.40)

and any background field B̃, then the approximate solutions computed by (7.3.32)
satisfy,

d

dt
Wi,j ≡ 0, .

for all i and j.
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Proof. The proof of consistency and second order accuracy is a straightforward conse-
quence of the design of the scheme (7.3.32) and can be easily checked. We prove the
well-balancing property. Assume that the data satisfies (7.3.40), then observe that the
data is constant along the x-direction. This implies that

F̃i+1/2,j − F̃i−1/2,j ≡ 0,

for all i and j. Furthermore ui,j,Bi,j ≡ 0 implies that

Dxui,j, D
yui,j, DxBi,j, D

yBi,j ≡ 0,

for all i and j. This is true for the minmod, ENO and WENO reconstructions. Therefore
all the reconstructed values of u and B are zero and the source terms S̃1 and S̃2 are zero
for all i and j. A straightforward application of (7.3.40) leads to the following,

DxLρi,j ≡ 0, DxLpi,j ≡ 0,

DyLρi,j ≡ −Δy

H
, DyLpi,j ≡ −Δy

H
,

The above is true for all the three reconstructions, i.e, minmod (7.3.34), ENO (7.3.35) or
WENO (7.3.36) reconstructions. Consequently, a simple calculation leads to the following
reconstructed density and pressure,

ρ̄i,j(x, y) = ρ0e
−yj/He−(y−yj)/H ,

p̄i,j(x, y) = p0e
−yj/He−(y−yj)/H .

(7.3.41)

Hence, we can define ρi,j+1/2 and pi,j+1/2 by

ρN
i,j = ρS

i,j+1 = ρi,j+1/2 = ρ0e
−yj/He

−Δy
2H ,

pN
i,j = pS

i,j+1 = pi,j+1/2 = p0e
−yj/He

−Δy
2H , (7.3.42)

for all i and j. From consistency of the numerical flux, we obtain

G̃i,j+1/2 = G(ρE
i,j, 0, 0, p

E
i,j, ρ

W
i,j+1, 0, 0, p

W
i,j+1, B̃i,j+1/2) = g(ρE

i,j, 0, 0, p
E
i,j),

and using (7.3.42), we obtain

G̃i,j+1/2 = (0, 0, pi,j+1/2, 0, 0, 0, 0, 0). (7.3.43)

Similarly an explicit evaluation of the gravitational source term in this case yields,

Sg
i,j =

{
0, 0,

pi,j+1/2 − pi,j−1/2

Δy
, 0, 0, 0, 0, 0

}
.

where using (7.3.23) leads to a value of pi,j+1/2 defined in (7.3.42).
Therefore combining the above two expressions, we obtain

G̃i,j+1/2 − G̃i,j−1/2

Δy
= Sg

i,j.
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Using the above identity in (7.3.32) and the fact that both flux differences in the x-
direction and the Godunov-Powell source terms vanish, leads to

d

dt
Wi,j ≡ 0,

for all i and j. Note that the reconstruction in equilibrium variables was absolutely
essential in the above proof.

7.4 Wave propagation: Numerical experiments

We test the first order (7.3.1) and second order (7.3.32) schemes on a suite of numeri-
cal experiments. For the sake of comparison, we consider an unbalanced version of the
first order scheme similar to (7.3.1) based on the HLL three wave solver and upwind
discretization of the Godunov-Powell source terms. This scheme does not use local hy-
drostatic reconstructions of density and pressure (7.3.23) and discretizes gravity by the
simpler form

S̃g
i,j = {0, 0, 0,−ρi,jg, 0, 0, 0,−ρi,ju2,i,jg} . (7.4.1)

Similarly, we consider a second-order version of the above unbalanced scheme based
on a WENO reconstruction in the conservative variables, as opposed to the equilibrium
variables of the scheme (7.3.32). Hence, we test the following five schemes:

H3 First order unbalanced HLL three wave solver,
H3WB well-balanced version of H3 (7.3.1),
H3WBM second order well-balanced HLL three-wave solver

(7.3.32) with Minmod reconstruction (7.3.34),
H3W second order unbalanced HLL three-wave solver

with WENO reconstruction
H3WBW second order well-balanced HLL three wave solver

(7.3.32) with WENO reconstruction (7.3.36).

The results with a well-balanced ENO scheme were very similar on most problems to
either the H3WBM scheme or the H3WBW scheme and we omit them from the following
presentation. The first order schemes are evolved with a CFL number of 0.45 and the
second order schemes use a CFL number of 0.9. In all our computations we set γ = 5/3.

Regarding the measurement of errors, if we have a reference solution available, then
we define the relative error as

100× ‖α− αref‖
‖αref‖ ,

where α is (a component of) the numerical approximation and αref is (the same component
of) the reference solution, and ‖ · ‖ is some (usually L1) norm.

7.4.1 Hydrodynamics: steady state

We begin with a numerical experiment with zero background magnetic field B̃. This
idealized stellar atmosphere is modeled by a two dimensional spatial domain of [0, 4]×[0, 1].
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The initial conditions are given by the hydrodynamic steady state (7.2.11) and B̃ ≡ 0 with
a scale height of H = 0.158, initial pressure p0 = 1.13 and gravitational constant g = 2.74.
The parameters are chosen to approximate the dimensional parameters used in [18]. The
simulation is carried out up to a time of t = 1.8. Here we will compare the performance
of our schemes in preserving the steady state (7.2.11) to the unbalanced version of these
schemes. Our interest is measuring errors in preserving the steady state with respect to
both the pressure (density) and the velocity. We compute relative percentage errors in
pressure by

100× ‖p− pref‖L1

‖pref‖L1

,

where pref is simply the steady state pressure (7.2.11). It is harder to compute relative
errors in the velocity as the steady state velocity is u ≡ 0. However, the velocity can be
compared to the sound speed a =

√
γp/ρ. Note that the steady state sound speed is a

constant given by a =
√
γgH where g and H are the acceleration due to gravity and the

scale height. A simple calculation with the constants considered here lead to a = 0.85.
Therefore, we measure velocity errors by the following,

100× ‖u2‖L1

a
,

where we choose the velocity component u2 for convenience. The numerical errors in L1

for the pressure and the velocity (as calculated above) on a series of meshes are presented
in Table 7.4.1. From this table, we see that using the unbalanced schemes H3 and H3W

% L1-error in p H3 H3W H3WB H3WBM H3WBW
100x25 4.9e+2 8.2e+0 7.0e-13 1.1e-12 1.6e-13
200x50 1.6e+2 1.1e+0 3.7e-14 7.2e-14 5.7e-14
400x100 6.7e+1 1.4e-1 4.8e-13 4.3e-13 2.7e-13
800x200 3.0e+1 1.7e-2 6.4e-13 7.1e-13 3.1e-13

% L1-error in u2 H3 H3W H3WB H3WBM H3WBW
100x25 2.8e+1 9.7e-1 7.0e-13 1.1e-12 1.6e-13
200x50 1.5e+1 1.3e-1 3.7e-14 7.2e-14 5.7e-14
400x100 7.6e+0 1.7e-2 4.8e-13 4.3e-13 2.7e-13
800x200 2.4e+0 2.1e-3 6.4e-13 7.1e-13 3.1e-13

Table 7.4.1: Percentage relative L1 errors in p and u2 for different schemes on different
meshes. Left: un-balanced schemes, right: well-balanced schemes

leads to errors in preserving the steady state pressure and velocity although they converge
to zero when the mesh is refined. The first order H3 scheme has large errors and the rate
of convergence is one. The WENO based H3W does a much better job with respect to
steady state errors and the observed rate of convergence is close to 3 . However, the errors
(even with WENO scheme) are too large to allow for computations of very small steady
state perturbations.

On the other hand, the well-balanced schemes perform much better. As proved in
theorems 7.3.1, 7.3.2, the well-balanced schemes preserve the steady state up to machine
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precision for both first and second order schemes. This experiment serves to illustrate the
constrast between unbalanced schemes are their well-balanced counterparts.

7.4.2 Hydrodynamics: Wave propagation

The next step is to simulate hydrodynamic wave propagation. The computational domain
is the same as in the previous experiment. The propagation of waves is initiated by sending
in a sinusoidal (in time) sequence of waves from the bottom boundary, and letting them
propagate across the domain and exiting at the top. The initial data is the hydrodynamic
steady state (7.2.11) (with the background magnetic field B̃ ≡ 0). The waves are modeled
by the following boundary conditions for the normal velocity at the bottom,

u2,n
i,{0,−1} = c sin (6πtn)1{[1.85,1.95]} (7.4.2)

Hence, we model the bottom boundary as a localized piston in the interval [1.85, 1.95].

Figure 7.4.1: The vertical velocity u2 at t =
1.8 at a mesh resolution of 800× 200 points
for c = 3.0e−3. Top left: H3WB, top right:
H3WBM , left: H3WBW .

Figure 7.4.2: The vertical velocity u2 at t =
1.8 at a mesh resolution of 800× 200 points
for c = 3.0e−1. Top left: H3WB, top right:
H3WBM , left: H3WBW .
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These waves move up through the domain and are modified by the flow equations and
the action of gravity. We perform two different tests for this model. In the first one,
we send in very small perturbations (c = 3.0e−3). This test serves to illustrate the well-
balancing properties of the schemes. Figure 7.4.1 shows u2 at time t = 1.8 for the small
wave perturbations (c = 3.0e−3) for a 800 × 200 mesh. The first order H3WB scheme is
very dissipative. There is a tremendous difference between the first order scheme and the
second order schemes. Additionally, we observe that the WENO scheme, (being formally
third-order accurate) shows better accuracy than the Minmod reconstruction. Observe
from Table 7.4.1 that the steady state velocity errors with the unbalanced H3 and H3W
are either of the same order or orders of magnitude greater than the perturbations and
it was not possible to resolve these very small waves for any of the unbalanced schemes.
This illustrate the computational efficiency of well-balanced schemes in resolving small
perturbations of the steady state.

Now, we increase the amplitude of the waves introduced at the bottom boundary
(7.4.2) by two orders of magnitude with c = 0.3. In figure 7.4.2 we present the results for
the first and second order well-balanced schemes (H3WB, H3WBM , H3WBW ). We can see
that the waves are resolved very well and there is a clear improvement in resolution from
first to second order schemes. Furthermore, the WENO scheme has better resolution than
the Minmod scheme. The features are resolved quite well by the minmod and the WENO
schemes. There was a small amount of reflections from the top boundary. However,
the errors were quite small and did mnot affect the quality of the approximation in the
interior.

7.4.3 Magneto-Hydrodynamics: steady state

A realistic model of the solar atmosphere must account for the magnetic field. We begin
considering magnetic fields by a test case that illustrates the performance of different
schemes in preserving a magnetic steady state of of the form (7.2.4). As in the previous
numerical experiment, the computational domain is [0, 4]× [0, 1]. We consider the steady
state (7.2.11) but a non-trivial background magnetic field B̃. The background magnetic
field is given by an expression of the form (7.2.13) in terms of a Fourier expansion. The
Fourier coefficients are listed below, (The X in (7.2.13) is in this case is equal to 4.)

FR = {f0, f1, . . . , f14} ={
0.552802906842,−0.696736253842, 0.908809914778,−0.813921192337, 0.360524088458,

0.115217242296,−0.281974513346, 0.143723957761, 0.049431756210,−0.110095259045,

0.053464228949, 0.011695376102,−0.028284735991, 0.013116555865, 0.001434008866
}
.

(7.4.3)
Note that the above magnetic field is quite complicated. It is designed to approximate a
perturbed Gaussian magnetic field considered in [18]. This experiment was also considered
in a recent paper [33]. The results of [33] indicated that it was much harder to compute
steady states like (7.2.11) with magnetic field given by (7.2.13). In fact, all the finite
volume schemes (with different combinations of boundary conditions) considered in [33]
crashed on this problem. Hence, it is very interesting to see how the well-balanced schemes
perform on this test case.
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We compute with the three well-balanced schemes i.e, H3WB, H3WBM and H3WBW ,
and for the sake of comparison, we also compute with the two unbalanced schemes until
t = 1.8 on a sequence of meshes. The relative percentage errors in L1 (as calculated
in Numerical experiment 7.4.1) for both the pressure and the velocity are given in table
7.4.2. The table clearly shows that the well-balanced schemes preserve the steady state

% L1-error in p H3 H3W H3WB H3WBM H3WBW
100x25 3.5e+2 6.3e+0 9.8e-20 2.5e-18 7.9e-17
200x50 1.2e+2 8.2e-1 1.6e-18 3.6e-18 4.1e-16
400x100 4.9e+1 1.0e-1 2.8e-18 3.5e-18 2.6e-15
800x200 2.2e+1 1.3e-2 4.6e-18 1.4e-17 2.0e-14

% L1-error in u2 H3 H3W H3WB H3WBM H3WBW
100x25 2.0e+1 6.9e-1 7.0e-13 1.1e-12 1.6e-13
200x50 9.8e+0 8.6e-2 3.7e-14 7.2e-14 5.7e-14
400x100 4.8e+0 1.0e-2 4.8e-13 4.3e-13 2.7e-13
800x200 2.4e+0 1.3e-3 6.4e-13 7.1e-13 3.1e-13

Table 7.4.2: Percentage relative L1 errors in p and u2 for different schemes on different
meshes. Left un-balanced schemes. Right well-balanced schemes

to machine precision whereas the unbalanced schemes lead to relatively large errors. The
errors in both sets of schemes are comparable to the errors in preserving the hydrodynamic
steady state (see table 7.4.1). Hence, it is not possible to use unbalanced schemes for
approximating very small perturbations of steady states.

7.4.4 Wave propagation: Effect of the magnetic field

This test case is set up to illustrate the transition from hydrodynamics to MHD by
observing the effect that magnetic fields have on wave propagation. The computational
domain is [0, 2] × [0, 1] with the initial data corresponding to the steady state (7.2.11).
The waves are modeled by the following boundary conditions for the normal velocity at
the bottom,

u2,n
i,{0,−1} = c sin (6πtn)χ[0.95,1.05], (7.4.4)

with c = 3e−1. We consider the simple homogenous background field B̃ given by

B̃2 = μ, B̃1 = B̃3 = 0. (7.4.5)

with a constant μ that we vary between each experiment. A crucial parameter is the
plasma β given by

β =
2p

B2
. (7.4.6)

The parameter β measures the relative strength of the thermal pressure to the magnetic
field and is crucial in determining the dynamics of the plasma. We show results on a
400 × 200 mesh at time t = 0.54, computed with the H3WBW scheme in figure 7.4.3.



212CHAPTER 7. WELL-BALANCED SCHEMES FOR WAVE PROPAGATION (MHD)

Figure 7.4.3: Results for the simple magnetic field (7.4.5) with the WENO reconstruction
at t = 0.54 on a 400 × 200 mesh. The magnetic field-lines are in white and the β-lines
are in black. The figures show the velocity in the direction of the magnetic field. The
magnetic field strength increases from left to right: left: μ = 0, center: μ = 1, right:
μ = 5.

Figure 7.4.4: Velocity perpendicular to the magnetic field for the simple magnetic field
(7.4.5) with μ = 1 and with the WENO reconstruction at different times on a 400× 200
mesh. The magnetic field lines are white and the isolines of β black. Left:t = 0.216,
center: t = 0.36, right: t = 0.50.

Three different values of μ = 0, 1, 5 are chosen to illustrate of the effect of increasing the
magnetic field strength. The magnetic field lines are shown in white and the β isolines
are shown in black. The figure clearly illustrates the role of the magnetic field. For
μ = 0 (hydrodynamics), the waves radiate outward as they are bent by gravity. Before
discussing the numerical results for the configurations with magnetic fields, we describe
some terminology: the waves corresponding to the eigenvalues λ1,8 in (7.2.10) are called
fast waves. Similarly, waves corresponding to the eigenvalues λ3,6 are called slow waves.
Clearly, the fast waves have much higher speed than the slow waves. Furthermore, the
plasma velocity in the direction of the magnetic field only shows the presence of slow waves
([18]) whereas the velocity in the direction perpendicular to the magnetic field shows
both fast as well as slow waves. In a stratified magneto-atmosphere (see the structure
of (7.2.11), (7.2.13) and (7.4.3)), the pressure and the density decay exponentially with
height whereas the magnetic field (at least its constant mode) remains approximately
constant. Hence, a pressure dominated flow (with β � 1) at the bottom of the domain
can change into a magnetically dominated flow (with β � 1) near the top of the domain.
This implies that gas pressure and magnetic fields play different roles in different parts
of the domain. Furthermore, the region β ≈ 1 is very interesting in nature, since β = 1
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corresponds to the well known triple point of MHD ([17]). This region is characterized
by the fact that the fast and slow (also the Alfvén) eigenvalues almost coincide. The
brief description above (a more detailed one can be found in [18]) serves to illustrate the
complexity of the physics underlying wave propagation in stellar atmospheres, and the
considerable numerical challenges that must be overcome to model this.

In Figure 7.4.3 we present the velocity in the direction of the magnetic field. Given
the planar magnetic field (7.4.5), this reduces to the velocity in y-direction. For μ = 1,
the magnetic field compresses the wave and its outward radial spread is reduced consider-
ably. This should be contrasted with the hydrodynamic case. The compression increases
considerably by increasing the magnetic field strength to μ = 5. In this case, the velocity
is completely focused by the magnetic field. This example clearly shows the role of the
magnetic field in focusing waves.

Another significant feature is the role of the plasma β. The triple line β = 1 serves
to convert fast waves into a combination of fast and slow waves ([18]). This phenomenon
is illustrated in Figure 7.4.4 where the velocity in the direction perpendicular to the
magnetic field (the velocity in x-direction for this planar magnetic field) is shown. We
show the results with the WENO scheme on a 400 × 200 mesh and with μ = 1 at three
different times. This particular magnetic field is chosen because it has a β = 1 isoline
lying within the computational domain. Thus, this example shows the effect of both the
gas pressure as well as the magnetic field. As soon as a fast wave hits the β = 1 isoline,
mode conversion takes place and it is converted into a combination of fast and slow waves.
Furthermore, the decreasing values of β imply that velocity of the fast waves increases
quite rapidly and the fast waves get accelerated after crossing the β = 1 isoline. The
acceleration in the low β region forces the fast waves to turn towards the high β region
near the top boundary. This turning behavior is demonstrated quite well in right most
panel of Figure 7.4.4 and is physical ([18]). The above results show that there are many
interesting physical effects accompanying wave propagation in the presence of magnetic
fields.

7.4.5 Wave propagation: Weak magnetic fields

The above numerical experiment sets the stage for introducing more complicated back-
ground magnetic fields. We consider (7.2.4) with the steady state (7.2.11) as the initial
data. The background magnetic field B̃ is given in terms of the expansion (7.2.13) with
Fourier coefficients given by the vector FR/3 where FR is defined in (7.4.3). This mag-
netic field is called weak in analogy with the terminology in [18]. The computational
domain is [0, 4]× [0, 1].

We use the well-balanced schemes to compute to above configuration with two different
perturbations. First, we consider a very weak perturbation of type (7.4.2) with magnitude
c = 3e−3. This test illustrates the well-balancing of the schemes. The results with all
the three schemes H3WB, H3WBM and H3WBW on a 800× 200 mesh at time t = 0.9 are
presented in Figure 7.4.5. We show both the component of the velocity field parallel to the
magnetic field and the component perpendicular to it. Observe that all the three schemes
are able to capture the small perturbations. This is quite challenging as the schemes
need to preserve the steady state (7.2.11) with this complex magnetic field to machine
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precision in order to capture these small waves. The figure shows that the WENO scheme
is most accurate and the first order scheme is most dissipative. Furthermore, the complex

Figure 7.4.5: Results for the weak magnetic background with small wave perturbations
(c = 3e−3) at t = 0.9 on a 800×200 mesh. The magnetic field lines are shown in white and
the isolines of β in black. The top row shows the speed in the direction of the magnetic
field lines and the bottom row shows the speed perpendicular to the magnetic field lines.
Left column: H3WB, middle column: H3WBM , right column: H3WBW .

Figure 7.4.6: Results for the weak magnetic background at t = 0.9 on a 800× 200 mesh
for c = 3e−1. The magnetic field lines are shown in white and the isolines for β in black.
The top row shows the speed in the direction of the magnetic field lines and the bottom
row shows the speed perpendicular to the magnetic field lines. Left column: H3WB, middle
column: H3WBM , right column: H3WBW .

physics is nicely resolved by all the three schemes. The velocity in the direction of the
magnetic field shows the presence of the slow waves whereas the perpendicular component
shows both fast and slow waves (observe that the leading fast wave has already reached
the boundary at this time instant whereas the leading slow wave is still quite far from
the top boundary). Note that the β = 1 isoline is at the center of the domain. The mode
conversion described in the previous experiment is quite clearly seen.

A second set of computations with the above configuration involves a much stronger
perturbation of the type (7.4.2) with magnitude c = 3e−1. Thus the perturbation is two
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orders of magnitude greater than the one considered before. The results with all the three
schemes at time t = 0.9 are shown in Figure 7.4.6. The results are obtained on a 800×200
mesh. The qualitative features shown in Figure 7.4.6 are similar to those presented in
Figure 7.4.5. The main differences are: the fast waves are much faster now and are exiting
the top boundary at this instant of time. The turning behavior of the fast waves is quite
pronounced. Another difference in this case is the observation that the magnetic field is
being distorted quite strongly by the wave. This is to be expected as the magnetic field
is not very strong and the waves have reasonably large magnitude. Note that the slow
waves continue to spread radially outward as the magnetic field is not strong enough to
focus them. At the level of schemes, all the three schemes resolve the complex physics
quite well and allow us to deduce quantitative as well as qualitative conclusions on the
nature of the wave propagation.

7.4.6 Wave propagation: Strong magnetic fields

We consider the same configuration as in the previous experiment. However, we increase
the strength of the background magnetic field (7.2.13) by considering Fourier coefficients
given by (7.4.3). Thus, the strength of the magnetic field is increased three times compared
with the previous numerical experiment. This field is called the strong magnetic field.
We begin with a very small perturbation of the type (7.4.2) with c = 3e−3 to test the
well-balancing properties of the schemes. The parallel and perpendicular components
(to the direction of the magnetic field) of the velocity field at a resolution of 800 × 200
points are shown in Figure 7.4.7. All the three schemes are able to capture the small
perturbations quite accurately. The first order scheme is dissipative, but the minmod and
WENO schemes compute much sharper wave fronts. Furthermore, there are considerable
differences in the behavior of the waves compared with the numerical experiment with
a weaker magnetic field. The waves in direction of the magnetic field are much more
focused by the magnetic field. This is to be expected as the magnetic field is stronger
(see Figure 7.4.3 for the planar magnetic field case). Also the fast waves are considerably
faster in this case since β decays much faster, given the stronger magnetic field. Hence, the
maximum eigenvalues in (7.2.10) corresponding to the fast waves are larger. Consequently,
the turning of the fast waves at the top boundary is more pronounced. The accurate
numerical resolution of the complex phenomena with very small amplitudes illustrates the
robustness of the well-balanced schemes. We consider the same configuration as above
but increase the perturbation (7.4.2) by two orders of magnitude with c = 3e−1. The
results are shown in Figure 7.4.8. The results are qualitatively similar to those observed
in Figure 7.4.7. The fast waves travel even faster now and the turning at the top boundary
is more pronounced. Furthermore, the turned fast waves hit the β = 1 isoline and are
converted into slow waves. These slow waves are visible in the right hand side of the
domain as very small waves in the direction parallel to the magnetic field.
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Figure 7.4.7: Results for the strong magnetic background with small wave perturbations
(c = 3e−3) at t = 0.9 on a 800 × 200 mesh. The magnetic field-lines are shown in white
and the β-lines in black. The top row shows the speed in the direction of the magnetic
field-lines and the bottom row shows the speed perpendicular to the magnetic field-lines.
left column: H3WB, middle column: H3WBM , right column: H3WBW .

Figure 7.4.8: Results for the strong magnetic background at t = 0.9 on a 800× 200 mesh
for c = 3e−1. The magnetic field lines are shown in white and the isolines of β in black.
The top row shows the speed in the direction of the magnetic field lines and the bottom
row shows the speed perpendicular to the magnetic field lines. Left column: H3WB, middle
column: H3WBM , right column: H3WBW .
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7.5 Conclusion

We consider numerical simulations of wave propagation in an idealized stellar atmosphere.
The model consists a reformulated ideal MHD system based on the Godunov-Powell
form, together with an embedded steady magnetic field. The resulting equations are
balance laws with gravity source terms and background magnetic fields playing the role
of coefficients. The system possesses interesting isothermal steady states. Waves are
modeled as small perturbations of these steady states.

The system is simulated by finite volume schemes based on HLL three wave approx-
imate Riemann solvers and upwind discretizations of the Godunov-Powell source term.
The scheme is well-balanced by using local hydrostatic reconstructions of the density and
pressure and a suitable discretization of the gravity source term. Second-order accurate
schemes are designed by considered suitable minmod and WENO reconstructions. The
reconstructions are performed in terms of equilibrium variables to ensure well-balancing.

The resulting schemes are high-order accurate, stable and well-balanced. They are
validated on a large suite of numerical experiments. The underlying physical phenomena
are quite complex and involve multiple scales and parameters. The schemes perform very
well and are able to resolve very small perturbations as well as the complex phenomena
to a high degree of accuracy.

Future projects include employing the schemes of the paper on more realistic three
dimensional configurations with background magnetic fields and perturbations derived
from observed data. Additional physical effects need to be included in order to increase
the range of application of the models considered here. We plan to consider non-isothermal
steady states, and to add effects of radiation in order to model stellar atmospheres in a
more realistic manner. Such extensions will be considered in forthcoming papers.
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